
UCSF
UC San Francisco Previously Published Works

Title
Modeling and interpreting mesoscale network dynamics.

Permalink
https://escholarship.org/uc/item/4hm7z73q

Journal
NeuroImage, 180(Pt B)

Authors
Sizemore, Ann
Betzel, Richard
Bassett, Danielle
et al.

Publication Date
2018-10-15

DOI
10.1016/j.neuroimage.2017.06.029
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4hm7z73q
https://escholarship.org/uc/item/4hm7z73q#author
https://escholarship.org
http://www.cdlib.org/


Modelling and Interpreting Mesoscale Network Dynamics

Ankit N. Khambhati1,2, Ann E. Sizemore1, Richard F. Betzel1, and Danielle S. Bassett1,2,3,4,*

1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104

2Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA, 
19104

3Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 
19104

Abstract

Recent advances in brain imaging techniques, measurement approaches, and storage capacities 

have provided an unprecedented supply of high temporal resolution neural data. These data 

present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, 

but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates 

a description of the raw observations, and a delineation of computational models and mathematical 

theories that accurately capture fundamental principles behind the observations. Here we review 

recent advances in a range of modeling approaches that embrace the temporally-evolving 

interconnected structure of the brain and summarize that structure in a dynamic graph. We 

describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and 

patterns of activity atop connectivity. In the context of these models, we review important 

considerations in statistical testing, including parametric and non-parametric approaches. Finally, 

we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline 

important future directions for method development.

The increasing availability of human neuroimaging data acquired at high temporal resolution 

has spurred efforts to model and interpret these data in a manner that provides insights into 

circuit dynamics [1]. Such data span many distinct imaging modalities and capture 

inherently different indicators of underlying neural activity, neurotransmitter function, and 

excitatory/inhibitory balance [2, 3]. Particularly amenable to whole-brain acquisitions, the 

development of multiband imaging has provided an order of magnitude increase in the 

temporal resolution of one of the slowest imaging measurements: functional magnetic 

resonance imaging (fMRI) [4]. Over limited areas of cortex, intracranial 

electrocorticography (ECoG) complements magnetoencephalography (MEG) and 

electroencephalography (EEG) by providing sampling frequencies of approximately 2 kHz 
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and direct measurements of synchronized postsynaptic potentials at the exposed cortical 

surface [5]. In each case, data can be sampled from many brain areas over hours (fMRI) to 

weeks (ECoG), providing increasingly rich neurophysiology for models of brain dynamics 

[6], both to explain observations in a single modality, and to link observations across 

modalities [7].

A common guiding principle across many of these modeling endeavors is that the brain is an 

interconnected complex system (Fig. 1), and that understanding neural function may 

therefore require theoretical tools and computational methods that embrace that 

interconnected structure [8]. The language of networks and graphs has proven particularly 

useful in describing interconnected structures throughout the world in which we live [9]: 

from vasculature [10] and genetics [11] to social groups [12] and physical materials [13]. 

Historically, the application of network science to each of these domains tends to begin with 

a careful description of the network architecture present in the system, including 

comparisons to appropriate statistical null models [14]. Descriptive statistics then give way 

to generative models that support prediction and classification, and eventually efforts focus 

on fundamental theories of network development, growth, and function [15]. In the context 

of neural systems, these tools are fairly nascent – with the majority of efforts focusing on 

description [16], a few efforts beginning to tackle generation and prediction [17–23], and 

still little truly tackling theory [24, 25].

The recent extension of network models to the time domain supports the movement from 

description to prediction (and eventually theory), and also capitalizes on the increasing 

availability of high-resolution neuroimaging data. Variously referred to as dynamic graphs 

[26], temporal networks [27], or dynamic networks [28], graph-based models of time-

evolving interconnection patterns are particularly well-poised to enhance our understanding 

of dynamic neural processes from cognition and psychosis [29, 30], to development and 

aging [31, 32]. Here we review several of these recently developed methods that have been 

built upon the mathematical foundations of graph theory [33, 34], and we complement a 

description of the approaches with a discussion of statistical testing and interpretation. To 

ensure that the treatise is conceptually accessible and manageable in terms of length, we 

place a particular focus on approaches quantifying mesoscale network architecture, by 

which we mean salient organizational characteristics at topological scales that are larger than 

single or a few nodes, and smaller than the entire network. A commonly studied example of 

mesoscale structure is modularity [35]. Mesoscale network architecture has proven 

particularly important in our conceptual understanding of the structural organization of the 

brain [36], as well as its function [37] and response to perturbation via stimulation [38]. 

Readers are directed elsewhere for recent reviews on local and global-scale network 

architecture [39], multi-scale network models [40], multiscale biophysical models [41], 

ICA-based approaches [42], dynamic causal modeling [43], and whole-brain dynamical 

systems models [6] including the Virtual Brain [44].

The remainder of this review is organized as follows. We begin with a simple description of 

network (or graph) models that can be derived from functional signals across different 

imaging modalities. We then describe recent efforts to model network dynamics by 

considering (i) patterns of connectivity, (ii) levels of activity, and (iii) activity atop 
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connectivity. Next, we discuss statistical testing of network dynamics building on graph null 

models, time series null models, and other related inferences approaches. We conclude with 

a discussion of important considerations when interpreting network dynamics, and outline a 

few future directions that we find particularly exciting.

GRAPH MODELS OF FUNCTIONAL SIGNALS

Before describing the recent methodological advances in dynamic graph models, and their 

application to neuroimaging data, it is important to clarify a few definitions. First, we use the 

term graph in the mathematical sense to indicate a graph G = (V, E) composed of a vertex 

(or node) set V with size N and an edge set E, and we store this information in an adjacency 

matrix A, whose elements Aij indicate the strength of edges between nodes [33, 34]. Second, 

we use the term model to indicate a simplified representation of raw observations; a graph 

model parsimoniously encodes the relationships between system components [45]. Given 

these two first definitions, it is natural that we use the term dynamic graph model to indicate 

a time-ordered set of graph models of data: a single adjacency matrix encodes the pattern of 

connectivity at a single time point or in a single time window t of data, and the set of 

adjacency matrices extends that encoding over many time points or many time windows. 

Dynamic graph models have the disadvantage of ignoring non-relational aspects of the data, 

such as discrete properties of vertices (e.g., node size, function, or history) or non-discrete 

properties of the system that lie along a continuum (e.g., chemical gradients in biological 

systems, or fluids in physical systems). Nevertheless, dynamic graph models have unique 

advantages in providing access to a host of computational tools and conceptual frameworks 

developed by the applied mathematics community over the last few decades. Moreover, 

dynamic graph models are a singular representation that can be flexibly applied across 

spatial and temporal scales, thereby supporting multimodal investigations [46, 47] and cross-

species analyses [48, 49].

Dynamic graph models can be built from fMRI, EEG, MEG, ECoG, and other imaging 

modalities using similar principles. First, vertices of the graph (or nodes of the network) 

need to be chosen, followed by a measure quantifying the strength of edges linking two 

vertices. In fMRI, nodes are commonly chosen as contiguous volumes either defined by 

functional or anatomical boundaries [50, 51]. Edge weights are commonly defined by a 

Pearson correlation coefficient [52]; however, a growing number of studies uses a magnitude 

squared coherence, to increase robustness to artifacts and to ensure that regional variability 

in the hemodynamic response function does not create artifactual structure as it can in a 

correlation matrix [53–55]. In EEG and MEG data, nodes usually represent either sensors or 

sources obtained after applying source-localization techniques; edges usually represent 

spectral coherence [56], mutual information [57], phase lag index [58], or synchronization 

likelihood [59]. In ECoG data, an increasingly popular method to define functional 

relationships between sensors is a multi-taper coherence [60, 61]. Note: While neuron-level 

recordings are not the focus of this exposition, the tools we describe here are equally 

applicable to dynamic graphs in which neurons are represented as nodes [62], and in which 

relationships between neurons are summarized in, for example, shuffle-corrected cross-

correlograms [63–66].
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After nodes have been chosen and the edge measure defined, the commonly-used approach 

for generating a dynamic graph model is to delineate time windows, where the pattern of 

functional connectivity in each time window is encoded in an adjacency matrix. Choosing 

the size of the time window is important. Short windows can hamper accurate estimates of 

functional connectivity within frequency bands that are not adequately sampled within that 

time period [67, 68], while long windows may only reflect the time-invariant network 

structure of the data [69–71]. Intuitively, to achieve accurate estimates of covariation in 

fluctuations at any time scale, one would like to include multiple cycles of the signal: the 

more cycles included the greater the confidence in the estimated covariation [67, 72]. In our 

recent work, we demonstrated that short time windows – on the order of 20–30 s in fMRI – 

may better reflect individual differences while long time windows – on the order of 2–3 min 

in fMRI – may reflect network architectures that are reproducible over iterative 

measurement [68]. We also suggest that a reasonable method for choosing a time window of 

interest is to maximize the variability in the network’s flexible reconfigurations over time 

(see later sections for further details). Prior work has used similar approaches to suggest 

optimal time windows on the order of a few 10’s of seconds for human BOLD data, and 1 s 

for ECoG data [60, 61, 68, 73].

MODELING NETWORK DYNAMICS

The construction process described in the previous section provides a dynamic graph model 

from which one can begin to infer organizational principles and their temporal variation. In 

this section, we describe methods that build on these models to characterize time-evolving 

patterns of connectivity. We then describe a set of related methods that characterize time-

evolving patterns of activity, and we conclude this section by describing methods that 

explicitly characterize how activity occurs atop connectivity.

Considering patterns of connectivity

Time-varying graph dynamics can be thought of as a type of system evolution (Fig. 2). 

When considering canonical forms of evolution, one quite naturally thinks about modularity 

[74]: the nearly decomposable nature of many adaptive systems that supports their potential 

for evolution and development [75–77]. Modularity is a consistently observed characteristic 

of graph models of brain function [78, 79], where it is thought to facilitate segregation of 

function [80], progressive integration of information across network architectures [38], 

learning without forgetting [81], and potential for rehabilitation after injury [82].

The ability to assess time-varying modular architecture in brain graphs is critical for an 

understanding of the exact trajectories of network reconfiguration that accompany healthy 

cognitive function and development [83], as well as the identification of altered trajectories 

characteristic of disease [84]. Yet, there are several computational challenges that must be 

addressed. The simplest method to assess time-varying modular architecture is to identify 

modules in each time window, and then develop statistics to characterize their changes. 

However, identifying changes in modules requires that we have a map from a module in one 

time window to itself in the next time window. Such a map is not a natural byproduct of 

methods applied to individual time windows separately; due to the heuristic nature of the 
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common community detection algorithms [85–87], a module assigned the label of module 1 
in time window l need not be the same as the module assigned the same label in time 

window r. The historic Hungarian algorithm (developed in 1955) can be used to attempt a 

re-labeling to create an accurate mapping [88, 89], but the algorithm fails when ties occur, 

and is not parameterized to assess mappings sensitive to module-to-module similarities 

occurring over different time scales.

Dynamic Community Detection—A recent solution to these problems lies in 

transforming the ordered set of adjacency matrices that compose a dynamic graph model 

into a multilayer network [90]. Here, the graph in one time window is linked to the graph in 

adjacent time windows by identity edges that connect a node in one time window to itself in 

neighboring time windows [91, 92]; this identity linking is performed for all nodes. Then, 

one can identify modules – and their temporal variation – by maximizing a multilayer 

modularity quality function:

Q = 1
2μ ∑

ijlr
{(Aijl − γlPijl) δlr + δi jω jlr} δ(gil, g jr) (1)

where Aijl is the weight of the edge between nodes i and j in a time window l; the 

community assignment of node i in layer l is gil, the community assignment of node j in 

layer r is gjr, and δ(gil, gjr) = 1 if gil = gjr and 0 otherwise; the total edge weight is 

μ = 1
2 ∑ jr κ jr, where κjl = kjl+cjl is the strength of node j in layer l, kjl is the intra-layer 

strength of node j in layer l, and cjl = Σr ωjlr is the inter-layer strength of node j in layer l. 
The variable Pijl is the corresponding element of a specified null model, which can be tuned 

to account for different characteristics of the system [13, 93, 94]. The parameter γl is a 

structural resolution parameter of layer l that can be used to tune the number of communities 

identified, with lower values providing sensitivity to large-scale community structure and 

higher values providing sensitivity to small-scale community structure. The strength of the 

identity link between node j in layer r and node j in layer l is the dimensionless quantity ωjlr, 

which can be used to tune the temporal resolution of the identified module reconfiguration 

process, with lower values providing sensitivity to high-frequency (relative to the sampling 

rate) changes in community structure and higher values providing sensitivity to low-

frequency changes in community structure [95].

The dynamic community detection approach has several strengths. First, it solves the 

matching problem that defines which module in one time window “is the same as” which 

module in another time window. Second, it provides tuning parameters that enable one to 

access information about both fine and coarse topological scales of network reconfiguration 

(γ), as well as both fine and coarse temporal scales of network reconfiguration (ω). Third, 

the formulation allows one to construct and incorporate hypothesis-specific null models (P). 

Fourth, unlike statistically-driven methods based on principle components analysis or 

independent components analysis, modules need not be completely independent from one 

another, but instead edges with nonzero weight can exist between a node in one module and 

a node in another module. Fifth, the method provides natural ways to assess overlapping 
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community structure, either by examining the probability that nodes are assigned to a given 

community over multiple optimizations of the modulatiy quality function, or by extending 

the tool to identify communities of edges [96–98]. Sixth, generative models for module 

reconfiguration processes are beginning to facilitate the potential transition from description 

to prediction and theory [99, 100]. These advantages have proven critical for studies of 

network dynamics accompanying working memory [28], attention [101], mood [102], motor 

learning [103, 104], reinforcement learning [105], language processing [106, 107], intertask 

differences [68, 73], normative development and aging [108, 109], inter-frequency 

relationships [110], and behavioral chunking [94].

Non-Negative Matrix Factorization—Of course, the clustering of nodes into 

functionally-cohesive modules is just one of potentially many organizational principles 

characterizing dynamic brain networks. Dynamic community detection provides a lens on 

the dynamics of node-level organization in the network, but does not explicitly describe the 

dynamics of edges that link nodes within and between modules. Recent advances in graph 

theoretic tools based on machine learning can provide insights into additional constraints on 

the evolution of brain systems [32, 111, 112] by addressing open questions such as: How are 

the edges linking network nodes changing with time? Do all edges reorganize as a cohesive 

group, or are there smaller clusters of edges that reorganize at different rates or in different 

ways? Could the same edge link two nodes of the same module at one point in time and link 

two nodes of different modules at another point in time?

One set of tools that can begin answering these questions is an unsupervised machine 

learning approach known as non-negative matrix factorization (NMF) [113]. NMF has 

previously been applied to neuroimaging data to extract structure in morphometric variables 

[114], tumor heterogeneity [115], and resting state fMRI [116]. In the context of dynamic 

graph models, NMF objectively identifies clusters of co-evolving edges, known as 

subgraphs, in large, temporally-resolved data sets [117]. Conceptually, subgraphs are 

mathematical basis functions of the dynamic brain graph whose weighted linear combination 

– given by a set of time-varying basis weights or expression coefficients for each subgraph – 

reconstructs a repertoire of graph configurations observed over time. In contrast to the hard-

partitioning of nodes into discrete modules in dynamic community detection, NMF pursues 

a soft-partitioning of the network such that all graph nodes and edges participate to varying 

degree in each subgraph – which is represented by a weighted adjacency matrix (see [117] 

for in-depth comparison of network modules and network subgraphs).

To apply NMF to the dynamic graph model, the edges in the N × N × T dynamic adjacency 

matrix must be non-negative and unraveled into a N(N − 1)/2 × T network configuration 

matrix Â. Next, one can minimize the L2-norm reconstruction error between Â and the 

matrix product of two non-negative matrices W – an N(N − 1)/2 × m subgraph matrix – and 

H – an m × T time-varying expression coefficients matrix – such that:

minW, H
1
2 A − WH F

2 + α‖W‖F
2 + β ∑

t = 1

T
‖H(; , t)‖1

2 , (2)
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where ||·||F is the Frobenius norm operator, ||·||1 is the L1 norm operator, m ∈ [2, min(N(N 
− 1)/2, T) − 1] is a rank parameter of the factored matrices that can be used to tune the 

number of subgraphs to identify, β is a tunable penalty weight to impose sparse temporal 

expression coefficients, and α is a tunable regularization of the edge strengths for subgraphs 

[118]. To tune these parameters without overfitting the model to dynamic network data, 

recent studies have employed parameter grid search [32] and random sampling approaches 

[112, 117].

NMF has distinct advantages over other unsupervised matrix decomposition approaches 

such as PCA [119]. First, the non-negativity constraint in the NMF approach means that 

subgraphs can be interpreted as additive components of the original dynamic network. That 

is, the relative expression of different subgraphs can be judged purely based on the positivity 

of the expression coefficients during a given time window. Second, NMF does not make any 

explicit assumptions about the orthogonality or independence of the resulting subgraphs, 

which provides added flexibility in uncovering network components with overlapping sub-

structures that are specific to different brain processes. Recent applications of NMF to 

characterize network dynamics at the edge-level have led to important insights into the 

evolution of executive networks during healthy neurodevelopment [32] and have uncovered 

putative network components of function and dysfunction in medically refractory epilepsy 

[112].

Considering levels of activity

The approaches described in the previous section seek to characterize mesoscale structure in 

dynamic graph models in which nodes represent brain areas and edges represent functional 

connections. Yet, one can construct alternative graph models from neuroimaging data to test 

different sorts of hypotheses. In particular, a set of new approaches have begun to be 

developed for understanding how brain states evolve over time: where a state is defined as a 

pattern of activity over all brain regions [120–124], rather than as a pattern of connectivity. 

This notion of brain state is one that has its roots in the analysis of EEG and MEG data 

[125], where the voltage patterns across a set of sensors or sources has been referred to as a 

microstate [126, 127]. The composition and dynamics of microstates predict working 

memory performance [128] and are altered in disease [129]. Emerging graph theoretical 

tools have become available to study how such states evolve into one another. These activity-

centric approaches are reminiscent of multi-voxel pattern analysis (MVPA) approaches in 

the sense that the object of interest is a multi-region pattern of activity [130, 131]; yet, they 

differ from MVPA in that they explicitly use computational tools from graph theory to 

understand complex patterns of relationships between states.

Time-by-Time Graphs—Perhaps the simplest example of such an approach is the 

construction of so-called time-by-time networks [132–134]: a graph whose nodes represent 

the time point of an instantaneous measurement, and whose edges represent similarities 

between pairs of time points (Fig. 3A–B). For example, in the context of BOLD fMRI, a 

node could represent a repetition time sample (TR), and an edge between two TRs could 

indicate a degree of similarity or distance between the brain state at TR l and the brain state 

at TR r. We will represent this graph as the adjacency matrix T which is of dimension T × T, 
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where T is the number of time points at which an instantaneous measurement was acquired, 

in contrast to the traditionally studied adjacency matrix A which is of dimension N × N, 

where N is the number of brain regions.

After constructing a time-by-time network, one can apply graph theoretical techniques to 

extract the community structure of the graph, to identify canonical states, and to quantify the 

transitions between them (Fig. 3C–D). Efforts in this vein have identified different canonical 

states in rest [132, 133] versus task [134], and observed that flexible transitions between 

states change over development [132] and predict individual differences in learning [134]. 

While these studies have focused on the cluster structure of time-by-time graphs, other 

metrics – including local clustering and global efficiency – could also be applied to these 

networks to better understand how the brain traverses states over time. In related work, 

reproducible temporal sequences of states have been referred to as lag threads [135], and 

boundaries between states have offered important insights into the storage and retrieval of 

events in long-term memory [136].

Topological Data Analysis: Mapper—A conceptually similar approach begins with the 

same underlying data type (an N×T matrix representing regional activity magnitudes as a 

function of time) and applies tools from algebraic topology to uncover meaningful – and 

statistically unexpected structure – in evolving patterns of neural activity [138].

Generally, these raw data arise from sampling a possibly high-dimensional manifold which 

describes all possible occurrences of the observed data type – implying that the global shape 

or topological features of this manifold could inform our understanding of processes specific 

to the system. In mathematics, multiple methods exist for returning topological information 

about a manifold. One such method is to construct a simplified object from our topological 

space X, called the Reeb graph [139], which captures the evolution of the connected 

components within level sets of a continuous function f: X → ℝ. Recall that a level set is 

the collection of inputs (elements of X) which are all mapped to the same output (value in 

ℝ). As an example, if our topological space X is a torus (Fig. 4A), then we can use the 

height function h: X → ℝ, so the level sets, h−1(c) for c ∈ ℝ, are horizontal slices of X at 

height c. Note each horizontal slice has one or two (or zero) connected components. As we 

move from one slice to the next, we record only the critical points at which the number of 

connected components changes, and how the connected components split or merge at these 

points. With nodes as critical points and edges indicating connected component evolution, 

the Reeb graph succinctly reflects these topological features (Fig. 4A, right).

While we would prefer a simple summary such as the Reeb graph for neural processes, we 

record noisy point clouds (perhaps from neuron spiking, region activity, or microstates at 

each time point) instead of nice manifolds. One approach for computing summary objects 

such as this in the presence of noisy data is called Mapper [140], which begins with a point 

cloud Y and two functions: (i) as before, f: Y → Z for some parameter space Z, and (ii) a 

distance metric on Y (Fig. 4B, left). We then choose a cover of Z, or a collection of open sets 

Uα with Z ⊆ ∪α Uα. If Z is a subset of the real line, in practice we often use a small number 

of intervals with fixed length. We look then to the collection of points of Y falling within f
−1(Uα) for each α. In other words, we bin points in Y based on their associated z ∈ Z, and 
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cluster these points using the chosen distance metric. This is analogous to taking level sets 

and determining connected components when constructing the Reeb graph. The last step 

creates the output graph (called the Mapper graph from [140]) – defined using a single node 

for each cluster and laying edges between nodes whose corresponding clusters share at least 

one point y ∈ Y.

The Mapper algorithm or similar methods have been used to stratify disease states and 

identify patient subgroups [141–143], conduct proteomics analyses [144, 145], and compare 

brain morphology [146, 147]. These methods are now ripe for application in dynamic 

networks, as discussed in this review. One possible avenue to describe the shape of a neural 

state space might involve modeling the states of brain activity {s0, s1, …, sk} as points in a 

cloud and defining the association parameter Z as the Euclidean distance between the initial 

state, s0, and all other states (Fig. 4C, left). By binning and clustering points in the cloud, we 

could recover a graph summarizing the topological features of the state space traversed. This 

approach would enable us to track whether the system re-visits previously encountered states 

or enters novel states, as evidenced by loops, dead zones, and branches of the traversed path 

itself (Fig. 4C, right). Additional possibilities include using density or eccentricity as 

parameters, or combining these which would yield a higher dimensional output [140].

Considering activity atop connectivity

The approaches described thus far address either evolving patterns of connectivity (dynamic 

community detection and non-negative matrix factorization) or evolving patterns of activity 

(time-by-time networks and Reeb graphs). A natural next question is whether these two 

perspectives on brain function can be combined in a way that provides insights into how 

activity occurs atop connectivity. In this section we will describe two such recently-

developed approaches stemming respectively from applied mathematics and engineering – 

annotated graphs and graph signal processing – that have been recently applied to 

multimodal neuroimaging data to better understand brain network dynamics.

Annotated graphs—The traditional composition of a graph includes identical nodes and 

non-identical (weighted) edges, and this composition is therefore naturally encoded in an 

adjacency matrix A. What is not traditionally included in graph construction – and also not 

naturally encoded in an adjacency matrix – is any identity or weight associated with a node. 

Yet, in many systems, nodes differ by size, location, and importance in a way that need not 

be identically related to their role in the network topology. Indeed, understanding how a 

node’s features may help to explain its connectivity, or how a node’s connectivity may 

constrain its features can be critical for explaining a system’s observed dynamics and 

function.

Annotated graphs are graphs that allow for scalar values or categories (annotations) to be 

associated with each node (Fig. 5A). These graphs are represented by both an adjacency 

matrix A of dimension N × N, and a vector x of dimension N × 1. Characterizing annotated 

graph structure, and performing statistical inference, requires an expansion of the common 

graph analysis toolkit [148, 149]. In an unannotated graph, network communities are 

composed of densely interconnected nodes. In an annotated graph, network communities are 
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composed of nodes that are both densely interconnected and have similar annotations. 

Recent efforts have formalized the study of community structure in such graphs by writing 

down the probability of observing a given annotated graph as a product of the probability of 

observing that exemplar of a weighted stochastic block model and the probability of 

observing the annotations [150]. That is, assuming independence between the annotation x 
and the graph A with block structure θ and community partition z:

Pr (A, x ∣ z, θ) = Pr (A ∣ z, θ) Pr (x ∣ z, θ) = (3)

where the first term of the right side of the equation accounts for the probability of observing 

the graph given the community structure under the assumptions of the weighted stochastic 

block model. This term relies on the assumption that interconnected nodes are likely to be in 

the same community. The second term accounts for the probability of observing the 

continuously valued annotations given the community structure [151]. This term relies on 

the assumption that nodes with similar annotations are more likely to be in the same 

community. Methods are available to fit this model to existing data to extract community 

structure and quantify the degree to which that community structure aligns with node-level 

annotations. These methods function by finding the community partition z that maximizes 

the probability of Eq. 3.

Initial efforts applying these tools to neuroimaging data have demonstrated that 

discrepancies between BOLD magnitudes and the community structure of functional 

connectivity patterns predicts individual differences in the learning of a new motor skill 

[151]. The model defined in that study also included a parameter that could be used to tune 

the relative contribution of the annotation versus the connectivity to the estimated 

community structure; this tunable parameter allows one to test hypotheses about the relative 

contribution of an annotation (e.g., BOLD magnitude) and a network (e.g., functional 

connectivity) to neural markers of cognition or disease. Future efforts could build on these 

preliminary findings to incorporate different types of annotations that are agnostic to 

network organization, such as measurements of time series complexity [152], gray matter 

density, cortical thickness, oxidative metabolism [153], gene expression [154], or 

cytoarchitectural characteristics [155]. Another class of interesting annotations includes 

statistics that summarize complementary features of network organization, such as a regional 

statistic of the structural network annotating a functional graph, or summary statistics of 

edge covariance matrices including node degree of the functional hypergraph [156–158] or 

archetype [159] annotating structural or functional graphs. More generally, annotated graphs 

can be used in this way to better understand the relationships between these regional 

characteristics and inter-regional estimates of structural or functional connectivity.

Graph Signal Processing—A discrete-time signal consists of a series of observations, 

and can be operated on and transformed using tools from classical signal processing, e.g. 

filtered, denoised, downsampled, etc. [160]. Many signals, however, are defined on the 

vertices of a graphs and therefore exhibit interdependencies that are contingent upon the 

graph’s topological organization. Graph signal processing (GSP) is a set of mathematical 

tools that implement operations from classical signal processing while simultaneously 
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incorporating and respecting the graphical structure underlying the signal [161] (Fig. 5B). 

While GSP, in general, has been widely applied for purposes of image compression [162] 

and semisupervised learning [163] (among others), only recently has it been used to 

investigate patterns in neuroimaging data [164–166].

One particularly interesting application involves using graph Fourier analysis to study the 

relationship of a graph signal to an underlying network. This approach, analogous to 

classical Fourier analysis, decomposes a (graph) signal along a set of components, each of 

which represents a different mode of spatial variation (graph frequency) with respect to the 

graph’s toplogical structure. These modes are given by an eigendecomposition of the graph 

Laplacian matrix, L = D − A, where D = diag(s1, …, sN) and where si = Σj Aij. The 

eigendecomposition results in a set of ordered eigenvalues, λ0 ≤ λ1 ≤ … ≤ λN−1, and 

corresponding eigenvectors, Λ0, …, ΛN−1. Each eigenvector can be characterized in terms of 

its “alignment” with respect to A, a measure of how smoothly it varies over the network. 

Calculated as Σi,j AijΛk(i)Λk(j), an eigenvector’s alignment takes on a positive value when 

elements with the same sign are also joined by a connection. The variable alignments 

(smoothness) of eigenvectors are, intuitively, analogous to the different frequencies in 

classical signal processing.

One recent study applied graph Fourier analysis to neuroimaging data to study the 

relationship of regional activity (BOLD) and inter-regional white-matter networks [167]. In 

this study, the authors performed a sort of “connectome filtering” by designing two separate 

graph filters from the eigenvalues of the structural connectivity matrix. The “low-frequency” 

filter was constructed from the eigenvectors with the greatest alignment while the “low-

frequency” filter was constructed from the least aligned eigenvectors (the authors refer to the 

low- and high-frequency filters as “aligned” and “liberal”, respectively). Both filters were 

applied to the vector time series of BOLD activity B = [b1(t), …, bN(t)], decomposing 

regional time series into filtered time series B̃
aligned and B̃

liberal. The filtered time series 

encoded the components of the BOLD signal that were aligned and misaligned with the 

brain’s white-matter connectivity. Interestingly, the variability of the “liberal” signal over 

time was predictive of cognitive switching costs in a visual perception task, much more so 

than that of the “aligned” signal. This finding suggests that brain signals that deviate from 

the underlying white-matter scaffolding promote cognitive flexibility.

These recent applications of graph signal processing [164, 166, 167] highlight its utility for 

studying neural systems at the network level. Nonetheless, there are open methodological 

and neurobiological questions. For instance, the graph filtering procedure described above 

operates on the BOLD activity at each instant, independent of the activity at all other time 

points, and also assumes that the underlying network structure is fixed (i.e. static). 

Extending the framework to explicitly incorporate the dynamic nature of the signal/network 

remains an unresolved issue [168]. Also, while graph signal processing operations can 

identify network-level correlates of behavioral relevance, how these operators are realized 

neurobiologically is also unclear. Future work could be directed to investigate these and 

other open questions.
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STATISTICAL TESTING OF NETWORK DYNAMICS

When constructing and characterizing dynamic graph models and other graph-based 

representations of neuroimaging data, it is important to determine whether the dynamics that 

are observed are expected or unexpected in an appropriate null model. While no single null 

model is appropriate for every scientific question, there are a family of null models that have 

proven particularly useful in testing the significance of different features of brain network 

dynamics. Generally speaking, these null models fall into two broad categories: those that 

directly alter the structure of the graph, and those that alter the structure of the time series 

used to construct the graph. In this section, we will describe common examples of both of 

these types of null models, and we will also discuss statistical approaches for identifying 

data-driven boundaries between time windows used to construct the graphs.

Graph null models

The construction of graph-based null models for statistical inference has a long history 

dating back to the foundations of graph theory [33, 34]. Common null models used to query 

the architecture of static graphs include the Erdos-Renyi random graph model and the 

regular lattice [169–171] – two benchmark models that have proven particularly useful in 

estimating small-worldness [172, 173]. To address questions regarding network development 

and associated physical constraints, both spatial null models [93, 174] and growing null 

models [22] have proven particularly useful. In each case, the null model purposefully 

maintains some features of interest, while destroying others.

When moving from static graph models to dynamic graph models, one can either devise 

model-based nulls or permutation-based nulls. Because generative models of network 

reconfiguration are relatively new [99, 100], and none have been validated as accurate fits to 

neuroimaging data, the majority of nulls exercised in dynamic graph analysis are 

permutation-based nulls. In prior literature, there are three features of a dynamic graph 

model that are fairly straightforward to permute: the temporal order of the adjacency 

matrices, the pattern of connectivity within any given adjacency matrix, and (for multilayer 

graphs) the rules for placing and weighting the inter-layer identity links [103]. Permuting the 

order of time windows uniformly at random in a dynamic graph model is commonly referred 

to as a temporal null model. Permuting the connectivity within a single time window (that is, 

permuting the location of edges uniformly at random throughout the adjacency matrix) is 

commonly referred to as a connectional null model. For multilayer networks in which the 

graph in time window t is linked to the graph in time window t + 1 and also to the graph in 

time window t−1, one can permute the identity links connecting a node with itself in 

neighboring time windows uniformly at random. This is commonly referred to as a nodal 
null model.

These permutation-based null models are important benchmarks against which to compare 

dynamic graph architectures because they separately perturb distinct dimensions of the 

dynamic graph’s structure. The temporal null model can be used to test hypotheses regarding 

the nature of the temporal evolution of the graph; the connectional null model can be used to 

test hypotheses regarding the nature of the intra-window pattern of functional connectivity; 

and the nodal null model can be used to test hypotheses regarding the importance of regional 
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identity in the observed dynamics [95]. It will be interesting in the future to expand this set 

of non-parametric null models to include parametric null models that have been carefully 

constructed to fit generalized statistical structure of neuroimaging data.

Time series null models

Dynamic graph null models are critical for practitioners conversant in graph theory to 

understand the driving influences in their data. Yet, others trained in dynamical system 

theory may wish to understand better how characteristics of the time series drive the 

observed time-evolving patterns of functional connectivity that constitute the dynamic graph 

model. In particular, one might wish to separately account for the impact of motion, noise, 

and fatigue on the observed dynamics and determine the degree to which the time series or 

network patterns derived from them remain non-stationary, either at rest (e.g., [175–177]) or 

during effortful cognitive processing (e.g., [178]). For this final question of whether the time 

series are non-stationary, surrogate data time series are particularly useful.

Specifically, a common problem that one might wish to address is the question of whether 

the observed patterns of network dynamics are due to linearity versus nonlinearity in the 

time series, or whether the underlying process is stationary versus non-stationary [179]. 

Here, we use the term linear to indicate that each value in the time series is linearly 

dependent on past values in the time series, or on both present and past values of some i.i.d. 

process [180]. Determining the extent of non-linearity is important because it determines 

whether one should use linear versus nonlinear statistics to characterize the time series 

[181]. Furthermore, determining whether the underlying process is stationary versus 
nonstationary informs whether the observed network dynamics could be interpreted as being 

driven by a fundamental change in the cognitive processes employed [182]. To demonstrate 

that observed patterns of network dynamics are indicative of meaningful non-stationarities, 

surrogate data techniques can be used to construct pseudo time series that retain signal 

properties under the assumption of stationarity and build a distribution reflecting the 

expected value of a chosen test statistic.

Two common methods to address this question are the Fourier transform (FT) surrogate and 

the amplitude adjusted Fourier transform (AAFT) surrogate. Both methods preserve the 

mean, variance, and autocorrelation function of the original time series, by scrambling the 

phase of time series in Fourier space [183]. The AAFT extends the FT surrogate by also 

retaining the amplitude distribution of the original signal [184]. First, we assume that the 

linear properties of the time series are specified by the squared amplitudes of the discrete 

Fourier transform

∣ S(u) ∣2 = 1
T ∑

t = 0

T − 1
ste

i2πut /T
2
, (4)

where st denotes an element in a time series of length T and Su denotes a complex Fourier 

coefficient in the Fourier transform of s. We can construct the FT surrogate data by 
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multiplying the Fourier transform by phases chosen uniformly at random and transforming 

back to the time domain:

st = 1
T ∑

t = 0

T − 1
e

iau ∣ Su ∣ ei2πkt /T, (5)

where au ∈ [0, 2π) are chosen independently and uniformly at random. This approach has 

proven useful for characterizing brain networks in prior studies [52, 95].

An important feature of these approaches is that they can be used to alter nonlinear 

relationships between time series while preserving linear relationships (such as, by 

scrambling the phase of time series x in the same way as time series y), or they can be used 

to alter both linear and nonlinear relationships between time series (such as, by scrambling 

the phase of time series x independently from time series y) [183]. Other methods that are 

similar in spirit include those that generate surrogate data using stable vector autoregressive 

models [190] that approximately preserve the power and cross-spectrum of the actual time 

series [182]. In each case, after creating surrogate data time series, one can re-apply time 

window boundaries and extract functional connectivity patterns in each time window to 

create dynamic graph models. Then one can compare statistics of the dynamic graph models 

constructed from surrogate data time series with the statistics obtained from the true data 

[191]. In all efforts to construct surrogate data, it is important to carefully consider the 

nature of the measurement technique, peculiarities of the data itself, and the specificity of 

the hypothesis being tested.

Change points

Thus far, our discussion regarding statistical inference on dynamic graph models presumes 

that one has previously determined a set of time windows of the observed time series in 

which to measure functional connectivity [67, 68]. The common approach is to choose a 

single time window size, and then to apply it either in a nonoverlapping fashion or in an 

overlapping fashion [32, 103]. There are several benefits to this approach, including 

effectively controlling for the influence of the time series length on the observed network 

architecture. However, one disadvantage of the fixed-window-length approach is that one 

may be insensitive to changes in the neurophysiological state that occur at non-regular 

intervals. To address this issue, several methods have been proposed to identify change 
points – points in time where the generative process underlying the data appears to change – 

both in patterns of connectivity [192, 193] and in patterns of activity [194, 195]. These 

methods employ a data-driven framework to identify irregularly sized time windows before 

constructing brain graphs using the modeling approaches discussed earlier. Such change 

point-based network models can potentially enhance tracking of network dynamics 

alongside changes in cognitive state.
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INTERPRETING NETWORK DYNAMICS

At the conclusion of any study applying the modeling techniques described in this review, it 

is important to interpret the observed network dynamics within the context in which the data 

were acquired. When studying network dynamics during a task, assessing the correlation 

between brain and behavior – both raw behavioral data and parameter values for models fit 

to the behavioral data – can help the investigator infer network mechanisms associated with 

task performance [25]. Relevant questions include which network dynamics accompany 

which sorts of cognitive processes or mental states. For example, recent observations point 

to a role for frontal-parietal network flexibility in motor learning [104], reinforcement 

learning [105], working memory [28], and cognitive flexibility [28]. In the case of time-by-

time graphs, it is also relevant to link brain states to not only processing functions but also to 

representation functions, for example by combining local MVPA analyses with global graph 

analyses [196]. Finally, in both task and rest studies, it is also useful to determine the 

relationship between brain network dynamics and online measurements of physiology such 

as pupil diameter [197], galvanic skin response, or fatigue [102].

Outside of the context of a single study, it is important to build an intuition for what types of 

neurophysiological mechanisms may be driving certain types of brain network 

reconfiguration – irrespective of whether the subject is performing a task or simply resting 

inside the scanner. Particularly promising approaches for pinpointing neurophysiological 

drivers include pharma-fMRI studies, which suggest that distinct neurotransmitters may play 

important roles in driving network dynamics (Fig. 6). Using an NMDA-receptor antagonist, 

Braun and colleagues demonstrated that network flexibility – assessed from dynamic 

community detection – is increased relative to placebo, suggesting a critical role for 

glutamate in fMRI-derived brain network dynamics [30]. Preliminary data also hint at a role 

for seratonin by linking a positive effect with network flexibility [102], a role for 

norepinephrine by linking pupil diameter to network reconfiguration [197], and a role for 

stress-related corticosteroids and catecholamines in facilitating reallocation of resources 

between competing attention and executive control networks [198]. However, the relative 

impact of dopamine, seratonin, glutamate, and norepinephrine on network reconfiguration 

properties remains elusive, and therefore forms a promising area for further research.

Besides pharmacological drivers, there is an evergrowing body of literature suggesting that 

temporal fluctuations in neural acitivity and functional network patterns are largely 

constrained by underlying networks of structural connections [199, 200] – i.e. the material 

projections and tracts among neurons and brain regions that collectively comprise a 

connectome [201]. Over long periods of time, functional network topology largely 

recapitulates these structural links [18], but over shorter intervals can more freely decouple 

from this structure [202, 203], possibly in order to efficiently meet ongoing cognitive 

demands [204]. Even over short durations, functional networks maintain close structural 

support such that the most stable functional connections (i.e. those that are least variable 

over time) are among those with corresponding direct structural links [205, 206]. 

Multimodal and freely available datasets, such as the Human Connectome Project [207], 

Nathan Kline Institute, Rockland sample [208], and the Philadelphia Neurodevelopmental 

Cohort [209], all of which acquire both diffusion-weighted and functional MRI for massive 
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cohorts, make it increasingly possible to further investigate the role of structure in shaping 

temporal fluctuations in functional networks.

FUTURE DIRECTIONS

Prospectively, it will be important to further develop tools and models to understand the 

dynamic networks that support human cognition. Including additional biological realism and 

constraints will become increasingly important as these networks are inherently multi-

layered and embedded, including spatially distributed circuits in neocortex, cortico-

subcortico loops, and local networks in the basal ganglia and cerebellum. Efforts are 

expected to target specific computational and theoretical challenges for mathematical 

development including models for non-stationary network dynamics, coupled multilayer 

stochastic block models and dynamics atop them, and extensions of temporal non-negative 

matrix factorization to annotated graphs. These efforts offer promise in not only providing 

descriptive statistics to characterize cognitive processes, but also to push the boundaries 

beyond description and into prediction and eventually fundamental theories of network 

development, growth, and function [15, 25].
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APPENDIX

Useful tools include the following:

• For dynamic community detection tools see http://netwiki.amath.unc.edu/

GenLouvain/GenLouvain. [210]

• For statistics of dynamic modules see http://commdetect.weebly.com/.

• For non-negative matrix factorization for dynamic graph models see https://

doi.org/10.5281/zenodo.583150 [211]

• For statistics on dynamic graph models see https://doi.org/10.5281/zenodo.

583170. [212]
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FIG. 1. Mesoscale network methods can address activity, connectivity, or the two together
In the human brain, the structural connectome supports a diverse repertoire of functional 

brain dynamics, ranging from the patterns of activity across individual brain regions to the 

dynamic patterns of connectivity between brain regions. Current methods to study the brain 

as a networked system usually address connectivity alone (either static or dynamic) or 

activity alone. Methods developed to address the relations between connectivity and activity 

are few in number, and further efforts connecting them will be an important area for future 

growth in the field. In particular, the development of methods in which activity and 

connectivity can be weighted differently – such as is possible in annotated graphs, which we 

review later in this article – could provide much-needed insight into their complimentary 

roles in neural processing.
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FIG. 2. Dynamic network modules and subgraphs
(Top) Network science enables investigators to study dynamic architecture of complex brain 

networks in terms of the collective organization of nodes and of edges. Clusters of strongly 

interconnected nodes are known as modules, and clusters of edges whose strengths, or edge 

weights, vary together in time are known as subgraphs. Nodes and edges of the same module 

or subgraph are shaded by color. Each module represents a collection of nodes that are 

highly interconnected to one another and sparsely connected to nodes of other modules, and 

each node may only be a member of a single module. Each subgraph is a recurring pattern of 

edges that link information between nodes at the same points in time, and each edge can 

belong to multiple subgraphs. (Bottom Left) Dynamic community detection assigns nodes to 

time-varying modules. Nodes may shift their participation between modules over time based 

on the demands of the system. (Bottom Right) Non-negative matrix factorization pursues a 

parts-based decomposition of the dynamic network into subgraphs and time-varying 

coefficients, which quantify the level of expression of each subgraph over time.

Khambhati et al. Page 27

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. State space of brain activity patterns
(A) The time-by-time graph captures similarities in neural activation patterns between 

different points in time. In practice, one can compute the average brain activity for 

individual brain regions within discrete time windows and compare the resulting pattern of 

activation between two time windows using a similarity function, such as the Pearson 

correlation. (B) The resulting time-by-time graph has an adjacency matrix representation in 

which each time window is a node and the neural activation similarity between a pair of time 

windows is an edge. (C) Clustering tools based on graph theory or machine learning can 

identify groups of time windows – or states – with similar patterns of neural activation. By 

parametrically varying the number of clusters, or their size, one can examine the dynamic 

states over multiple time scales (Adapted from [136]). (D) Multidimensional scaling (MDS) 

[137] can be used to trace the trajectory of a dynamical system through state space by 

projecting a high-dimensional, time-by-time graph onto a two dimensional subspace. In this 

subspace, each point is a neural activation pattern in a time window and the spatial proximity 

between two points represents the similarity of the neural activation pattern between time 

windows. The example shown here is an MDS projection of a time-by-time graph derived 

from ECoG in an epilepsy patient during a 2 s, resting period onto a two-dimensional space. 

Each point represents a 2 ms time window and is shaded based on its occurrence in the 2 s 

interval. The depicted state space demonstrates an interleaved trajectory in which the system 

revisits and crosses through paths visited at earlier time points. These tools can be readily 

adapted to characterize the evolution of a neural system in conjunction with changes in 

behavior.
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FIG. 4. Mapping temporal structure with algebraic topology
(A) Schematic of Reeb graph construction. Given a topological space X, here a torus, the 

Reeb graph is constructed by examining the evolution of the level sets from h(X). (B) 

Illustration of the Mapper algorithm. Beginning with a point cloud and parameter space Z, 

points are binned and clustered. Resulting clusters are collapsed to nodes in the final Mapper 

graph, and edges between nodes exist if the two corresponding clusters share points from the 

original point cloud. (C) Example use of topological data analysis for dynamic networks. 

The initial point cloud here is the collection of brain states across time and parameter space 

the distance from the initial state of the system. Following the path of time (right, red curve) 

on the Mapper graph may yield insights to system evolution.
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FIG. 5. Brain activity on brain graphs
(A) Annotated graphs enable the investigator to model scalar or categorical values associated 

with each node. These graphs are represented by both an adjacency matrix A of dimension N 
× N, and a vector x of dimension N × 1 (Adapted from [151]). (B) Graph signal processing 

allows one to interpret and manipulate signals atop nodes in a mathematical space defined 

by their underlying graphical structure. A graph signal is defined on each vertex in a graph. 

For example, the signal could represent the level of BOLD activity at brain regions 

interconnected by a network of fiber tracts. Graph filters can be constructed using the 

eigenvectors of A that are most and least aligned with its structure. Applying these filters to 

a graph signal decomposes it into aligned/misaligned components. Elements of the aligned 

component will tend to have the same sign if they are joined by a connection. The elements 

of the misaligned or “liberal” component, on the other hand, may change sign frequently, 

even if joined by a direct structural connection.
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FIG. 6. Pharmacologic modulation of network dynamics
(A) By blocking or enhancing neurotransmitter release through pharmacologic 

manipulation, investigators can perturb the dynamics of brain activity. For example, an 

NMDA receptor agonist might hyper-excite brain activity [185–187], while a NMDA 

receptor antagonist might reduce levels of brain activity [188, 189]. (B) Hypothetically 

speaking, by exogenously modulating levels of a neurotransmitter, one might be able to 

titrate the dynamics of brain activity and the accompanying functional connectivity to avoid 

potentially damaging brain states.
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