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Abstract

Three Problems in the Control and Identification of Structured Linear Systems

by

Han Feng

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Javad Lavaei, Chair

We study three problems in the control and identification of structured linear systems. The
structure is first manifested as sparsity pattern constraints on the system or control matrices,
which complicate the feasible set of the optimal decentralized control problem. We find that
the feasible set can be not only disconnected but also have a large number of connected
components, which greatly limits the application of local search optimization algorithms.
The issue of connectivity is addressed in the second problem, where we design homotopy
paths that reduce the number of local minima of the optimal decentralized control problem.
Finally, we study an identification scheme based on l1 optimization, where the system states
are subject to attacks which propagate over time. The structural constraint, which appears
as inequalities involving the states and control inputs, will lead to sufficient conditions for
the recovery of system matrices.
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Chapter 1

Introduction

As the cheapening computing power seeps into our daily lives, critical decisions in large-scale
dynamical systems are bit by bit taken over by algorithms which are becoming increasingly
complex. It is imperative that we validate the the decision making process, which often
takes the form of an iterative optimization algorithm. Control theory is a field where we
study problem structure and its interplay with optimization algorithms. The dissertation
studies three problems in the theory of structured linear systems. The first two concerns the
problem of optimal control where we show that

• The stability constraint of the decisions greatly complicates the geometric structure of
the optimal control problem. In particular, when we require that the control policy
stabilizes the system, we may have to sacrifice connectivity of the feasible set, which
frustrates the attempt of a local search algorithm to find the best control policy.

• A homotopy scheme can overcome the issues of connectivity in the policy domain.
This is achieved by constructing a series of artificial systems, eventually leading to one
where the connectivity problem disappears and the locally optimal control policy is
globally optimal.

For the last problem, we study the identification of an unknown linear dynamical systems
under injections of a attacker who can potentially tune his input based on current state and
control measurements. We find that

• When the attacker can only attack infrequently, we can shape the joint distribution of
input and state pairs such that an accurate model of the linear dynamical system can
be recovered in a single trajectory of state measurements.

The following three chapters will state our problem setting and conclusions in more detail.
Chapter 2 and Chapter 3 study continuous-time linear systems, while Chapter 4 studies a
discrete-time system.
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Chapter 2

Connectivity Properties of the Set of
Stabilizing Static Decentralized
Controllers

The optimal decentralized control (ODC) problem is known to be NP-hard [13]. The NP-
hardness is reflected in the properties of its feasible set. We study the complexity of the
ODC problem through an analysis of the set of stabilizing static decentralized controllers,
and show that there is no polynomial upper bound on its number of connected components.
In particular, it is proved that this number is exponential in the order of the system for a
class of problems. Since every point in each of these components is the unique solution of
the ODC problem for some quadratic objective functional, the results of this work imply
that, without prior knowledge for initialization, local search algorithms cannot solve the
ODC problem to global optimality for all decentralized control structures. In an effort to
understand the connection between the geometric properties of the feasible set of the ODC
problem and the control structure, we further identify decentralized structures that admit
tractable connectivity properties, using a combination of the Routh-Hurwitz criterion and
Lyapunov stability theory.

2.1 Introduction
Classical state-space solutions to optimal centralized control problems do not scale well as
the dimension increases [26]. Moreover, structural constraints such as locality and delay are
ubiquitous in real-world controllers. The optimal decentralized control problem (ODC) has
been proposed in the literature to bridge this gap. The model has found wide applications
in electric power systems and robotics [65, 19, 89, 61]. On the one hand, ODC can have
nonlinear optimal solutions even for linear systems and is NP-hard in the worst case [93, 14].
On the other hand, the existence of dynamic structured feedback laws is completely captured
by the notion of fixed modes [80], and several works have discovered structural conditions on
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the system and/or the controller under which the ODC problem admits tractable solutions.
The conditions include spatially invariance [5], partially nestedness [78], positiveness [75],
and quadratic invariance [56]. More recently, the System Level Approach [90] has convexified
structural constraints at the expense of working with a series of impulse response matrices.
Promising approximation [30, 2, 59] and convex relaxation techniques [84, 16, 36, 17] also
exist in the literature.

A recent line of research, initiated in the machine learning community, suggests using
nonlinear programming methods based on local search for the optimal control problems [35].
These methods have been applied to instances of ODC to obtain approximate solutions [91]
and to promote sparsity in controllers [57]. Local search methods are well-studied for convex
problems, and they normally come with optimality guarantees [16]. However, when the
problem is non-convex, these methods may converge to a saddle point or to a local minimum
[8]. Local search algorithms are effective: (i) when they are initialized at a point close enough
to the optimal solution, or (ii) when there is no spurious local optimum and it is possible to
escape saddle points [43, 52, 95, 51]. These conditions are not evidently verifiable for ODC
and the question whether local search is effective for ODC remains unanswered.

This chapter shows that the chances of success for the global convergence of local search
methods applied to a general ODC problem are theoretically slim. Specifically, we prove that
the feasible set of the ODC problem in the static case, which includes all structured static
controllers that stabilize the system, can be not only non-convex but also disconnected where
the number of connected components grows exponentially in the order of the system. Since
any point in the feasible set is the unique globally optimal solution of ODC for some quadratic
objective functional, this result implies that no reformulation of the problem with a smooth
change of variables could convexify the problem. Moreover, if one seeks to solve a hard
instance of the ODC problem through local search, the algorithm needs to be initialized an
exponential number of times unless some prior information about the location of the solution
is available in order to start in the correct connected component. This result contrasts with
the recent findings in [35] and qualifies the applicability of local search methods in optimal
control problems.

Although the number of connected components is shown to be exponential in this work,
we also demonstrate that favorably structured systems can have a single connected compo-
nent. In particular, it is proved that the set of static stabilizing controllers is connected for
damped systems no matter what the control structure is. Moreover, a bound on the number
of connected components is provided in the scalar case. For block structured systems with a
sufficient number of free elements, we develop a series of equivalence relations that describe
the exact number of connected components of structured stable matrices.

This work is related to several papers in the literature. The set of stabilizing controllers
has been studied from many angles. The work [67] parametrizes the set of stable state-
feedback controllers under no structural constraints. The paper [66] studies the connectivity
of stable linear systems and concludes that single-input single-output systems of order n
have at most n + 1 connected components, while stable multi-input multi-output systems
have only one connected component. The work [6] investigates what types of sparse patterns
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can sustain stable dynamics using graph theory. For systems with a few parameters, the
number of stability regions can be bounded by the number of root-invariant regions using
the D-decomposition method [46, 45]. However, the connectivity of decentralized stabilizing
controllers, especially for multi-input multi-output systems, lacks a systematic study.

The remainder of this chapter is organized as follows. Notations and problem formula-
tions are given in Section 2.2. We derive elementary connectivity properties of the set of
stabilizing controllers and bound the number of connected components for scalar controllers
in Section 2.3. Section 2.4 examines a subclass of decentralized control problems for which
the number of connected components is exponential, and discusses the implications of this
result on the number of locally optimal solutions of ODC. Section 2.5 extends the result to a
broad class of controllers with a tri-diagonal-containing structure and shows that the set of
stabilizing controllers with a bounded norm has an exponential number of connected compo-
nents. Section 2.6 proves that highly damped systems admit a connected set of decentralized
controllers. The section further discusses how this property could be used to approximate the
solution of the ODC problem. Section 2.7 describes the connectivity properties of structured
stable matrices with zero blocks. Concluding remarks are drawn in Section 2.8.

2.2 Problem Formulation
Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are real matrices of compatible sizes. The vector
x(t) is the state of the system and y(t) is the output. We focus on the static case, where
the control input u(t) is to be determined via a static output-feedback law u(t) = Ky(t)
with the gain K ∈ Rm×p such that some measure of performance is optimized. Since the
analysis to follow is on the feasible set, the initial state (being deterministic or stochastic)
and the objective function (being quadratic or some other function of the system’s signals)
are unimportant. With no loss of generality, we assume that the initial state x(0) = x0 is
normally distributed with zero mean and unit variance. The quadratic performance measure
is defined by

Jλ(K) = E
∫ ∞

0

e−λt
[
x⊤(t)Qx(t) + 2x⊤(t)Du(t) + u⊤(t)Ru(t)

]
dt (2.1)

where the matrix L =
[

Q D

D⊤ R

]
is positive semi-definite and R is positive definite. We use the

notations L ⪰ 0 and R ≻ 0 to denote positive semi-definiteness and positive definiteness,
respectively. The discount factor λ ≥ 0. The expectation is taken over x0. The closed-loop
system is

ẋ(t) = (A+BKC)x(t).
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A matrix is stable, or equivalently Hurwitz, if all its eigenvalues lie in the open left half plane.
K is said to stabilize the system if A + BKC is stable. All the matrices considered in this
work are real-valued unless otherwise noted. The objective is to study the set of structured
stabilizing controllers

KS = {K : A+BKC is stable, K ∈ S}, (2.2)

where S ⊆ Rm×p is a linear subspace of matrices, often specified by fixing certain entries of
the matrix to zero. Decentralized and distributed controllers could be specified by the set S
with a prescribed sparsity pattern. The set of sparse stable matrices

AT = {A : A stable and A ∈ T } (2.3)

is a special case of (2.2), where T ⊆ Rn×n is a linear subspace of matrices. When T is a
linear subspace of sparse matrices, we represent T with a sparsity pattern where ∗ denotes
the positions of entries that can be non-zero. As an example, the set of tri-diagonal matrices
can be represented by the following sparsity pattern:

∗ ∗ 0 · · · · · · 0

∗ ∗ ∗ . . . ...

0 ∗ ∗ . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . ∗
0 · · · · · · 0 ∗ ∗


.

Let IT ∈ T denote the indicator of the sparsity pattern of T so that IT has an entry 1 at all
positions of T that can be nonzero and 0 otherwise. The connectivity properties of KS and
AT will be studied under the Euclidean topology. We use ∂KS to denote the boundary of
the set KS . The notation diag(a1, . . . , an) denotes the n-by-n diagonal matrix with diagonal
entries a1, . . . , an. We write tr(A) for the trace of the matrix A and ∥A∥2 for the 2-norm of
A. The notation E[X|Y ] denotes the expectation of the random variable X conditioned on
the random variable Y .

Geometrically, the set of stable matrices is an open non-convex cone with the origin
removed. The sets KS and AT are obtained by slicing this open cone of stable matrices
along an affine subspace and a linear subspace, respectively. The slicing affects the number
of connected components for each of these sets and thereby reflects the tractability of the
optimal decentralized control problem.

2.3 Connectivity Properties in Special Cases
In this section, we prove global geometric properties of the stabilizing set KS for certain
choices of B,C and S using elementary arguments.
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The stability of matrices can be characterized in different ways. Lyapunov’s characteri-
zation [28, §4.1] states that a matrix M is stable if and only if there is a solution P ≻ 0 to
the equation MP + PM⊤ + I = 0. The Routh-Hurwitz criterion [7, §11.17] states that a
matrix is stable if and only if the coefficients of its characteristic polynomial satisfy a set of
polynomial inequalities. These basic techniques allow us to study the stabilizing set K when
there are no structural constraints and full state measurements.

Lemma 1. Assume that S = Rm×p and C = I. The set KS is connected, but generally
non-convex.

Proof. Observe that KS is the continuous image of the set

H = {(R,P ) : AP +BR + PA⊤ +R⊤B⊤ = −I, P ≻ 0}

through the map (R,P ) → RP−1. Moreover, H is connected since it is the intersection of
a linear space and a convex cone. The map is well-defined as P is positive definite; it is
also surjective from the Lyapunov’s characterization: whenever A + BK is stable, there is
a matrix P ≻ 0 such that (A + BK)P + P (A + BK)⊤ = −I and the tuple (R,P ) can be
mapped to the desired K under the formula KP = R.

To show that KS is generally non-convex, consider the second-order system

A =

[
0 1
−a0 −a1

]
, B =

[
0 b0
1 b1

]
, K =

[
k11 k12
k21 k22

]
where A and the first column of B are in the canonical form to ensure controllability. The
closed-loop matrix is equal to

A+BK =

[
b0k21 1 + b0k22

−a0 + k11 + b1k21 −a1 + k12 + b1k22

]
.

To analyze the stability, we use the Routh-Hurwitz criterion and write

KS = {K : tr(A+BK) < 0, det(A+BK) > 0}.

Notice that KS is not convex in general since its intersection with the lower dimensional
subspace k21 = 0 is given by{

K =

[
k11 k12
k21 k22

]
: −a1 + k12 + b1k22 < 0, (1 + b0k22)(−a0 + k11) < 0

}
,

which turns out to be the union of two disjoint polyhedrons if b0 ̸= 0 (due to the product in
the second condition).

An implication of lemma 1 is that the feasible set of the linear-quadratic optimal central-
ized control problem is connected, which justifies the success of the local search algorithm
proven in [35] for centralized controllers. Another insightful, but impractical, scenario is the
case with B = C = I and a mostly arbitrary S. This is studied below.
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Lemma 2. Assume that B = C = I and that S contains −I. Then, the set KS is connected.

Proof. Since S is a linear subspace, we have −λI ∈ S for every λ ∈ R. Given two arbitrary
matrices K1, K2 ∈ KS , consider the following connected path from A+K1 to A+K2:

A+K1
increase λ→ A+K1 − λI

K1→K2→ A+K2 − λI

decrease λ→ A+K2,

where

• λ ≥ 0 is first increased to a large value;

• we move from A+K1 − λI to A+K2 − λI via an arbitrary continuous path between
K1 and K2 in S;

• λ is decreased eventually.

The parameter λ can be made so large that all matrices on the path from A +K1 − λI to
A+K2−λI could be regarded as a small (on the order of K2−K1) perturbation of the large
matrix A+K1−λI. Such small perturbation preserves the stability condition of A+K1−λI.
The proof is completed by noting that the designed path, which connects K1 and K2, involves
only controllers in S and passes through only stabilizing matrices continuously.

If the measurement matrix C is not the identity matrix, the set could become disconnected
even in the simplest case K = k ∈ R. This is demonstrated in the example below. To
differentiate vectors from matrices, we rewrite B as b and C as c⊤, where b and c are column
vectors in Rn.

Example 1. Assume that (A, b) is controllable and c ̸= 0, where A ∈ R3×3. Then, the set
K can have at most two connected components. To prove this statement, with no loss of
generality we write the system in the controllable canonical form, i.e.,

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 , b =

00
1

 , c⊤ =
[
c0 c1 c2

]
.

The Routh-Hurwitz criterion characterizes stability with the set of inequalities

a0 − kc0 > 0,

a1 − kc1 > 0,

a2 − kc2 > 0,

(a0 − kc0) < (a2 − kc2)(a1 − kc1).
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Consider the quadratic function f(k) = (a2 − kc2)(a1 − kc1), which can have at most two
branches that lie above the line a0−kc0. The intersection of these branches with the interval
defined by the first three linear inequalities leads to at most 2 connected components. An
example with exactly two components can be produced by the parameters

(a0, a1, a2) = (−5,−1, 1), (c0, c1, c2) = (0.85, 0.2, 0.2).

fig. 2.1 verifies the above result by plotting the maximum real part of the closed-loop eigen-
values versus k.

Figure 2.1: As discussed in Example 1, the set of stabilizing controllers can have two
connected components for a third-order system. Observe that there are two intervals for k
that produce eigenvalues in the left-half complex plane.

It can be inferred from example 1 that the coordinates of the set of stabilizing controllers
are “one-sided”. This is not surprising since when A + BKC is stable, it holds that tr(A +
BKC) < 0. We elaborate on this result in lemma 3.

Lemma 3. Consider the case m = p = 1. Suppose that (A, b) is controllable and c ̸= 0.
Then, the scalar set KS cannot extend to infinity on both sides.

Proof. As before, with no loss of generality consider the canonical form

A =

[
0 I
−a0 · · · −an−1

]
, b =

[
0
1

]
, c⊤ = [c0, . . . , cn−1].
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The matrix A+ bkc⊤ has the characteristic polynomial

(a0 − c0k) + (a1 − c1k)x+ . . . ,+(an−1 − cn−1k)x
n−1 + xn = 0.

It follows from the Routh-Hurwitz criterion that the coefficients of this polynomial must
be positive. Since c ̸= 0, there is some entry ci0 ̸= 0 and, as a result, k is prevented from
extending to infinity on one side due to the inequality ai0 − ci0k > 0.

In what follows, we will bound the number of connected components for scalar controllers.
Compared with [45, Theorem 1], our bound is tighter under the assumption of controllability.
We denote by ⌈ξ⌉ the smallest integer greater than or equal to the scalar ξ.

Theorem 1. Consider the case m = p = 1. Suppose that (A, b) is controllable and c ̸= 0.
The scalar set KS can have at most ⌈n

2
⌉ connected components.

Proof. If there is no stabilizing controller in S, then KS = ∅; otherwise one can first stabilize
A with some controller k0 and then analyze the set of shifted controllers k− k0. As a result,
without loss of generality one can assume that A is stable. We call a controller k critical
when it is on the boundary of the set stabilizing controllers, implying the presence of a
closed-loop eigenvalue on the imaginary axis. If necessary, we replace A with A − ϵI for a
small ϵ > 0 so that the number of connected components remains the same and that the
intervals of KS share no boundary points. Consider the solution to the equation

0 =det(jwI − A− kbc⊤)

=det(jwI − A) det(1− kc⊤(jwI − A)−1b) (2.4)

(the symbol j denotes the imaginary unit). Since A is stable, the first term in the second
line of (2.4) is not zero and therefore the second term must be zero. Taking its real and
imaginary part yields

1− k × Re{c⊤(jwI − A)−1b} = 0, (2.5)
Im{c⊤(jwI − A)−1b} = 0. (2.6)

Equation (2.6) is of the form Im
{

f(jw)
g(jw)

}
= 0 with g(jw) = det(jwI − A) ̸= 0; equivalently,

one can write Im{f(jw)g(jw)} = 0 where f(jw) is a polynomial of degree at most n − 1,
g(jw) = det(jwI−A) is a polynomial of degree n, and overline denotes the complex conjugate.
Im{f(jw)g(jw)} is a polynomial of degree 2n − 1 in w with only odd degree terms; it can
have at most 2n − 1 real roots that are symmetric around 0. Because Re{f(jw)g(jw)} has
only even degree terms, at most n distinct pairs of the symmetric roots of eq. (2.6) can be
plugged into (2.5). This leads to at most n critical values for the scalar k and divides the
real line into at most n+1 intervals of interlacing stable-unstable controller regions. At most
⌈n+1

2
⌉ of them are stable. Note that when n+ 1 is odd, lemma 3 rules out one interval that

extends to infinity. As a result, the upper bound can be sharpened to ⌊n+1
2
⌋ = ⌈n

2
⌉.
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Theorem 1 states that the number of connected components would grow with the dimen-
sion of the system even in the special case m = p = 1. Our bound is tight when n = 3 in
light of example 1.

2.4 Exponential Subclass
One of the main results of this chapter is stated below.

Theorem 2. There is no polynomial function with respect to the order of the system that can
serve as an upper-bound on the number of connected components of the set of decentralized
stabilizing controllers.

To prove the theorem, it suffices to show the existence of a subclass of decentralized
control problems whose set of stabilizing controllers has an exponential number of connected
components. Our proof requires a lemma that characterizes the stability of tri-diagonal
matrices whose diagonal elements are mostly purely imaginary complex numbers. Define
the inertia In(G) of an n × n matrix G as the triplet In(G) = (α(G), β(G), γ(G)), where
α(G), β(G) and γ(G) count the eigenvalues of G with positive, negative and zero real parts,
respectively.

Lemma 4 (From [92]). Consider the tri-diagonal matrix

G =



f1 + jg1 f2 0 · · · · · · 0

−h2 jg2 f3
. . . ...

0 −h3 jg3 f4
. . . ...

... . . . . . . . . . . . . 0

... . . . −hn−1 jgn−1 fn
0 · · · · · · 0 −hn jgn


,

where fi, gi and hi are real for i = 1, ..., n, f1 ̸= 0, and fihi ̸= 0 for i = 2, . . . , n. Then,

In(G) = In(D),

where
D = diag(f1, f1f2h2, f1f2f3h2h3, . . . , f1 · · · fnh2 · · ·hn).

A corollary of lemma 4 for the stability of real tri-diagonal matrices is given below.
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Corollary 1. Given the tri-diagonal real matrix A of the form

A =



f1 f2 0 · · · · · · 0

−h2 0 f3 0
...

0 −h3 0 f4
. . . ...

... . . . . . . . . . . . . 0

... . . . −hn−1 0 fn
0 · · · · · · 0 −hn 0


, (2.7)

it holds that

• If f1 < 0 and fihi > 0 for all i ∈ {2, . . . , n}, then A is stable.

• If fihi < 0 for some index i ∈ {2, . . . , n}, then A is unstable.

Remark 1. Sparse stable matrices theory [6] states that the graph associated with the sparsity
pattern of the matrix in (2.7) is a chain and has nested Hamiltonian sub-graphs. The graph
is sufficient to sustain stable dynamics. Moreover, the sparse matrix subspace is minimally
stable because: (i) if f1 is set to zero, then the trace of the matrix becomes zero and therefore
at least one eigenvalue should be unstable, (ii) if any non-diagonal element is set to zero,
then the matrix decomposes into a block triangular form where the lower diagonal block has
a zero trace, leading to instability.

Due to remark 1, corollary 1 gives necessary and sufficient conditions for the stability
of a class of matrices, which can be used to analyze both connected components and sepa-
rating hyper-surfaces. In what follows, we will first show the possibility of 2n−1 connected
components in the case with a non-identity C and then develop a similar result for C = I.

Theorem 3. Let A ∈ Rn×n be in the form of (2.7), and set B ∈ Rn×(2n−2), C ∈ R(2n−2)×n
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and K ∈ R(2n−2)×(2n−2) to

B =


0 · · · · · · 0 +1 0 · · · 0

−1 . . . ... 0
. . . . . . ...

0
. . . . . . ...

... . . . . . . 0
... . . . . . . 0

... . . . +1
0 · · · 0 −1 0 · · · · · · 0

 ,

C =



1 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . . . . 0
0 · · · 0 1 0
0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
0 · · · · · · 0 1


,

K = diag(k2, . . . , kn, k2, . . . , kn).

Suppose that f1 < 0 and fi ̸= hi for i = 2, . . . , n. Then, the set K has at least 2n−1 connected
components.

Proof. The closed-loop matrix A+BKC can be expressed as

f1 f2 + k2 0 · · · · · · 0

−h2 − k2 0 f3 + k3
. . . ...

0 −h3 − k3
. . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . 0 fn + kn
0 · · · · · · 0 −hn − kn 0


.

It results from corollary 1 and remark 1 that the closed-loop stability is equivalent to the
conditions (hi + ki)(fi + ki) > 0 for i = 2, . . . , n. Equivalently, either ki < min(−hi,−fi)
or ki > max(−hi,−fi) holds for i = 2, . . . , n. Therefore, the region of stabilizing K,
parametrized in (k2, . . . , kn) ∈ Rn−1, is separated by n− 1 hyperplanes ki = −(fi + hi)/2 for
i = 2, . . . , n. Since there are stable regions on both sides of each of those hyperplanes, the
overall number of connected components becomes at least 2n−1.

The result of theorem 3 is demonstrated in the left plot of fig. 2.2 for n = 3. Note that
the “one-sided” result of lemma 3 does not hold here since K is not a scalar.
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(a) ϵ = 0 (b) ϵ = 0.2

Figure 2.2: We randomly sample K and check the closed-loop stability for an instance of the
system in theorem 3. The controller is parametrized in terms of (k2, k3) where n = 3, with
fi = −1 and hi = 2 for i = 1, 2, 3. The projection of the set K onto the 2-dimensional space
corresponding to (k2, k3) is shown in green. The left figure shows that there are 2n−1 = 4
connected components, where each coordinate takes values in (−∞,−2) or (1,∞) to be
stable. The right figure shows the connected components when the number 0.2 is added to
each diagonal entry of A.

Remark 2. Note that eigenvalues are continuous functions of the entries of a matrix and that
the connected components studied in the proof of theorem 3 are separated by a positive margin.
Therefore, one may speculate that a small perturbation of A will not change the number of
connected components. This is not the case in general since the eigenvalues of A+BKC can
become arbitrarily close to the imaginary axis when ∥K∥ is large, as illustrated in fig. 2.3.
However, one part of every connected component is resistant to perturbations. For example,
with ϵ > 0, the set {K : (A + ϵI) + BKC stable } is a subset of {K : A + BKC stable },
the former contains only those controllers that make the closed-loop eigenvalues at least ϵ
away from the imaginary axis. The number ϵ can be set so small that at least one point from
each component remains stable. In other words, a new matrix A obtained by adding ϵ to
the diagonal entries of the matrix in (2.7) gives rise of an exponential number of connected
components where the number cannot change with a very small perturbation of its elements.
This is illustrated in the right plot of fig. 2.2.

The subclass of problems studied in theorem 3 may be unsatisfactory as it requires that
the free elements of K repeat themselves and that C ̸= I. The next theorem addresses these
issues.
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Figure 2.3: If the diagonal entries of A are reduced by 0.2, then the setK becomes connected.
The projection of the set K onto the 2-dimensional space corresponding to (k2, k3) is shown
in green.

Theorem 4. Let A be in the form

A =



f1 + ϵ f2 0 · · · · · · 0

−h2 ϵ f3
. . . ...

0 −h3 ϵ f4
. . . ...

... . . . . . . . . . . . . 0

... . . . −hn−1 ϵ fn
0 · · · · · · 0 −hn ϵ


, (2.8)

where ϵ ≥ 0, f1 < 0, and (−1)i(fi − hi+1) > 0 for i = 2, . . . , n. Consider B ∈ Rn×n,
C ∈ Rn×n and K ∈ Rn×n to be

B =


0 1

−1 . . . . . .
. . . 0 1

−1 0

 , C = I,

K = diag(k1, k2, . . . , kn).

For a small enough ϵ, the set K has at least fibn connected components, where fib0 =
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◦

h2 + k1 > 0

f2 + k2 > 0

h3 + k2 > 0

f3 + k3 > 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0 (∗)

h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

h2 + k1 < 0

f2 + k2 < 0

h3 + k2 > 0 (∗) h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

Figure 2.4: This tree shows the enumerating signs of the closed-loop matrix entries for n = 4.
The branch marked with (∗) has contradictory inequalities.

1, fib1 = 1, fibi+2 = fibi+1 + fibi for i = 0, 1, ... is the Fibonacci sequence, which is on the
order of

(
1+

√
5

2

)n
.

Proof. First, assume that ϵ = 0 and consider the closed-loop matrix A+BKC:

f1 f2 + k2 0 · · · · · · 0

−h2 − k1 0 f3 + k3
. . . ...

0 −h3 − k2
. . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . 0 fn + kn
0 · · · · · · 0 −hn − kn−1 0


.

In light of corollary 1 and remark 1, the necessary and sufficient conditions for the closed-
loop stability are (hi + ki−1)(fi + ki) > 0 for i = 2, ..., n. As a result, if h2 + k1 > 0, then
f2 + k2 > 0. Now, because h3 < f2, the term h3 + k2 can be positive or negative. If it is
positive, then f3 + k3 must be positive, and we can move on to study the sign of h4 + k3.
As we proceed, note that not all sign assignments for hi + ki−1 and fi + ki are possible due
to the assumptions on fi and hi. The enumeration procedure is illustrated in fig. 2.4. Any
path from the root to the bottom level leaf passes through a set of linear inequalities that
together enclose an open polyhedron of stable regions. These stable regions are separated
by the hyperplanes hi+1 + ki = 0 for i = 1, 2, . . . , n− 1 and fi + ki = 0 for i = 2, 3, . . . , n.

Next, we count the number of branches. If hi + ki−1 > 0 (or equivalently fi + ki > 0)
appears mi times and hi + ki−1 < 0 (or equivalently fi + ki < 0) appears ni times, assuming
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mi ≥ ni, the next level will have at most (mi +ni) +max(mi, ni) = 2mi +ni branches. This
number is achievable if fi < hi+1, which means keeping all the children of the inequalities
fi + ki > 0 and pruning one child from each inequality fi + ki < 0. Then, mi+1 = mi,
ni+1 = mi + ni, and ni+1 ≥ mi+1, which reverses the order of mi and ni. It can be verified
that the total number of connected regions mi + ni satisfies the iteration of the Fibonacci
sequence.

The connected regions are separated by the hyperplanes ki = −fi or ki = −hi+1 with
no margin. When ϵ > 0, the connected components are strictly separated. More precisely,
whenever ki = −fi or ki = −hi+1, the matrix A+BKC decomposes into a block triangular
form where the lower diagonal block has a positive trace, which means that the matrix
cannot be stable. When ϵ is small enough, the original connected regions described by linear
inequalities do not shrink abruptly — in fact, at least one point from every polyhedron
remains stable. As a result, these stable regions are the true connected components of the
stabilizing controller set.

To illustrate theorem 4, consider the matrix

A =



−1 + ϵ 2 0
−2 ϵ 1 0
0 −1 ϵ 2 0

0 −2 ϵ 1 0
0 −1 ϵ 2 0

. . . . . . . . . . . . . . .


. (2.9)

The corresponding set K obtained by sampling random matrices K and checking the closed-
loop stability is provided in fig. 2.5 for n = 3.

Our exponential examples are based on specific settings of the parameters fi and hi in
the matrix A that maximize the number of connected components. We next show that
even if the parameters fi and hi are considered random, the expected number of connected
components is still exponential.

Theorem 5. Consider the matrices A, B, C, and K defined in theorem 4, and let fi and
hj be independent random variables whose distributions are standard normal for i = 1, . . . , n
and j = 2, . . . , n. If ϵ ≥ 0 is small enough, the expected number of connected component of
KS is at least

(
3
2

)n−2.

Proof. With the assumed distribution, fi < hi+1 and fi > hi+1 occur equally likely, while
fi = hi+1 happens with zero probability. Our enumeration tree is random, and we count the
number of leaves as follows. If fi+ ki > 0 appears mi times and fi+ ki < 0 appears ni times
for i ≥ 2, the next level has two possibilities:

(i) fi < hi+1, which keeps all the children of the inequalities fi + ki > 0 and prunes one
child from each inequality fi + ki < 0. Therefore, mi+1 = mi and ni+1 = mi + ni.
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(a) ϵ = 0 (b) ϵ = 0.02

Figure 2.5: We randomly sample K and check the closed-loop stability for an instance of the
system in theorem 4 with n = 3, the matrix A given in (2.9), and K = diag(k1, k2, k3). The
projection of the set K onto the 3-dimensional space corresponding to (k1, k2, k3) is shown
in blue.

(ii) fi > hi+1, which keeps all the children of the inequalities fi + ki < 0 and prunes one
child from each inequality fi + ki > 0. Therefore, mi+1 = mi + ni and ni+1 = ni.

Combining the two cases, we can calculate the expected number of children mi+1 + ni+1

conditioned on mi and ni in the previous level:

E[mi+1 + ni+1|mi, ni] = E[mi+1 + ni+1|mi, ni, fi+1 < hi+2]P(fi+1 < hi+2)

+E[mi+1 + ni+1|mi, ni, fi+1 > hi+2]P(fi+1 > hi+2)

= (2mi + ni)
1

2
+ (2ni +mi)

1

2
=

3

2
(mi + ni).

With the initial conditions E[m2 + n2|f1 > 0] = 0 and E[m2 + n2|f1 < 0] = 2, we have
E[m2 + n2] = 1. Using induction, it can be concluded that E[mn + nn] =

(
3
2

)n−2.

By adopting a randomized setting, we are able to analyze the change of connected com-
ponents when one element ki0 is fixed to zero for some index i0 ∈ {1, 2, . . . , n−1}. The proof
is based on a careful counting of branches and is provided in the Appendix.

Proposition 1. With the same setting as in theorem 5, assume that K = diag(k1, . . . , kn)
and ki0 is fixed to zero for some index i0 ∈ {1, . . . , n}. Then, the expected number of connected
components of KS for a small enough ϵ is at least{

1
6
(3
2
)n−2, if 2 ≤ i0 ≤ n− 1.

1
2
(3
2
)n−2, if i0 = 1 or i0 = n.
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The above results on connectivity reflect not only the computational complexity of the
original ODC problem with the hard constraint K ∈ KS , but also the complexity of a mod-
ified ODC formulation with soft constraints. We explain this implication below. Consider
an arbitrary continuous function h : Rm×p → R that satisfies h(K) = 0 for all K ∈ KS and
h(K) > 0 for all K ∈ Rm×p \ KS . h(K) serves as a penalty function that can be used to
replace the hard constraints of ODC with soft constraints. The penalized form of ODC is
given by

min
K

J0(K) + c · h(K) (2.10)

where J0(K) is defined in eq. (2.1) and c is a large constant. The above optimization is uncon-
strained and can be solved using standard numerical algorithms for nonlinear optimization.
Indeed, it is common in optimization to convert constrained problems to unconstrained ones
via penalty or barrier functions since most efficient numerical algorithms for non-convex op-
timization are designed for unconstrained problems. The reason for such reformulation is
that the constraints do not need to be satisfied in each iteration of a numerical algorithm,
and their satisfaction is only required asymptotically when many iterations are taken. In
what follows, we study how numerical algorithms perform on the unconstrained formulation
eq. (2.10).

Lemma 5. Suppose that C has full row rank and
[

Q D

D⊤ R

]
is positive definite. There are

instances of the ODC problem for which the penalized formulation (2.10) has an exponential
number of local minima if c is sufficiently large.

Proof. Consider any instance of the class of ODC problems provided in theorem 4 for which
the feasible set of the problem has an exponential number of connected components. Due
to the coercive property proven in Lemma 8 in the Appendix, each connected component
in KS must have a local minimum for the unpenalized objective J0(K). Let O denote the
set of all local minima in any arbitrary connected component of the feasible set of ODC,
and O(ϵ) ⊆ Rm×p be the set of all points in the feasible set of eq. (2.10) that are at most ϵ
away from O, for any given ϵ > 0. If eq. (2.10) is numerically solved using gradient descent
with an initial point in O(ϵ), it follows from the proof in [58, §13.1] that the algorithm will
converge to a local minimum that is in the interior of O(ϵ) and approaches O as c goes to
infinity. This implies that eq. (2.10) has at least one local minimum corresponding to the
set O. Therefore, eq. (2.10) has an exponential number of local minima.

Lemma 5 implies that common first-order and second-order numerical algorithms that
work on unconstrained formulations and are guaranteed to converge to a stationary point
may end up producing an exponential number of different solutions depending on their
initialization.
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2.5 Bounded Connectivity Number
The results of the preceding section were developed for systems with a very specific struc-
ture. We show in this section that for a large class of systems that contain a tri-diagonal
structure, there exists a configuration of the matrices (A,B) such that the set of static stabi-
lizing controllers with a bounded norm has an exponential number of connected components.
The restriction to a bounded control gain is natural since very high gain controllers cannot
be implemented in practice due to the sensitivity of the closed-loop system to noise and
disturbance.

Given a linear subspace of sparse matrices1 T , we say that T is tri-diagonal-containing
if it contains all tri-diagonal matrices, i.e.,

T ⊇ {A : Aij = 0 for all |i− j| ≥ 2}.

We say that (A,B) is compatible with T if both A and B’s sparsity patterns coincide with
IT . Since T is a linear subspace, A + BK ∈ T for every diagonal matrix K. Given a set
K, let #K denote the number of connected components of K. Given system matrices (A,B)
and a radius r ≥ 0, we define the set of bounded stabilizing controllers Kr(A,B) as

Kr(A,B) = {K : A+BK stable, K diagonal, ∥K∥ ≤ r},

where ∥·∥ denotes an arbitrary matrix norm. Note that K∞(A,B) coincides with the set
KS defined in eq. (2.2) with S being the set of diagonal matrices. We define the bounded
connectivity number, which we denote by c(A,B), as follows:

c(A,B) = sup
r≥0

#Kr(A,B).

The bounded connectivity number quantifies the number of connected components of the
set of stabilizing decentralized controllers with a bounded norm in the worst case.

Theorem 6. Given any tri-diagonal-containing sparse matrix subspace T , there exist system
matrices (A,B) compatible with T such that the bounded connectivity number c(A,B) is
exponential in the order of the system.

Proof. To prove that c(A,B) is exponential in the order of the system, it suffices to find
a radius r and system matrices (A,B) such that Kr(A,B) has an exponential number of
connected components and that (A,B) has the same sparsity pattern as T . We start with
the matrices (A,B) given in Theorem 4 with an ϵ > 0, which may not be compatible with T .
Since K∞(A,B) has an exponential number of connected components, by continuity there
exists an r > 0 such that Kr(A,B) has an exponential number of connected components2.

1Recall in Section 2.2 that a linear subspace of sparse matrices is specified by positions of nonzero entries
and IT is the indicator matrix of the non-zero positions.

2If there is a connected component of K∞(A,B), it will intersect with a ball {K : ∥K∥ ≤ r} where r is
large enough, and the intersection will appear as one or more connected components in Kr(A,B).
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Moreover, since ϵ > 0, the connected components of Kr(A,B) are strictly separated in the
sense that every component of Kr(A,B) is contained in a component of Kr(A− ϵ

2
I, B), and

when K ∈ ∂Kr(A − ϵ
2
I, B), the eigenvalues of the closed-loop matrix A + BK is at least

ϵ
2

away from the imaginary axis. Since eigenvalues of a matrix are continuous functions
of the entries of the matrix and K is bounded, we claim that for all small δ > 0, the set
Kr(A + δIT , B + δIT ) is also exponential, because (1) by continuity when δ > 0 is small,
there exists a controller in each connected component of Kr(A,B) that remains stabilizing
in Kr(A+ δIT , B + δIT ) and (2) no two connected components of Kr(A,B) in this bounded
region can merge. We elaborate on the second point below. Let N denote the number of
connected components of Kr(A,B). We select one controller from each connected component
of Kr(A,B) and denote them by K1, . . . , KN . By continuity, when δ is small, they remain
stabilizing for the system (A+ δIT , B + δIT ). Consider the quantity

a(A,B) = min
1≤i,j≤N

i ̸=j

min
pij∈Pij

max
K∈pij

spabs(A+BK) (2.11)

where spabs(·) denotes the spectral abscissa (maximum real part of the eigenvalues). The set
Pij contains all paths pij from Ki to Kj such that every controller K ∈ Pij satisfies ∥K∥ ≤ r.
We use min instead of inf because the minimum is achievable3. We also have a(A,B) > ϵ

2

because all paths pij ∈ Pij with i ̸= j must intersect with a controller K ∈ ∂Kr(A− ϵ
2
I, B),

at which point spabs(A + BK) > ϵ
2
. Since the continuous function spabs(·) is absolutely

continuous in a compact region, for all small δ > 0, we have |spabs(A + BK) − spabs(A +
δIT + (B + δIT )K)| < ϵ

4
for all K with ∥K∥ ≤ r. As a result, a(A+ δIT , B + δIT ) > 0, i.e.,

K1, . . . , KN belong to different connected components of Kr(A+ δIT , B+ δIT ). The proof is
concluded by noting that δ can be selected so that (A+ δIT , B+ δIT ) has the same sparsity
pattern as T .

To understand the implication of Theorem 6, consider a multi-agent system, where each
agent has a single state. As long as each agent interacts with its previous and next neigh-
bors, no matter how many more interactions exist in the system, the ODC problem has an
exponential number of local solutions for certain system parameters.

2.6 Highly Damped Systems
All previous results suggest that the diagonal entries of A being positive contribute to the
complexity of the feasible set K. theorem 7 below shows that the diagonal entries of A being
negative is a desirable structure in the sense that if A is highly dampened, the feasible set
is connected independent of control structures.

3Even though the minimization of eq. (2.11) is over an infinite set Pij , we can replace it with the
minimization over the bounded part of a lower level-set of spabs(A+BK), where the lower level-set is large
enough so that Ki and Kj are connected.
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Theorem 7. Given arbitrary matrices A, B and C of compatible dimensions and a linear
subspace of matrices S, the set

KS,λ = {K : A− λI +BKC is stable , K ∈ S}

is connected when λ > 0 is large enough.

Proof. First note that the Routh-Hurwitz criterion describes KS,λ by polynomial inequalities
in the entries of A − λI + BKC, the set KS,λ is semi-algebraic with a finite number of
connected components given the order of the system [15]. Consider a number µ and let λ
be a parameter that increases from µ toward ∞. Since λ ≥ µ, we have KS,λ ⊇ KS,µ, and
therefore KS,λ contains all components of KS,µ but could possibly connect them or add new
components. The addition of new components with the increase of λ could occur only a
finite number of times. We explain the claim below.

We have noted that set KS,λ is semi-algebraic and is a slice of the set

W = {(K,λ) : A− λI +BKC is stable , K ∈ S},

which is also semi-algebraic (described by a finite number of polynomial inequalities) and has
a finite number of connected components. When a connected component starts to appear
for a certain λ0, this means that along the direction (0, 1), the set W has a point of contact,
say K0, with a hyperplane orthogonal to (0, 1). If we consider the linear function (K,λ)→ λ
over the setW , K0 is a local minimum of the function and λ0 is a critical value. By the semi-
algebraic Sard’s theorem [15, Theorem 9.6.2], the set of critical values of a linear function
over a semi-algebraic set is finite. This proves the claim that as λ increase, new components
in KS,λ occur for a finite number of times.

To connect all those components, we first increase λ until no new connected component
appears, then select a controller from each connected component, and cover all those con-
trollers with a ball B ⊆ S. By making λ so large that all controllers in B become stabilizing,
we glue all of the connected components.

The interpretation of the result of theorem 7 is that if the open-loop matrix of the
system can be written as A − λI for a large λ, then the feasible set of ODC is connected.
This corresponds to highly damped systems.

Remark 3. It is noted in [53] that if we consider the discounted cost

J2λ(K) = E
∫ ∞

0

e−2λt(x⊤Qx+ 2x⊤Du+ u⊤Ru)dt,

or equivalently make a change of variables x̂(t) = e−λtx(t) and û(t) = e−λtu(t), then the
closed-loop dynamics become equal to ˙̂x(t) = (A−λI+BKC)x̂(t). Therefore, it follows from
theorem 7 that the feasible set of the ODC problem is connected for discounted costs with a
large discount factor.
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Remark 4. It is known in the context of inverse optimal control [53] that any static state-
feedback gain K is the unique minimizer of some quadratic performance measure (2.1) for
all initial states. One such measure is∫ ∞

0

(u(t)−Kx(t))⊤R (u(t)−Kx(t)) dt.

where R is a positive definite matrix. As a result, every point in any connected component
is an optimal solution to some ODC problem. Since there is an exponential number of con-
nected components in certain cases, random initialization is unlikely to successfully locate the
optimal component unless prior information is available or the system is favorably structured.
Local search algorithms, therefore, fail for general ODC problems.

A by-product of Theorem 7 is a new controller design strategy, which is based on ap-
proximating the ODC problem with another one whose feasible set is connected. This new
problem is obtained by damping the system’s dynamics. Indeed, we have shown in [38] that
minimizing Jλ(K) with a large λ is more tractable than solving the original ODC problem
since the separate connected components will be glued together via damping (as proved in
Theorem 7). In the following, we study the cost of this approximation by bounding the ratio
of the two objectives.

Lemma 6. Suppose that Ex0x
⊤
0 = I and C = I. Let K+ be the solution of ODC with the

objective function Jλ(K) and assume that K+ stabilizes (A,B). Let W (K+) = (A+BK+)+
(A+BK+)⊤. We have the following upper bound

J0(K
+)

Jλ(K+)
≤

{
νmin(W (K+))−λ
νmax(W (K+))

, if νmax(W (K+)) < 0
νmax(W (K+))−λ
νmin(W (K+))

, if νmin(W (K+)) > 0

and lower bound

J0(K
+)

Jλ(K+)
≥

{
νmax(W (K+))−λ
νmin(W (K+))

, if νmax(W (K+)) < λ
νmin(W (K+))−λ
νmax(W (K+))

, if νmin(W (K+)) > λ
,

where νmin(·) and νmax(·) denote the smallest and largest eigenvalues of a matrix, respectively.

The proof of Lemma 6 is provided in the appendix. We illustrate lemma 6 with a
numerical simulation in Figure 2.6. The system matrices are of the form eq. (2.9), which are
specified below:

A =

[
−1 0.5
−0.5 0

]
, B =

[
0 1
−1 0

]
, C = I,K = diag(k1, k2), Q = 5I, R = I,D = 0.

Using extensive search, it can be shown that the system has two locally optimal controllers
and their undamped costs J0(K) are as follows:

K∗
1 ≈ diag(0.7178, 0.6643), J0(K

∗
1) ≈ 12.88,

K∗
2 ≈ diag(−1.5384,−1.4369), J0(K

∗
2) ≈ 18.08.
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Starting from the initial stabilizing controller K0 = diag(−2,−2), we run gradient descent
twice to minimize the cost J0(K) and its approximate function J1(K). The step sizes are
selected by the Amijo rule as in [38] so that stability is preserved for all iterations. The
iterations are stopped when the norm of the gradient is less than 10−6. When minimizing
J0(K), the iterations converge to K∗

2 . When minimizing J1(K), the iterations converge to
K+ ≈ diag(0.4420, 0.3836). We calculate the damped cost J1(K+) ≈ 5.98 and the undamped
cost J0(K

+) ≈ 13.44. The local search solution to the approximate ODC is better than the
solution to the original ODC. With

W (K+) = (A+BK+) + (A+BK+)⊤ ≈
[
−3.0000 −0.0584
−0.0584 −1.0000

]
,

we calculate νmax(W (K+)) ≈ −1.00 and νmin(W (K+)) ≈ −3.00. The conclusion of lemma 6
is verified:

J0(K
+)

J1(K+)
≈ 2.25 < 4.00 ≈ νmin(W (K+))− 1

νmax(W (K+))
,

J0(K
+)

J1(K+)
≈ 2.25 > 0.67 ≈ νmax(W (K+))− 1

νmin(W (K+))
.

2.7 Stable Matrices with Block Patterns
In this section, we analyze the connectivity of the set of sparse stable matrices AT , defined
in (2.3). It follows from lemma 2 that only in matrices with constrained diagonal entries
do nontrivial connectivity properties emerge, and we study sparse stable matrices with zero
blocks in the diagonal entries.

Two-by-two block

Below is the main theorem.

Theorem 8. Consider the matrix subspace

T =

{[
A11 A12

A21 0(n−r)×(n−r)

] ∣∣∣∣∣A21 ∈ Z, A11 ∈ Rr×r, A12 ∈ Rr×(n−r)

}
,

where Z is any subspace of matrices in R(n−r)×r. Then, the sets AT and

{A21 : A21 has full row rank, A21 ∈ Z}

have the same number of connected components.
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(a) minimize J0 (b) minimize J1

Figure 2.6: Cost surface and trajectory of gradient descent in the undamped regime and
the damped regime. In the undamped regime, gradient descent is trapped in the initial com-
ponent. In the damped regime, it almost reaches the globally optimal stabilizing controller.

Proof. For clarity the proof is first stated without the constraint A21 ∈ Z; this incurs no
loss of generality. A is stable if and only if there is a matrix P =

[
P11 P12

P⊤
12 P22

]
≻ 0 partitioned

accordingly that satisfies the Lyapunov equation[
A11 A12

A21 0

] [
P11 P12

P⊤
12 P22

]
+

[
P11 P12

P⊤
12 P22

] [
A⊤

11 A⊤
21

A⊤
12 0

]
=

[
−I 0
0 −I

]
. (2.12)

Note that P is unique and depends continuously on A whenever A is stable [28, §4.1]. We
solve the partitioned equation

A11P11 + A12P
⊤
12 + P11A

⊤
11 + P12A

⊤
12 = −I (2.13)

A11P12 + A12P22 + P11A
⊤
21 = 0 (2.14)

A21P12 + P⊤
12A

⊤
21 = −I. (2.15)

Since P22 ≻ 0, eq. (2.14) uniquely determines the unconstrained block

A12 = −(A11P12 + P11A
⊤
21)P

−1
22 .
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Substituting it back to (2.13) yields

A11P11 + P11A
⊤
11 − (A11P12 + P11A

⊤
21)P

−1
22 P⊤

12 − P12P
−T
22 (A21P11 + P⊤

12A
⊤
11) = −I,

or equivalently

A11(P11 − P12P
−1
22 P⊤

12) + (P11 − P12P
−1
22 P⊤

12)A
⊤
11 =

− I + P11A
⊤
21P

−1
22 P⊤

12 + P12P
−T
22 A21P11. (2.16)

The equation above can be simplified using the Schur complement P̃11 = P11 − P12P
−1
22 P⊤

12,
which is an arbitrary positive definite matrix. One can write

A11P̃11 + P̃11A
⊤
11 = −I + P̃11A

⊤
21P

−1
22 P⊤

12 + P12P
−T
22 A21P̃11 + P12P

−1
22 P⊤

12A
⊤
21P

−1
22 P⊤

12

+ P12P
−T
22 A21P12P

−1
22 P⊤

12.

In light of (2.15), this is equivalent to

A11P̃11 + P̃11A
⊤
11 = −I + P̃11A

⊤
21P

−1
22 P⊤

12 + P12P
−T
22 A21P̃11 − P12P

−2
22 P⊤

12. (2.17)

Given A21, P12, P̃11 ≻ 0, and P22 ≻ 0, the eigenvalues of P̃11 do not sum to zero. Therefore,
(2.17) can be regarded as a Lyapunov equation where the unknown block A11 has a unique
symmetric solution A11 = A⊤

11; all other solutions A11 lie in a linear subspace that contains
this symmetric solution. The symmetric solution, moreover, depends continuously on P̃11 as
long as P̃11 remains in the positive semi-definite cone, which is connected. As a result, not
only are all A11 connected to a symmetric A11, all symmetric A11 given P̃11 are connected to
the symmetric solution A11 given P̃11 = I, which we denote by ϕ(A12, P12, P22):

ϕ(A12, P12, P22) =
1

2

(
−I + A⊤

21P
−1
22 P⊤

12 + P12P
−T
22 A21 − P12P

−2
22 P⊤

12

)
.

The above argument retracts the solutions of (2.13)-(2.15) while maintaining the topological
property of connectivity. Using ∼ to denote the equivalence of connected components, we
state the retraction procedure

AT ∼
{([

A11 A12

A21 0

]
,

[
P11 P12

P⊤
12 P22

])
: (2.12),

[
P11 P12

P⊤
12 P22

]
≻ 0

}
(2.18)

∼ {(A11, A21, P11, P12, P22) : (2.15), (2.16), P11 ≻ P12P
−1
22 P⊤

12, P22 ≻ 0} (2.19)

∼ {
(
A11, A21, P̃11, P12, P22

)
: (2.15), (2.17), P̃11 ≻ 0, P22 ≻ 0} (2.20)

∼ {(A11, A21, P12, P22) : (2.15), A11 = ϕ(A12, P12, P22), P22 ≻ 0} (2.21)
∼ {(A21, P12, P22) : (2.15), P22 ≻ 0} (2.22)
∼ {(A21, P12) : (2.15)}. (2.23)
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The first equivalence (2.18) follows from the fact that for any stable matrix A, the formula

P =

∫ ∞

0

eAτeA
⊤τdτ,

gives the unique solution to the Lyapunov equation and the solution depends continuously
on the matrix A. (2.19) follows from the unique solution of A12 and the characterization of
partitioned positive definite matrices with Schur complements:[

P11 P12

P⊤
12 P22

]
≻ 0 ⇐⇒ P11 ≻ P12P

−1
22 P⊤

12 and P22 ≻ 0.

(2.20) follows from the simplification of Lyapunov equation, and the one-one correspondence
between P̃11 and P11 given (P12, P22). (2.21) follows from the retraction of the solutions to
(2.17); (2.22) follows from the continuity of function ϕ, and finally (2.23) throws away the
free variable P22 because it does not appear in the relationship between A21 and P12.

(2.23) can be further simplified. We first show that (2.15) has a solution if and only
if A21 has full rank. If there is a vector x ∈ Rs such that x⊤A21 = 0, pre-multiply and
post-multiply (2.15) by x yields

0 = x⊤(A21P12 + P⊤
12A

⊤
21)x = −x⊤x,

or equivalently, x = 0. Therefore, A21 has full row rank and similarly, P12 has full column
rank. On the other hand, given any full row rank matrix A21, (2.15) has a full rank solution
P12 = −1/2A+

21, where A+
21 is the Moore-Penrose inverse. This completes the proof for the

first equivalence in

{(A21, P12) : (2.15)} ∼ {(A21, P12) : (2.15), A21 has full row rank}
∼ {
(
A21,−1/2A+

21

)
: A21 has full row rank}

∼ {A21 : A21 has full row rank}.

The second equivalence follows from the fact that, given A21 has full row rank, a solution
P12 = −1/2A+

21 to (2.15) always exists and all solutions lie in a subspace that can be re-
tracted to that solution. The final equivalence comes from dropping the redundant second
coordinate, since the Moore-Penrose inverse is continuous over full rank matrices.

The above proof imposes no restriction on A21; it holds even if A21 is restricted to a
subspace Z.

In the special case where Z is the whole space and A21 has more columns than rows, the
set is connected.

Corollary 2. Assume that Z = R(n−r)×r, where 2r > n. Then, the set AT is connected.
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Proof. From theorem 8, if suffices to show the connectivity of{
A21 ∈ R(n−r)×r : A21 has full row rank

}
.

This set is the image of the continuous map (U,D, V ) → UDV from the connected set
U × D × V , where

U =
{
U ∈ R(n−r)×(n−r) : U is a orthogonal matrix with determinant 1

}
D =

{
D ∈ R(n−r)×r : Dii > 0 for i = 1, . . . , r and all other entries are 0

}
V =

{
V ∈ Rr×r : V is a orthogonal matrix with determinant 1

}
U and V are connected because the set of orthogonal matrices with positive determinant is
connected. The map is surjective, because every full rank matrix A21 has a singular value
decomposition A21 = UDV , where Dii > 0 for i = 1, . . . , r. If det(U) = −1, we can flip
the sign of the first column of U and the first row of V to ensure that det(U) = 1 while
preserving the product. If det(V ) = −1, we can flip the sign of the last row of V , and since
n− r < r, the last row does not affect the product UDV .

Corollary 3. Suppose 2r ≥ n and Z = {A21 ∈ R(n−r)×r : Aij = 0 for j ̸= i}. Then, the set
AT has 2n−r connected components.

Proof. We invoke theorem 8. For a diagonal matrix to have full rank, all its diagonal entries
must be nonzero, and therefore, every diagonal entry of A21 can be either positive or negative.
Those (n− r) diagonal entries give rise to 2n−r connected components.

More Complicated Block Patterns

We generalize the results in the previous section to the case where the space of matrices T
has a block structure as in

T =


 A11 A12 A13

A21 0r×r 0r×(n−2r)

0(n−2r)×r A32 0(n−2r)×(n−2r)

 ∣∣∣∣∣A21 ∈ Z1, A32 ∈ Z2;A11, A12 ∈ Rr×r;A13 ∈ Rr×(n−2r)

 ,

(2.24)

where Z1 ⊆ Rr×r and Z2 ⊆ R(n−2r)×r are arbitrary subsets of matrices.

Theorem 9. The set AT with T defined in (2.24) has the same number of connected com-
ponents as the set

{(A21, A32) : A21 ∈ Z1, A32 ∈ Z2, A21 and A32 have full row rank} .

We provide the proof in the Appendix. The result of theorem 9 is verified for n = 3
in Figure 2.7, where 4 connected components are found. In order to strictly separate the
components, we plot the samples of sparse stable matrices whose eigenvalues are away from
the imaginary axis by a fixed margin.
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Figure 2.7: Verifying the result of theorem 9 in the case n = 3 and r = 1, we plot the
projection of A onto (A21, A32). The entries of the matrix A are sampled uniformly over
[−2, 2]. The green points marked those matrices A such that 0.2I + A is stable.

Remark 5. The result of theorem 9 can be generalized to n-by-n block matrices if the blocks
are square and the first row and the lower diagonal blocks of A are nonzero. The square
block assumption on the sub-diagonals of A ensures that, for any full rank sub-diagonals, the
first row of A and the upper-triangular entries of P can always be solved from the Lyapunov
equation. Specially, in case of scalar blocks, the set of stable matrices with the following
pattern has 2n−1 connected components:

∗ ∗ · · · · · · ∗
∗ 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . . . . ...
0 · · · 0 ∗ 0


This relaxes the condition 2r ≤ n of corollary 3.

The sparsity pattern discussed in remark 5 seems to suggest that the sparsity of the matrix
space directly contributes to the number of connected components. The connection between
sparsity and connectivity is complicated in that the number of connected components may
remain exponential even when half of the matrix entries are free (such matrices are often
regarded as dense).
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Theorem 10. The set AT has 2n−1 connected components, where T is the subset of matrices
with the sparsity pattern: 

∗ ∗ ∗ · · · · · · ∗
∗ 0 ∗ · · · · · · ∗
0 ∗ 0

. . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . ∗
0 · · · · · · 0 ∗ 0


The theorem can be proved in a same manner as theorem 9 with a different reduction

order. The proof is provided in the Appendix.

2.8 Conclusion
In this chapter, we studied the connectivity properties of the set of static stabilizing decen-
tralized controllers. We demonstrated through a subclass of problems that the NP-hardness
of optimal decentralized control could be attributed to a large number of connected com-
ponents. In particular, we proved that the number of connected components for chain
subsystems would follow a Fibonacci sequence. Even if the elements of the system matrix
are random, the expected number of connected components is still exponential. A further
implication of our study is that, for any tri-diagonal-containing structure, there exists a sys-
tem with that structure and certain parameters for which the bounded connectivity number
is exponential. The fact that the structure of the decentralized control problem can cause
intractability leads to our study of specific system and controller properties that have con-
nectivity guarantees. We bound the number of connected components for the scalar control
case. We showed that connectivity would not be an issue for highly damped systems inde-
pendent of the control structures. In case the system matrix has a certain block structure,
we fully characterized the number of connected components. Our results qualified the appli-
cability of local search algorithms to optimal decentralized control problems and emphasized
structural considerations.

One future research direction is the analysis of the connectivity properties of dynamic con-
trollers. Dynamic controllers have more flexibility in the choice of parameters and therefore
we expect better connectivity properties to hold. On the constructive side, it is important
to identify system or control structural properties that guarantee the connectivity of the
feasible set. The connectivity result, combined with an analysis of the absence of saddle
points, will shed light on the possibility of applying local search algorithms to decentralized
control problems.
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2.9 Proofs

Proof of Proposition 1

Proof. We adopt the same notation of mi and ni in theorem 5. Let m′
i+1 and n′

i+1 denote
the number of appearances of hi+1 + ki > 0 and hi+1 + ki < 0, respectively. In theorem 5,
m′

i+1 = mi+1 and n′
i+1 = ni+1. The situation is different when some ki0 is set to zero. We

first consider the case 2 ≤ i0 ≤ n− 1.
The random variable mi + ni evolves from i = 1 to i = i0 − 1 in the same manner as

theorem 5. Therefore, given mi0−1 copies of the inequality fi0−1 + ki0−1 > 0 and ni0−1 copies
of the inequality fi0−1 + ki0−1 < 0, conditioned on mi0−1 and ni0−1, we have

(m′
i0
, n′

i0
) =

{
(mi0−1,mi0−1 + ni0−1), with probability 1

2

(mi0−1 + ni0−1, ni0−1), with probability 1
2

.

Since ki0 is fixed to zero, when fi0 > 0, all inequalities fi0 + ki0 < 0 are pruned, and when
fi0 < 0, all inequalities fi0 + ki0 > 0 are pruned. Therefore, conditioned on m′

i0
and n′

i0
,

(mi0 , ni0) =

{
(m′

i0
, 0), with probability 1

2

(0, n′
i0
), with probability 1

2

.

Count similarly m′
i0+1 and n′

i0+1, we account for the loss of freedom in hi0+1 + ki0 :

(m′
i0+1, n

′
i0+1) =

{
(mi0 , 0), with probability 1

2

(0, ni0), with probability 1
2

.

After this, the evolution of (mi, ni) from i to i + 1 is the same as theorem 5. It holds that
mi0+1 = m′

i0+1 and ni0+1 = n′
i0+1. In sum,

E[mi0+1 + ni0+1|mi0−1, ni0−1] = E[m′
i0+1 + n′

i0+1|mi0−1, ni0−1]

=
1

2
E[mi0 + ni0|mi0−1, ni0−1]

=
1

4
E[m′

i0
+ n′

i0
|mi0−1, ni0−1]

=
3

8
(mi0−1 + ni0−1).
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Hence, after fixing ki0 = 0, the number of children is smaller by a factor of 1
6

compared with
theorem 5.

When i0 = 1, h2 + k1 appears only once in the tree, and the expected number is cut by
one half, because after fixing k1 = 0, either h2 > 0 or h2 < 0 is kept. In the same vein, when
i0 = n, only half of the leaves are kept.

Proof of Theorem 9

Proof. Similar to theorem 8, we first ignore the constraints A21 ∈ Z1 and A32 ∈ Z2. A
is stable if and only if there is a matrix P ≻ 0 partitioned accordingly that satisfies the
Lyapunov equationA11 A12 A13

A21 0 0
0 A32 0

P11 P12 P13

P21 P22 P23

P31 P32 P33

 +

P11 P12 P13

P21 P22 P23

P31 P32 P33

A⊤
11 A⊤

21 0
A⊤

12 0 A⊤
32

A⊤
13 0 0

 = −I. (2.25)

The solution P is unique whenever A is stable.
We first show that

A21 and A32 have full row rank. (2.26)

Consider the (2, 2) and (3, 3) blocks of eq. (2.25):

A21P12 + P21A
⊤
21 = −I (2.27)

A32P23 + P32A
⊤
32 = −I. (2.28)

If x⊤A32 = 0, conjugate (2.28) with x to obtain

0 = x⊤(A32P23 + P32A
⊤
32)x = −x⊤x,

or equivalently, x = 0, which means that A32 has full row rank. Similarly, A21 has full row
rank.

Next we consider the (1, 3) and (2, 3) blocks of eq. (2.25):

A11P13 + A12P23 + A13P33 + P12A
⊤
32 = 0 (2.29)

A21P13 + P22A
⊤
32 = 0. (2.30)

Because P33 is invertible, A13 can be uniquely determined from (2.29). Because A21 is full row
rank and square, P13 can be uniquely determined from (2.30). The equation corresponding
to the remaining blocks after eliminating A13 can be extracted by pre-multiply (2.25) by

W =

[
I 0 −P13P

−1
33

0 I −P23P
−1
33

]
,

and post-multiply (2.25) by W⊤, which yields
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[
A11 A12 − P13P

−1
33 A32

A21 −P23P
−1
33 A32

] [
P̄11 P̄12

P̄21 P̄22

]
+

[
P̄11 P̄12

P̄21 P̄22

] [
A⊤

11 A⊤
21

A⊤
12 − A⊤

32P
−1
33 P32 −A⊤

32P
−1
33 P32

]
=

[
−I − P13P

−2
33 P31 −P13P

−2
33 P32

−P23P
−2
33 P31 −I − P23P

−2
33 P32

]
. (2.31)

where the partitioned Schur complement P̄ij is equal to Pij − Pi3P
−1
33 P3j for i, j = 1, 2. The

(1, 2) and (2, 2) blocks of (2.31) are

A11P̄12 + (A12 − P13P
−1
33 A32)P̄22 + P̄11A

⊤
21 − P̄12A

⊤
32P

−1
33 P32 = −P13P

−2
33 P32 (2.32)

A21P̄12 + P̄21A
⊤
21 = −I − P23P

−2
33 P32 + P23P

−1
33 A32P̄22 + P̄22A

⊤
32P

−1
33 P32. (2.33)

Since P̄22 is invertible, A12 can be uniquely determined from (2.32). (2.33) is the same as
(2.27) given (2.28) and (2.30). Eliminate A12 similarly by conjugating (2.31) with [ I P̄12P̄

−1
22 ],

which yields

(A11 − P̄12P̄
−1
22 A21)P̃11 + P̃11(A

⊤
11 − A⊤

21P̄
−1
22 P̄21) = ∗, (2.34)

where P̃11 = P̄11 − P̄12P̄
−1
22 P̄21, and the right hand side is a negative definite matrix deter-

mined by P . Since P̃11 is positive definite, its eigenvalue do not sum up to zero; therefore,
the solution A11 always exists and can be shrunk to a symmetric solution that depends con-
tinuously on P , as explained in theorem 8. Using ∼ to denote the equivalence of connected
components,

AT ∼


A11 A12 A13

A21 0 0
0 A32 0

 ,

P11 P12 P13

P21 P22 P23

P31 P32 P33

 : (2.25),

P11 P12 P13

P21 P22 P23

P31 P32 P33

 ≻ 0, (2.26)

 (2.35)

∼
{([

A11 A12

A21 0

]
, A32, P23, P33,

[
P̄11 P̄12

P̄21 P̄22

])
: (2.28), (2.31), P33 ≻ 0,[
P̄11 P̄12

P̄21 P̄22

]
≻ 0, (2.26)

} (2.36)

∼
{(

A11, A21, A32, P23, P33, P̄12, P̄22, P̃11

)
: (2.28), (2.33), (2.34),

P33 ≻ 0, P̄22 ≻ 0, P̃11 ≻ 0, (2.26)
} (2.37)

∼
{(

A21, A32, P23, P33, P̄12, P̄22

)
: (2.28), (2.33), P33 ≻ 0, P̄22 ≻ 0, (2.26)

}
(2.38)

∼
{(

A21, A32, P33, P̄22

)
: P33 ≻ 0, P̄22 ≻ 0, (2.26)

}
(2.39)

∼ {(A21, A32) : (2.26)}. (2.40)

The first equivalence (2.35) is justified as in (2.18), with the additional condition that A21 and
A32 must have full row rank. (2.36) follows from the unique continuous solution of A13 and
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P13 in (2.29)-(2.30). (2.37) follows from the unique solution of A12 in (2.32). (2.38) follows
from the retraction of the solutions to (2.34). Since A32 has full row rank, (2.28) is always
solvable in P23, and the solution subspace can be retracted to the pseudo-inverse solution
P23 = 1/2A+

32, which is a continuous function over the full-rank matrix A32. The same
argument applies to (2.33), where the solution P̄12 always exists and can be continuously
retracted to the pseudo-inverse solution. This arrives at (2.39). (2.40) discards the redundant
coordinates.

The proof above imposes no restriction on A21 and A32; it holds with any additional
subspace constraint on them.

Proof of theorem 10

Proof. We show the proof for the case n = 3; the proof carries over to the general case.
The idea is the same as theorem 9, with minor differences in the reduction order and in the
justification for full-rank blocks. Consider the solution pair (A,P ) to the Lyapunov equationa11 a12 a13

a21 0 a23
0 a32 0

p11 p12 p13
p21 p22 p23
p31 p32 p33

+

p11 p12 p13
p21 p22 p23
p31 p32 p33

a11 a21 0
a12 0 a32
a13 a23 0

 = −I. (2.41)

where P ≻ 0 is unique whenever A =
[ a11 a12 a13
a21 0 a23
0 a32 0

]
is stable. Consider the (1, 3), (2, 3) and

(3, 3) blocks of eq. (2.41),

a11p13 + a12p23 + a13p33 + p12a32 = 0 (2.42)
a21p13 + a23p33 + p22a32 = 0 (2.43)

a32p23 + p32a32 = −1. (2.44)

Since p33 is invertible, a13 and a23 are uniquely determined from (2.42) and (2.43). The
equation in the remaining blocks after eliminating a13 and a23 can be extracted by pre-
multiply (2.41) by

W =

[
1 0 −p13p−1

33

0 1 −p23p−1
33

]
and post-multiply (2.41) by W⊤:[

a11 a12 − p13p
−1
33 a32

a21 −p23p−1
33 a32

] [
p̄11 p̄12
p̄21 p̄22

]
+

[
p̄11 p̄12
p̄21 p̄22

] [
a11 a21

a12 − a32p
−1
33 p32 −a32p−1

33 p32

]
=

[
−1− p13p

−2
33 p31 −p13p−2

33 p32
−p23p−2

33 p31 −1− p23p
−2
33 p32

]
, (2.45)

where the partitioned Schur complement p̄ij is equal to pij − pi3p
−1
33 p3j for i, j = 1, 2. The

(1, 2) and (2, 2) blocks of (2.45) are

a11p̄12 + (a12 − p13p
−1
33 a32)p̄22 + p̄11a21 − p̄12a32p

−1
33 p32 = −p13p−2

33 p32 (2.46)
a21p̄12 + p̄21a21 = −1− p23p

−2
33 p32 + p23p

−1
33 a32p̄22 + p̄22a32p

−1
33 p32. (2.47)
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Similarly, since p̄22 is invertible, a12 can uniquely solved from (2.46). Eliminating a12 similarly
by conjugating (2.45) with [ 1 p̄12p̄

−1
22 ] gives

(a11 − p̄12p̄
−1
22 a21)p̃11 + p̃11(a11 − a21p̄

−1
22 p̄21) = ∗ (2.48)

where p̃11 = p̄11− p̄12p̄
−1
22 p̄21 and the right hand side is a negative definite matrix determined

by P . Because p̃11 is positive definite, its eigenvalues do not sum up to zero. As a result,
the solution a11 always exists and can be shrunk to a symmetric solution that depends
continuously on P . We retract the solution set, where ∼ denotes the equivalence of connected
components:

AT ∼


a11 a12 a13a21 0 a23

0 a32 0

 ,

p11 p12 p13p21 p22 p23
p31 p32 p33

 : (2.41),

p11 p12 p13p21 p22 p23
p31 p32 p33

 ≻ 0


∼
{([

a11 a12
a21 0

]
, a32, p13, p23, p33,

[
p̄11 p̄12
p̄21 p̄22

])
: (2.44), (2.45), p33 ≻ 0,

[
p̄11 p̄12
p̄21 p̄22

]
≻ 0

}
∼ {(a11, a21, a32, p13, p23, p33, p̄12, p̄22, p̃11) : (2.44), (2.47), (2.48),

p33 ≻ 0, p̄22 ≻ 0, p̃11 ≻ 0}
∼ {(a21, a32, p13, p23, p33, p̄12, p̄22) : (2.44), (2.47), p33 ≻ 0, p̄22 ≻ 0} .

The equivalence is justified similarly. We first add an additional the Lyapunov matrix P
and then repeatedly discard the upper-triangular entires of A, which are uniquely solved,
while transforming the representation of P with the Schur complement until we reach (2.48),
which is always solvable in a11. This discarding procedure produces a series of equations in
the form of (2.47) and (2.44). Since scalar multiplication commutes, we substitute (2.44) to
(2.47) and find that the right hand side of (2.47) is strictly less than zero, hence a21 ̸= 0. In
the same vein, (2.44) implies a32 ̸= 0. We have proved that all lower sub-diagonal entries of
A cannot be zero. With nonzero a21 and a32, the remaining equations uniquely determine
the sub-diagonal entries (p̄12, p23), we arrive at the final series equivalences:

AT ∼ {(a21, a32, p13, p23, p33, p̄12, p̄22) :(2.44), (2.47), p33 > 0, p̄22 > 0, a32 ̸= 0, a21 ̸= 0}
∼ {(a21, a32, p13, p33, p̄22) : p33 > 0, p̄22 > 0, a32 ̸= 0, a21 ̸= 0}
∼ {(a21, a32) : a32 ̸= 0, a21 ̸= 0} .

After discarding the redundant coordinates, we are left with n−1 nonzero conditions on the
sub-diagonals of A, which give rise to 2n−1 connected components.

Proof of Lemma 6

The proof follows directly from the lemma below.
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Lemma 7. Suppose that Ex0x
⊤
0 = I, C = I and K stabilizes both (A−µI,B) and (A−λI,B).

Define W (K) = (A+BK) + (A+BK)⊤. We have the following bound

J2µ(K)

J2λ(K)
≤

{
2λ−νmin(W (K))
2µ−νmax(W (K))

, if 2µ > νmax(W (K))
2λ−νmax(W (K))
2µ−νmin(W (K))

, if 2µ < νmin(W (K))
.

Proof. The quadratic costs J2λ(K) and J2µ(K) can be written as tr(Pλ(K)) and tr(Pµ(K)),
where

(A−λI+BK)⊤Pλ(K) + Pλ(K)(A−λI+BK) +K⊤RK +Q+DK +K⊤D⊤ = 0

(2.49a)
(A−µI+BK)⊤Pµ(K) + Pµ(K)(A−µI+BK) +K⊤RK +Q+DK +K⊤D⊤ = 0.

(2.49b)

Taking the difference of eq. (2.49a) and eq. (2.49b) yields

(A+BK)⊤(Pλ(K)−Pµ(K)) + (Pλ(K)−Pµ(K))(A+BK) = 2λPλ(K)− 2µPµ(K). (2.50)

Taking the trace of eq. (2.50), we obtain

2λ tr(Pλ(K))− 2µ tr(Pµ(K))

= tr
(
((A+BK) + (A+BK)⊤)Pλ(K)

)
− tr

(
((A+BK) + (A+BK)⊤)Pµ(K)

)
≥ νmin(W (K)) tr(Pλ(K))− νmax(W (K)) tr(Pµ(K)),

where the last step follows from the positive-semidefinite property of Pλ(K) and Pµ(K). In
the same vein,

2λ tr(Pλ(K))− 2µ tr(Pµ(K)) ≤ νmax(W (K)) tr(Pλ(K))− νmin(W (K)) tr(Pµ(K)).

Hence, if 2µ > νmax(W (K)), we have

tr(Pµ(K)) ≤ 2λ− νmin(W (K))

2µ− νmax(W (K))
tr(Pλ(K));

and if 2µ < νmin(W (K)), we have

tr(Pµ(K)) ≤ 2λ− νmax(W (K))

2µ− νmin(W (K))
tr(Pλ(K)).
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Proof of Coerciveness

We show that the ODC problem has a certain structure that disallows the locally optimal
stabilizing K to have arbitrarily large magnitude.

Lemma 8. Consider the ODC problem with cost eq. (2.1). Suppose that C has full row rank,
L =

[
Q D

D⊤ R

]
is positive definite, D0 = Ex0x

⊤
0 is positive definite, and K ∈ S is stabilizing.

Then, J0(K) → ∞ whenever ∥K∥2 → ∞ or when K approaches the boundary of the set of
stabilizing controllers.

Proof. We write

P (K) =

∫ ∞

0

et(A+BKC)⊤R̂(K)et(A+BKC)dt,

where
R̂(K) = Q+DKC + C⊤K⊤D⊤ + C⊤K⊤RKC.

When K is stabilizing, P (K) is well-defined. As K approaches a finite K† on the boundary
of the set of stabilizing controllers, we show that ∥P (K)∥2 → ∞. By assumption, the
symmetric matrix R̂(K) in the integral is positive definite, because it can be written as

R̂(K†) =
[
I C⊤K⊤

†
]
L

[
I

K†C
⊤

]
.

Therefore, its minimum eigenvalue νmin(R̂(K†)) > 0, and when K is close to K†, R̂(K) ⪰
1
2
νmin(R̂(K†))I. We make the estimate

tr(P (K))≥1

2
νmin(R̂(K†))

∫ ∞

0

tr
(
et(A+BKC)⊤et(A+BKC)

)
dt

≥ 1

2
νmin(R̂(K†))

∫ ∞

0

∥et(A+BKC)∥22dt

=
1

2
νmin(R̂(K†))

∫ ∞

0

e2t·spabs(A+BKC)dt,

where spabs(·) denotes the spectral abscissa (maximum real part of the eigenvalues). The
estimate above shows that tr(P (K)) → ∞ as K approaches K† from the stabilizing set.
Since J0(K) = tr(P (K)D0) ≥ tr(P (K))νmin(D0), J0(K) also approaches infinity.

In case ∥K∥2 → ∞ from the stabilizing set, we use the fact that P (K) is the unique
solution to the equation

(A+BKC)⊤P + P (A+BKC) + R̂(K) = 0.
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Let σmin(C) denote the smallest singular value of C, which is positive by assumption. From
the triangle inequality,

νmin(R)σmin(C)2∥K∥22 ≤ ∥C⊤K⊤RKC∥2
≤ 2∥A+BKC∥2∥P (K)∥2 + ∥Q∥2 + 2∥D∥2∥K∥2∥C∥2
≤ 2(∥A∥2 + ∥B∥2∥K∥2∥C∥2)∥P (K)∥2+

∥Q∥2 + 2∥D∥2∥K∥2∥C∥2,

Therefore,

∥P (K)∥2 ≥
νmin(R)σmin(C)2∥K∥22 − ∥Q∥2 − 2∥D∥2∥K∥2∥C∥2

2(∥A∥2 + ∥B∥2∥K∥2∥C∥2)
.

Hence, ∥P (K)∥2 →∞ as ∥K∥2 →∞ inside the stabilizing set. Similarly J(K) = tr(P (K)D0) ≥
∥P (K)∥2νmin(D) also approaches infinity.
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Chapter 3

Damping with Varying Regularization in
Optimal Decentralized Control

This chapter studies a homotopy continuation method for the design of an optimal static
or dynamic decentralized controller to minimize a quadratic cost functional. The pro-
posed method involves a combination of the classical local search technique in the space
of control policies, a gradual damping of the system dynamics, and a gradual variation of a
parametrized cost functional. A series of optimal decentralized control (ODC) problems is
generated via a continuous variation of parameters. Unlike the classical homotopy literature,
which focuses on tracking a specific trajectory, we study the ensemble of critical controller
trajectories and show how the properties of the ensemble can be leveraged to find a globally
optimal solution of the ODC problem. After guaranteeing the continuity and asymptotic
properties of the proposed method, we prove that with enough damping, there is no spurious
locally optimal controller for a block-diagonal control structure. This leads to a sufficient
condition under which an iterative algorithm can find a global solution to a class of optimal
decentralized control problems. The “damping property” introduced in this analysis is shown
to be unique for general system matrices. Empirical observations are presented for instances
with an exponential number of locally optimal decentralized controllers, where the developed
method could find the global solution even when initialized at a poor local solution.

3.1 Introduction
The optimal decentralized control (ODC) problem has found a wide range of applications in
electric power systems and robotics [65, 19, 89, 61]. The problem differs from the classical
centralized optimal control problem by an additional constraint on the control architecture,
which breaks the separation principle and the classical solution formulae [26]. Furthermore,
it renders the computational model intractable to solve in general [93]. To bridge the gap
between model complexity and tractability, researchers have looked into convex reformula-
tions under various assumptions [17, 78, 75, 56, 90]. Convex formulations have attractive
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theoretical properties, but they may not be exact and often cause the problem’s dimension to
explode. In practice, homotopy methods [18, 97, 1, 20, 73] and local-search algorithms [44,
62] are much more appealing and yet theoretically poorly understood.

The objective of this chapter is to study under what conditions ODC problems can
be solved to global optimality using low-complexity numerical algorithms. To address this
problem, the chapter attempts to delineate the boundary of tractable ODC instances through
the lens of homotopy continuation methods. We propose a homotopy scheme that varies the
cost and feasible region of the ODC problems. The attractive properties of the homotopy
paths lead to sufficient conditions for the designed homotopy algorithm to find a globally
optimal decentralized controller in the presence of many local solutions.

Our theoretical results on homotopy paths are related to the line of research on the
landscape of non-convex optimization problems [51, 96, 55, 27, 52, 43]. The study of the
landscape informs when local search methods are able to obtain high-quality solutions [48,
44, 35]. The ODC problem is distinguished from a general non-convex optimization problem
studied in the machine learning literature due to a stability constraint. A recent investigation
of the topological properties of ODC in [40] shows that the region of stabilizing controllers
can be disconnected and that the number of locally optimal solutions to ODC can grow
exponentially in the order of the system. This confirms that the landscape of ODC is highly
complex.

The theoretical understanding of homotopy methods in control theory is limited, and
no theoretical results are known for the ODC problem to explain when and what homotopy
strategies are effective. A theoretical analysis of homotopy methods in the context of ODC is
challenging, as illustrated by examples in [60] showing that the general homotopy setting can
cause ill-behaviors such as stable-unstable interlaces and discontinuous solution paths. The
theoretical challenges have not prevented homotopy methods from successful applications in
the numerical solution of optimal control problems [68, 20, 73]. The damping technique in
this chapter is similar to the idea in [18], where the author has proposed a homotopy map
that connects a stable system to the original system to obtain a stabilizing controller and
empirically documented its performance. The paper [97] has considered the H2 reduced-order
problem and proposed several homotopy maps and initialization strategies.

Compared with those earlier works, we analyze a specific type of continuation, namely,
damping with varying regularization, and show how this method may escape unwanted local
minima of the ODC problem. Moreover, diverging from the classical analysis of homotopy
methods that focuses on tracking a specific trajectory, we study the ensemble of critical
controller trajectories and how the tracking of those trajectories leads to the globally optimal
controller.

The key contribution of this chapter is a theoretical analysis of the continuity and asymp-
totic properties of the trajectories of the locally optimal solutions with respect to the vari-
ation of the damping and regularization parameters. After formulating the problem and
introducing the homotopy scheme in Section 3.2, we delineate the continuity and asymptotic
properties of the proposed damping strategies in Section 3.3 and Section 3.4, respectively.
Notably, the analysis leads to the result that if the system dynamics is dampened enough,
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as long as the condition number of the regularization matrices remains bounded, there is
no spurious locally optimal controller, by which we mean all locally optimal controllers are
globally optimal for the damped system. Furthermore, we show that this globally optimal
controller in the damped system can be continuously connected to the globally optimal con-
troller in the original system via a variation of the homotopy method, provided that the
globally optimal decentralized controllers are unique in the damping process. Numerical
experiments are detailed in Section 3.5, followed by concluding remarks in Section 3.6. Some
of the proofs are relegated to the last chapter.

3.2 Homotopy for Optimal Decentralized Control
With no loss of generality, we study the optimal decentralized control problem (ODC) with a
static controller and a quadratic cost. The reason is that the design of a dynamic controller
can be reformulated as the design of a static controller for an augmented system, as discussed
in Section 3.5.B. Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t),

where A ∈ Rn×n and B ∈ Rn×m are real matrices of compatible sizes. The vector x(t) is
the state of the system with an unknown initialization x(0) = x0, where x0 is modeled as
a random variable with zero mean and a positive definite covariance E[x(0)x(0)⊤] = D0

(where E[·] denotes the expectation operator). The control input u(t) is to be determined
via a static stabilizing state-feedback law u(t) = Kx(t) with the gain K ∈ Rm×n such that
the quadratic performance measure

E
∫ ∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt

is minimized for a positive semidefinite matrix Q ⪰ 0 and positive definite matrix R ≻ 0,
where the expectation is taken over x0. We model the decentralized nature of the controller
via a structural constraint. Precisely, ODC optimizes over the set of structured stabilizing
controllers

KS = {K : A+BK is stable, K ∈ S}, (3.1)

where S ⊆ Rm×n is a linear subspace of matrices, often specified by fixing certain entries
of the matrix to zero. The sparsity pattern can be equivalently described with an indicator
matrix IS whose (i, j)-entry is defined to be

[IS ]ij =

{
1, if Kij is free
0, if Kij = 0.

The structural constraint K ∈ S is equivalent to K ◦ IS = K, where ◦ denotes entry-wise
multiplication.
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We design a homotopy scheme by introducing a sequence of damped cost functions with
a varying regularization, defined as1

J(K,α) =E
∫ ∞

0

[
e−2αt

(
x̂⊤(t)Qx̂(t) + û⊤(t)Rαû(t)

)]
dt

s.t. ˆ̇x(t) = Ax̂(t) +Bû(t)

û(t) = Kx̂(t),

(3.2)

where the varying regularization Rα ≻ 0 is positive definite for all α ≥ 0 with R0 = R. The
notation Rα denotes a function of α. In this setting, α is a damping parameter that will
be used to construct a series of ODC problems. Additional assumptions will be imposed on
the varying regularization Rα in the following sections. The introduction of the discounting
term e−2αt is a common practice in infinite-horizon control problems to ensure that the cost
is finite [9]. By a change of variables x(t) = e−αtx̂(t) and u(t) = e−αtû(t), the cost J(K,α)
can be equivalently written as

J(K,α) =E
∫ ∞

0

[
x⊤(t)Qx(t) + u⊤(t)Rαu(t)

]
dt

s.t. ẋ(t) = (A− αI)x(t) +Bu(t)

u(t) = Kx(t).

(3.3)

The parameter α alters the matrix A to A− αI, which acts to decrease the real part of all
eigenvalues of A. This is the reason that we refer to α as the damping parameter. The ODC
problem under study is associated with α = 0:

min
K

J(K, 0)

s.t. K stabilizes (A,B)

K ∈ S.

Instead of directly solving the above optimization formulation of ODC, we leverage the
flexibility of a varying parameter α and relax the notion of stability for some fictitious damped
systems. We call K a stabilizing solution to (3.3) if K stabilizes the system (A − αI,B),
in which case formulation (3.2) is also meaningful. Formally, we define ODC with damping
and varying regularization as

min
K

J(K,α)

s.t. K stabilizes (A− αI,B)

K ∈ S.
(ODC(α))

Our relaxed notion of stability coincides with the true notion of stability when α = 0. We
emphasize that the relaxation of stability for the damped system (where α > 0) is an artificial

1Note that J(K,α) implicitly depends on the regularization parameter Rα.
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construction in our solution method; the goal is to obtain an optimal stabilizing controller
for the undamped system with α = 0. We use ODC(α,K0) to denote the problem ODC(α)
together with an initial stabilizing controller K0 that is provided for local search methods.

The two equivalent formulations (3.2) and (3.3) motivate the notion of “damping prop-
erty”. We make a formal statement below.

Lemma 9. The function J(K,α) satisfies a “damping property” in the sense that for every
controller K that stabilizes the system (A − αI,B), the following statements hold for all
β > α:

• K stabilizes the system (A− βI,B);

• J(K, β) ≤ J(K,α) if Rβ ⪯ Rα.

Proof. It follows from the formulation ODC(α) that whenever A − αI + BK is stable and
β > α, the matrix A−βI+BK = (A−αI+BK)−(β−α)I is also stable. Therefore, J(K, β) is
well-defined. Due to formulation (3.2), whenever Rβ ⪯ Rα, we have J(K, β) ≤ J(K,α).

The matrix function Rα is said to be monotonically decreasing if Rβ ⪯ Rα for all β >
α ≥ 0. Let K∗(α) denote the set of globally optimal solutions of ODC(α), by which we
mean J(K∗(α), α) ≤ J(K,α) for every K ∈ S that stabilizes (A − αI,B). Denote the set
of critical controllers by K†(α), which contains all stabilizing controllers K ∈ S that satisfy
the first-order optimality condition ∇J(K,α) ◦ IS = 0 (where ∇ denotes the gradient with
respect to K). Since the ODC problem is smooth, the set of critical controllers contains the
set of locally optimal controllers whose costs are the lowest in their neighborhoods. The
first-order optimality condition can be expanded as follows (see [76] for details):

(A−αI +BK)⊤Pα(K)+

Pα(K)(A− αI +BK) +K⊤RαK +Q = 0
(3.4a)

Lα(K)(A−αI +BK)⊤+

(A− αI +BK)Lα(K) +D0 = 0
(3.4b)[

(B⊤Pα(K) +RαK)Lα(K)
]
◦ IS = 0 (3.4c)

K ◦ IS = K. (3.4d)

The matrices Pα(K) and Lα(K) are the closed-loop Gramians that depend on α. The above
conditions provide a closed-form expression for the cost

J(K,α) = tr(D0Pα(K)), (3.5)

where tr(·) denotes the trace of a matrix. For every given α, the equations (3.4a)-(3.4d)
and (3.5) are algebraic, involving only polynomial functions of the unknown matrices K, Pα

and Lα. The matrices Pα and Lα are written as functions of K because they are uniquely
determined from (3.4a) and (3.4b) given a stabilizing controller K. When the context is
clear, we drop the implicit dependence on K in the notations Pα and Lα.
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The chapter studies the properties of K∗(α), K†(α), and J(K,α) for any controller K
belonging to K∗(α) or K†(α), and shows how these properties can be leveraged to find a
global solution of the problem ODC(α). We refer to J(K†(α), α) and K†(α), which are
multi-valued functions of α, as critical cost trajectories and critical controller trajectories,
respectively. To motivate the study of K†(α), Figure 3.1 illustrates the evolution of many
critical decentralized controllers for a particular system as α varies (see Section 3.5 for details
on the experiment). Figure 3.1a plots selected trajectories of J(K,α) against α, where
K ∈ K†(α). Those trajectories are all connected to a stabilizing controller in K†(0). The
lowest curve corresponds to the cost of globally optimal controllers J(K∗(α), α). Figure 3.1b
plots the distance of selected controllers K ∈ K†(α) from a controller K in K∗(α).

Figure 3.1 illustrates the property that a modest damping causes the locally optimal
trajectories to “collapse” to each other. This attractive phenomenon suggests an effective
technique for solving ODC by varying the damping parameter to relate the original ODC
problem to a highly damped ODC problem. Two strategies based on the above idea are
detailed in Algorithm 1 and Algorithm 2.

Algorithm 1 The Forward-Backward Method
Input: J(K,α) and an initial controller K0 ∈ S that stabilizes the system (A,B).
Output: A potentially improved controller in K†(0).
Select a list of parameters 0 = α0 < α1, . . . , < αT .
for t← 1, . . . , T do

Obtain a Kt∈K†(αt) by solving ODC(αt, Kt−1) using local search.
end for
for t← T−1, T−2, . . . , 0 do

Obtain a Kt∈K†(αt) by solving ODC(αt, Kt+1) using local search.
end for

Algorithm 1 aims to find an optimal decentralized controller based on a given initial
controller. One execution of the algorithm is plotted in Figure 3.2. Algorithm 2 starts with
a large enough α for which K = 0 is an initial stabilizing controller in the set S and iteratively
solves for a better controller while reducing the damping parameter α. The improvement
at α = αt is achieved using local-search and the initialization Kt+1 from the previous step.
Algorithm 1 is different from Algorithm 2 in that it starts with a potentially undesirable
controller for α = 0 and gradually increases α to obtain an improved optimal controller for a
highly-damped system and then applies a variant of Algorithm 2 to backtrack that controller
to a globally optimal controller for α = 0. In what follows, we develop a theoretical analysis
of the technique used in these algorithms.

The granularity of the space for α, namely {α0, α1, . . . , αT}, does not affect the final solu-
tion as long as the discretization step is small enough so that the algorithm can approximately
track the continuous paths. Admittedly, the literature of numerical continuation methods
is rich with appealing predictor-corrector and piecewise-linear methods [1], and they can
be applied in the tracking of K†(α) and K∗(α). Nevertheless, this chapter aims to analyze



CHAPTER 3. DAMPING WITH VARYING REGULARIZATION IN OPTIMAL
DECENTRALIZED CONTROL 44

(a) Critical cost trajectories against the damping parameter

(b) Distance between K†(α) and K∗(α)

Figure 3.1: Samples of critical cost and critical controller trajectories of the system in
equation (3.10) as the damping parameter α varies.
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Figure 3.2: Selected cost trajectories of Algorithm 1 when applied to several critical con-
trollers. The system is described in equation (3.10) and initialized at three sub-optimal
controllers with costs greater than 200. After the damping parameter α is increased to
around 0.2, the local-search algorithm starts to track the better blue curve. When α is grad-
ually decreased to 0, the local-search algorithm tracks the blue curve and yields a controller
whose cost is around 100.

Algorithm 2 The Backward Method
Input: J(K,α)
Output: A potentially stabilizing K0 ∈ K†(0).
Select a list of parameters 0 = α0 < α1, . . . , < αT , where αT is large enough such that
KT = 0 stabilizes the system (A− αT I, B).
for t← T−1, T−2, . . . , 0 do

Obtain a Kt∈K†(αt) by solving ODC(αt, Kt+1) using local search.
end for

the possibility of using local search to locate the globally optimal controller trajectory as
opposed to following a specific trajectory closely.

Remark 6. It is sometimes advantageous to use the pseudo-arclength or predictor-corrector
method2 [20] instead of monotonically increasing the homotopic parameter. This is the case
when there are limit points on the homotopic curves for which continuing increasing the
homotopy parameter cannot reach a solution nearby and it is necessary to make a turn.

2These methods use unit direction tangent to the homotopy curve for prediction and then correct the
deviation from the homotopy curve through some iterative schemes such as Newton-like methods.
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However, as Lemma 1 and Figure 1(a) demonstrate, our homotopy curves can be viewed
with J(K,α) as a series of decreasing curves, for which no turn is necessary for the purpose
of curve tracking. It is entirely possible, however, that in the backward process, decreasing
α will reach a point where there are no nearby stabilizing controllers; this scenario can be
detected because J(K,α) will approach infinity as K reaches the boundary of the stabilizing
controllers. In this case, an additional homotopy step such as Fixed-Point–Newton (FPN)
Homotopy can be applied [73]. However, the theoretical properties of the FPN Homotopy are
not well-understood.

Remark 7. Homotopy methods find solutions to a difficult problem by constructing a series
of related problems. The idea of the chapter is to construct a homotopy path on which a
tractable control problem exists; such a control problem has a stable A matrix so that K = 0
stabilizes the system. More generally, one can apply homotopy methods in phases, where the
first phase explores tractable problems and the second phase connects the tractable problems
to the difficult problem of interest. The paper [72] recently investigated this idea for the
problem of low-thrust trajectory optimization.

Due to the NP-hardness of ODC, Algorithm 1 and Algorithm 2 cannot always produce a
globally optimal or even a stabilizing decentralized controller, unless certain conditions are
met. The conditions will be discussed later. In Section 3.3, we first prove the continuity of
the trajectories, which is a prerequisite for tracking.

3.3 Continuity of Solution Trajectories
This section studies the continuity properties of the set-valued map K∗(α) and K†(α). The
key notion of hemi-continuity captures the evolution of the parametrized optimization prob-
lems.

Definition 1. The set-valued map Γ : A → B is said to be upper hemi-continuous at a
point z if for any open neighborhood V of Γ(z) there exists a neighborhood U of z such that
Γ(U) ⊆ V .

The related notion of lower hemi-continuity is provided in Section 3.7. A set-valued
map is said to be continuous if it is both upper and lower hemi-continuous. A single-valued
function is continuous if and only if it is upper hemi-continuous. We restate a version of
Berge Maximum Theorem with a compactness assumption from [69].

Lemma 10 (Berge Maximum Theorem [69]). Let A ⊆ R and S ⊆ Rm×n. Assume that
J : S ×A → R is jointly continuous and Γ : A → S is a compact-valued map3. Define

K∗(α) = argmin{J(K,α)|K ∈ Γ(α)}, for α ∈ A,
J(K∗(α), α) = min{J(K,α)|K ∈ Γ(α)}, for α ∈ A.

3Compact-valued means for every x ∈ A, Γ(x) is compact. The map’s value can be set.
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If Γ is continuous at some α ∈ A, then J(K∗(α), α) is continuous at α. Furthermore, K∗ is
non-empty, compact-valued, closed, and upper hemi-continuous.

The Berge Maximum Theorem does not readily apply to ODC since the set of stabilizing
controllers is open and often unbounded. The difficulty can be overcome by restricting the
relevant map to a lower level-set.

Theorem 11. Assume that the matrix function Rα is continuous in α and that K∗(0) is
non-empty. Then, the set K∗(α) is non-empty for all α > 0. Furthermore, K∗(α) is upper
hemi-continuous and the optimal cost J(K∗(α), α) is continuous. If Rα is monotonically
decreasing, J(K∗(α), α) is strictly decreasing in α.

Proof. When K∗(0) is non-empty, there is an optimal decentralized controller for the un-
damped system. We can apply any controller in K∗(0) to the damped system and conclude
that

J(K∗(α), α) ≤ J(K∗(0), α) <∞.

Note that since K∗(α) is the set of globally optimal controllers, J(K∗(α), α) is a well-defined
single-valued function of α. The inequality above assumes the existence of a globally optimal
controller for all values of the damping parameter α. This is true because the lower-level set
of J(K,α) is compact [87]. Precisely, define ΓM(α) to be

ΓM(α)={K ∈ S :A−αI+BK stable, J(K,α) ≤M}. (3.6)

The set-valued function ΓM is compact-valued for all fixed α given a fixed M . We select any
M > J(K∗(0), α) and optimize J(K,α) instead over K ∈ ΓM(α) without losing any globally
optimal controller. The continuity of ΓM(α) at α for almost all M is proved in Section 3.7.
Berge Maximum Theorem then yields the desired continuity of K∗(α) and J(K∗(α), α).
When Rα is monotonically decreasing, the “damping property” ensures that J(K∗(α), α) is
monotonically decreasing.

The above argument can be extended to characterize all critical controllers. A caveat
is the possible existence of critical controllers whose costs approach infinity in the damped
problem. Such existence does not contradict the damping property — damping can introduce
locally optimal controllers that are not stabilizing in the absence of damping.

Theorem 12. Assume that the matrix function Rα is continuous in α and that K†(0) is
non-empty. Then, the set K†(α) is nonempty for all α > 0. Furthermore, if for α0 > 0,

lim
ϵ→0+

sup
α∈[α0−ϵ,α0+ϵ]

sup
K∈K†(α)

J(K,α) <∞, (3.7)

then, K†(α) is upper hemi-continuous at α0 and the optimal cost J(K†(α), α) is upper hemi-
continuous at α0.
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Proof. The fact that K†(α) is non-empty follows from the existence of globally optimal
controllers in Theorem 11. Consider the parametrized optimization problem

min ∥∇J(K,α)∥
s.t. K ∈ ΓM(α), (3.8)

where ∥ · ∥ denotes the 2-norm of a vector. The assumption (3.7) ensures the existence of a
real number M and ϵ > 0 such that M > J(K,α) for all K ∈ K†(α) and α ∈ [α0− ϵ, α0+ ϵ].
This choice of M guarantees that the formulation (3.8) does not cut off any critical controller.
As will be proven in Section 3.7, ΓM(α) is continuous at α0 for almost all M . Therefore, M
can be selected to make ΓM(α) continuous at α0 without cutting off any critical controllers.
Berge Maximum Theorem implies that K†(α) is upper hemi-continuous. Since J(K,α) is
jointly continuous in (K,α), the map J(K†(α), α) is upper hemi-continuous.

3.4 Asymptotic Properties
In this section, we state asymptotic properties of the local solutions given by the set K†(α).
They shed light on the trajectories in Figure 3.1. We use ∥·∥ to denote the 2-norm of a matrix
and use λmin(·) to denote the minimum eigenvalue of a symmetric matrix. The matrix-valued
function Rα : R→ Rm×m is called semi-algebraic if its graph {(α,W ) ∈ R×Rm×m : Rα = W}
can be represented by a finite set of polynomial equalities and inequalities.

Assumption 1. The symmetric matrix function Rα is monotonically decreasing and is a
semi-algebraic function of α. Furthermore, there exist real constants ∆ > δ > 0 such that
∆ ≥ ∥Rα∥ ≥ λmin(Rα) ≥ δ for all α ≥ 0.

Recall that the function Rα is introduced to make Algorithms 1 and 2 effectively solve
ODC(0). The above assumption provides guidance on how to select this function. Further-
more, we make the following technical assumption on the sparsity pattern of the decentralized
controller to develop the results of this section.

Assumption 2. The sparsity pattern IS is block-diagonal with square blocks and Rα has the
same sparsity pattern as IS for all α.

The following theorem characterizes the evolution of critical controllers for a specific
sparsity pattern. It also justifies the practice of random initialization around zero and the
initialization strategy in Algorithm 2.

Theorem 13. Under Assumption 1 and Assumption 2, we have supK∈K†(α) ∥K∥ → 0 as
α→∞. Furthermore, supK∈K†(α) J(K,α)→ 0 as α→∞.

Proof. Refer to Section 3.7.

As α→∞, not only do all critical controllers in K†(α) approach zero, the problem also
becomes convex over bounded regions with enough damping.
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Theorem 14. Under Assumption 1 and Assumption 2, for any given r > 0, the Hessian
matrix ∇2J(K,α) is positive definite over the set ∥K∥ ≤ r for all large values of α.

Proof. Refer to Section 3.7.

Corollary 4. Under Assumption 1 and Assumption 2, there is no spurious locally optimal
controller for large α, meaning that K†(α) = K∗(α) for all large values of α.

Proof. For any given r > 0, all controllers in the ball B = {K : ∥K∥ ≤ r} are stabilizing
when α is large. As a result, stability constraints can be relaxed over B. Furthermore, it
results from Theorem 13 that when α is large, all critical controllers will be inside B. In light
of Theorem 14, the objective function becomes convex over B for large values of α. These
observations imply that local and global solutions coincide.

Corollary 4 implies that with a large damping parameter α and a well-conditioned Rα,
the damped problem is tractable. Now, the problem remains to connect the damped system
to the undamped one. This requires the following assumption that excludes bifurcation —
when a critical trajectory merges with the globally optimal trajectory, the homotopy method
cannot distinguish one from the other.

Assumption 3. The set of globally optimal controllers K∗(α) is a singleton set for all α ≥ 0.
Furthermore, there is an ϵ > 0 such that for all α > 0 and any two distinct controllers
K1 ∈ K†(α) and K2 ∈ K∗(α), it holds that ∥K1 −K2∥ ≥ ϵ.

Even though Assumption 3 requires that K∗(α) be distinguished from K†(α) for all
α > 0, there is a value α0 such that this assumption automatically holds for all α > α0. This
immediately follows from Corollary 4 and the observation in Theorem 14 that the Hessian
∇2J(K,α) is positive definite. The following lemma provides sufficient conditions under
which Assumption 3 holds. We use spabs(A) to denote the spectral abscissa (maximum real
part of the eigenvalues), which is negative for a stable matrix A.

Lemma 11. Assume that A is stable and that the following conditions hold for all α ≥ 0:

• λmin(Rα) ≥ δ > 0

• ∇2J(K,α) is positive definite over the region {K : ∥K∥ ≤ r}, where r is large enough
so that

−spabs(A)δr2 − n∥Q∥κ(D0)∥B∥r
+spabs(A)∥Q∥ − n∥Q∥κ(D0)∥A∥ > 0, (3.9a)

δr2 − ∥Q∥(1 + nκ(D0)) ≥ 0, (3.9b)

where κ(D0) = ∥D0∥/λmin(D0). Then, Assumption 3 holds for all α ≥ 0.
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Proof. We first show that for all stabilizing K with ∥K∥ ≥ r, we have J(K,α) > J(0, α).
When ∥K∥ ≥ r, note that Pα(K) is the unique solution to the equation (3.4a). From the
triangle inequality,

λmin(Rα)∥K∥22 ≤ ∥K⊤RαK∥2
≤ 2∥A− αI +BK∥2∥Pα(K)∥2 + ∥Q∥2
≤ 2(∥A∥2 + α + ∥B∥2∥K∥2)∥Pα(K)∥2 + ∥Q∥2,

Therefore,

∥Pα(K)∥2 ≥
δ∥K∥22 − ∥Q∥2

2(∥A∥2 + α + ∥B∥2∥K∥2)
.

Note that tr(Pα(K)D0) ≥ ∥P (K)∥2λmin(D0),

J(K,α) ≥ λmin(D0)
δr2 − ∥Q∥2

2(∥A∥2 + α + ∥B∥2r)
,

where we use the fact that the right-hand side is monotonically increasing in r. Similarly,
using the matrix exponential expression of Pα(0), we can estimate J(0, α) as follows:

tr(Pα(0)D0) ≤ n∥Q∥∥D0∥
∫ ∞

0

∥et(A−αI)∥22dt

= n∥Q∥∥D0∥
∫ ∞

0

e2t·(spabs(A)−α)dt =
n∥Q∥∥D0∥

2(α− spabs(A))
.

The inequalities (3.9a) and (3.9b) ensure that J(K,α) > J(0, α) for all α ≥ 0. As a result,
if a matrix K that satisfies ∥K∥ ≥ r belongs to K†(α), it cannot be globally optimal, and
there must exist an ϵ > 0 that bounds the distance between K and K∗(α) because their
costs are different. The proof is completed by noting that the assumption of the positive
definiteness of the Hessian ensures that K∗(α) is a singleton set.

To track the global trajectory using local search as a part of Algorithm 1 or 2, it is nec-
essary for the local search to converge when initialized close to the trajectory. Furthermore,
the discretization needs to be adapted to the local search algorithm. The conditions are
specified in the following two definitions.

Definition 2. A local search algorithm for ODC(K0, α) is said to be locally δ-stable if for
any K0 with supK∈K∗(α) ∥K0 −K∥ < δ, it converges to a point in K∗(α).

Since ODC is a smooth optimization problem, as long as the radius δ > 0 is selected in
such a way that the region {K0 : supK∈K∗(α) ∥K0 − K∥ < δ} remains inside the gradient
dynamics’s region of attraction of K∗(α), gradient descent with a small step-size is locally
δ-stable.



CHAPTER 3. DAMPING WITH VARYING REGULARIZATION IN OPTIMAL
DECENTRALIZED CONTROL 51

Definition 3. Given a δ-stable local search algorithm for ODC, a discretization 0 = α0 <
α1, . . . , < αT is said to be δ-adaptive if for any i ∈ {0, 1, . . . , T − 1} and any two controllers
K1 ∈ K∗(αi) and K2 ∈ K∗(αi+1), it holds that ∥K1 −K2∥ < δ.

As long as K∗()̇ is a continuous function, we can find a discretization that is δ-adaptive
by selecting a small increment.

Corollary 5. Suppose that Assumptions 1, 2 and 3 are satisfied. Then, the trajectory K∗(α)
is continuous. Moreover, if δ > 0 is chosen small enough such that the local search method
is locally δ-stable and the discretization 0 = α0 < α1, . . . , < αT is δ-adaptive, Algorithm 1
and Algorithm 2 both find the globally optimal stabilizing controller in K∗(0) for a large αT .

Proof. It is shown in Theorem 11 that K∗(α) is upper hemi-continuous. Under Assumption 3,
the set K∗(α) is a singleton, and the continuity of K∗(α) can be concluded because a single-
valued function is continuous if and only if it is upper hemi-continuous. When a δ-adaptive
discretization 0 = α0 < α1, . . . , < αT is selected with αT sufficiently large for which the “no
spurious property” of Corollary 4 holds, Algorithm 1 and Algorithm 2 are able to locate the
continuous globally optimal trajectory K∗(α) at α = αT . To obtain K∗(0), we follow the
continuous K∗(α) based on Algorithm 1 and Algorithm 2. Since the local search algorithm
is δ-stable and the discretization is δ-adaptive, we inductively obtain a series of controllers
Kt for t = T, T − 1, . . . , 0, which all lie on the path K∗(α) for α ∈ [0, αT ].

The previous results all rely on the “damping property” in Lemma 9. It is worth men-
tioning that damping the system with −I is almost the only continuation method for general
system matrices “A” that is able to achieve the monotonic increase of stable sets. This will
be formalized below.

Theorem 15. When n ≥ 3, for any n-by-n real matrix H that is not a multiple of −I, there
exists a stable matrix A for which A+H is unstable.

The proof is given in Section 3.7. This theorem justifies the use of−αI as the continuation
parameter and is the reason that our setting avoids the undesirable behaviors of homotopy
documented in [60]. However, matrices other than −αI may be used for a specific A matrix;
if A has certain structures (such as upper-triangular), there are non-trivial matrices H (such
as a non-positive diagonal matrix) for which A + tH is always stable when t > 0. If the
algorithm designer does not aim to customize the homotopy method for every specific system
matrix A, the above theorem supports the use of the universal variation matrix −αI.

Discrete-time Stochastic Systems

We detour briefly to discuss damping with varying regularization for discrete-time stochastic
systems. This shall illustrate the difference between discrete- and continuous-time systems.
Consider the stochastic system

x[t+ 1] = Ax[t] +Bu[t] + d[t]
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under a static feedback policy u[t] = Kx[t], where K is to be designed such that the damped
objective

J(K,α) = lim
t→∞

E
[
α2t
(
x[t]⊤Qx[t] + u[t]⊤Rαu[t]

)]
is minimized. The damping parameter α belongs to the interval [0, 1]. Assume that the
random variables d[t], t = 0, 1, 2, . . . , are independent and d[t] has the covariance matrix Σd.
We consider the following construction of homotopy for the discrete-time ODC problem

min
K

J(K,α) = tr[(K⊤RαK +Q)Pα(K)],

s.t. (αA+αBK)Pα(K)(αA+αBK)⊤−Pα(K)+Σd = 0,

α∥(A+BK)∥ < 1.

(d-ODC(α))

Even though the formulation is not linear in K or in Pα, we develop asymptotic results
under an additional bounded assumption, as stated below. The proof of the lemma is given
in Section 3.7.

Lemma 12. Suppose that λmin(Rα) ≥ ϵ > 0 for all α ∈ [0, 1]. Assume further that a locally
optimal solution Kα to (d-ODC(α)) exists and is uniformly bounded for all α ∈ [0, 1]. Then,
as α→ 0, it holds that Pα(Kα)→ Σd and Kα → 0.

Due to the above lemma, one can use an analogue of Algorithm 1 or Algorithm 2 to solve
ODC in the discrete setting, but the damping parameter α should be discretized over the
interval [0, 1].

Remark 8. It appears in d-ODC(α) that the homotopy map is constructed by rescaling
the matrices A and B at the same time. In fact, the covariance matrices is also rescaled
implicitly, as shown in the following computation:

J(K,α) = lim
t→∞

E tr[(Q+K⊤RαK)x[t]x[t]⊤α2t]

= tr

[
(Q+K⊤RαK)×

lim
t→∞

t∑
τ=0

(αA+αBK)t−τE[d[τ ]d[τ ]⊤]α2τ(αA+αBK)⊤(t−τ)

]
.

3.5 Numerical Experiments
In this section, we study ODC problems that have poor local minima and therefore the
existing nonlinear programming techniques based on local-search cannot provably find the
global solution without the knowledge of the location of the global solution in the space
of the control policies. We further catalog various homotopy behaviors as the damping
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parameter α varies. The focus is on the evolution of critical trajectories, which can be
tracked by any local search or path-following methods. The experiments are performed on
small-sized systems, so local search with random initialization is unlikely to miss locally
optimal solutions and therefore, more likely to give a complete picture of the ensemble of
trajectories J(K†(α), α) and K†(α). Despite the small system dimension, the existence of
many locally optimal solutions and their convoluted trajectories demonstrate the power and
the limit of using homotopy methods in ODC.

For the local search method, we use the projected gradient descent. At a controller Ki, we
perform line search along the direction K̃i = −∇J(K)◦ IS. The step size is determined with
backtracking and Armijo rule, namely, we select si as the largest number in {s̄, s̄β, s̄β2, ...}
such that Ki + siK̃i is stabilizing while

J(Ki + siK̃i) < J(Ki) + γsi⟨∇J(Ki), K̃i⟩.

We select the parameters γ = 0.001, β = 0.5, and s̄ = 1. We terminate the iteration when
the norm of the gradient is less than 10−2.

Systems with a Large Number of Local Minima

We first consider the examples from [40], where the feasible set is highly disconnected and
admits many local minima. The system matrices are

A=


−1 2 0
−2 0 1 0

0 −1 0 2
. . .

0 −2 0
. . .

. . . . . . . . .

 , B=


0 1 0
−1 0 1 0

0 −1 0 1
. . .

0 −1 0
. . .

. . . . . . . . .

 ,

D0 = I, IS = I, Q = I, Rα = I.

(3.10)

When the dimension n is equal to 9, it is known that the set of stabilizing decentralized
controllers has at least 55 connected components, each of them containing at least one locally
optimal controller. We track 50 of those locally optimal solutions. The damping parameter α
is gradually increased from 0 to 0.2 with a 0.002 increment. The trajectories of locally optimal
solutions are tracked by solving the newly damped system with the previous local optimal
solution as the initialization, in the same spirit of Algorithm 1. The evolution of the optimal
cost and the distance from the best known optimal controller are plotted in Figure 3.1.
Notice that all sub-optimal local trajectories terminate after a modest damping α ≈ 0.12.
After that, the minimization algorithm always tracks a single trajectory. This illustrates the
prediction of Corollary 4. Especially, if we start tracking a sub-optimal controller trajectory
from α = 0, we will be on a better trajectory when α ≈ 0.2. At that time, if we gradually
decrease α to zero, we will obtain a stabilizing controller with a lower cost.
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Dynamic Controllers

So far, the design of a static controller has been discussed. However, the previous results
all apply to the design of a dynamic controller via a reformulation. To explain the idea,
consider the continuous-time setting with no loss of generality. Assume that the goal is to
design a set of sub-controllers of pre-specified degrees as opposed to a static decentralized
controller. The motivation is that a static stabilizing controller may not exist, but when the
degrees of the local controllers are chosen high enough, a stabilizing decentralized controller
always exists under the assumption of no unstable fixed modes [80]. More precisely, let the
system consist of a number of interacting subsystems, where each subsystem should have
a local controller that is allowed to communicated with some other local controllers based
on a user-defined communication strategy. Moreover, each unknown local controller has a
user-defined degree. The overall decentralized controller can be written as

ẋc(t) = Acxc(t) +Bcx(t)

u(t) = Ccxc(t) +Dcx(t),

where xc is the aggregate state of the decentralized controller. The matrices Ac, Bc, Cc and Dc

are indeed block matrices with certain sparsity patterns due to the pre-specified distributed
architecture of the controller. As opposed to K, we need to find the globally optimal values
for the structured tuple (Ac, Bc, Cc, Dc). The closed-loop system can be written as[

ẋ
ẋc

]
=

([
A 0
0 0

]
+

[
B 0
0 I

] [
Dc Cc

Bc Ac

])[
x
xc

]
.

Define Ã =

[
A 0
0 0

]
, B̃ =

[
B 0
0 I

]
, K̃ =

[
Dc Cc

Bc Ac

]
and S̃ as the set of matrices K̃ with

the correct sparsity pattern. The design of the dynamic decentralized controller can be
reformulated as the design of a static gain K̃ ∈ S̃ for the system (Ã, B̃). Using the homotopy
idea on Ã, one can deploy Algorithm 1 or 2 to solve the problem and all of the previous
mathematical results hold true.

As an example, consider the design of a decentralized controller for the system given
in (3.10), where each local controller has degree 1 and Ac is a diagonal matrix. The cost
trajectories are plotted in Figure 3.3. It can be observed that the homotopy behavior is
similar to the static case, and the globally optimal controller can be found via Algorithm 1
or 2.

Experiments on Small Random Systems

With the same initialization and optimization procedure, we perform the experiments on
3-by-3 system matrices A and B randomly generated from the normal distribution with zero
mean and unit variance. For 92 out of 100 samples, we are not able to find more than
one locally optimal trajectory. Some examples with more than one local trajectories are
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Figure 3.3: Cost trajectories of degree-1 dynamic controller design.

provided in Figures 3.4, 3.5, and 3.6. The top plot in each figure shows the costs of locally
optimal controllers. The bottom plot shows the distance of each locally optimal controller
to the controller with the lowest cost. Note that the order of the cost trajectories may
be preserved (Figure 3.4) or may be disrupted (Figure 3.5 and Figure 3.6). In Figure 3.5,
at the intersection of the two curves, there are two distinct global solutions and therefore,
Algorithm 1 may fail to obtain the globally optimal decentralized controller. More than one
trajectory may have the lowest cost as the damping increases (Figure 3.6), but with high
damping, there is only one trajectory that has the lowest cost. If Algorithm 1 is applied with
initialization on the purple curve, whose cost is around 180, after the damping parameter α
is increased to around 2, the purple curve merges with the orange curve. When the damping
parameter α is reduced to α = 0, Algorithm 1 will return to the orange curve with cost
around 80, which is a sub-optimal decentralized controller. This illustrates the necessity of
assuming the uniqueness of the globally optimal controller in Corollary 5.

3.6 Conclusion
This chapter studied the optimal decentralized control problem with a large number of lo-
cally optimal solutions. To be able to find a globally optimal control policy, we proposed
a homotopy method that gradually changes the control problem. We investigated the tra-
jectories of the locally and globally optimal solutions to the optimal decentralized control
problem as the damping parameter and the regularization of the decentralized control prob-
lem varied. Asymptotic and continuity properties of trajectories were proved, which were



CHAPTER 3. DAMPING WITH VARYING REGULARIZATION IN OPTIMAL
DECENTRALIZED CONTROL 56

Figure 3.4: Trajectories of a randomly generated system where the order of locally optimal
controllers is preserved as the damping parameter α changes.
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Figure 3.5: Trajectories of a randomly generated system where the order of locally optimal
controllers is disrupted as the damping parameter α changes.
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Figure 3.6: Trajectories of a randomly generated system with a complicated behavior.
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based on the notion of “damping property”. A sufficient condition was developed together
with an algorithm based on local search for finding the global solution of the optimal decen-
tralized control problem. The complicated behavior of numerical continuation methods was
illustrated with numerical examples with many local minima.

3.7 Proofs
The section collects the remaining proofs of the results of the previous sections.

Continuity

Lemma 13 and Lemma 14 given below prove the continuity of the lower level-set map ΓM

defined in (3.6). The continuity of ΓM is the prerequisite for applying the Berge Maximum
Theorem. The reader is referred to [69] for an accessible treatment of relevant definitions.

Recall the notion of upper hemi-continuity of a set-valued map Γ : A→ B in Definition 1.
If B is compact, upper hemi-continuity is equivalent to the graph of Γ being closed, that is, if
an → a∗ and bn ∈ Γ(an)→ b∗, then b∗ ∈ Γ(a∗). Lemma 13 resolves the upper hemi-continuity
of ΓM .

Lemma 13. Assume that Rα is continuous in α and that for a given M > 0, ΓM(α) is not
empty for all α ≥ 0. Then, ΓM(α) is an upper hemi-continuous set-valued map.

Proof. From [87], ΓM(α) is compact for all α. To characterize the continuity of Γ at a
point α∗ ≥ 0, it suffices to assume that the range of ΓM is compact and, therefore, the
sequence characterization of upper hemi-continuity applies. Suppose that αi → α∗ and
select a sequence of Ki ∈ ΓM(αi) that converges to K∗. The continuity of J(K,α) implies
that J(K∗, α∗) ≤M . The fact that the cost is bounded implies that A−α∗I+BK∗ is stable.
Since the matrix subspace S is a closed set, the limit point K∗ belongs to S. We have verified
all conditions for K∗ ∈ ΓM(α∗), and therefore ΓM is upper hemi-continuous.

A complementary notion of upper hemi-continuity is lower hemi-continuity, which is
stated below.

Definition 4. The set-valued map Γ : A→ B is said to be lower hemi-continuous at a point
z if for any open neighborhood V intersecting Γ(z) there exists a neighborhood U of z such
that Γ(x) intersects V for all x ∈ U .

Equivalently, for all am → a ∈ A and b ∈ Γ(a), there exists a subsequence amk
of am and

a corresponding bk ∈ Γ(amk
), such that bk → b. The map ΓM is lower hemi-continuous for

almost all M .

Lemma 14. For any given α∗ ≥ 0, ΓM(α) is lower hemi-continuous at α∗ except when
M ∈ {J(K,α∗) : K ∈ K†(α∗)}, which is a finite set of critical costs.
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Proof. To prove by contradiction, consider a sequence αi → α∗ and a matrix K∗ ∈ ΓM(α∗),
for which there exists no subsequence of αi and Ki ∈ ΓM(αi) such that Ki → K∗. We claim

• J(K∗, α∗) = M — otherwise by the continuity of J , J(K∗, αi) < M for large i and,
since the set of stabilizing controllers is open, K∗ ∈ ΓM(αi) for large i, which is a
contradiction;

• K∗ must be a local minimum of J(K,α∗) — otherwise there exists a sequence Kj → K∗

with J(Kj, α
∗) < M and, by the continuity of J , there exists a sequence of large

enough indices nj, j = 1, 2, . . . , such that J(Kj, αnj
) < M ; the sequence Kj ∈ ΓM(αnj

)
converges to K∗.

The argument above implies that M is the cost of some locally optimal controller at α∗.
Because the ODC problem is smooth, the locally optimal controller is a critical controller.
Given α∗, J(K,α∗) is expressed in (3.5) as a linear function in terms of Pα∗(K) over a semi-
algebraic set given by (3.4a)-(3.4d), and the value M , being the cost of a locally optimal
controller, is a critical value of J(K,α∗). By the semi-algebraic Sard’s theorem [15, Theorem
9.6.2], the set of critical values of a linear function over a semi-algebraic set is finite.

We are ready to proceed with the proof of the asymptotic properties.

Asymptotic Properties

Proof of Theorem 13. Recall the expression of the objective function (3.2) together with the
first-order necessary conditions (3.4a)-(3.4d) and the equation (3.5). Consider the semi-
algebraic set

N = {(K,P, L, α) : (K,P, L) solves (3.4a)-(3.4d) given α,

P ≻ 0, L ≻ 0, α ≥ 0}

and the map f : N → R2 defined by

f(K,P, L, α) = (Jα(K), α).

Due to (3.5), f can be expressed as a linear function over the set N . Let Cf denote the
set of critical values of f . From semi-algebraic Sard’s theorem [15, Theorem 9.6.2], the set
Cf ⊆ R2 is a semi-algebraic set of dimension at most 1, and is therefore a finite union
of semi-algebraic curves in R2. Because Cf contains only finite many curves, by Bezout’s
theorem, they intersect at finitely many points. Furthermore, note that the set Cf contains
the critical cost trajectories J(K†(α), α) in the sense that

Cf ⊇ {(J(K,α), K ∈ K†(α), α ≥ 0},

because K†(α) are critical points of J(K,α) and, therefore, critical points of f . The set Cf

may contain additional curves due to the vanishing of the Jacobian of f along the second
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coordinate, but this does not affect the fact that the curves in {(J(K,α), K ∈ K†(α), α ≥
0} intersect at finitely many points, because the intersections of curves in {(J(K,α), K ∈
K†(α), α ≥ 0} remain intersections in Cf . As a result, there exists an α0 > 0 such that for
all α > α0, the curves in {(J(K,α), K ∈ K†(α), α ≥ α0} do not intersect. We claim that
the following inequality holds for all β > α > α0:

max
K∈K†(β)

J(K, β) ≤ max
K∈K†(α)

J(K, β).

The reason is that the maximization over both K†(β) and K†(α) yields points on the same
curve in {(J(K,α), K ∈ K†(α), α ≥ α0}, and the one in K†(β) has a lower cost than the one
in K†(α) from the damping property. The right-hand side of the above inequality optimizes
over a fixed, finite set of controllers and approaches zero as β → ∞ due to the represen-
tation (3.2), the bound on norm of Rα in Assumption 1 and the dominated convergence
theorem. The left-hand side, therefore, also converges to zero as β → ∞. From (3.5) and
the assumption that D0 is positive definite, we have ∥Pβ(K)∥ → 0 for all K ∈ K†(β) as
β →∞.

The assumption on sparsity allows the expression of the critical controllers in (3.4c) as

K = −R−1
α ((B⊤Pα(K)Lα(K)) ◦ IS)(Lα(K) ◦ IS)−1. (3.11)

Especially, we bound ∥BK∥ ≤ eα(K)·λmin(Lα(K))−1, where eα(K) = ∥BR−1
α ∥·∥B⊤Pα(K)Lα(K)∥.

The term ∥BR−1
α ∥ is bounded due to the assumption that the minimum eigenvalue of Rα is

bounded away from zero. Pre- and post-multiplying (3.4b) by the unit eigenvector v of the
smallest eigenvalue of Lα(K) yields

λmin(Lα(K))(2α− 2v⊤(A+BK)v) = v⊤D0v. (3.12)

Therefore,
λmin(Lα(K)) ≥ λmin(D0)

2α + 2∥A+BK∥

≥ λmin(D0)

2α + 2∥A∥+ 2∥BK∥

≥ λmin(D0)

2α + 2∥A∥+ 2eα(K)λmin(Lα(K))−1,

which simplifies to
λmin(Lα(K)) ≥ λmin(D0)− 2eα(K)

(2α + 2∥A∥)
. (3.13)

Take the trace of (3.4b), consider the estimate
2n∥A∥∥Lα∥+tr(D0) ≥ 2∥A∥ tr(Lα)+tr(D0)

≥ 2α tr(Lα)+2 tr[BR−1
α ((B⊤PαLα)◦IS)(Lα◦IS)−1Lα]

≥ 2α tr(Lα)− 2eα(K) tr[(Lα◦IS)−1Lα]

= 2α tr(Lα)− 2eα(K)n

≥ 2α∥Lα∥ − 2n∥BR−1
α ∥∥B⊤∥∥Pα∥∥Lα∥, (3.14)
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where for clarity we drop the implicit dependence on K in Lα and Pα. The second and
the third inequalities use the bound | tr(AL)| ≤ ∥A∥ tr(L) for a positive definite matrix L
and any matrix A. The next equality in the above sequence follows from the assumption
that IS is block diagonal. The estimate (3.14), combined with the previous argument that
∥Pα∥ → 0, implies that ∥Lα∥ → 0 and thereby, eα(K) → 0. The inequality (3.14) further
suggests

∥Lα∥ ≤
tr(D0)

2α− 2n∥A∥ − 2n∥BR−1
α ∥∥B⊤∥∥Pα∥

, (3.15)

for a small enough Pα. Combining (3.13) and (3.15) leads to

∥K∥ ≤ ∥R−1
α ∥ · ∥(B⊤PαLα)◦IS∥ · ∥(Lα◦IS)−1∥

≤ ∥R−1
α ∥ · ∥B⊤∥ · ∥Pα∥ · ∥Lα∥ · λmin(Lα)

−1

≤ ∥R−1
α ∥ · ∥B⊤∥ · ∥Pα∥

× tr(D0)

2α− 2n∥A∥ − 2n∥BR−1
α ∥∥B⊤∥∥∥Pα∥

× (2α + 2∥A∥)
λmin(D0)− 2eα(K)

,

which converges to 0 as α→∞.

We use⊗ to denote the Kronecker project of two matrices and vec to denote the vectorized
operation that stacks the columns of a matrix together into a vector. We make use of
the vectorized Hessian formula in the following lemma, which will be used in the proof of
Theorem 14.

Lemma 15 (Borrowed from [76]). Define jα : Rm·n → R by jα(vec(K)) = J(K,α). The
Hessian of jα is given by the formula

Hα(K) = 2
{
(Lα(K)⊗Rα) +Gα(K)⊤ +Gα(K)

}
, (3.16)

where

Gα(K) =[I ⊗ (B⊤Pα(K) +RαK)]×
[I ⊗ (A− αI +BK) + (A− αI +BK)⊗ I]−1

(In,n + P (n, n))[Lα(K)⊗B]

and P (n, n) is an n2 × n2 permutation matrix.

Proof of Theorem 14. We first show that Hα(K) in Lemma 15 is positive definite for any
fixed K when α is large. Recall the definition of Lα and Pα in (3.4a)-(3.4b) and apply the
triangle inequality:

2α∥Lα(K)∥ ≤ ∥D0∥+ 2∥A+BK∥∥Lα(K)∥,
2α∥Pα(K)∥ ≤ ∥Q∥+ 2∥A+BK∥∥Pα(K)∥+ ∥Rα∥∥K∥2.
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Due to Assumption 1, the term ∥Rα∥ ≥ δ > 0 for all α ≥ 0. The above inequalities imply
that ∥Pα(K)∥/∥Rα∥ → 0 and ∥Lα(K)∥ → 0 as α → ∞. We now bound the minimum
eigenvalue of Lα(K). Let v be the unit eigenvector of Lα(K) corresponding to λmin(Lα(K));
pre- and post-multiplying (3.4b) by v, we obtain

λmin(Lα(K)) ≥ v⊤D0v

2α− 2v⊤(A+BK)v

≥ λmin(D0)

2α + 2∥A+BK∥
. (3.17)

The first Hessian term Lα(K) ⊗ Rα in (3.16) can be lower bounded by (3.17). Due to
Assumption 1, λmin(Rα)/∥Rα∥ ≥ δ/∆ for all α ≥ 0. Therefore,

λmin (Lα(K)⊗Rα) = λmin(Lα(K)) · λmin(Rα)

≥ λmin(D0)

2α + 2∥A+BK∥
· δ
∆
· ∥Rα∥.

We bound the norm of the second and the third Hessian terms ∥Gα(K)∥ as follows:

∥Gα(K)∥ ≤ ∥I ⊗ (B⊤Pα(K) +RαK)∥
× ∥ [I ⊗ (A− αI +BK) + (A− αI +BK)⊗I]−1 ∥
× ∥ [In,n + P (n, n)] [Lα(K)⊗B]∥

≲ ∥Rα∥(1 + ∥Pα∥/∥Rα∥)×
(−λmax (I⊗(A−αI +BK) + (A−αI +BK)⊗I))−1×
∥Lα(K)∥

≲ ∥Rα∥(2α)−1∥Lα(K)∥,

where ≲ hides constants that do not depend on α. Comparing the two estimates above, for
all large α, we find that the first term Lα(K) ⊗ Rα in (3.16) dominates the following term
Gα(K)⊤ +Gα(K) for a bounded K. Therefore, the Hessian Hα(K) is positive definite over
bounded K when α is large. Note that Hα(K) is the Hessian of the objective function when
the controller is centralized. The conclusion carries over the decentralized controller because
the Hessian for the decentralized controller is a principal sub-matrix of the Hessian for the
centralized controller.

Proof of Lemma 12. We use the Einstein notation where subscript variables that appear
twice in a monomial are summed over and the subscripts that appear once are free over
the corresponding set of indices. We use the lower-case letters to denote the entries of the
corresponding upper-case letter matrices and write A = (aij), B = (bij), Kα = (kij),Σd =
(σij), Pα = (pij), Rα = (rij), Q = (qij). The optimal solution Kα satisfies the first-order
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necessary condition to be derived below:

0 =
∂J

∂kij
=

∂[(kbarbckcd + qad)pad]

∂kij

= (rickcd)pjd + (kbarbi)paj + (kbarbckcd + qad)
∂pad
∂kij

. (3.18)

The constraints in (d-ODC(α)) may be written as

α2(aab + backcb)pbd(aed + befkfd)− pae + σae = 0 (3.19)

Taking its partial derivatives with respect to kij yields

2α2baipjd(aed + befkfd)+

α2(aab + backcb)
∂pbd
∂kij

(aed + befkfd)−
∂pae
∂kij

= 0
(3.20)

By assumption, the entries of the controller kij are bounded as α→ 0. Hence, (3.19) implies
that Pα(Kα) → Σd as α → 0 and is consequently bounded. This, combined with (3.20),
implies that the partial derivatives of Pα(K) with respect to K vanish as α → 0. This
implies that the first two terms in (3.18), which are both RαKαPα(K)⊤ in matrix form,
converge to zero. Since Pα(K) and Rα are invertible, Kα → 0 as α→ 0.

Unique Stable Direction

To prove Theorem 15, define the set of stable directions as

H={H : A+tH is stable for all stable A and t ≥ 0}, (3.21)

where A and H are n-by-n real matrices.

Lemma 16. All matrices in H are similar to a diagonal matrix with non-positive diagonal
entries. Especially, they cannot have complex eigenvalues.

Proof. When t is large, A + tH is a small perturbation of tH. Thus, the eigenvalues of H
must be in the closed left half-plane. With a suitable similar transformation, assume that
H is in the real Jordan form. We first consider the case when the dimension n = 2, and we
emphasize the dimension in the subscript in H2 and A2. To prove for contradiction, assume
that H2 is not diagonalizable. The non-diagonal real Jordan form of H2 has the following
possibilities:

• H2 =

[
h 1
0 h

]
, where H2 has a real eigenvalue h < 0 of multiplicity 2: Let A2 =[

4h −2
10h2 −3h

]
, which is stable because tr(A2) = h < 0 and det(A2) = 8h2 > 0. We
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have A2 + tH2 =

[
ht+ 4hby t− 2

10h2 ht− 3h

]
, whose stability criteria tr(A2 + tH2) < 0 and

det(A2 + tH2) > 0 amount to

2ht+ h < 0 and h2(t2 − 9t+ 8) > 0,

or equivalently t ∈ (−1/2, 1)∪ (8,+∞). In particular, when t = 2, the matrix A2+ tH2

is not stable.

• H2 =

[
0 1
0 0

]
: Consider the stable matrix A2 =

[
−1 0
1 −1

]
, for which A2 + tH2 is not

stable when t = 2.

• H2 =

[
0 f
−f 0

]
, where f > 0: By selecting A2 =

[
−1 −4
1 −1

]
, the matrix A2 +

2
f
H2 =[

−1 −2
−1 −1

]
is not stable.

• H2 =

[
h f
−f h

]
, where h < 0 and f > 0: By rescaling, assume that f = 1. Consider

the matrix function

G(t) =

[
0 1

2
+(u+w)h

−1
2
+(u−w)h h

]
+ t

[
h 1
−1 h

]
. (3.22)

We have

tr(G(t)) = h+ 2ht,

det(G(t)) = (1 + h2)t2 + (1 + h2 + 2hw)t

+ h2(w2 − u2) + hw +
1

4
.

Therefore,

tr(G(−1

2
)) = 0,

d

dt
trG(t) = 2h,

det(G(−1

2
)) = h2(−1

4
− u2 + w2),

d

dt
detG(t)

∣∣∣∣
t=− 1

2

= 2hw.
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Hence, as long as

w > 0 and − 1

4
− u2 + w2 > 0, (3.23)

for a small enough ϵ > 0, the matrix A2 = G(−1
2
+ ϵ) is a stable matrix and there is

a matrix G(t) with t > −1
2

whose trace is negative and whose determinant is smaller
than det(A2). Consider the minimal value of detG(t), which is obtained at −1

2
− hw

1+h2 :

detG

(
−1

2
− hw

1+h2

)
=h2

(
−1

4
−u2+

h2

1+h2
w2

)
.

As a result, when

−1

4
− u2 +

h2

1 + h2
w2 < 0, (3.24)

the matrix G(t) with t = −1
2
− hw

1+h2 is unstable. The parameters u and w that
satisfy (3.23) and (3.24) always exist.

For the higher dimension n > 2, the real Jordan form of H is a block upper-triangular matrix

H =

[
H2 ∗
0 ∗

]
,

where H2 can take the four possibilities mentioned above (“∗” denotes an arbitrary sub-
matrix). We take the corresponding stable A2 constructed above, which has the property
that A2 + t0H2 is not stable for some t0 > 0. Select a block diagonal matrix

A =

[
A2 0
0 −I

]
.

Then, A is stable, while A+ t0H =

[
A2 + t0H2 ∗

0 ∗

]
is unstable.

We can strengthen the argument above and further characterize H in the case n ≥ 3.

Lemma 17. When n ≥ 3, the set of stable directions H does not contain any matrices of
rank 1, 2, . . . , n− 2.

Proof. Due to Lemma 16, it suffices to consider a diagonal matrix H with negative diagonal
entries. Assuming that there is a matrix H ∈ H whose rank belongs to the set {1, 2, . . . , n−
2}, we write

H =

[
H3 0
0 ∗

]
,
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where H3 = diag(−1, 0, 0). We will construct a stable 3-by-3 matrix A3 such that A3 + t0H3

is unstable for some t0 > 0, and then carry the instability to A + t0H with the extended
matrix

A =

[
A3 0
0 −I

]
.

From [40], the set

T =

t :

0 1 0
0 0 1
5 1 −1

+ t

 0
0
−1

 [0.85 0.2 0.2
]

is stable


has two disconnected components. Consider the Jordan decomposition of the matrix 0

0
−1

 [0.85 0.2 0.2
]
= W diag(−0.2, 0, 0)W−1,

where W is some invertible matrix. This leads to the following matrix function:

G(t) = 5W−1

0 1 0
0 0 1
5 1 −1

W + t× diag(−1, 0, 0).

After this similar transformation, the set T can be written in terms of G(t) as

T = {t : G(t) is stable}.

Since T is disconnected, there exists some t1 < t2 such that G(t1) is stable while G(t2)
is unstable with some eigenvalue in the open right half-plane. Setting A3 = G(t1) and
t0 = t2 − t1 completes the proof.

Since we can perturb the direction and make H full-rank, the restriction on the rank
of H is not essential. The following lemma confirms this observation, and it completes the
proof of Theorem 15.

Lemma 18. When n ≥ 3, it holds that H = {−λI, λ ≥ 0}.

Proof. From lemma 16, it suffices to consider the case where H is diagonal with negative
diagonal entries. Consider

H =

[
H3 0
0 ∗

]
,

where H3 = diag(h1, h2, h3). The diagonal entries h1, h2, and h3 are non-positive and not
all equal. We will construct a stable A3 and a corresponding t0 such that A3 + t0H3 is not
stable, and extend to the general A as in Lemma 17. The case with a rank-1 matrix H3

has been considered in Lemma 17. In what follows, we prove the case for rank-2 and rank-3
matrices. Without loss of generality, we rescale H3 and assume that h1 = −1. Consider the
following two standard forms for H3:
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• H3 = diag(−1, h2, 0), where h2 < 0. Consider the matrix function

G(t) =

0 −1 0
0 0 −h2

2 1 0

+ tH3 =

−t −1 0
0 th2 −h2

2 1 0

 .

The characteristic polynomial of G(t), denoted by ϕG(t)(x), can be written as

ϕG(t)(x) = x3 + (t− th2)x
2 + (h2 − t2h2)x+ (t− 2)h2.

The Routh-Hurwitz Criterion states that the stability of G(t) is equivalent to the
following system of inequalities:

t(1− h2) > 0,

(t− 2)h2 > 0,

t(1− h2)h2(1− t2) > (t− 2)h2.

which can be simplified with h2 < 0 to

0 < t < 2, (3.25a)
(1− h2)t

3 + th2 − 2 > 0. (3.25b)

When t = 3
2
, (3.25b) simplifies to the obvious expression 1

8
(11 − 15h2) > 0; when

t = 3, (3.25a) implies that G(t) is not stable. Setting A3 = G(3
2
) and t0 =

3
2

completes
the proof.

• H3 = diag(−1, h2, h3), where without loss of generally we assume that

−1 ≤ h2, h3 < 0, and one of them is not −1. (3.26)

Consider the matrix

G(t) =

 0 −1 0
0 0 h2

ah3 h3 0

+ tH3 =

−t −1 0
0 th2 h2

ah3 h3 th3

 .

The Routh-Hurwitz Criterion states that the stability of G(t) is equivalent to the
following system of inequalities:

t > 0, (3.27a)
f1(t) = a− t+ t3 > 0, (3.27b)

f2(t) = −ah2h3 + th2h3(h2+h3)+

t3(1−h2)(1−h3)(−h2−h3) > 0.
(3.27c)
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We claim that when √
h2h3(h2 + h3)2

(−h2 − h3 + h2h3)3
< a <

√
4

27
, (3.28)

the set of t that satisfy the Routh-Hurwitz Criterion is disconnected. To prove this,
we write the positive local minimum of f1(t) in (3.27b) as t1 =

√
1
3

and write the

positive local minimum of f2(t) in (3.27c) as t2 =
√

h2h3

3(1−h1)(1−h2)
. The condition (3.26)

implies that t1 < t2 and the condition (3.28) implies that f1(t1) and f2(t2) are negative.
Furthermore, consider t0 = ah2+h3−h2h3

h2+h3
, which is the root of (1 − h2)(1 − h3)(−h2 −

h3)f1(t)− f2(t). It holds that t1 < t0 < t2 and both f1(t0) and f2(t0) are positive. We
conclude that when t = t0, the matrix G(t0) is stable, and when t is large, G(t) is again
stable. Yet, when t = t2 ∈ (t0,∞), the matrix G(t2) is not stable.
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Chapter 4

Learning of Dynamical Systems under
Adversarial Attacks

This chapter complements the optimal control problem studied in the previous chapters, but
instead focuses on the identification side of the problem. In particular, we are interested
in the identification of a linear time-invariant dynamical system affected by sparse state
disturbances modeling adversarial attacks or faults. Our identification scheme is based on l1
minimization. We derive sufficient conditions for exact recovery in finite time when we have
exact measurements. For noisy measurements, we provide an error bound on the estimation
error. The conditions we provide are based on the null space property (NSP). We derive
sufficient conditions for NSP and show that NSP holds in a particular attack model where
the input is Gaussian and the adversary injects disturbances intermittently with a fixed
policy based on the states and input measurements. On the other hand, we provide a lower
bound to the estimation error, showing that the absence of NSP could lead to inconsistent
estimates. Parts of the chapter is based on the published paper [39].

4.1 Introduction
The control of large-scale unknown dynamical systems, such as the power distribution net-
works, calls for an accurate model of the system. Recent interests in data-driven control
and non-asymptotic analysis of statistical estimators provide a wealth of frameworks and
tools applicable to the control of unknown dynamical systems [24, 31]. Although learning an
accurate dynamical model is not necessary to achieve the control objectives, a state-space
model has the advantage of being applicable to many control tasks and objectives. The issue
is particularly salient in the operation of safety-critical systems, where a robust design of
control laws is necessary [41].

This chapter focuses on the identification of a linear dynamical system where the states
can be measured directly but are subject to unknown disturbance, accounting for adversar-
ial attacks or faults. We prove that a type of identification scheme based on constrained
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lasso can perfectly recover the system matrices when the state disturbance is sparse and
the measurement is perfect. The issue of robustness in identification has a long history.
Dating back to Tukey [88] who made the observation that a small deviation from the model
assumption could have dramatic effects on estimation and prediction, there have since been
many attempts to robustify the M-estimators1 and to use regularization to achieve robust-
ness. The work [94] showed the equivalence of robust optimization and l1-regularization for
support vector machines and further attributed generalization ability to robustness against
local disturbance. The more recent study [10] significantly extended the connection between
robustification and regularization in regression problems.

In the system identification literature, there have been studies for the case of dense noise
and the general non-smooth robust estimators [3, 4]. Those works proposed necessary and
sufficient conditions for recovery that apply to all instances of robust estimation problems.
The estimator of this chapter is a special instance of the general non-smooth sum-of-norms
estimator studied in the above two papers, but we specialize the analysis to the case of
system identification, which leads to insights on input design for a particular system ma-
trix. Other related papers [32] and [33] studied the system identification problem subject
to sparsity assumptions on the A and B matrices and derived improved sample complexity
bounds. However, their models were based on Gaussian disturbance that is not applicable
to adversarial analysis. The recent work [63] studied the identification problem using a conic
relaxation, which linearizes the problem at the expense of increasing the problem dimension.
More recently, [77] proved finite-time identification bounds for linear dynamical systems
without control input. The identification method is based on ordinary least-squares, which
succeeds under the important assumption of regular matrices. Concurrently, [70] proved
non-asymptotic bounds for system identification with Markov parameters, which are esti-
mated using least-squares and the Kalman-Ho algorithm. It is challenging to generalize
those algorithms to the case when the samples are missing or when they are corrupted.
The set-membership estimator can deal with missing samples and is consistent [49], but the
disturbance is assumed to be bounded.

Other related lines of work in the control literature involve the identification of switched
systems with noisy measurements [50, 71] and system identification in the presence of output
attacks [81]. In contrast, we study the case with contaminated states, whose effect propagates
over time. Other fruitful ideas include attack resilient state estimation [34, 22] (where
the goal is to recover the system state) and Byzantine fault tolerance [86, 47] (where a
collection of redundant agents can prevent an attack by faulty agents in the computation of
an optimization problem).

To situate the work in the broader context, we discuss related works on robust regression.
The paper [79] studied the related problem of outlier detection in linear regression. It proved
the equivalence of adding a penalty to the least-squares loss function and using an alterna-
tive loss function to the least-squares loss. In particular, it noted that l1 regularization is

1M-estimators optimize the sample average of loss.
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equivalent to using the Huber loss2 and that Huber loss may not be the best choice for guar-
anteeing robustness in many cases — a non-convex loss function may be more appropriate.
However, unless in very specialized settings, the theoretical justifications of non-convex es-
timators are rare, and the computation of non-convex estimators is not well-understood [52,
64]. The work [11] solved the problem of regression with sparse disturbance via iterative
hard thresholding. There has been a flurry of recent papers on robust training [25, 74, 85].
Nevertheless, the independence assumption between samples renders them inapplicable to
system identification — the state measurements are dependent and cannot be re-ordered.
Transforming the data samples to deal with missing data in linear regression does not directly
translate to the system identification case due to the need to measure several trajectories
or solve nonlinear optimization problems. It is undesirable to reset the system in practical
applications. Furthermore, it is unclear how identification can be achieved robustly in an
online fashion.

Section 4.2 considers a particular type of l1 minimization problem as a solution to the
identification of system matrices (A,B). Our problem differs from the usual literature on
l1 minimization in that the system identification setting naturally has correlated inputs and
outputs. In Section 4.3, we derive sufficient conditions for exact recovery in finite time
when we have exact measurements. The noisy case is studied in Section 4.4, where we
provide an error bound on the estimation error. The conditions are based on the null space
property (NSP), which is hard to verify directly. We derive sufficient conditions for NSP in
Section 4.5 and in Section 4.6 show that NSP holds in a particular attack model where the
input is Gaussian and the adversary injects disturbances intermittently with a fixed policy
based on the states and input measurements. Section 4.7 complements the upper bound by
providing a lower bound of the estimation error where the state information is known to
the attacker, showing that the absence of NSP leaves the door open for attacks that lead to
inconsistent estimators.

4.2 Problem Formulation
Consider the linear time-invariant dynamical system over the time horizon [0, T ]:

xt+1 = Āxt + B̄ut + d̄t. t = 0, 1, . . . , T − 1,

where Ā ∈ Rn×n, B̄ ∈ Rn×m are unknown matrices in the state space model to be estimated
and d̄t’s are unknown disturbances. Throughout the chapter the bar over the variables
indicates the unknown ground truth. The goal is to find the matrices Ā and B̄ from the state
measurements x0, ..., xT ∈ Rn and input data u0, ..., uT−1 ∈ Rm. The disturbances d̄0, ..., d̄T−1

model both noises and anomalies in the system, such as attacks or actuator’s faults. The
initial state x0 is assumed known and the remaining states xt, t > 0 depend on the input and

2The Huber Loss is a piece-wise function defined by Hb(x) =

{
1
2x

2, if |x| ≤ b

b(|x| − 1
2b), otherwise

.
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the disturbances. Without any assumptions on the disturbance, the identification problem
is not well-defined due to the impossibility of separating Āxt + B̄ut from the disturbance
d̄t. In particular, if d̄t = A′xt + B′ut, then the system evolves as if the system matrices are
(Ā+A′, B̄+B′). We will make certain sparsity assumption on the disturbance signal in the
noiseless case, and generalize the result to the noisy case.

For clarity of notation, we introduce the matrix notation X = [x0, . . . , xT−1], U =
[u0, . . . , uT−1], and D = [d0, . . . , dT−1]. The last state xT will appear in our optimization
problem but it is not a column in the matrix notation. The attack D is assumed to be
restricted to a set D ⊆ Rn×T . The set D captures the user’s belief of possible places of
attack and its directions. The i-th largest singular value of a matrix U is denoted by σi(U),
the minimal and maximum singular values by σmin(U) and σmax(U), respectively.

Define the sum of norm error ∥D∥2,col :=
∑

i∥di∥2, where the index is over the columns
of D. The (column-wise) support of D is defined as supp(D) = {i ∈ {0, . . . , T −1} : di ̸= 0}.
For any subset of indices I ⊆ {0, 1, . . . , T − 1}, the complement of I is defined as Ic = {i ∈
{0, . . . , T − 1} : i /∈ I}. For any matrix U ∈ Rn×T , the projection ΠIU is a matrix of the
same size as U and its columns are zero except for those in I, i.e.,

(ΠIU)i =

{
ui, if i ∈ I

0, otherwise
.

In contrast, the subset matrix UI has size n×|I|, selecting only the columns of U in the index
set I. We use U̸=i as a shorthand for U{0,...,T−1}\{i} and U/∈I as a shorthand for U{0,...,T−1}\I .
The range of U is defined as rangeU = {

∑
i λiui, λi ∈ R}.

The Minkowski sum of sets E and F is denoted by E ⊕ F = {e + f, e ∈ E , f ∈ F}. The
sum with the inverse of the set is denoted by E ⊖ F = {e− f, e ∈ E , f ∈ F}.

To recover the system matrices A and B, we analyze the following l1-optimization prob-
lem:

min
A,B,D∈D

T−1∑
i=0

∥di∥2 (4.1)

s.t xi+1 = Axi +Bui + di, i = 0, . . . , T − 1, (4.2)

where the states xi, i ∈ {0, . . . , T} are generated according to

xi+1 = Āxi + B̄ui + d̄i, i = 0, . . . , T − 1. (4.3)

The initial state x0 is known. The control inputs ui, i ∈ {0, . . . , T − 1} are to be designed
but fixed in the optimization problem (4.1). Problem (4.1) differs from the classical l1
minimization (basis pursuit) problem

min
z
∥z∥1

s.t. Φz̄ = Φz,

in that
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• We apply the l1 norm at the group level to the disturbances d1, . . . , dT−1, because we
only assume sparsity in the occurrence of the disturbance but not the disturbance itself.

• The disturbances matrix D is limited to a set D.

• We do not attempt to minimize the l1 norm of all the unknown parameters. In partic-
ular, the system matrices A and B are not assumed to be sparse.

• The states xi, 0 < i ≤ T − 1 appear both as inputs and as measurements in the
constraints (4.2). They also depend on the exogenous input ui and the disturbances
di.

• Because the states are correlated, we cannot independently rescale them, as is com-
monly done in the analysis of l1 optimization problems.

4.3 The Noiseless Case
This section studies the noiseless case, where {d̄i, i ∈ {0, 1, . . . , T − 1}} are either 0 or come
from the attacker who is attempting to disturb the running of the system. We aim to
understand how to design the input of the system (in case that is an option) so that the
identification of the excited system in the presence of adversarial disturbances is possible.

We use S = supp(D̄) to denote the time stamps of actual attacks. The set of disturbances
D is assumed to be closed under the projection onto S.

Assumption 4. The set of disturbances D is convex and contains 0 in its interior. Fur-
thermore, ΠS(D) ∈ D for all D ∈ D.

A key construction in the study of (4.1) is the Null Space Property[42], which is formalized
below.

Definition 5. Let c > 0, S ⊊ {0, . . . , T − 1}, and R be a subset of Rn×T . The matrix[
X
U

]
∈ R(n+m)×T is said to satisfy the Null Space Property with constant c, index set S,

and range set R ((c, S,R)-NSP), if for all matrix pair A ∈ Rn×n, B ∈ Rn×m such that
−AX −BU ∈ R and (A,B) are not both zero, we have

∥[A,B]

[
XS

US

]
∥2,col < c∥[A,B]

[
XSc

USc

]
∥2,col. (4.4)

When the set S orR is obvious in the context, we omit them and use c-NSP or (c, S)-NSP
to highlight the parameters of interest. NSP was already mentioned in the original paper
proving an exact recovery result with restricted isometry property [21] and was carefully
studied in the paper [23]. The theorem below formalizes the standard result that roughly
states that 1-NSP is sufficient for the exact recovery of all sparse disturbances.
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Theorem 16. Assume that
[
X
U

]
satisfies the (1, S,D ⊖ D)-NSP where S = supp(D̄), then

(Ā, B̄, D̄) is the unique solution to problem (4.1).

Proof. Let (A,B, D) be any feasible solution to (4.1). We will show that if the matrices
are not equal to the ground truth (Ā, B̄, D̄), then they cannot be an optimal solution. The
feasibility can be written as:

xi+1 = Āxi + B̄ui + d̄i, i = 0, . . . , T − 1,

xi+1 = Axi +Bui + di, i = 0, . . . , T − 1.

Taking the difference of the two equality, (Ā−A, B̄−B, D̄−D) lies in the null space in the
sense that

0 = (Ā− A)xi + (B̄ −B)ui + (d̄i − di), i = 0, . . . , T − 1.

which can be written in matrix form as

0 = (Ā− A)XS + (B̄ −B)US + (D̄S −DS) (4.5)
0 = (Ā− A)XSc + (B̄ −B)USc −DSc , (4.6)

where S = supp(D̄). Note that D̄−D ∈ D⊖D. If A− Ā = 0 and B− B̄ = 0, then D = D̄.
Suppose D ̸= D̄, then A− Ā and B− B̄ are not both zero. We apply the null space property
to derive the following inequalities.

∥D∥2,col = ∥DS∥2,col + ∥−DSc∥2,col
= ∥DS∥2,col + ∥(Ā− A)XSc + (B̄ −B)USc∥2,col
> ∥DS∥2,col + ∥(Ā− A)XS + (B̄ −B)US∥2,col (1-NSP)
= ∥DS∥2,col + ∥(D̄ −D)S∥2,col
≥ ∥D̄S∥2,col (triangle inequality)
= ∥D̄∥2,col (sparsity of disturbance).

This means that (A,B,D) is not an optimal solution to (4.1).

Remark 9. [3] showed that 1-NSP is necessary for the exact recovery for all instances of a
certain class of robust regression problems. However, because xi, 1 ≤ i ≤ T−1 appear on both
sides of the constraints (4.2), the system identification problems are determined by inputs U
and disturbances D, which is only a subset of all instances of the regression problems.

Remark 10. The proof of Theorem 16 can be directly applied to the case without control
input, for which the (c, S,D ⊖D)-NSP takes the form

∥AXS∥2,col < c∥AXSc∥2,col (4.7)
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for all A ̸= 0 ∈ Rn×n such that −AX ∈ D ⊖ D. NSP property with c = 1 ensures that Ā is
the unique solution to the optimization problem

min
A,D∈D

T−1∑
i=0

∥di∥2 (4.8)

s.t xi+1 = Axi + di, i = 0, . . . , T − 1, (4.9)

where the states xi, i ∈ {0, . . . , T} are generated according to

xi+1 = Āxi + d̄i, i = 0, . . . , T − 1.

4.4 The Noisy Case
This section studies the noisy case, where di, i ∈ {0, . . . , T − 1} are not sparse but are a
combination of sparse attack and noise. We use the set S in this section to denote the
location of attacks. S is no longer the support of D̄ in this section and D̄Sc , whose columns
are noises at times without attack, may be nonzero.

The next theorem studies the error bound for estimating A and B matrices.

Theorem 17. Assume that T > (m + n) and that the matrix
[
X
U

]
has full row rank.

Suppose (X,U) satisfies the (c, S,D⊖D)-NSP with c < 1, then the solution (Â, B̂, D̂) to the
optimization problem (4.1) satisfies

∥[Â− Ā, B̂ − B̄]∥F ≤ 2
1 + c

1− c

∥D̄Sc∥2,col

σmin

([
X
U

]) .

Proof. The optimality of the solution implies that ∥D̂∥2,col ≤ ∥D̄∥2,col. The constraints
implies

0 = (Ā− Â)X + (B̄ − B̂)U + (D̄ − D̂).

c-NSP implies
∥D̄S − D̂S∥2,col < c∥D̄Sc − D̂Sc∥2,col (4.10)

or
∥D̄ − D̂∥2,col < (1 + c)∥D̄Sc − D̂Sc∥2,col (4.11)
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We have the following bounds

∥D̄∥2,col ≥ ∥D̂∥2,col
= ∥D̄ + (D̂ − D̄)∥2,col
= ∥D̄S + (D̂S − D̄S)∥2,col + ∥D̄Sc + (D̂Sc − D̄Sc)∥2,col
≥ ∥D̄S∥2,col − ∥D̂S − D̄S∥2,col − ∥D̄Sc∥2,col + ∥D̂Sc − D̄Sc∥2,col
≥ ∥D̄S∥2,col − ∥D̄Sc∥2,col + (1− c)∥D̂Sc − D̄Sc∥2,col

≥ ∥D̄S∥2,col − ∥D̄Sc∥2,col +
1− c

1 + c
∥D̂ − D̄∥2,col

where we applied the triangle inequality and (4.10)-(4.11). Cancelling ∥D̄S∥2,col on both
sides, we obtain

∥D̂ − D̄∥2,col ≤ 2
1 + c

1− c
∥D̄Sc∥2,col.

The bound above can be translated to the bound on (A,B) through the matrix norm in-
equality (note that T ≥ (m+ n)).

∥[Â− Ā, B̂ − B̄]∥Fσmin

([
X
U

])
≤ ∥D̂ − D̄∥F ≤ ∥D̂ − D̄∥2,col ≤ 2

1 + c

1− c
∥D̄Sc∥2,col.

Remark 11. The term 2∥D̄Sc∥2,col on the right-hand side of Theorem 17 can be improved
to 2∥D̄Sc∥2,col−∥D̄∥2,col + ∥D̂∥2,col using similar techniques as those in basis pursuit, see for
example [42, Theorem 4.14], where an equivalence to c-NSP for basis pursuit problems is
proved. As in Remark 9, optimization problem 4.1 is a special case of basis pursuit where
the inputs and measurements are correlated. The bound, including the constant 1+c

1−c
, could

potentially be improved with the knowledge of the constraints, an example for the basis pursuit
problem is provided in [29, Chapter 7].

4.5 Satisfaction of NSP
Condition (4.4) can help us confirm, after observing the states and input sequence, whether
we can recover the true dynamics exactly. Theorem 17 has shown that the NSP condition
is useful in obtaining an error bound for the identification error. The following lemmas
attempt to derive stronger conditions that are more tractable than (c, S,D)-NSP. They can
be combined with the results of the previous two sections to understand the type of input
design that is robust to attackers and when we can recover the system matrices through the
l1 optimization problem (4.1).
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Lemma 19. Assume that T ≥ (m+ n) and

√
|S|σmax

[
XS

US

]
< c · σmin

[
XSc

USc

]
, (4.12)

where S = supp(D̄) and |Sc| ≥ m + n, then
[
X
U

]
satisfies the (c, S,R)-NSP for any range

set R.

Proof. For any matrices A,B such that −AX − BU ∈ R and (A,B) are not both zero, we
can upper bound and lower bound the norms:

∥[A,B]

[
XS

US

]
∥2,col ≤

√
|S|∥[A,B]

[
XS

US

]
∥F

≤
√
|S|∥[A,B]∥Fσmax

([
XS

US

])
∥[A,B]

[
XSc

USc

]
∥2,col ≥ ∥[A,B]

[
XSc

USc

]
∥F

≥ ∥[A,B]∥Fσmin

([
XSc

USc

])
,

where we use the relationship between (2, col)-norm and Frobenius norm. The last inequality
uses the assumption |Sc| ≥ m + n. The inequality (4.12) therefore implies 1-NSP. The last
statement follows from Theorem 16 by setting R = D ⊖D and c = 1.

Definition 6. For a matrix V = [v0, . . . , vT−1]. V is said to be s-self-decomposable if for all
indices I ⊆ {0, 1, . . . , T − 1} of size |I| = s, we have

Vi ∈ range(V/∈I) for all i ∈ I.

The s-self-decomposable amplitude is defined as

ξs(V ) = max
I⊆{0,...,T−1}

|I|=s

min
ΓI∈R(T−s)×s

ΓI=[γi]i∈I

{∑
k∈I

∥γk∥∞ : VI = V/∈IΓI

}
. (4.13)

If U is s-self-decomposable, by definition it is also t-self-decomposable for t < s. We are
particularly interested in the cases when s = 1 and s = |S|.

Lemma 20. Assuming that
[
X
U

]
has full row rank and is s-self-decomposable where s = |S|,

then it satisfies the (c, S,R)-NSP for c > ξs(

[
X
U

]
).
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Proof. Assuming that
[
X
U

]
is s-self-decomposable where s = |S|, then we can find a matrix

Γ∗
S = [γ∗

i ]i∈S that is the minimizer of the inner optimization problem (4.13).

∥[A,B]

[
XS

US

]
∥2,col = ∥[A,B]

[
XSc

USc

]
Γ∗
S∥2,col

≤
∑
i∈S

∥γ∗
i ∥∞∥[A,B]

[
XSc

USc

]
∥2,col

≤ ξs(

[
X
U

]
)∥[A,B]

[
XSc

USc

]
∥2,col.

It remains to obtain a strict inequality when we relax c > ξs(

[
X
U

]
). Suppose for contradiction

that this does not yield a strict inequality, we must have

[A,B]

[
XSc

USc

]
= 0 and [A,B]

[
XS

US

]
= 0.

Since
[
X
U

]
has full row rank, [A,B] = 0.

Lemma 21. Given S = supp(D̄) where |S| > 1, assume that
[
X
U

]
has full row rank and is

1-self-decomposable where

ξ1 = ξ1(

[
X
U

]
) ≤ 1

|S| − 1
.

Then, it satisfies the (c, S,R)-NSP for any subset R and

c >
|S|ξ1

1− (|S| − 1)ξ1
.

Proof. For any s ∈ S we can find a vector γ∗
s that is the minimizer of the inner optimization

problem (4.13).

∥[A,B]

[
Xs

Us

]
∥2 = ∥[A,B]

[
xs

us

]
∥2

= ∥[A,B]

[
X ̸=s

U̸=s

]
γ∗
s∥2

≤ ∥γs∥∞∥[A,B]

[
X ̸=s

U ̸=s

]
∥2,col

≤ ξ1∥[A,B]

[
X ̸=s

U̸=s

]
∥2,col
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Hence

∥[A,B]

[
Xs

Us

]
∥2 ≤

ξ1
1 + ξ1

∥[A,B]

[
X
U

]
∥2,col.

Summing over s ∈ S, we obtain

∥[A,B]

[
XS

US

]
∥2,col ≤ |S|

ξ1
1 + ξ1

∥[A,B]

[
X
U

]
∥2,col.

Rearranging terms and the proof is concluded by noting that, as in the proof of Lemma 20,
the full rank assumption implies that when we select c > |S|ξ1

1−(|S|−1)ξ1
the inequality is strict

for (A,B) ̸= 0.

Remark 12. Lemma 21 implies that when ξ1 <
1

2|S|−1
, the ground truth (Ā, B̄, D̄) is recov-

erable through (4.1).

We have yet not answered how to design the control input ui, i ∈ {0, . . . , T −1} such that
the NSP holds. This is best done after we consider a probabilistic model of the disturbances.

4.6 A Probabilistic Model
The results of the previous section are still applicable only when the state and input sequence
has been observed — they have not yet given a concrete input design scheme that achieves
exact recovery in the noiseless case, or asymptotic recovery in the noisy case. This section
considers a particular type of random input. We will make the observation that, despite the
attacker’s attempt, we can apply the block martingale small ball condition [83] and obtain

a probabilistic estimation on σmin

([
X
U

])
.

We first restate the block martingale small ball (BMSB) condition following [83]. Define
the filtration Ft as

Ft =

{
σ(x0, u0), if t = 0

σ (x0, . . . , xt, u0, . . . , ut, d0, . . . , dt−1) if t ≥ 1
,

so that the vector-valued process
[
xt

ut

]
, t ≥ 0 is {Ft}t≥0 adapted.

Definition 7. Given a filtration {Ft}t≥0, and a vector-valued process Vt ∈ Rd, t ≥ 0. The
process is said to satisfy (k,Γsb, p)-BMSB for Γsb ≻ 0 if

1

k

k∑
i=1

P
(
|⟨w, Vj+i⟩|2 ≥ w⊤Γsbw|Fj

)
≥ p, almost surely

for any fixed w ∈ Rd with ∥w∥2 = 1 and any j ≥ 0.
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We make the following two assumptions about the input and attack model. They will
ensure that the process is Gaussian.

Assumption 5. The input sequences ut, t ≥ 0 are independent and identically distributed
Gaussian N(0, σ2I) random variables.

Assumption 6. The attack dt, d ≥ 0 satisfies the following condition

• The set of attack S ⊆ {0, . . . , T − 1} is fixed.

• For t /∈ S, dt is the noise and follows the distribution N(0, ϵ2I).

• For t ∈ S, dt = Pxt+Qut+et, where P and Q are constant matrices of compatible size.
They are not dependent on Ft. The sequence of random noise et follows the Gaussian
distribution N(0, ϵ2I) and is independent of Ft.

We can bound the Gramian matrix, which is identified as a key measure of sample
complexity in [83]. We formalize the result in the Lemma below. Define the following
constants

αmin = min(σmin(A+ P ), σmin(A))

αmax = max(σmax(A+ P ), σmax(A))

βmax = max(σmax(B +Q), σmax(B)).

Lemma 22. Let Γt = E
[
xtx

⊤
t

]
, we have

Γt ⪰ α2
minΓt−1 + ϵ2I

Γt ⪯ α2
maxΓt−1 +

(
ϵ2 + β2

max

)
I.

In particular, for t ≥ 1,

Γt ⪰
∑

0≤i≤t−1

α2i
minϵ

2I

Γt ⪯ Γmax
t = α2t

maxΓ0 +
∑

0≤i≤t−1

α2i
max

(
ϵ2 + β2

max

)
I.

Proof. Condition on Ft−1; we have

E[xtx
⊤
t |Ft−1]

= E[(Axt−1 +But−1 + dt−1)

· (Axt−1 +But−1 + dt−1)
⊤|Ft−1].

We analyze two cases
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• When t− 1 ∈ S, the term becomes

E[((A+ P )xt−1 + (B +Q)ut−1 + et−1)

· ((A+ P )xt−1 + (B +Q)ut−1 + et−1)
⊤|Ft−1].

Taking the expectation on both sides, we obtain

Γt = E
[
xtx

⊤
t

]
(b)
= (A+ P )Γt−1(A+ P )⊤ + σ2(B +Q)(B +Q)⊤ + ϵ2I.

where (b) follows by noting that ut−1 and et−1 are independent of xt−1 and has mean
zero.

• When t− 1 /∈ S, the term becomes

E[(Axt−1 +But−1 + et−1)

· (Axt−1 +But−1 + et−1)
⊤|Ft−1].

Taking the expectation in a similar way

Γt = AΓt−1A
⊤ + σ2BB⊤ + ϵ2I.

In both cases, we can lower bound Γt by leaving out the positive semi-definite term and
using the minimal singular values of the multipliers.

Γt ⪰ α2
minΓt−1 + ϵ2I.

The upper bound follows similarly by bounding with the maximum singular values. The
result of the lemma follows by induction.

Let Γ =

[
ϵ2In

σ2Im

]
. The next lemma confirms that indeed BMSB condition applies

to our setting.

Lemma 23. Under the Assumption 5-6. For any sequence of indices 0 ≤ s0 < s1 < s2, . . .,

the sub-process
[
xst

ust

]
, t ≥ 0 satisfies the (k, 1

2
Γ, 1

12
)-BMSB condition.

Proof. For clarity of notation we will prove the result for st = t and then note that the proof
does not depend on the fact that st = t.

We will prove that the process is 3-Paley-Zygmund [82, Lemma 3.9] and conclude BMSB

as a consequence, following a similar argument in [82]. Fix a vector
[
w
v

]
∈ Rn+m. At any

fixed time j ≥ 0 and i ≥ 1, we write

xi+j|Fj = Aixj +
∑

0≤k≤i−1

Ai−k−1(Buj+k + dj+k)|Fj
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We may substitute the expression of ds+i, 0 ≤ i ≤ t − 1 and find that the conditional
distribution of ⟨w, xt+s⟩ + ⟨v, ut+s⟩|Fs is Gaussian. Let Yi = (⟨w, xj+i⟩ + ⟨v, uj+i⟩)2 and

Zj+i =

[
xj+i

uj+i

]
for i ≥ 1. We can calculate

E[Yi|Fj] = [w, v]⊤E[Zj+iZ
⊤
j+i|Fj]

[
w
v

]
(a)
= w⊤E[xj+ix

⊤
j+i|Fj]w + σ2v⊤v

(b)

≥ ϵ2w⊤w + σ2v⊤v

where (a) follows because uj+i is independent of xj+i and is Gaussian with variance σ2; (b)
follows from the lower bound of Gramian in Lemma 22. To evaluate the condition in BMSB,
we note

P

(
1

k

k∑
i=1

Yi ≥
1

2
ϵ2w⊤w + σ2v⊤v

∣∣∣∣∣Fj

)

≥ P

(
1

k

k∑
i=1

Yi ≥
1

2
E[

1

k

k∑
i=1

Yi|Fj]

∣∣∣∣∣Fj

)
(c)

≥ 1

4

[E[
∑k

i=1 Yi|Fj]]
2

E
[
(
∑k

i=1 Yi)2|Fj

] , (4.14)

where (c) uses the Paley-Zygmund inequality. Since Yi|Fj takes the form of Z2 where Z is
a Gaussian random variable, which satisfies the condition

EZ4 ≤ 3(EZ2)2, (4.15)

we can upper bound the denominator as follows:

E

[
(

k∑
i=1

Yi)
2|Fj

]
=

k∑
i,i′=1

E [YiYi′ |Fj]

(d)

≤
k∑

i,i′=1

√
E[Y 2

i |Fj]E[Y 2
i′ |Fj]

(e)

≤ 3
k∑

i,i′=1

E[Yi|Fj]E[Yi′|Fj],

where (c) uses the Cauchy inequality and (e) follows from (4.15). Combining this inequality
with (4.14) concludes the proof of the BMSB condition. Finally, we note that we have only
used the fact that the conditional distribution of Yi is the square of a Gaussian random
variable, the inequality used in the proof does not depend on whether the selected indices
are contiguous. The proof generates to any sub-process.
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BMSB-condition implies a non-asymptotic bound on the singular value of
[
X
U

]
.

Proposition 2. Under Assumptions 5 and 6. Let C(I) =
(
mσ2|I|+

∑
i∈I tr(Γ

max
i )

)
, where

Γmax
i is defined in Lemma 22. For any subset I ⊆ {0, 1, . . . , T − 1}, we have

P

(
σmax

([
XI

UI

])
>

√
C(I)

η

)
≤ η (4.16)

P

(
σmin

([
XI

UI

])
< min(ϵ, σ)

√
k⌊|I|/k⌋p2

16

)
≤ η

+ exp

(
−|I|p

2

10k
+ 2(m+ n) log(10/p)

+
1

2
(m+ n) log

(
C(I)

min(ϵ, σ)2 k⌊|I|/k⌋p
2

16
η2

))
(4.17)

Proof. The proof is a direct consequence of the covering argument in [83, Section D]. We
only highlight the major differences in our attack model and give an outline of the proof.

To prove (4.16), we use the Markov inequality.

P

(
σmax

([
XI

UI

])
>

√
C(I)

η

)

≤ η

C(I)
E

[
λmax

([
XI

UI

] [
XI

UI

]⊤)]

≤ η

C(I)
· E

[
tr

([
XI

UI

] [
XI

UI

]⊤)]
≤ η

To prove the bound (4.17), we use Lemma 23, which already shows that (k,Γsb, p)-BMSB
condition is satisfied, where Γsb =

1
2
Γ and p = 1

12
. [83, Proposition 2.5] shows that for any

w ∈ Rn, v ∈ Rm, we have

P

(∑
i∈I

(⟨w, xi⟩+ ⟨v, ui⟩)2 ≤
ϵ2w⊤w + σ2v⊤v

16
p2k⌊|I|/k⌋

)

≤ exp

(
−⌊|I|/k⌋

8
p2
)



CHAPTER 4. LEARNING OF DYNAMICAL SYSTEMS UNDER ADVERSARIAL
ATTACKS 85

To obtain the bound for the smallest singular value, we use a covering argument per [83,
Section D], which leads to the inequality

P

({
σmin

([
XI

UI

])
< min(ϵ, σ)

√
k⌊|I|/k⌋p2

16

}
∩{

σmax

([
XI

UI

])
≤ C(I)

η

})
≤ exp

(
−|I|p

2

10k
+ 2(m+ n) log(10/p)+

1

2
(m+ n) log

(
C(I)

min(ϵ, σ)2 k⌊|I|/k⌋p
2

16
η2

))

Noting (4.16), the union bound leads to (4.17).

We are now able to provide a sufficient condition for the satisfaction of NSP in our attack
model.

Theorem 18. Assume that αmax < 1, for any c, η > 0, there exist constants N and h > 0,

such that when |S|2 < h|Sc| and |Sc| > N ,
[
X
U

]
is c-NSP with probability at least 1− 3η.

Proof. When αmax < 1, Lemma 22 shows that tr(Γmax
i ) will be bounded, hence C(I) = O(|I|).

Applying Proposition 2 for I = S and I = Sc, respectively, there exists constants N, c′, and
c′′′ that do not depend on S, such that when |Sc| > N ,with probability as least 1− 3η, the
following two conditions hold

σmax

([
XS

US

])
≤ c′

√
|S|
η

σmin

([
XSc

USc

])
≥ c′′

√
|Sc|

Therefore, we can pick a small enough h > 0, such that when |S|2 < h|Sc|,

√
|S|σmax

[
XS

US

]
< c · σmin

[
XSc

USc

]
(4.18)

with probability at least 1 − 3η. Lemma 19 then applies and we conclude that
[
X
U

]
is

c-NSP.
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4.7 Estimation Error Lower Bound
We have shown the satisfaction of NSP with the attack model in Section 4.6. Assuming
NSP, we have provided an upper bound of the estimation error in Theorem 17. This section
complements the story of error upper bound by providing a lower bound to the estimation
error for the attack model in Section 4.6. The result suggests that the absence of NSP opens
up the chance for the l1 optimization problem to produce an inconsistent estimate for certain
types of attack. For simplicity, we study the noiseless case with no control input, where the
NSP property is formulated in (4.7).

Proposition 3. Let S = suppD̄. Suppose there exist parameters 0 < µ < ν and a matrix R
such that

µ∥Rxi∥2 ≤ ⟨d̄i, Rxi⟩ and ∥d̄i∥ ≤ ν∥Rxi∥,∀i ∈ S.

Let Â be the solution to the optimization problem (4.8). Then we have

∥Ā− Â∥F ≥
µ

σmax(xS)

[
µ

2ν + µ

∑
i∈S

∥Rxi∥ −
∑
i∈Sc

∥Rxi∥

]
.

Proof. The proof is based on a relaxation of the dual problem of (4.8). First we rewrite (4.8)
in the second-order cone optimization form:

min
A,t

∑
i

ti

s.t.

[
xi+1 − Axi

ti

]
∈ C, ∀i ∈ {0, 1, . . . , T − 1}.

where C is the second-order cone

C = {(x⊤, t)⊤ ∈ Rn+1, ∥x∥2 ≤ t},

and the sum is over i ∈ {0, . . . , T − 1}. To find out the dual problem, we compute

max
vi∈Rn,si∈R

min
A,t

∑
i

ti − v⊤i (xi+1 − Axi)− siti

s.t.

[
vi
si

]
∈ C, for all i ∈ {0, 1, . . . , T − 1}.

Note that a finite minimum in the inner optimization problem requires
∑

i xiv
⊤
i = 0 and

si = 0 for all i ∈ {0, 1, . . . , T − 1}. They imply∑
i

v⊤i xi+1 =
∑
i

v⊤i d̄i +
∑
i

tr(Āxiv
⊤
i ) =

∑
i

v⊤i d̄i.
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Therefore, the dual problem is simplified to

max
vi∈Rn

−
∑
i

v⊤i d̄i

s.t. ∥vi∥ ≤ 1, for all i ∈ {0, 1, . . . , T − 1}∑
i

xiv
⊤
i = 0.

Consider the following relaxation with a fixed matrix R, which upper bounds the dual
objective

max
vi

−
∑
i

v⊤i d̄i

s.t. ∥vi∥ ≤ 1, for all i ∈ {0, 1, . . . , T − 1}∑
i

v⊤i Rxi = 0.

Pick any λ > 0, we have

∥D̄S∥2,col − ∥(Ā− Â)XS∥2,col ≤
∑
i∈S

∥Āxi + di − Âxi∥

≤
∑
i

∥xi+1 − Âxi∥

≤ max
vi

−
∑
i

v⊤i d̄i + λ
∑
i

v⊤i Rxi

s.t. ∥vi∥ ≤ 1

=
∑
i

∥d̄i − λRxi∥2,

where we use the triangle inequality, relax the sum from i ∈ S to i ∈ {0, 1, . . . , T − 1}, and
use the relaxed dual problem with a fixed Lagrange multiplier as an upper bound to the
primer objective. As a result,

∥(A− Â)∥F ≥
1

σmax(xS)

[∑
i∈S

(∥d̄i∥ − ∥d̄i − λRxi∥)−
∑
i∈Sc

λ∥Rxi∥

]

=
1

σmax(xS)

[∑
i∈S

(∥d̄i∥2 − ∥d̄i − λRxi∥2)
∥d̄i∥+ ∥d̄i − λRxi∥

−
∑
i∈Sc

λ∥Rxi∥

]

≥ 1

σmax(xS)

[∑
i∈S

(2λ⟨d̄i, Rxi⟩ − λ2∥Rxi∥2)
2∥d̄i∥+ λ∥Rxi∥

−
∑
i∈Sc

λ∥Rxi∥

]
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For a fixed i ∈ S, the quadratic term in the numerator finds its maximum at λ∗ =
⟨d̄i,Rxi⟩
∥Rxi∥2 > µ, where the inequality is due to the assumption ⟨d̄i, Rxi⟩ ≥ µ∥Rxi∥2,∀i ∈ S.
Selecting λ = µ, then we have

∥(A− Â)∥F ≥
µ

σmax(xS)

[∑
i∈S

∥Rxi∥2µ
2∥d̄i∥+ µ∥Rxi∥

−
∑
i∈Sc

∥Rxi∥

]

≥ µ

σmax(xS)

[∑
i∈S

µ

2ν + µ
∥Rxi∥ −

∑
i∈Sc

∥Rxi∥

]

where the inequalities follow from our assumption and Cauchy’s inequality ν∥Rxi∥ ≥ ∥d̄i∥ ≥
µ∥Rxi∥.

4.8 Numerical Experiments
This section provides numerical simulations to illustrate the efficiency of the identification
approach. First, consider the autonomous case where B̄ = 0. Our baseline for comparison
is the least-squares estimator

min
A

T−1∑
t=0

∥xi+1 − Axi∥22. (4.19)

To obtain the system matrices, we consider the case n = 5. We use N(0,Σ) to denote the
multivariate Gaussian random variable with mean 0 and covariance Σ. We set the spectrum
of A to be Γ = diag(0.9, 0.8, 0.7, 1.1, 0.1), and let A = PΓP−1, where P is a random matrix
whose entries are normally distributed with mean 0 and variance 1. Let x0 be normally
distributed with mean 0 and variance 1. Let the disturbance dt be non-zero 30% of the
time. Moreover, for t ∈ K, let dt follow the distribution N(0, 10I5), where I5 is the 5-by-5
identity matrix. As the horizon T increases from 1 to 50, we compare the constrained Lasso
estimator (4.8) and the least-squares estimator (4.19) in Figure 4.1. Due to the frequency
and large magnitude of the disturbance, the least-squares estimator never converges to the
true system matrix Ā. In contrast, the lasso estimator quickly converges to the true system
matrix, and after it converges, future disturbance has little effect on the estimation accuracy.

Figure 4.2 shows that the presence of noise makes perfect recovery impossible in finite
time, but the sudden improvement of the performance of the estimator is still apparent.

For the second example, we consider the Tennessee Eastman challenge problem. We
obtain the A and B matrices from a discretization of the continuous-time LTI model in [54].
The discretization uses zero-order hold with the sampling period being 0.25h. Since the
continuous-time model has a large separation between fast and slow modes, the discretized
A matrix has four modes close to 0. The values of A and B are provided in (4.21) and (4.22).
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Figure 4.1: Comparing the constrained lasso estimator (4.8) and the least-squares (ls) esti-
mator (4.19). The circles plot the magnitude of the disturbance dt when it is non-zero. The
difference is measured in the Frobenius norm ∥ · ∥F .

Our baseline for comparison is the least-squares estimator

min
A,B

T−1∑
t=0

∥xi+1 − Axi −Bui∥22. (4.20)

Inspired by Theorem 18, the control inputs come from the distribution N(0, I4), and the
initial state comes from N(0, I8). The disturbance is generated in the same fashion. Fig-
ure 4.3 shows that the constrained lasso estimator (4.1) vastly outperforms the least-squares
estimator (4.20). Despite the fact that 30% of the states are disturbed, the identification of
both A and B matrices is almost perfect.

4.9 Conclusion
This chapter studies an l1-based identification scheme of a fully observable linear time in-
variant system affected by sparse state disturbances. We find that as long as the attack is
not too frequent, even assuming that attack can take the form of a linear state and input
feedback, an accurate state space representation can be obtained. The inequalities in the
form of the null space property can provide conditions on the exact recovery of the model and
give a bound of the estimation error. The lower bound on estimation error seems to suggest
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Figure 4.2: Comparing the constrained lasso estimator (4.8) and the least-squares (ls) estima-
tor (4.19) with additional N(0,1) noise injected to the states. The circles plot the magnitude
of the disturbance dt.

A =



5.4893×10−1 4.8137×10−3 −1.7226×10−1−2.4752×10−2 1.6520×10−3 3.4343×10−4 −9.6398×10−5 1.4510×10−4

5.9242×10−4 9.8284×10−1 9.9585×10−4 −1.6428×10−4 5.2225×10−5 3.6788×10−7 −7.0184×10−5 9.5650×10−7

−4.3298×10−1 4.0718×10−3 8.0876×10−1 −2.4586×10−2 1.8725×10−3 −2.6758×10−4−5.5680×10−5 1.4413×10−4

3.1393×10−1 −1.1807×10−1 5.6784×10−2 7.5675×10−1 1.6457×10−3 1.9424×10−4 −7.5567×10−5−4.4716×10−3

0 0 0 0 6.3656×10−40 0 0 0
0 0 0 0 0 6.3656×10−40 0 0
0 0 0 0 0 0 6.3656×10−40 0

1.7555×10−1 −6.5758×10−2 3.1911×10−2 4.2687×10−1 9.2087×10−4 1.0861×10−4 −4.2300×10−5−2.5223×10−3


(4.21)

B =



0.2530 0.0412 −0.0138 −0.0111
0.0044 0.0000 −0.0063 −0.0001
0.2730 −0.0138 −0.0101 −0.0111
0.0903 0.0104 −0.0042 0.6455
1.0000 0 0 0

0 1.0000 0 0
0 0 1.0000 0

0.0499 0.0057 −0.0023 −1.0406


(4.22)



CHAPTER 4. LEARNING OF DYNAMICAL SYSTEMS UNDER ADVERSARIAL
ATTACKS 91

0 10 20 30 40 50
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

M
a
g

n
it
u

d
e

0 10 20 30 40 50
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

M
a
g
n
it
u
d
e

Figure 4.3: Comparing the constrained lasso estimator (4.1) and the least-squares (ls) esti-
mator (4.20) for the Tennessee Eastman challenge problem. The circles plot the magnitude
of the disturbance dt when it is non-zero. The difference is measured in the Frobenius norm
∥ · ∥F .
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that there are fundamental limits on this identification scheme. It would be interesting to
study when consistency and error bounds hold for other models of attack. More generally,
other identification schemes such as iterative re-weighted least squares and its variations are
promising to analyze in the system identification context.
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