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ABSTRACT 
197 20 The highly inelastic^nuclear reaction of Au with Ne at 

175 and 252"MeV laboratory energies ̂ s studied. Energy.-,,/elemental-, 
and angular- distributions for atomic numbers 5 to 30 (175 NeV) or 
34 (252 MeV) are presented. » )) 

The means and widths of the kinetic energy spectra for detected " 
elements are compared with a theoretical calculation. The calculation 
postulates thermalization of the incident projectile kinetic energy, 

and includes one shape1vibrational degTee of freedom and rigid'rotation 
u ,- ^ 

of the reaction complex. The effect of particle evaporation is 
considered. Good_jgr&j (ent^of the experimental mean energies with 
t'le theory is obtained.] Poorer agreement of the kineti;c)?energy widths 

with the theory may be. Mie to a low-temperature quantal effect. 
/The relative elemental yields are analyzed for their degree of 

,. f * '" v 
equilibration, based on a model of .diffusive nucleon exchange as 
described by the master equation. A similar degree of equilibration 
is observed for both reaction energies. The absolute elemental yields 
are reproduced qualitatively by employing an advanced diffusion code, 
coupled with calculation of the subsequent fission of heavy reaction 
products/^including the compound nucleus. 

The angular distributions are analyzed with a simple model, 
to estimate the reaction lifetime of selected elements. 
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Chapter I. Introduction 
Viewed from a historical perspective, a distinctive and 

*i ° i, c£> 
exacting feature of modern science is its overwhelming commitment 

" ' !l 

to the process of induction. Contemplative deduction -- the view 
from the mountain top -_- is relegated to a quite small though 
crucial segment of the scientist's-cndeavor. Nefidle-like 

" • - , • " \ 

specialization is a direct result of ,the contemporary investigator's 
thorough skepticism of his ability/;td understand the physical 

;^/orld from his ̂ intuition alone. ,,;fe Sherlock Holmes isjreported 

to have said, "It is a capital mistake to theorize before one has 
data". While engaged,, in the gargantuan task of collecting 
sufficient data, the scientist must never forget the ancient 

p 
admonition that "Scientific knowledge is not possible through the 
act of perception. ... for perception must be of a particular, whereas" 
scientific knowledge involves the recognition of tho commensurate 

universal." (ArOO)., 
In this light, the present thesis is scant indeed in scientific 

knowledge. It is a study of the extent of equilibration in two 
Q 

examples of highly inelastic heavy ion reactions. A measure of the 
• ' e > ^ ... 

knowledge contained is to be found in the selection and development 
of physical models and theories which may pTove useful in further 
study of the atomic nucleus or other subjects displaying similar 
processes. 

Highly inelastic reactions are characterized by transfer of 
a large fraction of the initial kinetic energy of the projectile to 
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r =" f, _2.; 

^internal degrees of freedom of the reaction fiomplex. Nucleon transfer 
Between the .reacting nuclei also occurs, andmay result in significant 
mass change. These features dramatically distinguish highly inelastic 
reactions from direct reactions by involving a huge number of states 
in the reaction. When it is possible to~identify individual modes 
such as With shape oscillations,or particle transfer within the 
reaction complex, they can usually be handled most readily in the 
context of a macrqscopic, phenomenological model rather thani in a 
fundamental manner (Co 63, Ni 65, Ni 67, Ni 69). 

While this treatment of,reaction modes arises from tfie 
difficulty of identifying or keeping track of the vast number of 
underlying single-narticle degrees of, freedom, this certainly need ^ 
not be seen as a limitation on the scientific utility of highly 
inelastic reactions". On the contrary, the, complexity of such 
reactions is in fact a doorway to understanding properties of 
nuclear matter which we know little about from spectroscopic studies 
alone. These reactions allow one to explore such areas as the 
mechanisms and dynamics leading to transfer of large amounts of 
nuclear matter, collective nuclear motion like vibration and 
rotation, statistical nuclear properties such as particle emission, 
and the systematics of fission at high temperatures. 

In the present analysis of equilibration in the Ne +' Au 
reaction, a specific well known reaction moder is used throughout 
(Mo 75). Upon collision of the reacting nuclef, the initial 
relative motion is quickly damped and the pair assumes a, sticking 

" V 



configuration in which the identity of the two nuclei is preserved. 
The pair rotates about'their collective center'Sf mass, and undergoes 
shape vibrations,. Energy flows between the nuclei, gnd tJiey exchange 
nuclepns through the contact area. Eventually, the pair .breaks aparr7. 
The energy of0the resulting fragments arises from the Coulomb 

^repulsion between them and from their centrifugal acceleration. The 
o distribution of atomic numbers is determinedly the distribution of 
lifetimes of othe complex and by the rate of exchange^ of nucleons 
between the nuclei.1 The potential energy and temperature which govern 
this nucleon exchange can be calculatedowith a liquid drop model. 

The popularity of this picture of the interaction arises^from 
the ease with which it can be quantified, and the versatility with 
which it can incorporate many factors participating in the reaction. 
Such factors include the rangi;>of angular momeijta which contribute to 
the reaction cross section, (Bl 72, Ca 74, Ga 74),- the possibility of 
fluid or rigid motion of the nuclei and specific collective modes 
like the giant resonance (My 77). c , = = ==s 

An important limitation to the model must be recognized in 
cits ability to .account for only one pathway for the formation,of a 
compound nucleus. (Complete absorption of one nucleus by the other, 
by stepwise transfer of nuclKins). A compound nucleus is by definition 
a fully equilibrated species. Since tbe0sti'cking-nuclei model ° 

described above is able to encompass all degrees of equilibration, 
excluding the direct fusion reaction pathway would seem to be a 
small loss. Indeed this is the root of the difficulty in distinguishing 
experimentally between ̂ he= two reaction mechanisms. The deficiency in 



not considering the direct fusion-fission channel lies in the, fact 
°. ••• - r " •« ' " . 

that its dynamics nay be quite, different from those of a reaction in 
0 ", =' 

which the nuclei retain their identity,, (Sw 72). 
^ - * , • • 

Direct observation of reaction dynamics is unfortunately 
impossible; only clues are available! The most promising experimental 
access to the reactjon dynamics is inference of the internal angular 
momentum of the reaction products through measuring theiro gamma-fay 
multiplicities (for instance see Ma 74, Al 77, Gl0 77). With this 
technique one could perhaps produce evidence for a different angular 
momentum range (and thus a different reaction mechanism) for products 
heavy enough to have come from fission, from lighter products only D 

somewhat different in mass fr/m the projectile." Such information „ 
is not available for the reaction under study. ° 

With the "data which have be'en taken on tjie Me +=.Au reaction, 
resolution of'the reaction-pathway problem is highly unlikely. Nor 
is selection between alternative mechanisms for the specific processes 
involved in the reaction (charge transfers energy damping) likely to 
be possible. This thesis therefore concentrates on examining, in ra 
phenomenological way, the degreeoto which equilibration is attained 
. in several degrees of freedom of the"reaction, rather than on 
determining the processes! through which the reaction proceeds. 

C;, 

^ 
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Chapter. 11." Experimental Facilities" and Data Analysis , 
Ai" Experimental Facilities ° , n „ • > • ' ' 

, 5 " "* =2 ' o 
: . i • r . "•, ° • " a O ^ 

1. Ion Beam and D e t e c t ion^'System " „ „ :*' ° - r. ^x, „ > a 

r . * ^ ., ,, y -1 

The experiments degcWbed in 1 t h i s t h e s i s , were performed a t the 

.Lawrence Berkeley Laborator>''s I I88 )-Jnch 0 Cyclotrons This i s - a Variable ; „ " >\ 

energy, sestor-focussed>machine (Ke° 62'). The maximum energy of th% 
" " " o p " 2 " J ' - ^ ° ° „' " ° ° ' j> '° ". - ° S 

machjne i s 140 Q /A, iwhe'î e Q is the ion charge and A i t s mass number. • ° 
^ a 20 6+ ° " , j ° " fl " -

Beams of, 175 and 252 Me'v' Ne ions were u t i l i z e d . Although obtained ,^,f 

at lower i n t ens i t y f'the Ne v 175'MeV beam was preferred c6'ver tK'e; J^=s - -, ,, 

Ne beam to avoid poss ib le contamination l/y 0 or Cr ^ beams7#=b ! 

whiclf have„the_ same Q/A'ra t io . The Beams°WfS generated in ,a Phi lSip 'ss = j M 
, ?~~ . ' ° °-„ -' °<1 ,. s 

Jon Gauge (PIG) S o u r c e . " <• - " '"" ,' . o Jl s» 
•" * . * % . . . " " . , „ <= ^ = * 

The ion .beam was e l e c t r o s t a t i c a l l y extracted,, from thefcyclotfon „ 
' ° r. . °" •-••• . ^ = ' V ° 

and d i rec ted to the ...experimental area through a, se r ies°of bending and 0 " o 

focussing magnets. The typica l b"eam current^on ta r s g | t was 100 "'." . «. 
+ I P " -; •• ^ C L ° ' ° ° * JL I] n 

hano-amperes (Ne,, ' ) . , The dimensional cross^sect ion 81 the.-beam oiv^ //-, " * 

the t a rge t was c i r c u l a r , and^approximBtely o mm inadaameter. Pressure o o 

in the sca t t e r ing chamber was" maintained by a v turbomolecular pumpr'at 

about 2 x 10" torrj)/ The se'if-supporfingQ^Au ta rge t s / were from ,0.8 "to % „J^/j 
2 ' " ' ^ - ' ' ~ " ' i,'- o ' ' ^ " u" ~$ 

0.9 mg/cm in th ickness . TOorirotating^arrite in the s ca t t e r i ng chamber '„ " ",_ = 

each heldrone p a r t i c l e detector te lescope. These were posi t ioned on c 0 " 
„ r • „ o ' o , '• » - . < > = , „ •• - •• " » ; , a »• o =.," 

opposite sides of, the'ehambqr with the front surface t yp i ca l l y 6 cm =

 9 ,° c^L^l, = 

from the t a r g e t , and at anglssganging from 25° . to 150° from the beanf = ' =» 
. axis. ,. J , • _^ » Q , =-,;• 

Reaction products were: detected with compound "E-AE"'detector "~ = "° , 
t e lescopes . A schematic drawing' is shown in Fig. 1. A fractiorixof the ° t^ P 
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energy ( less than 2.Vi>) was deposited in the Al: ionizat ion counter. This 

counter is described in Fo 7-1. The counter was fed witli pure methane 

gas. Tlie flow ra te was ahout 100 cm'/minute. The gas pressure in the 

counter ranged'-'fron 4 to 8 an of Hg, was monitored by mercury and o i l 

manometers, and was^cgulated /,hy a Cartesian mandstat. The thicknesses 

of the gas corresponding to these operating pressures and for a de tec to r 

length of 6 an are 0.24 and 0.48 ii!f;7an""of methane, respec t ive ly . A 

0.050 mg/an" p l a s t i c window (FORMVAR or VYNS) was glued on the entrance 

window of the counter to insula te the pressurized counter from the 

evacuated sca t t e r ing chamber. 

After t ravers ing the ' ac t ive regicii of the ili counter, the ion 

deposi ts the res t of i t s energy in a thick Si surface b a r r i e r de tec tor 

(the "F." counter) , positioned in the back of the AE counter housing 

(See f i g . 1) . 'Die V. counters were fully reverse biased, producing a 

charge-carr ier-depleted co l lec t ion region 300 urn th ick . The detec tor 

is c i r cu l a r with 1 cm diameter. 

2. Electronics 
A schematic diagram of the e lec t ron ics i s shown in Fig. 2. Four 

charge-sensi t ive p re -ampl i f i e r s , posit ioned outside the sca t t e r ing 

chamber, amplified the primary pulses o r ig ina t ing at each of the 

detec tors (one AE and one E s ignal from each detec tor t e l e scope) , 

for transmission to the main amplifiers several hundred feet away. 

The f i r s t amplif icat ion s tage of each AE preamplifier was located in 

the detector housing. These main amplifiers are modular un i t s employing 

double-delay-l ine pulse shaping. Bipolar pulses of 4 micro-second 
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Fig. 2 Schematic diagram of electronic data collection system. 
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t o t a l duration were typically '-used. ..Coincidence timing between the 

AE and I; s ignals from the same detec tor was effected with constant-

fract ion d iscr imina tors . Coincidence was required'between log ica l 

pulses typ ica l ly 0.5 micro-seconds wide. A cent ra l MORM gate driven 

by the coincidence s ignals from the two E-AE; telescopes was used for 

control and t r igger ing of data transmission to the computer. At 

angles for which the r a t e of c l a s t i c ^-vents was l a r g e , a s ingle channel 

analyzer (SCA) was sometimes used to exclude those events from 

transmission to the computer. Digital sca la rs driven by SCA and 

coincidence logic pulses were used for measuring the system percent 

l ive time ( typ ica l ly "(I to 90%). An analogue mult iplexer was used 

to t ime-s t re tch data pulses which s a t i s f i ed the SCA and coincidence 

requirements. This uni t fed the analogue s ignals sequent ia l ly t o a 

4096-channel ana logue- to-d ig i ta l -conver te r , which transformed the 

data pulses to d i g i t a l form and t ransferred them to a PDP-5 computer 

to be wri t ten on magnetic t ape . 

B. Data Analysis 

1. Cal ibrat ions 

The sol id-angular eff iciency of the de tec tor te lescope , defined 

by the window ape r tu re , was measured by i r r a d i a t i n g the de tec tor for 

five minutes with an alpha-emitting Am source of 9.77 uCi a c t i v i t y . 

Solid angular e f f i c i enc ies of 0.00015 were usual ly obtained, 

coiresponding to 0.0019 s t e rad ians . 

Energy ca l i b r a t i on of the s o l i d - s t a t e E counter was obtained 

in H t\x> s tep process . F i r s t a l inear mercury pulser was ca l ib ra ted 
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with a Am source, emitting alpha particles of 5.486 MeV average 
energy and 40 keV width. The pulser was their, used to produce 5 or 
6 peaks spaced throughout the dynamic range of each amplifier system, 
at each gain setting. The channel numbers of these peaks were fit, 
as a function of pulser amplitude, to a straight line by a linear 
least-squares method. "Finally, the alpha-particle calibration of 
the pulser was used to produce an energy calibration equation. The 
calibration equation was checked against the elastically scattered 
projectile at known angle, whose spectrum was taken with no gas in 
the AE counter and no plastic window at the front aperture. Small 
adjustments to the calibration equation were sometimes necessary, the 
final accuracy of the calibration equation being ± 0.5 MeV. 

The energy calibration of the AE counter was obtained in two 
stages. The mercury pulser was used to produce 5 or 6 peaks spaced 
throughout the dynamic range of the AE amplifier system. A straight-
line fit relating pulser setting to channel number was obtained. 
Then, having prepared the energy calibration equation of the E counter, 
one completes the calibration equation for the AE counter as follows. 
The detector was set at a fixed angle forward of the projectile grazing 
angle. The elastic spectrum was collected with no gas in the AE 
detector, and the energy deposited in the E counter is computed. With 
the detector at the same angle, the AE counter was pressurized and the 
elastic spectrum collected again. The elastic energy deposited in the 
E counter was again computed, and was less than in the "no-gas" case --
the difference in the energy having been deposited in the AE counter. 
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Tlie AE channel at which the elastic peak appeared was determined. 
The final energy calibration line was obtained by multiplying the 
fitted puls.pr calibrated line by an appropriate factor to relate the 
AE elastic channel to the elastic energy known to have been deposited 
in the AE counter. ' 

A note on dead layer corrections. Two corrections to the 
energies were necessary in performing the above calibrations, and in 
computing the energy of actual d3ta events. It was necessary to 
account for the energy lost in the target iself, and in the plastic 
window on the AT: counter. In computing the elastic energy for 
calibration calculations, it was assumed that the scatter event 
took place midway through the target. The Northcliffe-Schiliing 
stopping power tables (No 70) were used to evaluate the degradation 
of the energy of the projectile over its full path in the target, 
taking account of the angle at which it energes from the target. 
Energy lost in the plastic window was also -a.iculated. For correcting 
the energy of detected reaction products, it was assumed that the 
interaction took place midway through the target. These corrections 
are most important for high Z's detected at low energies, and may be as 
much as 10% or even 20% of the total energy. In most cases, the 
energy corrections are less than 5% of the measured energy. 

2. Data Analysis Procedure 
The procedure for reduction of the primary data to useful form 

proceeds in four stages. Each data event exists on magnetic tape as 
two channel numbers -- one from the AE and one from the E detector. 
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In the first stage of analysis,, a two-dimensional spectrum is computed: 
one axis is the AI: channel number and the other axis is the E channel 
nunber. One such "U-AU map" is computed for each gain setting at each 
angle. This map is stored on magnetic tape. An example of such a 
map from the reaction of Ar + Ag is displayed in Fig. 3. The slanted 
ridges are clusters of events of the same atomic number. From such 
a map one is able to compute the yield and energy spectrum for each 
element at the laboratory angle at which the data was collected. 
The ridge corresponding to events of the same atomic number as the 
projectile is identified by the greater yield, the presence of an 
elastic peak, or the presence of low energy projectile events resulting 
from multiple scattering on the collimating slits. The atomic number 
for all other ridges is then known. 

In the second stage of the data analysis, the ridges on each 
map arc identified and fitted with fifth-order polynomials (called 
"ridge lines") which are functions of the E coordinate. A detailed 
discussion of the computerized interactive ridge-hunting procedure 
can be found in Gl 76. 

In the third stage of the analysis, energy spectra for each 
element at each angle are computed in both the laboratory and center-
of-mass (CM) reference frames. Ridge lines are overlayed on each map, 
and "valley lines" midway between each successive ridge line are 
computed. A "Z-bin" is defined as that region on the map between 
two successive valley lines. All events within each Z-bin are ascribed 
to the element whose ridge line is enclosed within the Z-bin. Even 
if the yield of successive ridges overlap, as in the high-Z range of 
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9 ^ ^ ^ ^ l '07-479Ag + 340 MeV IgAr 

*lab=4°° 

• >20 
E l >40 
• >60 
• >80 

Fig. 3 Two-dimensional "E-AE map" from the react ion Ar + Ag. Ridges are 
c lus t e r s of events of the elements indicated to the r ight of each r idge . 
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of Pig. 3, this procedure is quite accurate as long as the yield does 
not vary greatly from one element to the next. The laboratory energy 
of each e\;nt in each 2-bin is computed using the calibration equations 
and dead layer correction procedures discussed in section II.B.l. 
Transformation of the spectra to the CM frame requires knowledge of 
the mass of each fragment. The mass is obtained from a charge-
equilibrium model. The total mass and overall neutron-to-proton ratio 
is fixed. That partition of neutrons is computed which minimizes the 
ground state mass, as a function of the atomic number of one fragment. 
No evaporation of particles is considered. This entire stage is 
completely computerized. An evaluation of alternative procedures 
for choosing the mass is presented elsewhere (Ba 75, Ga 75). 

In the fourth and final stage of primary data analysis, the 
CM energy spectra just prepared are edited, when necessary, to remove 
spurious or unwanted peaks arising from elastic events, or low-energy 
high-Z "turn over" events (the high intensity vertical ridge at low 
energy parallel to the data in Fig. 3). The energy spectra are then 
integrated, and the first and second moments computed. Also the mean 
CM angle for each spectrum is calculated. CM angular distributions 
are plotted for each element by ascribing the cross section at each 
laboratory angle to the mean CM angle for the Z. Except where the 
measured cross section varies greatly With angle, this procedure 
introduces little error. The spectrum editing and moment-calculation 
is done interactively with a computer. 
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Chapter III. Results and Discussion 

A. Energy Spectra fl 

1. Introduction - Internal Energy, Temperature, Degeneracy 
Before entering the thicket of av detailed discussion of the energy 

aspects of the Ne + Au reaction, it is worthwhile to develop the concepts 
of internal energy and temperature, as they apply to reacting nuclear 
systems. 

IVe shall begin by defining the internal energy. The products of 
highly inelastic reactions display kinetic energies which apparently arise 
from the Coulomb repulsion and centrifugal acceleration of the complex 
at breakup. The final kinetic energy is largely decoupled from -- and 
far less than -- the entrance channel kinetic energy. (A quantitative 
treatment of this phenomenon will be given in the next section). In 
this way a large amount of energy is made available, during the reaction, 
for excitation of modes other than collective relative motion of the 
reacting nuclei. This "internal" energy must be distributed, perhaps 
thermally, among single particle states, collective vibrations and 
rotations and transfer of nucleons between the two nuclei. 

It is difficult to ascertain that the internal energy is in fact 
distributed statistically among the available modes. A nuclear reaction 
of the type we are studying here can hardly be said to be an equilibrium 
process. One must imagine it as a collision whose dynamics are quite 
important to the details of the event. If, however, the time required 
for transfer of the initial kinetic energy to the internal modes is 
small compared to the reaction time, the concept of energy thermalization 
seems relevant. 
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One can define the internal energy, U, available to a thermalized 
system at tlic time of breakup as 

U " E a . + ( W Vrot " W s u r - f sc " VCoul 

where: 
E = center of mass kinetic energy, Q = ground state mass 

change from initial to final configuration. One envisions the reacting 
nuclei retaining their identity during the reaction. V t » total 
rigid rotational energy of the reaction complex. Possible elastic or 
fluid contributions to the moment of inertia have been ignored. 
flV = (positive) change in the surface energy of both fragments, above 
the spherical value, due to deformation of the touching nuclei to 
equlibrium shape (defined,as that shape which minimizes the total 
potential energy). AV = (negative) change in the self Coulomb energy 
of both fragments below the spherical value, due to deformation to 
equilibrium shape. V- , = Coulomb repulsion between the two nuclei at 
equilibrium deformation. 

It must be understood that the last four potential energy terms 
are evaluated at equilibrium deformation of the touching pair of nuclei. 
Aside from this, subtraction of the total rigid rotational energy is 
an approximation. One can argue that collective rotation is built from 
single particle states which are very much a part of the internal 
excitation energy -- before the collision the nuclei were in their 
ground states. One must realize however; that the requirement of angular 
momentum conservation forces the nuclei to keep a certain amount of 
energy in the rotational mode, regardless of the degree of thermalization 
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and cf the amount of energy in other modes.*j The total rigid rotational 
energy is an approximation to this "frozen" energy. 

Examination of Fig. 4 gives some feeling for the magnitude of ): 

internal energy present in the Ne + Au system. This figure shows, for 
both projectile energies, the total internal energy shared by the two 
nuclei during the reaction. The abscissa is the atomic number, Z,, of 
one fragment. The typical internal energy at the lower projectile 
energy is about 70 MeV, or 0.32 MeV/nucleon. At the higher projectile 
energy the typical internal energy is about 125 MeV, or 0.58 MeV/nucleon. 

Nearly all of the internal energy is deposited in the single 
particle states because of their overwhelming statistical weight. 
Fluctuations in the energy of the collective modes leave the single 
particle energy very nearly unchanged. In this way, the single particle 
degrees of freedom act as a "heat bath" for the other degrees of freedom, 
and it is quite useful to discuss the temperature of that bath. One is 
used to talk of the temperature of a system containing moles of particles 
rather than a few hundred. Howererjf recall the definition of 
temperature: as the inverse of the change in entropy with internal 
energy. That is, -, = Jr. . In order for the temperature to be a 
meaningful quantity, we must assure ourselves that this derivative is a 
smooth function.' Entropy is defined as the logarithm of the number of 
states available to the system (La 69 Eq. (7.7)). The density of energy 
levels as a function of internal energy can be estimated as W(U) = 0.005 

exp(2/luTT ) MeV/level (BH 52, pp. 371-2; also Er 60). At 60 MeV 
18 excitation, this gives a level density of 9.4 x 10 levels/MeV, ox a 

-19 level spacing of 1.1 x 10 MeV/level. Because of the very short life 
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Fig. 4 Internal energy (defined in Section III.A.l) of the two-nucleus 
reaction complex versus the atomic number of the lighter fragment. 
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time of the reaction system (-10" seco'nds)s the uncertainty in I t s °'"\Q 
' " & ii " • - . . n 

energy is AE S h/t i 6.6 KeV. This is far greater °than the level'spacing ,== 
so the level density (and entropy) will increase smoothly with internal c * 
energy. i ° „'" ' „ » % „' » „•= 

In Fig. 5 we show tcalculation^ "of the temperature versus 2, based '„ *° 
on the internal energies shown irfFig. 4.° The=,temperature here .is" ~ • 

.calculated as T = /10U/A , where Â  = mass number of the reacting complex 
= 217 and U = internal energy of the c&piex. This is "entirelyj] 
equivalent to calculating the temperature of each cfragment with the 

assumption that the internal energy is partitioned between the two 
fragments proportional to their masses. That is., the temperature of 

/EAj 

V 

30 

fragment 1 is T, = "V ^ ^ t ^ g - = {• E "ATTS 

A quick look at Fig. 5 sliows a typical temperature of 1.8 MeV // 

for the lower bombarding energy, and 2.4 MeV'for the higher bombarding ff ,;, 
energy. These values allow, us to estimate the degree to which the ground .. ^ 
state occupation density distribution function is perturbed. Recalling rf 

that the distribution function of a Fermi gas is^described by (La 69j ""' '' _ c 
Section 56): ^ 

n t E ) = ^ W T • /" 0 =.' \ i: • « 
one finds that the energy difference between an occupation number of/ '̂ 
0.8 and 0.2 is 2.77T..E This roughly represents the widthVof the !l ' ,= '" 

l 
distribution function around the Fermi surface, and should be compared '' 

l,\ --. .. -with a chemical potential of about 40 MeV. For the lower bombarding 



-20-

3 :2 - i r ,- r i r 

2 . 5 

Z.Br 

u j l - 5 -
a j-
2 I 
§ t. 
UJ ' 
C L l . P ) 
E 
UJ 

0 . 5 -

g g —i 1 1 1_ . I 1 1—I I l I I I I L . L . . . I 

4 8 v> 12 16 2 0 24 28 3S 

XBL 7712-11204 

Fig. 5 Temperature of the two-nucleus reaction complex versus the 
atomic number of the lighter fragment. 
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energy tliis width is 5.0 MeV and for the tipper bombarding energy this is 

6.6 MeV. One sees that each nucleus is still a strongly degenerate Fermi 

gas despite the large amount of excitation energy. 

2. Qualitative Explanation of the Fragment Kinetic Energies 
The most obvious feature of the center-of-mass kinetic energy 

distributions of the light fragments produced in the reaction of Ne with 
Au is the simple behavior of the centroids. These are shown in 
Figs. 6 and 7, averaged over the angles at which the measurements 

I ; 

were made. The transformation of the measured laboratory energies to 
center of mass values requires knowledge of the fragment mass. Since 
only the atomic number is measured, the mass is determined from the 
assumption that the neutron-to-proton ratios of the two fragments are 
those which minimize the energy of the system in this degree of freedom, 
at fixed neutron-to-proton ratic and fixed total mass. No correction 
of the fragment energy to account for rotation or particle evaporation 
has been made but will be considered later. The two smooth curves 
show the Coulomb repulsive energy for two spherical nuclei, and for 
two spheroidal nuclei allowed to deform to their equilibrium shapes 
given the constraint that they be in contact. The lower set of points 
on each graph shows the full width at half maximum (FWHM) of the kinetic 
energy spectrum. The error bars represent the standard deviation of the 
measured value over angle. 

The appearance of the data is very similar for both the 175 and 
252 MeV projectile energy. The mean energies for products heavier than 
Ne vary smoothly with atomic number, and fall between the "spheres" 
and "spheroids" curves. The energies for products of the 175 MeV 
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XBL7710-6941 
Fig. 6 Experimental center of mass mean kinetic energy (upper points) 
and FWHM (lower points) of the light fragment, averaged over angle. 
Error bars are ± one standard deviation. Smooth curves are Coulomb 
energy for touching spheres (upper curve) and spheroids( lower curve) 
at equilibrium deformation. 175 MeV laboratory projectile energy. 
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Fig. 7 Same as Fig. 6 for 252 MeV laboratory projectile energy. 
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reaction similar to or lighter than Ne substantially exceed the "spheres" 
energy. This arises from the difficulty of completely separating quasi -
elastic events, in which a substantial amount of the initial projectile 
kinetic energy remains as kinetic energy, from much more highly inelastic 
events. The energies of products below Z = 13 should be viewed as 
representing an admixture of reactions over a continuum of reaction 
type -- from elastic to quasi-elastic direct reactions to highly 
inelastic reactions. This effect is much less pronounced in the 
252 MeV case. Here we see appreciable deviation above the "spheres" 
energy only for atomic numbers 8 and 9. This arises from the fact that 
the quasi-elastic reactions occur at appreciably higher energy and at 
more forward angles in this case, allowing for cleaner separation from 
the deep inelastic component. Experimental kinetic energy spectra are 
shown in Figs. 8 and 9. The large widths of the spectra for Z's 7 and 12 
in the 175 MeV case are explained by the above mentioned mixture of 
reaction types. 

This difference between the light products at the two bombarding 
energies is not of primary importance to the understanding of highly 
inelastic reactions -- arising, as it does, from an admixture of other 
reaction types. More important is the close agreement between the two 
sets of data for Z's above 12. One notices that the mean center of mass 
kinetic energies agree to within about 5 MeV, the data at 252 MsV being 
consistently higher. Since the kinetic energy spectra of these fragments 
are quite broad (20 to 25 MeV FWHM) this difference is of marginal 
significance. We see immediately a fundamental characteristic of 
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Fig, 8 Center of mass k i n e t i c energy spec t ra . 175 >;eV p r o j e c t i l e energy. 
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Fig. 9 Center of mass kinetic energy spectra. 252 MeV projectile energy. 



fragment energies observed in highly inelastic reactions: the mean 
center of mass kinetic energies arc (very nearly) independent of the 
initial projectile energy. 

A qualitative understanding of this observation is not difficult 
to obtain. The kinetic energy of the fragments arises from their Coulomb 
repulsion and centrifugal acceleration as they move apart. The average 
Coulomb potential energy depends on the degree of stretching of the 
nuclei but not (directly) on the initial projertile energy. The average 
rotational energy depends on the mean angular momentum leading to deep 
inelastic reaction of the two nuclei, and thus increases with the 
bombarding energy. However, the greater the rotational energy, the 
greater will be the centrifugal stretching of the nuclei, leading to 
lowering of the Coulomb energy. he should expect a trade-off between 
these two components in the kinetic energy. That the final kinetic 
energies are close, indicates that the rotational-Coulomb trade-off 
is fairly even. This picture of the origin of the fragment kinetic 
energy is supported by much work (Ba 75, Ga 75, Mo 75a, We 76, Ca 77, 
Ru 77, Wo 77). Reproduction of the experimental results with a 
mathematical model has received less attention (Ni 63, Eg 76). 

Another characteristic feature of the kinetic energy spectra of 
highly inelastic reactions is that their widths are much greater than 
the temperature. The typical FWHM is 20 to 25 MsV. This can be 
understood qualitatively on the basis of the well known "amplification 
model" (Mo 75b). Figure 9a shows a schematic representation of the 
total potential energy (parabola of curvature a) and final kinetic 
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Fig. 9a Schematic diagram of the total potential energy (parabola), 
and the final kinetic energy (nearly straight l ine). Illustrates 
the "amplification' effect for origin of large kinetic energy width. 
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encrgy (nearly straight line of slope-b), versus the deformation of 
the touching fragments. The average energy in the deformation mode i3 
'iT, giving rise to the maximal and minimal deformations d + and d_. 
Speci fically, 

*,->& 
This range of deformation results in a range of kinetic energies of the 

value 

The "amplification" factor is b 

V 1 "-
Since the curvature, a, is quite 

small and the slope, b, considerable, the kinetic energy width exceeds 
the temperature. 
3. Description of the Quantitative Model 

An accurate quantitative imderstanding of the kinetic energy means 
and widths can be obtained with the use of a simple model, whose success 
leads to an important insight into the degree of thermal equilibration 
of the reaction complex. The model must provide a method of calculating 
the distribution of the Coulomb plus rotational kinetic energy at the 
time of the breakup. 

Calculations with this model are based on the following functions. 
E c(p) " Coulomb-interaction as a function of shape of the reacting nuclei. 
Er(p,L) * total rotational energy as a function of shape and angular 
momentum. 
E (p) • surface energy as a function of shape. 
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IL.(p) = self Coulomb energy as a function of shape. 

V(p,L) = total potential energy as a function of shape and angular 
momentum = E t E + E + E . 
E . (p,L) = orbital rotational energy as a function of shape and angular 
momentum. 
1'̂  (p,L) = total kinetic energy at infinite separation - E c(p) + E . (p,L). 
The most important hypothesis of the model is that the energy moments can 
be calculated by treating the nucleus as a classical canonical ensemble 

at thermal equilibrium whose temperature is fixed by the internal energy 
of the single particle degrees of freedom, according to the discussion in 
section III. A.l. The kinetic energy in the shape oscillation mode before 

breakup is small (in the mass-range studied here) compared to the final 
Coulomb + rotational kinetic energy and is ignored. This has been 
discussed elsewhere (Mo 75b). 

The equations described above can be used to calculate the n-th 
moment of the fragment kinetic energy. At a specified angular momentum, 
L, the n-th moment of the kinetic energy Ej^tp.L) is summed over the 
deformation, p, and multiplied by a normalized Boltzmann factor. This 

expression is then averaged over the angular momentum range, multiplying 
2 each L-wave by its geometrical weight -- n * (2L + 1 ) , where Jt is the 

DeBroglie wavelength divided by 2n. The n moment of the fragment 

kinetic energy is 
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<•& 

I. 

E L -nun 

,2,,, „ P W > « n exp(-V(p,L)/T) 1 
TTJf (il.+ l) I 

(1) 
g exp(-V(p,L)/T) 

2 nA2C2L +1J 

The following additional assumptions complete the hypotheses of the 
model, and are to be tested by comparison with the observed kinetic 
energies. 

1. Each fragment deforms as an ellipsoid. The deformation axes 
are colinear, the eccentricities of the two fragments are the same, and 
the volume of each fragment is independent of its deformation. For a 
given mass asymmetry, the shape can therefore be parameterized with iust 
one variable. The most important physical restriction imposed by these 
simplifications is that the nuclei vibrate in phase reaching maximal 
and minimal stretching simultaneously. The effect of out-of-phase 
vibration is not included. This has little effect on the evaluation of 
the mean kinetic energy, because the potential is fairly symmetrical 
about the equilibrium deformation, so the mean value of the kinetic 
energy is close to the value at equilibrium deformation. The width of 
the kinetic energy is also only slightly underestimated by ignoring 
the out-of-phase normal mode. This is because the greatest range in 
energy arises from the in-phase mode; inclusion of the smaller out-of-
phase contribution in a quadrature sun of widths would increase the 
width only slightly. 
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2. The rotational energy is that for rigid sticking ellipsoids. 

No slipping of the nuclei against one another is included, r.or is any 

hydrod)Tiamical effect on the moment of inertial considered. 
2 

3. The cross section for each angular momentum is P. = IT* (2L+1), 
between L = 0 and L = L . S is the reduced wavelength of the 
projectile. The upper limit on the angular momentum is close to the 
gracing value. The lower limit is zero because any cross section for 
compound nucleus formation at low angular momentum is most likely to 
result in fission and be detected as part of the highly inelastic cross 
section. 

The detailed derivation of the kinetic and potential energy 
equations is given in Appendix 1.1. The total potential energy, from 
Eqs. (4), (9), (10) and (13) in that Appendix, is 

VCP.U = n r( P,u + E S ( P ) • E C(P) + E s c( P) 

" FTPI + E s o G x M + «WCV*2> + E s c o V p > W 

The subscript x in G(p) and K.(p) is p or o as needed, to indicate 
prolate or oblate ellipsoid. The variables x. and x, are functions of 
the deformation, p, and are defined in the Appendix. E , E , E 
and E are the values of the rotational and surface energies, Coulomb 
interaction energy and self-Coulomb energy of the two nuclei when they 
are spherical. Equation (2) shows that the total potential can be 
factored into a sum of four terms, each of which is the value for touching 
spheres times a dimensionless function of the shape. 
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The k ine t i c cnerg) i s , , from I2q. (6) and (10) in Appendix I : 

E k c ^ L > = E o r b ( P ' L ' + n c ^ - ^ E o r b 

Figures 10 through 14 show the t o t a l po ten t i a l energy versus p 

for five values of Z. : 6,12,18,24 and 30.^ Each figure shows four~values 
' " if '-

of the angular momentum: 0,80,160 and 240 fi. The grazing' ? tangular ^. 

momentum in the 175 and 252 McV react ions i s about 97 -h and 137 fi 

r e spec t ive ly . Theminimum of the po ten t i a l energy of the touching 

nuclei sh i f t s to l a rger deformation, p , as the angular momentum,'-!., 
if \ 

increases. One notices in these figures that the curvature and position 
of the minimum changes markedly with L for the low Z's. For the higher 
Z's the effect of L on the potential energy is quite reduced. Figure 15 
shows the equilibrium deformation as a function of L.' Figures 16 through 
20 show the total kinetic energ' (versus p for the same values of Z, and 
angular momentum. The kinetic energy ...increases markedly with L at 
fixed deformation. However, the ./kinetic energy at p . for the four 
values of L varies by only 10 MeV or, less. This is an important 
observation, and represents the trade-off between Coulomb and rotational 
energy, as mentioned Sarlier in this section. . •• ,, 
4. Correction of the Data for Particle Evaporation 

We are now able to calculate moments of the" Kinetic energy 
distribution, with Eqs. (1),,(2) and (3). These equations attempt to 
describe the kinetic energy of the two fragments before any evaporation 
of particles from the fragments takes place. However, the kinetic 
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Fig. 10 Calculated potential energy versus fragment deformation £or 
atomic number 6, at tour angular momenta: 0, 80, 160 and 240h . 
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Fig. 11 Same as Fig. 10 for atomic number 12. 
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Fig, 12 Same as Fig. 10 for atomic number 18. 
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Fig. 13 Same as Fig. 10 for atomic number 24. 
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Fig. 14 Sarae as Fig. 10 for atomic number 30. 
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Fig. 15 Fragment deformation at minimum potential energy versus 
angular momentum. 
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Fig. 16 Calculated total center of mass kinetic energy versus fragment 
deformation for atomic number 6, at four angular momenta: 0, 80, 160 
and 240 h . Angular momentum increases from lower to upper curves. 
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Fig. 17 Same as Fig. 16 for atomic number 12. 
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Fig. 18 Same as Flj;. 16 for atonic number 18. 
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Fig. 19 Same as Fig. 16 for atomic number 24. 

XBL 7711-10807 



-44-

XBL 7711-10812 

Fig. 20 Same as Fig. 16 for atomic nunber 30. 
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encrgies measured in the laboratory are post-evaporation values, since 
the fragment flight time to the detector (several nanoseconds) is far 
greater than the particle evaporation time (10 to 10 seconds). 
Before comparing the calculated kinetic energy moments with the data, 
it is necessary to correct those data for the effect of evaporation. 

a) Evaporated Particles 
It is first necessary to determine what particles are likely to 

lie evaporated. The statistical width for evaporation of light particles 
of any energy from an excited nucleus is of the form (Ke 3"): 

' Till 

where g = spin multiplicity. 2 for nucleons, 1 for alpha particles. 
o = energy-averaged absorption cross section of the light particle, 

to form the excited compound nucleus. 
m = mass of evaporated particle. 
T = temperature of the post-evaporation nucleus. 
K - binding energy of the particle. 
V = Coulomb energy of the particle, if charged. 
We can see that emission of alpha particles is generally quite a 

bit less probable than emission of neutrons. Table 1 shows the binding 
energy of alpha particles (B ) and neutrons CB ) for a range of nuclei, 
as well as the Coulomb energy (V ) of the alpha particle with the daughter 
nucleus. The ratio of alpha to neutron width is calculated for three 
temperatures, 1.5, 2.0 and 2.5 MeV. 
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The calculations of Table 1 show us that emission of alpha 
particles from nuclei near the line of beta stability is generally less 
probable than emission of neutrons, except for light nuclei. For 
instance, the values of r/f for elements 18, 24 and 34 are 0.53, 
O.JS and 0.12 respectively. However, the evaporative decay chain of 
an excited nucleus may well pass through nuclei far from the beta 
stability line. Such nuclei have neutron and alpha binding energies 
quite different from the beta-stable values. Emission of some alpha 
particles is to be expected, and may even be less depressed than our 
simple calculations indicated. As a first order approximation we shall 
ignore alpha particle emission. Proton emission is to be expected in 
order to maintain the proper neutron-to-proton ratio, although proton 
emission will be depressed with respect to neutron emission because 
of the Coulomb barrier. It will simplify our effort to ignore the 
greater kinetic energy of protons compared to neutrons, arising from 
the Coulomb repulsion. Finally, we shall assume that all evaporation 
occurs after breakup of the reaction complex, since its lifetime is 
thought to be significantly shorter than the evaporation time. (Reaction 
times will be discussed in Section III.C). It must, be realized, however, 
that all the evaporation takes place in a very short time compared to 
the flight time of the fragment to the detector. This means that all 
angular deflection of the fragmem. due to its recoil from the emitted 
particles can be considered to take place in the target itself. 



-47-

Table 1.,.' 

: \ \ B B V l l ra //n K „ 
a n c / * v 

O-fcV) (MeV)..-^ (MeV) T=1.5 T=2.0 1 = 2 . 5 ' 

10 20 4 .7 ' . 16.9 3.3 776.6 ^173.3 70.9 ' 

18 40 6.8 9.9 5.8 0.34 .-- 0.53 -0.C9 

20 40 7.0 15.6 ... '' 6.5 8 .175^ . . , 5.75 4.65 

24 52 9.5 12.0 7.5 0.079. d'.18 0.29 

30 66 4.5 11.0 9.2 * 0.34 0.53 0.69 ' 
I! 

34 78 6.0 10.5 10.1 0.047 0.12 0.2i;| 

40 92 3.0 8.6 iJUl.7 0.035 0.097 0.18 

50 118 4.1 9.3 =14.0'* 0.0057 0.025 0.060 

60 146 1.4 7.6 16.2 0.0026 0.014 ' ' "0.037 

70 172 -1.5 8.1 18.3 0.0053 0.023 0.057 

80 200 -0.7 8.0 20.3 , \ . ' 0.00087 0.0060'- 0.019 \ 
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b] A Typjifial Calculation of the Particle Evaporation Correction 

V 
In Appendix 1.2 we develop ati-expression for the post-emission 

center of mass energy of the parent fragment as a function of its net 
recoil angle, 6 e, in its own frame of reference. With this result we 
will examine the first and second moments of this energy, and see that 
the only significant correction to the mean fragment kinetic energy 
arises from the evaporative mass loss and not from recoil from the 
emitted particles, but 'that the kinetic energy widths are sensitive to 
emission recoil. Finally in that Appendix we develop an expression for 
estimating the kinetic energy width due to particle emission, as measured 
by a detetLor"of finite size. "'-0 ^ 

From Eq. (20) of Appendix 1.2 we know that the first moment of the 
recoil kinetic energy, averaged over all possible recoil angles, is 

<E f> = 0 - n ) E ^ ^ (4) 

where n = evaporated mass fraction. 

E = pre-emission fragment energy in the center of mass. 

,E = mean energy of the emitted particle in the parent frame. 

The standard deviation of the recoil kinetic energy (Eq. (21) of 

Appendix 1.2.) is 

1 L 

% * 2 [3 ^o V2 « 

For a Gaussian distribution, the full width at half maximum height 
(FWM) is related to the standard deviation by 
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FNHM = /2 ln2 o : 2.3548 o (6) 

In discussing the widths of kinetic energy distributions, we shall refer 
to the "FMW", where this quantity is defined by Eq. (6), even if the 
distribution is not Gaussian. Thus, the FWW of the energy distribution 
is, from Eqs. (S) and (6) 

R M I = 2.719 / nE QK n (7) 

W'e Kill now evaluate Eqs. (4) and (7) for typical values of the 
variables. The number of nucleons emitted is evaluated as the internal 
energy, U, divided by the sum of the nucleon binding energy plus the mean 
nucleon kinetic energy. The binding energy is approximated as 6 MeV, 
and the mean kinetic energy is twice the mean temperature, T. This 
mean is taken as half the pre-emission temperature at the average angular 

20 197 momentum. The fraction of mass lost from the Ne + Au reaction is 

n _ U 
n 2T7T5J2TT 

Calculation of the internal energy and temperature were described in 
Section III.A.]. Calculated values of n for both bombarding energies 
are presented in Table 2. 

The fraction of mass lost through evaporation, n, is typically 
0.05, and varies from 0.03 to 0.08. The pre-emission temperature, as 
we know from Fig. 5, is typically 2 MeV. The average kinetic energy 
of the emitted neutron is just twice the temperature. In the course 
of the evaporative decay the temperature is reduced from the pre-emission 
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175 MoV 
,. FIWI 

HflW! ( ca l c ) i 

due to; 
A n(ca)c) (exp) evap 

5 12 .026 23 4.45 
ft IS .027 29 4.89 

7 17 .027 27 5.31 
8 20 .028 27 5.64 
1) 22 .026 24 5.67 

11 27 .029 35 6.48 
12 29 .029 35 6.64 

13 32 .029 27 6.88 

14 34 .033 28 7.79 
15 37 .033 25 7.97 

16 39 .033 24 8.22 

17 41 .036 23 8.82 

18 44 .026 23 7.06 

19 46 .037 21 9.29 
20 49 .048 23 11.57 
21 51 .041 23 10.38 
2? 54 .030 23 8.26 
25 56 .041 23 10.62 
24 59 .042 23 10.89 
25 61 .052 24 13.14 

26 63 .044 24 11.61 
27 66 .045 24 11.92 

28 68 .042 25 11.42 
29 71 .049 25 12.91 
30 73 .049 25 13.02 

31 76 .051 25 13.47 
32 78 .054 26 14.10 
33 80 .053 - 14.03 
34 83 .054 - 14.26 
35 85 .056 . 14.69 

rable 2 

252 McV 

FWUM 
M M . FWHMj ( c a l c ) FWM 

i due t o 
TOT n(calc) (exp) evap TOT 

23.89 .052 19 7.69 18.59 
30.70 .053 23 8.46 22.98 
28.72 .054 24 9.12 24.09 
29.08 .055 31 9.71 32.43 
25.95 .054 33 10.00 33.0 
39.28 .057 28 11.15 29.33 
37.32 .057 30 11.49 31.98 
30.74 .058 28 11.90 29.73 
31.89 .061 25 12.79 25.47 
28.57 .062 28 13.11 33.47 
27.49 .062 26 13.48 27.10 
26.19 .065 25 14.11 25.45 
27.46 .056 27 12.90 29.75 
23.90 .067 27 15.00 28.49 
25.68 .076 26 16.77 25.67 
26.82 .070 26 15.90 26.89 
28.58 .060 26 14.34 28.88 
27.50 .070 26 16.31 27.29 
27.83 .071 26 16.62 27.45 
27.93 .081 26 18.57 25.32 
29.59 .083 28 17.37 30.94 
29.93 .074 27 17.70 29.30 
32.39 .072 28 17.39 31.97 
31.82 .078 30 18.67 54.89 
32.16 .078 29 18.81 33.26 
32.41 - >.080 29 19.25 33.38 
34.10 .082 28 19.84 30.85 

- .082 31 19.84 37.73 

- .083 32 20.05 40.39 

. .084 30 20.46 36.07 
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value to nearly zero, giving a decay-chain average temperature of about 
1 MeV. Thus the average neutron emission energy is about 2 MeV. The 
single fragment kinetic energy, Ii», (Figs. 6 and 7) varies with 2 
from about 50 to 100 fleV, with a typical value of 75 MeV. Using these 
values, the mean corrected energy is 78.9 MeV. The dominant term 

obtained from inverting Eq. ( 4 ) , — E r , represents the loss in kinetic 
1-n 1 

energy due just to evaporative mass loss, and in this typical case equals 
79.0 MeV. The second term, " n , E , arises from the recoil of the 
parent fragment, and equals only -0.1 MeV. Very little error is made 
by ignoring the recoil term when correcting the observed mean energies 
for the effect of evaporation. Even taking account of proton emission --
for which E is larger due to the Coulomb repulsion -- has little effect 
on the correction. From now on, correction of mean kinetic energies 
will involve just the mass-loss term. 

Using the same typical numbers to evaluate the FNHM, we find 
it equal to 7.6 MeV. Here we are rather sensitive to the values of 
the recoil energy, E^, and the evaporated mass fraction, n, which are 
used. Ignoring the effect of proton emission can be quite significant, 
because its energy can be several times the thermal (2T1 energy of the 
proton. Ignoring fluctuations in the evaporated mass fraction may also 
introduce some error to this formula. 

Estimation of the FWN with Eq. (7) is deficient also because 
it does not consider the finite size of the detector, and the fact that 
particles originally directed away from the detector may be deflected --
by evaporative recoil -- into the detector. This latter effect is 
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particularly important because it is large deflections which cause large 
changes of the kinetic energy, and thus contribute significantly to the 
FMC1. Because recoil of the parent fragment does not significantly alter 
the mean fragment energy, the effect of detector size on the mean kinetic 
energy can be ignored. 

c) Correction of the FTOM - Finite Detector 
The FUN due to evaporation, as measured by a detector of non-zero 

area, is developed in Appendix 1.3. The final formula, Eq. (22) in the 
Appendix, can be evaluated numerically, and the results are presented in 
Table 2. Columns 1 and 2 give the atomic number and mass number. 
Columns 3 and 7 show the evaporated mass fraction n for the 175 and 
252 MeV reactions. Columns 4 and 8 show the experimental HWI. 
Columns 5 and 9 show the calculated FWIM due to evaporation. Both 
the experimental and calculated widths are for a single fragment, while 
the widths calculated with Eq. [1) are for the total (two-fragment) 
energy distribution. Because the pre-emission energies of the two 
fragments are completely correlated, the single-fragment widths, o., 
and the total width, o, are related by 

"1 

Ml and ° 2 " 0" °i C8) 

So 
Ml 
'W 
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Coltimns 6 and 10 show the total pre-emission widths for the 175 and 
252 MeV reactions. These are calculated ,as the quadrature difference 
between the experimental widths and the calculated evaporation widths 
and multiplied by the appropriate mass fraction. That is 

V-'l, 2 , 1/2 
FMIM t o t = -^—-[Hflfrtexp) - R\UM"(evap)] 

Two features of the numbers in Table 2 should be noted. First, 
that the evaporation correction does not make a large change in the width. 
Second, the corrected total widths are fairly independent of atomic 
number, and equal for both borr.bar'iing energies. The large experimental 
widths observed at 252 MeV are offset by larger evaporative widths due 
to the greater temperature. 

These corrected widths must be viewed as being rather approximate. 
The width is quite sensitive to the energy of the emitted particle as 
well as to the number of evaporations. These calculations take no 
account of charged particle emission, which is sure to be important in 
the case of protons, and may be important for alpha particles. Also, 
fluctuations in the amount of mass emitted is not considered. Finally, 
it should be noted that the calculation of the kinetic energy width 
according to Eq. (22) of Appendix I assumes that the irradiated area of 
the target is infinitesimal. In fact, the "beam spot" on the target is 
about the size of the detector window. 
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5. Comparison of Theoretical Calculation and Corrected Data 

We are finally ready and able to compare the calculated kinetic 
energy means and widths (based on Eq. (1)) with the corrected experimental 
means and widths. The graphical comparison appears in Figs. 21 and 22. 
The discrete points are the data, and the closely spaced smooth curves 
are the calculations based on two different values of the upper angular 
momentum limit: the grazing angular momentum and 30 R less. In the 
175 McV case these angular momentum limits are 97 and 67 fi. In the 
25- MeV case the limits are 137 and 107 1i. The choice of the angular 
momentum upper limit has little effect on the calculation. This recalls 
our discussion of the trade-off between rotational and Coulomb energy 
as the angular momentum increases: the rotational energy rises and the 
Coulomb energy falls. 

We begin by considering the mean kinetic energies. In both the 
175 and 252 MeV reactions the agreement between data and calculation is 
fairly good for elements not too similar to Ne. The agreement with the 
175 MeV data is somewhat better than with the 252 MeV data. That the 
data exceed the calculations may, in part, be due to the fact that the 
detected atomic number is in fact slightly less than the pre-emission 
value. This means that the data should be shifted somewhat to the right. 
Cue can estimate the branching ratio between emitted protons and 
neutrons by employing the emission width formula used in Section III. A.4. 
The fraction of emitted particles which are protons is approximately 
r /(T + r ) . The total number of emitted particles is nA, where n is 
the evaporated mass fraction and A is the atomic number of the parent 
fragment. So, the shift in atomic number is 
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Fig. 21 Experimental two-fragment center of mass kinetic energy (upper points) 
and FWHM (lower points) versus the light fragment atomic number. Corrected 
for evaporation. Adjacent smooth curves are calculated values. 175 HeV 
projectile energy. 
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Fig. 22 Same as Fig. 21 for 252 MeV projectile energy. 
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A 2 = nA r-Ji r 

P n 
Numerical calculations show the shift to be significantly less than one 
mass unit -- not enough to explain the discrepancy'. 

The fidelity of the calculation to the data -- over such a large 
mass range and for two different projectile energies -- is strong support 
for the hypotheses of the model. The most fundamental and dominant 
assumption is the treatment of the reaction system as a canonical ensemble 
at thermal equilibrium. Equation [1) applies only to such a system, and 
calculation of the temperature (or internal energy) has assumed that all 
the initial projectile kinetic energy is distributed thermally among the 
available degrees of freedom. 

The major reservation one must have in accepting this conclusion 
arises from the degree of simplification of the dynamical factors --
limitation to one ellipsoidal shape degree of freedom and consideration 
of only rigid sticking rotation. Certainly the actual behavior is 
more complex. Independent shape vibration of the reacting nuclei is to 
be expected, complicated tri-axial shapes may well appear, and slipping 
of the nuclei against each other is probably important, at least early 
in the reaction. Nevertheless, the model need only predict the behavior 
of the system at the time it breaks up. The picture of the nuclei being 
in thermal equilibrium when they break up suggests that these 
complexities are fast transients which largely disappear during the 
reaction. 

We will now direct our attention to the kinetic energy widths. 
He have already emphasized the severe limitations in evaluation of the 
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prc-emission widths. It is therefore not too surprising when we find 
the calculations deviating from the data by a healthy margin. What is 
interesting is that the agreement in the "hotter" system (252 MeV) is 
not too bad, while the calculations in the "cooler" system fall short 
of the data by 30 pe-'cent or more. The explanation for this may lie 
in the purely classical nature of the calculation. As the temperature 
(expressed in energy units) approaches the energy of a single phonon 
(liv), the purely classical formula (Iiq. (1)) used to evaluate the 
kinetic energy moments is no longer valid -- the quantized nature of the 
vibration spectrum has not been accounted for. Quantitative evaluation 
of the phonon vibration energy requires knowing the inertia of the 
vibration mode. Ke can estimate that the phonon energy is on the order 
of a few MeV. At temperatures from 1.5 to 2.5 MeV, we see that 
significant quantal effects should be expected. 

We can estimate the magnitude of the quantal effect on the 
kinetic energy widths by employing a simple model. Consider classical 
vibration in a harmonic potential of the form V = ^cx . (Figures 10 
to 14 show that this is not too bad an approximation). The average 
total energy of the oscillator is just the ensemble temperature T. 

This means that on the average, the system is vibrating between 

and - * — . We can approximate the total fragment kinetic energy 
(after breakup) as having a linear dependence on the vibration degree 
of freedom (see Figs. 16 to 20). That is, E * -ax + b. Then the 
kinetic energy width generated by the system vibrating between its 
extremes is 
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<%•«-#")-*<• i ? > - * V ? - * V ¥ (9) 

where u represents the average energy- of the oscillator. 
However, the correct quantum mechanical expression for the,average 

total energy of a harmonic oscillator is (So 56, p. 239): , 

" = I h j +
 e - h ^ - do) 

where hv = phonon energy. This reduces to the classical result when the 
temperature far exceeds the phonon energy. 

Nix (Ni 69) has calculated the phonon energy for low-order Legendre 
polynomial vibrations as a function of the fissility parameter. A 
fissility parameter of 0.55 is found for the heavy partner of element 25. 
At this fissility parameter, the phonon energy of the lowest two 
symmetrical modes (n = 2 and n = 4) range from 2 to 4 MeV. We will 
consider a phonon energy of 3 MeV. Typical temperatures for the 175 
and 252 MeV reactions are 1.75 and 2.25 MeV, respectively. Using 
Hq. (10) to find the average quantim oscillator energy in these two 
reactions, and substituting these values for the mean energy, u, into 
Eq. (9), we obtain a quantum mechanical approximation to the kinetic 
energy widths. The ratio of the quantum to classical widths in this 
example are 

& EQM U . l l . T -
H £ - jl.07, T -

1.11, T = 1.75 MeV 
2.25 MeV 
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These results suggest that a proper treatment of the kinetic 
energy widths requires that attention be given to the quantum nature 
of the vibration. However, we have presented no evidence concerning the 
magnitude of the vibration phonon. Until it is obtained, the quantum 
contribution to the kinetic*energy widths must remain unclear. It is 
important to realize, however, that a large quantal effect on the mean 
kinetic energies is not to be expected. Because-the potential energy 
is fairly symmetric about its minimum, the average kinetic energy is 
determined primarily by the equilibrium deformation. Our earlier 
conclusions concerning energy thermilization before breakup remain in-
lact. 



B. Charge Distribution? / /; ® ' # 
1. General Considerations ' ^ 

0 - " J) « In the past few years, very successful applications have been. £s> 

made of the master equation in theoretical treatments of the elemental 
or mass distribute ..Is arising in highly inelastic reactionsa The 
central feature ofrthese applications is the diffusion of the reaction-
complex along the mass asymmetry degree of freedom (Mo 75). The /ML S) '.'.. 
exchange of nucleons is recognized as a stochastic transport phenomenon, = 

well known in Statistical mechanics (No 74). "\ ' • 
It is convenient to label the mass asymmetry of the reaction i 

complex by the atomic number (Z) of one of the two contacting nuclei. 
The tiise evolution of the mass asymmetry population, C(Z,t), can be 
expressed by the master equation as: ^ o 

c(£,t) = v (P 7c(z',t) - p77,c(z,t)). m 

where C is the time derivative of the population, and p , v l is the " 
macroscopic transition probability from configuration Z to,.Z'. 

Norenberg (Mo 75) has identified three physical^conditions which 
must be satisfied in order for the master equation to be applied: 

(i) The relative kinetic energy and/or the projectile and 
target masses must be sufficiently large, so that the wave length of 
relative motion is small compared with the size of the interaction 
region. • ,, ^^^ 

(ii) The identity of the two reacting nuclei must be maintained 
during the reaction in order for the mass asymmetry to be a relesEsiir^ 
degree of freedom. 
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(iii) Many degrees of freedom must be involved in the reaction, 
to insureithat the nucleon transfer process is a stochastic one. Excita­
tions of specific collective modes must decay into equilibrium with the 
other degrees of freedom on a time scale which is small compared to the,: 
reaction time. 

The applicability of the master equation is discussed in some 
detail by Moretto (Mo 76c) and Norenberg (No 76). One needs now to 
evaluate the transition probabilities p „ , and to identify the range., 
of summation in Eq. (1). *--•' 

The macroscopic transition probabilities can be written as (see 
Re 65, section 15.2): 

PZZ' = AZZ' PZ' 
P Z ' ^ = Vz pZ ^ C' 
AZZ' = A Z ' Z •- '• 

where A „ , is the microscopic transition probability (which is symmetric 
because of microscopic reversibility); p- and P Z , are the statistical 
weights of the macroscopic configurations Z and Z'. The statistical 
weight can be identified with the level density of the reaction complex: 

P Z - p(E - V(Z)) 

where E is the total energy and V(Z) is the potential (including 
rotational) energy. When V(Z) is small the level density can be 
expanded (Mo 75): 
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P(E-Vf:» =,ptl3) e " V ( Z ) / T 

where 

'i _ /ainp\ 

T " [nr)E /E 

which is the inverse ofi the temperature. 

The microscopic transition probability has been usefully 

expressed as (Mo 75): •< 

A = k f 

A--, 
M0ZQV 

where k is a term having the units of flux, and f is a form fact r equal 

to the contact area between the reacting model: 

R, R? 

f = 2it J d, d * 1 ft. 

where R, and R2 are the radii of the nuclei. The macroscopic transition 
probabilities can now be rewritten as: 

., (\'(Z) - V(Z')\ p z z , = kf exp^ yp ) (2) 

The sum in Eq. (1) can be restricted to Z(-'» Z±l, in the context 
of the independent particle model. The master equation can be written 
as: 

C'CZ.t) - YJ k f e x p ( ^ ^ S - ) [c(Z',t)exp(-V(Z)/T) -
Z'-Z±l -, C 3 ) 

C(Z,t)exp(-V(Z')/Tj 
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This equation has been successfully used in the analysis of several 
heavy ion reactions (Mo 76b, Wo 77, Ca 78). 

2. The Z Distribution in the Ne + Au Reaction 
We have mentioned earlier that highly inelastic reactions involve 

transfer of a large fraction of the projectile kinetic energy to internal 
degrees of freedom of the system, and may also be accompanied by 
exchange of many nucleons between the reacting nuclei; 

Our analysis in Section III.A. led us to conclude that the kinetic 
energy of deep inelastic Ne + Au reactions proceeds to equilibration 
during the lifetime of reactions for which the light-product atomic 
number is greater than 12. (The admixture of a continuum of reaction 
types from elastic to deep inelastic prevented analysis of lighter 
products). We shall now investigate the extent to which the distribution 
of reaction product atomic numbers can be characterized by just the 
temperature of the system and its total mass — independent of the initial 
mass asymmetry. 

The laboratory differential cross section as a function of atomic 
number, Z, for the 175 and 252 MeV reactions, is shown in Figs. 23 and 
24. Data for 8 different laboratory angles are shown. Figures 25 and 
26 show the center of mass differential cross sections. The differential 
cross sections (da/dO) for elements above atomic number 14 have been 
fitted with 2nd order polynomials and integrated from 0 to 360 degrees. 
The results are shown in Fig. 27. The large yield in Figs. 25 and 26 
of products similar to Ne reflects, in part, a contribtuion of quasi-
elastic reactions. However, this cannot explain the increase in yield 
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XBL 777-9583 

Fig. 23 Experimental laboratory cross sections versus the atomic number 
of the light fragment. Eight laboratory angles. Error bars indicate 
± one standard deviation. 175 HeV projectile energy. 
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Fig. 24 Same as Fig. 23 for 252 MeV projectile energy. 
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Fig. 25 Experimental center of mass cross sections versus the atomic 
number of the light fragment. Data collected at four laboratory angles. 
175 MeV projectile energy. 
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Fig. 26 Same as Fig. 25 for 252 HeV projectile energy. 
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from atomic numbers 16 to 13 at forward and intermediate angles, 
because the kinetic energies of these products are thermaliied. The 
explanation lies in examination of the degree to which the Z 
distribution has reached equilibration, as has been observed in other 
highly inelastic reactions (Ba 75, Ga 75, Mo 75c, Mo 76, Ru 77). 

3. Testing the Equilibration 
We shall now develop a theoretical expression for the 

equilibrium atomic number distribution, and compare it with the 
observed distributions. For the potential energy as a function of 
atomic number, V(Z), we will use the liquid drop formula developed 
in Section III.A.2, evaluated at the equilibrium deformation of the 
two touching nuclei. The temperature, T(Z), is also evaluated at 
the equilibrium deformation. Figure 28 shows the potential energy 
versus Z for a range of angular momenta. In our discussion we will 
consider only the average angular momentum for each reaction energy: 
67h for 175 ?teV and 97 h for 252 MeV. The normalized equilibrium 
distribution is: 

-V(ZVTCZ) W(Z) * -1 (4) 
z e-V(Z)/T(Z) 

We begin our analysis by comparing the observed relative 
population of different mass asymmetries (atomic numbers) with the 
theoretical equilibrium values. The following quantity is to be 
considered: 
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Fig. 28 Minimum potential energy along deformation coordinate for 
touching nuclei, versus atomic number of the light fragment. 
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where W(Z) is evaluated from Eq. (4), and o(Z) is based on the data of 
Fig. 27. The ratio W(Z)/IV(30) represents the shape of the distribution 
at equilibrium, if we neglect the possibility of fission of the heavy 
partners of the lightest elements. However, fission of these heavy 
elements would not greatly alter the shape of the Z distribution, if it 
is fully equilibrated, because their masses are nearly equal to the 
total mass of the No + Au system. 

If the experimental distribution is equilibrated, the ratio R(;) 
will equal unity for all elements. The values of R(Z) for both 
projectile energies are shown in Fig. 29. We see that RfZ) is less 
than unity for atomic numbers less than 30 and (for the 252 MeV 
reaction) greater than unity for atomic numbers above 30. This means 
that the experimental distribution is less steep than the theoretical 
equilibrium distribution at both reaction energies. In other words, 
the experimental distributions are weighted towards the initial mass 
asymmetry more than are the equilibrium distributions. Nucleon 
exchange does not proceed long enough for the reaction system to fully 
sample all mass asymmetries and to populate them according to their 
statistical weights. 

It is very interesting to note, however, that the function R(Z) 
at the two different reaction energies agrees closely. This certainly 
docs not represent a close similarity between the experimental 
distributions, which we see from Fig. 27 are quite different in slope. 
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Fig. 29 R(Z) versus the atomic number of the l ight fragment. See text . 
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Rather, we see hern that the degree to which the system has approached 

an equilibrium Z distribution is very similar for the two reaction 
• energies. 

P 
4. Non-Equilibrium Model 

We shall now attempt to provide a somewhat fundamental context 
in which to understand the degree of equilibration of the Z 
distribution. Consider an ensemble of Ne + Au nuclei, all of whidi 
started reacting at the same instant. We shall define the following 
quantities for this ensemble: C(Z,t) = the number of reacting pairs 
for which the light-fragment atomic number is Z, at time t. 

P +(") - the probability per unit time At of transfer of one proton 
to the light fragment (of atomic number Z) , to increase the asymmetry 
index from Z to Z+l. 
p_ (Z+l) = the probability per unit time At of traiijfer of one proton 
from the light fragment (of atomic number Z+l) to decrease the 
asymmetry index from Z+l to Z. 
The unit of time, At, is defined in such a way that the transfer 
probabilities p +(Z) and p_(Z+l) are normalized to unity: 

P J Z ) " + P. (Z+D - 1 (6) 

For any specified values of Z and Z+l, the unit of time At is a well 
defined ensemble average. The absolute rate of transfer of one proton 
to the light fragment of atomic number Z is, from Eq. (2): 

P z > z + i " k f e X 
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where x = ^ '" * ^ s =: vj . The absolute rate of transfer of one= 2T ZT dZ 
proton from the light fjgmcnt^of atomic number Z+l is likewise: 

PZ*1,Z " k f e '• 

The ensemble-averaged t-*me At and the relative transfer probabilities 
p + U ) and p_(Z+l) are: ? 

if * = " ^ '-' 
Pz,Z-l + p Z + l ,Z r. 

p (Z) ., ' " - ^ 
+ PZ,Z*1 + P Z + 1 , Z 

P. tz . i ) - P ^ - Z 

z+i + P z + i , z 

One can readily see the relation between tha time interval At and 
the coefficient, kf, which contains the absolute rate information. From 
the definition of At: /. 

e + e '-^ |r 

-1 3 V i 
Noting that x i -yr 57 which is usually sm.'.ll (Mo 76c), we see that 

2kf 

It is evident that At is a precisely defined and physicail;' 
meaningful quantity. Kfe encounter an approximation, however, when we 
assume that a single value of the time interval, At, noimalizes the 
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t r ans fe r p r o b a b i l i t i e s for a l invalues of Z. In so doing, we ignore 

the v a r i a t i o n , with inass .asymmetry, of the absolute t ransfer r a t e . 
= Li ," ° -" „ 

This variation arises predominantly from the variation, in the size 
of the window opening between the nuclei. The temperature., yariat ion with 
2 mifjhtsalso he expected to cause some variation in the transfer rate, 

-he shall now develop expressions for the normalized transfer 
probabilities'. The net flux between two successive elements of atomic 

f ' '' ,v , < • ' < ? ' 
number 2 antl Z+i is ,, ,'-

. U 4 l = a:,t)|i((i)vciM,t)p.(W) .,. - "n 

Mien the Z d i s t r i bu t i on has equi l ibra ted ; 4 t h i s flux must vanish* This 

'condition 1 'of equilibrium can be expressed by the r e l a t i o n : '' 

S i i l f L P . (Z+1) 

crsnp--) - jvjrr ( 8 ) , 

a 
I-rom l:.q. (4) we know that the equilibrium distribution is of the form 
C = A exp (-VT^JTTC/)). Combining this result with, the normalization 
condition, Eq. (o), one obtains the following functional forms'for the 
normalized transfer probabilities at equilibrium: 

" -V(J+1)/T(Z+1) ,. „ , . 
P +(2) - *=£, — vv C9) 

-V(Z*l)/T(Z+« + -V(Z)/TCZ) c 
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By assuming that the time development towards equilibrium of 
the 1 distribution is governed by the phase space available to each 
asymmetry, the transfer probabilities determined at equilibrium can 
^e applied throughout the time development. Thisjassumption is in fact 
Sbrenberg's third condition for the applicability of the master equation, 
as described in Section III.B.l. 

!t should be noted that the physical basis of these equations 
is the same as that for the expression derived hy Moretto (Mo 76c) and 
presented as r.q. (2) above. liquations (9) and (10), however, contain 
no information about the absolute rate. One can readily see that 
I.qs..(9) and (10) arc of the same form as Eq. (2), to within a multi-
multiplicativc factor containing the absolute rate information. We , 
ignore the Z dependence of the temperature, and define: 

V(Z) - V(Z*1) , 1 
T " 'i m 

which i s commonly a small number (Mo 76c). Then p + (Z) can be wr i t ten 

a s : 

, _ c x ; c x 1 exa _ ] 

VfZ)-Vf2*l) 
1 „ 2T 
2 C 

which is proportional to the expression in Eq. (2). 
Tnc- Z-dependent potential and temperature which we used earlier 

have each been fitted with a second order polynomial in the Z range.) 
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from If) to 7'.), and the resulting equations were used to evaluate p^ and 
p for the 175 ami 252 MeV reactions. The resulting transfer 
Iirnh.-ihi 1 it ies are shown in Fig. SO. If the potential energy divided 
liy the temperature, as a function of atomic number, were perfectly flat, 
p + and p would each equal T . Whore V/T has a negative slope fas in 
the Z range from Id to 45J the Z distribution will drift "downhill" 
towards larger atonic numhers, so p + will exceed p . 

l\'c are now in a position to calculate the time development, in 
units of f.t, of the 175 and 252 MeV Z distributions. We employ the 
following form of the master equation for the change in C(Z,t) during 
one transfer time At: 

miAl = i - j ,M z-],: z,z-n 

= cc+i,tip.fz+i) * c(z-i,t)p+(z-i) - ccz,t)(nt(Z) •rvcz)) 
(ID 

he have developed values for the transfer probability in the Z range 
from 10 to 79. We shall simplify this calculation by permanently 

removing all reaction pairs from the ensemble of reacting nuclei, 
which diffuse outside this range. This corresponds to thoie pairs 
"dropping" into the very steep potential well at the extremes of the 
1 range. 

I:'-
The ensemble is started at t»0 with 1000 Ne VAi pairs. 

Figures 31 and 32 show the Z distributions at six different times, for 

the 175 and 252 ffeV cases. The tines in units of i t are 10, 20, 40., 80, 
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Fig. 30 Transfer probabilities versus the light-fragment atomic number, 
for both 175 and 252 HeV projectile energies. 
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Fig. 31 Calculated distribution of elements at s ix different times, 
based on diffusion model. 175 MeV project i le energy. 
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Fig. 32 Same as Fig. 31 for 252 HeV projectile energy. 
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12(1 ami S(l(). IVe see the drift of the light and heavy mass fragments o 
toward, symmetry. 'Hie movement is quick early in the reaction, 
s.lowing down as the equi 1 ibriii'i distribution is obtained. 

In figure 33 we overlay the Z distribu :ions for both reaction 
energies at four limes - 10, -1(1,80 and 300 t.t units. 'Ihe distribution 
in the 175 MeV case moves slightly faster because the positive transfer 
probability is somewhat larger. On the other hand, the equilibrium 
in the 252 .'leV case r somewhat broader, due to the greater temperature 
at this reaction energy. We see in both cases that the distribution 
is fully equilibrated at t - 300, and that the degree of equilibration 
at the other times is similar for both reactions. IVc can now 
understand our earlier observation that the degree of equilibration 
of the Z distribution at the two reaction energies is quite similar, 
'this arises from the fact that the\ time development and lifetime 
(in At units) for both systems are.alike for I's from 20 to 30. 

5. (alculation of Diffusion with Secondary fission 
lip to this point, our analysis of the elemental distributions has 

focussed on understanding their degree of equilibration. To this end, 
we have studied the relative yield as a function of 2. It is now 
appropriate to test our understanding of the absolute cross section. 

Considerable theoretical effort has been devoted to explaining 
the Z distributions of heavy ion reactions, employing a diffusion 
model based on the master equation (see section III.B.l.) Ke have 
used a code developed by Sventek and Moretto to calculate 2 
distributions in the 175 and 252 MeV .Ne • Au reactions (Mo 75, Sv 78). 
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Fig. 33 Same as Figs. 32 and 33 - overlay of diffusion calculations 
at both 175 and 252 MeV projectile energies at four different times. 
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'nil1- prorra-ri '•fill''-', the e-piatioir. of notion for the react ion by 

<• ::lo.in^.. ;i ]i<|iii;l drop jwitcnt i;il au;:nented by one body f r i c t i on . 

! r<* tlu- it < ;tl> til.n r several ley lynar< 1 ca 1 p rope r t i e s : the 

ne.in reait ion l i f e t i n e , the averare overlap of the nuclei and the 

.nount of .xnv.til-'ii r.oiscnttan converted to internal spin of the fraiyicnts 

priklu't-d. I'.ith tin . information it then ca lcu la tes the Z d i s t r i b u t i o n 

pinducel he diffusion and tlie angular d i s t r i b u t i o n for each product. 

Hii-- tode ha1- S IKLC. . fu l l y reproduced the Z d i s t r i b u t i o n s of several 

r eac t ion . . V.hen applied to the Ne + Au case , tile calculated Z 

d i s t r i bu t ion d i f fers y.rcat ly From the data in both magnitude and 

slope. The observed center of nass cross sect ion increases 

nonotonical ly fron about 1 to Inn nbarns, in the Z range from 20 

to v1. The calculated d i s t r i b u t i o n in t h i s ~ range f a l l s s teadi ly 

fron about !i to less than II. 1 mharns. 

Ilus discrepancy between theory and experiment may perhaps 

be r ec t i f i ed by accounting for the p o s s i b i l i t y of f iss ion of the 

compound nucleus or of heavy fragments formed in the reac t ion . This 

has been tes ted in the following manner. The code mentioned above 

was used to ca lcu la te (he Z d i s t r i b u t i o n , as well as the exc i t a t ion 

energy and internal spin of the heavy fragment , for rarli incident 

angular momentum (1.). Kith t h i s information the f i ss ion probabi l i ty 

was calculated, in competition with neutron emission. The Z 

distributions from f iss ion were calculated using a Gaussian function. 

The procedure wil l now be described in more d e t a i l . 

The f iss ion barrier with respect to the rotating equilibriim 

shape i s 
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! s.ui sad ei| eq 

ulu-ri* ", . , 'and M I T are the rnasso of the ro ta t ing saddle and 

c-i',u I if'i nr:. shape.-, respect ive lv , and R , and U are the correspondi«R * ' ••> sau e<( ' ** 

ro ta t ional encri ' te '- . Tlie energy of the ro t a t ing equilibrium shape 

v-itk resject to the rota t ing spherical shape is 

! : l " '% * « « , ' " , M sph * 'Cph' f » J 

uK'.ri- " . i^ the n;iss of the spherical nucleus ami R . is the -;<:: sph 

inrrespondim: rotational e i 'Tgy. II. is generally nega t ive . 

The (([1,'uilities lr.. and [.. are functions of the f i s s i l i t y 

parameter (xl and ti\e ro t a t i on parameter ( y ) . These a re expressed 

in terms of spherical l iquid drop energies as 

y = l ° / I ° = l.ST'J J V A 7 / 3 

where 1° is the self-Coulomb energy, E° i s tlie rotational energy, n? 

is the Surface ejieigy and J i s the angular momentum. When calculating 

the rotation parameter of the heavy fragment, the J i s taken as the 

internal spin obtained from Sventek's code. The quantities tZ and 

II, have been calculated by Plas i l and Swiatecki, and are tabulated 

by Vandenbosch et al (Va 73, pp 246, 248). 
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"Hit- i-jci-11fit ion energy .it specified l.-fcavc, I-, is calculated in 

Su-nteVs code Mth respect to the ro ta t ing spherical contacting 

rmclei . 'Ihcrefore the f iss ion h.-irner of in teres t is 

»,- - I.J * l 1 ( ( 1 4 , 

Iht- ba r r i e r to ct .u.sum ol ;in s-wavc neutron, I'. , ts taken ;is the 

noma I i;roiunl-state neutron bimi in;1, enen-y. Wsinj; these q u a n t i t i e s , 

tiif i;i!io ot neutron eni ' . ' i ' in to I" i •- -. itjn probabi l i ty can be expressed 

a* i \a " , h | . V I I - ) : 

.;r vV a HI : : ^ " - ^ . - n - - i ^ / 2 ' i - v , / 2 - v / 2 a , . f . W - V •' V"" " 
i / : 

(15) 

lOierc K„ - l i ' /Jr ir" - Id MeV, A is the atomic number, a , and a arc the o o f n 

level densilv parameter's at the saddle (K>int for f i s s ion and for neutron 

emission respect iveIy. It has been noted by many authors that the 

r a t i o a . / a nay range froir 1.(1 to 1.5, depending on the mass and 

exc i t a t ion energy (Va " 3 , p 23t>; 'b 73) . 

It is important to include the poss ib i l i ty of f iss ion after 

s ingle or multiple neutron emission. After each neutron emission, 

the excitation energy is revised by subtracting the neutron binding 

energy and the average neutron kinetic energy (twice the temperature 

of the residual nucleus). The rat io r_/T f i s recalculated at each 

s tep . The total f iss ion probability for the heavy fragment (or 

compound nucleus) of atomic number Z at angular moncntun L i s 



/ k _ 1 \ 
''!<-' - 2 - ' T I " <»-''"')J iif> 

rt*I.itt\! t^ the neutron an J f ission widths at t i n s s tep by 

-,r • . : r k . . , f i . r . L i | . 

li.i :i| ;•(.•! li.-.jt '•: tlie MU\ in 1.4. ilH) i> determined by allowing 

: .1 i t i ' rat ir .n to proceed unt i l c i t he r f i ss ion or neutron emission 

:*- ovcrwhelnin^lv l i U ' K . The sjiecific condit ion used for terminating 

thi' i t e ra t ion is 

r j> ; 11. TO 

The normalized d i s t r i bu t ion of elements If a r i s i ng from the 

fission nf a heavy fragment of atomic riimber Z is approximated by 

r ; i ij.ii 

1 2 

r e , •.:) = N expi-tu - T) h: ] CIS) 
1 m 

where: U - Zr/Z 

C,„ ' 2T/K 
in n , -, 

K « s t i f fness of the potential in the nass-asymetry coordinate. 

Values for ^ were taken from Fig. 14 of Ni 65. 

r 1 1 2 

N * normalization - I e x p [ - ( U - j ) A^JdU . 



The final f iss ion "yield of element Z is obtained by summing 

ovei the_full I.-wave and Z ranees: 

"fission lZf> ' Z E 'VL , : ) '4ff ( : ) " Z r Z> fi'J> 

'>. I. I 

wheie ' [ <• r ' - ' ' : ' * n l ' ca lculated cross sect ion for diffusive production 

oT element Z at incident angular momentum ].. 

Hie d i s t r i b u t i o n of heavy fragments i.'. ff. ( I ) , as predicted 

by the d i l fus ion c a l c u l a t i o n , are shown in l if ts . 33.1 and 33.2 for 

five I.-waves. One sees str>t':g peaking of the d i s t r i b u t i o n around 

Z = SO. 'I?ic- breadth of the d i s t r i bu t ion decreases with angular 

momentum. The diffusion ca lcula t ion assuncs that i f the light-fragment 

atomic numlier is reduced to 4 or l e s s , a compound nucleus i s 

irrevocably formed. One sees that the compound nucleus cross sect ion 

(at Z = 8'.)) calculated in t h i s way decreases with increasing 1,-iVave, 

due to the decreasing l i f e t ime. 

The multi-chance f iss ion probabi l i ty of 'Eq. ( lb) i s p lo t ted 

in Tigs. 33.3 through 33.9 for the 175 and 252 MeV cases . Values of 

the level density parameter ra t io , a f / a _ . ranging from 1.0 to 1.6 

are used. Kach figure shows the f i ss ion probability for three L-waves. 

Consider the 175 MeV case f i r s t . Mien the level density parameter 

ration (LDPR) i s 1.0 (Fig. 33.̂ 3) the f i s s ion probability f a l l s 

precipitously for a l l elements l ighter than the compound nucleus. ' 

When the LDPR i s 1.2 (Fig. 33.4) the compound nucleus and the several 

heaviest fragments have appreciable f i s s ion probabi l i t ies . Whertthe 

LDPR i s 1.4 (Fig. 33.5) f iss ion occurs appreciably for fragments as 



175 HeV 

FlR. 33.1 Calculated diffusion y ie ld for heavy fragments, \ \ 
at five incident angular momenta. 175 MeV p ro j ec t i l e energy. ^ 
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Fig. 33.2 Same as Fig. 33 .1 . 252 MeV p r o j e c t i l e energy. 
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Fig. 33.3 Calculated multi-chance fission probability for heavy 
elements, at 3 incident angular momenta. LDPR - 1.0. 175 MeV 
projectile energy. 
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F i g . 3 3 . 4 Same a s F i g . 3 3 . 3 . LDPR = 1 . 2 . 175 MeV p r o j e c t i l e e n e r g y . 
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F i g . 3 3 . 5 Same as F i g . 3 3 . 3 . LDPR = 1 . 4 . 175 HeV p r o j e c t i l e e n e r g y . 
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1 ight as the target. !:urther increase in the LDPR will extend the 
range of significant fissility to lighter products. However, since 
tiie calculated diffusion yield drops rapidly for products lighter 
than Au, additional increases in the LDPR will have diminishing effect 
on the fission yield. A similar phenomenon is observed in the 
252 McV case (Figs. 33.6 to 33.9). Mien the LDPR is 1.4, appreciable 
fissility is to be expected from fragments somewhat lighter than Au 
(as well as heavier ones). Increase of the LDPR to 1.6 indeed extends 
the range of fissility to lighter fragments. It will be seen that 
this has a diminished effect on the fission yield, due to the sharp 
decrease in diffusion cross section for these lighter nuclei. 

By employing the largest values of the LDPR (1.4 at 175 MeV, 
1.6 at 252 McY) qualitative agreement can be obtained between 
calculation and experiment in the Z range from about 20 to 34. In 
l-igs. 53.10 and 33.11 the fission yield is added to the diffusion 
yield, and compared with the experimental data (the single points). 
AJso, the diffusion yield is shown alone. One sees that above about 
Z - 25 the fission yield dominates the calculated cross section. 
The fission yield increases with increasing Z, as does the data, 
while the diffusion yield decreases. One notices that the diffusion 
yield dominates for the lighter products, and considerably exceeds 
the data. This is most likely to be due to the limited angular 
range over which the experimental data were measured. The cross 
section at the most forward angles may have been significantly 
underestimated by extrapolation from the measured angular range, 
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F i g . 33 .6 Same a s F i g . 3 3 . 3 . LDPR = 1 . 0 . 252 MeV p r o j e c t i l e e n e r g y . 
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Fig. 33.7 Same as Fig. 33.3. LDPR - 1.2. 252 KeV projectile energy. 
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F i g . 3 3 . 8 Same a s F i g . 3 3 . 3 LDPR = 1 . 4 . 252 MeV p r o j e c t i l e e n e r g y . 
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Fig. 33.10 Calculated d i ' usion and diffusion + f iss ion y ie ld 
versus Z, for 3 d i f ferent values of the LDPR. The points (X's) 
are measured cross sect ions extrapolated over the fu l l angular 
range. 175 MeV p ro j ec t i l e energy. 
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Fig. 33.11 Same as Fig. 33.10 for four values of Che LDPR 
and 252 MeV projeccile energy. 
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because the slope of the nnt;ula\t d i s t r i bu t ion of these l ioh ta r - ~ ™ 

products increases at forward ,anglcs. „ " ° :~v "- " a - o 
'•' ' , '-' " v * ' , ° , e a / "•• a , . ^ / „ 

In the l^SCilcV case tlic calculated fission" t diffusion ? ic]J ° F ' , J V 

f a l l s .short of' the dafca (above Z = 2.4)° by a factor ranging from < x , u ' ^ ^ 

y> to -1. In the 232 .McV case , tlie £a t io c of the experiment to theory^ •><-. '•=• 
i t j ' i , . '*•• --•'' " Q ' , "' ' r "••• o 

rnimos from 2 (at I = 221 to (,1 fat Z =• 52)., Considering the ° ' a , 
'-". ' '"--• ' * c "" C ° ^= " . . . ., , * o * - „ 

simplicity of the fission calculation, this discrepancy is not" too^ ---,. 'iv 

discouraging. -One.- is encouraged tQ, think that secondary- statistical ° ~-.„ 
fission o'f--diffusion-produced heavy fragments (including the compound/,^ ?• 
nucleus') r-may,,be the dominant source of reaction products above ~" , '"̂ , 
about 2 = 2<X:, Consistent \<i£h thlsj, products of-the 252 McV' reacti&^b^ °':& _, 

heavier than ̂ nbotit Z » 21 display rt'carly or completely symmetrica 1%. , o
p 

angular distributions of the form-l/sin6. "Angular symmetry for r- J'' 
products of xthc 175 McV reaction first appears at somewhat heavier-,. :'̂ \ 
Z's. Upon''considering the fact that the data exceeds the theoretical - -,̂  

• " " . % , ~ " - - * " : • • . / / 

ca lcu la t ion , one is tempted to wonder j i f ari addit ional ass-ion path* II 

may be ava i lab le to the system. Grie such p o s s i b i l i t y -- — dubbedr~—,^ , ! , ^ 

"proximity" f iss ion —- - envisions enhanced f iss ion of the target " 

under the .'.nfluence of the Coulomb f ie ld of tlvepproximal p r o j e c t i l e . , 

nucleus. Further t heo re t i ca l and experimental s tudv ; ' i s needed. 
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•:•(). AiiKulajr^JHstj^ij iut ions i 

1. General Considerations 

Hxaminntion of the/angular distributions of products- of high'y 

inelastic reactions provides a direct qualitative review ard confirmation 

of our understanding of these reactions. We shal 1. provide this review 

by consideration of four reactions, before returning to the Nc + Au case. 

ibe angular distributions of reactions produced by N, No and Ar 

projectiles provides a sruplc illustration of the non-coinpound-nuclcus 

nature of these reactions, tenter of mass angular distributions for the 

N +i Ag (Mo 73a), Nc + Ag (Ba 75J and Ar + Au ;B'o 76) reactions are shown 

inl'Hgs. 3-1 to 3li. These distributions are ge,ier;>lly as>iranotrically 

peaked in the forward direction, especially for pi.'lucts similar to the 

projectile. This indicates a coupling between entrance anu exit 

channels. The reaction complex can distinguish the forward and backward 

directions, which a compound nucleus cannot do. 

The degree of fonvard peaking provides insight into the lifetime 

of;the reaction complex. The lifetime mast be short, but not too short, 

coiiparcd with the mean rotational period of the complex. It must be 

short enough to prevent multiple rotations before breakup, which would 

cause the angular distribution to be symmetrical about 90 ; it must be 

long enough to provide some dotation past 0°, otherwise the angular 

distributions would peak at a side angle. Such side peaking is in fact 

observed in the reaction of Kr + An (Sv 76, Ru 77). In Fig. 37 one 

sees chat angular distributions for products of this reaction not too 

different in mass from the projectile display very marked side-angle 

peaks. 
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Fig. 34 Experimental center of mass angular d i s t r i b u t i o n s for the 
react ion N + Ag (Mo 75a). 
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Fig. 35 Same as Fig. 34 for Se + Ag (Ba 75). 
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Fig. 36 Same as Fig. 34 for Ar + Au (Mo 76). 
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Fig. 37 Same as Fig. 34 for Kr + Au (Sv 76, Ru 77). 
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Anotiier important implication arises from the fact that nearly all 

products exhibiting side- or forward-peaked angular distributions, also 

display nearly completely equilibrated kinetic energy spectra. This 

indicates that the relaxation of the kinetic energy occurs on a time scale 

which is quite short compared to both the rotational period and the 

rcl:ixation time for the mass asymmetry degree of freedom. 

By far the nost revealing feature of the angular distributions 

is their change in shape with product Z. The degree of forward peaking 

for side peaking in the case of Kr + Au) is stronger for fragments closer 

in ; to the projectile, and decreases progressively for fragments further 

removed from the projectile. This phenomenon finds its qualitative 

explanation in the time required for diffusive motion along the mass 

asymmetry coordinate. Products near in Z to the projectile are produced 

quickly and can decay with a short lifetime. The angular distributions 

for these products are then forward peaked (N:, Ne or Ar projectiles), 

or side peaked fKr + Au). Products more differert in Z generally require 

longer diffusion times. Such products of .\, Ne or Ar reactions display 

angular distributions which approach, in varying degree, the l/sin6 shape 

expected of a reaction at high angular momentum which may rotate as much 

as one or several complete revolutions. The angular distributions of 

products of the Kr + Au reaction, both lighter and heavier than the 

projectile, display progressive recession and finally disappearance of 

the side-angle peak. As with the lighter projectiles, this indicates 

increasing lifetime of the reaction complex relative to the rotational 

period. 
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An interesting insigh!. is obtained by noticing how tiie Z dependence 

of the angular distribution varies from one reaction to another. In the 

\' + Ag and \'c + As; reactions, the angular distributions remain quite 

as>iranctric;il , and strongly forward peaked, down to the lowest elements 

detected. On the other hand, the angular distributions of Z's above the 

projectile rapidly become s\inmetrical al>out 90°. For example, the angular 

distribution for element IS in the ,\:e + Ag reaction has the form of 

1/sin". This has been explained by noting (Mo 76b) that the initial 

mass as;.linnetr\- oT the projectile -target complex in these two reactions 

is (for most angular momenta) to the left of the Businaro-fiallone peak 

in the potential energy. (The Husinaro-Gallone peak is the maximum in 

the potential energy, along the mass asymmetry axis. 'Hiis maximum is 

seen very clearly in l'ig. 28). Consequently, products lighter than the 

projectile are populated very quickly due to the rapid drift on the 

steep potential slope. On the other band, products heavier than the 

projectile arc more slowly populated by "uphill" spreading of the 

probability distribution. Ilie consequence is rapid disappearance of 

forward peaked angular distributions for products heavier than the 

projectile. 

It is now instructive to compare the Z dependence of the angular 

distribution for the Ar + Au reaction. In this case, the initial mass 

asymmetry of the projectile-target complex is to the right of the 

Businaro-Gallone peak, on a steep slope of the potential energy. The 

Z distribution rapidly drifts towards more symmetric configurations, 

and the angular distributions (Fig. 36) are observed to retain their 

forward peaking up to Z = 28. The expected decrease in forward peaking 
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for pi'oducts lighter than Ar is not observed. It has been pointed out 
in this connection (Mo 7t>b) that the kinetic energy spectra of these 
light products are not fully relaxed, while the products heavier than 
the projectile display equilibrated energy spectra. 

2. The \c + Au Reaction 
lixperimcntal center of mass differential cross sections for the 

1~5 and 252 McY reactions arc shown in Figs. 38 and 39. Brief examination 
of these figures shows that products similar in mass to the projectile 
display angular distributions which are not symmetrical about 90°, but 
rather are strongly peaked at forward angles. The degree of forward 
peaking diminishes for products further removed from the projectile. 
One notices this decrease of forward peaking for products both lighter 
and heavier than \e. In tliesc features, the present angular distributions 
are similar in kind to those of the reactions just discussed. 

A further interesting point is the noticeably different Z 
dependence of the angular distributions in the 175 and 252 MeV reactions. 
At the lower projectile energy the angular distributions are more sharply 
forward peaked, and retain their ang'ilar asymmetry to higher "'s, than 
at the higher energy. This same feature is seen also in the N + Ag, 
Ne + Ag and Ar + Au reactions discussed earlier. Two possible 
explanations are apparent. In connection with the Ar + Au reaction, 
it was suggested (Mo 76) that this may be a temperature effect. Because 
the diffusion depends on V,/T and not on V- alone, the driving force 
for diffusion may be stronger in the lower energy (lower temperature) 
reaction. It should be kept in mind that the range of angular momenta 
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is different for the two reactions, and that therefore the average 
potential is different (and slightly steeper) at the higher energy. 
Alternatively, the higher angular momenta likely to contribute to the 
high energy- reaction could possibly explain the less sharply peaked 
angular distributions by increasing the angular velocity of the 
reaction complex; the shape of the distribution depends on the relative 
magnitude of the lifetime and the rotational period. This also is not 
a clear-cut explanation. U'c know from our study of the kinetic energy 
spectra that the moment of inertia increases with angular momentum, 
thus perhaps preventing an increase in the angular velocity. It is fair 
to say that the widely observed phenomenon of increased angular symmetry 
with projectile energy is not thoroughly understood. 

5. Estimation of the Nc + Au Reaction Lifetime 
In Sections 111A and B we have examined the extent of 

equilibration of the energy and I distributions. U'c have completed 
our analysis of these fundamental features of deep inelastic reactions 
without any discussion of the absolute time scale in which these 
reactions proceed. It is from the angular distributions that we shall 
deduce -- in an approximate manner -- absolute lifetimes. 

The angular distribution of a particular element is the result 
of the full distribution of reaction lifetimes for that product. Our 
first aim is to correlate the angle at which a particular event decayed, 
itfith the lifetime for that event. One needs to know the "zero time" 
decay angle (0 ) to which the avent would decay, where the complex to 
break up immediately after relaxation of the kinetic energy. One also 
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must know tlie angular frequency (m) With which the reaction complex 
rotates. 0 is a function of the impact parameter, but in all cases 
we shall assume it to be a small angle from the forward beam axis, 
forward of the angular range of data collection. This rather drastic 
simplification is partly justified by noting that the largest 
contribution to the cross section arises from the larger impact 
parameters. Also it is to be expected that the projectile is 
deflected forward quite early in the reaction by the nuclear attraction 
which it experiences. Furthermore, that short lifetimes correspond 
to deflection to forward angles in this reaction is supported by the 
discussion, in the previous two sub-sections, of the 2 dependence of 
the angular distributions. 

The angular frequency with which the complex rotates likewise 
depends on the entrance channel angular momentum. It also fluctuates 
in time as the moment of inertia changes due to shape vibrations. We 
shall use that value of u which arises from the equilibrium deformation 
of the touching nuclei at the average angular momentum. The calculation 
of the equilibrium deformation tin Section III.A) assumes that the 
nuclei are rigid ellipsoids. The following short table shows the value 
of o) and related quantities for the elements we shall examine. 
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proj "eq , ave , n 

(MeV) '•' (fm) , (l>) IK" radians/sec) 

11 175 .1.29 67 3.03 

17 . 175 1.31 67: 2.71.. 

23 175 1.34 67 2.24 

14 252 1.33 97 4.18 

18 252 1.56 97 3.55 

23 252 1.38 97 3.08 

Figures 40 and 41 show center of mass angular distributions (of 
the form da/d9) for three elements produced in the 175 and 252 MeV 
reactions. The yield at any angle arises from both "left handed" and 
"right handed" reactions - those in which the projectile stiikes either 
the left or right hemispheres of the target (as seen from an incoming 
projectile nucleus). The amount of rotation and hence the lifetime of 
the complex needed to direct the daughter light fragment 0 degrees to 
one side of the beam axis is different for "left handed" and "right 
handed" reactions. Reactions of these two lifetimes are superimposed 
at any angle. Also superimposed are events in which the complex 
rotated by more than 360° from 0 o . This effect will be ignored. In 
the 1 = 14, 17 and 18 cases this is quite well justified because the 
cross section falls so markedly at backward angles. For the Z = 23 
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,XBL 782-7036 
Fi&. 40 Selected angular distributions with fitting functions 

of the form exp (-0/A), Fitting parameter shown for each element. 
175 MeV projectile energy. 
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Fig. 41 Same as Fig. 40 for 252 MeV projectile energy. 
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cases this is not so; the computed lifetimes for this element are to 
be seen as lower limits. 

Contribution to the cross section on one side of the beam at 
angles larger than the "zero time" angle, 0 , is due primarily to 
reactions in which the projectile struck the target nucleus on the 
other side. Contribution to the cross section at angles larger than 
0 by reactions in which the projectile struck on the same side of the 
target nucleus requires much longer rotation, approaching 360°, and can 
be ignored without introducing much inaccuracy. IVe are ignoring the 
variation of 0 with angular momentum, and are primarily considering 
those large L-waves which bear most of the cross section, and for 
which 0 is small. Our experimental measurements are approximately 
limited to angles larger than 0 and thus primarily represent the 
distribution of angular rotations for just "left handed" or "right 
handed" reactions. 

Consequently the cross section for element 2 at 0 degrees 
from the beam axis (where 0 > Q ) is proportional to the probability 
of the reaction complex rotating by 0 + 0 degrees before decaying to 
produce element Z. The angular distribution for each Z has been 
reproduced for a number of reactions by employing the time dependent 
Z distributions calculated with the master equation (see Section III B). 
These distributions are summed over the range of impact parameters, 
with suitable weighting. With a model for the overall reaction lifetime, 
this sum is averaged over time to produce the angular distribution. 
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'Iliis is described more fully elsewhere (Mo 75, Sv 76). A much simpler 

and more qualitative approach is taken here. We shall empirically fit 

the angular distributions in the range for which they have been measured, 

and use the fitted functions to calculate the mean angular rotation 

over the full range of rotation. This fitting is done using a decaying 

exponential of the form c ' which, it is seen from Tigs. 40 and 41, 

approximates the data reasonably well. 'Hie fitted values nf >,, in 

degrees, arc shown in tiic figures. 

The lifetime associated with decay to angle G is t = (0 + 0 )/UJ. 

Recall that 0 is the angle from the forward beam axis to which the 

complex would decay, were it to break up immediately after relaxation 

of the kinetic energy. For the purpose of our estimation of the 

average lifetime, we can ignore 0 as compared to G. The average 

lifetime is 

•'o 
e - ° / X do 

I *^»~^ 

The following table shows the calculated average lifetimes. 
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Voj l t aX? 
(MeV) (radians) (10 sec) 

14 175 0.698 2.3 

17 " 1.57 5.4 

23 " 5.24 11 

14 252 1.15 2.7 

18 " 2.32 5.3 

23 " 4.24 7.8 

We have now achieved our aim of qualitatively estimating the 
absolute reaction lifetimes. In the Z range from 14 to 23 it increases 

- 71 -70 from about 10 to 10 " second. Lighter products are undoubtedly 

produced more quickly. In the previous section, we found that the 
lifetimes of Z's from 20 to 30 were all nearly the same. The lifetimes 
of such products, computed by the method of the present section, will 

be close to the I'alue for element 23 because the angular distributions 
of these elements are all similar in shape. A lifetime of 10" 
second should be viewed as a lower limit for products heavier than 

atomic number 23. It is worthwhile to note that mean lifetimes for the 
Ar + Ag (Mo 75) and Kr + Au (Sv 76) reactions, calculated with more 

-21 precise techniques, are 2.5 and 3.5 x 10 seconds respectively. (The 
latter is the value at L = Oti). 
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A. Appendix I. Derivations 

1. Derivation of Kinetic and Potentia] Energy Equations 

'Die following basic quan t i t i e s must be defined: 

L = to t a l angular momentum. 

l. - o rb i t a l angular momentum. 

I = t o t a l moment of i n e r t i a of the react ion complex. 

II = moment of i n e r t i a for fragment j (= 1 or 2 ) . 

I r = o rb i t a l moment of i n e r t i a of the reac t ion complex. 

Mj = mass of fragment j . 

M = reduced mass of the complex = M-J^/CMj + M 2^ • 

R; = c>'lindrical symmetry semi-axis of fragment j . 

b- = t ransverse semi-axis of fragment j . 

R: = spherical radius of fragment j = 1.225 MJ + 1 . 0 fin. 

o - y K l o = R 2/K 2 O. 

The subscript o represents the subscripted quantity for spherical shape. 
Iv'e can now proceed to develop expressions for the kinetic and potential 
energies. 

The moment of inertia of each ellipsoid (whether oblate or prolate) 
is (Pe 74, p. 80). 

V »-rV* V > . i 2 + R j 2 ) 

where D is the uniform density. The major and minor semi-axes are 

related by the constraint of constant volume: 
spherical volume = V- = »• n b. R. = ellipsoidal volume. 

1 ^ J J 
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So 1) 
3V. R. 

•JL. . j o j 4 TTR^ " R. 

which r e s u l t s in 

T j = S Wi*,? 1 + m 
i . = i M . R . 2 r i + ^ i = i p 2 ( 1 + i ) i . 
J 5 J J |_ p 3 j 2 \ p 3 ; jo (1) 

K h c r e ^ f y / o 
The relative moment of inertia is 

I r = M ( V R 2 ) 2 = A ( R i / V 2 = P ZI r (2) 

The total moment of inertia can be written explicitly in terms of 
0 as I = I > + I, + I 

\ P 2 C 1 + j ; ) ( l l 0 • I 2 o) • p 2 I r o 

- \ o h \ -1) ( i 1 n • h j + p2 i n 

P ' l o l2o' 

I , - • 1 , 

L" p 0 J 
(3) 

which defines F(p). 
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The to t a l ro ta t iona l energy i s 

r _ h 2 l . 2 _ l,h2 _ I : ro , , . 
r " 17 " ̂ ^ " ̂  

Employing the assumption of rigid sticking rotation, the total angular 
momentum is related to the angular frequency u, as L= Iw= (I, + I. •'• I ) w 
from which we see that the orbital angular momentum is 

0 I V - ̂  1 P Z J ™ L 0 2 „ ,n 
f - " ' r w - r - L - FTPTT- " FTPI ; o • C 5 ) 

The orbital rotational energy is 

E h = o ! . I_E!_!«I , Z L Z -_SLE , (6) 
° r h 2 I, 2 F(p)2 I 2 F(p) 2 OTb>° 

The surface energy of each fragment is calculated as E • = e^S-
where c is the surface energy per unit area of a spherical nucleus 

MeV and equals 0.801 '—7 and S- is the ellipsoidal surface area of fragment i. 
foiZ 2 

The surface area of a p ro la te e l l i p so id i s (Ho 46, p . 246) 

S. = 2wb.2 + — R . b . s i n ^ e 
J J E J J 

where c = eccentricity of the ellipse m-<Fi 



-123-

In terms of p , the surface area i s 

2 1/p -1 
o G p ( P ) (7) 

where S- = 4n R. , and which defines G (p) 
The surface area of an oblate ellipsoid is (Ho 46, p. 264) 

•nR. 2 
S j - 2,b/ • -ji in & -

where E = eccentricity of the ellipse V N 2 - J / / — • 
l l i p s e = - ' • ' • , > = V 1 - P' "BT" 

In terms of P, the surface area is 

•'-"•[i-iA-OifP S j o G o ^ (8) 

which defines G (p ) . The Surface energy for both e l l i p so id s i s 

E S(P) = o s { S l o • S 2 Q ) G x (p) = E s o G x (p ) , x = p o r o . (9) 

The exact Coulomb in t e rac t ion between co l l inear e l l ipso ids i s 

expressed by the following equation (Qu 69) 

I U P ) = 

•v\> Y x2 

[Ffx^x , ) + F(-x, ,x ,) + F(x . , -x,) + F ( - x , , - x , ) ] 4- I I - I X J , A 2 J * j ,* 2 . i T >" i* j , - ^ 2 
- E C 0 K { x 1 , x 2 ) 

(10) 

which defines W ^ ^ ) and 
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^erex^A^.'i.^^ , s . ] > 2 

f R ^ R , ) 2 (V1 (It, • ! * , ) -

(l+Xj+X,)'" , , 
and i'fxj.x,) = J—~— (1 - SfXj-x^+H x,x 2 - 4 (Xj +x^' J5.n(l+Xj+x,J x- xi? 

1.44 ZjZ 2 

and I. = monopole component of the interaction B — - ^ — M e V . 

filiation (10) is a real function when both ellipsoids are prolate. When 
cither or both arc oblate, liq. (10) is a complex function, in which case 
o..l the real part is of physical interest. This has been checked by 
comparing the real part of I!q. (10), for complex x-, and x 7, with the 
multipolc expansion given by Cohen and Swiatccki (Co 62, p. 107j. 

The self Coulomb energy of two spherical nuclei is 

1 2 
McV. 

(11) 

l\hen they arc p ro la te the se l f Coulomb energy i s 

' W " > = ^sco I ( 1 - E 2 ) 1 / J ^ * n T T = K s c o y o ) 

where c = e c c e n t r i c i t y of the e l l i p s e =\jl --

Kh2n they are oblate the s e l f Coulomb energy i s 

I: S C (P) = U s c o ( I n - ) I tan = E g c o y p ) (12) 
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? ] where y" = — - 1 (this is not the eccentricity of the ellipse). 
So in genera], the self Coulomb energy of two ellipsoids is 

i:sc(p) = K 6 C 0 k'x(p) , x = p or o . (13) 

2. Evaporation Recoil Energy 

h'o begin by considering the frame of reference in which the 
parent fragment is at rest before evaporation begins. The fragment's 
momentum, f" , when all evaporation has been completed (N steps) can 
be written as the vectorial sum of the momentum of each emitted 
particle, P-. 

? = r p. . n A» l 1 = 1 

Sciuaring both sides yields 

_X X I 
1 = 

V - t ^i2 • 2 t t Pi-rr 
L=l ' i=l ,=iH 1 J 

N N N 
= Z >f * 2 E £ PiPiCosO,. (14) 
i=l J i-i j=i+l * J JJ 

where 0-• is the angle between the i and j particle directions. 
IVc shall assume that there is no correlation between the direction of 
emission of the particles, and that this emission is isotropic. This 
means that cosOj. varies randomly between -1 and +1. Mien we average 
Eq. il4) over many events, the double sum vanishes, and we find 
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K 
< P2> = T, <P 2 ) (15) 

n i=l x 

This means that the mean square momentum of the reco i l ing fragment, in 

the pre-emission fragment frame of reference, equais the sum of the mean 

square momenta of the p a r t i c l e s i t emit ted. The average momentum of the 

emitted p a r t i c l e s decreases along the decay chain, because the temperature 

i s reduced by the evaporation. The mean square momentum along the decay 

chain is defined as 
X 

1 1 v n 

Pa" 4 £ < P f ) i=i 

So the root mean square (RMS) fragment momentum is re la ted to the RMS 

p a r t i c l e momentum as 

' <I>„2> = V ^ " l ' a • ( 1 ( 0 

The pre-cmission veloci ty of the parent fragment i s v , i t s 

post-emission ve loc i ty i s Vr and i t s recoi l ve loc i ty in the pre-cmissiots 

fraiie of reference i s v = p /Mp , where M i s the post-emission fragment 

mass. Tliese three v e l o c i t i e s are re la ted v e c t o r i a l l y : 

v f = v 0 + v r (17) 

The post-emission center of mass (Ol) energy of the fragment i s 

E f - | M f v / = i M f [ V 0

2 - 2 v o . ? r + v r

2 ] 

So the post-emission energy can be written e x p l i c i t l y as a function of the 
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net recoil angle, 0 , with respect to the pre-emission direction of the 

fragment: 

F.f CO ) = J- E„ + -J± £„ + 21/ -J^ E E cosO f e M o Mr n ' M o n e (IS) 
'f 

1 2 where E = - M-V = pre-emission fragment energy in the CM. 

M = neutron mass. , 
n p 2 

. E = mean energy of the emitted particle = J|- . 
n 

M = pre-emission fragment mass. 
Let us define the evaporated mass fraction as n = -n— . Then 

o 
Eq. (18) can be written as 

E f(0 e) = (l-n)E0 • ̂  E n + lf£jn cosGe (19) 

The distribution of recoil directions of the parent fragment 
with respect to its pre-emission direction is isotropic, because the 
particle emission directions are random and isotropic. This means 
that the probability of recoil at angle 0 is 

pro 1 = 2 , l s i n e 

So we can calculate the moments of the final kinetic energy over all 
possible recoil angles. This first moment is 
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u: f > = i / l ;r' 0 1 s i n 0 <1G 

" 0 

= (i-n)r: 
(20) 

'•i- i : 
-n n 

Tlic standard deviat ion is 

'I: - K 2 > " < H f > 

1 
~> 1 T 

(21) 
= 2 «,i;ni;_n. \ 3 n V - n 

3. Moments of Evaporation Recoil linergy for a Finite Detector 
We can calculate the moments of the kinetic energy due to 

evaporation as 

<t re, 

/
*ma.x f ,nuix 

27isir.ii I 
o "- °f ,min 

E ( 0 f ) n f ( 0 f ) a ( 0 f ) d 0 f d<J» 

/
max \f f,max "1 

27Tsin.j \J f (& f ) a (0 f ) dO f 

f,min -* 

(22) 

d* 

utiere ( refer t o Fig. 4 2 ) : 

http://27isir.ii


-129-

$ = angle f̂ om the center of the detector t/c?v pre-emission d i rec t ion of 

the fragment. ''']•••., 

Or = CM angular def lec t ion of the fragment from i t s ; pre-emission 

d i r ec t i on . 

$ . = half-angular acceptance (in the CM) of the d e t e c t o r , 

0 plus the maximum deflect ion of the fragment. 

E(0£) = CM energy of the fragment. 
2iTsin0r 

fO'-'c) = probabi l i ty of def lect ion.by 0 f radians = — j — — 

a(0.0 = probabi l i ty of a p a r t i c l e , deflected by 0 f , reaching the 

de tec tor . Sec Fig. 42 and the discussion further on. 

The vec tor ia l r e l a t i o n between Vf, v and v_ -- Eq. (17) --

leads to the following r e l a t i o n between the CM def lec t ion angle , 3 . , 

and the recoi l angle in the fragment's pre-emission frame of re fe rence , 

r v 
v 

sinO f = ^ s i n b e ' ! : 

(23) 

J siiiO. 

[1+J* + 2J cosO e] a l 1 / 2 

where J = 4 : " E n 

With the typical values used earlier, v.̂  see that J = 0.0384, giving 
a maximum deflection (at 0 = 90°) of 2.2 degrees. 

We can invert. Eu,. (23) to give 0 as a function of 0 r: 
e t 
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(a) ? (b) 
XBL 782 136 

Fig. 42 Explanation of angles used in Eq. (22) for Appendix 1.3. 
In Fig. (a) the pre-emission direction of the fragment is within 
the area subtended by the detector win-;*:-w. The particle remains 
within the detector cone after evaporative deflection by Q f degrees. 
In Fig. (b) the pre-emission direction is outside the area of the 
window "Pc the particle is deflected into the detector. 
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sin 0, f sin^O,- ,.,2 , "11/2 
(24) 

J' r 
This equation, with Eq. (18), allows us to calculate the CM energy as 
a function of CM deflection angle Gp 

Figure 42 explains the derivation of a(Oj-). Figure 42(a) depicts 
the situation in which the initial particle direction is within the 
solid angle subtended by the detector. In this case the range of 0, 
values which reach the detector is between 0 and 0 + 0 . In Fig. 42(b) 
the initial particle direction is outside the solid angle of the 
detector. In this case the range of G f values which reach the detector 
is between 0 - 0 and 0 + 0 . In terms of the quantities defined in 
Fig. 42, 

I I, if D < R and I. < R-D 
~ otherwise 
2TT 

tan 2* + tan 2 0 f - 0 a
2 

c o s * = 2tan$ tane f
 ( 2 6 ) 

where 0 is in radians. 



-132-

B. Appendix II. Calibration of the Pulse Height Defect in Solid State 

Pet ectors 
1. Introduction 

As the capability of heavy ion accelerators expands to include 
heavier and heavier nuclei at ever greater energies, a greater need 
develops for accurate calibration of the energy and mass non-linearity 
of solid state detectors. These non-linearities arc defined relative 
to the detector response to alpha particles. In general terms, the 
pulse height defect fPin)J is the difference between the detector 
response to a heavy ion and to an alpha particle of the same energy. 
(A more precise definition will be given later). The PHD for a given 
incident energy increases markedly with mass. For 100 MeV projectiles, 
the PHD is roughly 0.6S> of the ion energy for Xe, 3° for Ar, 8» for Kr, 
12* for Xe, and 20p

0 for An. 'Hie PHD also increases in magnitude with 
ion energy, being about 2 MeV for Kr at 10 MeV incident energy and S MeV 
for 10(1 MeV Kr. 

Intensive work on the physical basis of the PHD has identified 
the major contributing factors. These factors can be grouped into four 
categories: 1) loss of free electrons by recombination of ion pairs; 
2) loss of energy in low-energy non-ionizing collisions with lattice 
atoms, leading to phonon excitations; 3) loss of energy in the Au 
entrance window and underlying surface dead layer (when it exists); and 
4) loss of free electrons at "trapping sites" such as lattice defects 
or impurities. (Ax 65, Kr 67, Ko 65, Ei 67, Fo 67, Wi 71, St 72, Fi 73). 

Identification of the factors contributing to the PHD has been 
accompanied by attempts to reproduce each factor with model calculations 
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(St 72, Li 63, Ha 66, Fi 75a). However, the most widely used techniques 
(Ka 74, Sc 65) for reproducing measured values and estimating corrections 
due to the PUT) have heen strictly empirical formulae which lump all 
contributing factors into one or several parameters. Schmitt and 
co-workers (Sc 65) developed a widely used 4-parameter calibration 
equation relating the true energy to the observed pulse height. Like 

most other efforts of that time, the procedure was based on measuring 
252 the energy centroids of the low- and high-mass fission peaks of Cf. 

n55 (Thermal-neutron fission of " U lias also been used (Fi 73). Subsequently, 
Kaufman et al. (Ka 74), utilizing beams from a Van de Graaff to recoil-
scatter heavy target nuclei into a Si counter, developed an empirical 
1-parameter formula which fit data measured between 4.5 and 80 MeV. 
Mere recently, Finch et al. (Fi 77) have used a mass separator with 
unit mass resolution to study the PHI) of fission fragments having masses 
between 85-105 and 130-140 amu and energies up to 100 MeV. A major 
limitation of the above approaches is imposed by the limited range of 
ion energies, and masses available from fission (Sc 65, Fi 77, Br 64) 
and the restricted energy range of Tandem Van de Graafs (Wi 71, St 72, 
Ka 74). 

In the present (Mo 78) work we present PHD measurements made at 
Lawrence Berkeley Laboratory's 88-Inch Cyclotron. These measurements 
cover a larger mass and energy range than previously reported work, and 
use a direct irradiation technique which avoids some errors inherent in 
recoil scatter measurements and which provides fragments with unit 
atomic number and mass resolution. The experimental technique is 
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is described in section 2. In section ~~> we discuss a simple, accurate-

power-law formula for represent ing the measurements, and a reliable 

method of deducing calibrations for a large number of elements from the 

measurement of the I'll!) for just a few, i-'inally, in section 4 a 

comparison is made hith the calibration technique of Kaufman et al. 

(Ka " - ! ) . 

2. Lxpermental Procedure 

Recent use of tlie Berkeley 8H-lncli cyclotron as a mass 

spectrometer for trace heavy-element detection (St 7tf J , radio-isotope 

dating f'Mu 77) and quark searches I Mu 77aj led to the present use of 

direct cyclotron .ieams for Pll!) calibrations. Since it is a source of 

projectiles of any stable isotope, over a large energy range, the 

cyclotron is an extremely useful tool Tor PHI) determinations. The 

energy range is limited at the upper end primarily by the maximum 

charge state which the ion source can produce, and at the lower end h> 

the ability of the machine to accelerate particles on high harmonics of 

the lowest cyclotron frequencies. (The harmonic on which a particle 

is accelerated is defined as the ratio of the oscillation frequency 

of the cyclotron's electric field to the frequency of revolution of 

the particle in its orbital motion within the madiine.) Charge states of 

J\I from (J* to 14+ were extracted from the ion source, and accelerated to 

energies ranging from about 25 to 140 MeV. Since the cyclotron beam 

energies are known quite accurately (± 0.5u is an upper limit of the 

absolute error) the degree of accuracy required for PHD measurements 

is routinely achieved. Extremely low intensities of essentially DC 
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bram can be reliably obtained, permitting direct irradiation of the 
sample detectors without danger of detector damage. The corrections 
inherent in scattercd-bcuit experiments (corrections due to uncertainties 
in tile laboratory scattering angle, detector angular acceptance and 
target thickness) arc completely avoided. 

In this work, a Penning Ion Gauge (PIG) source was fed with a 
mixture of noble gases (Me, Ar, Kr, Xe). In addition, either Au or a 
combination of rare earths were mixed with Ta and used in the ion source 
as a mixed pellet at the edge of the ion discharge, opposite the anode 
opening. In this way many charge states of elements over a large mass 
range were produced by the ion source and injected into the cyclotron. 
Tuning of the cyclotron frequency, the dec voltage and electrostatic 
deflector voltages allowed quick selection of a rvirticular isotope and 
charge state. Low intensity beams of 45 diffci. :t ions were accelerated 
and extracted from the cyclotron during a typical 16 hour run. An old, 
expendable "search" detector was used to monitor the beam intensity 
before exposing the detector to be calibrated, to prevent damage to 
this detector by an excessive beam current. Sometimes slight frequency 
de-tuning was necessary to lower the beam intensity to acceptable levels. 
Typical beam currents ranged from ten's to thousand's of particles per 
second impinging on the detector. Ion energies from 5 to 160 MeV were 
achieved, without exhausting the potential of the machine. 

Since the cyclotron can be tuned very precisely to select one 
value of the charge-to-mass ratio, it provides just one specific isotope 
at a time to the experimental area in nearly all cases. The extremely 
low backgrounds obtained for several Au beams are illustrated in Fig. 43. 
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The ability to readily provide monoisotopic and monoenergetic beams 
over a broad energy and mass ramie makes a cyclotron a superb tool 
for investigating the mass, charge and energy dependence of the PilD. 

Because the cyclotron parameters are known for each ion, and 
because no intermediate scattering in a target occurs, the true energy 
incident at the detector is known very accurately. The particle energy 

is related to its charge Q, mass M, the magnetic field B and the 
2 ? 2 cyclotron radius R by the uniform field cyclotron equation: E = Q B"R /2M. 

Because the magnetic field varies azimuthally, the product B-R is 
determined empirically for a given setting of the main field and trim 
coil magnet currents. The same magnetic field was used in accelerating 
all the beams of one run.. The absolute energy scale was determined from 
parameter systematics of the cyclotron (Hi 69, BE. 72). The value of the 
ion charge and mass were determined unequivocally in nearly all cases 
from knowledge of the exact cyclotron frequency and the approximate ion 

energy as described more fully elsewhere (St 78). 
The pulse height response of the detector to alpha particles was 

212 measured using a thin Pb source, which emits two alpha particles of 

substantially different energies in its decay chain. This calibration 
was extrapolated to higher energies using a mercury pulser. The alpha 
particle calibration defines an "alpha energy", E , for the centroid 

of each spectrum. The true total energy, Ej., minus the energy loss 
E^ of the heavy ion in the detector window, yields the "deposited 
energy", Ej. The PUD is then defined as the difference between the 
deposited energy and the alpha energy: 
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''»" = "'I 'v» - '-, = ,:d ' l;, [ ' 

It should be noted that this definition of the PUD differs from that 
used by some other workers (e.g. rcf. Ka 74) by excluding the energy 
loss in the detector surface dead layer from the PHD. Because the 
surface dead layer thickness can he measured without great difficulty, 
and since it varies from one detector type to another, it seems better 
to treat it separately in a general method for calibrating the PHI). 

The experiments reported on in this work were performed with a 
single heavy ion Si surface barrier detector (ORTCC 15-016C) of 300 urn 
depletion depth and 1000 ii-an resistivity which was operated at its 
specified bias voltage of 150 volts. The variation of the PHD with 
detector type has been previously investigated extensively (Wi 7 ] , St 72, 
Kn 74), and due to machine time constraints we have chosen to extensively 
stud)' one detector rather than to perform a more limited study of many 
different detectors and detector types. The thickness of the Au window 
of the detector was checked by an X-ray f luorcscence measurement, which 

•y agreed to within 10* witli the thickness of 39.7 ug/cm~ specified by the 
manufacturer. The effective surface dead layer of the detector was 
inferred from data obtained by irradiation with a 14.0 MeV Ar beam 
incident at three different angles to the surface: 90°, 45° and 50°. 
The shift in the energy centroid with angle was somewhat greater than 
expected from the Au window alone. Since in the X-ray fluorescence 
measurement no peaks were observed for elements othe~ than Au and Si, 
we assumed an additional thin Si dead layer (16.3 pg/cm") beneath the 
Au window whose thickness was calculated using standard range-energy 
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tahles (No 70). Such an additional dead layer may be due to any of 
several factors: a thin undepleted surface region, an oxygen impurity 
at the surface which acts as an electron acceptor, charge diffusion 
against the electric field gradient, or prior use of the detector with 
heavy ions (Ca 70). It should be noted, however, that the measured 
FhlM of 45 kcV for 8.785 MeV alpha particles indicates good bulk 
collection properties. 

The "search" and "data" detectors were mounted on a rotating 
platform and moved successively into the axis of each beam. Pulses 
from each were amplified first by a charge sensitive preamplifier, 
then by a double delay line amplifier, and were digitized by a 4096 
channel analoguc-to-digital converter, and written on magnetic tape 
with the aid of a computer. 

The accuracy of the PI1H data is limited by the accuracy to which 
three different quantities can be measured or calculated: the total 
ion energy Ej., the "alpha energy" E , and the energy loss in the surface 
dead layer E . Experience with measuring the absolute energies of 
beams from the 88-Inch cyclotron using a magnetic analysis system (Go 78) 
has led to an upper limit on the error of E_ of ±0.5». The accuracy 
of E depends on the measurement of the energy centroids of the two 
alpha particle peaks and the extrapolation to higher energies with a 
linear pulser. The error in this extrapolation has been estimated to 
be ±0.364 of E . The error of E^ arises from the uncertainties in the 
dead layer thickness and in the range-energy relations (No 70). The 
error of E^ has been estimated as ± 2.5$ of ^ based on the 
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reproducib i l i ty of the dead layer measurements. The window correct ion 

is comparable to the 111H only for l i g h t e r masses, and in a l l cases makes 

only a negl ig ib le cont r ibut ion to the HID e r r o r . 'Hie net uncertainty 

in the HIP is less than the s i ze of the data points shown in Fig. 41. 

3 . Results and Discussion 

PHPs have been measured for elements ranging from Ne to Au, 

for energies from about 5 to 100 MeV. 'Hie P11U data for one counter 

is shown in Fig. 44 in MeV uni t s and log-log format. Two important 

features should be not iced: the HID i s l inea r with E, for each 

element, and dif ferent elements l i e on d i f ferent l i n e s . The four sol id 

l ines represent l inea r leas t -square f i t s to the Au, Ta, Xe and Kr data . 

'Ibe good agreement with the- data reveals the u t i l i t y of a simple power-

law f i t t i ng function: 

HID = 10 b I-.d

a (2) 

where a is the slope and b is the y-interccpt of a plot of log HID 
versus log 1:.. The fitted slopes and y-intercepts for these four 
elements are given in Table Al. Both the slopes and the intercepts 
increase with atomic number (Z) and a typical value for the slope is 
0.6. 

Since the data for each element cluster on separate lines, it is 
desirable to have a procedure for mathematically generating calibration 
lines for all elements from lines measured for just a few. This has 
been done by fitting the slope and intercept parameters of Eq. (2) to 
simple functions of the atomic number (Z) and mass number (A). Figure 45 
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1 0 1 1 0 2 

DEPOSITED ENERGY (MeV) 
XBL 783-7655 

Fig. 44 PHD of a silicon surface barrier detector vs. deposited energy. 
The PHD is defined to exclude the energy loss in the surface window 
(see text). Long lines are linear least-square fits to the data with 
equal weights: short lines are extrapolations using method described in 
the text. Errors are less than the size of the data points, (See 
discussion in text). 
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shows l inea r f i t s of the s lope , 3 , to the square of Z and A for the 

Au, Ta, Xe and Kr data shown in Fig. 44. The f i t t i n g functions a r e : 

a(Z) = 0.02230 (--==-] + 0.5682 '(3) = 0.02230 (-i-1 

•(£) a(A) = 0.03486 1-^-1 + 0.5728 . (4) 
\10 4 / 

Using one of these correlations for the a parameter, a value of 
the intercept, b, can be calculated from the measured PHD and the 
deposited energy (E.) according to the following equation: 

# ) 
b - l o g f ^ l . (5) 

Values for -b based on Eqs. (3) and (5) and the data of,Fig. 44 are 
shown in Fig. 46 plotted versus 100/Z and 100/A. Equivalent results can 
be obtained using Eq. (4) instead of Eq. (3). With the exception of 
the lightest elements (Ne'iind Mg], where the PHD is very small and the 
percent error is large, the calculated intercepts are accurately 
represented by a straight line. The fitting equations are 

b(Z) = -0.1425 ( ^ ) + 0.0825 (6) (™) 
= -0.2840 ( ™ j + 0.03S b(A) = -0.2840 \~^l + 0.0381 . (7) 

The slope and the intercept calculated from/.Eqs. (3) or (4] and (6) or 
(7) can be used in Eq. (2) to compute the PHD for any element. 
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i ' ig. 45 tieasured values of the parameter a (of Eq. (2) of Appendix I I ) 
for AUj Ta, Xe and Kr, plotted versus Z' and A^. Lines are l inear 
leas t -square f i t s to the data with equal weights. 
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As a test of the scheme, the HID lines were calculated from 
l:q. (2) for the remaining elements in Fig. 44. The slope and intercept 
were calculated from Eqs. (3) and (6). The results, shown by the 
dashed lines in Fig. 40, provide good agreement with the observed PHD, 
This calibration scheme is valid for elements from Ne to Au and energies 
from 5 to 160 McV. 

Computed PHDs from Hqs. (3) and (6) have been displayed in 
several ways to facilitate their use by other scientists. The range 
of applicability of these results will be discussed later. Figure 47 
displays calculated PHD versus deposited energy calibration lines for 
a range of elements from .\'e to U. These lines are useful for a quick 
assessment of the PHD to be expected in a particular experimental 
situation. It is also useful to plot the PHD versus the alpha energy, 
since this is an observable quantity, liquations (1) and (2) can be 
combined to write the alpha energy in terms of the total energy as 

Eo = F.j(l - l o V 1 ) ( 8 ) 

Equations (2) and (8) allow one to uniquely generate the curves in 
Fig. -IS, which relate the PHD to the alpha energy. With these curves 
one can find the PHD directly from the alpha energy. It is useful to 
notice that these curves are quite nearly linear over a large energy 
range, and could be parameterized easily. 

The effect of atomic mass on the PHD of four Xe isotopes at 
130 MeV has been measured; however the data is too limited to i' derstand 
the systematics of the PHD with atomic mass. The standard deviation 
of the PHD for isotopes 128,130,131, and 132 is 0.25 MeV, which is 
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Fig. 47 Computed PHD vs, the deposited energy. Lines generated by the 
procedure described in text. Range of reliability discussed in the text. 
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H R . 48 Computed PHD vs . the alpha energy. See Fig. 47 and t ex t . 
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within the estimated error of measurement. TIius the isotopic effect 
seems to he smaller than the effect arising from the same fractional 
change of Z. 

Comparison of our PHD predictions with data from IVilkins, et al. 
(Ki 711 in Fig. W indicates generally good agreement (6-10% of the PHD], 
even though the resistivity of their detector is 380 ohm-cm (our 
detector had a resistivity of 1000 ohm-cm). Their data overlap somewhat 
with the low-energy range of ours. In Fig. 49, data (adapted from 
Tables 2, 3 and 4 of Ki 71) for three elements (An, Ag and Cu) are 
compared with our PHD calibration lines for the same elements. The Au 
line is a fit to our measured data, and the Ag and Cu lines are 
calculated with our calibration procedure. In this comparison the 
energy loss in the detector surface window has been subtracted from 
their tabulated HID values, in accordance with our definition. This 
is evidence that the application of our calculated PHI) lines to other 
detectors of s:-iilar type is probably reliable to better than Wi of 
the PUD. 

4. Comparison with the Kaufman Calibration Procedure 

The PHI) of solid state detectors has been previously studied 
by Kaufman and his associates (Wi 71, St 72, Ka 74) over an energy 
range of 4.5 to 80 MeV. They included the energy loss in the detector 
window as part of the PHD, and fit the energy dependence of the PHD 
for all elements simultaneously with a 1-parameter formula. This 
formula relates the PHD, Ac, to the total energy, e, as 
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Fig. 49 PHD vs. the deposited energy. Data from Wilkins et al. (Wl 71). 
Lines generated from data presented in this paper. 
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A e = ^ l + 525c-l-407 • ™ 

Both the PHD and the total energy' are in LSS units (Li 63). The 
A-parameter has been observed to vary (Ka 74) by up to 7i from one 
detector to another (of comparable resistivity, bias voltage, age, etc.) 
and must be determined by calibration. 

To test the PHD scheme of Ka 74, our data have been plotted in 
Tig. 50 in LSS units and with the window losses included in the PHD 
(in accordance with the definition of PHD in U'i 71, St 72, and Ka 74.) 
In the low LSS range one sees the clustering of the measured elements, 
as observed by Kaufman. In the intermediate and high energy range this 
clustering clearly breaks down. This failure of our data to cluster 
on a universal curve in LSS space confirms recent results by Finch et al. 
(Fi 77) who observed that the PHDs of the light fission fragments fell 
below the LSS curve on which all of the heavy fission fragment data 
fell. The same data for Kr, Xe and Au are shown in Fig. 51 along with 
three curves calculated with Eq. (9) for different values of the A 
parameter. The divergence of the data from the calculated curves is 
very apparent in this figure, especially at higher energies. One should 
note that because of the bending of the curve below the data, 
extrapolation to high energies with this formula will predict PHDs 
that are too small. On the other hand, the comparison between the 
predictions of our PUD calibration scheme and the lower energy data 
(Wi 71) indicate that our scheme is useful at lower energies as well. 
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Fig. 51 Measured PHD vs. tocal energy in LSS units for three elements. 
See Fig. SO. Curves calculated with Eq. (9) of Appendix II. 
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5. Summary 

Use of the cyclotron as a source of monoisotopic heavy ion beams 

of known energy for PHI) determinations of solid stacc detectors has 

been described. The PHI) of an ORTIiC surface barrier detector has been 

Pleasured for elements from Kr to All, from 15 to 160 MeV and for elements 

from \'c to I'e between 5 and 50 McV. The data have been fit with a 

siriple power law formula. A new procedure for generating PHD 

calibration lines for any element from lines measured for a few 

elements lias been described. Hie accuracy of this procedure is 

confirmed to rO.j' of the total energy, between about 15 and 160 MeV. 

This accuracy is within the experimental error. Supporting data 

suggest that the range of reliability extends down to 4.5 MeV. 

Application of the specific calibration lines presented here, to 

other detectors with resistivities between several hundred and 

one thousand :.'-an is probably accurate to within 10'; of the PHD 

and nay be accurate to within a few percent. For energies above 

50 MeV, the clustering of the measured PHD values for different 

elements produced by use of I.SS units breaks down. The observed 

strong dependence of the PHD on atomic number and energy in l.SS space 

limits the usefulness of formulae such as Eq. (9) to estimate PHD 

data and indicates that the response of a silicon surface barrier 

detector to heavy ions cannot be accounted for by such a model. 
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