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THE FEASIBILITY OF IMAGES

LBL-27088

RECONSTRUCTED WITH THE METHOD OF SIEVES

Eugene Veklerov and Jorge Llacer
Engineering Division
Lawrence Berkeley Laboratory
1 Cyclotron Road, Berkeley, CA 94720

Abstract

The concept of sieves has been applied with the Max-
imum Likelihood Estimator (MLE) to image reconstruc-
tion. While it makes it possible to recover smooth images
consistent with the data, the degree of smoothness pro-
vided by 1t is arbitrary.

It is shown that the concept of feasibility is able to re-
solve this arbitrariness. By varying the values of parame-
ters determining the degree of smoothness, one can gener-
ate images on both sides of the feasibilty region, as well as
within the region. Feasible images recovered by using dif-
ferent sieve parameters are compared with feasible results
of other procedures. One— and two-dimensional examples
using both simulated and real data sets are considered.

I. INTRODUCTION

The use of the maximum likelihood criterion in emis-
sion tomography has been recognized as a promising ap-
proach to image reconstruction. Its numerous merits have
been widely discussed in literature. An “unfortunate fact
of life” for this criterion is also well known: the recon-
structions maximizing the criterion suffer from the image
break-up effect. This effect takes place regardless of any
specific algorithm maximizing this criterion. Furthermore,
it holds for other criteria, such as the weighted likelihcod
criterion proposed by Llacer and Veklerov in [1], that are
based on matching the image projections and the data as
closely as possible in a sense different from the maximum
likelihood. The essence of the image breakup effect has
been adequately explained by several authors and can be
summarized as follows. Due to the finiteness of the num-
ber of counts, the imperfection of data sampling and of
the transition matrix, the data contain noise and the max-
imum likelihood image tries to follow the noise in the data
too closely. For the badly posed inverse problem of tomo-
graphic reconstruction, the result is an amplification of the
noise in the image.

*This work has been supported by a grant from the National Can-
cer Institute (CA-39501) and the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

To overcome this effect, two remedies have been pro-
posed by adding a constraint to the solution, implemented
in the tmage space and in the projection space, respectively.
The first remedy is due to Snyder, Miller and others, see
[2] and [3]. It utilizes the method of sieves which restricts
the class of permitted images to those satisfying a smooth-
ness constraint. Alternatively, Snyder et al point out that,
instead of estimating an image, we can estimate another
quantity which is its filtered version. This approach uses
a “resolution” kernel. The former approach (sieves) stems
from the belief that, regardless of the data, the underlying
image that generated the data must have had some degree
of smoothness. The latter (resolution kernel) addresses the
issue of the finiteness of the resolution of the instrument
which does not allow us to see very small details. There-
fore, the authors postulate, if they cannot be seen anyway,
let us see their blurred version. In other words, both ap-
proaches make tacit use of a priori information about the
image to be recovered by discriminating in favor of smooth
images. In fact, Snyder et al, in [3], propose to use both
methods simultaneously to control both the image breakup
and the overshoot resulting from the use of sieves alone.

The main difficulty of the method of sieves, so far as
its implementation is concerned, lies in the arbitrariness
of the degree of smoothness. The method offers a family
of reconstructions, rather than a unique reconstruction,
the two extreme members of the family being the regular
broken—up maximum likelihood image and the uniformly
grey image. The resolution kernel has a direct physical
interpretation and, therefore, its parameters can be quan-
tified. However, as its authors point out, the resolution
kernel alone (without sieves) cannot remedy the problem.

The second remedy, in projection space, was proposed
by the authors of this paper in [4] and in subsequent pa-
pers. They defined the concept of feasibility as follows: an
image is said to be feasible if, taken as a radiation field,
it could have generated the initial projection data by the
Poisson process that governs radioactive decay. Histori-
cally, the concept of feasibility appeared in the works of
Trussell [11,12], who applied it to image restoration. As
applied to tomography, it appeared first as a “stopping”
rule for the EM algorithm in the MLE method. The fol-
lowing observation was reported in [4]. All feasible images
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Figure 1: The feasibility shell and a trajectory of the MLE.
Ordinate and abcissa are two out of many projection data
variables.

make up a closed shell surrounding the maximum likeli-
hood point, which is shown schematically in Fig. 1. All
points outside the shell correspond to images for which the
data and the forward projections are, on the average, too
far apart to be consistent with the Poisson distribution.
All points inside the shell correspond to images for which
- the data and the forward projections are too close. Finally,
all points belonging to the shell correspond to images for
which the differences between the data and the forward
projections are consistent with the Poisson assumption.
As the MLE iterative process progresses, it traverses the
area outside the shell, passes through the shell inward and
finally converges to a point inside the shell.

It was realized later {7,10] that feasibility is a fundamen-
tal property of a reconstruction and a necessary condition
for an image to be acceptable. Moreover, it was found in (7]
that the MLE is but one way of recovering feasible images.
Thus [7] describes a Bayesian algorithm recovering feasi-
ble images which are distinct from those recovered with
the MLE and discuses the finding that it is also possible to
obtain feasible images by iterating with the MLE past the
feasibility point and post-filtering with a Gaussian kernel
to return to the feasibility shell.

The rest of this paper examines the feasibility of recon-
structions recovered with the method of sieves, including
the resolution kernel. It is demonstrated that it is possible
to specify sieve and resolution parameters in such a way
that the generated trajectory converges to a point lying in
the feasibility shell. This resolves the uncertainty of the
method of sieves mentioned above. Finally, we compare
different images generated with the method of sieves with
feasible images generated by the MLE.

II. ONE-DIMENSIONAL CASE

The one-dimensional case serves as a convenient test—
bed model in this paper. The idea of feasibility is applied
to a one—dimensional experiment described in [2]. The
experiment was as follows.

A smooth Gaussian shaped profile was defined in the
interval [0.25, 0.75]. The interval was further subdivided
into 512 pixels (bins) and a Poisson process was generated
in each pixel with the mean proportional to the integral of
the Gaussian profile over the pixel. The total number of
counts was, on the average, 1000.

‘We take the results of the Poisson process as measured
data which are to be used to reconstruct the original Gaus-
sian. An unconstrained MLE process returns the exact
noisy data as a solution, since that is the solution with
maximum likelihood. In order to introduce a smoothness
constraint, two schemes were proposed in [2]. One is based
on using a penalty function, the other on convolution—
kernel sieve. We have implemented a slightly modified
version of the first scheme and the second scheme in its
original form. For the details, see Appendix A.

Both schemes include the parameter BW (bandwidth)
that determines the degree of smoothness and is defined
in [2). Figure 2 shows the estimates derived using the first
scheme with 4 values of that parameter (for aesthetic rea-
sons we averaged the values in every 3 adjacent bins in the
figure and showed them as one point).

BW | H
0.0001 | 172
0.001 | 87
0.005 | 25
0.01 | 16
005 | 24
01| 14

03| 39

0.5} 118

Table 1: The feasibility of one—dimensional reconstruc-
tions, as measured with the H parameter, as a function
of BW.

The computed “reconstructions” were then tested for
feasibility, as described in [4]. Note that the Gaussian pro-
file itself is feasible by definition. Roughly speaking, we
might expect that those reconstructions that on the aver-
age follow the data much more closely, or much less closely,
than the profile are not feasible. This guess was confirmed
by the results of the feasibility tests. A small sample of
these results is shown in Table 1. The parameter H (hy-
pothesis testing function) reflects the correctness of the hy-
pothesis that the reconstruction could have generated the

measured data by a Poisson process. For values H below |

approximately 30 to 40, we cannot reject that hypothesis,
i.e., we accept it.

When the values of BW are too small (less than 0.003
in our experiment), the reconstructions are much farther
away from the data than the Gaussian profile is from the

~
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Figure 2: Original and reconstructed values of the one—
dimensional Poisson process generated with a Gaussian
mean rate. The parameter BW is 0.001 (a), 0.01 (b), 0.1
(¢), and 0.5 (d).

data and the points of convergence lie outside the feasi-
bility shell. When BW is too large (more than 0.2), the
reconstructions follow the data much closer than the pro-
file follows the data and the points of convergence lie inside
the shell. Finally, the remaining range of BW (0.003 to
0.2) is such that the corresponding points of convergence
belong to the shell.

The range of acceptable BW computed above, 0.003 —
0.2, is rather wide but it is consistent with the results of
other tests. For example, the weak feasibility test defined
in [7] yielded the “best” value of BW between 0.08 and
0.09.

Finally, similar results were obtained when we applied
the second reconstruction scheme of Snyder et al to the
same problem of deriving maximum-likelihood estimates
of one—dimensional Poisson data.

III. TWO-DIMENSIONAL CASE

The results of the previous section suggest that the
method of sieves may produce feasible images if the corre-
sponding “smoothness” parameters are appropriately ad-
justed. These results have been extended on PET tomog-
raphy. To accomplish this, we chose to reconstruct Hofl-

man’s brain phantom, as we did in’ our previous papers,
such as [10], using real PET data supplied by UCLA.

Specifically, we applied the discrete version of the itera-
tive scheme proposed in [3] that is capable of suppressing
both the noise and the edge artifact. Let A*(b) be the es-
timated b-th pixel value at the n-th iteration and n*(d) —
the number of counts detected in the d-th tube. Then, the
iterative scheme is as follows:

n*(d)k(b, d)

1
2 A (e)k(c, d) 0

D
AHL(B) = A
(b) ();Z

where k(b,d) is the convolution of the original transi-
tion matrix with a Gaussian density of standard deviation
02 = 02 — ¢2. The original matrix was computed for the
geometry of the tomograph by the prescription of Shepp
and Vardi in [9]. B and D are the numbers of pixels and
tubes, respectively.

The parameters o5 and o, here are the standard devia-
tions of the sieve and resolution kernels, respectively. The
former has the effect of suppressing noise, the latter —
the edge artifact. This iterative scheme was carried out
to infinity (300 iterations sufficed for a data set with 1M
counts) and the final image was obtained by convolving
the results of the last iteration with the sieve kernel.

As we had done in our earlier work, the algorithm took
advantage of a pre—computed matrix. However, since the
matrix k(b,d) is the result of a convolution operation, it
may not be as sparse as it was in the “pure” MLE case
which could preclude storing it efficiently. Fortunately, for
the range of the parameters that are of interest to our ex-
periment, we could truncate the Gaussian density beyond
a square of 7 by 7 pixels in a 128 by 128 grid. This re-
sulted in a somewhat larger number of non—zero elements
in the matrix but the increase was still manageable. Just
as 1t was in the one—dimensional case, the purpose of this
two—dimensional experiment was to try to recover feasible
images by varying the “free” parameters o, and o,.

As was shown in [10], the original feasibility test intro-
duced in [4] for simulated data is not applicable to real
life situations where characteristics of the system are not
known exactly. That is why we developed a modified fea-
sibility test in [10] which was employed in the experiments
presented in this section. The resulting hypothesis testing
function H has values that depend on a parameter ¢ which
quantifies the degree of imprecision in the knowledge of the
matrix elements. Throughout the present experiments we
have used the same value of ¢ that led to reliable feasibil-
ity indications in [10] for the same data set. Note that the
modified feasibility test can distinguish only the points out-
side the feasibility shell from the points belonging to the
shell but not the latter from the points inside the shell.
Hence, an image is said to be feasible in the generalized
sense if it lies at or near the outer boundary of the shell.

Table 2 shows a few pairs of the parameters o, and o,
the unit of length being a pixel side (2.033 mm) on a 128
by 128 grid, and the resulting values of the parameter H



that quantifies feasibility. The reader is referred to {10]
for the details of computing H. Taking into account the
preceding discussion, feasible images are those for which H
is below 40 and which lie near the outside of the feasibility
shell.

o, | or | \Jo2—0? H
0.5 | 0.50 0.0 20.9
0.6 | 0.60 0.0 33.1
0.7 | 0.70 0.0 59.3
0.4 | 0.26 0.3 4.1
0.5 ] 0.40 0.3 16.9
0.6 | 0.52 0.3 31.5
0.7 | 0.63 0.3 55.2
0.5 | 0.00 0.5 6.6
0.6 | 0.33 0.5 14.8
0.7 { 049 0.5 25.2
0.8 | 0.62 0.5 65.1

1.0 { 0.00 1.0 17.3
1.1 § 0.46 1.0 32.5
1.2 ] 0.66 1.0 94.1
1.5 | 0.00 L5 20.1
1.6 | 0.56 1.5 31.5
1.7 | 0.80 1.5 56.6

Table 2: Pairs of o5 and o, and the resulting H values.

Note that the concept of feasibility, like any other con-
cept based on testing statistical hypotheses, is not crisp in
the sense that there is a grey area separating feasible and
unfeasible images. This lack of crispness follows from a
. measure of arbitrariness in choosing the allowable testing
error. Hence, there is a small amount of slack in pinpoint-
ing the threshold values.

The images corresponding to several pairs of the param-
eters in Table 2 are shown in Fig. 3. The data set that
generated the images contained 1 million (1M) counts and
was obtained from an ECAT-III tomograph at UCLA. The
approximately 6 per cent delayed coincidences correspond-
ing to random events were subtracted previous to the re-
construction, setting negative differences to zero. A feasi-
ble image obtained by the standard MLE by computing to
iteration 50 (past the feasibility point) and post-filtering
with a Gaussian 2-dimensional kernel of 0=0.6 pixels is
shown in Fig. 3a). Figure 3b) shows a standard MLE
reconstruction after 500 iterations, without any filtering,
showing the typical image breakup phenomenon. This im-
age is not feasible. Figure 3c) shows another non-feasible
image which has converged in the region between the fea-
sibility shell and the ML point. It corresponds to a value
of 0,=0.3 and ¢,.=0.0. Figure 3d) is a feasible image that
has been obtained with ¢,=0.7 and ¢,=0.49. It still ex-
hibits the image breakup effect. Figure 3e), also feasible,
corresponds to oy=1.6 and 0,.=0.55. It does not exhibit
image breakup. Finally, Fig. 6f) is a reconstruction that is
towards the outer layers of the feasibility shell (H=53.19),

which appears to be excessively smooth. It has 5,=1.8 and
0-=0.995.

The characteristics of the different feasible images ob-
tainable from the sieve and resolution kernel methods have
been studied further by reconstructing one data set with
55 million (55M) counts from the same ECAT-III tomo-
graph by several methods. In particular, attention has
been focused on bias in narrow valleys and ridges, which
would indicate overshoot of the solution, or ”edge artifact”.
With the very large number of counts, statistical errors
are kept to a minimum. Convergence has been assured by
carrying the iterative process to 500 iterations, where an
additional 100 iterations did not change the measured pa-
rameters significantly. The resulting reconstructions have
been compared to filtered-backprojection results from the
same data set, obtained with the "ramp” and the Shepp-
Logan filters, which were almost identical to each other
and considered unbiased.

The results of the analysis of the 1M and 55M recon-
structions indicate that: ‘

a) Feasible sieve reconstructions from the 1M count data
set which are acceptably smooth, but not too smooth, hav-
ing o, significantly smaller than o, suffer some degree of
edge artifact, resulting in biased images in narrow ridges
and valleys. The magnitude of peak-to-valley ratios may
be in error by as much as 8 per cent in the phantom stud-
ied, as determined from the 55M reconstructions.

b) As we make o, similar in value to ¢, to avoid edge
artifact, the resulting 1M images are, at first (05 = 0 =
0.6), still quite noisy. As we increase the value of the pa-
rameters they become suitably smooth (at approximately
os = or = 0.9) but then, they are leaving the feasibility
region.

Thus, although there are some reconstructions with ex-
cellent appearance, it is not easy to obtain images that

fulfill the three requirements of being adequately smooth,

little or no edge artifact and feasibility at the same time
if one’s demands are strict. There is a region, however, in
which the three conditions are close to being fulfilled.

It is interesting to note that the “optimum” image de-
scribed above (feasible, smooth and without overshoot),
can be obtained by letting the standard MLE iterate past
the stopping point and filtering back to feasibility with a
Gaussian kernel of 6=0.6 pixels, as in Fig. 3a). Letting the
MLE process iterate to “infinity” and then post-filtering,
which is equivalent to a sieve reconstruction with o5 = o,
= 0.6 pixels, results in a feasible but noisy image.

'

IV. CONCLUSIONS

This work continues our study of feasible images and
various ways of recovering them from real data sets in
cases in which the values of the transition matrix (rep-
resenting the instrument that generated the data) are not
known with great accuracy. It has been shown that the
method of sieves can be used as such a vehicle and, in

©
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Figure 3: Reconstructions of the 1 million count data set generated by the
ECAT-ITI tomograph. Feasible image by MLE and post-filtering (a), non-
feasible MLE results at iteration 500 showing image breakup (b), non-feasible
sieve reconstruction with ¢,=0.3, ¢,.=0.0 (c), feasible sieve results with param-
eters 0.7 and 0.49 (d), feasible sieve results with 1.6, 0.49 (e) and marginally
feasible results with parameters 1.8 and 0.995 (f).
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fact, it allows the user to recover a broad range of feasible
images, although only a small band of parameter values
yield acceptable images according to criteria of feasibility,
smoothness and lack of overshoot.

An interesting question to consider is why are the im-
ages recovered by the method of sieves in the region of
approximately o3 = o = 0.9 not feasible and why should
they, therefore, not be accepted.

The tomographic image reconstruction problem can be
described as an inverse problem that aims are removing the
“blurring” effects caused by two actions. The first action
is a convolution with a 1/r function due to taking line in-
tegrals over a plane and the second action is a convolution
with an approximately Gaussian kernel due to the finite
size and detection efficiency of the detectors. If the aim
of a reconstruction is to remove only the 1/r effects, then,
the unsharp reconstructions obtained with ¢; = o = 0.9
pixels and above may be quite acceptable. The test for
feasibility, however, will not be passed by such reconstruc-
tions because feasibility implies that the reconstruction, if
it were a radiation field, could have generated the initial
data by a Poisson process. Those sieve images are too
unsharp to have given the projection data.

If by some appropriate method we obtain an image that
not only “deconvolves” the 1/r effect of tomography, but
also some part of the Gaussian blurring function caused
by the detectors, we obtain sharper images that pass the
feasibility test.

Thus, whether one accepts an unfeasible, or marginally
feasible, image that is more blurred than a feasible one
depends on the criterion with which one is satisfied. We
consider it important to attempt to extract some of the
resolution lost in the detection process.

V. APPENDIX

In order to derive our algorithm for the scheme based
on using a penalty function, let us reproduce the necessary
equations from [2]. The goal is to maximize G(\) given by

2)

which consists of two components: L(\) is the log-
likelihood function and ®(\) is a function penalizing rough-
ness. Since the estimate A(z) is non—negative, the function
v(z) is introduced, such that y?(z) = A\(z) and equation
(2) becomes

G(\) = L(\) + ®(\)

G(y*) = L(¥*) + ®(v*) (3)

It was proved in [2] that for one particular choice of the
penalty function, which is a soft bandwidth constraint on
¥, the maximum of G(v?) is achieved when y(z) is the
solution of the equation:

N P
i =y M=

i=1

(4)

where

h(z) = c1 -exp(ca | 2 ) (5)
and the parameters ¢; and c; are related to the smoothness
constant.

To solve this equation, Snyder and Miller proposed an
iterative procedure and observed that the procedure con-
verges for all simulation experiments they attempted. In
the present paper we propose a similar but computation-
ally somewhat simpler procedure.

Successively substituting each of z;,z2,...,zn for z in
Eq. (4) and letting yx denote ¥(zx), we arrive at the fol-
lowing system of algebraic equations:

h= 2%1 hyi/vi
Y2 = D im1 h2i/yi

yN = %, hwvi/vs
where hig; = h(zx — 2;). A standard iterative method

for solving System (6) is to start with an arbitrary ap-
) (0) (0)
yoees BN

(6)

proximation y; and then compute the n-th

n=1,2,..) approxima.tion using the iterative procedure:
N e

W'=Y 75  (k=1..,N) (7
i=1 Yi

It is known (see e.g. Wait [5]) that procedure (7) would
converge to a unique solution if the mapping defined by
the right-hand sides of Procedure (7) were contracting.
However, it is not contracting in our case, which can easily
be seen in the trivial case N = 2. Since by definition
hi1 = ha2 and hy 2 = ha;, if we begin with y(o) = y(o)

I

the successive iterates oscilate: yj ) = =y
and yP = ¢V =y = ...

In order to overcome thls obstacle, we will employ the
procedure described by Isaackson and Keller [6], pp. 120
—122. In its simplest form, this procedure can be defined

by

(n-}-l)___o'5 Z kz

2=l y‘L

L +05-y”

(k=1,...,N) (8)

Note that procedure (8) is similar to the one suggested in
[2], p- 3867, which used the geometric mean to compute
the next iterate rather than the arithmetic mean in proce-
dure (8). In all the simulation experiments we attempted,
both schemes converged to the same solution, the rate of
convergence in both cases was geometric but, insofar as
computational complexity is concerned, procedure (8) is
slightly preferable.
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