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Abstract

While effective antiretroviral treatment makes human immunodeficiency virus (HIV)-related death 

decreased dramatically, neuropathic pain becomes one of the most common complications in 

patients with HIV/acquired immunodeficiency syndrome (AIDS). The exact mechanisms of HIV-

related neuropathic pain are not well understood yet, and no effective therapy is for HIV-pain. 

Evidence has shown that proinflammatory factors (e.g., tumor necrosis factor alpha (TNFα)) 

released from glia, are critical to contributing to chronic pain. Preclinical studies have 

demonstrated that non-replicating herpes simplex virus (HSV)-based vector expressing human 

enkephalin reduces inflammatory pain, neuropathic pain, or cancer pain in animal models. In this 

review, we describe recent advances in the use of HSV-based gene transfer for the treatment of 

HIV pain, with a special focus on the use of HSV-mediated soluble TNF receptor I (neutralizing 

TNFα in function) in HIV neuropathic pain model.
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1. INTRODUCTION

The United States Centers for Disease Control reports that an estimated 1.1 million people 

were living with human immunodeficiency virus (HIV) at the end of 2014 and that 39,513 

people in 2015 were diagnosed with HIV infection in the United States (https://

www.cdc.gov/hiv/basics/statistics.html, last date accessed June 24, 2017). Although 

effective antiretroviral therapy (ART) makes HIV become a treatable, chronic disease (1,2), 

new challenges are emerging in managing HIV. Chronic pain becomes one of the most 

common complications in patients with HIV/acquired immunodeficiency syndrome (AIDS). 
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HIV-related pain is often underestimated in HIV/AIDS patients while the main focus is on 

immunosuppression and opportunistic infections. HIV neuropathic pain (HIV-NP) is 

refractory, and the current available chronic pain therapies are not effective to HIV-NP. This 

article reviews current researches from our work and others focusing on the 

pathophysiological mechanisms of HIV-neuropathic pain and gene therapy.

2. HIV-RELATED NEUROPATHIC PAIN

HIV sensory neuropathies contain distal sensory polyneuropathy as results of both HIV 

infection and antiretroviral drug-induced toxic neuropathies (3–6). Clinical characteristics of 

distal sensory polyneuropathy and ART-induced toxic neuropathies are very similar. 

Neurotoxic ART has even been removed from pharmacies entirely in developed countries. 

Evidence shows that many people with HIV alive today, have ever been on numerous 

therapeutic regimens with neurotoxic drugs, and that they have already developed persistent 

painful neuropathy (7,8). HIV-NP is typically bilateral, of gradual onset, and described as 

‘aching’, ‘painful numbness’, or ‘burning’(9). Pathological feature of HIV-NP includes loss 

of sensory neurons of the dorsal root ganglion (DRG), Wallerian degeneration of the long 

axons in distal area, infiltration of macrophage into the DRG, and a ‘dying back’ sensory 

neuropathy (10–14). However, the precise mechanisms of HIV-NP remain unknown yet and 

no effective therapy for HIV-NP.

2.1. Proinflammatory factors

Early studies have demonstrated that glia infected/activated by HIV release proinflammatory 

factors, such as tumor necrosis factor alpha (TNFα) and interleukin 1 (IL-1) (15). 

Infiltration of inflammatory lymphocyte and macrophage to the DRG of AIDS patients 

produces pro-inflammatory cytokines including TNFα (12,16–20). There is an increased 

TNFα in human CSF (21–25) and brain tissue (25–28) in patients with HIV. An interaction 

of TNFα and HIV infection enhances toxic chemokine products (29,30). It is known that 

proinflammatory cytokines play an important role in the development and maintenance of 

neuropathic pain (31–35). Proinflammatory mediators are critical to enhancing HIV-NP 

(36). Intrathecal administration of gp120 induces acute pain and spinal proinflammatory 

cytokine release (37). Peripheral gp120 increases TNFα within the nerve trunk (38), intense 

glial activation in the spinal cord in parallel with neuropathic pain behaviors (38). We have 

reported that peripheral gp120 application onto the rat sciatic nerve upregulates TNFα in the 

L4/5 DRGs and spinal cord (39). Systemic 2′,3′-dideoxycytidine (ddC), one drug of ART 

lowers mechanical threshold (40,41) and increases both mRNA and protein of TNFα in the 

spinal cord dorsal horn (SCDH) (41). Inhibition of TNFα or soluble TNF receptor reduces 

mechanical allodynia induced by gp120 application (41). Therefore, it is possible that TNFα 
signal is involved in the induction and/or progression of HIV-NP.

2.2. Reactive oxygen species and C/EBPβ in HIV

Oxidative stress evokes many signaling events (42). Mitochondria are the main source of 

reactive oxygen species (ROS). ROS plays a role in different pain models (43–48). ROS 

scavengers produce a strong antinociceptive effect in persistent pain models (49). Oxidative 

stress is involved in the pathogenesis of neuroAIDS (50). HIV infection and ART can evoke 
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rapid neurotoxicity (51). Either HIV gp120 or ddC plays a role in initiation and/or 

intensification of ROS (52,53). Intrathecal gp120 induces spinal release of nitric oxide (NO) 

as well as proinflammatory cytokines; pretreatment with NO synthase (NOS) inhibitor 

abolishes gp120-induced mechanical allodynia (54). Importantly, ROS evoked by HIV 

infection, induces apoptosis through TNFα and its receptors (52). Mitochondrial DNA 

(mtDNA) is critical for oxidative phosphorylation complex I proteins. DNA poly-merase-γ 
is important for replication of mtDNA. ARTs inhibit Poly-merase-γ, resulting in 

mitochondrial respiratory chain dysfunction and oxidative phosphorylation deficits (51). 

Systemic ddC induces neuropathic pain and lowers the activity of endogenous manganese 

superoxide dismutase (SOD2) in the SCDH; ROS scavengers significantly reduce 

mechanical allodynia (55).

CCAAT/enhancer binding proteins (C/EBPs) are transcriptional factors in cell development 

and induction of inflammatory factors in the peripheral and central nervous system (56). C/

EBPβ plays an important role in a variety of HIV disease stages (57). An increase in C/

EBPβ mRNA is found in the brain tissue of HIV-1 encephalitis patients (58). We have found 

that combination of peripheral gp120 with systemic ddC increases pC/EBPβ in the SCDH 

(59), suggesting that pC/EBPβ plays a role in HIV-NP.

3. HSV VECTOR FOR GENE THERAPY OF NEUROPATHIC PAIN

During natural infection of herpes simplex virus (HSV), HSV is carried by retrograde axonal 

transport from the site of original inoculation to the neuronal perikaryon. Latently infected 

neurons function normally and are not rejected by the host immune response (see review 

(60,61)). HSV-1 genome is a linear double-stranded DNA, and has more than 75 genes 

coded in the 152 kb genome (60,61). HSV genes are expressed in a well-ordered temporal 

cascade of immediate early (IE) genes, followed by early genes, and subsequently late gene 

products; both early genes and the late genes require synthesis of IE gene products (60,61). 

Deleting essential IE genes from the HSV genome makes it non-replicating recombinant 

(62), but the virus are still able to be used to effectively deliver target gene products (63,64). 

Gene transfer mediated by HSV vector may provide a promising approach to the 

management of neuropathic pain. HSV vector encoding human preproenkephalin gene after 

transduction of DRG neurons by hindpaw injection (65), produces an antinociceptive effect 

in different pain models (66–68). We have reported that HSV vectors expressing enkephalin, 

p55 TNF soluble receptor (p55TNFSR), interleukin-10, and interleukin-4 produce 

antinociceptive effects in preclinical pain models (69–75). Fink and colleagues reported 

phase 1 clinical trial using HSV vector encoding human preproenkephalin in patients with 

cancer pain (76). The clinical trial assessed the safety and explored the potential efficacy of 

this approach in humans, indicating that it may be effective in reducing cancer pain (77).

The distribution of systemically administered drugs to the brain may be limited by the 

blood-brain barrier (65), and they produce systemic side effects. Gene transfer that 

permanently release gene products, might be a useful alternative to regular pharmacological 

approaches (65). Gene transfer of HSV vector may represent a platform technology---nerve 

targeting drug delivery system (77). Viral vectors, however, show toxicity and inflammation 

from ‘leaky’ expression of viral genes and reaction to the vector coat protein in pre-immune 
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animals (65,78). Despite these limitations, ours and other studies have shown that HSV 

vector is still a highly effective gene delivery approach to treating peripheral and central 

nervous diseases (65,79,80).

3.1. TNFSR mediated by HSV vector produces antiallodynic effect in HIV-NP

Our report has shown that the HIV gp120 application onto the sciatic nerve induces 

upregulation of TNFα, C-X-C chemokine receptor type 4 (CXCR4, a co-receptor of HIV), 

stromal cell-derived factor 1-α (SDF1-α, CXCR4 ligand) in both the DRG and the lumbar 

spinal dorsal horn (81). Soluble TNF receptor (TNFSR) blocks bioactivity of TNFα. HSV 

vector encoding p55TNFSR gene (T0TNFSR) reduces mechanical allodynia and lowers 

TNFα, CXCR4 and SDF1-α induced by gp120 in the DRG and SCDH (81), suggesting that 

the pathway of TNFα to the CXCR4/SDF1 has an important role in the HIV-NP and that 

inhibiting proinflammatory cytokines/chemokines reduce neuropathic pain. In another 

model of HIV-NP induced by intraperitoneal ddC (40), ddC induces upregulation of TNFα, 

SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; T0TNFSR reduced 

mechanical allodynia and suppressed TNFα, SDF1-α, and CXCR4 in the lumbar SCDH and 

DRG (82), indicating that TNFα is involved in the ARTs-related pain through the SDF1-α/

CXCR4 system.

We have reported that combination of peripheral gp120 with systemic ddC (gp120/ddC) 

lowers mechanical threshold for more than 3 weeks, and that the minimum of mechanical 

threshold occurs around 2 weeks after gp120/ddC (59,83,84). Previous studies show that 

HSV vector T0TNFSR reduces neuropathic pain induced by spinal nerve injury (69). In 

gp120/ddC model, 2 weeks post HSV vector, T0TNFSR significantly reduced foot 

withdrawal frequencies (Figure 1), and increased the expression of soluble TNFRI in the 

L4/5 DRG (Figure 2).

3.2. TNFSR mediated by the HSV vector reduces mitochondrial superoxide in gp120/ddC 
model

Oxidative stress causes many signaling events (42). HIV gp120 or ddC induces ROS (52,53). 

HIV gp120 application onto the sciatic nerve upregulates spinal mitochondrial superoxide 

(73,85). We reported that gp120/ddC increased spinal mitochondrial superoxide (59,84) 

using MitoSox positive cell imaging (a marker of mitochondrial superoxide) (86,87). Figure 

3A–C showed the representative MitoSox positive cell imaging in the gp120/ddC model. 

The increased number of MitoSox positive cells in the gp120/ddC model was decreased by 

HSV vector T0TNFSR (Figure 3D), suggesting that TNFSR suppresses neuropathic pain 

through reducing spinal ROS.

3.3. TNFSR mediated by the HSV vector inhibits pC/EBPβ in the gp120/ddC neuropathic 
pain model

C/EBP plays an role in induction of inflammatory mediators in CNS (56). HIV patients 

show upregulation of C/EBPβ mRNA in the brain tissue (58). We have shown that HIV-NP 

increases phosphorylation of C/EBPβ (pC/EBPβ) (59). Figure 4A–C revealed the 

representative pC/EBPβ-IR images in the gp120/ddC model. Treatment with gp120/ddC 

increased pC/EBPβ-IR expression; the upregulated pC/EBPβ-IR was suppressed by 
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T0TNFSR (Figure 4D), suggesting that TNFSR reduces neuropathic pain through 

decreasing spinal pC/EBPβ.

The relationship of TNFα/TNF receptor activity and ROS or C/EBPβ in HIV-NP is still not 

clear. HIV gp120/ddC induces release of TNFα (83). Through TNF receptor, TNFα triggers 

a cascade of events (88). TNFα activates NMDA receptors to increases Ca2+ influx (89). 

Indeed, HIV gp120 increases intracellular free Ca2+ concentration in the mice SCDH cells 

(90). ddC also increases spinal cytosolic Ca2+ concentration in painful neuropathy (91). 

There is an interplay between cytosolic Ca2+ and mitochondrial ROS (92–94). Spinal 

pCREB may make a contribution to the development of chronic pain (95). Cytosolic Ca2+ 

may induce transcriptional factor CREB regulating C/EBPβ activity (96). CREB binds C/

EBPβ gene promoter, inducing the endogenous C/EBPβ expression (97). Therefore, it is 

possible that TNFα-TNFR induces ROS, or pCREB/C/EBPβ in HIV-NP, which need to be 

examined in the near future.

In summary, glia infected or activated after HIV release proinflammatory factors, such as 

TNFα. TNFα-TNF receptor signal may induce ROS or C/EBPβ in HIV-NP through 

complex pathway in the model of HIV-NP. Gene transfer using the HSV vector encoding the 

gene of TNF soluble receptor reduced neuropathic pain in animal studies, providing 

additional potential approach for successful treatment of HIV neuropathic pain.
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Figure 1. 
Antinociceptive effect of p55TNFRI mediated by HSV vectors. Mechanical sensitivity was 

examined through the measurement of foot withdrawal frequencies to a sequential series of 

calibrated von Frey filaments applied in ascending order to the plantar surface of the foot 

(98). HSV vector T0TNFSR or T0Z was inoculated into the hindpaws 1 week post gp120/

ddC. The occurrence of foot withdrawal for each trial was expressed as a percentage 

response frequency. Two weeks after HSV vectors, foot withdrawal frequencies to calibrated 

von Frey filaments in rats with subcutaneous inoculation of T0TNFSR were significantly 

lower than that in T0Z at filaments of 3.6, 5.5, 8.5, and 11.8 gram, * P<0.05, ***P<0.001 vs. 

T0TNFSR, t test, n=6.
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Figure 2. 
The expression of p55TNFSR mediated by the HSV vectors. One week after gp120/ddC, 

T0TNFSR or T0Z was inoculated into the hindpaws. On day 14 post HSV vector, the L4/5 

dorsal root ganglion (DRG) was harvested, and western blot assays were conducted for 

testing TNFRI. T0TNFSR injection significantly induced the expression of TNFRI 

compared with T0Z in the L4/5 DRG, **P < 0.01 vs. T0Z, t test, n= 6.
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Figure 3. 
The effect of p55TNFSR mediated by the HSV vectors on mitochondrial superoxide in the 

SCDH at 2 weeks post HSV vectors. One week post gp120/ddC, neuropathic rats received 

hindpaw injection of T0TNFSR or T0Z into ipsilateral hindpaw of rats. Two weeks after 

HSV vector, MitoSox Red was intrathecally injected 70 min prior to perfusion. The 

representative image of MitoSox red for mitochondrial superoxide in sham+T0Z, gp120/ddC

+T0Z, and gp120/ddC+T0TNFSR, was shown in Figure A, B, and C, respectively, scale bar, 

50μm. (D) The number of mitochondrial superoxide positive cells in the SCDH lamina I–II 

and III–V was shown, **P<0.01, ***P<0.001, one way ANOVA with post hoc PLSD test, 

mean ± SEM, n=5–6 rats.
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Figure 4. 
The effect of p55TNFSR mediated by the HSV vectors on pC/EBPβ in the SDH at 2 weeks 

post HSV vectors. One week post gp120/ddC, neuropathic rats received hindpaw injection 

of T0TNFSR or T0Z into ipsilateral hindpaw of rats. Two weeks after HSV vector, spinal 

pC/EBPβ-immunoreactivity (pC/EBPβ-IR) was examined using immunohistochemistry. The 

representative images of pC/EBPβ-IR in sham+T0Z, gp120/ddC+T0Z, and gp120/ddC

+T0TNFSR were shown in Figure A, B, and C, respectively, scale bar, 50μm. (D) The 

quantitative signals of pC/EBPβ-IR in the SCDH were shown, ** P < 0.01, one way 

ANOVA with post hoc PLSD test, mean ± SEM, n=6 rats.
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