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ARTICLE OPEN

Moving beyond neurons: the role of cell type-specific gene
regulation in Parkinson’s disease heritability
Regina H. Reynolds 1, Juan Botía1,2, Mike A. Nalls3,4, International Parkinson’s Disease Genomics Consortium (IPDGC),
System Genomics of Parkinson’s Disease (SGPD), John Hardy1,5, Sarah A. Gagliano Taliun6 and Mina Ryten1

Parkinson’s disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons,
is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types,
such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment
together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific
brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain
annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-
related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly
expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed
in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions,
but rather in global cellular processes detectable across several cell types.

npj Parkinson’s Disease             (2019) 5:6 ; https://doi.org/10.1038/s41531-019-0076-6

INTRODUCTION
Late-onset sporadic forms of neurodegenerative diseases are
devastating conditions imposing an increasing burden on health-
care systems worldwide. Currently, 2–3% of the population over 65
years of age are living with Parkinson’s disease (PD), making this
disorder the most prevalent late-onset neurodegenerative disorder
worldwide after Alzheimer’s disease.1 This progressive condition is
characterised by the loss of dopaminergic neurons in the
substantia nigra pars compacta manifesting clinically as a tremor
at rest, muscle rigidity and bradykinesia.1,2 Existing symptomatic
treatments do not alter the course of the disease and their
effectiveness declines with time, which makes the identification of
potential therapeutic targets of key importance.
The primary focus of PD research to date has been on neurons

and, more specifically, nigrostriatal dopaminergic neurons. This
focus is driven in part because the death of dopaminergic neurons
is primarily responsible for the motor features of PD, but also
because the most prominent and distinctive neuropathological
findings in PD are the presence of neuronal inclusions, termed
Lewy bodies.1,2 The findings that alpha-synuclein (encoded by the
gene SNCA) is predominantly expressed in neurons,2,3 is the major
component of Lewy bodies,3,4 and mutations in SNCA give rise to
autosomal dominant PD,5–8 provide a key link between SNCA
function, neurons and disease pathogenesis. Furthermore, the
identification of risk single nucleotide polymorphisms (SNPs) at
the SNCA locus through genome-wide association studies (GWAS)
of sporadic PD9 provides support for the importance of SNCA-

related pathways and, by implication, neurons in both sporadic
and Mendelian forms of PD. Despite this neuronal focus, there is
also growing evidence to suggest the involvement of other cell
types in PD pathogenesis. In particular, astrocytes and microglia
have been highlighted;10,11 for instance, with a recent study
demonstrating that blocking the microglial-mediated conversion
of astrocytes to an A1 neurotoxic phenotype was neuroprotective
in mouse models of sporadic and familial α-synucleinopathy.12

In previous work, we applied stratified LD score regression and
gene-set enrichment methods to determine if particular functional
marks for regulatory activity and gene-set lists were enriched for
sporadic PD genetic heritability.13 We did not observe enrichment
for the various brain annotations assessed (this did not include
brain-relevant cell types) and in fact found further evidence for the
importance of the adaptive and innate immune system.
The increasing power of GWASs (with the most recently

published PD GWAS including 37.7K cases, 18.6K ‘proxy-cases’
and 1.4M controls, resulting in 90 associated loci14) coupled with
the increased availability of cell-specific gene expression data
provides a new opportunity to address the potential cellular
specificity of disease heritability, as was elegantly demonstrated
for schizophrenia in a study by Skene et al.15 Brain regions contain
a mixture of cell types, such as neurons, microglia and astrocytes,
which may exhibit their own specific regulatory features that
could be masked when averaging features across cell types.
Resolving this question has become increasingly important; with
the advent of induced pluripotent stem cell models of disease,
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modelling PD in vitro is now possible, and this implies some
decision about the cell type of interest. In this study, we addressed
cellular heterogeneity through the analysis of genomic regions
overlapping regulatory marks or gene expression from cell types
within the brain, including neurons. We focus on PD GWAS
datasets and use schizophrenia (SCZ) GWAS datasets for
comparisons purposes.

RESULTS
Overview of methods
To study the cellular specificity of the heritability of sporadic PD,
we compiled brain-related genomic annotations denoting tissue-
and cell-type-specific markers of activity. We used several
approaches to capture the expression profiles of human brain-
related cell types (Fig. 1, see Methods). This was because no single
data set had all the desirable properties; namely, data that was
human in origin, covered multiple brain regions, had high cellular
detail and was derived from large numbers of individuals. Using
the largest publicly available GWASs of PD16 and SCZ,17 we
applied stratified LD score regression (LDSC) to assess enrichment
of the common-SNP heritability of PD and SCZ, respectively, for
each annotation category. SCZ heritability has been previously
shown to be enriched in genes expressed within the central
nervous system (CNS) and, more specifically, neuronal cell
types,15,18 and was therefore included as a measure of robustness.
For all stratified-LDSC analyses, we report coefficient p-values,
which test whether the regression coefficient of an annotation
category positively contributes to trait heritability, conditional
upon the LDSC baseline model, which accounts for underlying
genetic architecture.

PD heritability in human brain
It is well recognised that regional differences in gene expression
within human brain and related co-expression modules are driven
by differences in the type and density of specific cell types.19

Therefore, we first used regional data as a means of capturing
major cellular profiles. This information, comprising sets of human
tissue-specific genes generated by Finucane et al. with GTEx gene
expression,18,20 had the advantage of being comprehensive in
terms of sampling across the human CNS, and being robust in that
greater than 63 independent samples contributed to the
generation of each profile. We confirmed that SCZ heritability
was significantly enriched in all 13 brain regions relative to all
other tissues, as previously demonstrated by Finucane et al.18

using the 2014 SCZ GWAS (Fig. 2a, Supplementary Table 1). In
contrast, no tissues were enriched for PD heritability, although
spinal cord and substantia nigra approached the Bonferroni
significance threshold (threshold p-value= 4.72 × 10−4; spinal
cord (cervical c-1), p-value= 1.36 × 10−3; substantia nigra,
p-value= 8.96 × 10−4). Our comparison of PD and SCZ GWAS
iterations across the years revealed the robust nature of the CNS
enrichment in SCZ, which was apparent in the first and smallest
SCZ GWAS (Supplementary Figure 1). Furthermore, increasing
GWAS sample sizes were associated with coefficient p-values
becoming more significant, particularly for CNS-related tissues.
Interestingly, we also observed an ordering of tissues, with brain
regions of greater relevance to disease pathology demonstrating
the most significant coefficient p-values in the largest GWAS
iterations (e.g. substantia nigra in PD and frontal cortex in SCZ).
However, due to the way these annotations were constructed,

related tissues (e.g. brain regions) have overlapping gene sets and
therefore may appear enriched as a group. To differentiate among
brain regions, we used fine-scale brain expression data generated
by Finucane et al. from a brain-only analysis of the 13 GTEx brain
regions.18 We confirmed significant enrichments in the cortex

relative to other brain regions for SCZ, but saw no enrichments for
PD (Fig. 2b, Supplementary Table 1).
We also compared the PD and SCZ GWAS results to sets of

blood- and brain-specific eQTLs derived from GTEx. We demon-
strated an enrichment of SCZ heritability in brain-specific eQTLs
and blood-specific eQTLs, but no enrichment of PD heritability in
either eQTL annotation (Fig. 3a, Supplementary Table 2). A
comparison of eQTLs specific to each brain region revealed no
preferential enrichment of disease heritability in one region
relative to the others (Fig. 3b, Supplementary Table 2). In
summary, these analyses revealed no enrichment of PD
heritability in brain annotations, while in contrast, SCZ heritability
was highly enriched in both global and specific regional brain
annotations.

PD heritability in brain-related cell-type annotations
Given the lack of enrichment of PD heritability in global and
regional brain annotations, we wondered whether cellular
heterogeneity may be masking signals, and provided more cell-
type-specific information the enrichment would become more
apparent. Thus, to address the relative importance of brain cell
types in PD and SCZ, we generated cell-type-specific annotations
from three types of brain-related cell-type-specific data: bulk RNA-
sequencing from the Barres group of immunopanned cell types
from human temporal lobe cortex;21 single-cell RNA-sequencing
from the Linnarsson group of the adolescent mouse nervous
system;22 and finally, cell-type modules inferred from human
tissue-level co-expression networks.23 Genes were assigned to cell
types by fold enrichment (i.e. mean expression in one cell type
divided by the mean expression in all other cell types) or module
membership in the case of co-expression (module membership is
a measure of how correlated a gene’s expression is with respect to
a module’s eigengene).
Each of these datasets came with advantages and disadvan-

tages, which motivated our decision to use all three. The Barres
data was based on the analysis of human tissue; however, it
covered only one brain region, was derived from a small number
of individuals (n= 14) who all had an underlying neurological
disorder (epilepsy, stroke and glioma), and lacked cellular detail.
While the cell-type-specific data provided by the Linnarsson group
covered both the central and peripheral nervous system, and
contained remarkable cellular detail, it was mouse in origin. Cell-
type modules also covered several brain regions, were based on
large sample sizes, and importantly, were human in origin.
Nevertheless, they were inferred cell types, the definition of
which was strongly dependent on the quality of the cell-type
markers used to identify them.
Using immunopanning data, we identified a neuronal enrich-

ment for SCZ heritability, but no cell-type enrichment for PD
(Fig. 4a, Supplementary Table 3). We questioned whether this lack
of cell-type enrichment in PD may result from sampling a tissue
which is typically affected only in the later stages of sporadic PD.2

Thus, we analysed a subset of mouse single-cell data representing
tissues affected in earlier stages of sporadic PD, including the
enteric nervous system, the substantia nigra and the basal ganglia.
Once again, we found no cell-type enrichment for PD heritability
(Fig. 4b, Supplementary Table 3). Conversely, we demonstrated a
significant enrichment of SCZ heritability in three types of
GABAergic medium spiny neurons (MSNs): MSN2, MSN3 and
MSN5. This is consistent with the findings reported by Skene
et al.15 Common to all three types of MSN is that they express the
D2 dopamine receptor, a common target of antipsychotic drugs
used in SCZ therapy.24

To our knowledge, there is currently no single-cell RNA-
sequencing data for human striatum or substantia nigra, so we
sought to validate our findings using cell-type modules inferred
from co-expression networks constructed from human tissue-level
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expression data of the frontal cortex, putamen and substantia
nigra. We observed no significant enrichments for PD heritability
in any modules, while SCZ heritability was enriched in several
neuronal modules, including: brown and turquoise modules in the
frontal cortex; blue and dark magenta modules in the putamen;
and cyan and darkgrey modules in the substantia nigra (Fig. 5,

Supplementary Table 4). All of these modules were enriched for
markers of pyramidal S1 neurons, which have previously been
associated with SCZ.15 Furthermore, some modules (brown,
turquoise, dark magenta and cyan) were enriched for markers of
interneurons and dopaminergic neurons, both of which are
implicated in SCZ.15,24

Fig. 1 Overview of approach and datasets used. This study compiled several brain-related genomic annotations reflecting tissue- and cell-
type-specific activity, using data generated by the GTEx project,20 the Barres group21 and the Linnarsson group.22 These annotations, each of
which varied in their cellular resolution, included: tissue-specific eQTLs (reflecting the effect of genetic variation on gene expression); tissue-
specific co-expression networks (reflecting the connectivity of a gene to all other expressed genes in the tissue), and tissue- and cell-type-
specific gene expression. All annotations were constructed in a binary format (1 if the SNP is present within the annotation and 0 if not). For
annotations where the primary input was a gene, all SNPs with a minor allele frequency > 5% within ± 100 kb of the transcription start and end
site were assigned a value of 1. For more details of how each individual annotation was generated see Methods. Stratified LDSC was then used
to test whether an annotation was significantly enriched for the common-SNP heritability of PD or SCZ

R.H. Reynolds et al.
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PD susceptibility genes in brain-related cell types
To ensure rigour, we attempted to identify cell types of
importance in PD in a separate analysis using expression-

weighted cell-type enrichment (EWCE). This method statistically
evaluates whether a set of genes has higher expression in one cell
type than expected by chance. Using the same subset of clusters

R.H. Reynolds et al.
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from the Linnarsson single-cell RNA-sequencing, cell-type speci-
ficity values were computed for each gene (i.e. proportion of
expression of a gene in a given cell type), and cell-type
enrichments of PD susceptibility genes implicated by common-
variant studies were estimated (Fig. 6a, see Methods). Suscept-
ibility genes were derived using MAGMA,25 which estimates the
association between each gene and a phenotype while account-
ing for LD, and from a study by Li et al.26 using TWAS27 and
coloc,28 which evaluate the association between eQTLs and GWAS
risk loci. We found no significant enrichment of PD susceptibility
genes in any of the major cell-type classes (Fig. 6b, Supplementary
Table 5) or their cell subtypes (Fig. 6c, Supplementary Table 5).
In summary, our EWCE and stratified LDSC analyses would

suggest that PD heritability/susceptibility cannot be attributed to
a specific cell type (amongst those tested), unlike what has been
observed by us and others for SCZ,15 wherein a limited set of
neuronal cell types have been implicated.

PD heritability in PD-relevant genes sets
Risk loci can operate in several manners, including: a cell-type-/
tissue-specific manner, which is only detectable if measured in the
“correct” cell type/tissue, or in a pathway-specific manner, which
one might expect to be detectable across more than one cell type/
tissue. Given our inability to implicate a cell type in PD, we
wondered whether the latter scenario of pathway-specific risk
might be applicable in PD.
To address this question, we applied stratified LDSC to gene

sets implicated in PD by Mendelian forms of PD, functional assays
performed in the context of PD-associated mutations, such as the
A53T missense mutation in SNCA, and rare-variant studies of
sporadic PD.29–34 In particular, we focused on gene sets associated
with autophagy,30,31 the lysosomal system32 and mitochondrial
function.33,34 Our gene sets were derived either from Gene
Ontology terms (autophagy) or curated gene databases (lysoso-
mal, hLGDB; mitochondrial, MitoCarta 2.0; see Methods), devel-
oped using literature curation (with a focus on unbiased
proteomic studies) and experimental approaches. As with
previous stratified LDSC analyses, we included SCZ for comparison
purposes. In addition, we used a gene set comprising loss-of-
function (LoF)-intolerant genes, as defined by the Exome
Aggregation Consortium (ExAC)35 using their gene-level constraint
metric (pLI ≥ 0.9), which has been previously shown enriched for
SCZ heritability17 and thus would serve as a positive control. The
overlap between these gene sets was relatively low (Supplemen-
tary Figure 15). We identified a significant enrichment of PD
heritability in the lysosomal and LoF-intolerant gene set, while SCZ
heritability was only found enriched in LoF-intolerant genes, as
expected (Fig. 7a, Supplementary Table 6). We ran these analyses
with and without a category accounting for “all genes” and found
little difference between the estimates provided by stratified LDSC
(Supplementary Figure 16), thus we report those results that do
not account for “all genes”.
Using the same gene sets together with EWCE, we also

evaluated whether these PD-implicated gene sets were highly
expressed in any of the Linnarsson cell-type classes and their cell

subtypes. Autophagy and lysosomal gene sets were significantly
enriched in a limited number of major cell-type classes, with
autophagy enriched in oligodendrocytes and cholinergic/mono-
aminergic neurons, and lysosomal enriched in microglia (Fig. 7b,
Supplementary Table 6). The mitochondrial gene set, on the other
hand, was significantly enriched in almost all cell-type classes,
including astrocytes, oligodendrocytes, oligodendrocyte precursor
cells, cholinergic/monoaminergic neurons and telencephalon
projecting inhibitory neurons. Likewise, the LoF-intolerant gene
set was found significantly enriched in all cell-type classes. As
expected, analyses performed on cell subtypes predominantly
reflected those performed on the overarching cell-type classes,
with significant pathway enrichments observed in cell subtypes
associated with the pathway-enriched cell-type classes (Fig. 7c,
Supplementary Table 6). For example, all three microglial subtypes
(MGL1-3, representing one baseline and two activated microglial
subtypes), were enriched for lysosomal genes. Interestingly, the
subtype analyses also revealed a significant enrichment of the
lysosomal gene set in two astrocytic subtypes, ACNT1 and ACNT2
(both non-telencephalon astrocytes, but protoplasmic and fibrous,
respectively), and in two oligodendrocyte subtypes, MFOL1 and
MOL1 (myelin forming oligodendrocytes and mature oligoden-
drocytes, respectively), which was not reflected when using the
major cell-type classes, suggesting that analyses performed with
cellular subtypes provide greater resolution. It is worth noting that
despite higher than expected expression of the lysosomal gene
set in astrocytic, microglial and oligodendrocyte subtypes, the
lysosomal gene set is ubiquitously expressed across all cellular
subtypes (Supplementary Figure 19). In other words, higher than
expected expression is not necessarily equivalent to exclusive
expression in a cell type.
Taken together these findings provide support for the view that

in contrast to the genetic structure of SCZ, PD risk loci operate in a
more global manner enriching within pathways and gene sets,
which are highly expressed across several cell subtypes.

DISCUSSION
One of the most striking features of PD is the specificity of its
neuropathology and clinical symptoms, which has implicated α-
synuclein biology in dopaminergic neurons of the substantia nigra
pars compacta as a key component of the disease.1,2 This stands in
stark contrast to SCZ, which has a very heterogeneous clinical
phenotype and lacks a characteristic neuropathology,36,37 with a
notable absence of pathological lesions and no reported overall
neuronal loss.38 The apparent cellular specificity of PD has
encouraged researchers to hypothesise that selective vulnerability
is prompted by the action of risk loci in specific cell types; in other
words, it is the nature of the cell type itself, which renders it
vulnerable. However, given the interrelated nature of brain
regions, apparently specific and reproducible patterns of abnorm-
ality could also be the result of a more global effect that exposes
functional systems (e.g. neural networks) at different times along a
disease’s natural history, a view now put forward by several
independent groups.39–41 That is, risk loci may not necessarily lie
in cellular subtypes or individual brain regions, but in global

Fig. 2 Enrichment of PD and SCZ common-SNP heritability in tissue-specific gene expression annotations as used in Finucane et al.18 a
Stratified LDSC analyses showed significant enrichment of SCZ heritability in all GTEx brain regions but no enrichment of PD heritability. GTEx
tissue annotations represent the top 10% most upregulated genes in each tissue with respect to the remaining tissues, excluding those from a
similar tissue category. b Stratified LDSC analyses showed significant enrichment of SCZ heritability in cortical brain regions, but no
enrichment for PD heritability. GTEx brain-only annotations represent the top 10% most upregulated genes in each brain region with respect
to the remaining regions. Tissues were ordered within each tissue category by the coefficient p-value obtained for SCZ. The black dashed lines
indicate the cut-off for Bonferroni significance (a, p < 0.05/(2 × 53); b, p < 0.05/(2 × 13)). Bonferroni-significant results are marked with black
borders. The proportion of SNPs accounted for by each annotation (compared to the baseline model), the regression coefficient calculated for
the latest PD and SCZ GWASs, and the coefficient p-values for previous iterations of the PD and SCZ GWASs are displayed in Supplementary
Figs 1–4. Numerical results are reported in Supplementary Table 1
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cellular processes to which cellular subtypes have varying
vulnerability.
Addressing the question of cellular specificity in sporadic PD in

a meaningful manner is now possible due to increasing GWAS
sample sizes, increased availability of cell-type-specific gene
expression data, and the recent development of robust meth-
odologies. In this study, we used stratified LDSC and EWCE
together with several brain-related genomic annotations to
connect common-variant genetic findings for PD to specific brain
cell types, with SCZ included for comparison purposes. We show
that PD heritability does not enrich in global brain annotations or
brain-related cell-type-specific annotations, as one might expect if
cellular heterogeneity was masking the signal. In contrast, SCZ
heritability significantly enriches in global and regional brain
annotations and in select neuronal cell types, in line with previous
results.15,18

One might argue that the lack of PD heritability enrichment in
any cell-type-specific categories could be due to PD having a
relatively low estimated total heritability; PD heritability estimates
range between 20 and 27%9,42,43 (by comparison, SCZ heritability
estimates range between 25 and 80%, depending on whether it is
estimated from common SNPs44 or twin studies.45,46) However, we
suggest that this is not a complete explanation as significant
enrichments have been observed in other GWASs with relatively
low overall heritability estimates. For example, in the original
stratified LDSC paper they observe enrichment of genomic
overlap of histone modifications for the CNS in the ever-smoked

GWAS, specifically in the inferior temporal lobe, and they observed
enrichment of fetal brain regulatory features for age at
menarche.47

Considering our inability to attribute PD heritability/suscept-
ibility to a specific brain-related cell type, we also applied stratified
LDSC and EWCE to gene sets implicated in PD (autophagy,
lysosomal and mitochondrial gene sets) and SCZ (LoF-intolerant
genes), all of which can be considered global pathways/gene sets.
Here we show a significant enrichment of PD heritability in the
lysosomal and LoF-intolerant gene set, with the former highly
expressed in astrocytic, microglial, and oligodendrocyte subtypes
and the latter highly expressed in almost all tested cellular
subtypes, providing support for the view that PD is a disorder of
global pathways working across various cell types, as opposed to
specific cell types themselves driving disease risk.
With these results in mind, it is tempting to speculate that PD

presents genetically as more of a systemic disorder, with a bias to
brain pathology, as opposed to a primary brain disorder. In
support of this view, PD-associated risk variants have been found
associated with monocytes and the innate immune system,13,26,48

in addition to lymphocytes, mesendoderm, liver- and fat-cells.49

Recent work has also demonstrated a causal relationship between
BMI and PD,50 which together with the re-purposing of exenatide
(a glucagon-like peptide-1 receptor agonist currently licensed for
the treatment of type 2 diabetes) for the potential treatment of
PD,51 highlights the need to look beyond the brain and selective
neuronal vulnerability.

Fig. 3 Enrichment of PD and SCZ common-SNP heritability in tissue-specific eQTL annotations. a Stratified LDSC analyses showed significant
enrichment of SCZ heritability in brain-specific and blood-specific GTEx eQTLs. b A within-brain analysis of GTEx eQTLs showed no significant
enrichment of PD and SCZ heritability in one region relative to others. In both analyses, eQTLs were assigned to a tissue/brain region based on
their effect size (i.e. the absolute value of the linear regression slope). Tissues were ordered within each tissue category by the coefficient p-
value obtained for SCZ. The black dashed lines indicate the cut-off for Bonferroni significance (a, p < 0.05/(2 × 2); b, p < 0.05/(2 × 11)).
Bonferroni-significant results are marked with black borders. The proportion of SNPs accounted for by each annotation (compared to the
baseline model), the regression coefficient calculated for the latest PD and SCZ GWASs, and the coefficient p-values for previous iterations of
the PD and SCZ GWASs are displayed in Supplementary Figures 5–7. Numerical results are reported in Supplementary Table 2
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There are several caveats to this study aside from the limitations
posed by the current PD GWAS, which does not capture the
impact of rare variation or some forms of structural variation.
These caveats include the quality of our annotations, the
strategies employed to generate them and, perhaps most
critically, the annotations we cannot account for.
First, the quality of our annotations is especially pertinent in the

case of the gene sets used to reflect various PD-implicated
pathways. While lysosomal and mitochondrial gene sets were
derived from rigorously curated gene databases, with a focus on
unbiased proteomic and localisation studies, the autophagy list
stemmed from Gene Ontology, which has not undergone the
same meticulous curation. The noise introduced by potentially
inaccurate annotation could affect our ability to detect heritability
enrichments. Furthermore, the quality of eQTL datasets, reflected
in their power to detect an eQTL, is dependent upon sample size.

It is entirely possible that with growing sample sizes, our
understanding of the contribution of tissue-specific and brain-
region-specific eQTL annotations to PD and SCZ heritability may
change. Likewise, given that both TWAS27 and coloc28 are
dependent upon the accuracy and integrity of eQTL datasets, it
is likely that growing samples sizes will alter the list of PD
susceptibility genes, potentially resulting in a different cellular
expression profile. It is worth noting that there are several tools
which evaluate associations between eQTLs and GWAS risk loci to
identify susceptibility genes (including coloc, TWAS and others like
eCAVIAR52). These tools differ in their underlying algorithms and
assumptions (e.g. one versus multiple causal variants at a locus),
thus motivating the use of multiple methods followed by
integration across the results, as performed in the study by Li
et al.26 used here.
Second, our strategy for creating cell-type-specific profiles

primarily involved gene expression data and assumed disease
relevance only if disease heritability enriched for SNPs within
genes with high specific expression. This approach together with
the use of the GTEx eQTL dataset (which is likely to be enriched
only for eQTLs with larger effect sizes due to power limitations)
should capture regulatory SNPs in close proximity to genes of
interest. However, as demonstrated in a recent study from
Hormozdiari et al. how one chooses to construct an eQTL
annotation is fraught with challenges53 and we recognise that
our approach may have produced conservative enrichment
estimates. Perhaps more importantly though, our strategy for
creating cell-type-specific profiles does not account for the effect
of regulatory SNPs that function at longer distances to impact
upon gene expression. At present, our ability to address this issue
is limited since detecting trans-acting eQTLs has proven to be
challenging,54 especially in human brain.
Third, our approach accounts only for cell type and pathway

and, moreover, builds on the assumption that cellular diversity can
be sufficiently described by discrete cells classes, which a recent
single-cell RNA-sequencing study of the hippocampal CA1 area
has called into question.55 In this study, it was suggested that
characterisation of cells requires continuous modes of variation in
addition to discrete cell classes; that is, some cell classes exist on a
common genetic continuum. Inherent within this spectrum is
cellular state, which reflects the physiological condition of a given
cell, whether it be the degree of differentiation or activation in
response to a stimulus. There may be cellular states that we have
not assayed or captured which harbour PD heritability enrich-
ments. Furthermore, one would expect preferential enrichment of
pathways in specific cell types/subtypes to vary dependent on
their physiological profile. In view of increasing evidence for the

Fig. 4 Enrichment of PD and SCZ common-SNP heritability in brain-
related cell-type-specific gene expression annotations. Stratified
LDSC analyses using cell-type-specific annotations derived from
bulk RNA-sequencing of immunopanned cell types from human
temporal lobe cortex (a) and single-cell RNA-sequencing of the
adolescent mouse nervous system (b) demonstrated an enrichment
of SCZ heritability in neuronal cell types (in particular, medium spiny
neurons), but no cell-type enrichment for PD. All cell-type
annotations were generated using the top 10% of enriched genes
within a cell type compared to all others. Cell types were ordered
alphabetically within each overarching cell type category. The black
dashed lines indicate the cut-off for Bonferroni significance (a, p <
0.05/(2 × 6); b, p < 0.05/(2 × 30)). Bonferroni-significant results are
marked with black borders. The proportion of SNPs accounted for
by each annotation (compared to the baseline model), the
regression coefficient calculated for the latest PD and SCZ GWASs,
and the coefficient p-values for previous iterations of the PD and
SCZ GWASs are displayed in Supplementary Figs 8–10. Numerical
results and cell-type abbreviations are reported in Supplementary
Table 3
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association between PD and the innate immune system,13,26,48 we
think that cellular state is likely to be an important factor, which
we cannot fully assess at this stage.
In conclusion, our results add to a growing body of evidence in

support of the view that PD risk loci may not lie entirely in those
cell types that display the disease’s characteristic neuropathology,

but instead in global cellular processes, with effects in a range of
cellular subtypes. This view has significant implications for disease
modelling, with a choice of model perhaps based upon the cell
type, which best reflects the process of interest, as opposed to the
cell type which demonstrates the highest burden of α-synuclein
aggregates. Likewise, viewing PD as a systemic disorder may have
implications for potential drug re-purposing, as in the case of
exenatide. Thus, our work here may have wider implications in
terms of understanding neurodegenerative disorders more gen-
erally as disorders of key cellular processes rather than disorders
driven solely by specific cell types.

METHODS
Stratified LD score regression (LDSC)
We applied stratified LDSC47 (see URLs, Supplementary information) to
determine if various categories of genomic annotations (marking tissue- or
cell-type-specific activity, as summarised in Annotation datasets) were
enriched for heritability of various GWASs (see GWAS datasets below).
LDSC exploits the expected relationships between true association signals
and surrounding local linkage disequilibrium (LD) to correct out
confounding biases, such as cryptic relatedness and population stratifica-
tion, and arrive at unbiased estimates of genetic heritability within a given
set of SNPs (here stratified according to whether they were located within
genomic annotation regions). Following the procedure employed by
Finucane et al.,47 we added annotation categories individually to the
baseline model (version 1.1, see URLs, Supplementary information). We
used HapMap Project Phase 3 (HapMap3)56 SNPs for the regression, and
1000 Genomes Project57 Phase 3 European population SNPs for the LD
reference panel. We only partitioned the heritability of SNPs with minor
allele frequency >5%, and we excluded the MHC region from analysis due
to the complex and long-range LD patterns in this region. To map SNPs to
genes, we used the SNPlocs.Hsapiens.dbSNP144.GRCh37 R package
(dbSNP build 144 and GRCh37 coordinates).58

For all stratified LDSC analyses, we report a one-tailed p-value
(coefficient p-value) based on the coefficient z-score outputted by
stratified LDSC. A one-tailed test was used as we were only interested in
annotation categories with a significantly positive regression coefficient
(i.e. the annotation positively contributed to trait heritability, conditional
upon the baseline model, which accounts for the underlying genetic
architecture). We looked at three versions of PD GWAS summary statistics
and four versions of SCZ, and for each set of analyses we corrected for
multiple testing of the GWASs across the number of annotation categories,
resulting in Bonferroni significance thresholds for each set of analyses.

Annotation datasets
Tissue-specific gene expression. Annotation files were generated by
Finucane et al.,18 using GTEx V6P gene expression,20 and obtained from
Alkes Price’s group data repository (see URLs, Supplementary information).
Briefly, for each GTEx tissue, genes were ranked by a computed t-statistic
reflecting their specific expression within that tissue versus all other
tissues, excluding those that were from a similar tissue category (e.g.
expression in cortex samples was compared to expression in all other
tissues except other brain regions; see Supplementary Table 2 from
Finucane et al.18 for t-statistic tissue categories). The top 10% of expressed
genes from each tissue was selected and a 100-kb window was added
around their transcribed regions to obtain a tissue-specific gene expression
annotation. As described by Finucane et al.,18 the two parameters
(proportion of genes selected and window size around each gene) were
selected following testing of six different parameter settings, which
identified 10% and 100 kb as the settings producing the most significant P-
values for identifying enrichment in disease-relevant tissues. For the
within-brain analysis, tissues were restricted to the 13 brain regions found
in GTEx, including: amygdala, anterior cingulate cortex (BA24), caudate,
cerebellar hemisphere, cerebellum, cortex, frontal cortex (BA9), hippocam-
pus, hypothalamus, nucleus accumbens, putamen, spinal cord (cervical
c-1), substantia nigra.

Tissue-specific eQTLs. From the GTEx Portal (V7, accessed 04/16/18, see
URLs, Supplementary information), we downloaded all SNP-gene (expres-
sion quantitative trait loci, eQTL) association tests (including non-
significant tests) for blood (to allow for a blood-brain comparison) and
11 of the 13 available brain regions.20 To reduce redundancy across the

Fig. 5 Enrichment of PD and SCZ common-SNP heritability in cell-
type modules inferred from human tissue-level co-expression
networks. Stratified LDSC analyses using cell-type-specific co-
expression modules from frontal cortex (a), putamen (b), and
substantia nigra (c) demonstrated significant enrichment of SCZ
heritability in certain neuronal modules across all three tissues, but
no enrichment for PD heritability. Genes were assigned to cell-type
modules by module membership. Cell-type-specific modules were
ordered alphabetically within each overarching cell type category.
The black dashed lines indicate the cut-off for Bonferroni
significance (a, p < 0.05/(2 × 5); b, p < 0.05/(2 × 15); c, p < 0.05/(2 ×
11)). Bonferroni-significant results are marked with black borders.
The proportion of SNPs accounted for by each annotation
(compared to the baseline model), the regression coefficient
calculated for the latest PD and SCZ GWASs, and the coefficient p-
values for previous iterations of the PD and SCZ GWASs are
displayed in Supplementary Figures 11–14. Numerical results and
module descriptions are reported in Supplementary Table 4. FCTX,
frontal cortex; PUTM, putamen; SNIG, substantia nigra

R.H. Reynolds et al.

8

npj Parkinson’s Disease (2019)     6 Published in partnership with the Parkinson’s Foundation



brain regions, we excluded cortex and cerebellum, and instead included
frontal cortex, anterior cingulate cortex and cerebellar hemisphere. We
performed an FDR correction for each tissue and included all SNP-gene
associations that passed FDR <5% in our downstream analyses. For the
blood-brain comparison, eQTLs from all 11 brain regions were combined to
form one brain category. eQTLs that replicated across brain regions were
collapsed into one entry and allocated an effect size (i.e. the absolute value
of the linear regression slope) equal to that of the maximum effect size
observed across the brain regions. Finally, eQTLs were assigned to either
blood or brain by their effect size. A similar approach was used for the
within-brain analysis, where eQTLs were assigned to one of the 11 brain
regions based on effect size.

Cell-type-specific gene expression. Cell-type-specific annotations were
constructed using gene expression data from the Barres group21 and the
Linnarsson group22 (see URLs, Supplementary information), which was

generated using bulk RNA-sequencing and single-cell RNA-sequencing,
respectively. Due to the disparate nature of the RNA-sequencing methods,
each dataset was analysed separately. Common to both analyses was the
calculation of an enrichment value for each gene in each cell type.
Enrichment was calculated as: gene expression in one cell type divided by
the average gene expression across all other cell types. We thereafter
selected the top 10% of genes enriched within each cell type and added a
100 kb window to reflect the approach used by Finucane et al.18 When
using the Barres data, we averaged gene expression across samples of the
same cell type, filtered genes on the basis of an FPKM ≥1 in at least one
cell type (this equates to ~66% of all genes with FPKM >0.1, which was set
by Zhang et al.21 as the threshold for minimum gene expression), and then
calculated gene enrichment. Our detection threshold of FPKM ≥1 was
employed on the basis that smaller thresholds tend to produce large and
misleading enrichments.59 The Linnarsson data was available with gene
expression aggregated by sub-cell type/cluster. Genes were filtered on the

Fig. 6 PD susceptibility genes do not enrich in brain-related cell types. a PD susceptibility genes were derived from MAGMA analyses and a
study attempting to prioritise genes in PD using TWAS and colocalisation analyses.26 Genes overlapping between the two sets were removed,
resulting in a list of 89 genes. Bootstrapping tests performed using the EWCE method revealed no enrichment of PD susceptibility genes in
the major cell-type classes (b) or their cell subtypes (c) from the Linnarsson single-cell RNA-sequencing dataset. Gene lists and numerical
results are available in Supplementary Table 5
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basis of expression >0, enrichment was calculated and a subset of the 265
identified clusters were used as annotations. Mouse genes were converted
to human orthologs using Biomart (of the 23,368 genes with expression >0
in at least one cluster, 16,025 genes were converted to human orthologs. A
list of those genes that did not convert can be found in Supplementary
Table 3).

Cell-type-specific co-expression modules. Co-expression networks for fron-
tal cortex, putamen and substantia nigra were constructed using GTEx V6
gene expression,20 the WGCNA R package60 and post-processing with
k-means61 (see URLs, Supplementary information), as described by Botia

et al.23 Modules were assigned to cell types using the userListEnrichment R
function implemented in the WGCNA R package, which measures
enrichment between module-assigned genes and defined brain-related
lists19,62–65 using a hypergeometric test. Genes assigned to modules
significantly enriched for brain-related cell-type markers of predominantly
one cell type, with a module membership of ≥0.5, were allocated a cell-
type “label” of neuron, microglia, astrocyte or oligodendrocyte and
considered cell-type specific. Module membership values range between
0 and 1, with 1 indicating that a gene’s expression is highly correlated with
the module eigengene. An eigengene is defined as the first principal
component of a given module and can be considered representative of the

Fig. 7 PD heritability enriches in lysosomal and LoF-intolerant gene sets which are ubiquitously expressed. a Stratified LDSC analyses using
gene sets implicated in PD demonstrated a significant enrichment of PD heritability in the lysosomal and LoF-intolerant gene sets. The black
dashed lines indicate the cut-off for Bonferroni significance (p < 0.05/(2 × 4)). Bonferroni-significant results are marked with black borders. The
proportion of SNPs accounted for by each annotation (compared to the baseline model), the regression coefficient calculated for the latest PD
and SCZ GWASs, and the coefficient p-values for previous iterations of the PD and SCZ GWASs are displayed in Supplementary Figures 17 and
18. Bootstrapping tests performed using the EWCE method demonstrated enrichment of autophagy, lysosomal and mitochondrial gene sets
in specific cell-type classes (b) and their cell subtypes (c) from the Linnarsson single-cell RNA-sequencing dataset. Asterisks denote significance
at p < 0.05 after correcting for multiple testing with the Benjamini-Hochberg method over all gene sets and cell types tested. Gene lists and
numerical results are reported in Supplementary Table 6
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gene expression profiles within the module, as it summarises the largest
amount of variance in expression. As with tissue-specific and cell-type-
specific gene expression annotations, we added a 100 kb window around
each gene. To ensure we were using consistent and reproducible modules,
we evaluated preservation of GTEx modules with modules derived from
co-expression networks constructed for frontal cortex, putamen and
substantia nigra using gene expression data from the United Kingdom
Brain Expression Consortium (UKBEC).61,66 Preservation values were
calculated using the modulePreservation function from WGCNA. Preserva-
tion is a measure of how well the connectivity and correlation structures
within the genes of a network´s module are preserved in another tissue
expression dataset. The final preservation score we report is Z-summary-
press, which is an aggregation of a number of measures (see Langfelder
et al.67 for a detailed explanation). Values under 2 denote no preservation
whereas values greater than 2 suggest preservation, and values over
10 suggest strong preservation of the module in the tissue tested. We
included only GTEx modules with a preservation value >2. Preservation
values and module descriptions are reported in Supplementary Table 4;
the latter can also be viewed at https://snca.atica.um.es/coexp/Run/
Catalog/.

Gene sets. We investigated three gene sets with previous biological
support for involvement in PD: autophagy, lysosomal and mitochon-
drial.29–34 The autophagy gene set included all genes associated with the
Gene Ontology terms: GO:0006914 (“autophagy”) and GO:0005776
(“autophagosome”), as derived from the GO C5 collection of the MSigDB
database (v5.2). Lysosomal genes were downloaded from the Human
Lysosome Gene Database (hLGDB, see URLs, Supplementary informa-
tion).68 All genes reported lysosomal by any of the listed sources (9 of the
16 were unbiased proteomic studies) were used. Mitochondrial genes were
obtained from Human MitoCarta 2.0, an inventory of human genes with
the strong support of mitochondrial localisation based on literature
curation, proteomic analyses and epitope tagging/microscopy (see URLs,
Supplementary information).69 In addition, we used a gene set comprising
loss-of-function (LoF)-intolerant genes, as defined by the Exome Aggrega-
tion Consortium (ExAC)35 using their gene-level constraint metric (pLI
≥0.9), and constructed an “all genes” gene set. The “all genes” gene set was
constructed by extracting all genes from BioMart (using the homo sapiens
GRCh37 library, as with all other annotations). For stratified LDSC analyses,
an additional window of 100 kb was added around genes. The genes
comprising these lists are available in Supplementary Table 6. Overlap
between gene sets was determined using Intervene, a command line tool
and web application that computes and visualises intersections of gene
sets (see URLs, Supplementary information).70

GWAS datasets
Table 114,16,17,71–74

MAGMA: assessing gene-level enrichment
Gene-level p-values were calculated with the Nalls et al.16 PD GWAS
(excluding 23andMe contributions) using MAGMA v1.06 (see URLs,
Supplementary information),25 which tests the joint association of all SNPs
in a gene with the phenotype while accounting for LD between SNPs. SNPs
were mapped to genes using NCBI definitions (GRCh37, annotation release
105); only genes in which at least one SNP mapped were included in
downstream analyses. Gene boundaries were defined as the region from

transcription start site to transcription stop site. In addition, we added a
window of 35 kb upstream and 10 kb downstream of each gene. This
choice was based on (1) most transcriptional regulatory elements fall
within this interval,75 (2) a fraction of GWAS risk loci lie outside gene
boundaries and may regulate gene expression76 and (3) previous work in
the field of pathway analysis.17,77,78 Furthermore, the MHC region on
chromosome 6 (chr6: 25500000–33500000, human genome assembly
GRCh37) was excluded. The gene p-value was computed based on the
mean association statistic of SNPs within a gene, with genome-wide
significance set to p < 2.82 × 10−6, and LD was estimated from the
European subset of 1000 Genomes Phase 357.

Evaluating enrichment of PD-associated genes and gene sets
Expression-weighted cell-type enrichment (EWCE, see URLs, Supplemen-
tary information)79 was used to determine whether PD-associated genes or
gene sets have higher expression within a particular cell type than
expected by chance. As our input, we used the same subset of clusters
from the Linnarsson single-cell RNA-sequencing dataset used in stratified
LDSC, in addition to a target gene list. For each gene in the Linnarsson
dataset, we estimated its cell-type specificity i.e. the proportion of total
expression of a gene found in one cell type compared to all cell types,
using the ‘generate.celltype.data’ function of the EWCE package. EWCE
with the target list was run with 100,000 bootstrap lists. We controlled for
transcript length and GC-content biases by selecting bootstrap lists with
comparable properties to the target list. P-values were corrected for
multiple testing using the Benjamini-Hochberg method overall cell types
and gene lists tested. We performed the analysis with major cell-type
classes (e.g. “astrocyte”, “microglia”, “enteric neurons”, etc.) and subtypes of
these classes (e.g. ACNT1 [“Non-telencephalon astrocytes, protoplasmic”],
ACNT2 [“Non-telencephalon astrocytes, fibrous”], etc.). Data are displayed
as standard deviations from the mean, and any values < 0, which reflect a
depletion of expression, are displayed as 0.

PD susceptibility genes. PD susceptibility genes were derived from our
own MAGMA analyses and a study attempting to prioritise genes in PD
using TWAS and colocalisation analyses (Supplementary Table 1 in ref. 26).
The genes comprising these lists are available in Supplementary Table 5. In
the case of MAGMA, only those genes passing genome-wide significance
(p < 2.82 × 10-6) were used. In the case of TWAS/coloc, only those eQTL-
gene associations found within dorsolateral prefrontal cortex tissue, which
were both TWAS and coloc hits (as defined in ref. 26) were used.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Datasets analysed in this study are all derived from publicly available resources (see
URLs, Supplementary information). All data generated during this study are included
in this published article’s supplementary information.

Table 1. Summary of GWAS datasets

Disease First author, Year N cases N controls PMID Reference

PD IPDGC Consortium, 2011 5,333 12,019 21738488 71

PD Nalls, 2014 13,708 95,282 25064009 14

PD Nalls, 2018 (excluding 23andMe contributions)a 33,674 (18,618 proxy cases from UK Biobank) 449,037 16

SCZ SCZ Consortium, 2011 9,394 12,462 21926974 72

SCZ Ripke, 2013 14,395 18,705 23974872 73

SCZ SCZ Consortium, 2014 (EUR subset) 33,640 43,456 25056061 74

SCZ Pardiñas, 2018 40,675 64,643 29483656 17

aAccess to PD 2018 summary statistics (excluding 23andMe contributions) was provided by Mike A Nalls, with permissions from IPDGC and SGPD

R.H. Reynolds et al.

11

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2019)     6 

https://snca.atica.um.es/coexp/Run/Catalog/
https://snca.atica.um.es/coexp/Run/Catalog/


CODE AVAILABILITY
Open source software is available on GitHub for all tools used (see URLs,
Supplementary information).
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