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Behavioral/Cognitive

Contingent Amygdala Inputs Trigger Heterosynaptic LTP at
Hippocampus-To-Accumbens Synapses

Jun Yu,1 Susan R. Sesack,1,2 Yanhua Huang,1 Oliver M. Schlüter,1 Anthony A. Grace,1,2,3 and Yan Dong1,2
1Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, 2Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15260, and 3Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

The nucleus accumbens shell (NAcSh) is a key brain region where environmental cues acquire incentive salience to reinforce
motivated behaviors. Principal medium spiny neurons (MSNs) in the NAcSh receive extensive glutamatergic projections from
limbic regions, among which, the ventral hippocampus (vH) transmits information enriched in contextual cues, and the baso-
lateral amygdala (BLA) encodes real-time arousing states. The vH and BLA project convergently to NAcSh MSNs, both acti-
vated in a time-locked manner on a cue-conditioned motivational action. In brain slices prepared from male and female
mice, we show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAcSh synapses with-
out affecting BLA-to-NAcSh synapses, revealing a heterosynaptic mechanism through which BLA signals persistently increase
the temporally contingent vH-to-NAcSh transmission. Furthermore, this LTP is more prominent in dopamine D1 receptor-
expressing (D1) MSNs than D2 MSNs and can be prevented by inhibition of either D1 receptors or dopaminergic terminals
in NAcSh. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that
are contingent to BLA activation acquire increased circuit representation to reinforce behavior.

Key words: amygdala; dopamine; heterosynaptic; hippocampus; LTP; nucleus accumbens

Significance Statement

In motivated behaviors, environmental cues associated with arousing stimuli acquire increased incentive salience, processes
mediated in part by the nucleus accumbens (NAc). NAc principal neurons receive glutamatergic projections from the ventral
hippocampus (vH) and basolateral amygdala (BLA), which transmit information encoding contextual cues and affective states,
respectively. Our results show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAc
synapses without affecting BLA-to-NAc synapses, revealing a heterosynaptic mechanism through which BLA signals potenti-
ate the temporally contingent vH-to-NAc transmission. Furthermore, this LTP is prevented by inhibition of either D1 recep-
tors or dopaminergic axons. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-
encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.

Introduction
In motivated behaviors, environmental cues associated with arous-
ing stimuli acquire increased incentive salience, contributing to
cue-conditioned reinforcement. Such cue-reinforced responses
not only encourage animals to pursue reward and flee from dan-
ger in response to predicting signs but are also implicated in psy-
chiatric conditions, such as cue-induced relapse in substance use

disorder and posttraumatic stress disorder (Volkow et al., 2017).
Glutamatergic projections from limbic and paralimbic brain
regions transmit related but distinct cue and motivation infor-
mation that converges onto individual principal medium spiny
neurons (MSNs) in the nucleus accumbens (NAc; French and
Totterdell, 2002, 2003; Xia et al., 2020). During cue-conditioned
responses, these projections may interactively influence each
other, with the resulting circuit plasticity critical for cue-stimulus
conditioning (Sesack and Grace, 2010; Belujon and Grace, 2011;
Gill and Grace, 2011). To start to understand these circuit mech-
anisms, the current study focused on heterosynaptic interaction
between two projections to NAc MSNs, one from the ventral
hippocampus (vH) and the other from the basolateral amygdala
(BLA).

Both vH and BLA neurons project to the NAc and form glu-
tamatergic synapses on the same dendrites of MSNs (French and
Totterdell, 2002, 2003; Britt et al., 2012; Xia et al., 2020). In
behaving animals, vH neurons are preferentially activated
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by contextual cues, particularly those associated with moti-
vational components (Wolosin et al., 2012; Bladon et al.,
2019; Trouche et al., 2019; van de Ven et al., 2020; Klee et
al., 2021; Smith et al., 2022). On the other hand, BLA neurons
are activated by both unconditioned and conditioned stimuli
with different valences (Gore et al., 2015; Janak and Tye, 2015;
Corder et al., 2019; X. Zhang et al., 2021). It has been hypothe-
sized that a key function of the BLA is to assign an incentive
value to a given conditioning cue (Weymar and Schwabe, 2016).
Consistent with this view, inhibition of the BLA or BLA-to-NAc
projection before cue-conditioning disrupts the acquisition of
cue-conditioned responding (O’Neill et al., 2018).

Monosynaptic long-term potentiation (LTP) or long-term
depression (LTD) can be induced at vH-to-NAc or BLA-to-NAc
synapses when patterned stimulations are applied exclusively to
the vH-to-NAc or BLA-to-NAc projection (Uno and Ozawa,
1991; Dong et al., 2007; Lee et al., 2013; Ji et al., 2015; LeGates et
al., 2018; Zinsmaier et al., 2022). These monosynaptic forms of
synaptic plasticity suggest that each of the vH-to-NAc and
BLA-to-NAc projection possesses the capacity of independ-
ently changing its transmission efficacy during behavioral
responses. During cue-conditioned motivated responding,
the vH and BLA are activated simultaneously, allowing
vH-to-NAc and BLA-to-NAc synapses to be activated in a
largely synchronous manner (Jarzebowski et al., 2022). To
explore the potential heterosynaptic interaction between
these two projections in the NAc shell (NAcSh), a subregion
of the NAc critically implicated in cue-stimulus association,
we employed a dual-rhodopsin system to optogenetically stim-
ulate vH and BLA projections in brain slices and recorded their
respective synaptic responses in the same MSNs. A brief (eight
times/2min) co-activation of the two projections induced LTP
at vH-to-NAcSh synapses without affecting BLA-to-NAcSh synap-
ses, revealing a timing-dependent, heterosynaptic mechanism
through which BLA-to-NAcSh inputs persistently increased
the vH-to-NAcSh transmission. Furthermore, this LTP was
more prominent in dopamine D1 receptor-expressing (D1)
MSNs than D2 MSNs and was prevented by either pharmaco-
logical inhibition of D1 receptors or chemogenetic inhibition
of midbrain-originated dopaminergic terminals, indicating
dopamine as an essential third party for enabling this heterosy-
naptic LTP. This heterosynaptic LTP may provide a dopamine-
determinant mechanism through which vH-encoded cue inputs
that are contingent to BLA activation acquire increased circuit
representation, contributing to cue-reinforced behavior.

Materials and Methods
Subjects and reagents
Both male and female C57B/6J wild-type mice (purchased from Charles
River) and transgenic mice (D1-tdTomato and DAT-Cre, in house bred)
were grouped and allocated for planned experiments at the age of six to
eight weeks. Mice were singly housed on a regular 12/12 h light/dark
cycle (light on/off at 7 A.M./7 P.M.), with food and water available ad
libitum. After acclimation, surgery, and postsurgery recovery, mice at
approximately three months old were used to prepare brain slices. The
animals were used in accordance with the National Institutes of Health
Guide for Experimental Animal Use and under protocols approved by
the Institutional Animal Care and Use Committee at the University of
Pittsburgh. rAAV2/hSyn-hChR2(H134R)-EYFP-WPRE-PA and rAAV8/
syn-ChR-88m19-tdT (Chrimson) were purchased from the University of
North Carolina Vector Core, and pAAV-hSyn-DIO-hM4D(GI)-mCherry
was purchased from Addgene (catalog #44362-AAV2). All chemicals were
purchased from Sigma-Aldrich, except D-AP5, which was purchased from
Cayman Chemical.

In vivo viral injection
Mice were anesthetized with intraperitoneal injection of ketamine (50mg/kg)–
xylazine (5mg/kg) mixture. A 33-gauge injection needle was used to
bilaterally inject 1ml/site (0.33ml/min) of adeno-associated virus (AAV)
solution into the BLA (in millimeters: from bregma, anterior-posterior
(AP), �1.10; ML, 62.95; dorsal-ventral (DV), �5.10), vHip (from
lambda, AP, 11.35; ML, 62.8; DV, �5.05) or VTA (from lambda, AP,
11.40; medial-lateral (ML), 60.38; DV, �4.6). After surgery, mice were
placed on a heating pad for recovery. Carprofen (5mg/kg) was injected
(subcutaneously) daily for up to 3 d after surgery. Mice were kept in their
home cages for four to five weeks to allow for viral expression before elec-
trophysiological experiments. In the experiment of chemogenetic manipu-
lation of presynaptic DA terminals, pAAV-hSyn-DIO-hM4Di-mCherry
was injected into the VTA of DAT-Cre mice. Mice with no viral injection
or injection of AAV-DIO-mCherry were used as controls.

Slice preparation for electrophysiology
To prepare acute brain slices, we decapitated mice under isoflurane anes-
thesia. Sagittal slices (250mm) containing the NAc were prepared on a
VT1200S vibratome (Leica) in a 4°C cutting solution, containing (in mM)
135 N-methyl-D-glucamine, 1 KCl, 1.2 KH2PO4, 0.5 CaCl2, 1.5 MgCl2, 20
choline-HCO3, and 11 glucose, saturated with 95% O2/5% CO2, pH
adjusted to 7.4 with HCl. Osmolality was adjusted to 300. Slices were incu-
bated in artificial cerebrospinal fluid (aCSF), containing (in mM) 119
NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11
glucose, with the osmolality adjusted to 290–295, saturated with 95% O2/
5% CO2. The brain slices were incubated at 34°C for 30min and then
allowed to recover for.30min at 20–22°C before experimentation.

Optogenetic stimulation
The laser systems for optogenetic stimulation (RLM635TA-400S-FC for
635 nm, BLM445TA-300FC for 445 nm) were purchased from Shanghai
Laser & Optics Century Co, Ltd and the 473-nm laser source was pur-
chased from IkeCool. In experiments that require two lasers, a custom-
ized 1� 2 fanout bundle (FG200UCC-FBUNDLE, Thorlabs Inc.) was
used to connect both laser sources to a single fluorescence port on the
Olympus BX51WI microscope. Laser beams were reflected by a dichroic
filter (640FDC4001-C, Knight Optical) and converged by the micro-
scope condenser. The laser beams then passed through a customized
cube (Chroma Technology Corp) to reach the objective lens of the
microscope. The output power of each laser was separately calibrated
before each experiment by a laser power meter (S130A; Thor Labs)
below the objective lens. In experiments involving selecting D1 versus
D2 MSNs, the excitation light (wavelength at 533–585 nm) used to detect
tdTomato signals might introduce interference to the expressed rhodop-
sins. Hence, in these experiments, we limited the light exposure within
,1 s each time for three to five times (.30 s apart), a procedure suffi-
cient to locate a tdTomato-positive versus negative MSN. In pilot experi-
ments, this short exposure evoked synaptic activities but did not induce
residual changes in either vH-to-NAcSh or BLA-to-NAcSh synaptic
transmission.

Electrophysiological recordings
All recordings were made in the medial NAcSh (AP 1.46 0.1 mm), with
the recorded MSNs presumably from both the rostral and caudal subre-
gions, respectively. The rostral and caudal NAcSh exhibit topographi-
cally differential innervation from the BLA and vH and differential
activities during motivated behaviors (Reed et al., 2018; Castro and
Bruchas, 2019). However, limited by our recording condition in mice,
we did not intend to make a comparison between the two subregions,
but pooled all recorded MSNs together to represent the medial NAcSh.
The internal solution filling the electrodes contained (in mM): 130
KMeSO3, 10 KCl, 10 HEPES, 0.4 EGTA (K), 3Mg-ATP, 0.5 Na3-GTP,
and 7.5 phosphocreatine. In some experiments, Na3-GTP was
replaced with 1 mM GDP-b -S. The series resistance of electrodes
was typically 9–20 MV, uncompensated, and monitored continu-
ously during recording. Cells with a change in series resistance
.20% were excluded from subsequent data collection. Synaptic
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currents were recorded with a MultiClamp 700B amplifier, filtered
at 2.6–3 kHz, amplified five times, and then digitized at 20 kHz.

In experiments involving activation of both Chrimson and
Channelrhodopsin 2 (ChR2), the 635-nm laser at 0.1–0.4 mW was
used first to establish stable EPSCs triggered by Chrimson, with
the amplitude typically between 100–200 pA. The 635-nm laser
was then decreased to a minimal threshold power, which barely
induced EPSCs (i.e., 0–20 pA). The 445-nm laser was then used at a
power less than or equal to this threshold power. This precautious
procedure further minimized the chance of cross contamination
between Chrimson-induced and ChR2-induced EPSCs in a single slice
setup. In all experiments, the laser pulse duration was set at 1ms. In re-
cording of EPSCs, GABAergic receptor antagonists were not included.
Although previous studies show that action potentials could be triggered
in NAc fast-spiking interneurons (FSIs) by optogenetic stimulation of
glutamatergic inputs, the laser powers were relatively high (Yu et al.,
2017). In the current studies, very low laser powers were employed to
minimize cross-projection contamination, reducing the likelihood of
triggering action potentials in FSIs. Furthermore, MSNs were recorded
at �70mV, which was close to the reversal potential of GABAergic syn-
apses, further minimizing the potential contribution of GABAergic
transmission to our recorded synaptic responses.

The EPSC rise time was defined as the time that the EPSC rose from
10% of its peak amplitude to the peak. The EPSC decay time was defined
as the time that the EPSC decay declined from its peak to 37% of its peak
value. The PPR was measured for each two-pulse train and then aver-
aged across all trains.

Data acquisition and statistics
All results are shown as mean6 SEM. Most experiments were replicated
in 4–16 mice. All data collection was randomized. All data were assumed
to be normally distributed. No statistical methods were used to predeter-
mine sample sizes, but our sample sizes were similar to those reported in
previous publications with similar experimental designs (Wang et al.,
2018; Wright et al., 2020; Xia et al., 2020; Ge et al., 2021). All data were
analyzed offline, and investigators were not blinded to experimental con-
ditions during the analyses.

To detect the induction of LTP, one-way ANOVA repeated measures
was used to compare the EPSC amplitudes before and after Sync stimu-
lation. The mean EPSC amplitudes were calculated by averaging all
EPSCs over the time segment of 5min for each condition. To compare
the LTP magnitude, the mean amplitudes of EPSCs over the last 5-min
period of recording after Sync were used for comparison.

A total of 242 mice were used for this study, among which 67 mice
were excluded from the final data analysis because of the following rea-
sons: (1) four mice were excluded because of health issues after surgeries
(e.g., .20% drop in body weight in a day); (2) 55 mice were excluded
because of off-target stereotaxic injections or poor viral expression; and
(3) eight mice were excluded because of experimental failures (e.g.,
unsuccessful slice preparations, failed recordings, or other experimental
incidents). No animals were excluded after data acquisition was accom-
plished. Data from male and female mice were compared whenever pos-
sible but as no trend toward difference (i.e., p, 0.1) was detected for
any key endpoints, they were combined. Repeated experiments for the
same group were pooled together for statistical analysis. For all datasets,
the sample sizes are presented as the number of recordings. Number of
animals were presented in the figure legends. Statistical significance was
assessed using paired or unpaired t tests, or one-way or two-way
ANOVA followed by Bonferroni post hoc test, as specified in the related
text. Two-tailed tests were performed for all analyses, and statistical sig-
nificance was set at p, 0.05. Statistical analyses were performed in
GraphPad Prism (v7) and SPSS v19 (IBM).

Results
Dual-rhodopsin system
To evoke both the vH-to-NAcSh and BLA-to-NAcSh trans-
missions to the same MSNs, we optimized a dual-rhodopsin
optogenetic system, involving viral expression of ChR2 and

Chrimson, which are preferentially activated by lights with
different wavelengths (Klapoetke et al., 2014; Fig. 1A). We
first determined the laser parameters that could selectively
activate ChR2-expressing versus Chrimson-expressing pre-
synaptic fibers without cross-contamination. Specifically,
we injected AAV-ChR2-EYFP or AAV-Chrimson-tdTomato
into one of the two NAcSh projecting regions. Five to eight
weeks later, we prepared the NAc brain slices, in which
EYFP or tdTomato signals were detected in presynaptic fibers,
indicating the expression of ChR2 or Chrimson, respectively.
Using whole-cell voltage-clamp recording, we measured synaptic
currents in NAcSh MSNs evoked by laser stimulation (pulse du-
ration, 1ms); lasers at the wavelength of 445, 473, or 635 nm
were sequentially applied (Fig. 1B). For ChR2-expressing presyn-
aptic fibers, both 445- and 473-nm lasers, but not the 635-nm
laser, evoked synaptic responses in NAcSh MSNs (Fig. 1C–E).
Notably, the 635-nm (red) laser at �0.5 mW activated Chrimson
(see below) but did not trigger ChR2-evoked synaptic responses,
and thus could be used for Chrimson-selective stimulation.
For Chrimson-expressing presynaptic fibers, both the 473-
and 635-nm lasers evoked synaptic responses with the 635-
nm laser exhibiting higher efficacies. The 445-nm laser did
not evoke synaptic responses when the laser power was set at
0.5 mW or lower (Fig. 1F–H). As such, the 445 nm (purple)
laser at �0.2 mW was used for ChR2-selective stimulation
under our experimental condition. These optogenetically
evoked synaptic responses exhibited fast onset, activation,
and decay (see Fig. 1MN), and, in similar prior studies, could
be inhibited by glutamate receptor-selective antagonists,
consistent with EPSCs (Lee et al., 2013; Ma et al., 2014; Xia et
al., 2020). We thus used this dual-rhodopsin system to evoke
EPSCs selectively from vH-to-NAcSh versus BLA-to-NAcSh
synapses in the following experiments.

We expressed bilaterally ChR2 and Chrimson in the vH and
BLA, respectively, in the same mice, and evoked EPSCs in MSNs
receiving convergent vH-to-NAcSh and BLA-to-NAcSh projec-
tions (Fig. 1I). We designed a continuous stimulation protocol
(;20min), in which the purple versus red lasers (pulse duration
1ms) were alternatingly applied, separated by 7.5 s, such that
each projection was stimulated every 15 s (Fig. 1J). In mice in
which the expression of both ChR2 and Chrimson was sufficient,
we could evoke EPSCs from both projections in most recorded
NAcSh MSNs. When stimulation was applied to each projection
in a paired-pulse fashion (interpulse interval 50ms), EPSCs from
both vH-to-NAcSh and BLA-to-NAcSh synapses exhibited a
wide range of paired pulse ratios (PPRs; quantified as the ratio
of the amplitude of the second EPSC over the amplitude of the
first EPSC), suggesting that the basal probability of presynaptic
release (Pr) and transmission efficacy vary substantially among
synapses in each projection (Fig. 1K,L). In the same MSNs, the
mean PPR of vH-to-NAcSh synapses was lower than BLA-to-
NAcSh synapses (vH, 1.26 0.1; BLA, 1.76 0.1; n= 37 from 21
mice, p, 0.01, paired t test; Fig. 1L), which may be because of an
overall higher Pr in vH-to-NAcSh transmission or slightly differ-
ent properties of ChR2-mediated versus Chrimson-mediated
presynaptic activation (Z. Liu et al., 2016).

In the same MSNs, when the EPSCs from both projec-
tions were scaled and aligned to their peak amplitudes, they
exhibited similar rise and decay kinetics consistent with fast
glutamatergic transmission (in ms: rise, vH 2.16 0.1, BLA
2.16 0.1, p = 0.69; decay, vH 3.96 0.1, BLA 4.06 0.1, p =
0.37; n = 22 from 17 mice, paired t test; Fig. 1M,N). The sim-
ilar EPSC kinetics also suggested that, within the same
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MSNs, vH-to-NAcSh and BLA-to-NAcSh synapses share
similar dendritic filtering conditions. We then adjusted the stimula-
tion protocol such that after a period of alternating stimula-
tions, stimulations of the two projections were synchronized
(Sync; stimulation intensities remained constant), creating a time-
locked co-activation (Fig. 1O). In the same MSNs, the amplitude of
Sync-induced EPSCs was equal to the algebraic summation of
the amplitudes of EPSCs evoked separately from vH-to-NAcSh
and BLA-to-NAcSh synapses (in pA: vH 1 BLA, 304.16 19.1;
Sync, 306.06 20.2, n=37 from 21 mice, p = 0.77, paired t test;
Fig. 1P,Q). Such a lack of nonlinear summation is common
among synapses within the limbic inputs to the NAcSh,
reflecting minimal direct electrical interaction between the
two projections (Xia et al., 2020).

Sync-induced LTP at vH-to-NAcSh synapses
In cue-conditioned motivated behaviors, vH and BLA neu-
rons are activated with a similar time course, resulting in
potential time-locked co-activation of vH-to-NAcSh and BLA-
to-NAcSh synapses (Albertin and Wiener, 2015; Lansink et al.,
2016; Grewe et al., 2017; Jarzebowski et al., 2022). To determine
the cellular consequences of this time-locked co-activation,
we started the alternating stimulation protocol to first
establish baselines for EPSCs evoked from both vH-to-
NAcSh and BLA-to-NAcSh synapses, then applied the Sync
stimulation to the two projections eight times over 2 min
and returned to alternating stimulation trials (Fig. 2A).
Thus, EPSCs from each projection were sampled before, dur-
ing, and after Sync.
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Figure 1. Electrophysiological separation of vH-to-NAcSh and BLA-to-NAcSh projections with the Dual-rhodopsin system. A, Diagram showing injection of a single AAV, either AAV-ChR2-
EYFP or AAV-Chrimson-tdTomato, in a single NAcSh-projecting brain region. B, Diagram showing the experimental setup, in which EPSCs were recorded from NAcSh MSNs in response to opto-
genetic stimulation of single rhodopsin-expressing presynaptic fibers by sequential application of lasers of three different wavelengths. C, Example EPSCs evoked in the same MSN by optoge-
netic stimulation of ChR2-expressing presynaptic fibers with 445-, 473-, or 635-nm laser. D, Summary of the amplitudes of ChR2-evoked EPSCs by 445-, 473-, and 635-nm lasers at different
powers. E, Summary of the same results in D after normalizing the amplitudes of EPSCs to those evoked by the 445-nm laser at 2 mW. F, Example EPSCs evoked by optogenetic stimulation of
Chrimson-expressing presynaptic fibers with 445-, 473-, or 635-nm laser. G, Summary of the amplitudes of Chrimson-evoked EPSCs by 445-, 473-, and 635-nm lasers at different powers. H,
Summary of the same results in G after normalizing the amplitudes of EPSCs to those evoked by the 635-nm laser at 2 mW. I, Diagram showing recording of the same MSN in response to
optogenetic stimulation of vH-to-NAcSh versus BLA-to-NAcSh projections. J, Schematics of the alternating stimulation protocol, in which the ChR2-expressing vH projection and Chrimson-
expressing BLA projection were alternatingly stimulated with a two-pulse train: interpulse interval, 50ms; train interval within each projection, 15 s; train interval between the two projections,
7.5 s. K, EPSCs induced by the alternating stimulation protocol in an example MSN (colored traces depict the average of individual gray traces). L, Summary showing a higher mean PPR at
BLA-to-NAcSh synapses compared with vH-to-NAcSh synapses. M, Example EPSCs from vH-to-NAcSh and BLA-to-NAcSh synapses scaled and aligned at their peaks. N, Summary showing similar
rise and decay kinetics of EPSCs from vH-to-NAcSh versus BLA-to-NAcSh synapses. O, Schematics of Sync protocol, in which the application of 445- and 635-nm lasers was synchronized over
2 min (15 s apart) after the alternating stimulation procedure. P, Example EPSCs evoked by alternating stimulation of vH-to-NAcSh and BLA-to-NAcSh projections and by Sync stimulation. Q,
Summary showing that summed amplitudes of vH-to-NAcSh and BLA-to-NAcSh EPSCs in individual MSNs were similar to the amplitudes of Sync-evoked EPSCs. **p, 0.01
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Sync induced a persistent increase in the amplitudes of EPSCs
from vH-to-NAcSh synapses, an LTP phenomenon (F(4,132) =
17.6, p, 0.01, n= 34 from 19 mice, one-way ANOVA repeated
measures followed by Bonferroni post hoc test; Fig. 2B,C). In par-
allel, we also measured the PPR in each MSN. The averaged PPR
across all recorded MSNs was similar before versus after Sync
(p=0.09, paired t test; Fig. 2D). However, we noticed the high
variability of PPR among individual MSNs (Figs. 1L, 2D,H). The
variable data created an opportunity for correlational analysis.
When the normalized EPSC amplitude after Sync was plotted
against the normalized PPR (PPRafter Sync/PPRbefore Sync) in each
MSN, a negative correlation was detected (R2 = 0.42, p, 0.01;
Fig. 2E). Thus, a potential increase in the Pr of presynaptic
release was linked to the expression magnitude of this LTP.
In contrast to vH EPSCs, Sync did not induce detectable
changes in BLA EPSCs (F(4,132) = 1.1, p = 0.34, n = 34 from
19 mice, one-way ANOVA repeated measures followed by
Bonferroni post hoc test), or their PPRs (p = 0.18, paired t
test; R2 = 0.02, p = 0.38; Fig. 2F–I). Taken together, a brief
time-locked co-activation of the vH and BLA projections
selectively induced LTP at vH-to-NAcSh synapses.

It is worth noting that the lack of heterosynaptic plasticity at
BLA-to-NAcSh synapses is not likely to result from the poten-
tially different properties of Chrimson-mediated presynaptic
depolarization. In our parallel studies, a 20-Hz stimulation
of Chrimson-expressing BLA presynaptic fibers induces
monosynaptic LTP at BLA-to-NAcSh synapses (Xia et al.,
2020).

LTP in D1 and D2MSNs
MSNs that preferentially express dopamine D1 receptors versus
D2 receptors comprise the two major neuronal populations in
the NAc (Gong et al., 2003; Gerfen and Surmeier, 2011). D1 and
D2 MSNs are coupled with different intracellular signaling path-
ways in response to dopamine and imbedded in different neural

circuits that regulate motivated behavior (Allichon et al., 2021;
Zinsmaier et al., 2022). To determine whether this Sync-induced
LTP was D1 or D2 MSN-specific, we employed a mouse line in
which D1 MSNs are genetically tagged with tdTomato (Shuen et
al., 2008; Ade et al., 2011). Extensive prior studies demonstrate
that, in brain slices, the presence versus absence of tdTomato flu-
orescence reliably predicts D1 versus D2 MSNs (Shuen et al.,
2008; Ade et al., 2011; Lobo et al., 2013; Graziane et al., 2016).
This identification method was thus used here to operationally
define these two neuronal types.

In D1-tdTomato mice, we expressed ChR2 and Chrimson in
the vH and BLA, respectively. For a direct comparison of D1 ver-
sus D2 MSNs, in each experiment, we performed dual-recording
to simultaneously record a tdTomato -positive MSN and an adja-
cent tdTomato-negative MSN, in response to optogenetic stimu-
lation of the vH-to-NAcSh and BLA-to-NAcSh projections
(Fig. 3A). Optogenetic stimulation of either vH-to-NAcSh or
BLA-to-NAcSh projection evoked EPSCs in both simultaneously
recorded D1 and D2 MSNs (Fig. 3B). Furthermore, the ampli-
tudes of EPSCs were comparable between vH-to-D1 versus
vH-to-D2 synapses, as well as between BLA-to-D1 versus BLA-to-
D2 synapses (in pA: vH-D1 169.76 18.6, vH-D2 215.06 18.6,
p=0.07; BLA-D1 154.26 21.3, BLA-D2 126.36 17.5, p=0.38;
paired t test, n=27 pairs from 21 mice; Fig. 3C), suggesting overall
unbiased intraprojection innervation of D1 versus D2 MSNs. We
did not intend to compare the innervation intensity between vH-
to-NAcSh and BLA-to-NAcSh projections, because of the lack of
approaches that could calibrate the presynaptic activation levels
between the two projections.

After establishing stable baselines over the alternating stimu-
lation protocol, we applied the 2-min Sync protocol (Fig. 3D),
which simultaneously induced LTP at both vH-to-D1 and vH-
to-D2 synapses (F(2,52) = 17.5, p, 0.01, two-way ANOVA with
repeated measures; p, 0.01 before versus after Sync for both D1
and D2, Bonferroni post hoc test), but not at BLA-to-D1 or BLA-
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Figure 2. Sync-induced heterosynaptic LTP at vH-to-NAcSh synapses. A, Experimental schematics for inducing Sync-induced LTP. B, F, Trials of amplitudes of EPSCs from vH-to-NAcSh (B)
and BLA-to-NAcSh (F) synapses in an example MSN before and after Sync. C, G, Summaries showing that Sync stimulation of vH-to-NAcSh and BLA-to-NAcSh projections selectively induced LTP at
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to-D2 synapses (F(2,52) = 0.32, p = 0.70, two-way ANOVA;
p = 0.45, D1 versus D2 after Sync, paired t test; Fig. 3D–H).
However, compared with vH-to-D2 synapses, the magni-
tude of LTP at vH-to-D1 synapses was higher, indicating a
D1 MSN-biased feature of this LTP (p, 0.01, paired t test;
Fig. 3F).

To address whether the time-locked activation was essential
for the induction of this LTP, we used the same procedure
but recorded EPSCs from only one projection without Sync.
Without Sync, neither vH-to-D1/2 nor BLA-to-D1/2 synap-
ses exhibited potentiation (vH, F(4,56) = 0.4, p = 0.40; BLA,
F(4,56) = 0.4, p = 0.80, two-way ANOVA repeated measures),
while in the interleaved controls, in which Sync was applied,
vH-to-D1 and vH-to-D2 synapses exhibited LTP (vH, F(4,28) =
3.9, p = 0.01; BLA, F(4,28) = 1.1, p = 0.40, two-way ANOVA
repeated measures; p, 0.01 before versus after Sync for both
vH-D1 and vH-D2, Bonferroni post hoc test), with D1 MSNs
exhibiting higher LTP magnitude compared with D2 MSNs
(p = 0.01, paired t test; Fig. 3I–N). Thus, LTP induction at vH-

to-NAcSh synapses required the simultaneous activation of
BLA inputs, indicating this LTP is heterosynaptically induced.

Dopamine signaling
To determine the cellular mechanisms that were activated
to induce this LTP, we first examined NMDA receptors
(NMDARs), well-known coincidence detectors that mediate the
induction of several forms of LTP at glutamatergic synapses.
However, including the NMDAR-selective antagonist D-AP5 (50
mM) in the recording bath did not prevent Sync-induced LTP at
either vH-to-D1 or vH-to-D2 synapses, and did not induce
changes at BLA-to-D1 or BLA-to-D2 synapses (vH, F(4,76) =
11.6, p, 0.01; BLA, F(4,76) = 2.3, p = 0.07; p, 0.01 before ver-
sus after Sync for both vH-D1 and vH-D2; Bonferroni post
hoc test; Fig. 4A,B). We next examined GABAA receptor
(GABAAR)-mediated transmission, which is involved in sev-
eral forms of heterosynaptic plasticity (Chevaleyre and
Castillo, 2004; Q.S. Liu et al., 2005). Including the GABAAR-
selective antagonist picrotoxin (100 mM) in the recording
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bath also did not prevent Sync-induced LTP at vH-to-D1 or
vH-to-D2 synapses (vH, F(4,76) = 9.1, p, 0.01; BLA, F(4,76) =
2.1, p = 0.10, two-way ANOVA; p, 0.05 before versus after
Sync for vH-D1 and vH-D2, Bonferroni post hoc test; Fig.
4C–E). It is worth noting it appeared that the difference in
LTP magnitudes between vH-to-D1 versus vH-to-D2 synap-
ses was neutralized in the presence of D-AP5 or picrotoxin
(Fig. 4A,C). Despite these effects, the results ruled out
NMDARs and GABAARs in the induction of this Sync-
induced heterosynaptic LTP.

Projecting from the ventral tegmental area (VTA), dopaminer-
gic fibers in the NAcSh form synapses around glutamatergic syn-
apses on MSN dendrites, regulating synaptic transmission both
presynaptically and postsynaptically (Sesack and Grace, 2010;
Tritsch and Sabatini, 2012). Targeting dopamine (DA) signaling,
we included either the D1 receptor-selective antagonist SCH23390
(1 mM) or the D2 receptor-selective antagonist eticlopride (0.1 mM)

in the recording bath. SCH23390, but not eticlopride,
prevented Syn-induced LTP at both vH-to-D1 and
vH-to-D2 synapses, and neither of these antago-
nists affected BLA-to-D1 or BLA-to-D2 synaptic
transmission (SCH-vH, F(3,21) = 1.5, p= 0.24; SCH-
BLA, F(3,21) = 0.8, p= 0.48; eti-vH, F(3,15) = 15.7,
p, 0.01; eti-BLA, F(3,15) = 1.1, p=0.37, two-way
ANOVA repeated measures; p, 0.01 before versus
after Sync for both vH-eti-D1 and vH-eti-D2; Fig.
5A–D). Thus, the D1 receptor-coupled signaling is
an essential component within the heterosynaptic
mechanism that mediates the induction of this het-
erosynaptic LTP.

D1 receptors are G-protein-coupled receptors
expressed at both presynaptic and postsynaptic ter-
minals as well as glial cells (Tritsch and Sabatini,
2012). The higher LTP magnitude in D1 over D2
MSNs (Fig. 3F) prompted us to test whether the
postsynaptic D1 receptors were essential for LTP
induction. In the recording electrode, we included
guanosine 5’-O-2-thiodiphosphate (GDP-b -S;
1 mM), which antagonizes G-protein signaling.
While the same GDP-b -S-based approach dis-
rupts postsynaptic D1 or D2 receptor-mediated
synaptic modulation (Maguire and Werblin,
1994; Nisenbaum et al., 1998; Schoffelmeer et
al., 2000; Nimitvilai et al., 2017), it did not pre-
vent Sync-induced LTP at vH-to-D1 or vH-to-
D2 synapses, and did not affect BLA-to-D1/2
synaptic transmission (vH, F(3,33) = 7.8, p, 0.01;
BLA, F(3,33) = 2.0, p=0.14, two-way ANOVA re-
peated measures; p, 0.01 before versus after Sync
for both vH-D1 and vH-D2; Fig. 5E,F). These results
do not support an involvement of postsynaptic D1
receptors, leaving the possibility that presynaptic or
non-MSN expressed D1 receptors contribute to the
induction mechanism.

Lacking rhodopsin expression, VTA-to-NAcSh
dopaminergic fibers were not likely to be activated
directly by Sync stimulation. As such, a lingering
question is whether the above effects of D1-coupled
signaling were initiated by DA released from dopa-
minergic fibers. To address this, we employed DAT-
Cre mice and selectively expressed an inhibitory
DREADD (hM4Di) in VTA DA neurons in addition
to the dual-rhodopsin expression. During recording,
we superfused the NAc slices with CNO (10 mM) to

attenuate the potential activation of dopaminergic fibers. Under
this condition, vH-to-NAcSh synapses failed to develop Sync-
induced LTP, and BLA-to-NAcSh synaptic transmission was not
affected (vH-hM4D, F(3,33) = 0.2, p=0.90; vH-control, F(3,39) =
7.7, p, 0.01; BLA-hM4Di, F(3,33) = 1.1, p=0.37; BLA-hM4Di,
F(3,33) = 0.6, p=0.60, two-way ANOVA repeated measures; Fig.
6A,B). Thus, possibly through local circuits or non-neuronal cells,
co-activation of vH-to-NAcSh and BLA-to-NAcSh projections
indirectly activated adjacent dopaminergic terminals, and the
resulting activation of D1 receptors provided a permissive condi-
tion for the induction of this heterosynaptic LTP (Fig. 6C,D).

Discussion
Using a dual-rhodopsin system, we demonstrated a heterosyn-
aptic LTP at vH-to-NAcSh synapses induced by time-locked
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co-activation of BLA-to-NAcSh projections. This LTP may
serve a circuit mechanism through which cue-encoding
inputs temporally contingent with arousing inputs acquire
increased power to excite NAcSh MSNs and promote cue-
conditioned reinforcement.

Heterosynaptic interaction/plasticity
The similar EPSC kinetics suggest that vH-to-NAcSh and BLA-
to-NAcSh synapses reside on similar dendritic locations (Fig.
1M,N). Indeed, most limbic projections form synapses on the
same dendritic segments of NAcSh MSNs, and on many occa-
sions, these synapses are organized into clusters (French and

Totterdell, 2002, 2003; Xia et al., 2020). These anatomic align-
ments facilitate both dendritic summation and heterosynaptic
plasticity.

Few axo-axonic synapses or double-headed spines are
observed in the NAc, predicting that most axospinous synapses
are self-confined, each encoding unconvoluted information (Xia
et al., 2020). Echoing this prediction, EPSCs from vH-to-NAcSh
and BLA-to-NAcSh synapses did not exhibit nonalgebraic sum-
mation (Fig. 1P,Q). Through algebraic summation, two subthres-
hold vH and BLA inputs can be integrated as a suprathreshold
drive for NAcSh MSNs. Consistent with this viewpoint, co-stim-
ulation of the hippocampal and BLA projections produces a
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synergistic effect on evoking action potentials in NAc MSNs
(O’Donnell and Grace, 1995; Mulder et al., 1998).

Beyond the transient effect, our results show that long-term
plasticity could be induced heterosynaptically at vH-to-NAcSh
synapses. Unlike monosynaptic plasticity at vH-to-NAc synapses
induced by sole activation of the same synapses (Dong et al.,
2007; Ji et al., 2015; LeGates et al., 2018), Sync-induced LTP relies
on co-activation of other synapses and exhibits several heterosy-
naptic features that may hold the key to understanding the in
vivo interaction between vH-to-NAcSh and BLA-to-NAcSh pro-
jections. Specifically, Sync involved temporally contingent co-
activation of heterosynaptic inputs, recapitulating the commonly
observed activation patterns of vH and BLA during cue-condi-
tioned motivated behaviors (Tye et al., 2008; Lansink et al., 2012;
Leathers and Olson, 2017; Klee et al., 2021). We speculate that
this or similar heterosynaptic plasticity is routinely induced in
vivo to set/reset the vH-to-NAcSh transmission. Consistently,
although LTP/LTD can be induced independently in hippocam-
pus-to-NAc or BLA-to-NAc projections, a successful induction
in one input often requires activity from the other (Mulder et al.,
1997, 1998; Gill and Grace, 2011; Chong et al., 2022).

Dopamine signaling
It has long been known that dopamine regulates monosynaptic
plasticity. This is exemplified in spike timing-dependent synaptic
plasticity (STDP) observed in several limbic regions, in which
co-incidental DA-signaling either facilitates or polarizes the
STDP induction (J.C. Zhang et al., 2009; Xu and Yao, 2010; Ji et
al., 2017). By demonstrating the essential role of DA in Sync-
induced LTP, our current findings reveal a heterosynaptic basis
through which co-incidental DA signals provide a time stamp
that tags a specific memory (Wise, 2004).

Midbrain DA axons converge with vH and BLA glutamater-
gic axons at NAc MSN dendrites (Totterdell and Smith, 1989;
Sesack and Pickel, 1990; Johnson et al., 1994), where DA presyn-
aptic terminals reside in the intersynapse spaces or on dendritic
shafts between glutamatergic synapses (Pickel et al., 1988; Sesack
and Grace, 2010), providing an efficient anatomic alignment for
DA to bridge vH and BLA synapses (Fig. 6C). Pharmacological
inhibition of D1 receptors or chemogenetic inhibition of DA
axons prevented the Sync-induced LTP. Below, we discuss sev-
eral questions related to DA and D1 receptors as key contribu-
tors to heterosynaptic signaling.

First, our optogenetic stimulation was confined to rhodopsin-
expressing fibers. How were the DA axons co-activated? In anes-
thetized rats, stimulating BLA neurons increased DA levels in
the NAc (Floresco et al., 2001). While this may result from the
co-activation of a BLA-to-VTA projection, it might also be medi-
ated by glutamatergic receptors on DA nerve terminals (Gracy
and Pickel, 1996; Sesack et al., 2003) or local circuits within the
NAc. Specifically, cholinergic interneurons (ChNs) within the
striatum (including NAc) receive the same cortical/subcortical
glutamatergic projections that drive MSN activation (Zhou et al.,
2003; Guo et al., 2015; Hirose et al., 2021). ChN-released acetyl-
choline activates nicotinic receptors on presynaptic DA termi-
nals, evoking DA release (C. Liu et al., 2022). Through this
ChN-based local circuit, it is possible that Sync activation of
vH/BLA terminals simultaneously increased ChN firing, pro-
viding the time-locked DA signal.

Second, if not postsynaptically (Fig. 5), where were the
D1 receptors that provided heterosynaptic signaling? In addition
to postsynaptic location, D1 receptors are also expressed presy-
naptically on glutamatergic terminals and axonal varicosities

(Levey et al., 1993; Caillé et al., 1996; Naha et al., 2009), as well as
on astroglia (Vermeulen et al., 1994; Zanassi et al., 1999;
Miyazaki et al., 2004; Nagatomo et al., 2017). In NAc slices, DA
or D1 receptor-selective agonists, or optogenetic stimulation of
DA terminals, decreases synaptic release Pr, indicating a pre-
synaptic impact of D1 receptors (Nicola et al., 1996; Nicola
and Malenka, 1997; L. Zhang et al., 2014; Yu et al., 2019). While
this presynaptic impact can be mediated by presynaptic D1
receptors, evidence shows that it can be mediated alternatively
through transsynaptic signaling from postsynaptic D1 receptors
on MSNs or interneurons (Harvey and Lacey, 1996, 1997;
Chergui and Lacey, 1999). Furthermore, activation of D1 recep-
tors on NAc astrocytes induces astrocytic release of ATP/
adenosine, which, in turn, depresses synaptic transmission
to MSNs through presynaptic A1 receptors (Zanassi et al.,
1999; Corkrum et al., 2020). These results demonstrate the
presynaptic impact of D1 receptors, although these synapse-in-
hibitory effects may not directly contribute to the synaptic poten-
tiation in Sync-induced LTP.

Third, D1 receptors play multi-faceted roles in synaptic regu-
lation (Tritsch and Sabatini, 2012). Minutes of agonist perfusion
or strong stimulation of dopaminergic terminals may persis-
tently activate D1 receptors at most subcellular locations.
Under this condition, the synapse-inhibitory effect dominates.
However, when dopamine is introduced focally to activated
glutamatergic synapses on striatal MSNs within a 0.3–2 s time
window, a cAMP-PKA signaling-dependent synapse-enhanc-
ing effect emerges (Yagishita et al., 2014; Kasai et al., 2021). In
slices, inhibition of D1 receptors or disruption of DA inputs
prevents the LTP induction in NAc or striatal MSNs (Centonze
et al., 1999; Calabresi et al., 2000; Kerr and Wickens, 2001;
Picconi et al., 2003; Kung et al., 2007; Akopian et al., 2008;
Pawlak and Kerr, 2008; Schotanus and Chergui, 2008; Shen et al.,
2008; Dallérac et al., 2011; but see LeGates et al., 2018), highlight-
ing the synapse-enhancing impact of D1 receptor-coupled sig-
naling. Thus, activation of D1 receptors can either decrease or
increase the efficacy of glutamatergic synaptic transmission,
depending on their subcellular locations, interacting partners
and activation intensities/durations. For the Sync-induced
LTP, we speculate that when activated vH synapses meet the
focal and temporally contingent DA signals, the persistent
synapse-enhancing effect predominates.

Circuit and behavioral implications
Increasing evidence suggests that NAc MSNs are organized into
different neuronal ensembles, each encoding a specific aspect of
behavior (Pennartz et al., 1994; Robinson and Carelli, 2008;
Warren et al., 2017; Wright and Dong, 2021). The Sync-induced
LTP may serve a circuit mechanism for the formation of NAc
ensembles. Glutamatergic projections drive the activation of
NAc MSNs, and MSNs are more effectively activated when mul-
tiple glutamatergic projections are activated simultaneously
(O’Donnell and Grace, 1995; Sesack and Grace, 2010). The dem-
onstration of hippocampal place cells and contextual cue-specific
engrams/ensembles indicate that separate vH neuronal popula-
tions encode different conditioning cues (Lansink et al., 2012;
Josselyn et al., 2015; Moser et al., 2017; Tonegawa et al., 2018;
Bladon et al., 2019). Similarly, largely separate BLA neurons are
activated during different cue-conditioned motivated behaviors
(Redondo et al., 2014; Bocchio et al., 2017; Gründemann et al.,
2019). Thus, for a given cue-conditioning process, select popula-
tions of vH and BLA neurons and their projections to NAc are
co-activated. Through Sync-induced LTP, only the co-activated
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vH-to-NAc subprojections acquire increased efficacies and pref-
erentially activate the MSNs that are innervated by this subpro-
jection, thus defining the ensemble neurons. This input-based
ensemble recruitment can be particularly important for NAc
MSNs, which lack intrinsic pace-making machinery (Wright and
Dong, 2021; Zinsmaier et al., 2022).

In cue-conditioned motivated behaviors, the conditioning
cue obtains reinforcing power. Despite their interwoven roles,
the vH and BLA projections may preferentially transmit cue-
associated versus incentive-associated information, respectively.
In anesthetized rats, strong, but not weak, stimulation of hippo-
campal inputs evokes action potentials in NAcSh MSNs, indicat-
ing that many vH-to-NAcSh inputs are subthreshold in the basal
condition (O’Donnell and Grace, 1995; Mulder et al., 1997).
Through Sync-induced LTP, some subthreshold vH inputs that
are co-activated with BLA inputs can be tuned to suprathreshold
inputs, providing an input-specific circuit mechanism through
which the conditioning cue acquires or increases its motivational
drive to reinforce a behavior.

It has been proposed that NAc afferents interact to mutually
gate information flow to MSNs (O’Donnell and Grace, 1995).
Interactions between these afferents can enable contextual repre-
sentations of affect that support approach/avoidance behavior in
an immediate sense. However, if the condition is extreme, such
as life-threatening, it would be more effective to avoid the con-
text rather than engaging in another negative encounter. In
response to such stimuli with high salience, the Sync-induced
LTP enables a long-term instantiation of an emotional state on
the given context under the “teaching signal” from the dopamine
system. As a result, the next time this context is encountered, it
can be actively avoided without the need to again engage the
BLA-encoded valence inputs.
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