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ABSTRACT

Shock propagation in solids which exhibit a nonlinear stress

strain curve when subjected to instantaneous loadings is studied.

General three-dimensional shock waves are first examined and
then specialized to the one-dimensional case. The method of solution
involves two steps, the generation of an infinite set of coupled
nonlinear ordinary differential equations to replace the original
partial differential equations and the solution of this system.
Explicit solutions are exhibited for a restricted class of materials
using a series solution for the system and also a perturbation tech-
nique. The two methods are compared showing that a low order per-
turbation solution can give good results for the decay of the wave
front. A way of extending the method to a general type of material
is shown and the effect of the boundary conditions on the shock

decay is calculated. A steady state solution is also obtained.
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I. INTRODUCTION

Wave propagation in solids has been studied for over one hundred years.
Until the 194L0's the work had been limited almost exclusively to linear
problems. During the Second World War, however, high velocity impact of
projectiles became a subject of great interest. Since the stresses involved
in such cases are of such a magnitude to throw the material into the
nonlinear range, new theories were needed. In response to this the first
solutions in dynamic plasticity were obtained. Assuming that the material
response could be characterized by a nonlinear stress strain law independent
of time, Karman (1950), Rakmatulin (1945), and G. I. Taylor (1946) independ-
ently obtained results that were simple, elegant and yet strikingly useful.
For the past twenty years the field has developed rapidly and is today an
area of great activity.

Most of the work to date has dealt with nonlinear effects produced by
nonlinearities introduced in the material characterization. This is under-
standable since in most pfoblems, especially waves in metals, the geometric
nonlinearities are of secondary influence.

Depending upon the type of constitutive law used, a variety of wave
propagation phencomena can be produced. In linear materials it has long been
known that only two types of waves are possible in an unbounded, isotropic
medium namely equivoluminal waves and dilatational waves. In nonlinear
materials, however, coupled waves are also possible. Such coupled waves

contain components of both dilatation and rotation.



In the solution of boundary value problems, transform techniques have
been used with great success in the linear theories, but have been of almost
no use in the solution of nonlinear wave propagation problems. Even in the
linear case the inversion process becomes quite formidable in many cases.

Probably the method most assoclated with nonlinear problems is the
methoed of characteristics. It has also been a powerful tool for linear
‘problems where the geometry or the material was of a complex nature. In the
linear case the characteristics are straight lines and are known a priori.
Integration along these characteristics then becomes a simple matter when a
computer is used. Even for certain nonlinear materials the characteristics
become straight lines. This is true for rate-independent nonlinear materials
in the special case of simple waves (see Courant and Friedrichs (1948)), and
in general for semilinear materials, i.e., those which are nonlinear in the
time-dependent response but whose instantaneous response is linear (Lubliner
and Secor (1967)). In the semilinear class are included viscoplastic materi-
als, for which Malvern (1950) and others (see Simmons et al., (1961)) have
successfully used the method of characteristics to study wave-propagation
problems. When materials are instantaneously nonlinear and have a viscous
response the method is faced with certain difficulties. In this case the
characteristics are curved and are not known beforehand. Usually a trial and
error procedure is used to determine the characteristic curves. Even with
these difficulties the method is still used with some success.

Another method used in nonlinear problems is power series expansions
about the wave front. This method in essence transforms a set of partial
differential equations into an infinite set of ordinary differential equations.

These equations are linear in the linear problem but become nonlinear for

nonlinear materials. In most cases these equations can be solved sequentially.
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Wave propagation is in essence the movement of discontinuities through
a material. The discontinuities fall into two general types. Pirst,
acceleration waves where the dependent variables (stress, strain, and
velocity) are continuous at the wave front but their derivations may be
discontinuous. BSuch discontinuities, as is well known, travel along
characteristics. Most of the work in wave propagation in materials with
memory has dealt with this type of wave (Varley (1965), Coleman and Gurtin
(1965), Lubliner (1967)). This type of wave carries discontinuities in
stress, strain, and velocity (for first order discontinuities). Such waves
can be propagated only in certain types of materials, namely those whose
stress-strain curves are concave upward. This is because the material must
be such that small disturbances do not dissipate the wave immediately after
impact. If the boundary conditions are discontinuous of the first order a
linear material will propagate such a wave. If the boundary conditions are
continuous the solution will likewise be continuous for the linear case. One
striking feature of waves in nonlinear materials of the hardening type is
that continuous boundary conditions may give rise to discontinuous solutions.
This happens when characteristics bunch up making the wave ever steeper until
a shock wave is produced. Since the characteristic veloeity increases with
the slope of the stress-strain curve, the requirement of upward concavity for
this occurrence is evident. Another important observation about shock waves
is that they do not propagate along characteristics in the nonlinear material.
Only in materials with instantaneous linearity does the shock wave propagate
along characteristic lines. In this case since the characteristics are run-
ning parallel to the shock, the decay of the shock depends only on the bound-

ary conditions. In the fully nonlinear case however characteristics are

constantly intersecting the shock front and influencing the decay. Consequently



this significantly complicates the problem since the solution for the shock
decay depends upon the total solution.

Many of the techniques now available for the solution of shock wave
problems in solids originated in the field of aerodynamics. At times the
connection between compressible fluid flow and waves in solids is quite
striking. Indeed, one-dimensional motion of gas in a tube is mathematically
equivalent to the one-dimensional wave propagation problem in a nonlinear
elastic solid. Consequently some of the methods developed to a high degree
in gas dynamics such as the method of characteristics and the hodogfaph trans-
formation can be usedrdirectly for solids. Use of the hodograph transformation
however cannot‘be used to advantage if the material is viscoelastic.

The purpose of the present work is to investigate the shock wave proble?
in materials that exhibit nonlinear instantaneous response. In most cases |
the material considered will be viscoelastic. Initiélly the mulﬁidimensional
case is looked at, then attention is focused on the one-dimensional problem.v
A method of solution is exhibited for %he one-dimensional case and explicit
solutions oﬁtained. The behavior of a wave after very long times when trans—

ient effects can be neglected is also exsmined.



II. MULTI-DIMENSIONAL SHOCK WAVES

Consider an isotropic solid through which a surface of discontinuity
is being propagated. It will be assumed that the stresses, velocities and
strains are continuous everywhere except on the surface of discontinuity.
The displacements will be required to be continuous everywhere and sufficient-
1y small so that the linear strain-displacement relation can be used. If
ui(Xj,t) denotes the displacement at any time +t 1in terms of the coordinates

Xﬁ then the strains can be defined by

1 Sui ou,
€3 T3\ Y X (2.1)
J
The equation of motion is
3013 avi
X, P ot (2.2)
J

where Oij is the symmetric stress tensor, v, are the particle velocities
and p 1is the density of the material. Repeated subscripts will denote sum~
mation in the usual way. The relation between stress and strain will be
defined in terms of two equations. For instantaneous deformations (encounter-

ed on the discontinuity) the relation will be

) (2.3)

Since the material is isotropic this equation can be written

0..=AS,, + A ¢ (2.4)

+
13 = Blig Y Myt AofikByy
where the Ai 's are scalar functions of the three invariants of the strain

tensor.
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For deformations that are not instantanecus it will be assumed that the

material behaves according to a constitutive law of the form

Bci. BeKl
—2d = s o *
5t Tijrl Tov T iy (2.5)
where finl and gij are tensor functions of stress and strain. Obviously

equations (2.3) and (2.5) must be compatible. For instantaneous deformations
where the stress and strain rates are theoretically infinite, the gij term

in equation (2.5) drops out. Thus substituting (2.3) into (2.5) gives

SFi, aeKl ) aeKl
8€K1 ot ijK1 9t
or
BFi.
""‘lae (+) = £ (F _(),) (2.6)
Thus if finl is known (2.6) can be integrated to calculate Fij . The

reverse however is not true. Given Fij it is not possible in general to

calculate f,, since the second argument in f, . contains information
ijK1 1JK1

about the long time behavior:of which Fij is ignorant. Only if fi*Kl is a
J

function of, say, stress only will it be possible to calculate it from a given

F,., .
iJ
Let the surface of discontinuity be defined by the equation

t - ¢(X) =0
where X denotes a point (X,,X.,X.) . Assume before the wave arrives the

1’7273

material is at rest and all dependent variasbles are zero.

The dependent variables can now be expanded in a Taylor series in time

°

fTor the wave at position X . The expansions for the dependent variables are




R SNt S (2.14a)
- n=0 ) ‘
el x)
e, (X,8) = Bt - o(x)) I ~—J--- It - (x)1° (2.140)
n=0
oo (n)(X) . ‘
v.(x,t) = H(t - ¢(x)) E [t - o(x)] (2.1ke)

Substitution of (2.15a), (2.1ke¢) into (2.3) yields

S 3 sy - (o) ; L i3 (o) 3¢
55 6(t = ¢) 0;)" + H(t - 9) Z T T " %45 Ay
J n=0 J J
(2.15)
[t - 91" = pls(t - ¢)v§0)}
+ pH(t - ¢) ) i, (n+l)[t - ¢]"
n=0 '
Continuity of displacements demand
apP v
43 . 1
at 93X (2.16)
J
where
Sui
Piy = EEE , (2.17)

Substitution of (1l.k4c) and an expansion for Pij into (1.6) results in

(0)6(t - ¢) + H(t - ¢) ZO %T~P§?+l)[t - ¢]n (2.18)
Nz
L (o) s 1 Bvi(n> (n+1) 3¢ n
3% vy §(t - ¢) + H(t - ¢) Z HTB% -V 8% [t - ¢]




Equating terms of order &(t - ¢) in (2.15) and (2.18) gives

30 (o) QVJSO) , (2.19)

) (0) _ _(0)
'5%’ Vi TPy

The local wave speed C 1is defined by the relation

3
c ox, ” n (2.20)

where nj are the components of the unit normal vector to the wave front.

Define a new vector A by
w, = - == (2.21)

Using (2.20), (2.21), and the constitutive equation (2.30) of the wave sur—

face with equation (2.19) yields

2 (0) _ 1 (0) , 1 (0)
c” p w, = nJ Fij<2 ne o'+ S ny “’K) (2.22)

For the linear case as is well known two distinct wave speeds are possible:
one associated with rotational waves and one associated with dilatational
waves. No such simplification is present in the case considered here.

Assume Ao can be put into the form
A =BT (2.23)

where I 1is the first invariant of the strain matrix and Bo is a function
of the three invariants of the strain tensor and is regular for I = 0 ,
This is a necessary assumption for the stress-strain relation to be smooth

at the origin. In terms of equations (2.4) and (2.23), equation (2.22) can

°



be written

A
o
c” p W = an w05 4 g;’(n n w{o) + w(O))
i KK O < .| 1 (2.2)4)
+ ﬁg’n (n ')y n m(o))(n {94 n w(o))
[T e e ¢ Kl K JK
Multiplying through by wi and then dividing by wiwi gives
2
5 I2 A.‘LI Al
P = B+ +
2 7o 2 2
l (0)! l (O)l
w 2w (2.25)
+ ~*ﬁ§~———- n,n w(o) + n,n (0) n w(o) +n w<0) w
(0).2 | "1 ke et K"j % /%
2|w*
Consider the special case where A2 = 0 . For transverse waves
(0) _
anK = 0
and since
(0) _ (0)
uK,K = n W (2.26)
these waves are equivoluminal immediately behind the shock front. Equation
(2.24) demands for not all w, =0
A
=/ L
¢ =/ 55 (2.27)

For waves where niwﬁo)#D multiply (2.24) by n, and sum on i

This
gives for the wave speed

s (2.28)
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In the linear case Al and Bo become constants and are related to the

lame's coefficients A and u by

and the wave speed has a constant value. In the nonlinear case however Al
and Bo depend on the local strain field and hence the wave will travel with
variable velocity depending upon how the strain varies with time at the wave
front.

For the material assumed

A (

w(O)BO + El-(njniwjo) + mgo)) (2.29)

2 (o) _
Cpw ™ =y

Substitution of (2.28) in (2.29) yields

1\/ (o) _
( BO + 5—)(@3 - njﬁ) = 0
where €6 = n w(o) Hence
KK :
Llo)
n = ~1§— (2.39Q)
From (2.17) and (2.19)
o L(0)
0 i _ i
PlJ = axj = - nJ G (2.31)
Using (2.30) and (2.21) gives
SRR s 52)
X n'j 5 = W, 5 .3
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and therefore

8u§o) Sugo)
ax. ~ sy =0 (2.33)
J i

Thus waves traveling with speed given by (2.28) will be irrotational at the
wave front. This is a dilatational wave.

Now substitute (2.27) in (2.29). This gives

A | A ‘
71 (o) _ (o) 71 (o) (o)
oW =onnw B o+ (njnimj + W )
or
A
1 5
0=z, + E-)Gni (2.34)

This implies 6 = O and hence is an equivoluminal wave at the shock front.

For linear materials and the partially linearized material considered
here it is possible to talk of two distinct wave speeds and a single type of
wave associated with each wave speed. In the most general material however
this will not usually be the case. As is evident from (2.25) rotational apd
dilatational effects are coupled by the third term. We may expect however
that in many instances either rotational or dilatational effects will still
predominate and the coupled influence will be of secondary importance.

Let us now derive the equation that governs the decay of the amplitude
of the shock wave. Equating coefficients of order n = 0 in (2.15)and (2.18)
gives

(o)

ij ()3 e _ (1)
ax,  ~ %ij %, =PV

and




av,
e | () (2.35)

The third necessary equation comes from the constitutive law

BF

(1) (1)
93 ° ae ey * 8 i3
K1
where
o)
oF oF, .
l’! = l‘! (E(O))
aeKl aEKl Pa
o (0) (0)
S T B (e
By = B1y(pq'mn )2 o)
Let ( ), denote differentiation with respect to XJ . Combining

J

equations (2.35) gives

1 o le] e lo]
- —3[(¢,KF1K),J {0 Fadsy ¥ Fip e &5 F Fap g ¢,i] D (2.36)

I oOF
1 1) |1 F (1)
p glK¢9K¢: = l,j - 20 qu ¢,i>¢ ?K qu

(1)

Note that the shock decay involves qu which is not known beforehand and

so only under special assumptions will (2.36) be directly integrable for

(0)
€14



2.1 Plane Dilatational--Shear Wave

Consider the motion of a plane shock wave propagating into an infinite

Solid at rest in the xl direction. Therefore

n,.=n,=0;n =1 : (2.41)

Assume the geometry and boundary conditions are such that the only nonzero
components of strain are €17 » and 612 . The wave consequently has

dilatation as represented by the Ell strain and shearing deformation as

represented by the 512 term. In this case
(0)
W
(o). ,(0) , o _ 2
€17/= w" 5 €, 5 (2.&2?

Equations (2.24) produce two relevant equations. In what follows the super-
scripts will be dropped and it will be understood that all quantities are to

be evaluated at the shock front. Equations (2.24) produce two relevant

equations
w A .
' 2 = 2,2 '
Cpwy, =4 5=+ 77 ww, - (2.43)
and wg
2 _ 2 Y
c"puw = (BO + Al)wl + Az(wl + E_) (2.4Y)

Consider first the possibility of producing a pure dilatational wave.

This means

W

b =0 ; wy #0 (2.45)

and (2.43) is satisfied identically. The wave speed is calculated from

(2.4h),



1k

+A W (2.46)

As expected the wave speed depends on the magnitude of the dilatatio: .
Consider now the possibility of propagating a pure shear wave. This is

where

#0 ;w, =0 (2.h7)

2 1
c D='2"-|
wl—O
(2.L44) nowever would demand
w2
A | -2 =0 , (2.148)
2! _F
1

This cannot be satisfied for arbitrary nonzero w2 . Hence a pure shearing

shock wave cannot in general be produced. Shearing motions will necessarily
produce dilatational effects simultaneously. Thus two types of waves can be
propagated. A dilatational shock with wave speed given by (2.56) and a cou-

pled dilatational-shear wave whose speed is given by

A A
2 1 2
CCp=5=+35uw (2.49)
This coupled wave however demands a relation between wl and w2 . This is
found by combining (2.43) and (2.4k4) which results in
A A A
2 2 1 2 2
5 wl+(B0+2)«wl+-E——w2—o (2.50)
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Let the solution of this equation for w2 be given by

w, = R(w,) (2.51)

Let us now see what happens when the surface of an infinite half space

is impacted by instantaneous straining in the Xl and X2 direction. We

will consider only what happens immediately after impact.

'
3

W,
INTUREN TR RN
/S S J SV /S /7SS S

X

‘To make things more transparent let us take a more specific material. Let

BO and Al be positive constants and

A2 = KI = K wl .

K is a positive constant., For fixed w, , the constitutive law for o

2 11

is seen to be of the hardening type and involves only first and third powers
of wl » thus making the material behave the same in tension as in compres-

sion. For fixed wy the law for 012 is linear. In such a material we
would expect shocks to be possible.
In such a material a pressure shock will move out followed by a coupled

dilatational-shear shock wave. This must be the case because a coupled lead-

ing wave would require by equation (E.SO)V
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A
1 K 2 K 2 _
(B + 5-0 *ow tpw, =0 (2.52a)
But
Bo s Al s K> 0
Hence (2.52a) cannot be satisfied by real values of wl and Wy - This

situation of a pressure wave followed by a shear wave is what of course
happens in the linear case. The situation here is pictured below.

3,
N AN

Wy

~)<'

i
l

M | :
W i [
|
l
|
]

Xl
The pressure wave velocity as given by (2.46) is

- /L 2 .
c, = /p ((13o + Al) + K(Wl) ) (2.52b)

The necessary compatibility relation that must be satisfied at the second

shock front is analogous to (2.50) and yields an equation for the determina~

tion of W1 .

9

+ W, +a. =0 (2.53)
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where
A
1 1 K, ¥
“ %X (Bo t3o- g () )
L /552 & Al) *L K *)3)
“2“'?(‘“1‘”2 K+(Bo+é—' Wy + 5ty

‘The speed of the second wave is given by

./ L %2
C, = / 25 (Al + K(wl) ) (2.54)
It can be shown that
(@)% (o)
i * 2}( >0

for all loadings and values of the positive material constants. - This condi-~
tion insures that equation (5.4) has only one real root.

The preceding analysis would hold for all times if the material is non-
linear elastic and the strains at the surface are kept constant after impact.
If the material has viscosity or if the boundary conditions change in time
the wave profiles will change and consequently the shock speeds will vary as

indicated in the following diagram.

%
|
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III. ONE-DIMENSIONAL SHOCK WAVES

Because of the difficulties involved in obtaining nﬁmerical soluﬁion to.
nonlinear wave propagation problems, almost all solution% have been confined’
to one-dimensional cases. Such problems arise when the dependent variables%f
can be considered to depend on a single space variable. Examples of such §
cases are plane dilatational waves, torsional waves in a thin tube, and long-
itudinal waves in a thin bar where radial inertia effects can be neglected.
In what follows the problem will be thought of as waves in a thin bar,
however, everything naturally will hold for other one~digensiona1 cases witgf
suitable modification of the constants involved. |

As indicated earlier the solution by the method of characteristics is é
quite involved for the fully nonlinear case. In response to this an altern%a
tive method of solution will be exhlblted from which expilclt solutions areQ?
obtained. Lubliner & Secor (1966) derived the shock decay equation for this?
problem but gave no solution. Their actual solutions were confined to semi—?
linear materials (Lublinerand Secor (1967)).

Some of the development of Section I will be repeated here for the one-

’ i

dimensional wave in order to make this section self-contained.
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3.2 Problem Statement

Consider the problem of impact on the end of a semi-infinite bar composed

of a nonlinear viscoelastic material. Let

X = distance from the end of the bar before deformation
t = time

€ = strain

0 = stress referred to original cross section of bar

V = velocity

p = density in reference state

The equation of continuity is

de _ v

Pyl , (3.1)
The equation of motion is

90 _ 9V ;

The constitutive law relating stress and strain will be taken to be

9 )
5%: f(o,e) —é-% + glo,e) (3.3)

Using a constitutive law of this form has two advantages. Pirstly this
equation is capable of describing closely the behavior of a wide variety of
materials and éan be shown to be the most general constitutive law of the
first order for a viscoelastic material of the differential type (see Lubliner
(1964)). Secondly, it is much easier to handle than the law based on & multi—
ple integral representation.

Returning to the problem of impact, different types of waves can be set
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up in the bar after impact. Of crucial importance in this regard is the form
of f{o,e) . This function determines the instantaneousEresponse'of the .
material to loads. For rapid deformations equation (3.3) reduces to

de ;;
T+ = t(o,e) (3.1&53

Let the integral of this equation passing through (0,0) be given by
e = Flo) .
The system (3.1), (3.2), (3.3) is a system of first order, quasilinear,

hyperbolic partial differential equations. The characteristics are given by

1

- (5”1‘7%"5)‘)5 (3.5)

g

g
4
|

Since these latter characteristics are dependent on stress and strain, theyf
are curved and computation of wave profiles becomes much more difficult than
in the linear case.

The velocity of a shock wave, as will be verified later, is

v =(p-‘(’3-y)% (3.6)

From the theory of hyperbolic equations, small disturbances. are propa-
gated along characteristics. Hence for a shock wave to exist the constitutive
law must be such that the velocity of a shock is greater than the characteris—

tic velocities at lower stress levels. This condition will exist if the

instantaneous stress strain curve is concave upward in some region. This will

happen if

Since we are interested in shock waves it is these kinds of materials that




will be concentrated on.

21



22

3.2 Conversion to a System of Ordinary Differential Equations

The constitutive law (3.3) can be cast in another form.‘ Consider the

system of equations for fixed X

(1)

£ = M(o) (3.7a)
(2)

& - o(0,e!?) (3.70)

£ = P(e(l),e(e)) (3.7c?

Assume G 1is & regular function of ¢ and 5(2); then for a discontinuous

(2)

stress input € will remain continuous since integration of (3.7b) gives
)
tl
5(2)(t ) - 8(2)(t ) = S g(c,e(z))dt
1 o
.t
o

Then as t, - ©
1 o]

5(2)(t1) . €(2)(,00)
since

t

1lim S G(U,e(e)) =0
tl.%o t
o]

The functions M,G,P will be assumed to be regular for all domains of use

and are such that

M(0) = ¢(0,0) = P(0,0) = 0

(2)

Since € vanishes for rapid loadings the instantaneous response from an



at rest condition is given by
e = P(M(0),0)

The function P represents the coupling between the instantaneous strain
(1) (@)

Consider the special case where the coupling is linear and P is linear.

and the viscous strain ¢

Then equation (3.7c) is

(1)

Elimination of ¢ and € in equations (3.7) gives
de _ .° do
& = M (o) 3 + elo,e - M(0))

A prime denotes differentiation with respect to the argument. This uncoupled
version of equation (3.3) will be used in what follows since the algebra is
somewhat simplified but the essence of the problem is retained. Extension to
the more general material is straightforward and presents no difficulty.

Let the boundary condition for system (3.1), (3.2), (3.3) be given by

0(0,t) = H(t)P(t)
H(t) = heaviside stép function
P(0) # 0
P is assumed to be continuous for +t >0 . Let the path of the shock wave
be defined by
t - £(X) =0

£(X) is kept as an unknown in the problem and is part of the complete solu-

tion. Consider a Taylor series expansion sbout the shock front for the




dependent variables 0,e,V .

The expansion for stress is

v Un(x) n
o(X,t) = H(t - £(X)) ] —5— (¢t - £(0))]
n=0 :
Let 1=t - £(X) ~
® v
v(x,t) = 5H(1) 7§ —
n=0 :
o e(k)Tn
e ) =m0 7 AT K= 1,2
n=0
The partial derivatives of o0 in X and t are given by
i ¥
< n n T 0n - 0n+l i)
ox= - 8(t) ] ST +H() ] — T
n=0 n=0 '
n .n n n
o, = 6(1) ] — 1 +H(t) ] =
n=0 n=0

It is now convenient to use these expansions to eliminate the partial

in equations (3.7) and obtain direct relations between e, and o .

n
©0 (l) Tn Ry OnT
£ =M ¥
PR TS
Let L(t) = M{o(t)) . Then
(1) _ ar(o)
n dTn

This gives for the first three terms

2k

(3.8)

(3.9)

strai@s

(3.10)

(3.11)
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ey = M(GD)
(1) _ 1
€, =M (co)cl (3.12)
e 2o )02 + 4 (0 )0
2 ) o 1 o' 72
Let N(t) = G(o(t1), e(1)) . Then
(2) _ da"n(0)
Cne1 T n (3.13)
dt
This gives for the first three terms
(2)
80 = 0
(2)_ _
e, "= G(co,eo) (3.1L)
8(2)= (5 e o+ Qg—(c € Je
2 90 0’0’71 9 o’ 0’1

The sets of equations (3.12) and (3.14) can be solved sequentially for the

En in terms of the Gn . Elimination for the first three terms gives

€, = M(oo)

€. = Mv(c Yo, + Glo_,M(c ))

1 o 1 o) e} (3.15)
" 2 ! 9G

€, =M (Uo)(cl) + M (GO)O2 + 55~(GO,M(00))01 +

+ 22 (g, ,M(0_))[G(0 Mo ) + M (), ]

These relations actually define approximations to the constitutive law that
are useful for very short times. Given a stress input the strain can be
determined to any degree of approximation. Thus for a second order approxi-

mation with a stress input defined by
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o(t) = Ht)[o_ + ot + ... ]
o 1

the strain response will be

e(t) ® H(t)[M(dO) + (M'g1 + Gt +

2 ! G oG 2 2
LAl el et
+ (M O'l + M O'9 + 3 O'l + 3 {G + M Gl})t ]

Equations (3.1) and (3.2) become in power series form

© € © g +1
§(1) Z —%-Tn + H(T) ) _QT_,Tn =
n! n!
n=0 n=0
1 1 ) (3.16)
' S Yoo o Vo " Vot g
= -f §(1) Z 5 T + H(T) Z — T
o ! n=0 n!
and
w VY © v
+
p 8(t) J S +H() ] n,l ™ =
n! n!
n=0 n=0
' ' (3.17)
' v 9% n T 9% = %l n
=-f&8(t) ] —T +H(T) )] S———01
n! n!
n=0 n=0
Comparing terms of the order &(1) at T = 0 gives the relations
¥ : 8
]
pV, =-f o (3.19)

These are the familiar shock relations usually derived by other methods.
Combining equations (3.18) and noting that €y = M(OO) gives for the speed

of the shock wave C ,

(3.20)

aj
i
=1
L}
©
=
Q —~
Q
ov
S
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Equating coefficients of powers of T gives

an MO
€l T T\P T ) Vanl

1
ag M\
PVe1 T3 (P 8’; T+

(3.21)
n n+l
_dan a L
MO = M(Uo)

Solving equations (3.21) for the 9, 's defines an infinite number of coupled

nonlinear differential equations. The first equation is

B - had T g (3-22)
[s]

where

1 _ 1
MA\2 M M 2
-2, o i _ oV _o
Z(GO)—chy) +2(Mo 0>G)0>
O O O

This is the shock decay equation and describes how the shock amplitude varies
along the bar. Note that unlike the linear or semilinear material the shock
decay equation cannot be solved directly since there is a dependence on Gl .
The complete set of equations has the form

do_ .M
T Tax 9’(00) - G(GO’MO) =0
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dgco M. \2 do, do ) , .
2 5;'0 ax OlJ(Oo’Ol’ ax I~ 02(¥o T g b+ Bl(ao)

’ ) : ’ (3.23)
5 1
a0, M \2do do .M
2 e(af- ) ax OnJ(oo’Ol’dX ) - n+1<¥o - Eu)p * Bn<go’ e 9y l)
aX o (o]
The function J 1is given by
1
J(o . doo)= _bif_o_ 2M. _&)dco
0’71% & 20 o 0 /&
o\ o o
3G oG
" ou -
-eM o -ps (o M) DW(G,M)

One advantage of dealing with system (3.23) instead of equations (3.1),
(3.2), and (3.3) is that the shock relations are contained directly in the
governing differential equations and are not separate entities. Equations
(3.23) are coupled only in the right hand term. Thus the equations become

uncoupled only if
¥
M(o ) =M (o )o_ (3.24)

This can be satisfied only if

or

2) M(oo) = Kcro

where K 18 a constant. -



Recall one of our restrictions on M was

Hence 1) identically satisfies ((3.2L). If this condition is met the
shock amplitude is zero and the dependent variables become continuous at
the wave front. However, discontinuities can be present in the derivatives
of the dependent variasbles. These waves are commonly called acceleration

waves. The wave speed in this case becomes

P

- C = 1lim %o )
- pM(005

a0

If 00 # 0 then for uncoupling to occur, case 2) must be satisfied.

The complete constitutive law for this type of material is

de _ . do
3t = K3 + elose)

Materials of this type have acquired the designation of semi-linear materials
in analogy to semi-linear equations in mathematics. In general we may define
a material to be semilinear which obeys a linear stress strain law for in-

stantaneous loadings. A material of the differential type described by

d§ Nidg+N2
at dt

n-1 n-1

d € d a R

N:-L’Ni( n-1? 't0 €T o1 o ") i=1.2
at

will usually be semilinear if N. is a constant.
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Equation (3.22) deserves closer scrutiny. The condition that a shock

decrease in amplitude is

l‘...fiq_(()
g dx )
o
From, (3.22) this means
M
i 2
G (M-—G-)

Q O O
N R AR (3.25)
[o] o] Q [e]

where G = G(o ,M ) . Now
o oo
v

=
=

! =3 9, o
fg'(oo)_200+2 :

For the shock speed to be real and positive requires

f >0

by equation (3.20). For the overall system to be hyperbolic requires

M >0,
o]

This then implies
¢ >
2(6_) >0
M is assumed to be of the type

2
d g <o
ao
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for shock wave propagation. This material can be illustrated by the

following diagram.

G
] ,

D——n
Mir)
Thus
¥ MO
My-5, <0
o
For positive o (3.25) can now be written
. GO
g, < ——— (3.26)
Mo ,)
(5—-— M,
o

If (3.26) is not satisfied the shock front will actually increase in ampli-

tude. Note that as

the restriction on 01 becomes weaker. Indeed for a semilinear material
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there is no restriction on the magnitude of Gl .
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3.3 Solution by Series

Many numerical techniques for solving nonlinear difﬁerential equations
H
break down when applied to an infinite set of coupled eqdations. Some may be
used in a modified form.

The first mode of sttack will be a series solution. The Gi 's will be

expanded in & power series about x = 0 . Thus

oo
n 3
0,(X) = ] a X - (3.29)
n=0 .
The a are determined from the boundary conditions. If

io

o{0,t) = P(t)H(t)

is the boundary condition then expanding P(t) in powers of t gives

Pt Pntn
P(t) = Po I .
Since

‘ . n

o(0,8) =0 (0) + T o (0) &

’ o n n!

n=1
a, =0 (0) = Pl .

If the infinite matrix aij is known the Gi 's are known and the

probiem is solved. Our problem now is to generate the matrix aij .

The 1i%P equation of the set (3.23) has the form

- . ]
=+ A ot "2"1-»1 = }\3 (3.28)




3k

do
— _._._O =

Ak Ak(ao,dx 5075055 «ons Gi) k=1,2,3
2
d o1 do

It is extremely important that this equation contains 5 o an s
. dax
and Gn+l linearly. If this were not the case we would be faced with solv-

ing a set of nonlinear algebraic equations instead of a linear set.
Consider what information is needed to calculate a typical element of

85 . Supstituting (3.27) in (3.28) and equating coefficients of order n
gives sn equation of the form

(n) (n) (n) (n)
+ =
By ,1-1%1-1,n+1 Y85 ,1%n * By 141%41,01 = Of (3.28)

where

(n) ,(n) (n) ,(n)
€1 "By i-10B5,i81 i

are functions of aKJ where
K,Jd <i+n

It now becomes clear how aij can be generated. This can be accom-

plished by solving sets of algebraic aquations in the following manner.

B(1)GLOl = (1)
(2) ,(2) (2)
Bi1" Biol 22 ¢
(2) _(2) | (2
Byr' Bosflenn Co
(3.29)
[ (3) .(3) ] (3)
Biim Biot O Jlags ¢
(3) L(3) ,(3) (3)
Bo1” Boot Bp3z'|yanb =190
(3) L(3) (3)
L ° Pz Pazley €3




() .(n) T (n)
Bii Bio'\O 0 - %on €1
.
(n) (n) (n)\
Bor Bop' Bag 0\‘ ®1n-1
AN , .
(n) L(n) (n) N . _ ‘
0 \'§32 By B3l N . =1 . (3.29)
’ AN AN . )
' AN (n) ,
. AN n -1,n .
h 4(8)  o(n) : (n)
n n " I
O N B n,n-1 Bnn \annl,l Cn :
| IR

This system can now be solved sequentially since the coefficients of each
matrix equation depend only on the values of the aij 's previously calcula-'

ted. That is to say

() () (n) (n)
1? i? (aKj) ; Cin = Cin‘(aKJ)

where K + j &£ n . Thus the infinite matrix aij is generated along diag~- .

onals as indicated,

Folb

//
/

)
O
n

|__l
\}—' \I-—'\

1._1

n

N\

a is given by

ol

: M(P)
G(p_,M(P)) (w2, - Ta""")

e 35 - Z(PO) ° P, (3.29a)

o
1

Equation (3.29a) shows clearly the two factors that influence the decay of a
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shock wave. The first term in (3.29a) represents the damping effect of the
viscous properties of the material. The second term represents the effect of
the boundary conditions as transmitted by the nonlinear character of the
instantaneous response of the material. Clearly for a linear or semilinear
material the second term drops out.

It is apparent that because of the order in which the a 's are solved,
the solution for 9 will approach the true value fastest. This is fortu-
nate since the solution for Oo gives the amplitude and position of the
shock wave that in many cases is the most important information desired.

For numerical computations it is fortunate that the B matrix is a
banded one with each row containing at most three elements positioned about
the diagonal. When solving for the a 's this fact becomes important since
the B matrix can now easily be diasgonalized even when B is a very large

matrix.
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3.4 Convergence Proof

The standard proofs of convergence that are used for finite systems of
differential equations break down when applied to an infinite system of
equations as are being dealt with here. Infinite systems such as this arise
also in celestial mechanics and consideration of the motion of infinitely
many stars. The following proof is based on a similar proof by Moulton (1930),

Define new variables by

Tope1 = Vn = ¥y (0)
Top =9y - Gn(o)
en = & En(o)

Then equations (21) can be written

aT ]
2n-1 _ + £ T

dX T Cn+l (0) + f'v (0)

€
n+1l

on+l t Epel

(3.30)

dr ‘

2n !
X =P Toper * F Topeo * F 0pup(0) + 0V, (0)

1
It will be assumed that o is bounded. Hence by (3.20) f 1is bounded.
It will further be assumed that there exist finite positive constants Ci

such that the series

C=CT +.C1Tl ey CT 4 4. (3.31)
converges for

vy 2 T
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Assume also that there exists an A such that

c | e Ty 0|+l (0)] + 2]V, (0)]

r2n—lA 2 l n+l 2n+1| n+l

' (3.32)
CrEnA 2 pI’I‘Qn-!-ll * ’f HT2n+2l * lf Hdnﬂ.(o)l * p!Vn+l(O)l

Consider now the system

dp,

L = H =
X ATy P3P=CD +CD r, ...

P will converge if [Dil < ri by equation (31). By symmetry -

where D = Di/ri .  Therefore (33) becomes
abD _
ax - AP
But
P = [CoroD + CrD+ sesesl

Hence

5]

dab _
% = AD[Coro *Cro o+,

But by hypothesis

c

CorO + Cor. + ...,

converges., Hence

Sl
::
8
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The solution of this is

D(X) = (AC)X (AC)2X2

which converges for |X| <= ., This means that the series for Di(X)

converges. Since the right members of (3.33) dominate the right members of

(3.30) by assumption (3.32), then by the comparison test the expansions for

Tn must also converge.
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3.5 Effect of Boundary Conditions on the Decay of the Shock Front

A few observations can now be made concerning whether or not a shock

will decay. Restating the shock decay equation,
1 1
ac = =
—o(3(, L2 M)z u )= (P_’L_ :
ax (2(p g, +éco > P) =04 o~ M )o p Glo_,M(a_))

If the material is semilinear a shock wave must decay. In a semilinear

material

This equation then reduces to

1 1
do = -
> 2
dxo(_g' (pu)™ + (pu) %®= - p 6o, ,u0)

where U 1is & positive constant. Since g—- is positive on thermodynamic

do o}
grounds, %— Efg is always negative and the wave must decay no matter what
o
the boundary conditions.
do
If the material is linear elastic aig' is obviously zero and hence the

wave travels with constant amplitude and profile no matter what the boundary
conditions.

Thusvit is only in the nonlinear elastic case and the nonlinear visco-
elastic case that the question of decay of a shock is tied up with the boun-

dary conditions. We may ask ourselves under what boundary conditions will

do
o)

ax

Hi

the wave front travel with constant amplitude. This condition means
In the nonlinear elastic case

do

O . - -
?ﬁ—-:0+01:0*02:0+,...,0n:0

0
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Hence only if the stress impact on the rod is in the form of a heavyside step
function will this condition be satisfied.
For the nbnlinear viscoelastic case the necessary input is no longer
a step input of stress but is & specific function. TFor the case where
M(o) = a + b0 the recursive relation
I R
a

o]

n+l n

must be satisfied. This results in a boundary condition of the form

n

0(0,t) = AH(t)e?
where A is a constant and H(t) is the heavyside step function. It can
be seen from this relation that as the material becomes more linear and a
gets smaller; more and'more energy is required to maintain a steady shock
At ‘

since e® gets very large. If n 1is zero this of course indicates

AH(t) is the necessary initial condition.
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3.6 A Restricted Class of Materials

Consider now a more restricted class of materials where the instantan-

eous response is shown by the following figure.

o

4

- > <)

Thus

'e(l) = M(o) = a + bo (3.34)

For what follows it will be assumed that ¢ is always greater than zero.
An analogous procedure can be used for compressional waves. b is taken to
be greater than zero since if b = 0 ‘the equations will be parabolic and if
b < 0 the equations will be elliptic. If a > O impacting such a material
will produce a shock that has varisble velocity and hence follows a curved
path in the X,t plane. If &a = 0 the material is semilinear and the shock
moves with constant velocity. For what follows a will be taken to be greater

than zero since we are interested in the nonlinear shock problem. For simpli-

city take
g(o,e) = no

since the nonlinearity we are interested in is the instantaneous nonlinearity.

* The governing equations now reduce to
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do : o
of2 8 -1 - 1
d_x—(p R(Go) - 20, R(oo) )+ I N =8y

o]

do do a0 %o

1 -1 ap o) _ 2 0 3
% 2Rlo) + ol(pn -R(0) =5 = ) =Pt 3 (3.35)

. g o, o] dx

o . . do a0 3%

n .. -1 ap o) _ n+l n-1
3% 2R(o ) + cn(bn - R (o) =5 Ei-) =p Tt

o o dax

where

1 L
_ 2fa 2
R(Uo) =P (oo * b)

Before proceeding to the solution of the problem it is possible to get
an idea of how the o, 's behave for large n . It was assumed that the
initial expansion of stress, strain, and velocity in powers of T is a

convergent series. Hence if the series is to converge for T > 0O ; the

g
E% 's must approach zero in the limit. It is also assumed that Oy and

°

GXX are convergent for sufficiently large T . Consequently we can use the

expansions for these three quantities and the governing equations to see hdw

the Gn 's behave for large n . The convergence of G’UX’GXX implies then
lim Sn =+ 0
atd
o (3.36a)

] )
lim 8 - (n + 1)f 8 + 0
po+oo n n+l

i

¥t 1]
lim 8 - (n + 1)f S 2(n + 1)f S 41 *

- + o +1
+(n+1)(n+ 2)(f) S 4p ™ 0
9 .
Where Sn =7 Combining these equations with equations (3.35) gives for
very large n
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Sn+l _ n

s~ " (n+l)p (3.36b)

n ;

This equation illustrates the alternating sign of the On 's, Thus the

Sn 's decay essentially as %-. It is also significant that the constant
which governs the nonlinearity seems to have little effect on the decay.
The viscosity and the local slope of the stress strain curve b has direct

influence however.
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SERIES SOLUTION

For a material with nonlinearity of the type of equation (3.34) and

with linear viscosity of the Maxwell type, numerical solutions have been

(K)

obtained. Recall that the matrix Bi has the form

J
P—- S——————
(K) (K)
Bll B12 0 o 0 -..0 0
(K) (k) (K)
B21 B22 823 0 0 0 0
L (%) (K () ‘
0 Byp B33 By .0 0 0
T ) (K)o (K)
0 0 0 0 Bn,n-—l Bnn n,n+l
For the case under consideration the matrices B§§) and CgK) are
determined after some manipulation.
(x) _ &Y,
B,, =2 fo(K +1) - (K + 1) 57
o)
(k) _
Bip" = ¥, @
| K (3.36c)
(K) - a .
e =X+ 1) 5 ] Vihy kei+1
o i=l
K
- LA kg (-1 2)
i=1
K-1
ta L Ay
i=1
(x) _
Byn-l " (K - n+2)f

Béi) =« (K-n+3)(K-n+2)

(x) _
Bn,n+l =AY,




where

oK,
n
- A

- &

A .
ni

(i)

An,K—n+2—i

+1,1 YK-n+1-i

K-n+1
Z f .
= K-n+2-i
Ken+l
n,Kf-n+l iZl
K-n
LAy
i=1
A =g
n no
;o= L
o} Alo
1
2
= b
F, (pb)

fi(i)

L6
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3.7 A Method for More General Types of Materials

For materials with more complex constitutive equations than that of
equation (3.34), the governing set of differential equations (egs. 3.23)
become very complex. If however, the shock amplitude at the front is all
that is desired a simplified approach presents itself. The essence of the
method is to assume that the material can be approximated by a piecewise
continuous stress;strain law for rapid deformations. By proceeding in a
stepwise fashion along - X , general types of constitutive laws can be

handled. Consider the X,t plane to be divided into equal segments along

X @
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!

Cid

4

@ L Fre. 5

In each segment the material is assumed to obey a law that is locally linear.
This is the kind of material of the type of equation (3.34) which has alregdy
been solved. Thus, in segment (:) - (:) the stress strain law is

g =a + b . The wave profile calculated at station (:) then gives the
boundary cdndition for the solution in segment (:) - (:) and new values of
a and b are determined from the stress-strain law. For a step input of
stress the solutions obtained would have validity only within certain regions

as indicated by the shaded portions of fig. 4. This general idea of progress-—

ing in steps along X can also be used merely to increase the accuracy of

the general method.

The method outlined above was used to calculate the shock fronmt for a
nonlinear elastic materisl with a parsbolic stress-strain law subjected to

variable loadings. The results are indicated in fig. T.
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A tensile stress impact was éonsidered that decays with time. As
indicated earlier the shock wave produced will decrease in amplitude due to
the nonlineafity of the material which introduces the effect of the boundary
conditions. In a linear material there will be no such decrease in ampli-
tude.

"Since a parabolic stress strain law which is hardening in tension will
be weakening in compression, a tensile impact will produce a shock but a
compressive impact willkgenerate an acceleration wave.

Figure T illustrates the important role nonlinear effects can play in
wave propagation problems. Indeed it would seem that certain results
ascribedlto viscosity may in reality be due to a nonlinear mechanism.

The constitutive law was taken to be
=25 - .5(5)°

where

€ =2 5— €
O
- g
o=5
O
S
A
1.4 .
|
‘ 5 ' =
4 1.8 £
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3.8 Solution by Perturbation

Notice that the term in equations (3.23) that inducgs the coupling
with the next term is involved only in the expression M - M/cO . If

this quantity is small, a perturbation method can be used. Let

=
1
le

- = aN(UO)

where a is a small number. The dependent variables aré now expanded in

powers of the paresmeter a .

00 = O(O) + a Uél) + 320(2) + ..
, (3.37)

Substituting these equations into the system (3.23) and equating powers of
a gives systems of equations that are now uncoupled in the forward direc-
tion and ﬁhey can be solved sequentially. The shock decay equation for thig

first system of zero order is

do(o) 1
35— 20 (0212 = - 5 6o’ o0 (3.39)
which is solved easily at ieast numerically. The equation for 0&0) is
(o)
2o (0(0))) G TR CI
3, 26 (0)
+[p§3+‘33MM 50 %1
c,O O
2 _(0)
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Aftér the calculation of ggo) this of courée has the for@
d°£0) (0),2 . (0) :
+2,(X)(0,77) + b,(X)0y "7+ ba(X) = 0 (3.40)

ax 1

This is the famous Ricecati equation whose solution is well known. The

(1)

° -is of the form

equation for o

1y - ~ ;
= 0 ¢ (0! + 0,6 0lH ) (3.14)

do
. O

Since 0&0) and ‘Oéo) have previously been calculated the equation has the

form

(1)

o __ ..
"aX 4, (

X) +4d2(X,G£l)) | : S (3.42)

which can readily be solved. Stopping at this poihthOuld,giVe a first order

approximatidn to the shock front, namely

o, (%) §c§°’<x) +agt) = (3.43)
For certain prbblems with ferybsméll nonlinearities this solutiqn maylbe
adequate. It is evidenf however that‘the prohéss can be continued as far as
necessary. It is also clear that if an nth order approximation is desired
to thé stress at the shock front it is not'necessary t§ even consider the
‘eqﬁafiongcin_syétem(3923)'for 0, (X) ‘Where 'i > n+l:;"Thus the solution éf

jcé(X)  Of‘fae'térderyWQuid involve only the‘firsf ﬁhree{equatiohs of system

(23
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3.9 Example of Perturbation Solution of Second Order

An explicit solution will now be exhibited for the type of material
described by equation (3.34). It will further be assumed that the viscosity
. is of"bhey linear Maxwell type. Since this is a solution of a2 order for

OO(X)', only the first three equations need be considered. They are

1
l i
do ; . \2 A 2 o
x. P 2(_ b) 2¢ p("‘* b) *ONp =8 TP
o) o
v N
ra 2-—-—+13) ) “’1””"(‘—* 2P |=P5— o, (3.1&?)
o (o) "o i
o)
< l l . |
d - - ag ag
2 a 2 a 2 o 21|._ "
() oo () T P S
) 0 (o) o

The magnitude of a determines the nonlinearity and is assumed to be small.
The 0 g will be expanded in powers of a and inserted in équations

(3.44). This leads to the sequence of linear differential equations

(0) 1
ao /. 5 . ‘
d; ve(bp);‘? +’nc(()0? p=0
: (o‘)‘ 1 e "




5T

(0) 1 "
do -
d§ 2(pb)2 + Géo) np = Gio)
(1) 1 (0 . (0) () (0)
do (s} (¢} (e] 20
1 (1) 2 (1) 1 1
3= 2(pb)° +n oy =c(0) + 0 - —l_o - 7o)
° (p)2 o{0) "o
(3.45)
s2) 1
d; 2(pb)2 + oi 2) zno(o) -n (c(l)) p+0<l)
(0) [ (2) (1) (0) ! )
00_ ( F+o Fl+oo ‘E‘2—~—-—--2F2
o]
o (2, 0, o3
O
wher;
1
F_ = (pb)?
1
Fl = ;(-65'

1 (1) 1 )
F -_:_.-———-———.(30‘ o .
2 2 b
b(o(o)) ° *

These equations are linear and simple enough to be solved exactly. For

simplicity take p=5b=1. After some calculation the solutions are

;(0) . -nx/2
(3.146)

(0) oNX/2




(1) _ Xn
% ~ 8
(0) _ X Xn 3 -nx/2
Op =31gg " ine
3 2 3
(1) _ 1| n” ,2 -nX/2 _ X'n 3 2
o =33 Xe +6H+X('32”)

5n 1 3 .2 —nX/EJ
+n(1"6'*1r)‘1?:“ e

(@) _ 7 nx/2 (snx gK/2
% = 1z5Y(67 © (T“ l) - Ton
-nX/2 -nx/2
nX e
-5 (r -1) - §

3mx/uf 57 1
te [25(135 - 1on]

The second order approximation is then given by

(1)

cO(X) = cgo) + a0 aec(e)

.0

+
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In fig. 9 the first and second perturbation solutions for a = .5 are com-

pared to the series solution. It is seen that the second perturbation give§

& good approximation to the solution for this case.
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IV. STEADY STATE SOLUTIONS

At timés one may be interested in the behavior of stress waves undef
steady state conditions. For very long times when transient effects can be
neglected, the solution for such waves is greatly simplified. This is becauge
the partial‘differential equations can now be replaced by an ordinary diffe%—
- ential equation. BSuch steady state waves are of three types. The trivial |
solution where all dependent variables are constant, a continuous solution,
and & solution that may be discontinuous at a certain po}nt. Greenberg
(1967) gives existence proofs for such waves in certain viscoelastic materij
als. It is the purpose here to look at a very simplified material for whic#
an exact solution is obtainable.

Restating equations’(B.l)

e, = flo,e)o, + glo,e) (b.14)
Oy = pV, - (b.1p)
& = Uy o U e (bde)
The boundary conditions will be taken to be w
lim e(X) = y (4.14d)
X > oo
lim e(X) = ©
"X > 40 .

We seek a solution of)(h.l) in which o = o(E), V= V(E), € = €(£). Where
E=X-0Ct : (L.2)

and C 1is a constant. Substituting equation (4.2) in equations (4.1) gives



the relations

¥ | N
- € C==Cf(o,e)0 + glo,e)

9

¥
g = - pCV
1 ¥
V = - Ce
Combining (L.4b) and (h.ke) gives
§
g =90 C2 e’
The integral of this is

2
o=pe¢ £ %K

where X 1is an arbitrary constant.

e = g(pC%e + K,¢€)
C{Cepf(pcee + K,e) - 1}

60

(4.ha)

(k. b

(4.ke)

(k.5)

(L.6)

(L.7)

This is a first order nonlinear differential equation for €. containing the

constant K which must be determined from the boundary conditions.

An additional requirement on the solution is that

¥
lim € (x)

=O’
X > 400
9
lim € (X) = 0
X - o0

These requirements plus conditions (b4.1d) demand that

g(K,0) =0 .

Thus K is determined from equation (4.9). Generally this implies k

(4.9)

= 0 .

This condition €(-®) = y gives a relation between <y and the wave speed.
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glp C° Y,Y) =0 (4.10)

Thus if Yy is prescribed, the wave speed is dependent on the stress strain
‘relation at equilibrium.

Now’for the problem posed, C , p , € are greater than zero. On thermof'7
dynamic grounds g(o,e) must be positive for positive arguments. On examin—v
ing equation (U4.T) it -is seen that the solution for € will be continuous

and monotonically decreasing for increasing X if

C<(-———-——-:—L-—-—-—)

pf(pcge,s)

1
2 (4.12)

The right side of (4.12) is just the characteristic velocity. Hence
the wave speed must be greatér than the characteristic velocity for all values
of € .

Now iet us look at a more specific material with a view to solving

equation (L.7). The law chosen can be represented schematically as follows.

T=BEr+r B,

T=4E+A "

Thus there are two nonlinear springs but the viscosity behaves linearly. The

model of fig. 1 represents the constitutive law
e, = (A +280)0, += (e- (B, + 4 )0 - (A +B)02) (4.13)
t 1 277t n 1 1 2 72 4 ’

For this type of material equation (4.7) becomes
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B. + A B .+ A
- 1 1 2 2 2:)
- e(} - A V- A Ve

ge _ 1 1 : (b, 1k)
dg o Ay
Cn(y -1 +2V =-—¢ ‘
A
1
where
2
. V=pC Al
and
€ = e/Al

Equation (L4.14) can be integrated to give

(e/a - £/b)log(a + bE) - S10g E =X+ g - (4.15)

where

o
it

arbitrary constant

By + 4
A .

o
]

1 -V

The wave speed as function of prescribed strain is

1
2 2
R L N
z|- " — "% * by —=F :
Cz(l) 1 1 1
pA, A, + B,
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