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The optoelectronic properties of bismuth oxyhalides have
led to their utility in applications such as pigments in the

cosmetics industry,1,2 pharmaceuticals,3,4 phosphors,5 gas
sensors,6 and catalysis.7,8 Over the past decade, interest in
this family of materials has rapidly increased, fuelled by reports
of their excellent photocatalytic activity.9−16 They have been
studied as stand-alone photocatalysts,9,10,17 quaternary al-
loys,18,19 and interfaced with other photocatalytically active
materials.20−22 To date, however, an understanding of the
chemical trends underpinning these successes is lacking.
The BiOX series, shown in Figure 1, crystallize in the

tetragonal Matlockite structure,23,24 which can be considered

the simplest form of the Silleń-type structure and is commonly
expressed as [M2O2][Xm].

25 The crystal lattice consists of
fluorite-like [M2O2] layers sandwiched between double halide
[Xm] layers, to form [X−Bi−O−Bi−X] sheets, stacked in the
[001] direction, with the structure held together by non-
bonding van der Waals interactions along the [001] direction. It
has been proposed that this structure type imparts an internal
static electric field between the [M2O2]

2+ and double [X]− slab
along the [001] direction, which aids efficient separation of the
photogenerated electron−hole pairs.9,10,26,27

In this communication, we investigate the BiOX (X = F, Cl,
Br, and I) series using hybrid density functional theory with
explicit treatment of spin−orbit coupling effects and dispersion
interactions. First, we resolve the band gap trends, where values
between 3.5−3.6 eV, 2.9−3.4 eV, 2.3−2.9 eV, and 1.8−2.1 eV
for BiOF, BiOCl, BiOBr, and BiOI, had been re-
ported.9,11,12,28−32 We separate the roles of relativistic and
chemical effects in determining the magnitude of the gaps and
also the absolute band energies, which provides guidance for
designing tailored photocatalysts.
First-principles calculations were performed in the frame-

work of density functional theory (DFT). Special attention was
paid to electron−electron interactions (using the screened
hybrid HSE06 functional),33,34 relativistic effects (using scalar
relativistic PAW pseudopotentials35,36 and spin−orbit coupling,
SOC), and dispersion interactions (the DFT-D3 correc-
tion37,38). All solid-state calculations were performed in a
plane-wave basis set using the code VASP.39,40

Complete structural optimizations (forces < 0.01 eV Å−1)
were performed at a series of volumes in order to calculate the
equilibrium lattice parameters. Convergence with respect to k-
point sampling and plane wave energy was checked, with a
cutoff of 520 eV and a k-point density of 0.04 k Å found to be
sufficient. To align the electronic band energies to the vacuum
level, a surface−slab model (15 Å vacuum spacing) was
constructed and the corresponding electrostatic potential
averaged along the c-direction, using the MacroDensity
package.41−43 The (100) surface was chosen as it is a nonpolar
termination that results in minimal bond cleavage and does not
produce undesirable surface states.
The predicted lattice parameters for the BiOX series are

shown in Table 1. The results are in good agreement with
previous experimental measurements (within 1%),11,23,24 taking
into account that the experimental data is mostly for room
temperature. The inclusion of the nonlocal dispersion
correction was vital for achieving an accurate equilibrium
geometry, especially as we descend down the halide group, as
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Figure 1. Crystal structure of the BiOX systems (space group P4/
nmm, D4h symmetry) with stoichiometric X−Bi−O−Bi−X bilayers
stacked along the c axis.
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shown in Table S1 of the Supporting Information. Without this
interaction, the error in the c parameter can grow to as much as
1 Å.
Similar to the hybrid halide perovskites44−46 and topological

insulators47,48 which are also composed of atoms with high
atomic number, it is expected that relativistic effects should play
a large role in determining the electronic structure of these
materials. The band structures of the BiOX series with and
without the explicit treatment of SOC are plotted in Figure 2a−
d. The inclusion of SOC was found to result in a net band gap
reduction independent of chemical composition, with the
conduction band minimum (CBM) of BiOF, BiOCl, BiOBr,
and BiOI lowered by 0.39, 0.24, 0.24, and 0.22 eV, respectively.
The valence band maximum (VBM) is less affected by SOC
effects, with only BiOI experiencing a significant upward shift of
0.11 eV, due to larger relativistic effect on I states as group 17 is
descended. As such, the effect of SOC is insufficient in
explaining the trend in band gap across the series.
Instead, analysis of the total and partial (ion decomposed)

density of states for the BiOX series, shown in Figure 3, is
instructive in explaining the trend in optical response seen in
experiment. For BiOF, the top of the valence band is
dominated by O 2p states, with the F 2p states found at
higher binding energies. As the halide anion changes upon
moving down group 17, the contribution of the halide p states
to the VBM increases, ultimately dominating the VBM in BiOI.
In all cases, the conduction band is dominated by Bi p states. It
is therefore clear that the valence band composition dictates the
band gap reduction down the series, in line with the binding
energy of the halide p orbitals. The Bi 6s states are mainly
found at the bottom of the valence band but additionally
provide a small contribution toward the top of the valence band.
Consistent with the revised lone pair theory,49−51 the orbital
overlap * of Bi 6s* with the O 2p and halide p states is not
sufficient to warrant a structural distortion, meaning the Bi is
perfectly octahedral in the Matlockite structure.

From the band structures shown in Figure 2 it can be seen
that the fundamental band gaps across the BiOX series are
indirect. The CBM of BiOF, BiOCl, and BiOBr appears at the
Z point, with the VBM positioned between Z → R. For BiOI,
the CBM is situated between Γ → R, and the VBM is again
situated between Z → R. The fundamental indirect band gaps
are 4.18, 3.37, 2.82, and 2.00 eV for BiOF, BiOCl, BiOBr, and
BiOI, respectively, which, in all cases except BiOF, are in
excellent agreement with experimental measurements.12 The
calculated hole effective masses are relatively large; however,
they are considerably smaller in BiOCl and BiOBr (0.8 me and
0.7 me) than in BiOF and BiOI (12.5 me and 1.9 me). The
dispersion of the conduction band is noticeably less along Z →
Γ (in the [001] direction) compared to Z → R ([010]), which
is to be expected as Z → Γ spans across the [X−Bi−O−Bi−X]
sheets, whereas Z → R is in the plane of the layers. This is
reflected in the electron effective masses of BiOF, BiOCl, and
BiOBr, which are significantly lower in the Z → Γ direction
(0.5 me, 0.3 me, and 0.3 me, respectively) than along Z→ R (1.0
me, 2.4 me, and 0.6 me, respectively).
To understand the effect of varying the halide ion on the

fundamental band alignments of the BiOX series, we have
plotted the valence band alignment of these materials using the
slab model,52 with the results shown in Figure 4. As expected
based on the relative energy levels of the halide p-orbitals, the
ionization potential (IP) of the BiOX series gets smaller as we
descend down group 17. The Bi-based conduction band is also
lowered on descending group 17, which can be rationalized due
to the Bi p states experiencing a different Madelung potential as
the ionic radius of the halide increases on moving down the
group.
The alignment helps to explain some of the puzzling

experimental observations in the literature. The BiOX series
have been reported to display p-type conductivity15 but
unusually to also exhibit n-type behavior.54 Our calculated
electron affinity (EA) for BiOI of 5.2 eV is consistent with the
EAs exhibited by many excellent n-type materials.55−57 The
larger EA of BiOI also results in a reduced overpotential for
O2/oxygen anion splitting and can explain why BiOI is not as
active for the degradation of rhodamine B than BiOBr and
BiOCl.12,58 In addition alloys between BiOCl/BiOBr59 and
BiOBr/BiOI60 have been demonstrated to outperform the
individual materials, and this can be rationalized by the ability
to tailor the band edges in order to obtain an enhanced
electronic alignment in the alloys.
We have demonstrated the key role of the halide anion in

determining the electronic structure and properties of the

Table 1. Calculated Structural and Electronic Properties of
the BiOX Seriesa

material a c Eg IP EA

BiOF 3.72 (−1.0%) 6.20 (−0.5%) 4.18 8.23 3.87
BiOCl 3.87 (−0.5%) 7.42 (+0.9%) 3.37 7.94 4.35
BiOBr 3.90 (−0.5%) 8.14 (−0.5%) 2.82 7.55 4.65
BiOI 3.98 (−0.3%) 9.15 (0.0%) 2.00 7.03 5.03

aAll lattice vectors are given in Å (% error with respect to room
temperature diffraction measurements in parentheses), with the band
gap, ionisation potential (IP), and electron affinity (EA) in eV.

Figure 2. Scalar relativistic (dashed lines) and fully relativistic (black lines) electronic band structures of the BiOX series with the hybrid HSE06
functional. The highest occupied state (including spin−orbit coupling) is set to 0 eV.
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bismuth oxyhalide series. The range of functionality will be
further extended by also changing the chalcogenide anion, as
suggested by recent reports of topological electronic states and
relativistic band splitting in the bismuth tellurihalides. As such,
this extended family of compounds merits further investigation.
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