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Abstract

People use rich prior knowledge about the world in order to
efficiently learn new concepts. These priors–also known as
“inductive biases”–pertain to the space of internal models con-
sidered by a learner, and they help the learner make inferences
that go beyond the observed data. A recent study found that
deep neural networks optimized for object recognition develop
the shape bias (Ritter et al., 2017), an inductive bias possessed
by children that plays an important role in early word learning.
However, these networks use unrealistically large quantities of
training data, and the conditions required for these biases to de-
velop are not well understood. Moreover, it is unclear how the
learning dynamics of these networks relate to developmental
processes in childhood. We investigate the development and
influence of the shape bias in neural networks using controlled
datasets of abstract patterns and synthetic images, allowing us
to systematically vary the quantity and form of the experience
provided to the learning algorithms. We find that simple neural
networks develop a shape bias after seeing as few as 3 exam-
ples of 4 object categories. The development of these biases
predicts the onset of vocabulary acceleration in our networks,
consistent with the developmental process in children.
Keywords: neural networks; inductive biases; learning-to-
learn; word learning

Humans possess the remarkable ability to learn a new con-
cept from seeing just a few examples. A child can learn the
meaning of a new word such as “fork” after observing only
one or a handful of different forks (Bloom, 2000). In con-
trast, state-of-the-art artificial learning systems use hundreds
or thousands of examples per class when learning to recog-
nize the same objects (e.g., Krizhevsky et al., 2012; Szegedy
et al., 2015). Consequently, significant effort is ongoing to
understand what cognitive and neural mechanisms enable ef-
ficient concept learning (Lake et al., 2017). In this paper,
we perform a series of developmentally-informed neural net-
work experiments to study the computational basis of effi-
cient word learning.1

If a learner extrapolates beyond the data, then another
source of information must make up the difference; prior
knowledge or “inductive biases” must help constrain the
space of models considered by the learner (Tenenbaum et al.,
2011; Michalski et al., 2013; Lake et al., 2017). For exam-
ple, children make use of the shape bias–the assumption that
objects that have the same name will tend to have the same
shape–when learning new object names, and thus they attend
to shape more often than color, material and other properties
when generalizing a novel name to new examples (Fig. 1b)
(Landau et al., 1988). Similarly, children assume that object
names are mutually exclusive, i.e. that a novel name probably
refers to a novel object rather than a familiar object (Markman
& Wachtel, 1988). Although the origin of inductive biases is

1All experiments can be reproduced using the code repository
located at http://github.com/rfeinman/learning-to-learn.
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Figure 1: Shape bias generalization tests. The 1st-order test, shown
in (a), assesses if a child has learned to generalize a familiar object
name to a novel exemplar according to shape. This is the first step of
shape bias development. The 2nd-order test, shown in (b), assesses if
the child has learned to generalize a novel name to a novel exemplar
by shape, the second and final step of shape bias development.

not always clear, results show that children, adults and pri-
mates can “learn-to-learn” or form higher-order generaliza-
tions that improve the efficiency of future learning (Harlow,
1949; Smith et al., 2002; Dewar & Xu, 2010).

Researchers have proposed a number of computational
models to explain how inductive biases are acquired and har-
nessed for future learning. Hierarchical Bayesian Models
(HBMs) enable probabilistic inference at multiple levels si-
multaneously, allowing the model to learn the structure of
individual concepts while also learning about the structure
of concepts in general (Gelman et al., 2013; Kemp et al.,
2007; Salakhutdinov et al., 2012). These models have been
used to explain various forms of “learning-to-learn,” includ-
ing learning a shape bias (Kemp et al., 2007). However,
it is currently difficult to apply HBMs to the type of high-
dimensional visual and auditory stimuli that children receive;
there have been successes (Salakhutdinov et al., 2013; Lake
et al., 2015), but neural networks are still the most general
solution to learning effectively from many different forms of
raw data (LeCun et al., 2015). Utilizing this property, here
we use neural networks to study learning-to-learn in differ-
ent settings of varying stimulus complexity, with the goal of
isolating the fundamentals of the learning dynamics.

Most related to our work here are studies by Colunga &
Smith (2005) and Ritter et al. (2017) investigating neural net-
work accounts of shape bias development. Colunga & Smith
(2005) showed that a simple recurrent neural network, trained
via Hebbian learning, can acquire a shape bias for solid ob-
jects and a material bias for non-solid objects. These sim-
ulations demonstrate that neural networks can form differ-

1657

http://github.com/rfeinman/learning-to-learn


ent expectations for different kinds of objects, but they raise
many new questions regarding the conditions required to de-
velop these types of biases. For example, the authors used
highly simplified bit-vector data, and it is unclear whether
their findings generalize to more complex or realistic stim-
uli. Furthermore, the authors did not systematically vary the
quantity of experience provided to the networks, and thus we
do not know the exact conditions in which biases arise and
whether these networks can compete with the strong sample
efficiency of HBMs (Kemp et al., 2007). In a recent study,
Ritter et al. (2017) found that performance-optimized deep
neural networks (DNNs) develop the shape bias when trained
on the popular ImageNet object recognition dataset consist-
ing of raw naturalistic images. These results highlight an
exciting possible connection between large-scale DNNs and
developmental psychology, though many questions still re-
main. ImageNet–which contains about 1200 labeled exam-
ples of 1000 different object categories–is a poor proxy for
the experience of a developing child, who typically develops
a shape bias with no more than 50-100 object words in her vo-
cabulary (Gershkoff-Stowe & Smith, 2004). Whether these
networks can acquire the shape bias with more appropriate
training sets is unclear. Furthermore, although the develop-
ment of the shape bias is known to predict the onset of vo-
cabulary acceleration in children (Gershkoff-Stowe & Smith,
2004), we do not know whether the same holds for DNNs.

In a related study, Hill et al. (2017) trained a neural net-
work agent to navigate around a virtual 3D world and col-
lect objects according to name-based language commands.
Although the authors draw inspiration from developmental
psychology, the agent in this experiment is asked to learn a
variety of tasks simultaneously: visual perception, language
comprehension and navigation. Further work is necessary to
isolate the dynamics of learning-to-learn in neural networks.

We investigate the development and influence of induc-
tive biases in neural networks using artificial object stimuli
that allow us to systematically vary the quality and form of
the experience provided. Specifically, we use an experimen-
tal paradigm from developmental psychology (Smith et al.,
2002) to train and evaluate the networks. Beginning with sim-
ple bit-vector data akin to Colunga & Smith (2005), we sys-
tematically vary the number of categories and the number of
examples in the training set, and for each pairing the trained
networks are evaluated for two different forms of generaliza-
tion (Fig. 1) as well as for changes in perceptual sensitiv-
ity. Parallel experiments are then performed with raw image
data, where each image consists of a 2D object with a partic-
ular shape, color and texture. In a final set of experiments,
we examine the dynamics of learning-to-learn by analyzing
the relationship between shape bias acquisition and the rate
of word learning, mirroring an analogous study from devel-
opmental psychology (Gershkoff-Stowe & Smith, 2004).

Experiments
We set out to train neural networks with a learning paradigm
used to guide toddlers to the shape bias (Smith et al., 2002).

In this paradigm, the learner acquires new object names that
are organized exclusively by shape, such that different in-
stances of the same object category are identical in shape but
contrast sharply in color and material. This is reflective of
the fact that a child’s early noun vocabulary consists predomi-
nantly of shape-based categories (Samuelson & Smith, 1999),
although not with the same purity as the shape bias training.
As in previous computational modeling work (Kemp et al.,
2007; Colunga & Smith, 2005), we focus on purified train-
ing with shape-based categories, since it provides a controlled
test of the artificial learner’s ability to make higher-order gen-
eralizations across varying quantities of training experience.

In Smith et al. (2002), 17-month-old children were taught
4 new object names (“wif”, “dax”, etc.) over 7 weeks via
weekly play sessions. Objects in the study were 3D forma-
tions constructed of various materials; each object contained
a specific shape, color and texture (material), and their names
were organized strictly by shape. During weekly sessions,
children played with each object while an adult announced
its name repeatedly. By the end of the study, the children had
acquired a shape bias–i.e., they had formed the inductive bias
that a novel name should be generalized by shape as opposed
to color or texture. A control group of children who did not
partake in the play sessions did not form this bias.

We use the training paradigm of Smith et al. (2002) to study
inductive bias learning in neural networks with artificial ob-
ject datasets. We first perform our computational experiments
with abstract bit-vector stimuli, followed by experiments with
raw image data. Each constructed object is assigned a shape,
color and texture. We train simple neural networks to label
objects with category names based on shape. To understand
the necessary conditions for successful inductive bias learn-
ing, training is performed with various dataset sizes, varying
both the number of categories and the number of examples of
each category provided to the network. We evaluate the gen-
eralization capabilities of the network for each training set
using 2 generalization tests modeled after the 2 tests of Smith
et al. (2002), depicted in Fig. 1.
1st-order generalization test. For this test, toddlers are
first presented with an exemplar object that they have seen
during training (“wif” in Fig. 1a). Then, they are presented
with 3 test objects that they have not seen: 1 that matches the
exemplar in shape (item 1 in Fig. 1a), 1 that matches in color
(item 2), and 1 that matches in texture (item 3). For each po-
tential match, the other 2 stimulus attributes are novel. The
toddlers are asked to select which of the 3 test objects share
the same name as the exemplar. Performance is measured as
the fraction of trials in which the child selected the correct ob-
ject, i.e. the shape match. To simulate this test, we create an
evaluation set containing groupings of 4 sample objects: an
exemplar, a shape match, a color match, and a texture match.
The activations of our network’s hidden layer are obtained in
response to each object. We then evaluate the cosine simi-
larity between the activations of the exemplar and each test
object to determine which object the network perceives to be
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Figure 2: MLP generalization results for explicit shape bias training with various training set sizes. The number of categories and number
of examples per category provided to the network are shown on the x and y axes, respectively. Plots show accuracy over 1000 trials of the
specified generalization test, averaged from 10 training runs. The same data is shown in both contour and heatmap format. With 2 categories,
only 8 unique examples are feasible; thus, N/A results are blacked out.
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Figure 3: Multilayer perceptron architecture. Shape, color and tex-
ture attribute vectors are concatenated and fed to a 30-unit hidden
layer, followed by a classification layer. 3 example input objects are
shown (only one is presented at a time to the network).

most similar. Accuracy is defined as the fraction of groupings
for which the correct (shape-similar) object is chosen.

2nd-order generalization test. For this test, toddlers are
first presented with an exemplar object that has a novel la-
bel (e.g., “teema”) as well as a novel shape, color and tex-
ture. From there, the trial proceeds similarly to those of the
1st-order: a shape match, color match and texture match are
presented, and the child must select which test object she be-
lieves to share a name with the exemplar. All shapes, colors
and textures are novel to the child in this test. We simulate the
2nd-order test with artificial object stimuli similarly to the 1st-
order case, again using last hidden layer features to evaluate
perceptual similarity.

In all simulations, we record accuracy over 1000 simulated
test trials as the performance metric for each generalization.

Experiment 1: Multilayer perceptron trained on
synthetic objects
Our first experiment aims to study inductive bias learning in
its purest form, using synthetic stimuli with maximal con-
trol. Objects are abstract binary patterns, divided into 3 input
pools of 20 binary units each (representing the shape, color
and texture of the objects; see Fig. 3). We varied the num-
ber of categories and number of examples per category in the
training set. For datasets with N categories and K examples,

we randomly generate N shape patterns, N color patterns, and
N texture patterns. For all 3 attributes, each pattern is repli-
cated K times, ensuring equal entropy across the 3. The shape
patterns are then aligned with object labels, and the remain-
ing 2 attributes are permuted randomly to create the dataset.
A holdout set of shapes, colors and textures is retained for the
generalization tests.

We train a multilayer perceptron (MLP) to name objects,
as shown in Fig. 3. The network has an input layer of 60
units, a hidden layer of 30 rectified linear units (ReLUs) with
L2 regularization, and a softmax output layer to classify the
object by name. The softmax layer has N units (1 for each
label). We train the network for 200 epochs using negative
log-likelihood loss, RMSProp, and batch size min(32, N∗K

5 ).2

Results. Initially, as would be expected given the data for-
mat, shape is treated the same as other attributes. In the 2nd-
order generalization test, a randomly initialized network se-
lects test objects with the following ratios, on average (50 tri-
als): shape 35%, color 33% and texture 32%. We then trained
the network with various dataset sizes. Results for the 1st- and
2nd-order generalizations are shown in Fig. 2, where each
setup is an average over 10 networks with different random
seeds. We note that acquisition of the 1st-order generalization
requires less data than that of the 2nd-order, as predicted by
the 2-phase hypothesis (Smith et al., 2002). Success in the
1st-order test indicates that the network is learning success-
fully and generalizing to new examples of the training classes.
Networks that achieve an accuracy of 0.7 or higher on the 2nd-
order test show a substantial shape bias, and the MLP reaches
this threshold at the following points: N=2 & K=6 (accuracy
0.71) and N=4 & K=3 (accuracy 0.80). These results repro-
duce the general pattern of the Hierarchical Bayesian Model
(HBM) in Kemp et al. (2007) and toddlers in Smith et al.
(2002), who neared the 0.7 shape bias threshold with N=4 &
K=2 (although the toddlers also receive external experience).
In contrast, Colunga & Smith (2005) used N=10 & K=100 to
obtain the shape bias in their networks, using similar abstract

2For details about the selection of architectures and training pa-
rameters in Experiments 1 & 2, see Supplemental Material:
http://www.cns.nyu.edu/˜reuben/files/cogsci18-SM.pdf
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Figure 4: Perceptual (network) similarity as a function of physical
(attribute) distance. A test stimulus is systematically altered along
either its shape or color dimension. Network similarity scores are
computed between the original stimulus and its altered counterpart.

patterns. Although HBMs are often noted for their data effi-
ciency, in this case, the neural network was competitive for
making 2nd-order generalizations from limited data.

As another way of demonstrating the learned sensitivity to
shape, we perform parametric manipulations of the stimuli.
Using an MLP trained with N=4 & K=6, we probe the shape
bias by selecting a novel test stimulus and systematically flip-
ping bits, recording the network similarity between the mod-
ified stimulus and the original. For comparison, a similar test
is also performed with color. Results are shown in Fig. 4a for
1 test stimulus. Clearly, the network is far more sensitive to
changes in shape than changes in color.

Experiment 2: Convolutional network trained on
synthetic objects
Our first experiment used highly simplified training stimuli
for maximal experimental control. One strength of modern
neural network architectures is that they can learn effectively
from data in raw and complex forms, a fact we take advantage
of in developing Experiment 2. Here we ask whether similar
learning-to-learn results can be achieved using synthetic ob-
ject stimuli presented as raw images. This setup presents a
more challenging learning problem for the neural network,
in terms of making both 1st- and 2nd-order generalizations,
since understanding shape requires making abstractions that
go substantially beyond separating a pool of input units that
directly encode the dimension, as in Experiment 1.

The stimuli are constructed as follows. Each object is a
2D shape of a specified color placed over white background
(200x200). Texture is represented in a fourth image channel,
independent of RGB space.3

3This design choice was made to avoid an initial shape bias; with
texture overlaid in RGB space, a randomly initialized network ex-

“zup”

“dax”

“wif”

“lug”

(a) (b)

Figure 5: Training stimuli for Experiment 2. (a) novel objects with
various shapes and colors (the first 3 input channels). (b) a few ex-
amples of textures that might be found in the 4th input channel.

Examples of our objects are shown in Fig. 5. Object shapes
are polygons of random order (uniform 3-10) and randomly
sampled vertices, with preference given to points near image
boundaries in order to ensure visible-sized objects. Colors are
generated to span the RGB vector space with even separation.
We use black and white textures from the Brodatz database
(Brodatz, 1966) for our texture categories. A holdout set of
shapes, colors and textures is again retained for testing.

We train a multi-layer convolutional neural network (CNN)
(LeCun et al., 2015) consisting of two convolution layers with
five feature maps, each followed by a max pooling layer. A
depiction of this architecture is shown in Fig. 7. The last
pooling layer is followed by a fully-connected layer of 25
ReLU units, and the softmax layer again varies in size ac-
cording to the number of categories. Both the convolutional
layers and the fully-connected layer use L2 regularization, the
latter also with dropout=0.5. Each object is randomly shifted
around image space by a small offset (train and test alike).
Training details mimic the MLP, but with 400 epochs.

Results. The randomly initialized network makes 2nd-order
selections with the following ratios: shape 38%, color 42%
and texture 20%. We trained the network using varying
dataset sizes, as with our MLP. Results are shown in Fig. 6.
Similarly to the MLP, acquisition of the 1st-order generaliza-
tion requires less data than that of the 2nd-order, supporting
the notion that learning the training classes is a simpler task
than forming higher-order generalizations. Using the same
shape bias threshold of 0.7 2nd-order score, we find a num-
ber of important transition points: N=32 & K=3 (accuracy
0.74), N=8 & K=6 (accuracy 0.75), and N=4 & K=12 (ac-
curacy 0.70). The CNN is thus capable of learning a shape
bias from as few as 6 examples of 8 categories, a significant
feat given the scale of the input. Notably, the network is able
to learn this bias with much less data than Colunga & Smith
(2005) using a data form that is significantly more complex.
The CNN of Ritter et al. (2017) used roughly N=1000 &
K=1200, and developed a shape bias of 0.68 on a shape and
color-only task. A key takeaway from our results is that, with
concentrated training effort, it is possible to learn this bias
from much less data using high-dimensional color images.

hibits the shape bias. Furthermore, the participants in Smith et al.
(2002) physically touch each object during play, indicating that they
have access to additional non-visual information.
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Figure 6: CNN generalization results for various training set sizes. Results show the average of 10 training runs. See Fig. 2 for details.

As in Experiment 1, we also parametrically manipulated
the stimuli to analyze the network’s sensitivity to changes
along different stimulus dimensions, finding strong sensitiv-
ity to shape but not color (Fig. 4b & 4c; see Supplemental
Material for details). Moreover, in additional experiments,
we found that networks trained on color-based categories de-
velop a color bias, and that this bias requires less data than
the shape bias (see Supplemental Material).

Experiment 3: The onset of vocabulary acceleration
Our previous experiments confirm that simple neural net-
works can develop the shape bias from a relatively small num-
ber of categories and examples. It remains unclear, however,
how the dynamics of bias acquisition relate to the dynamics
of word learning. Gershkoff-Stowe & Smith (2004) showed
that the development of the shape bias in toddlers predicts the
onset of vocabulary acceleration during early word learning,
a phase that begins at ages 16-20 months. Studying 8 chil-
dren during regular lab sessions at 3-week intervals, the au-
thors found that increasing attention to shape was correlated
with increasing rate of vocabulary acquisition in participants.
Fig. 8a shows the individual growth curves of vocabulary
size and shape response for each child. The former variable
is measured as the cumulative number of nouns in the child’s
vocabulary, and the latter as the cumulative number of times
that the child has selected the shape match in a shape bias
task akin to the 2nd-order test. Although the vocabulary curve
shows cumulative nouns in whole, the authors also recorded

5x5 Convolution 
(5 feature maps, L2 reg.)

5x5 Max Pooling

Fully-connected Layer 
(25 units, L2 reg., Drop.=0.5)

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling
Softmax Layer

Object 
Name

Stimulus
(200x200x4)

*conv and fully-connected 
layers use ReLU activation

Figure 7: Convolutional network architecture. The network receives
4D image stimuli and is trained to label the object in the image with
a category name that is based on shape.

cumulative “count nouns” for each participant, a subset of
nouns that is well organized by shape. We focus on the statis-
tics reported for count nouns, as this subset reflects the type
of vocabulary that is influenced by the shape bias.

The authors found a few interesting correlations: 1) a cor-
relation between increase in cumulative shape choices and
increase in cumulative count nouns across sessions for an
individual participant, averaged over participants [average
r = .75; p < .05 for each], and 2) a correlation between av-
erage increase in shape choices over the whole experiment
and average increase in count nouns, computed across partic-
ipants [r = .81; p < .05].

Methods. Inspired by this study, we train a CNN using our
raw image data with the goal of evaluating related correla-
tion metrics for our networks. The participants of Gershkoff-
Stowe & Smith (2004) were not explicitly trained for the
shape bias like those of Smith et al. (2002); they received
natural experience in a home setting, which may have in-
cluded some words organized by attributes other than shape.
Therefore, we train our CNN to simultaneously label the ob-
ject’s name, which correlates with shape, as well as its color
and texture names. Thus, there are now 3 softmax layers
in the CNN from Fig. 7, each of which branches indepen-
dently from the fully-connected layer. The number of cat-
egories along each label dimension and the loss weight as-
signed to that dimension are determined according to the
natural statistics of the early human lexicon (Samuelson &
Smith, 1999).4 The chosen ratios are as follows: 60-20-20
shape-color-texture names (36, 12 and 12 categories, respec-
tively). 10 examples of each shape are used, and colors and
textures are assigned at random to each stimuli from their 12
categories. We keep a cumulative count of the number of
count nouns in the network’s vocabulary, defined as the num-
ber of shape categories for which the network has achieved
80% or greater accuracy on the training set. We also keep
a cumulative count of shape choices the network makes in
a 500-trial 2nd-order test. This process is repeated with 20
networks, using a different random seed for each network.

4Children are taught object, color and material names indepen-
dently. Loss weighting provides a good analog to this for CNN train-
ing. Assigning a weight of 0.6 to object name labeling mirrors pre-
senting this type of name 60% of the time in training. For details on
loss weighting, see Supplemental Material.
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Results. We inspect the “early” word learning period for
our networks, defined as the period in which the average vo-
cabulary size across the 20 networks is less than or equal to
2/3 the total number of count nouns. Beyond this period,
which we find to include the first 30 training epochs, the
network’s learning begins to flatten. We divide this period
into 10 “sessions,” evenly spaced by 3 epochs. The learn-
ing curves of our networks are shown in Fig. 8b. We com-
pute correlation metrics for our networks that are analogous
to those of the child study. Looking at increases across the
sessions of a single network (metric 1), we find an average
correlation of r = .53 between increase in cumulative shape
choices and increase in cumulative count nouns [p < .05 for
each]. Further, looking at average increases across the en-
tire 10-session period for each network (metric 2), we find a
correlation of r = 0.76 [p < .001] across the 20 networks.

These analyses confirm that the dynamics of shape bias ac-
quisition and early word learning show a considerable depen-
dency on one another in our CNNs, a phenomenon that is
mirrored in the early word learning of human children.

Conclusion
Using a set of controlled synthetic experiments, our work pro-
vides novel insights about the environmental conditions that
enable learning-to-learn in neural networks. Building on the
work of Colunga & Smith (2005) and Ritter et al. (2017), Ex-
periment 1 showed that simple neural networks can learn a
shape bias from stimuli presented as abstract bit patterns with
as few as 3 examples of 4 categories. Experiment 2 showed
that simple convolutional neural net architectures trained on
high-dimensional images can learn a shape bias with as few
as 6 examples of 8 object categories. Although Hierarchical
Bayesian Models (HBMs) are often noted for their data effi-
ciency, our results indicate that neural networks can approach
both HBMs (Kemp et al., 2007) and children (Smith et al.,
2002) in the amount of data required to develop a shape bias.
Moreover, we show that the complexity of the data (e.g., bi-
nary patterns vs. synthetic images) influences the dynamics
of learning, and that neural networks are a powerful tool for
understanding these types of interactions.

The development of the shape bias in children is known
to correlate with accelerated word learning (Gershkoff-Stowe
& Smith, 2004), a phenomenon that Experiment 3 confirmed
can be mirrored in neural networks. One implication of this
finding is that it may be possible to train large-scale image
recognition models more efficiently after initializing these
models with shape bias training. In future work, we hope to
investigate this hypothesis with ImageNet-scale DNNs, using
an initialization framework designed with the intuitions gar-
nered here.
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