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A Novel Hidden Markov Approach to Studying Dynamic
Functional Connectivity States in Human Neuroimaging

Sana Hussain,1 Jason Langley,2 Aaron R. Seitz,3 Xiaoping P. Hu,1,2,* and Megan A.K. Peters1,4,*

Abstract

Introduction: Hidden Markov models (HMMs) are a popular choice to extract and examine recurring patterns of
activity or functional connectivity in neuroimaging data, both in terms of spatial patterns and their temporal pro-
gression. Although many diverse HMMs have been applied to neuroimaging data, most have defined states based
on activity levels (intensity-based [IB] states) rather than patterns of functional connectivity between brain areas
(connectivity-based states), which is problematic if we want to understand connectivity dynamics: IB states are
unlikely to provide comprehensive information about dynamic connectivity patterns.
Methods: We addressed this problem by introducing a new HMM that defines states based on full functional
connectivity (FFC) profiles among brain regions. We empirically explored the behavior of this new model in
comparison to existing approaches based on IB or summed functional connectivity states using the Human Con-
nectome Project unrelated 100 functional magnetic resonance imaging ‘‘resting-state’’ dataset.
Results: Our FFC model discovered connectivity states with more distinguishable (i.e., unique and separable
from each other) patterns than previous approaches, and recovered simulated connectivity-based states more
faithfully than the other models tested.
Discussion: Thus, if our goal is to extract and interpret connectivity states in neuroimaging data, our new model out-
performs previous methods, which miss crucial information about the evolution of functional connectivity in the brain.

Keywords: functional connectivity; hidden Markov model; neuroimaging; resting-state fMRI; state patterns

Impact Statement

Hidden Markov models (HMMs) can be used to investigate brain states noninvasively. Previous models ‘‘recover’’
connectivity from intensity-based hidden states, or from connectivity ‘‘summed’’ across nodes. In this study, we intro-
duce a novel connectivity-based HMM and show how it can reveal true connectivity hidden states under minimal as-
sumptions.

Introduction

The brain is a dynamical system of interacting and in-
terchanging brain states (Chen et al, 2016; Lurie et al,

2020; Stevner et al, 2019; Vidaurre et al, 2017): patterns of
activity levels or connectivity strengths that characterize

and quantify network interactions. When extracted from
functional magnetic resonance imaging (fMRI) data, these
states can be categorized into two groups, defined either by
activity levels of one or more nodes (brain areas; intensity-
based [IB] states), or by patterns of functional connectiv-
ity between nodes (connectivity-based states). In contrast
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to IB methods, connectivity-based states and their dy-
namics remain relatively underexplored. Developing and
benchmarking new methods for extracting and characteriz-
ing these states are therefore of critical importance.

One promising approach used to characterize evolution of
IB brain states across time (i.e., not functional connectivity
per se) is hidden Markov models (HMMs). HMMs utilize
probabilistic methods to determine a hidden state sequence
path not directly observable in data (Eddy, 2004; Eddy,
1996; Jurafsky and Martin, 2009; Rabiner, 1989) by inferring
underlying IB states, where the probability of residing in any
one of these states depends only on the previous state (Eddy,
2004; Eddy, 1996; Rabiner, 1989).

These models are powerful because (1) they have no
assumption about relationships among brain states (Chen
et al, 2016), and (2) spatial and temporal information are in-
herent to the model. Because of these properties, HMMs
have been used to identify latent brain states through signals
acquired from fMRI and magnetoencephalography (Baker
et al, 2014; Chen et al, 2016; Eavani et al, 2013; Stevner
et al, 2019; Vidaurre et al, 2018a, Vidaurre et al, 2018b;
Vidaurre et al, 2017; Vidaurre et al, 2016).

However, what about connectivity-based states? Outside
state-based analysis, a common approach is to calculate pair-
wise dynamic functional connectivity (dFC), that is, the cor-
relation in activity between pairs of nodes in a brain network
and how such correlations change across time using a ‘‘slid-
ing window’’ approach (Chen et al, 2016; Lurie et al, 2020;
Vidaurre et al, 2017). However, to study connectivity-based
states and their evolution, several groups have examined
covariance values extracted from IB HMMs, transforming
them into Pearson correlations to create connectivity-
like states (Chen et al, 2016; Stevner et al, 2019; Vidaurre
et al, 2018; Vidaurre et al, 2017).

However, it is unclear to what extent such transformed co-
variances reflect true underlying connectivity-based states
rather than simply the connectivities that the IB states hap-
pened to exhibit. Other groups have used principal com-
ponent analysis (PCA)-based approaches (Vidaurre, 2021;
Vidaurre et al, 2021), or those that assume stationarity of
intensity across time (Vidaurre et al, 2018a), with varying
success. However, a more direct approach seems desirable—
one which uses functional connectivity instead of signal in-
tensity as a direct model input.

A more direct approach was recently undertaken by Ou
et al (2015), who summed the results from a dFC sliding win-
dow analysis into a representative ‘‘connectivity vector’’—
describing a given node’s total connectivity to all other
nodes in the network—for every time point, and then fitted
these with an HMM. Critically, however, this method sums
over dynamic changes in pairwise connectivity, thereby po-
tentially obscuring important changes in pairwise connectivi-
ties. For example, increased connectivity between the source
node and one target node might be balanced by decreased
connectivity to another node, such that no change is observed
in overall connectivity.

Importantly, interpretation of the output of a fitted HMM
depends strongly on the inputs and assumptions used to de-
velop the model, so the states resulting from Ou and col-
leagues’ (2015) method may differ from states recovered
by a model fitted to all pairwise correlation values—between
all pairs of nodes—within a sliding window.

In this study, we tackled these concerns by evaluating a
new HMM-based method that fits all correlation values
obtained from a dFC sliding window analysis. We compre-
hensively compared this novel full functional connectivity
HMM (FFC HMM) to two previously reported methods
used to examine functional connectivity states in neuroimag-
ing data: (1) a standard IB HMM (Chen et al, 2016; Stevner
et al, 2019; Vidaurre et al, 2017) and (2) a summed functional
connectivity HMM (SFC HMM) (Ou et al, 2015). We fit-
ted each model to a widely available existing dataset, the
Human Connectome Project (HCP) Unrelated 100 (Van
Essen et al, 2013) resting-state fMRI dataset. Our findings
highlight the advantages of our new FFC HMM in character-
izing functional connectivity states, as well as cautioning
against assuming that meaningful connectivity patterns can
be derived from models fitted to alternative (IB) or functional
connectivity inputs summed across nodes.

Methods

HCP dataset and networks

All analyses were performed on the HCP Unrelated 100 (a
subset of the S500 release) dataset (Van Essen et al, 2013).
We used 100 subjects (age = 22–36 and gender = 54 female/
46 male), who underwent a 14.4-min resting-state scan (rep-
etition time = 720 ms, flip angle = 52�, voxel size = 2 mm3,
echo time = 33 ms, and field of view = 208 · 180 mm). Data
were pre-processed using the HCP minimal pre-processing
pipeline: distortion correction, motion correction, alignment
to standard space, and surface projection (Glasser et al,
2013). During development and fitting of HMMs, one sub-
ject remained in one single, subject-specific state that was
only visited by two other subjects for one timepoint each.
Removing that subject did not affect the number of hidden
states chosen (or any other parameter; data not shown), so
we conducted all analyses on the remaining 99 subjects.

Following previous work (Deshpande et al, 2011; Raichle,
2011), BOLD signal was extracted from 29 regions of inter-
est (ROIs) in 4 brain networks previously associated with
resting state: the default mode network (DMN), frontoparie-
tal control network (FPCN), dorsal attention network
(DAN), and salience network (SN). Nodes were defined
using anatomical coordinates specified in literature (Supple-
mentary Table SA1). See Supplementary Appendix A.1 for
details.

Hidden Markov models

To evaluate the behavior of our novel FFC HMM, we com-
pared it to two previously reported methods. The differences
among these methods are defined by their inputs. Our FFC
HMM takes as input a time series of pairwise dFCs between
all pairs of ROIs. We compared this to models defined
by (1) BOLD time series (IB HMM) (Chen et al, 2016;
Stevner et al, 2019; Vidaurre et al, 2017) or (2) time series
of dFC summed across all nodes that a given node is connected
to SFC HMM (Ou et al, 2015). Each of these Gaussian HMMs
relies on the same assumptions ( Jurafsky and Martin, 2009;
Rabiner, 1989; Rabiner and Juang, 1986). Models assumed
the observation probability distribution is the normal distribu-
tion, and were implemented using the hmmlearn python li-
brary (Pedregosa et al, 2011) (Supplementary Appendix A.2).
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Intensity-based HMM. The first comparison model is the
standard IB HMM (Chen et al, 2016; Stevner et al, 2019;
Vidaurre et al, 2017). BOLD signals from ROIs (Supple-
mentary Table SA1) were extracted, pre-processed, z-scored,
and concatenated across subjects (Supplementary Fig. SA1).
These fMRI time series were concatenated timewise across
all subjects to create a matrix of size (time · No. of sub-
jects) · (No. of ROIs).

Summed functional connectivity HMM. The second com-
parison model is the SFC HMM (Ou et al, 2015). First, a slid-
ing time window analysis (window length Dt = 36 sec) was
used on the z-scored BOLD signal to obtain an ROI · ROI
connectivity matrix of pairwise Pearson correlations between
each ROI within each time window (Ou et al, 2015) (Supple-
mentary Fig. SA2). This generated a connectivity time series
of length (No. of TRs � Dt) representing the dynamics of
functional connectivity over time. These square connectivity
matrices were summed across one dimension to create a
1 · (No. of ROIs) vector depicting the total overall connect-
edness of each ROI to all other ROIs. Repeating this for
every time window provided a ‘‘summed dFC time series’’
containing a (No. of time windows · No. of subjects) · ROI
data matrix.

Full functional connectivity HMM. To define our novel
FFC HMM, we aimed to remedy the shortcomings of SFC
HMM. Our FFC HMM is therefore fitted to all correlation
values in the lower (or, equivalently, upper) triangle of the
dFC matrix in every time window, rather than summed con-
nectivity vectors.

Therefore, as before, a sliding window correlation analysis
was performed on the z-scored BOLD signal with window
length Dt =*36 sec (50 time points for primary analyses;
see SFC HMM description), but instead of summing across
one of the dimensions of the ROI · ROI matrices, the lower
(or, equivalently, upper) triangle of R2 Pearson correlation val-

ues was restructured into a 1 · No: of ROIð Þ2 � No: of ROIð Þ
2

vector

(Supplementary Fig. SA3). Repeating this for every time win-

dow gives a No: of time windowsð Þ · No: of ROIð Þ2 � No: of ROIð Þ
2

data matrix for every subject containing the time series of
all pairwise connectivities between all pairs of ROIs.
These results were then concatenated subject wise as before
to create a (No. of time windows · No. of subjects) · ROI
data matrix.

Preliminary model fitting and analysis

We conducted several preliminary steps before proceeding
to the full analyses. First, HMMs must be fitted with an a pri-
ori defined number of hidden states, so to determine the num-
ber of states for each model, we adopted the Ranking and
Averaging Independent Component Analysis by Reproduci-
bility (RAICAR) method (Chen et al, 2016; Yang et al,
2008): briefly, this involved fitting the HMMs multiple
times with different random seed initializations, aligning
the recovered states by similarity, and seeking the number
of states that produced maximal similarity across these
aligned states (see Supplementary Appendix A.3 for details).

Second, we quantified the degree to which each model
tested could recognize ground truth in induced, or simulated,

connectivity states (this approach follows similar logic to the
RAICAR method and is described in detail in Supplementary
Appendix A.4). Finally, we evaluated the degree to which
FFC HMM requires large amounts of data to produce robust
results, by truncating the dataset and re-fitting the model
(Supplementary Appendices A.5 and C.2). This is especially
important to evaluate its utility for sample sizes smaller than
the one used in this study. Intensity-defined state induction
and model validation were also performed, but are not in-
cluded in the main text for brevity; see Supplementary
Appendix B for details.

Analysis of model outputs

Connectivity state pattern analysis. Full connectivity
state patterns (‘‘connectivity state patterns’’ or ‘‘connectivity
states’’) depict the correlation strength between all pairs
of nodes within a given state (i.e., each state consists of a
29 · 29 matrix of Pearson R2 values). The primary outcome
metric of interest is the similarity across these recovered con-
nectivity states from all three models. Due to model dif-
ferences, the extraction method for connectivity states
differed by model, but after extraction, analyses were similar
across models.

Both IB HMM and SFC HMM do not directly output con-
nectivity profiles, so instead, the FFC states must be recov-
ered from model outputs. For IB HMM, connectivity states
corresponding to each intensity state were acquired by math-
ematically transforming the covariance matrices outputted
by the model fitting procedure into Pearson correlation val-
ues, as done previously (Eavani et al, 2013; Stevner et al,
2019; Vidaurre et al, 2017). (Note that this procedure dem-
onstrates an assumption that such transformed covariance
matrices may reveal connectivity states, whereas, in this
study, we aimed to explicitly examine the relationship
between transformed covariance-based connectivity states
and connectivity states inferred from models explicitly
aimed to identify those states such as SFC HMM and
FFC HMM.)

For SFC HMM, the model’s outputs are vectors of mean
summed correlation values representing global nodal strength
during a time window that cannot be directly ‘‘unpacked’’ into
full pairwise connectivities among all nodes; therefore, we de-
fined connectivity state patterns for SFC HMM by averaging
connectivity matrices across time points when its Viterbi path
labeled a state to be active. For FFC HMM, the connectivity
state patterns are directly outputted from the model corre-

sponding to the 1 · No: of ROIð Þ2 � No: of ROIð Þ
2

correlation vector

inputted for every time window, which are then reformatted
back into a symmetric ROI · ROI matrix to constitute the
connectivity states.

All connectivity analyses were performed on differential
functional connectivity states: connectivity matrices that
‘‘highlight’’ the unique functional connectivity characteris-
tics of each state (Stevner et al, 2019).

SFC and FFC HMM state differential functional connec-
tivity states were computed using Equation (1) where Xi is
the original raw functional connectivity matrix for state i,
Hi gives the differential functional connectivity states of
Xi, and j gives all state assignments (given the number of
states determined for the model), excluding the value of i
(Stevner et al, 2019).
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Hi = Xi �
1

n� 1
+
j6¼i

Xj

 !
(1)

where n refers to the total number of states in the model.
Here, the average is taken across the states other than the cur-
rent state being analyzed, so n� 1 = 7. Note that the values in
the differential connectivity states represent connectivity
levels relative to baseline, not the Pearson R2 values them-
selves: negative values are associated with below baseline
correlations, not anticorrelations. Hereafter, ‘‘connectivity
states’’ refer to differential connectivity states unless, other-
wise specified.

A critical question is to what extent FFC HMM-recovered
connectivity states could have been adequately captured by
IB HMM and SFC HMM. Therefore, we examined the sim-
ilarities among connectivity states recovered by IB, SFC, and
FFC HMMs, with specific focus on SFC states versus FFC
states. Connectivity state patterns were compared by Pearson
correlation (Chen et al, 2016), similar to our procedure for
the stability analysis (Preliminary Model Fitting and Analy-
sis section and Supplementary Appendices A.3 and C.1). We
sought to discover a ‘‘stability threshold’’ (similar to the
threshold of 0.9 used in the RAICAR analysis) that would re-
sult in unique, one-to-one pairwise matching between states
recovered by two different models when states were aligned
across those models by maximizing their similarity; see Sup-
plementary Appendix A.4 for details of the model recovery
process.

Finally, we also examined whether FFC HMM can re-
cover summed connectivity vectors, as discovered by SFC
HMM. Therefore, we computed the SFC vectors correspond-
ing to differential functional connectivity states for IB and
FFC HMMs by summing the full 29 · 29 matrix of Pearson
R2 values across one of the dimensions; for SFC, we utilized
the summed connectivity vectors directly outputted by the
model.

Viterbi path analysis. We are also interested in examin-
ing trajectories through state space and how FFC HMM
might differ from the two previous methods. The Viterbi
path, or hidden state sequence, is directly outputted from
all three HMMs. We examined a number of Viterbi path met-
rics, including switching rate, proportion of time spent in
each state, the average duration of a state, and fractional oc-
cupancy correlation (Stevner et al, 2019; Vidaurre et al,
2017).

Results

Assessing model fits

The RAICAR-based stability analysis (Preliminary Model
Fitting and Analysis section and Supplementary Appendix
A.3) determined that eight states were appropriate for all
models (Supplementary Appendix C.1).

To quantify the degree to which each model could recover
ground truth in pure connectivity states, we also simulated
connectivity-based ‘‘states’’ that were not accompanied by
fluctuations in overall signal intensity (Fig. 1A), and used
identical data preparation and fitting procedures to quantify
how well each model could recover them (Supplementary

Appendix A.4). As expected, FFC HMM cleanly recovered
simulated state trajectories (Fig. 1D), with mean correlation
(R2) between true simulated and recovered Viterbi paths
across subjects of 0.5738 – 0.1301. Indeed, FFC HMM was
more precise in its Viterbi path recovery than SFC HMM
(Fig. 1C; mean R2 between simulated and recovered Viterbi
paths of 0.3337 – 0.1650).

Unsurprisingly, IB HMM failed to adequately recover
simulated pure connectivity states (Fig. 1B; mean R2 be-
tween simulated and recovered Viterbi paths of 0.1741 –
0.1569), although it appeared to recognize when two net-
works were ‘‘turned on’’ in conjunction. This may have oc-
curred because there was more connectivity for the model to
recognize: both within- and between-network connectivity.
However, recall that IB HMM does not natively evaluate
or recover connectivity states, so connectivity must be esti-
mated through the process described in the Intensity-Based
HMM section.

FFC HMM also showed strong performance in recover-
ing the connectivity states themselves. A paired t-test on
the Fisher-z transformed R2 values between SFC and FFC
HMMs indexing how similar each model’s recovered con-
nectivity states were to the induced states showed that FFC
HMMs were significantly better at recovering induced states
than SFC HMM [t(98) = 12.8745, p = 8.6087e-23]. (See Sup-
plementary Appendix B for fuller discussion of the intensity-
based states recovered by IB HMMs.)

Analysis of model outputs

We next evaluated the states themselves as well as their
Viterbi paths. States from each model are distinguished
with subscripts corresponding to the HMM from which
they stem, that is, S1FFC corresponds to state 1 from FFC
HMM. We present results from IB and SFC HMMs first
to provide context for the differences in behavior exhibited
by FFC HMM.

Connectivity state pattern analysis. First we examined IB
HMM, which we did not expect to recover empirical connec-
tivity states well. Unsurprisingly, the IB HMM differential
functional connectivity states did not display strong dis-
tinguishing patterns either within or between the states
(Fig. 2, top row). However, there were a few slight deviations
from mean connectivity overall, especially in S4IB, S7IB, and
S8IB. Nevertheless, these results show that a model not
trained on connectivity states is, expectedly, not adept at re-
covering distinctive connectivity states.

The critical benchmark for FFC HMM is therefore SFC
HMM behavior. Can a model fitted to summed connec-
tivity vectors nevertheless adequately recover full connec-
tivity profiles? We observed that SFC HMM extracted
distinct differential functional connectivity profiles across
all eight states (Fig. 2, middle row). From visual examina-
tion, S1SFC showed below-baseline correlations among all
networks, while elevated correlations compared to baseline
were seen overall in S4SFC and S8SFC. Several states also
showed distinct within-network changes in connectivity
from baseline, with each state seeming to highlight a differ-
ent network (e.g., S2SFC excludes within-network connectiv-
ity in DAN, while S3SFC and S5SFC exclude within-network
connectivity in DMN).
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FIG. 1. Verification of HMM connectivity-based states. (A) The artificially induced state sequence depicted which net-
works exhibited slightly increased within- and/or between-network connectivity. Outputted state sequences from (B) IB
HMM, (C) SFC HMM, and (D) FFC HMM when connectivity states were induced. FFC HMM recovers simulated states
better than the other two models; see main text for details. FCC, full functional connectivity; HMM, hidden Markov
model; IB, intensity based; SFC, summed functional connectivity.

FIG. 2. Differential functional connectivity states for SFC HMM (top row), FFC HMM (middle row), and IB HMM (bot-
tom row). The summed connectivity vectors (summed across one dimension) are displayed below each state. The summed
values for SFC were directly outputted from the model .while those for IB and FFC were calculated as described in Connec-
tivity State Pattern Analysis section.
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Crucially, to what extent are FFC HMMs’ connectivity
states different from SFC HMM’s? Visually, they appear
to have poor correspondence (Fig. 2, bottom row). S4FFC

showed strong above-average connectivity across all
nodes—far stronger than that shown in S4SFC—and it was
the only state to have overall above-average connectivity.
In contrast, several other states showed a distinct reduction
in functional connectivity specific to various networks. For
example, S1FFC shows a within-network DAN disconnect,
while S5FFC shows that DAN is connected to DMN and
itself, but not the other networks. Moreover, S6FFC showed
DAN and SN to be largely disconnected from DMN and
FPCN, with DMN and FPCN connected to each other,
while S7FFC showed strong disconnection between DMN
and all other networks. Other patterns can also be found.
Importantly, although, no SFC HMM state exhibited any
of these patterns.

We next engaged in a quantitative comparison between
states recovered by each model in two ways. First, we com-
puted the pairwise Pearson correlations among all pairs of
states (Fig. 3A). A one-to-one match in states would be illus-
trated with one large correlation coefficient (one orange/
yellow square) and seven small correlations (seven green/
blue squares) in each row. Yet this phenomenon was not ob-

served, as it appears there are several states that might equally
‘‘match’’ across the two models from visual inspection.

Second, to quantitatively assess the degree to which there
might be one-to-one state matching across states recov-
ered by each pair of models, we took inspiration from the
RAICAR analysis described above and sought to identify
whether there was a threshold at which there would be a
one-to-one state matching across all eight states found by
both models. We are looking specifically for cases where a
particular correlation threshold leads to exactly one SFC
HMM state matching each of the FFC HMM states. We exam-
ined whether any possible correlation threshold in the range of
0–1 in steps of 0.05 would lead to exactly one SFC HMM,
state matching each FFC HMM state by counting the num-
ber of SFC states that exceeded each possible threshold.

Visually, this accounts to counting how many ‘‘squares’’
in each row of Figure 3A surpass a particular value, with
the goal being exactly one for all rows. This quantitative
analysis confirmed the visual inspection results: There was
no threshold for which all—or even most—FFC HMM states
could achieve a unique mapping with exactly one SFC HMM
state (Fig. 3D). This finding supports the interpretation that
our novel FFC HMM recovers functional connectivity states
that are distinct from those recovered by SFC HMM.

FIG. 3. Pairwise comparisons between connectivity states discovered by each HMM show that each model recovered eight
unique states. A one-to-one match between two states recovered by two different models would appear as a single orange/
yellow square (high Pearson correlation) among seven green/blue squares (low Pearson correlation) in those two states’ row
or column combination. However, (A) FFC HMM-recovered states showed no unique correspondence based on similarity to
those recovered by SFC HMMs by visual inspection, and (D) no stability threshold (see the RAICAR analysis to discover
number of hidden states, Preliminary Model Fitting and Analysis and Assessing Model Fits sections and Supplementary
Appendices A.3 and C.1) can lead to any semblance of a one-to-one match between FFC HMM-recovered states and
those recovered by SFC HMM. Similar results were found for pairwise comparisons between FFC HMM and IB HMM states
(B, E) and between SFC HMM and IB HMM states (C, F). RAICAR, Ranking and Averaging Independent Component Anal-
ysis by Reproducibility.
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For completeness, we also repeated this analysis for com-
parisons between FFC HMM and IB HMM (Fig. 3B, E), as
well as comparing SFC HMM and IB HMM (Fig. 3C, F).
Results from these pairwise comparisons mirror those from
the critical FFC versus SFC comparison: all three models
appear to discover unique connectivity states, as there is no
visual or quantitative correspondence between the states
discovered by each model. Note that the comparisons with
IB HMM are particularly informative, as they confirm that
both FFC HMM and SFC HMM recovered states that
reflected changes in connectivity patterns (in SFC HMM’s
case, summed connectivity vectors) and were robust to
fluctuations in overall BOLD signal magnitude (i.e., the
connectivity-based models did not end up simply discover-
ing ‘‘connectivity’’ states based on fluctuations in average
intensity). See Supplementary Appendix B for fuller discus-
sion of intensity-based states recovered by IB HMM.

Finally, we also examined the relationship between SFC
vectors from FFC HMM and SFC HMM. We found that
the mean absolute value of the inner product of the summed
connectivity vectors for matched states from each model was
very high (0.84), suggesting that FFC HMMs’ outputs can be
used to reconstruct what SFC HMM would have recovered.

Viterbi path analysis. Viterbi paths can be visualized by
assigning each state a color and plotting them for every per-
son as a function of time point (repetition time [TR] in the
fMRI time series, IB HMM, Fig. 4A) or time window (an-
chored on the first TR of the window, SFC HMM
[Fig. 4B] and FFC HMM [Fig. 4C]) to show which states
are active at each time point. These visualizations show

that, compared to IB HMM, both connectivity-based
HMMs appear ‘‘smoothed’’ over time, that is, transition
among states more slowly; this is especially dramatic for
FFC HMM. Autocorrelation and temporal discrepancy in
input resolution between the intensity- versus connectivity-
based HMMs—that is, IB HMM had a temporal resolution
equal to that of the fMRI TR, while SFC and FFC HMMs
had an effective sampling frequency on the order of 1 sample
per 36 sec—likely contributing to this smoothing.

Interestingly, this temporal ‘‘smoothing’’ appears even
more pronounced for FFC HMM than for SFC HMM—
despite the fact that both SFC HMM and FFC HMM possess
the same degree of ‘‘smoothing’’ in the input, that is, the
same degree of autocorrelation induced by the sliding win-
dow computation of functional connectivity. We therefore
suspect that FFC HMM complexity may have contributed
to this behavior; we explore this possibility more in the
Discussion section.

As a final check, we also confirmed that the Viterbi paths
were robust to different realizations, that is, different initial
conditions for model fitting. Recall that, although the RAICAR
stability analyses determined eight states were ideal for all three
models, state assignment (e.g., labeling a state as ‘‘S1’’ vs.
‘‘S8’’) was initially arbitrary across all HMMs. Nevertheless,
following state labeling alignment across initializations (Pre-
liminary Model Fitting and Analysis section and Supplemen-
tary Appendices A.3 and C.1), we observed that the Viterbi
path was reproducible across different realizations of the
HMMs (R2 ‡ *0.84) for all models tested: for all initializa-
tions, all models recognized the same connectivity states at
the same time windows, and the same switches between states.

FIG. 4. Viterbi Paths for (A) IB HMMs, (B) SFC HMMs, and (C) FFC HMMs. The Viterbi paths for the SFC and FFC
HMMs are much ‘‘smoother’’ (i.e., more spread out in time) than those of IB HMMs. Within the connectivity-based
HMMs, FFC HMMs’ Viterbi path exhibits fewer and less frequent switches than SFC HMMs, which may have occurred be-
cause of the selected number of hidden states or the total number of components fitted. See main text for detailed discussion.
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Discussion

In this study, we introduced an FFC HMM and investi-
gated its ability to extract functional connectivity states in
resting-state fMRI data. Using the HCP Unrelated 100, we
fitted FFC HMM to a sliding window of functional con-
nectivity from 29 ROIs across 4 networks (DMN, FPCN,
DAN, and SN) and compared the connectivity states it dis-
covered to those from two other models defined by SFC
HMM (Ou et al, 2015) and intensity (IB HMM) (Eavani
et al, 2013; Stevner et al, 2019; Vidaurre et al, 2017).

FFC HMMs’ full connectivity states were starkly differ-
ent from those recovered by SFC and IB HMMs, even as
FFC HMM recovered simulated connectivity-based states
more faithfully than either IB or SFC HMM. Thus, we should
not assume that connectivity states derived from IB- or SFC-
based HMMs reflect true connectivity states; FFC HMM is a
more appropriate choice to examine and interpret pure func-
tional connectivity profiles when the question of interest is
based on connectivity and not intensity fluctuations.

Interestingly, our results revealed that FFC HMM changed
states more slowly even with the same sliding window size as
SFC HMM. The slower switching rate in FFC HMM may be
due to the increased number of components fitted in FFC
HMM (406 connectivity values per time window) compared
to SFC HMM (29 components); this may reduce state switch-
ing by requiring broader changes in connectivity across mul-
tiple nodes to register a change in functional connectivity
state. Interestingly, this behavior may indicate that FFC
HMM is less sensitive to noise than SFC HMM.

Another possibility is that true functional connectivity
may change quite slowly within a session, since it has been
shown to be relatively stable across time with only moderate
changes around the average (Vidaurre et al, 2021). Because
SFC HMM sums across functional connectivities for a given
node, such changes might accumulate and become compara-
bly larger, causing SFC HMM to predict a state change when
none is in fact present.

There are a number of key differences between our
model and previous approaches that have targeted functional
connectivity states using HMMs. In particular, Vidaurre
(2021), Vidaurre et al (2021), and Vidaurre et al (2018a) fit-
ted state-specific covariance matrices in a Gaussian HMM
using intensity (BOLD or MEG based) as inputs. Notably,
their approach assumed that the mean intensity level of
the observed data did not change between states, that is,
the mean activity was stationary across states (l = 0 in the
Gaussian model fitted by the HMM), thereby purpose-
fully avoiding modeling changes in amplitude explicitly
(Vidaurre, 2021). On the other hand, our approach uses co-
variance as the direct model input, sidestepping the assump-
tion of stationarity in mean activity levels.

Other approaches have combined PCA and HMMs, either
where PCA is done first and then the HMM fitted (Vidaurre
et al, 2021), or where PCA and HMM fitting are done simul-
taneously (Vidaurre, 2021). In both cases, PCA is used to re-
cover latent components in brain activity or connectivity
data, which complicates the ability to interpret the discov-
ered states with reference to known brain anatomy and func-
tional networks. In the case of the second model (Vidaurre,
2021), this practice also suggests that the principal compo-
nents discovered by the simultaneous approach can change

as a function of connectivity state, such that the covariance
matrix of one state may not refer to the same principal com-
ponents as that of another state.

Finally, it has also been proposed that time delay-
embedded HMMs may reveal functional connectivity net-
works in magnetoencephalography data (Vidaurre et al,
2018b). Although this approach has the advantage of being
purely data driven and focused on phase-coupling network
activity in the case of MEG data, it has not been applied to
fMRI data and may encounter challenges due to its depen-
dence on high temporal resolution and consequently long
length of input data; we therefore leave exploration of this
interesting possibility in fMRI data to future studies.

Limitations

HMMs assume independent Gaussians in the likelihood
functions (Eddy, 2004; Eddy, 1996; Jurafsky and Martin,
2009; Rabiner, 1989; Rabiner and Juang, 1986), but one
might note that using sliding window functional correlations
as inputs (SFC and FFC HMMs) introduces autocorrelation.
While we assumed independence as a simplifying assump-
tion (Ou et al, 2015), we also conducted an exploratory anal-
ysis that varied window size to explore potential impact of
autocorrelation magnitude. This analysis revealed that even
large changes in sliding window length do not meaningfully
impact the connectivity states recovered by either SFC HMM
or FFC HMM (Supplementary Appendix C.4).

Therefore, we can feel confident that autocorrelation con-
cerns do not unduly influence our findings. In fact, we note
that independence may not strictly be assumed even for IB
HMM or similar models, as the hemodynamic response func-
tion is continuous and therefore autocorrelation from one TR
to the next is likely due to the poor temporal resolution of
fMRI in general. The lack of dependence on sliding window
length may also speak to whether sliding windows in gen-
eral are an appropriate choice for HMM-based analysis of
resting-state data, as this result may suggest that what the
SFC and FFC HMMs may be recovering is a set of global,
or relatively stable, functional connectivity states that the
system slowly switches among as opposed to task-induced
or more rapidly changing dynamic states.

Future research should investigate the relationship between
global, unchanging dynamic connectivity profiles and the shift-
ing profiles revealed by SFC HMM or FFC HMM, as well as
in comparison to other methods proposed in the literature.

Gaussian HMMs also assume that the off-diagonal ele-
ments of the correlation matrices either are distributed nor-
mally or that violations of this assumption do not unduly
affect results (Chen et al, 2016). In the absence of a model
that explicitly estimates the covariance of such off-diagonal
elements, we evaluated the impact of Fisher-z transforming
the Pearson correlations before using them as inputs so that
they would occupy a range of [�N,N] rather than [�1,1].
Transforming the Pearson correlations did not significantly
affect the connectivity states recovered by FFC HMM (Sup-
plementary Appendix C.4). We therefore elected to refrain
from Fisher-z transforming to facilitate direct comparison
to SFC HMM, which did not previously Fisher-z transform
(Chen et al, 2016) and for which Fisher-z transformation is in-
appropriate because SFC HMM SFC vectors already occupy
a range of [�N,N].
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Finally, our results are also limited by the sliding window
approach, as a given brain state may not persist for the en-
tire sliding window, or signals from multiple brain states
may overlap in the window. Other approaches may appear
to remedy this shortcoming, such as spatial independent
component analysis (Beckmann et al, 2005; Smith et al,
2012), structural equation modeling (Schlösser et al,
2003), or coactivation patterns in IB states (Liu and
Duyn, 2013; Liu et al, 2013; Petridou et al, 2013). However,
while these methods characterize spatial patterns of con-
nectivity states, each time point is treated as independent
and shuffling the time series does not affect spatial patterns
of recovered brain states; they therefore only identify the
states themselves and do not reveal the trajectory through
state space. Thus, FFC HMM offers one of the best tools
available to study the evolution of connectivity states
over time.

Conclusions

We found that FFC HMM discovered connectivity states
with more distinguishable patterns than those derived from
HMMs with an intensity input (IB HMM) or summed con-
nectivity input (SFC HMM), and which were fundamen-
tally different from the functional connectivity profiles
extracted by either of the other two methods. FFC HMM
could also more faithfully recover simulated ‘‘ground
truth’’ pure connectivity states. Because FFC HMM allows
for a direct readout of connectivity-based states and their
temporal evolution, it offers a powerful tool for extracting,
analyzing, and understanding dynamic connectivities
among brain regions.
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