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SLEEP DURATION/SLEEP QUALITY
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Study Objectives: Sleep duration has been associated with risk of dementia and stroke, but few studies have investigated the relationship between sleep 
duration and brain MRI measures, particularly in middle age.
Methods: In a prospective cohort of 613 black and white adults (mean age = 45.4 years) enrolled in the Coronary Artery Risk Development in Young Adults 
(CARDIA) study, participants reported typical sleep duration, dichotomized into moderate sleep duration (> 6 to ≤ 8 h) and short sleep duration (≤ 6 h) at 
baseline (2005–2006). Five years later, we obtained brain MRI markers of white matter including fractional anisotropy, mean diffusivity, and white matter 
hyperintensities.
Results: Compared to moderate sleepers, short sleepers had an elevated ratio of white matter hyperintensities to normal tissue in the parietal region 
(OR = 2.31, 95% CI: 1.47, 3.61) adjusted for age, race/sex, education, hypertension, stroke/TIA, depression, smoking status, and physical activity. White 
matter diffusivity was also higher, approximately a 0.2 standard deviation difference, in frontal, parietal, and temporal white matter regions, among those 
reporting shorter sleep duration in (P < 0.05 for all).
Conclusions: Short sleep duration was associated with worse markers of white matter integrity in midlife. These mid-life differences in white matter may 
underlie the link between poor sleep and risk of dementia and stroke. 
Keywords: sleep duration, white matter integrity, white matter hyperintensities, midlife
Citation: Yaffe K, Nasrallah I, Hoang TD, Lauderdale DS, Knutson KL, Carnethon MR, Launer LJ, Lewis CE, Sidney S. Sleep duration and white matter 
quality in middle-aged adults. SLEEP 2016;39(9):1743–1747.

INTRODUCTION
Abnormal sleep duration has been associated with an increased 
risk of stroke and dementia.1–4 Some studies suggest a “j-shaped” 
pattern of risk in which short and long sleep duration are both 
associated with elevated risk,1–4 and meta-analysis indicates 
that the risk of stroke may be 20% to 50% higher among those 
with short or long sleep.3 A number of cross-sectional studies 
have also demonstrated associations between sleep duration 
and worse cognitive performance5–8 with similar findings re-
ported in prospective studies for risk of cognitive decline,9,10 
but with minimal data on associations with white matter quality.

Very few studies have examined structural brain changes 
in relation to sleep duration even though measures of white 
matter abnormalities, including greater white matter hyperin-
tensity (WMH) volume, lower fractional anisotropy (FA), and 
increased mean diffusivity (MD), have been linked to cognitive 
deficits, dementia, and stroke.11–15 In one cross-sectional study 
of older adults, long sleep was associated with worse cogni-
tive function, and among participants with diabetes, increased 
white matter hyperintensities,16 while short sleep duration was 
associated with both cognitive decline and atrophy in another 
prospective study of healthy older adults.17 Moreover, it remains 
unclear how early in the life course these initial brain changes 
may begin. In this study, we examined the prospective associa-
tion of sleep duration with MRI markers of white matter quality 
and cognitive function in a cohort of middle-aged adults. We 
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Significance
Despite increasing data linking sleep quality to risk of dementia and stroke, few studies have investigated whether sleep duration is associated with MRI 
measures of white matter. Among middle-aged adults, short sleep duration was prospectively associated with MRI measures of reduced white matter 
quality, including elevated white matter diffusivity and white matter hyperintensities. Results indicate that sleep duration could be an important marker of 
white matter integrity, even in midlife, and support a link between sleep and outcomes like dementia and stroke.

hypothesized that short sleep duration would be associated with 
decreased white matter integrity and worse cognitive function.

METHODS
Participants were enrolled in the Coronary Artery Risk De-
velopment in Young Adults (CARDIA) study, a multi-site, 
longitudinal cohort of 5,115 adults aged 18–30 at baseline in 
1985–1986.18 At year 20 (our study baseline, 2005–06), 3,549 
individuals were enrolled in CARDIA. The CARDIA MRI 
Ancillary Study (2010–11) included 3 of the 4 CARDIA sites: 
Birmingham, AL, Minneapolis, MN, and Oakland, CA, and 
the targeted enrollment for the substudy was 700 individuals 
with the goal of balancing the distribution of race and sex. A 
total of 643 participants had complete data for the sleep ques-
tionnaire at baseline and also underwent brain MRI and a cog-
nitive assessment 5 years later.19 Compared to those without 
MRI data at the 5-year follow up, participants with MRI data 
were more likely to be white (61.4% vs. 51.2%) and more likely 
to have a college education (46.2% vs 39.9%, P < 0.05 for both) 
but not significantly different on gender (53.8% women vs. 
57.3%) or age (mean age = 50.4 years vs 50.1 years, P > 0.05 for 
both). Signed informed consent for participation in the MRI 
study was obtained separately from the main study with the 
approval of participating site IRBs.

At baseline, participants completed a questionnaire on sleep 
habits derived from the Sleep Heart Health Study.20 Participants 
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were asked “During the past month, how many hours of actual 
sleep did you get at night? (This may be different than the number 
of hours you spend in bed).” Sleep duration was recorded as a 
continuous variable and categorized according to standard cri-
teria (short: ≤ 6 h, reference: > 6 to ≤ 8 h).21 The number of par-
ticipants reporting long sleep duration, > 8 hours per night, was 
small (n = 30), and thus, excluded from this analysis.

The CARDIA MRI Ancillary Study acquired brain MRI 
markers on 3T MR scanners (Birmingham, AL: Philips 3T 
Achieva/2.6.3.6 platform; Minneapolis, MN: Siemens 3T 
Tim Trio/VB 15 platform; and Oakland, CA: Siemens 3T 
Tim Trio/VB 15 platform) with acquisition parameters and 
processing previously described in Launer et al.19 Image 
processing was performed with an automated pipeline with 
pre-processing, intermediate, and post-processing quality 
control steps. Briefly, T1 images were parcellated into ana-
tomical regions of interest (ROIs) by deformable registra-
tion to the Jakob Atlas using HAMMER.22,23 White matter 
lesions were segmented using a multiparametric, automated 
algorithm using T1, T2, and FLAIR scans.23–25 Standard 
tools were used to calculate FA and MD26 using custom-de-
veloped Insight Toolkit software (www.itk.org), with results 
registered to subject T1 space for segmentation using FSL 
(http://www.fmrib.ox.ac.uk/fsl/). We evaluated associations 
with white matter indices including FA, MD, and volume of 
white matter hyperintensities (WMH) for frontal, occipital, 
parietal, and temporal brain regions. All FA, MD, and volume 
measures were calculated by summing measurements from 
the left and right hemispheres. Aggregate measures of total 
brain WMH volumes were somewhat correlated with MD 
(r = −0.14, P < 0.001) but not FA (r = −0.07, P > 0.05).

Trained interviewers also administered a battery of 3 cogni-
tive tests 5 years after baseline: the Digit Symbol Substitution 
Test (DSST) which assesses processing speed and executive 
function (higher scores indicating better cognitive function),27 
the Stroop Test which assesses executive function (an interfer-
ence score was calculated with lower scores indicating better 
function),28,29 and the Rey Auditory Verbal Learning Test 
(RAVLT) which assesses verbal memory (the delayed score 
was used with higher scores indicating better function).30,31

Baseline measures examined as potential confounders were 
age, race, sex, education, hypertension, diabetes, stroke/tran-
sient ischemic attack (TIA), myocardial infarction, body mass 
index (BMI), depression,32 physical activity,33 smoking, and al-
cohol consumption. A previous CARDIA study noted a strong 
interaction between sex and race with regard to sleep mea-
sures; thus, we have considered these variables jointly using a 
4-level variable (black female, black male, white female, white 
male).34 Medical comorbidities were defined from a combina-
tion of self-report, medication use and clinic assessments.19

Sleep duration categories were compared on a variety of de-
mographic and health characteristics. MD, FA, and cognitive 
test scores were modeled using linear regression models with 
robust standard errors. Due to the relatively young age of the 
cohort, many individuals had no WMH and the distribution 
was right-skewed. To examine WMH, we used beta regres-
sion, which can model skewed distributions bounded between 
0 and 1, exclusive. For each region, we took the volume which 

was considered abnormal (volume of WMH) and divided by 
the total region-specific white matter volume, resulting in the 
proportion of the region considered hyperintense. From a beta 
regression analysis, an exponentiated regression coefficient 
of 1.5 would indicate that the ratio of hyperintense to normal 
volume is 1.5 times higher for the variable associated with the 
coefficient. Models controlled for age group and for variables 
that differed (P < 0.05) between sleep duration groups. For FA, 
MD, and WMH volumes, separate models were run for each 
region. Statistical significance was set at P < 0.05.

RESULTS
At baseline, the average age of participants was 45.4 years; 38% 
were black, and 46% had completed college. Sixty-three percent 
of participants (n = 388) were classified as having moderate sleep 
duration, and 37% (n = 225) had short sleep duration. There were 
significant differences in the race/sex distribution according to 
sleep duration, with black men and women representing a larger 
proportion of atypical sleep duration (Table 1). Short sleepers 
had higher prevalence of hypertension, stroke, depression, and 
smoking compared to moderate sleepers, and the average age 
of participants in the typical sleep duration group was slightly 
older than those reporting short sleep duration.

Short sleep was associated with abnormalities of white matter 
integrity (Table 2). In unadjusted models, short sleep was asso-
ciated with increased MD in the frontal, occipital, parietal, and 
temporal regions along with decreased FA in the occipital and 
parietal regions compared to moderate sleep duration. In models 
adjusted for age, race/sex, education, hypertension, stroke/TIA, 
depression smoking status, and physical activity, this associa-
tion persisted for frontal, parietal, and temporal white matter 
MD. The magnitude of the association was modest—approxi-
mately a 0.2 standard deviation difference in each region.

In unadjusted models, short sleep was also associated with 
increased ratio of abnormal to normal white matter in the pa-
rietal region (P < 0.001). After multivariate adjustment, short 
sleep duration compared to moderate sleep duration was as-
sociated with increased WMH volume in the parietal region 
such that the ratio of WMH to normal white matter was 2.3 
times higher in participants with short sleep (2.31, 95% CI: 
1.47–3.61; P = 0.001) (Figure 1). Sleep duration was not associ-
ated with WMH volume in frontal, occipital, or temporal re-
gions (P > 0.05 for all). There was no association between short 
sleep duration and cognitive performance on any of the three 
cognitive tests after multivariate adjustment (DSST adjusted 
mean [SD] score for short: 64.0 [1.4] digits vs moderate: 63.8 
[1.3] digits; Stroop adjusted mean [SD] score for short: 25.0 
[1.1] seconds+ errors vs. moderate: 25.7 [1.0] seconds+ errors; 
RAVLT adjusted mean score [SD] for short: 7.6 [0.3] words vs 
moderate: 7.5 [0.3] words; P > 0.05 for all).

DISCUSSION
We found an association between short sleep duration and MRI 
markers of white matter abnormality among middle-aged adults. 
In unadjusted analysis, our results link short sleep to greater 
MD and lower FA in several brain regions and to increased 
presence of WMH in the parietal region. After adjusting for 
age, race/sex, education, hypertension, stroke/TIA, depression 
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smoking status, and physical activity, these results remained 
significant for both MD and WMH volume. We did not identify 
any cognitive differences between sleep duration groups.

While an increasing number of studies have demonstrated 
that abnormal sleep duration may be a critical marker for risk 
of dementia and stroke,2–4 to our knowledge, this study is one 
of the first investigations to examine the association between 
sleep duration and white matter quality in middle-aged adults. 

One study of community-dwelling older adults reported that 
long, but not short, sleep was associated with greater WMH 
volume but only among those with diabetes.16 Compared to that 
cohort of older adults, the burden of cardiovascular disease in 
our younger study group was lower, and we were not able to 
assess an interaction with diabetes.

In contrast to our results on cognition, previous studies in 
older adults have reported significant associations between 

Table 1—Demographics and comorbidities of the 613 participants by sleep duration.

≤ 6 hours (n = 225) > 6 to ≤ 8 hours (n = 388) P value
Age (years), mean (SD) 44.9 (3.7) 45.7 (3.3) 0.004
Race/Sex, n (%) < 0.0001

Black/Female 71 (31.6) 58 (15.0)
Black/Male 52 (23.1) 54 (13.9)
White/Female 52 (23.1) 144 (37.1)
White/Male 50 (22.2) 132 (34.0)

Education, n (%) < 0.0001
< 4 y college 143 (63.6) 186 (47.9)
4 y college + 82 (36.4) 202 (52.1)

Hypertension, n (%) 61 (27.1) 76 (19.6) 0.03
Diabetes, n (%) 20 (8.9) 23 (6.0) 0.18
Stroke/TIA, n (%) 4 (1.4) 0 (0) 0.02
CES-D > 16, n (%) 36 (16.2) 37 (9.8) 0.02
Body mass index (kg/m2), n (%) 0.35

< 25 45 (20.0) 85 (21.9)
25–30 91 (40.4) 179 (46.1)
> 30 89 (39.6) 124 (32.0)

Current smoking, n (%) 49 (22.0) 55 (14.2) 0.01
Alcohol (drinks/week), mean (SD) 6.0 (9.9) 5.7 (7.8) 0.72
Physical activity, n (%) 0.01

Low 106 (47.1) 148 (38.3)
Moderate 69 (30.7) 109 (28.2)
High 50 (22.2) 129 (33.4)

TIA, transient ischemic attack; CES-D, Center for Epidemiologic Studies Depression Scale; SD, standard deviation.

Table 2—Short sleep duration (≤ 6 h) and markers of white matter integrity.

Short Sleep
Unadjusted Adjusted

Standardized Regression 
Coefficient (95% CI) P value Standardized Regression 

Coefficient (95% CI) P value

Mean diffusivity
Frontal 0.23 (0.07, 0.39) 0.006 0.29 (0.11, 0.48) 0.002
Occipital 0.18 (0.02, 0.35) 0.03 0.17 (−0.03, 0.37) 0.10
Parietal 0.21 (0.05, 0.37) 0.01 0.22 (0.02, 0.40) 0.02
Temporal 0.20 (0.04, 0.36) 0.01 0.26 (0.05, 0.45) 0.01

Fractional anisotropy
Frontal −0.13 (−0.29, 0.03) 0.10 −0.11 (−0.30, 0.08) 0.26
Occipital −0.17 (−0.33, −0.01) 0.04 −0.17 (−0.37, 0.03) 0.09
Parietal −0.24 (−0.40, −0.08) 0.003 −0.17 (−0.35, 0.02) 0.08
Temporal −0.15 (−0.31, 0.01) 0.07 −0.12 (−0.31, 0.07) 0.23

Short sleep duration, ≤ 6 h, was compared to the reference category, > 6 to ≤ 8 h. Estimates for diffusivity and fractional anisotropy (FA) differences from 
the reference category were derived from linear regression models. All models control for age, race/sex category, education, hypertension, stroke/TIA, 
depression, smoking, and physical activity.
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sleep duration and cognitive performance.8 Two such reports 
indicate that this relationship may differ with age.1,35 Due to the 
relatively young age of our cohort, the pathological damage as-
sociated with abnormal sleep duration may not yet be sufficient 
to affect cognitive function.

We also found that short sleep was linked to elevated MD 
suggesting an association between sleep duration and regional 
white matter microstructural abnormalities. Elevated MD 
and decreased FA are well-established markers for chronic 
neuroaxonal degeneration, and similar changes have been ob-
served in neurodegenerative processes associated with hyper-
tension,36 stroke,37 and AD.38 Although we found a reduction in 
white matter FA, the association was no longer significant after 
adjustment. This could be related to relatively early changes 
in our middle-aged population that have manifested predomi-
nantly as MD elevation, or MD may be a more sensitive marker 
of damage in cerebral small vessel disease.39

The white matter abnormalities associated with sleep dura-
tion in our cohort could be an early marker of processes that 
may intensify later in the life course resulting in further mi-
crostructural changes and cognitive impairment. While WMH, 
and in particular hyperintensities in the parietal lobe, have 
been associated with increased AD risk,40 the mechanisms 
by which abnormal sleep duration may lead to reduced white 
matter integrity are unclear. Recent studies indicate that sleep 
is required for the clearance of neurotoxic metabolites such as 
β-amyloid,41 and shortened sleep could disrupt this process as 
suggested in a study of older adults that found that self-reported 
short sleep was associated with increased β-amyloid deposi-
tion.42 Sleep may also play an essential role in regulating oli-
godendrocyte proliferation and thus myelination.43 In addition, 
abnormal sleep duration could increase metabolic risk factors 

including insulin resistance44 as well as inflammatory factors 
like c-reactive protein, interleukin-6, and TNF-α,45 affecting 
processes involved in maintenance of neuronal membranes 
and myelination.46,47 Finally, data from long-term studies of 
sleep are limited, but acute sleep deprivation studies have re-
ported disrupted cerebral perfusion and metabolism.48

Compared to previous sleep duration studies, the CARDIA 
study has several key strengths. In particular, this was a large 
study in a diverse cohort of black and white adults with five 
years of follow-up. In addition, we were able to adjust for im-
portant confounders including cardiovascular comorbidities. 
Limitations to consider include possible misclassification bias 
as sleep duration was self-reported. Although sleep duration 
and MRI outcomes were measured five years apart, assess-
ment of MRI occurred at only one time point rather than over 
time, and we cannot be certain that MRI abnormalities were 
not preexisting. As a result, we cannot exclude the possibility 
of reverse causality. While a small group of studies have dem-
onstrated a consistent association between change in sleep du-
ration and increased risk of cognitive impairment,8 additional 
studies are needed to evaluate the association between trajec-
tories of sleep duration and changes in white matter integrity.

Our findings that short sleep duration was significantly as-
sociated with white matter quality in midlife suggest that the 
pathology associated with disturbed sleep duration may begin 
much earlier in life. These results highlight the potential role of 
sleep quality in prevention of cognitive aging and stroke across 
the life course
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