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Symmetry, anomaly and duality put strong constraints on the low-energy physics of

the quantum field theory. In this dissertation, we used generalized symmetry and symmetry

anomaly to investigate the quantum phases of matter and their transitions. In particular, we

studied the generalized exact duality in 1+1d systems and infrared duality for 2+1d gauge

theories. We investigated the ’t Hooft anomaly matching of non-linear sigma model with the

Wess-Zumino-Witten term. We focus on the implications of these non-perturbative methods

on 1+1d quantum phase transitions, 2+1d deconfined quantum criticality and Fermi surface

symmetric mass generation.
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Introduction

Symmetry is a crucial concept in physics that has long served as a guiding principle for

developing theories and understanding the fundamental nature of the universe [94]. It helps

organize and classify the various particles and excitations that emerge in physical systems. By

studying the symmetry of a system, physicists can gain deep insights into its properties and

behavior.

One of the most remarkable aspects of symmetry is its ability to reveal surprising

connections between seemingly unrelated phenomena. It provides a framework for understanding

how different parts of the universe are intertwined and how they evolve over time. Symmetry also

serves as a roadmap for discovering new theories and predicting the existence of new particles.

It’s a testament to the power of mathematics in physics, showcasing how abstract mathematical

concepts can have profound implications for our understanding of the physical world.

In particular, our universe is composed of elementary particles, like proton, neutron

and photons. The kinematic properties of the elementary particles are well described using the

representations of Lie group. For example, symmetry yields the selection rule answering which

particles can be scattered into each other. The dynamics of particles are studied by the gauge

theory that also utilizes the symmetry principle.

In the condensed matter systems, each material could have their own universe, and the

collective behaviour of electrons resembles bosons, fermions and even anyons. These collective

modes of the electrons are dubbed as quasi-particles. The emergentism in the condensed matter

system aligns with Anderson’s famous paper “more is different” [9], where the collective behavior

of a large number of particles can give rise to novel phenomena that cannot be explained by
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simply studying the individual components.

The emergentism results in gardens of novel physical phenomena. However, the different

systems could behave similarly despite their very distinct natures. For example, both 3-

dimensional easy-plane magnets and liquid Helium-4 share the same critical behaviour which is

described by the three dimensional XY model. One is then eager to ask what are the universal

features of the zoos of different models. It turns out that models with the universal features fall

into the universality class. What determines the universality class? The answer is still mostly

symmetry.

For the classical many-body systems, their phases and phase transitions are classified

by symmetry. The classification of phases and phase transitions based on symmetry is rooted

in Landau’s theory of phase transitions, which provides a phenomenological framework for

describing the free energy of the system in terms of the order parameter. In the disordered phase,

where the constituents of the system are randomly arranged, the order parameter is zero, reflecting

the lack of any preferred direction or spatial arrangement. However, as the system approaches a

phase transition, the order parameter acquires non-zero values, signaling the emergence of an

ordered phase.

The nature of the ordered phase is determined by the specific symmetry that is broken

during the phase transition. For example, in a ferromagnetic system, the order parameter is

the magnetization, which measures the degree of alignment of the magnetic moments. Above

the critical temperature, the system is in the paramagnetic phase, where the magnetic moments

are randomly oriented, and the magnetization is zero. As the temperature is lowered below

the critical point, the system undergoes a spontaneous symmetry breaking, and the magnetic

moments align, giving rise to a non-zero magnetization and the ferromagnetic phase.

Moreover, the symmetry-based classification of phases and phase transitions has far-

reaching consequences in the form of universality. The renormalization group is a powerful

tool that connects seemingly distinct theories within the same universality class. It allows us to

understand how the macroscopic behavior of a system emerges from its microscopic properties
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by systematically coarse-graining the system and studying how the effective interactions change

as we move from one length scale to another. Through this process, the renormalization group

reveals that systems with different microscopic details can exhibit the same critical behavior, as

long as they share the same symmetries and dimensionality. This remarkable insight unifies our

understanding of phase transitions and critical phenomena, showing that the essential physics

near a critical point is determined not by the specific microscopic model but by the universality

class to which it belongs.

The symmetry principle to understanding phases and phase transitions in classical many-

body systems has proven to be a powerful tool in condensed matter physics. Such framework is

called Landau-Ginzburg-Wilson-Fisher (LGWF) paradigm. The LGWF paradigm successfully

applied to a wide range of physical systems, including magnets, superfluids, superconductors,

and liquid crystals.

However, the LGWF paradigm will be broken down when quantum physics steps in.

Unlike classical phase transitions, which are driven by thermal fluctuations, quantum phase

transitions occur at absolute zero temperature and are driven by quantum fluctuations. These

transitions arise when the ground state of a quantum system undergoes a fundamental change

as a physical parameter, such as magnetic field or pressure, is varied. The competition between

different quantum states leads to a non-analytic behavior of the ground state energy and the

emergence of novel quantum phases with exotic properties. The exotic quantum phases and their

transitions are the main focus of this dissertation.

0.1 Examples of exotic quantum phases and phase
transitions

In this dissertation, we will mainly discuss various aspects of deconfined quantum critical

point (DQCP) and symmetric mass generation (SMG). Both of them are beyond Landau paradigm.

DQCP describes the continuous quantum phase transition (QPT) between two spontaneously
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symmetry breaking phases, which would be forbidden in the LGWF paradigm. Fermi surface

symmetric mass generation transition describes the continuous QPT between Fermi liquid and

symmetric mass generation insulator, which are both symmetric phases.

Deconfined quantum critical point

In 2+1d quantum magnets, each site supports the spin-1
2 degree of freedom, there are

two interesting phases, one is the Néel phase, where the spins are aligned antiferromagnetically,

another one is the valence-bond-solid(VBS) phase, where the spins form singlets with the singlets

towards different directions. The Néel phase and the VBS phase breaks different symmetries, in

the Néel phase, the spin SU(2) rotation symmetry is spontaneously broken but lattice symmetry is

preserved, while in the VBS phase, the lattice symmetry is broken but the spin rotation symmetry

is preserved.

Figure 0.2. Phase diagram of deconfined quantum phase transition, the Néel order parameter
gradually becomes smaller and the VBS order parameter becomes larger when tuning the
coupling constant g.

The deconfined quantum critical point (DQCP) is quantum phase transition between

Néel phase and valence-bond-solid phase. Landau paradigm states that this transition would be

either first-order transition or phases overlapping. However, it is proposed that the DQCP can be

continuous and be described by continuous field theories. Rather interestingly, the transition is

driven by proliferating the disorder operator which carries the charge of the other symmetry. For
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example, in the VBS phase, the vortex core carries spin-1
2 degree of freedom,

. (1)

This intertwining between different symmetry is a manifestation of ’t Hooft anomaly. And

because of this ’t Hooft anomaly, one can think the DQCP as the boundary of certain symmetry

protected topological phases (SPT) by anomaly inflow.

In the original proposal, the DQCP is described by the non-compact CP1 model, which is

two bosons coupled to the U(1) gauge field. Later, the DQCP is found to be described by several

dual theories, namely though they are distinct in the ultraviolet, they will eventually flow the

same infrared fixed point and describe the same physics. Those theories are nonlinear σ model

with Wess-Zumino-Witten term, N f = 2 QED3 with Gross-Neveu term and noncompact CP1

model [393].

In the recent Monte Carlo simulations and conformal bootstrap analysis, there are more

relevant operators at the critical point [459, 434, 83]. These works provide more evidence

that the DQCP is a multicritical point. Besides the Néel and VBS phases, there is a quantum

spin liquid phase. When tuning the parameter, the quantum spin liquid phase will end at the

multicritical point and connects to the first order transition between the Néel and VBS phases

[459, 252, 434, 246, 352]. Another possibility is that the DQCP is a pseudo-criticality which

suggests the physical model is close to a second order phase transition point but the fixed points

become slightly complex for the physical model [284, 263, 283].
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Symmetric mass generation

Symmetric mass generation (SMG) is a fundamental concept in particle physics that

explains how particles acquire mass without breaking the underlying symmetries of the theory

[403]. The Anderson-Higgs mechanism is the well-known mass generating mechanism, however,

it will necessarily break certain symmetry. In the field theory level, the Lagrangian L has the

Yukawa term like,

φ
a
ψ̄T a

ψ ⊂L (2)

where φ a is the bosonic field and ψ̄,ψ are the fermionic fields. T a are certain representation of

the flavor symmetry. When condensing the boson field φ a, the fermion acquires mass, but the

boson condensation will break the flavor symmetry.

It is possible to give the fermion mass without breaking the protected symmetry. The

necessary condition for this to happen is ’t Hooft anomaly free. For example, if preserving the

time reversal symmetry T 2 = 1, the edge modes of the majorana chain in 1+1d cannot be gapped

out by fermiom bilinear terms. However, for 8 copies of the majorana chain, it is possible to add

an 4-fermion interaction term to gap out the edge modes [127, 128].

To simulate the chiral theory on the lattice, there is always the fermion double problem

that obstructs it. However, if the anomaly is carefully cancelled, then it is possible to gap them

out by multi-fermion term without breaking the chiral symmetry. In particular, the 3-4-5-0 model

in 1+1d is proposed and numerically verified [396, 397].

In higher dimension, the SMG transition is more intriguing. Similar to the DQCP

transition, the direct transition between the free fermion phase and SMG phase involves gauge

field [447, 446]. Using the parton construction, the physical fermion is fractionalized into

fermionic and bosonic partons. By tuning the coupling of bosonic partons, it is possible to drive

a direct transition between the SMG phase and Dirac semimetal phase [447, 446].

In another direction, it is interesting to study the SMG in the fermion systems with finite

density. In this case, we develop the anomaly free condition for the fermion systems [250]. The
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stability of the Fermi surface can be viewed as protected by the quantum anomaly of an emergent

LU(1) loop group symmetry at low energy. For Fermi surface SMG, it is peculiar that the Fermi

surface will be transformed into Luttinger surface which is defined by the zeros of the Green’s

function as presented in Chapter. 4, instead of poles. This phenomenon resembles the Green’s

function zero in the relativistic case [450, 443, 433]. The Fermi surface SMG as presented in

Chapter. 3 has also been used to study the superconductivity in the nickelate superconductor

[248].

0.2 Non-perturbative methods - anomaly and duality

To better understand the exotic quantum phases and their transitions, we need to upgrade

the symmetry principle to incorporate new challenges in the quantum world. In this dissertation

I will mainly focus on two tools that will constrain the infrared quantum phases and their

transitions, the tools are anomaly and duality.

Anomaly

In quantum many-body system, the local states live in the complex Hilbert space,

the symmetry could have more interesting phenomena, such as symmetry fractionalization.

Therefore, the symmetry principle needs to be upgraded with additional information of the

symmetry anomaly. One particular important notion is the ’t Hooft anomaly of the global

symmetry. If the global symmetry G has ’t Hooft anomaly, then the theory will run into trouble

if one try to gauge the symmetry G. The ’t Hooft anomaly also constrains that the theory flows

in IR to be

1. Gapless

2. G symmetry spontaneously breaking (SSB)

3. Topological order,
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but not symmetric trivial gapped phase. The ’t Hooft anomaly of theory in d spacetime dimension

is classified by Hd+1(G,U(1)), the d +1-th group cohomology of G with coefficient in U(1).

The ’t Hooft anomaly can be cancelled by attaching the anomalous theory to a d +1 bulk with

symmetry protected topological phase. More aspects of anomaly matching of the non-linear

sigma model with the Wess-Zumino-Witten term is presented in Chapter. 2

Weak (Infrared) Duality

In the context of DQCP, the duality is the so-called weak-duality, i.e. they are distinct in

the UV but conjectured to flow to the same IR fixed point. One can match the global symmetry

and the anomaly of these theories. In contrast, the strong duality is that one can do exact mapping

to get the dual theory, for example, the Kramer-Wannier duality of 2d Ising model is the strong

duality.

Duality in general provides a powerful tool in understanding field theories. In 1+1d, the

bosonization maps the fermionic model to a bosonic model, the 4 fermion interactions can be

mapped to bilinears in the boson model, hence many 1d problems can be solved. In 2+1d, the

particle-vortex duality is known for many years, where the XY-model is mapped to an Abelian

Higgs model,

|DBφ |2−|φ |4 ⇐⇒ |Dbφ |2−|φ |4 + 1
2π

bdB′. (3)

where the particle φ is mapped to the vortex Mb in the dual description. Recently, many 2+1d

theories are found to have their dual theories and form a duality web [341], the non-abelian

Chern-Simons theories with matter fields are generalized to have the level/rank duality as that in

the 2d WZW conformal field theory [177]. The many dualities help us understand more about

the phase diagrams of the QCD theories.

The 2+1d duality of the abelian gauge theory has its 3+1d bulk understanding. Consider

the 3+1d U(1) gauge theory in the bulk, besides Maxwell term, there is also a θ term with θ
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being periodic in 2π (fermionic). It is conventional to write the action as,

I(A) =
1

8π

∫
X

d4x
√

g
(

2π

g2 FmnFmn +
iθ

4π
εmnpqFmnF pq

)
=

i

8π

∫
X

d4x
√

g(τ̄F+
mnF+mn− τF−mnF−mn) (4)

where τ = θ

2π
+ 2π i

g2 . It is interesting that adding i
2π

∫
G∧F or i

4π

∫
F ∧F will not change the

partition function, this results in S and T transformation, they generate the SL(2,Z) action [425],

τ → τ
′ =

aτ +b
cτ +d

,

a b

c d

 ∈ SL(2,Z) (5)

Z(τ) = Z(τ ′) (6)

The duality transformation in the 3+1d bulk can also be thought of as transformation on the dyon

lattice [273]. these bulk transformations have their corresponding duality transformations at the

boundary. S,T duality transformations at the boundary are,

S : τ → τ
′ =−1

τ
,

0 −1

1 0

 ,J ·A→ J ·a− 1
2π

adA′

T : τ → τ
′ = τ +1,

1 1

0 1

 ,J ·A− 1
4π

AdA

where the background gauge field becomes dynamical under the S transformation, and the action

is shifted by a Chern-Simons term when doing the T transformation. In the presence of matter

fields, charge and spin need to be matched, hence, there are only several dualities in the contrary

to the infinite many SL(2,Z) dualities in the pure gauge theory.

These 2+1d dualities have many applications in the condensed matter system, one is the

understanding of particle-hole symmetric half filled Landau level [363]. The idea of duality was
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also used in the DQCP problems, as mentioned in previous section, the DQCP has many dual

descriptions [393], some are even self-dual [432]. The operators may be easily described in the

dual theory but hard in the original one, utilizing the duality gives a more complete understanding

of the phase diagram as presented in Chapter. 1.

Besides the descriptive power, many dualities make the strong coupling theory dual to a

weak coupling one, therefore, the theory can be understood using perturbative calculation. One

interesting application is presented in Ref. [111], where they utilize the duality constraind ansatz

to extrapolate the scaling dimension of certain operator in the strongly coupled theory from its

dual weakly coupled theory. It would be interesting to generalize this idea to more flavors of

fermions or bosons, and the bulk would be U(1)→ U(1)n gauge theory, because large fermion

flavors have more applications in condensed matter system such as DQCP, SMG transition and

quantum spin liquid. This duality contrained RG would be an alternative way to calculate the

scaling dimension besides the large N calculations, this is also relevant to the understanding of

bulk-boundary correspondence.

Strong (Exact) Duality and Non-Invertible Symmetry

As mentioned previously, the Kramers-Wannier duality is the strong or exact duality. The

UV lattice model can be mapped to the dual model by an exact mapping between the operators.

The 1+1d duality mapping in general can be obtained by orifolding the discrete symmetry. Since

the discrete gauge field is not dynamical, gauging the discrete symmetry will not change the

central charge of the critical theory, but will permute the different symmetry sectors.

If a theory is invariant under the duality, then it is self-dual. In the generalized symmetry

perspective, the self-dual theory admits the non-invertible symmetry associated to the self-duality.

For 1+1d system, the 0-form symmetry is generated by line operators. In particular, these line

operators commute with the energy-momentum tensor and they are topological defect line (TDL)

operators. The TDL associated to the self-duality can be understood as the interface between

the original theory and the dual theory. Because the theory is self-dual, the duality TDL can be

10



moved freely as a consequence of commuting with the Hamiltonian.

Since the duality transformation permutes the gapped phases, it provides the additional

data about how one gapped phase relates to the other. The duality puts the constraints on

the phase diagram. Therefore, the phase boundary or the critical line is invariant under

the duality transformation, and it admits the corresponding non-invertible symmetry. One

can then study the dynamical properties of the critical line by tuning the duality invariant

operators. In the 1+1d transverse field Ising model H = ∑ j Z jZ j+1 +gX j, the Ising transition

at g = 1 is invariant under the Kramers-Wannier duality. One can add duality invariant

operator ∑ j X jZ j+1Z j+2 +Z jZ j+1X j+2 to drive the Ising transition to first order transition via a

multicritical point [296]. This analysis can also be generalized to non-local mapping beyond

duality.

Similar to ordinary symmetry, the non-invertible symmetry has anomaly and symmetry

protected topological phases, but the precise meaning deviates from those of ordinary symmetry.

The anomaly of a non-invertible symmetry is the obstruction to symmetric gapped phase with

a unique ground state. If a non-invertible symmetry is anomaly free, then it is possible to

have a symmetric gapped phase with a unique ground state, more interestingly, it could have

non-invertible symmetry protected topological phases [379, 344]. For example, the self-duality

non-invertible symmetry in the Ising transition has anomaly, therefore, the Ising transition cannot

be drived to a symmetric gapped phase with unique ground state. Instead, the Ising transition

will be drived to a first order transition with 3 degenerate ground states [339]. More details of

the non-invertible symmetry and self-duality will be discussed in Chapter. 5.
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Chapter 1

Self-duality protected multi-criticality in
deconfined quantum phase transitions

1.1 Introduction

Duality plays an important role in relating different phases of matter. One famous

example is the Kramers-Wannier duality[223] in (1+1)D transverse field Ising model

H = ∑i−JZiZi+1−hXi, which exchanges J and h and maps the ferromagnetic (Ising symmetry

breaking) phase to the paramagnetic (Ising symmetric) phase and vice versa. More generally,

two theories are dual to each other when they have different ultraviolet (UV) descriptions but

flow to the same infrared (IR) theory. A well-known example in (2+1)D is the particle-vortex

duality, which states that the XY model is dual to the Abelian Higgs model [207, 308, 101].

Recent developments further extend this understanding and discover many theories and their

dual partners, altogether they form a web of duality[340].

If the theory remains the same under a duality, the duality will be called a self-duality.

For example, the Kramers-Wannier duality is a self-duality for the (1+1)D Ising model at the

critical point. Recent studies [70, 190, 379, 237] further propose to interpret the self-duality

as a categorical symmetry, making connections to the fusion category of anyon excitations

in the corresponding bulk topological order in one higher dimension. When the self-duality

is imposed as a symmetry, the system is enforced to stay on the phase boundary between

the two duality-related phases, leading to the self-duality protected criticality and multi-
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continuous 1st-order
multi-critical

Ferromagnet

Paramagnet

(a) (1+1)D

continuous 1st-order
multi-critical

Bosonic SPT

Trivial

(b) (2+1)D

continuous 1st-order
multi-critical

XY–AFM

VBS

(c) (2+1)D

Figure 1.1. Quantum phases related by the duality or emergent symmetry: (a) ferromagnetic
(ordered) and the paramagnetic (disordered) phases across the Ising transition are related by
the Kramers-Wannier duality, (b) bosonic symmetry protected topological (SPT) and trivial
phases are related by the fermionic particle-vortex duality, (c) XY antiferromagnetic (AFM)
and valence bond solid (VBS) phases are related by an emergent Z2 symmetry. In all phase
diagrams, the vertical axis is the relevant perturbation that drives the transition between the
duality/symmetry-related phases, and the horizontal axis is always taken to be the square of the
transition-driving perturbation. In phase diagrams (b,c), the existence of continuous transitions
between the adjacent phases is assumed, which corresponds to the N f = 2 QED3 field theory
without four-fermion interactions.

criticality[3, 51, 18, 189, 220, 76]. For example, as illustrated in Fig. 1.1(a), in the presence

of the Kramers-Wannier duality (enforcing J = h), a generic Ising chain (with all additional

duality-allowed terms like −K(XiXi+1 + Zi−1Zi+1)) can either preserve the self-duality and

remain gapless along the Ising critical line (K < Kc), or spontaneously break the self-duality

and becomes gapped along the first-order transition line (K > Kc). The continuous and first-

order Ising transitions are separated by a multi-critical point (K = Kc), i.e. the tricritical Ising

point[45, 294]. The multi-critical point can be circumvented if the self-duality is explicitly

broken (e.g. by J ̸= h). In this sense, the multi-criticality is protected by self-duality.

Similar continuous to first-order transition also happens in higher dimensions between

the duality-related quantum phases. Here we will explore the (2+1)D example of self-

duality-protected multi-criticality. In particular, we will consider the topological transition

between the bosonic symmetry protected topological (SPT) phase and the trivial phase, as

illustrated in Fig. 1.1(b), where the two phases across the transition are related by the self-

duality[432, 340, 177, 81, 29] of the quantum electrodynamics in (2+1)D (QED3) with fermionic
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matters at flavor number N f = 2. This theory also describes the deconfined quantum critical

point (DQCP)[350, 348, 232] between the XY antiferromagnet (AFM) and the valence bond

solid (VBS) in square-lattice quantum magnets with the easy-plane spin anisotropy, as shown

in Fig. 1.1(c). In this case, the two phases are related by a Z2 subgroup of the emergent O(4)

symmetry that maps the two-component XY-AFM order parameter to the two-component VBS

order parameter. Imposing these emergent symmetries (including the self-duality) essentially

promotes the tuning parameters to the fluctuating scalar fields and prohibits the explicit mass

terms. This leads to a unified field theory that describes the continuous-to-first-order transition

in these systems. Such multi-critical point lies in the universality class described by the QED3-

Gross-Neveu[156, 340, 207] (QED3-GN) theory. More generally, the Chern-Simons (CS) term

for the gauge fields can be included to describe the multi-critical point of the exotic quantum

phase transitions.

To further investigate the stability of this (2+1)D self-duality-protected multi-criticality,

we extend the field theory to the large fermion flavor number (large N f ) limit, and use the

1/N f expansion[156, 431, 430, 192, 446, 6, 47] to analyze the renormalization group (RG)

flow of the fermion quartic operators, including the mass-mass (ψ̄Mψ)2 and current-current

(ψ̄γµMψ)2 interactions, at the QED3-GN fixed point. Our analysis indicates that the DQCP and

the multi-criticality can be driven to the first-order transition by current-current interactions. Such

current-current interactions can be realized in the lattice spin model as a staggered dimer-dimer

interaction (or stagger-Q) as proposed and observed in the recent quantum Monte Carlo (QMC)

studies[459, 460]. Unlike the conventional dimer-dimer interaction that couples the dimers along

the vertical or horizontal directions on the square lattice, the stagger-Q interaction couples the

dimers along the diagonal direction. The QMC results indicate that such a stagger-Q interaction

may be responsible for driving the DQCP between continuous and first-order transitions (see

Sec. 1.4.2 for more concrete discussion of the QMC results and our theoretical explanation).

The RG analysis can be further generalized to the QED3-GN theory with additional

Chern-Simons (CS) terms for the gauge field. Although there is a lack of known examples
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of self-dual theory with a non-zero-level CS term, a similar multi-critical point separating the

continuous and first-order transition still exists and can be analyzed. The result can be applied to

the direct transition between bosonic fraction quantum Hall (FQH) and superfluid (SF) phases in

interacting boson systems[24, 21].

1.2 Self-Duality of N f = 2 QED3

The fermionic particle-vortex duality[363, 273] dualizes a free Dirac fermion theory to

N f = 1 QED3 theory with CS terms and the fermion operator is mapped to the fermion operator

combined with gauge fluxes. Since CS terms break parity symmetry, the orientation reversed

version of the fermionic particle-vortex duality is obtained by changing the sign of the CS terms.

By combining the fermion particle-vortex duality and its orientation reversed version, one can

obtain a duality between two N f = 2 QED3 theories[432, 29, 177] described by the following

Lagrangians,

iψ̄1 /Da+X ψ1 + iψ̄2 /Da−X ψ2 +
1

4π
(a+Y )d(a+Y )+

2
4π

(XdX−Y dY ) (1.1)

⇐⇒ iχ̄1 /Dã+Y χ1 + iχ̄2 /Dã−Y χ2 +
1

4π
(ã+X)d(ã+X), (1.2)

where ψi,χi are fermion fields, /Da ≡ γµ(∂µ − iaµ) is the Dirac operator coupled to the U(1)

gauge field a. ada ≡ εµνρaµ∂νaρ is understood as the exterior product a∧ da, and the same

applies for other CS terms. We adopt the convention as the lower case letters a, ã represent the

dynamical U(1) gauge fields which will be integrated over in the path integral, and the upper

case letters X ,Y represent the background gauge fields which are used to keep track of the U(1)X

and U(1)Y global symmetries.

The two theories (at least) have the common UV symmetry U(1)X ×U(1)Y . For the U(1)

gauge theories in 2+1d, they automatically have an emergent global U(1)M magnetic symmetry

due to the Bianchi identity εµνλ ∂µFνλ = 0 where Fνλ is the gauge field strength. The charged

operator of this U(1)M symmetry is the magnetic monopole operator which creates the gauge
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flux and its coupling with the background gauge field are 1
2π

adY, 1
2π

ãdX in the both hand sides

respectively. The symmetry charges of the operators are,

U(1)a U(1)X U(1)Y

Ma 1 0 1

ψ1 1 1 0

ψ2 1 −1 0

↔

U(1)ã U(1)X U(1)Y

Mã 1 1 0

χ1 1 0 1

χ2 1 0 −1

(1.3)

and the gauge invariant operators are built from these operators.

Renaming the fermion fields ψ ↔ χ will exchange X ↔ Y and add a background term

2
4π
(XdX−Y dY ) to the Lagrangian, the left-hand-side (LHS) Eq. (1.1) and the right-hand-side

(RHS) of Eq. (1.2) of the duality will be swapped, therefore, establishes the self-duality.

This self-duality can also be understood as exchanging the “electric charge” and the

“magnetic charge”. On the LHS of the duality, the fermion field ψi is charged under the U(1)X

flavor symmetry, and the magnetic monopole operator Ma which creates 2π-flux for a is charged

under the magnetic U(1)Y due to the mixed CS term 1
2π

adY (note that Ma is the bare magnetic

monopole operator which is not gauge invariant due to the CS term 1
4π

ada, the gauge-invariant

operators are the combination of the Ma and fermion creation operators). However, on the RHS,

the fermion field χi is charged under U(1)Y and the magnetic monopole operator Mã is charged

under U(1)X . This suggests that the fermion creation operators (resp. monopole operators) on the

LHS become monopole operators (resp. fermion creation operators) on the RHS. More details of

the self-duality are presented in App. A.2

Here is a side-note on the conventions to regularize the fermion path integral:

One convention is that integrating out a single Dirac fermion in (2+1)D will contribute

a (−1)-level CS term for the negative fermion mass and a 0-level CS term for the positive

fermion mass. Physically, fermions are doubled when putting on the lattice, one Dirac fermion is

accompanied by a massive fermionic partner, otherwise, the single Dirac fermion will have parity
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anomaly in (2+1)D [420]. This convention assumes that the massive fermionic partner is not

integrated out beforehand and it is more explicit on the quantization of the level of Chern-Simons

term, this is easier to analyze the symmetry charges of the operators since the magnetic monopole

operator has charge k if there is a level-k CS term. We will use this convention in discussing the

dualities of quantum field theories, such as the self-duality of N f = 2 QED3 .

Another convention is that integrating out the fermion will contribute a sgn(m)
2 -level CS

term, this assumes that the massive fermionic partner has been integrated out beforehand and

this is relevant to the analysis of the scaling dimensions of the critical theory since the massive

fermionic partner does not involve in the transition. Using the later convention, half level CS

term will involve in the massless theory, and now the Chern-Simons level is effectively −N f
2 + k

where N f is the number of fermion flavors. We will adopt this convention in the discussion of

renormalization group analysis on the critical behavior of the theory.

Schematically, the fermion theory with the level-k CS term using the first convention is

related to that using the second convention by,

i
N f

∑
i=1

ψ̄i /Daψi +
k

4π
ada︸ ︷︷ ︸

the 1st convention

∼= i
N f

∑
i=1

ψ̄i /Daψi +
k−N f /2

4π
ada︸ ︷︷ ︸

the 2nd convention

. (1.4)

The duality presented in Eq. (1.1) and (1.2) will be equivalent to the self-dual theory presented

in Ref. [432] by converting to the second convention of the fermion path integral regularization.

However, both conventions have the same gauge-invariant operators and they yield the same

response theories in the gapped phases.

1.2.1 Phase diagram

The N f = 2 QED3 has two relevant fermion mass deformations, the singlet mass

mψ̄1ψ ≡ m(ψ̄1ψ1 + ψ̄2ψ2) and the triplet mass m′ψ̄σ3ψ ≡ m′(ψ̄1ψ1− ψ̄2ψ2), where σ i is

the i-th Pauli matrix. Under these mass deformations, one can integrate out the fermions and
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obtain the following effective theories for the background gauge fields Eq. (1.1)[432, 81],


2

4π
(XdX−Y dY ) m > 0, m′ = 0

0 m < 0, m′ = 0
(1.5)


1

2π
ad(Y +X)+ 1

4e2 f 2 + ... m′ > 0 m = 0

1
2π

ad(Y −X)+ 1
4e2 f 2 + ... m′ < 0 m = 0

. (1.6)

where e is the electron charge. The ... represents the gapped degrees of freedom that are not

important at low energy since the low-energy physics is dominated by the Maxwell term 1
4e2 f 2

and the first term which describes the gapless Goldstone boson associated to the broken symmetry

U(1)Y+X or U(1)Y−X .

When the singlet mass m is non-zero, the two response theories in Eq. (1.5) differ

by a U(1)X ,2 × U(1)Y,−2 CS term, where the number indicates the level of the CS term,

i.e. 2
4π
(XdX −Y dY ), which corresponds to the topological response of a bosonic SPT state

with U(1)X ×U(1)Y symmetry1. Therefore, the m > 0 and m < 0 phases should be ascribed to

the topological and trivial SPT phases respectively2. When the triplet mass term m′ is non-zero,

the effective theories in Eq. (1.6) describe the Goldstone modes in the spontaneous symmetry

breaking (SSB) phases with broken symmetries associated to Y +X and Y −X respectively

(two different combinations of the generators of U(1)X ,U(1)Y ). In the context of square-lattice

easy-plane quantum magnets[315, 262], we might interpret U(1)Y+X as the in-plane spin rotation

symmetry and U(1)Y−X as the lattice rotation symmetry (ignoring the discrete nature of the actual

C4 rotation), then the m′ > 0 and m′ < 0 phases could be identified as the XY-AFM and the VBS

phases respectively. Fig. 1.2(a) shows the phase diagram summarizing the above interpretations.

Under the duality transformation, the singlet mass is odd (m→−m) while the triplet mass is

1Since the gauge-invariant operators in UV are all bosonic (no single fermion operators), the resulting gapped
phases can possibly connect to the bosonic theory.

2Which phase is topological/trivial is only a matter of convention, as the notion of SPT phases is only relative.
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Figure 1.2. The phase diagram of N f = 2 QED3 theory. The singlet mass m drives the SPT
transition between two symmetric phases, and the triplet mass m′ drives AFM-VBS transition
between two symmetry broken phases.

even (m′→ m′), which effectively swap the SPT and trivial phases but leaving the AFM and

VBS phases unchanged (see Fig. 1.2). To restore the original phase diagram after the duality

transformation, one should exchange U(1)X ↔ U(1)Y and add a background U(1)X ,2×U(1)Y,−2

CS term to the Lagrangian.

1.2.2 Self-duality as a symmetry

As pointed out in Ref. [29, 177], the explicit UV symmetry U(1)X × U(1)Y in

Eq. (1.1) and (1.2) can be enhanced to the emergent symmetry SU(2)X×SU(2)Y
Z2

∼= SO(4) in

the IR. Together with the self-duality ZD
2 which exchanges SU(2)X ↔ SU(2)Y and attaches

a SU(2)X ,1×SU(2)Y,−1 CS term (which falls back to the U(1)X ,2×U(1)Y,−2 CS term in the

UV), the IR symmetry becomes SO(4)⋊ZD
2
∼=O(4). However, as the IR theory is shifted by the

SU(2)X ,1×SU(2)Y,−1 background response under the self-duality transformation, the ZD
2 and

the SO(4) have the mixed ’t Hooft anomaly, thus they cannot be simultaneously coupled to the

background gauge fields and promoted to the dynamical ones. Nonetheless, it can be viewed as

the boundary of a (3+1)D SPT with the full O(4) symmetry. With appropriate counterterm in the

bulk, the whole system can also have time-reversal symmetry ZT
2 , altogether gives O(4)×ZT

2 as

suggested in Ref. [393].

Note that the singlet mass m is invariant under SO(4) but is odd under ZD
2 , while
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the triplet mass m′ explicitly breaks SO(4) (as it is in the (3,3) representation[81, 393] of

SU(2)X ×SU(2)Y ) but is even under ZD
2 . Hence, if both the emergent SO(4) and the self-duality

ZD
2 symmetries are imposed, no fermion bilinear mass could be included in the Lagrangian.

1.2.3 Self-duality protected multi-criticality

Although the mass term cannot be added to the Lagrangian, squares of the mass term

still can, which may take the form of four-fermion interactions (ψ̄Maψ)2, where Mas are mass

matrices acting on the flavor indices. Adding these mass-squared deformations to the QED

theory Eq. (1.1) could potentially drive the theory to new fixed points[192]. The fate of the self-

duality ZD
2 and the SO(4) symmetry depends on the RG flow of such mass-squared deformations.

If both symmetries are preserved, the theory will remain critical (as no mass deformation is

allowed), which describes the continuous transition between AFM and VBS phases (as well as

the transition between SPT and trivial phases), which is also known as the O(4) DQCP. When

the self-duality ZD
2 symmetry is spontaneously broken, the SPT transition becomes first-order.

When the emergent SO(4) symmetry (more specifically the Z2 subgroup that swaps U(1)Y+X

and U(1)Y−X ) is spontaneously broken, the AFM-VBS transition becomes first-order. These first-

order transitions are separated from the continuous transition by the multi-critical points/lines.

We will analyze the RG flow of the generic four-fermion interactions at these multi-critical points,

aiming to understand how certain kinds of interactions can drive the DQCP from a continuous

transition to a first-order transition.

The multi-critical point happens when Dirac fermion masses change the sign. To analyze

the scaling dimensions of the operators at the multi-critical point, we do not need to include

the massive fermionic parton which is served to cancel the subtlety in the fermion path integral

regularization. We rewrite Eq. (1.1) as

iψ̄1 /Da+X ψ1 + iψ̄2 /Da−X ψ2 +
1

2π
adY +

1
4π

(XdX−Y dY ). (1.7)
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The CS terms look different from Eq. (1.1), because we integrate out the massive fermionic

partners beforehand and it corresponds to the second convention as discussed in the last three

paragraphs of Sec. 1.2, following from Ref. [432]. Note that the changing of convention will not

change the gauge invariant operators as well as the different gapped phases. The background

gauge fields X and Y won’t affect the dynamics and can be set to zero. Adding the mass-squared

deformations amounts to promoting the mass terms m and m′ to the dynamic scalar fields φ1 and

φ2, that are coupled to the fermions via Yukawa-type couplings φaψ̄Maψ , this can also be seen

by using the Hubbard–Stratonovich transformation. Together with their own boson mass terms

raφ 2
a , the action reads as,

2

∑
i=1

iψ̄i /Daψi +φ1ψ̄1ψ +φ2ψ̄σ
3
ψ

+
2

∑
a=1

1
2g2 φa(ra−∂

2)φa +
λ

4
(φaφa)

2. (1.8)

For each scalar field φa, the boson mass ra has a corresponding critical value ra,c. When ra≫ ra,c,

the boson is gapped and ⟨φa⟩= 0. When ra≪ ra,c, the boson is condensed, such that ⟨φa⟩ ≠ 0

and the symmetry is spontaneously broken. This will dynamically generate the corresponding

fermion mass terms. We may loosely set ra,c = 0 and assume the bosons are critical when ra = 0

in the following discussion.

The qualitative phase diagram of Eq. (1.8) is shown in Fig. 1.3, which can be considered

as the extension of the Fig. 1.2’s origin, since no fermion mass terms m,m′ are added in the

Eq. (1.8). In the phase diagram, when r1,r2 ≫ 0 (the blue region), both bosons are gapped,

leaving Eq. (1.8) to be the N f = 2 QED3 theory at low energy. As discussed previously, this

theory has an emergent O(4) symmetry and describes the continuous DQCP transition between

the AFM and VBS phases (i.e. between the U(1)Y+X and U(1)Y−X SSB phases) when tuning the

triplet fermion mass m′ externally. If r1 is at its critical value and r2≫ 0 (along the red line),

the critical theory becomes N f = 2 QED3-Gross-Neveu model, which describes the continuous
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Figure 1.3. Mean-field phase diagram of Eq. (1.8).

DQCP with emergent SO(5) symmetry as proposed in Ref. [393]. If instead, r2 is at its critical

value and r1≫ 0 (across the blue line), the theory describes the multi-criticality between the

O(4) DQCP and the first-order AFM-VBS transition. If both r1 and r2 are critical (the purple

point), the theory describes the multi-criticality between the SO(5) DQCP and the first-order

AFM-VBS transition.

To see that the φ2 condensed phase (the orange region) corresponds to the first-order

AFM-VBS transition, we consider driving the AFM-VBS transition by an external triplet mass

m′. The actual mass term seen by the fermion will be (m′+⟨φ2⟩)ψ̄σ3ψ , meaning that the driving

parameter m′ needs to overcome the expectation value ⟨φ2⟩ in order to change the sign of the

triplet mass effectively and switch the system from one phase to another. Therefore ⟨ψ̄σ3ψ⟩

will exhibit the hysteresis behavior as m′ is tuned back and forth, which manifests the first-order

transition. Without the external driving (m′ = 0), the ground state will be degenerated between

AFM and VBS phases.

On the other hand, the φ1 condensed phase (the green region) is a symmetric gapped

phase whose ground state is degenerated between topological and trivial SPT phases, which may
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as well be interpreted as the 1st-order SPT transition if the singlet mass m is tuned externally.

The φ1 condensed phase and the φ2 condensed phase do not coexist, because they compete

with each other to gap out the fermion, and the ground state is determined by the condensate

that has a larger vacuum expectation value |⟨φa⟩|. When the competition reaches a balance at

|⟨φ1⟩|= |⟨φ2⟩| (along the gray dashed line), it triggers a direct transition between the symmetric

and the SSB phases (either the in-plane magnetic order or the VBS order), which is of the 3d XY

universality.

The multi-criticality between the continuous and first-order transitions cannot be

circumvented in the presence of the anomalous O(4) symmetry. However, it is possible that the

protecting symmetry may be broken spontaneously under other potentially relevant perturbations,

such that the O(4) DQCP is not stable in general. In the following, we will explore this possibility

by analyzing the effect of generic four-fermion interactions in the QED-GN theory using the

large-N renormalization group (RG) approach.

1.3 Large-N Renormalization Group Analysis

1.3.1 QED-Gross-Neveu-Chern-Simons theory

We extend Eq. (1.8) to N f flavors of Dirac fermions ψ = (ψ1, · · · ,ψN f )
⊺ coupled to the

dynamical U(1) gauge field, together with Yukawa-type couplings to Nb flavors of scalar bosons

φa (a = 1, ...,Nb). The bosons will have their kinetic terms and can be tuned critical by the ra

parameters. We also add the level-k CS term for the dynamical U(1) gauge field (to be general)

and consider the QED3-Gross-Neveu-Chern-Simons (QED-GN-CS) theory as follows

L = ψ̄(1N f ⊗ γ
µ)(∂µ − iaµ)ψ +φaψ̄(Ma⊗12)ψ

+
1

2g2 φa(ra−∂
2)φa +

λ

4
(φaφa)

2

+
ik
4π

ε
µνλ aµ∂νaλ +

1
4e2 fµν f µν .

(1.9)

23



Here, matrices 1N f ,M
a act on the flavor space, while matrices 12,γ

µ act on the spinor space.

We take the γ-matrices to be (σ3,σ1,σ2). Mas are vertices of Yukawa couplings associated

with fermion bilinear masses, which are assumed to be orthogonal to each other such that

tr
(
MaMb) = Mδab. The last term is the Maxwell term, with the gauge curvature defined as

fµν = ∂µaν −∂νaµ .

The multi-critical points/lines in the phase diagram Fig. 1.3 correspond to tuning one or

more scalar bosons to critical. We assume that all scalar fields in the effective theory Eq. (1.9)

correspond to the critical bosons (other gapped bosons will be dropped from the effective theory

automatically). The theory is tuned to the QED-GN-CS fixed point. The boson mass term

(ra− ra,c)φ
2
a is a relevant perturbation that drives the system away from the multi-criticality. It

also is possible that some types of fermion interactions may flow to the boson mass term φ 2
a , as

it is equivalent to the mass-mass interaction (ψ̄(Ma⊗12)ψ)2 under the Hubbard–Stratonovich

transform. Such fermion interactions will appear relevant at the QED-GN-CS fixed point and

can drive the system away from multi-criticality as well.

1.3.2 Renormalization of four-fermion interactions

To explore this possibility, we carry out a systematic study of the scaling dimension of

four-fermion interactions at the QED-GN-CS fixed point (see App. A.1 for technical details). We

will follow the large-N f expansion approach recently developed for the QED3-GN model in [47],

where the scaling dimensions of fermion and boson bilinear operators were analyzed. Here, we

will carry over the analysis to four-fermion operators, which has not been presented yet. To be

more general, we also include a CS term, such that our result could potentially be applied to

other DQCP such as the superfluid to bosonic fractional quantum Hall transition (described by

the QED-GN-CS fixed point at level k = 1[24]).

In particular, our scheme to extend Eq. (1.8) to large N f corresponds to generalizing the

fermion flavor symmetry group from SU(2)→ SU(2N), such that the fermion flavor number

24



scales as N f = 2N with N→ ∞. The Yukawa vertices are generalized to

{Ma}= {12,σ
3}→ {Ma

N}= {12,σ
3}⊗1N . (1.10)

where {Ma} denotes the set formed by Mas, similar for {V α}. The perturbative interactions are,

Lint = uα,m(ψ̄V α ⊗12ψ)2 +uα,µ(ψ̄V α ⊗ γ
µ

ψ)2 (1.11)

where V α = σα ⊗1N (α = 0,1,2,3). uα,m, uα,µ represent the coupling coefficient of the mass-

mass interactions and the current-current interactions respectively, which can be combined to

a vector uα,i = (uα,m,uα,0,uα,1,uα,2)
⊺ in each α-channel. The RG equations for uα,i takes the

following general form,

duα,i

dℓ
=

(
−1+

64
3π2N f

M(α,i),(β , j)

)
uβ , j (1.12)

where the repeated indices are summed over and M is a matrix with entries given by the O(1/N f )

corrections, the detailed calculations are presented in App. A.1. One can further diagonalize M

to find the eigen-channels. We take N f → 2 to restore the case of Eq. (1.8). The large-N f analysis

is not well controlled for small N f , as sub-leading corrections may not be sufficiently small.

However, in our case, we assume the N f = 2 QED3 has the IR conformal fixed point which

is suggested by the QMC simulation[315] and then perform the analysis on the perturbative

four-fermion interactions. It turns out that our large-N f RG results are consistent with the latest

QMC simulation[459, 460, 434].

The first quadrant, O(4) DQCP: Without the contribution from the critical bosons, there is no

relevant channel for α = 0. But for α = 1,2,3, it has one relevant channel,

duα,i

dℓ
= 2.24uα,i, with uα,i = (3,1,1,1)⊺, (1.13)
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and the spatio-temporal anisotropic channels are irrelevant. Therefore the mass-mass interaction

can be generated from the current-current interaction under the RG flow, which could potentially

drive the O(4) DQCP to a first-order transition (if the generated mass-squared interaction is

strong enough to overcome the bare r2 term).

With large-N f , uα,i are independent parameters. But for N f = 2 (i.e. N = 1), the Fierz

identity demands the uniform combination ∑α=1,2,3 uα,i “fuses” into the α = 0 channel, which

is irrelevant. Additionally, the explicit U(1)X ×U(1)Y symmetry guarantees u1,i = u2,i, hence

for N f = 2, there is only one independent channel of the relevant four-fermion interaction with

α = 3.

The positive-r2 axis, SO(5) DQCP: In this case, the scalar boson associated to the singlet mass

is critical, {Ma} = 12. There is still no relevant channel for α = 0. For α = 1,2,3, it has the

same relevant channel as the previous case,

duα,i

dℓ
= 1.70uα,i, with uα,i = (3,1,1,1)⊺. (1.14)

Hence, the stagger-Q term still overlaps with the relevant channel at SO(5) DQCP fixed point.

Similarly, as discussed in the last paragraph, for N f = 2, there is only one independent channel

of the relevant four-fermion interaction with α = 3.

The positive-r1 axis and the origin: Both cases are more involved. The positive-r1

axis describes the transition between the O(4) DQCP and first-order transition, and the

origin is a multi-critical point where 3 critical lines joins. Both φ1 and φ2 scalar fields

are critical at the origin, such that the Yukawa vertices are {Ma} = {12,σ
3}. The

eigen-channels will have mixture of V 0,V 3 or V 1,V 2, because Ma will mix V 0 with V 3

as well as V 1 with V 2. Considering {V α} = {V 0,V 3}, there is one relevant channel

with u03 ≡ (u0,i;u3,i) = (−0.03,−0.071,−0.071,−0.071;0.82,0.32,0.32,0.32)⊺, and the RG
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equation reads

du03

dℓ
= 1.89u03 (positive-r1 axis),

du03

dℓ
= 1.35u03 (origin).

(1.15)

The detailed calculation is presented in App. A.1. With one more critical boson at the origin

compared to the positive-r1 axis, the RG eigenvalue of the relevant interaction is smaller at the

SO(5) multi-critical point compared to the O(4) multi-critical line.

1.4 Implications of RG Analysis

1.4.1 Consequence of the relevant interactions

The RG analysis suggests that the SO(5) and O(4) DQCP may not be stable against the

perturbation of certain Lorentz symmetry breaking four-fermion interactions in the field theory.

The interaction is relevant and flows to the following form

Lint = u(3(ψ̄σ
3
ψ)2 +(ψ̄σ

3
γ

µ
ψ)2). (1.16)

Depending on the sign of the coefficient u, the interaction may drive different instabilities of

the QED theory. By analyzing all possible Wick decomposition of the interaction term, we

found the leading eigen decompositions with both positive and negative interaction strength is

Lint = u(ψ̄σ3ψ)2 + · · ·−u(ψ̄ψ)2. Therefore, if u < 0, the interaction favors the condensation

of the triplet mass term ψ̄σ3ψ , or equivalently the scalar field φ2 that couples to it. In this case,

the emergent SO(4) symmetry is spontaneously broken, and the AFM-VBS transition becomes

first-order. On the other hand, if u > 0, the interaction favors the condensation of the singlet

mass term ψ̄ψ , or equivalently the corresponding scalar field φ1, which spontaneously breaks

the self-duality and results in the symmetric gapped state. Fig. 1.4 shows the extension of the

phase diagram in the presence of four-fermion interaction.
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The next leading eigen decompositions of the interaction are the singlet pairing channels

−2
3u|ψ⊺σ2γ0γxψ|2 and −2

3u|ψ⊺σ2γ0γyψ|2 with slightly less interaction strength. When u > 0,

the system may condense the Cooper pairs ψ⊺σ2γ0γx,yψ , breaking the Lorentz symmetry. Since

this term commutes with some of the kinetic terms in the Hamiltonian, it will split the Dirac

points in the momentum space but will not gap out the fermions. It will also Higgs the U(1)

gauge group down to Z2. Therefore, it opens the possibility for the gapless Z2 spin liquid phase

instead of the symmetric gapped phase away from the multicritical point, which provides a

candidate scenario for the phase diagram observed in the recent QMC study Ref. [434] where

the first-order transition and the gapless Z2 spin liquid phase are separated by the multicritical

point. Another scenario of the gapless Z2 spin liquid phase near the DQCP is recently proposed

in Ref. [352]. The Lorentz symmetry is also broken by the Higgs field. However, the fermion

flavors are doubled in that proposal compared to ours, thus it describes a different gapless Z2

spin liquid phase (see App. A.3 for details). For example, the entanglement entropy contributed

from the massless degrees of freedom will be different, which could be distinguished in future

numerical studies.

Figure 1.4. Extended phase diagram in the presence of relevant interaction u. The u = 0 plane
corresponds to the phase diagram in Fig. 1.3.
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1.4.2 Role of the stagger-Q perturbation

Recent QMC studies revealed the possibility of tuning the DQCP between continuous

and first-order transitions[459, 460]. In particular, the stagger-Q term (denoted by Qs, or the

so-called Z-deformation) was proposed in [459] as a modification of the J-Q model,

H = HJQ +HQs,

HJQ =−J ∑
i

Px
i −Q∑

i
Px

i Px
i+ŷ +(x↔ y),

HQs =−Qs ∑
i

Px
i Px

i+x̂+ŷ +(x↔ y),

(1.17)

where Px
i = 1/4−SSSi ·SSSi+x̂ and Py

i = 1/4−SSSi ·SSSi+ŷ are the dimer operators on the x and y bonds

respectively. The stagger-Q term Qs favors a staggered VBS pattern, and hence the name. The

illustration of the Q term and the stagger-Q term is shown in Fig. 1.5. Another version of the

stagger-Q term that involves three dimers interacting along the diagonal direction is studied

in [460]. The three-dimer stagger-Q term has the same symmetry as the two-dimer stagger-Q

term, and shares the similar physical effect (both favors the same staggered VBS order). The

QMC phase diagram in [460] explicitly shows that the stagger-Q term can drive the DQCP to a

first-order transition. We will connect this observation to our field-theory analysis.

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQs

QsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQs

Figure 1.5. Illustration of the (standard) Q term (in blue) and the stagger-Q term (Qs, in red) on
the square lattice. Both are dimer-dimer interactions, but along different directions.

In the momentum space, the stagger-Q term should correspond to the dimer-dimer

interaction near momentum (π,π), which can be argued as follows. Let Px,y
qqq = ∑i Px,y

i e−iqqq·rrri be
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the dimer operator of momentum qqq. A large Qs term favors the dimer to order in the staggered

pattern (along the diagonal direction), which corresponds to the condensation of the dimer order

parameter at momentum qqq = (π,π), i.e. ⟨Px
(π,π)⟩ ≠ 0 or ⟨Py

(π,π)
⟩ ≠ 0. Therefore, the effect of the

stagger-Q interaction HQs can be expressed as

HQs ∼−Qs
(
(Px

(π,π))
2 +(Py

(π,π)
)2), (1.18)

because a large Qs in Eq. (1.18) also promotes the ordering of Px,y
(π,π)

, matching the effect of HQs

in the real space Eq. (1.17).

At low-energy, the dimer fluctuation near momentum (π,π) should correspond to the

spatial component of the Noether current associated with the emergent U(1)Y−X symmetry that

rotates the VBS order parameters:

Px
(π,π) ∼ jy

VBS,P
y
(π,π)
∼ jx

VBS. (1.19)

This mapping was derived in Ref. [408] from the fermionic parton construction. A simple

symmetry argument is as follows. We first notice that Px
(π,0) and Py

(0,π) are the VBS order

parameters favored by the standard Q term in the J-Q model. They can be combined into

a complex order parameter ΨVBS = Px
(π,0) + iPy

(0,π). The U(1)Y−X rotation corresponds to

ΨVBS→ eiθ ΨVBS, therefore the associated current operator should be

jx
VBS = iΨ†

VBS∂xΨVBS +h.c.

= Py
(0,π)∂xPx

(π,0)−Px
(π,0)∂xPy

(0,π),

jy
VBS = iΨ†

VBS∂yΨVBS +h.c.

= Py
(0,π)∂yPx

(π,0)−Px
(π,0)∂yPy

(0,π).

(1.20)

Thus both jx
VBS and jy

VBS carry the total momentum (π,π) (as a summation of (π,0)

and (0,π)). Under the (site-centered) reflection about the y axis, i.e. (x,y) → (−x,y),
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we have (Px,Py) → (−Px,Py), (∂x,∂y) → (−∂x,∂y), thus ( jx
VBS, jy

VBS) → ( jx
BVS,− jy

BVS)

transforms as a pseudo-vector. Similarly, under the reflection (x,y) → (x,−y), we have

( jx
VBS, jy

VBS) → (− jx
BVS, jy

BVS). Furthermore, jx,y
VBS does not transform under spin rotation

symmetry. All these symmetry properties are precisely matched by Eq. (1.19), which speaks for

its validity.

Using the operator correspondence in Eq. (1.19), Eq. (1.18) can be casted into

HQs ∼−Qs
(
( jy

VBS)
2 +( jx

VBS)
2), (1.21)

which identifies the stagger-Q term to the current-current interaction in the spatial channel. We

can make further connection to the field theory. Since the U(1)Y−X symmetry is generated

by ψ
†
1 ψ1−ψ

†
2 ψ2 in the N f = 2 QED3 theory, the corresponding Noether current should be

jµ

VBS = ψ̄σ3γµψ , therefore the current-current interaction in Eq. (1.21) further translates to the

four-fermion interaction in Eq. (1.11) with u3,i ∝ Qs(0,0,1,1)⊺. According to the RG analysis

above, the current-current interaction will generate the mass-mass interaction and flow towards

the combined interaction in Eq. (1.16).

Since the u term in Eq. (1.16) corresponds to the stagger-Q term in the lattice model, the

original J-Q model may be very close to u = 0, i.e. the QED-GN fixed point in the field theory,

though u should never be precisely zero. But the stagger-Q term in the lattice model will turn on

a non-negligible u term in the field theory which is relevant at the QED-GN fixed point, therefore

render the transition first order, as was observed numerically. In fact, according to Eq. (1.14),

our calculation of the scaling dimension of the relevant four fermion term is 1.3 = 3−1.7 at the

SO(5) DQCP, which is close to the observed scaling dimension of the stagger-Q deformation of

the J-Q model (∆Z ∼ 1.4 in Ref. [459]).
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〈Sz〉 ≠ 0

Figure 1.6. Schematic phase diagram of the easy-plane J-Q model Eq. (1.22).

The above field theory understanding also applies to the easy-plane J-Q model[315, 262],

H = HJQ +H∆,

H∆ =−J∆∑
i

Sz
i S

z
i+x̂ +(x↔ y),

(1.22)

where the parameter ∆ tunes the easy-plane anisotropy. ∆ = 0 is the SU(2) isotropic limit, and

∆ = 1 is the U(1)⋊Z2 easy-plane limit.

Tuning ∆ away from 0 breaks the spin SU(2) symmetry and the u term should in principle

also exist for the easy-plane J-Q model, but because it is more relevant compared to that in

the SU(2) symmetric case (according to Eq. (1.13) and Eq. (1.14)), the easy-plane J-Q model

may be a first-order transition more obviously than the isotropic limit. Based on the phase

diagram Fig. 1.4, the system will either enter an intermediate symmetric gapped phase or exhibit

a first-order AFM-VBS transition, in the presence of spin anisotropy. Given the physical meaning

of the anisotropy term ∆, we can identify the symmetry gapped phase to the easy-axis anisotropy

(∆ < 0) and the first-order transition to the easy-plane anisotropy (∆ > 0). A schematic phase

diagram is presented in Fig. 1.6 for the lattice model Eq. (1.22). The symmetric gapped phase

may as well be interpreted as the Ising ordered phase of ⟨Sz⟩ ≠ 0, since the condensation of φ1

field corresponds to the ordering of ⟨Sz⟩. The scenario that the AFM-VBS transition becomes

first-order as the easy-plane anisotropy is turned on is consistent with the recent QMC study

Ref. [108].
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1.5 Summary

In this work, we studied the N f = 2 QED3 with self-duality. The N f = 2 QED3 has

SO(4) symmetry in the IR, if imposing the self-duality symmetry, it can be enhanced to O(4).

The singlet mass is invariant under SO(4) but self-duality odd and the triplet mass is transformed

by SO(4) but self-duality even. Requiring the O(4) symmetry, the theory cannot have explicit

mass terms, which enables us to treat the mass terms as fluctuation scalar fields and to investigate

the continuous-to-first-order transition driven by the mass fluctuations. The multi-critical points

(lines) separating the continuous and first-order transitions can be described by the QED-GN

theory.

We further analyzed the stability of the theory under the four-fermion interactions. In

particular, we focus on the spatial current-current interaction of fermions in the field theory,

which corresponds to a class of dimer-dimer interaction (the stagger-Q term) in the lattice spin

model[459, 460]. This operator has been shown to drive the continuous DQCP to a first-order

transition in recent numerical works. Our analysis indicates that such dimer interaction can

be relevant at the O(4) DQCP and adjacent multi-critical lines, which generally destabilize

the continuous DQCP to first-order transitions (or intermediate gapped phases). Our finding

provides a theoretical understanding of the numerically observed first-order transition driven by

the dimer-dimer interaction. Our analysis also suggests a possibility to have Z2 spin liquid in

this model[434].

We provide systematically large-N renormalization group calculation of the general

N f = 2 QED3 with Gross-Neveu term in App. A.1. Thanks to viewing the Feynman diagrams as

string diagrams of symmetry group representations[100], the complicated diagram at O(1/N f )

can be expressed by a few group parameters. Scaling dimensions of generic fermion/boson

bilinear terms and four-fermion perturbations are presented. We expect these general results will

find broader applications in other exotic quantum critical systems.

Chapter. 1, in full, is a reprint of the material as it appears in Da-Chuan Lu, Cenke Xu, and
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Yi-Zhuang You. Self-duality protected multicriticality in deconfined quantum phase transitions.

Physical Review B, 104(20):205142, November 2021. The dissertation author was the primary

investigator and author of this paper.
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Chapter 2

Nonlinear sigma model description
of deconfined quantum criticality in
arbitrary dimensions

In this paper, we propose using the nonlinear sigma model (NLSM) with the Wess-

Zumino-Witten (WZW) term as a general description of deconfined quantum critical points

that separate two spontaneously symmetry-breaking (SSB) phases in arbitrary dimensions. In

particular, we discuss the suitable choice of the target space of the NLSM, which is in general

the homogeneous space G/K, where G is the UV symmetry and K is generated by k= h1∩h2,

and hi is the Lie algebra of the unbroken symmetry in each SSB phase. With this specific target

space, the symmetry defects in both SSB phases are on equal footing, and their intertwinement

is captured by the WZW term. The DQCP transition is then tuned by proliferating the symmetry

defects. By coupling the G/K NLSM with the WZW term to the background gauge field, the

’t Hooft anomaly of this theory can be determined. The bulk symmetry-protected topological

(SPT) phase that cancels the anomaly is described by the relative Chern-Simons term in odd

spacetime dimensions or mixed θ term in even dimensions. We construct and discuss a series of

models with Grassmannian symmetry defects in 3+1d. We also provide the fermionic model that

reproduces the G/K NLSM with the WZW term.
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Figure 2.1. G is the UV symmetry and K is generated by the Lie algebra k = h1∩h2, where
h1,h2 are the Lie algebras of unbroken symmetries H1,H2 of SSB phases. The different SSB
phases are obtained by condensing order parameters Φi as in the left graph. Alternatively, the
right graph emphasizes using the symmetry defects in the homogeneous space G/K where the
bosonic field lives in. Proliferating symmetry defects Di will drive the transition from one SSB
phase to the other due to the additional charges assigned by WZW term.

2.1 Introduction

The continuous symmetry-breaking transitions are well described within the Landau-

Ginzburg-Wilson (LGW) paradigm, the local order parameter acquires a non-zero expectation

value in the spontaneous symmetry breaking (SSB) phase, and vanishes continuously when

approaching the transition point. However, within the LGW paradigm, two SSB phases cannot be

joined by a continuous transition but only first order or level crossing. Quantum effects open the

possibility to have a such continuous transition, and the first explicit example is the deconfined

quantum critical point (DQCP) between the VBS phase and Néel phase in 2+1d quantum magnet

[348, 350, 375, 332].

The ordinary symmetry breaking transition can be alternatively understood by

proliferating the symmetry defects in the SSB phase to arrive at the disordered phase. This point

of view is particularly useful to understand the DQCP - the symmetry defect in the VBS phase

is decorated with the quantum number of the spin SU(2) symmetry, proliferating which will

restore the lattice rotation symmetry but break the spin symmetry, and arrive at the Néel phase

[232]. Decorated symmetry defects are also studied in other beyond LGW quantum transitions

[328, 281, 366].

Intertwinement of symmetry defects in different SSB phases, i.e. the symmetry defect in
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one SSB phase carries the quantum number of the broken symmetry of the other SSB phase, is

the prominent and ubiquitous feature of the DQCP theories. To properly describe the symmetry

defects and their intertwinement, we consider the following generic symmetry breaking pattern

of DQCP theory as shown in Fig. 2.1. Once condensing the order parameter Φi, one arrives at

different SSB phases with unbroken symmetry Hi. Further condensing the other order parameter,

one arrives at the minimal symmetry K. We will show that the symmetry defects in G/K

incorporate all the symmetry defects in both SSB phases Sec. 2.5. The reason is based on that the

codimension-(q+1) symmetry defect in each SSB phase is classified by πq(G/Hi) [270], and

π⋆(G/K) contains roughly the generators of these homotopy groups. Moreover, the generators

of the homotopy group are related to the differential forms via the Hurewicz theorem, then

these symmetry defects are described by the differential form in the Lagrangian, and this term

corresponds to the charge operator of symmetry defect. Technically, we use de Rham cohomology

to find the generators of the cohomology group of G/K. The intertwinement of symmetry defects

is essentially captured by the linking number of their corresponding charge operators, and the

Wess-Zumino-Witten term in the action assigns phase to the linking number. Therefore, we

propose using the nonlinear sigma model (NLSM) with the target space G/K to describe the

DQCP between two SSB phases with unbroken symmetry H1,H2, and the intertwinement of

symmetry defects is described by the Wess-Zumino-Witten (WZW) term. We also use G/K

NLSM in short. The DQCP transition is driven by proliferating symmetry defects Di in G/K

along the red arrows in the right graph of Fig. 2.1. We will provide details and examples in the

Sec. 2.5.

Intertwinement of symmetry defects in different SSB phases is also the manifestation

of the (mixed) ’t Hooft anomaly of the global symmetry. When global symmetry has ’t Hooft

anomaly, the theory is still well-defined unless the symmetry is gauged. The ’t Hooft anomaly

of global symmetry constrains the infrared phases not being trivial gapped phases but either

SSB phase, gapless or topological order. The phase diagram of DQCP theory, namely two SSB

phases connected by a gapless phase, agrees with the consequence of the ’t Hooft anomaly.
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The anomaly of 1+1d, 2+1d DQCP theories have been carefully analyzed in [272, 219, 393].

However, previous anomaly analysis is based on gauge theories, we focus on the anomaly

analysis of NLSM description in terms of coupling the theory to background gauge fields. Since

G is anomalous but K is non-anomalous, the NLSM with target space G/K saturates the anomaly

of G. We provide a detailed calculation of coupling the WZW term to the background gauge field

and show the gauged WZW term gives the ’t Hooft anomaly [185, 110, 48]. By anomaly inflow,

the ’t Hooft anomaly in even spacetime dimensions is canceled by one higher dimensional bulk

(relative) Chern-Simons term [279, 97, 440] and discussed in Sec. 2.4, while in odd spacetime

dimension, the ’t Hooft anomaly is canceled by bulk mixed θ term [185, 110, 48]. The lattice

models that describe DQCP do not need additional higher dimensional bulk, it is because some

of the global symmetries are acting in the non-onsite way, when it flows to IR, the field theory

description requires these symmetries to be internal but with the ’t Hooft anomaly [86, 193]. We

should point out that the NLSM has long been used to describe the Goldstone mode in the SSB

phase [413, 95, 59], and the additional Wess-Zumino-Witten term is used to match the anomaly

in the ultraviolet [422]. Recently, the gauge theory and its dual NLSM with Stiefel manifold or

Grassmannian manifold as the target space have been studied in the context of spin liquid and

quantum critical point beyond the LGW paradigm [465, 439, 427]. In current paper, we present

a general construction of NLSM with WZW that describes any given DQCP with continuous

symmetry breaking. In the following, we explore its connection to the mixed ’t Hooft anomaly,

relative Chern-Simons term, and the intertwinement of different symmetry defects.

Inspired by recent work on deconfined quantum criticality (which can be critical point or

critical phase depending on the model details) among grand unified theories [402, 401, 449], we

apply our framework to construct the theory of 3+1d deconfined quantum critical phase (DQCPh)

with global symmetry G = SO(2n) that separates two SSB phases with unbroken symmetries

H1 = U(n),H2 = SO(2n− 2m)× SO(2m), and K = SU(n−m)×U(1)× SU(m)×U(1). The

symmetry defects are then described by π2(G/K) = ker(π1(K)→ π1(G)) = Z⊕Z. This is

particularly interesting since the symmetry defect in the SSB phase with unbroken symmetry H2
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is Grassmannian manifold and has topological charge π2(G/H2) = Z2, which cannot be captured

by de Rham cohomology, but once embedding into the larger space G/K, the topological charge

becomes integer, and it has corresponding differential form via de Rham cohomology. This

manifests the similar way that the non-perturbative SU(2) anomaly (due to π4(SU(2)) = Z2)

can be perturbatively found by embedding SU(2) ↪→ SU(3) [120, 422, 421], and here we embed

G/H2 ↪→ G/K. This series of 3+1d DQCPh theories has “new SU(2) anomaly” of the global

symmetry SO(2n) [400], and it is matched by symmetry-protected topological phase in 5d bulk

described by w2w3(SO(2n)) [402, 401, 449]. The mixed anomaly is obtained by pull-back via

the embedding map of the subgroup into G. Recently, this embedding procedure is rigorously

analyzed using bordism theory [103, 104].

We then present the alternative fermionic model that reproduces the G/K NLSM with

WZW term. The fermions are coupled to the fluctuating bosonic fields which live in the

homogeneous space, the bosonic fields parameterize the mass manifold of the fermions. We dub

such fermionic construction of the nonlinear sigma model as fermionic sigma model [4]. When

integrating out the massive fermions, the effective action is the nonlinear sigma model with

level-1 WZW term [4, 182]. For generic homogeneous space G/K, the fermion mass manifold

needs to be properly chosen. This fermionic model also implies that the nonlinear sigma model

with level-1 WZW term needs a spin structure which is used to define the parallel transport

of spinor fields, though the Goldstone boson fields are bosonic [231]. We then construct the

fermionic sigma model of the 4d DQCPh theories and explicitly show the charge operators of

two symmetry defects in different SSB phases link together.

The paper is structured as follows, we review the essential ingredients of the nonlinear

sigma model and Wess-Zumino-Witten term as well as Lie group cohomology in Sec. 2.2. Then

we review the ’t Hooft anomaly and anomaly matching by WZW term in Sec. 2.3. Readers who

are familiar with these can safely skip Sec. 2.2 and Sec. 2.3 but skimming through the notations

would be helpful. We present the gauged WZW term and its anomaly matching with the bulk

(relative) Chern-Simons term for generic spontaneously symmetry breaking in Sec. 2.4. We
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construct specific DQCP theories in Sec. 2.5 and present the fermionic sigma model description

in Sec. 2.6. We summarize our results and list further directions in Sec. 2.7. Finally, there are

two appendices about de Rham cohomology of Lie group in App. B.1 and Cartan homotopy

method in App. B.2 that are used to derive an explicit formula for the various WZW terms and

Chern-Simons terms.

2.2 Review of nonlinear sigma model and Wess-Zumino-
Witten term for general homogeneous space G/H

2.2.1 The Lagrangian of NLSM and WZW term

Supposing the UV theory has global symmetry G, which can contain spacetime symmetry

as well as internal symmetry. In the IR, the symmetry is spontaneously broken down to H, then

the IR theory contains the part with unbroken global symmetry H and the gapless Goldstone

mode lives on the coset G/H. For example, the 3+1d N f flavors fermion couples to SU(n) gauge

field, the global symmetry SU(N)L×SU(N f )R is spontaneously broken down to SU(N)diag, the

coset where the Goldstone boson lives in is simply the Lie group SU(N) [422]. Or the Heisenberg

spin in 2+1d, the spin rotation symmetry SO(3)S is spontaneously broken down to SO(2)S, and

the Goldstone mode lives in the coset S2
S =

SO(3)S
SO(2)S

[411]. Before parametrizing the coset G/H,

let’s take the Goldstone boson lives in an arbitrary closed manifold M.

The Goldstone bosons are described by the nonlinear sigma model, where the scalar

field takes value in the target manifold M. The field configuration is represented by a map from

d-dimensional spacetime manifold X to the target manifold M,

U(xµ) : X →M, (2.1)

where xµ is the coordinate of X and U lives in M. The kinetic term is,

S0 =
1
2

∫
X

ddx tr
{
(U−1

∂µUU−1
∂

µU)
}
. (2.2)
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where repeated indices mean summation. Besides the kinetic term, one can define the WZW

term by pull-back the closed form Γ(d+1) on M. It seems the WZW term depends on the

additional dimension, however, since the variation of the closed (d +1)-form yields the exact

form, δΓ(d+1) = dη(d), according to the Stokes’ theorem, the equation of motion is indeed in

d-dimension and does not rely on the fictitious extra dimension. We may view the spacetime

manifold X as the boundary of a certain bulk manifold Y , such that ∂Y = X , and extend the map

Ũ : Y →M, the WZW action is,

SWZW = 2πki
∫

Y
Ũ∗(Γ(d+1)), (2.3)

where Ũ∗ is the pull-back map, k is the quantized level which is important for the theory to be

well-defined and not depend on an extension to the bulk Y . Suppose we have another extension

Ȳ which is the orientation reverse of Y , and Y ∪ Ȳ is a closed manifold, then the integral over

this combined manifold should be 2kπ i, k ∈ Z, such that the WZW term does not depend on the

extension, otherwise, there is a phase ambiguity for different extensions. Γ(d+1) is actually the

generator of integral cohomology of M, Γ(d+1) ∈ H(d+1)(M,Z). If the closed form is also exact,

then the WZW term is a term expressed in the d-dimensional spacetime.

Apart from the closed (d +1)-form which can be used to define the WZW term, other

closed q-form with q < d can be used to represent the charge operators of the possible topological

defects. The topological defects are classified by the homotopy group [270], and the qth

homotopy group of M is isomorphic to the homology group of M via the Hurewicz theorem if M

is (q−1)-connected. Therefore, the charge operator of possible codimension-(q+1) topological

defect is given by the generator of Hq(M,Z). This charge operator is like a counter, if the

defect matches, then yield 1, and 0 otherwise. For example, the baryon in 4d SU(N) gauge

theory is classified by π3(SU(N f )) = Z, the charge operator or the baryon number current is
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Γ(3) ∈ H3(SU(N f ),Z), and it couples to the U(1) background gauge field A as,

exp
(
i
∫

X4
A∧Γ

(3)
)

(2.4)

This reproduces the Goldstone-Wilczek current [154, 93].

To sum up, the WZW term and the charge operators of the topological defects in SSB

phases are given by the generators of the integer coefficient cohomology group of the target

space with a certain degree. In the following, we are using de Rham cohomology to find these

generators. Since the coefficient of de Rham cohomology is R, one needs to normalize these

generators such that the integral on the generator of the corresponding homotopy group yields 1

[231]. After normalization, this gives the generators of the cohomology group with Z coefficient

and can be used to define the WZW term and charge operators of the topological defects.

2.2.2 Construction of the coset

The Goldstone boson field U lives in the coset G/H, meaning that the Goldstone boson

fields are equivalent under the right multiplication of the elements in H, U ∼ U ′h, h ∈ H.

We need the following parametrization of the coset G/H [413]. We denote the generators

of compact Lie group G as T A,A = 1, ...,dimG, and the subgroup H has generators

T α ,α = dimG−dimH +1, ...,dimG. The orthogonal part of the h in g is f= g−h, denoted as

T a,a = 1, ...,dimG−dimH (capital letters are for generators in g, greek letters are for those in h

and lower case letters are for f). We have grouped the indices such that g= f⊕h. These generators

in general satisfy the algebraic relation [h,h]⊂ h, [h, f]⊂ f, [f, f]⊂ g. We often encounter that

the coset G/H is a symmetric space, in this case, the relation is, [h,h]⊂ h, [h, f]⊂ f, [f, f]⊂ h.

For h = ∅, the coset is simply G. The Goldstone boson field U(π(x)) is parametrized by the

Nambu-Goldstone boson πa(x) as [95, 59, 413],

U(π) = eiπ
a(x)T a

, T a ∈ f. (2.5)
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A general element g in G acting on the coset U(π) gives,

g−1U(π) = eiπ
′a(π,g)T a

eiλα (π,g)T α

=U(π ′)h−1(π,g) (2.6)

the group transformation is equivalent to g : U(π)→U(π ′) = g−1U(π)h(π,g), where h(π,g) as

well as π depend on the spacetime coordinate. π(x) is in general transformed in a complicated

nonlinear way. But when restricted to H, one can always choose the Goldstone boson π(x)

transformed in a linear way.

2.2.3 Cohomology of the homogeneous space

The generators of the cohomology group are particularly relevant to the terms that

describe the symmetry defects and the WZW term. The cohomology of homogeneous space

G/H is given by the closed G-invariant forms on G/H modulo exact G-invariant forms. We

first discuss differential forms on G and then restrict them on G/H. These differential forms are

constructed by the basis of left-invariant 1-forms, the Maurer–Cartan 1-form on G 1,

θ ≡U−1(π)dU(π) = θ
AT A. (2.7)

where T A is the Lie algebra generator and θ A is the component. The Maurer-Cartan 1-form is

Lie-algebra valued 1-form on G, and its component satisfies the Maurer-Cartan equations,

dθ
C =−1

2
f ABC

θ
A∧θ

B, (2.8)

where f ABC is the structure constant of the Lie group. Then the general left-invariant n-form on

G is given by, Ω
(n)
G = 1

n!(ΩG)A1,...,Anθ A1 ∧ ...∧θ An . If the left-invariant n-form on G is closed,

dΩ
(n)
G = 0, but non-exact, Ω

(n)
G ̸= dη

(n−1)
G , then it gives the generator of the cohomology groups

1The Maurer–Cartan 1-form is on G instead of G/H, additional conditions need specifying as discussed later.
More details can be found in, for example, [110]
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of G.

On the other hand, the invariant n-form on G/H should satisfy, a) the indices vanish on h,

and b) invariant under the adjoint action of h. These two conditions can be explicitly expressed

using the component of Maurer-Cartan 1-form, namely,

Ω
(n) =

1
n!

Ωa1,...,anθ
a1 ∧ ...∧θ

an, (2.9)

LαΩ
(n) =−

n

∑
i=1

1
n!

Ωa1,...,an f b j,α,a jθ
a1 ∧ ...∧θ

b j ∧ ...∧θ
an = 0. (2.10)

Then the cohomology of G/H is given by,

H∗(G/H,R) =
invariant closed n-form on G/H
invariant exact n-form on G/H

. (2.11)

Note that the de Rham cohomology of G/H is isomorphic to the relative Lie algebra cohomology,

H∗(G/H,R) = H∗(g,h;R), therefore, we use de Rham cohomology of G/H and relative Lie

algebra cohomology interchangeably.

It is convenient to decompose the g-valued 1-form θ into h-valued and f-valued parts,

θ =U−1dU = (U−1dU)|f+(U−1dU)|h ≡ φ +V, (2.12)

and in the component form, θ = θ AT A = θ aT a +θ αT α = φ +V . The above conditions can be

intuitively understood by doing the group action on the 1-forms according to Eq. (2.6),

θ → h−1
θh+h−1dh, (2.13)

V → h−1V h+h−1dh, φ → h−1
φh, (2.14)

therefore, φ = θ aT a transforms under the adjoint action of h, while V = θ αT α transforms as

the h-valued connection. The invariant n-form on G/H is then given by the combination of φ
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and curvature W = dV +V ∧V or using the component form under the condition Eq. (2.9).

2.2.4 Generators of cohomology group on G/H

Among these invariant n-forms on G/H, the cohomology on G/H is obtained by closed

invariant n-form modulo invariant exact n-form. We postpone the detailed algorithm that finds

the generators of the cohomology group to App. B.1. For physical relevance, we are interested in

the generator with a degree less than 6, for example, the degree 5 generator may correspond to

the 4d WZW term, and the degree 3 generator corresponds to 2d WZW term.

Compact Lie group G

For H =∅, the cohomology group of G has degree 3 generator for all compact Lie group

(SU,SO,Sp), and degree 5 generator only for SU group [274]. The generators are given by,

x(3) =
1
3

tr
(
U−1dU

)3
=

1
3

trθ
3, x(5) =

1
10

tr
(
U−1dU

)5
=

1
10

trθ
5. (2.15)

These generators are of cohomology group with R coefficient, and they need to be normalized

such that the integral over the generator of π3(G) = Z, π5(SU) = Z equal to 1 [46, 231]. The

normalized forms are the generators of H3(G,Z),H5(SU,Z). These generators can be written in

the component form as,

x(3) =
1
6

fABCθ
A∧θ

B∧θ
C, (2.16)

x(5) =
1

40
dA1BC fBA2A3 fCA4A5θ

A1 ∧θ
A2 ∧θ

A3 ∧θ
A4 ∧θ

A5 (2.17)

where fABC = tr
(
T A[T B,TC]

)
is the structure constant, dABC = tr

(
T A{T B,TC}

)
is the totally

symmetric rank 3 tensor. The totally symmetric rank 3 tensors are non-zero for SU(N) group

with N > 2.
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Homogeneous space G/H

The cohomology of homogeneous space is much richer, the generators in general should

satisfy Eq. (2.9). Before case-by-case discussion of the homogeneous spaces, the non-trivial

generators of H3(G/H,Z),H5(G/H,Z) that may correspond to 2d and 4d WZW terms or

codimension-4, 6 symmetry defects are given by,

y(3) =
1
3

tr
(
3φW +φ

3), y(5) =
1
5

tr
(

φ
5 +

10
3

Wφ
3 +5φW 2

)
, (2.18)

where W = dV +V ∧V is the curvature of V . Since V transforms as h-valued connection based

on Eq. (2.13), its curvature will transform as adjoint action under H as well as φ . The generators

y(3),y(5) are invariant under G. One can express these generators in terms of Goldstone boson

field by φ = (U−1dU)|f,V = (U−1dU)|h. We postpone the derivation of these generators to the

discussion of its corresponding anomaly.

Similarly, we can express these generators in terms of components,

y(3) =
1
6
(dad fdbcθ

a∧θ
b∧θ

c−2daβ fβbc)θ
a∧θ

b∧θ
c (2.19)

y(5) =
1

60
(3da1bc fba2a3 fca4a5−4da1bγ fba2a3 fγa4a5

+8da1βγ fβa2a3 fγa4a5)θ
a1 ∧θ

a2 ∧θ
a3 ∧θ

a4 ∧θ
a5 (2.20)

where the lower case letters are for f part, and the Greek letters are for h part. dab = tr
(
{T a,T b}

)
is the totally symmetric rank-2 tensor, which is proportional to Kronecker delta for the most

cases.

The 5th cohomology groups are non-vanishing for SU(n)/SO(n), n ≥ 3 and

SU(2n)/Sp(n), n≥ 2 which are relevant to the spontaneous symmetry breaking of QCD with

SO gauge group and Sp gauge group. More details can be found in App. B.1.3.

Besides the generators that correspond to WZW terms, there are low degree cohomology

generators corresponding to the charge operators of topological defects. The second cohomology

46



group is of particular interest in the following specific models since the generators of it correspond

to the charge operators of codimension 3 topological defects, they are particle-like in 3d and

string-like in 4d. The second cohomology on G/H is related to the first Chern class, evaluated on

h-valued gauge field on G/H [110]. In terms of the 1-forms, the generator of y(2) = H2(G/H,R)

is given by,

y(2) = mα0W
α0 =

1
2

mα0 f α0bc
θ

b∧θ
c (2.21)

where α0 is the index for the U(1) factor in h, if h has the decomposition h= h1+ ...+u(1)+ ....

The elements in hi vanish similar to that the first Chern class of non-abelian gauge field vanishes.

We will demonstrate this explicitly in the following specific models.

The 4th cohomology is constructed in a similar way by using the symmetric tensor mα,β

that is invariant under the adjoint transformation of H,

y(4) = mα,βW α ∧W β (2.22)

The non-vanishing 2nd and 4th cohomology of some homogeneous spaces G/H are listed in the

App. B.1.3 [274].

2.3 Review of ’t Hooft anomaly and anomaly matching by
WZW term

2.3.1 ’t Hooft anomaly and anomaly inflow

The theory with global symmetry that has ’t Hooft anomaly is still well-defined but the

anomalous symmetry cannot be gauged, otherwise, the anomaly is lifted to gauge anomaly and

the theory is inconsistent. Recent understanding of symmetry-protected topological (SPT) phases

gives a general picture of anomaly matching, the anomalous theory in d-dimension can be viewed

as the boundary of d +1-dimension SPT (or invertible phase), and the anomaly is canceled by

the bulk, therefore, the bulk-boundary combined system is non-anomalous [380, 97, 440].
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The ’t Hooft anomaly for global symmetry G of a quantum field theory constrains the

infrared phases to be

• gapless with G symmetry

• spontaneously symmetry breaking

• topological order

but never a trivial gapped phase. The theory with ’t Hooft anomaly is dubbed as “anomalous

theory T ”. The ’t Hooft anomaly of the global symmetry in a theory can be found by coupling

the theory to the background gauge field associated with its global symmetry. When performing

a gauge transformation on the background gauge field, the partition function of the anomalous

theory on spacetime manifold X instead of being invariant becomes,

ZT [A+δλ A]→ZT [A]ei
∫

X α(λ ,A). (2.23)

where λ is some gauge parameter. The partition function suffered from the ambiguity that

different regularization yields different results. Some ambiguity can be cured by adding local

counterterms, but for anomalous theory, the phase remains.

However, one can eliminate the ambiguity by viewing the anomalous theory T as the

boundary of certain SPT phase I . We can extend the background gauge field to the bulk Y ,

∂Y = X , the partition function of the SPT phase under the gauge transformation is,

ZI [A] = e−i
∫
Y ω(A)→ZI [A+δλ A] = e−i

∫
Y ω(A)−i

∫
X α(λ ,A). (2.24)

Therefore, the bulk-boundary combined system is invariant under the gauge transformation,

ZT [A]ZI [A]→ZT [A+δλ A]ZI [A+δλ A] = ZT [A]ZI [A] (2.25)

The pictorial description is shown in Fig. 2.2. Using the bulk SPT to cancel the ’t Hooft anomaly

of the boundary theory is called anomaly inflow. On the other hand, the bulk SPT determines the
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’t Hooft anomaly of the boundary theory.

Figure 2.2. Bulk-boundary combined system is invariant under the gauge transformation.

2.3.2 Anomaly matching by Wess-Zumino-Witten term

The ’t Hooft anomaly is a property of the Hilbert space, therefore, it should be matched in

the ultraviolet and the infrared theory. From UV to IR, a common scenario is that the theory has

spontaneously symmetry breaking. Suppose the UV theory TUV has the global symmetry G, and

it is spontaneously broken down to H in the IR, the IR theory contains the TIR with the unbroken

H symmetry and Goldstone bosons U lives in the coset G/H. If the UV theory TUV has an

anomaly, then the IR theory TIR together with the Goldstone boson U should match the anomaly

in TUV . We can break the sufficient symmetry such that TIR does not suffer from the anomaly

and all the UV anomaly is matched by the Goldstone boson that lives in the homogeneous space

G/H.

The chiral anomaly is an example that the local (perturbative) anomaly which can be

seen from the triangle diagram is known to be matched by the Goldstone boson with WZW term

[266, 423]. However, the global (non-perturbative) anomaly is more subtle and needs a proper

definition for the WZW term [231, 214, 134]. In some cases, the non-perturbative anomaly can

be found perturbatively by embedding the group into a larger group [422].

Coupling the WZW term to gauge field and constructing gauge invariant gauged WZW

term has been extensively studied over the three decades [184, 185, 265, 129], and it has very

rich mathematical structures [424, 133, 102]. The gauged WZW term for general coset was

studied in Ref. [91, 48].
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In the following, we discuss a bulk-boundary combined construction of the gauged

WZW term that could match general ’t Hooft anomaly [440]. More specifically, assuming the

d-dimensional UV theory has an anomaly described by d + 1-dimension SPT phase I , and

the anomalous symmetry G is spontaneously broken down to (anomalous or not) H in the IR.

Ref. [440] defines the general WZW term associated with I so that the anomalies of UV and IR

are matched.

As presented in Sec. 2.2.2, the Goldstone boson lives in the coset G/H, where G can

contain both spacetime and internal symmetries. Another view of the coset G/H is that the

Goldstone boson locally takes value in G and has gauge symmetry H, or cover of H. The

Goldstone boson transforms under G as Eq. (2.6). Consider the connection A on the principal

G-bundle, A is the background gauge field associated with the global symmetry G, the gauge

transformation of A is given by,

A→ Ag = g−1Ag+g−1dg. (2.26)

We can use the Goldstone boson field as the transition function to define the new connection,

AU ≡U−1AU +U−1dU (2.27)

which transforms as H connection under G action according to Eq. (2.6),

AU → h−1AU h+h−1dh. (2.28)

Therefore, AU is the connection of the principal H-bundle. Note that the Lie algebra valued

1-form θ =U−1dU is precisely AU |A=0. Similarly, we can decompose the connection into h and

f part, they transform under G action as,

AU = AU
h +AU

f → (h−1AU
h h+h−1dh)+(h−1AU

f h) (2.29)
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where AU
h is the connection of H-bundle and AU

f transforms under the adjoint action of H. Since

AU and AU
h are the connections of the same bundle, we can consider the interpolation of these

connections,

AU(t) = AU
h +(1− t)AU

f =


AU t = 0

AU
h t = 1

(2.30)

As shown in Fig. 2.3, one can imagine a cylinder where the leftmost is the connection AU , and

the rightmost is the connection AU
h . The leftmost gauge field AU is extended to the bulk SPT

with anomalous symmetry G via the transition function U , while the rightmost gauge field AU
h is

extended to the bulk with anomalous symmetry H (if H is non-anomalous, then the extension is

not needed).

Figure 2.3. Pictorial description of the construction of WZW term. The left manifold Y describes
the SPT with symmetry G whose connection is the background gauge field A. With the transition
function U , the left manifold Y can be glued with the middle cylinder [0,1]×X , where the WZW
term lives in. The path [0,1] connects the connection AU and AU

h , where the background gauge
field AU

h can be extended to the right manifold Ȳ with global symmetry H. The WZW term on
the cylinder then describes the Goldstone boson in the symmetry breaking phase with G→ H.

The general gauged WZW term in [440] is defined by taking the partition function of

the invertible theory on the total manifold Ytotal = Y ∪ (X × [0,1])∪ Ȳ0. The resulting partition

function is gauge invariant. The Goldstone boson field U is defined on the cylinder X × [0,1],

therefore, the WZW term actually only depends on the dynamics of U on d-dimensional manifold

X . The connection AU at the left-most of the cylinder is extended to Y by transition function U ,

AU
h is extended to Ȳ0.

However, this construction is slightly different from the ordinary understanding of the

WZW term, namely the WZW term only depends on the spacetime manifold X , though it is

written in one higher dimension. In the following section, we provide an alternative construction
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of the gauged WZW term that is in accordance with the pictorial understanding of anomaly

inflow in Fig. 2.2

2.4 (Relative) Chern-Simons functional, gauged WZW term
and its anomaly

We first recall the setup of our system - given an anomalous UV global symmetry G, and

it is spontaneously broken down to anomalous or not symmetry H in the IR, then the UV anomaly

is matched by the Goldstone boson in G/H and IR theory with unbroken symmetry H. Instead

of the construction in Sec. 2.3.2, we give an alternative construction of gauged WZW term that

agrees with the anomaly inflow picture in Fig. 2.2, however, as shown in Fig. 2.4, the price is

that the bulk SPT is described by the more complicated relative Chern-Simons functional (for

H =∅, the relative Chern-Simons term reduces to the Chern-Simons term) in the odd spacetime

dimensions. For the even spacetime dimensional bulk, the bulk SPT is described by the mixed θ

term, i.e. wedge product of various curvature tensor, and the gauged WZW term can be written

as the derivative of a lower degree form [185, 110, 48]. For our purpose, we will only consider

odd spacetime dimensional bulk in the following, which is relevant to the DQCP of GUTs in

Sec. 2.5.2, and mention the even dimensional case in Sec. 2.5.1.

For two connections A,A′ on the principle H-bundle, and a path of connection that

interpolates these two, the relative Chern-Simons term is defined by the form that trivializes the

difference between the curvature characteristic forms of different connections [279],

dCS(2n+1)(A,A′) = ch(2n+2)(A)− ch(2n+2)(A′) (2.31)

where ch(2n)(A) = 1
n! tr(iF/(2π))n, F = dA+A∧A is the curvature of the connection A. The

Chern-Simons form is then the special case of the relative Chern-Simons form with A′ = 0,

dCS(2n+1)(A) = ch(2n+2)(A).

As reviewed in the previous section, the theory with the ’t Hooft anomaly needs to be
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Figure 2.4. Instead of defining WZW term on a cylinder as discussed in Fig. 2.3, we bend the
cylinder such that the anomaly matching agrees with the gauge invariant bulk-boundary combined
system in Fig. 2.2, and the WZW term only depends on spacetime manifold X = ∂Y . However,
the bulk SPT is now described by relative Chern-Simons term in odd spacetime dimensions and
mixed θ term in even spacetime dimensions.

matched with bulk SPT. The SPT I with U or SU symmetry can be expressed as Chern-Simons

functional, and many other SPTs can be obtained by higgsing the gauge field, for example,

discrete gauge theories can be obtained from the Chern-Simons functional [20, 343]. We

take the SPT I to be described by the Chern-Simons functional or more general the relative

Chern-Simons functional [372, 440],

ZI [A] = exp
(
ik
∫

Y
CS(A)

)
, ZI [A,A′] = exp

(
ik
∫

Y
CS(A,A′)

)
. (2.32)

where k ∈ Z is the level, k = 1 for SPTs. The anomaly associated with these SPTs is matched by

the gauged WZW term in the following form,

¯
Γ
(d+1)(U,A,Ah)≡ CS(AU ,AU

h )−CS(A,Ah) = Γ
(d+1)(U)+dα

(d)(U,A,Ah), (2.33)

where α(d)(U,A,Ah) is a d-form, and it is clear that the gauged WZW term does not depend on

the extra dimension, since the first term is a closed (d +1) form whose variation depends on the

d-dimensional boundary X and the second term only depends on the boundary X by the Stokes’

theorem. The relative Chern-Simons form CS(A,A′) manifests the gauge invariance under H
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transformation, and the gauged WZW term is invariant under U →Uh without any counterterms.

If h=∅, then the gauged WZW term is given by the Chern-Simons form,

¯
Γ
(d+1)(U,A)≡ CS(AU)−CS(A) = Γ

(d+1)(U)+dα
(d)(U,A). (2.34)

We note that the gauged WZW term in Eq. (2.33) indeed reproduces the ’t Hooft anomaly

under the global symmetry G. Let’s first focus on the case when h = ∅, the connection

A→ g−1Ag+g−1dg and Goldstone boson field U → g−1U under the G transformation. AU is

then invariant under this transformation, therefore, the first term CS(AU) is invariant under the

gauge transformation of G. However, the second term −CS(A) contributes to the anomalous

phase under the transformation of G by the descent equation argument.

For the case when h ̸= ∅, under the G transformation, the connection transforms as

A→ g−1Ag+g−1dg and Goldstone boson goes as U → g−1Uh, both AU and AU
h transform as

the connection on H according to Eq. (2.29). The CS(2n+1)(AU ,AU
h ) is invariant under the gauge

transformation, this can be explicitly checked. But the second term −CS(2n+1)(A,Ah) part will

give the anomaly associated with the symmetry G and H which needs to be canceled by the SPT

in the bulk, this mechanism is called anomaly inflow [97], and the bulk boundary combined

system is non-anomalous. In short, the gauged WZW term Eq. (2.33) has the anomaly associated

with the bulk SPT which is described by CS(2n+1)(A,Ah). If we assume there is no anomaly

associated to the symmetry H, then the gauged WZW term matches with the anomaly of the bulk

SPT described by CS(2n+1)(A,Ah) and dCS(2n+1)(A,Ah) = ch(2n+2)(A).

We summarize the anomaly matching by WZW term in the following, given the WZW

term Γ(d+1)(U) with field U lives in G/H, couple it to the background gauge fields A,A′

associated with global symmetry G,H and get
¯
Γ(d+1)(U,A,A′). Under the gauge transformation,

the anomalous phase of the gauged WZW term is canceled by the bulk SPT described by the

(relative) Chern-Simons term.

Another way to see the necessity of relative Chern-Simons term is as follows, supposing
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the UV symmetry G has ’t Hooft anomaly and it is matched by CS(2n+1)(A), the IR symmetry

H also has the ’t Hooft anomaly and matched by CS(2n+1)(Ah). The gauged WZW term

together with the IR anomaly should match the UV anomaly, in other word, the gauged WZW

term should yields the same anomalous phase as CS(2n+1)(A)−CS(2n+1)(Ah) which is roughly

the relative Chern-Simons term CS(2n+1)(A,Ah) = CS(2n+1)(A)−CS(2n+1)(Ah)+dβ (2n)(A,Ah),

where β (2n)(A,Ah) is some 2n-form depending on A,Ah.

In the following, we will use the Cartan homotopy method to find the explicit form of

CS(AU ,AU
h ), α(d)(U,A,Ah), and compare them with the simple case when h=∅.

2.4.1 Cartan’s homotopy method and relative Chern-Simons term

We postpone the detailed review of Cartan’s homotopy method to App. B.2 [286]. For

any invariant polynomial S(A,F) of connection A and curvature F = dA+A∧A, (dA can be

substituted by F−A2 and dF is substituted by −[A,F ]), we have the following formula,

(dℓt + ℓtd)S(At ,Ft) = δ t
∂

∂ t
S(At ,Ft), (2.35)

where the operator ℓt is an anti-derivative operator,

ℓt(η
(p)∧ω

(q)) = (ℓtη
(p))∧ω

(q)+(−1)p
η
(p)∧ (ℓtω

(q)). (2.36)

If A0,A1 both are connections on the same bundle, one can define a one-parameter family,

At = A0 + t(A1−A0), and the curvature is given by Ft = dAt +At ∧At . The operator ℓt acts on

At ,Ft as,

ℓtAt = 0, ℓtFt = δ t(A1−A0). (2.37)

Integrating over t from 0 to 1 on both sides of Eq. (2.35), we have,

S(A1,F1)−S(A0,F0) =

(
d
∫

t
ℓt +

∫
t
ℓtd
)

S(At ,Ft). (2.38)

55



Relative Chern-Simons form

Since the Chern class is even degree closed form ch(2n) = 1
n! tr
(
iF
2π

)n
, it can be locally

written as an exact form, ch(2n+2)(F) = dCS(2n+1)(A). But this is not globally true, if true then

the integral of Chern class on any closed manifold would yield 0. From Eq. (2.32), the difference

of two Chern classes with curvature F,F ′ can be written as the relative Chern-Simons term. And

according to Cartan’s homotopy formula,

ch(2n+2)(F)− ch(2n+2)(Fh) =
(

d
∫

t
ℓt +

∫
t
ℓtd
)
ch(2n+2)(Ft) (2.39)

= d
∫

t
ℓtch

(2n+2)(Ft)≡ dCS(2n+1)(A,Ah),

where Ft = dAt +A2
t , and At = Ah+ tAf as discussed around Eq. (2.30). The relative Chern-

Simons term is given by,

CS(2n+1)(A,Ah) =
∫

t
ℓtch

(2n+2)(Ft) =
1
n!

(
i

2π

)n+1 ∫
dt tr

(
AfFn

t
)
. (2.40)

More explicitly, we have

CS(2n+1)(A,Ah) =
1
n!

(
i

2π

)n+1 ∫
dt tr

(
Af(Fh+ tDhAf+ t2Af)

n), (2.41)

where Dh is the covariant derivative with respect to h-connection, DhAf = dAf+{Ah,Af}. The

relative Chern-Simons terms with degrees 3 and 5 are,

CS(3)(A,Ah) =−
1

4π2 tr
(

AfFh+
1
2

AfDhAf+
1
3

AfAfAf

)
, (2.42)

CS(5)(A,Ah) =−
i

16π3 tr

(
AfF2

h +
1
2

Af{Fh,DhAf}+
2
3

FhA3
f

+
1
3

Af(DhAf)
2 +

1
2

A3
fDhAf+

1
5

A5
f

)
. (2.43)
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Since Af, the curvature of Ah and the covariant derivative with respect to Ah are all transformed

under adjoint action of H, the relative Chern-Simons term is manifestly invariant under the H

transformation as well as G transformation. If H =∅, Af is identified with the G-connection A,

the curvature Fh = 0 and DhAf = dA, then,

CS(3)(A) =− 1
8π2 tr

(
AdA+

2
3

A3
)
, (2.44)

CS(5)(A) =− i

48π3 tr
(

A(dA)2 +
3
2

A3dA+
3
5

A5
)
, (2.45)

which reproduce the Chern-Simons forms with only the background field associated with the

global symmetry G.

Explicit form of gauged WZW term

According to the definition of gauged WZW term
¯
Γ(d+1)(U,A,Ah) in Eq. (2.33), the

gauged WZW term is obtained by the difference of relative Chern-Simons terms with connection

AU and A which result in a closed d + 1-form Γ(d+1)(U) only depending on the Goldstone

boson configuration U and an exact d +1-form expressed as dα(d)(U,A) which depends on the

configuration U as well as the gauge field A. We will use Cartan’s homotopy formula to obtain

the explicit form of the d-form α(d) and give the explicit form of the gauged WZW term.

The closed d +1-form Γ(d+1)(U) is easily obtained by turning off the background gauge

field A in the relative Chern-Simons forms Eq. (2.42) and Eq. (2.43). The connection AU defined

in Eq. (2.27) and Eq. (2.29) can be decomposed as,

AU = AU
h +AU

f = (U−1AhU +V )+(U−1AfU +φ). (2.46)

Once turning off the background gauge field, AU
h =V,AU

f = φ and the curvature of Ah becomes
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W = dV +V 2, then Γ(d+1)(U) becomes,

Γ
(3)(U) = CS(3)(θ ,V ) =− 1

4π2 tr
(

φW +
1
2

φDV φ +
1
3

φ
3
)
∈ H3(G/H,R), (2.47)

Γ
(5)(U) = CS(5)(θ ,V ) =− i

16π3 tr

(
φW 2 +

1
2

φ{W,DV φ}+ 2
3

Wφ
3

+
1
3

φ(DV φ)2 +
1
2

φ
3DV φ +

1
5

φ
5

)
∈ H5(G/H,R), (2.48)

where DV φ = dφ +{V,φ}= 0. One can check when H =∅, φ is identified with θ , the curvature

W vanishes and the covariant derivative DV φ = dθ =−θ ∧θ , the WZW terms become,

Γ
(3)
G (U) =− 1

24π3 trθ
3 =− 1

24π3 tr
(
U−1dU

)3 ∈ H3(G,R), (2.49)

Γ
(5)
G (U) =− i

480π3 trθ
5 =− i

480π3 tr
(
U−1dU

)5 ∈ H5(G,R). (2.50)

These match with the standard WZW term for WZW conformal field theory in 2d and chiral

symmetry breaking in 4d. The WZW terms for G and G/H obtained by the Cartan homotopy

method reproduce those in Sec. 2.2.

The gauged WZW defined in Eq. (2.33) can be obtained by considering the interpolation

At = tU−1AU +θ ,Ah,t = tU−1AhU +V , in this case the Cartan homotopy formula becomes,

CS(2n+1)(AU ,AU
h )−CS(2n+1)(θ ,V ) =

(
d
∫

t
ℓt +

∫
t
ℓtd
)
CS(2n+1)(At ,Ah,t)

= dα
(2n)+

∫
t
ℓt(ch

(2n+2)(Ft)− ch(2n+2)(Fth)) = dβ
(2n)+CS(2n+1)(A)−CS(2n+1)(Ah).

(2.51)

Since there is no anomaly for H, the Chern-Simons term for gauge field Ah vanishes. The

Chern-Simons term CS(2n+1)(A) differs from the relative Chern-Simons term CS(2n+1)(A,Ah)
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by a total derivative dβ (2n), therefore, the gauged WZW term is,

¯
Γ
(2n+1)(U,A)≡ CS(2n+1)(AU ,AU

h )−CS(2n+1)(A,Ah) = Γ
(2n+1)(U)+d(α(2n)+β

(2n)), (2.52)

where the 2n-form α depends on U,A,Ah while β depends only on the background gauge fields.

For example, β (2) = tr
(
A∧Ah

)
,α(2) = tr

(
φU−1(A+Ah)U

)
. If H = ∅, β (2n) vanishes, and

α(2n) is obtained by, ∫
t
ℓt tr
(
CS(2n+1)(tA+dUU−1)

)
. (2.53)

This gives, for example, α(2) = 1
2 tr
(
dUU−1A

)
. More details can be found in App. B.2.

2.5 Nonlinear sigma model of DQCP theories

With the gears presented in the previous sections, we will show that the WZW term

captures the intertwinement of the topological defects and matches with the ’t Hooft anomaly in

the anomalous theory. We use the charge operators of topological defects to construct the WZW

term and use the gauged WZW term to match the mixed anomaly in the theory.

We are interested in the critical points or phases between spontaneously symmetry-

breaking phases in the presence of the ’t Hooft anomaly, and the manifestation of the ’t Hooft

anomaly in different symmetry-breaking phases. This situation is along with many deconfined

quantum critical point theories. We begin by revisiting the intertwinement in the DQCP theory

of the 3d quantum magnet [393, 272], and then construct a series of 4d DQCP theories which

is motivated by recent work on DQCP among grand unified theories [402, 401, 449]. The

new set of 4d deconfined quantum criticality theories is the higher dimensional generalization

of 3d DQCP theories, and the new 4d DQCP (DQCPh) theories are governed by ’t Hooft

anomaly of global SO(2n) symmetry which turns out to be a variation of the new SU(2) anomaly

[402, 401, 400, 449].
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2.5.1 Revisiting deconfined quantum critical point in 3d quantum
magnet

As mentioned in the introduction, the continuous global symmetry of the 3d quantum

magnet is G = SO(3)S×SO(2)R, which corresponds to spin and lattice rotation symmetry. The

Néel phase in this system is the antiferromagnetic phase, with spins pointing up or down. This

phase has HNéel = SO(2)S×SO(2)R symmetry, broken by the easy-axis spin configuration. The

Goldstone boson in the Néel phase lives in the coset G/HNéel
∼= SO(3)S/SO(2)S ∼= S2

S. The

possible topological defect is classified by π2(S2
S) = Z, corresponding to codimension 3 integer-

valued defect, which is the hedgehog defect in the Néel phase. On the other hand, the lattice

rotation symmetry is broken in the VBS phase, HVBS = SO(3)S. The corresponding Goldstone

boson lives in the coset G/HVBS = SO(2)R ∼= S1
R. The possible topological defect is classified

by π1(S1
R) = Z, which corresponds to codimension 2 integer-valued defects, this is the vortex

line in the VBS phase.

It is very interesting that the vortex core in the VBS phase carries spin-1
2 degree of

freedom [232]. When proliferating the vortices in the VBS phase, the defects will destroy

the VBS ordered phase, but due to the additional spin-1
2 degree of freedom at the vortex core,

the system will become the ordered Néel phase. In other words, the disorder operator of

lattice rotation symmetry carries the symmetry charge of the spin rotation symmetry, which is

reminiscent of the mixed ’t Hooft anomaly of these two symmetries.

The ’t Hooft anomaly should match along the renormalization group flow, meaning that

all possible phases should have such an anomaly. In the ordered phases, although some defects

may be suppressed by energy, their intertwined feature should manifest thanks to the anomaly.

We can deform the theory by tuning the relevant operators such that the theory flow to the IR

phase with the smallest symmetry K and there is no anomaly with K, hence, the anomaly in the

UV is matched by the Goldstone boson in the coset G/K.

Theories with the same symmetry properties and anomaly will be dual to each other, in
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the sense that they describe the same IR phase with different UV details [340]. We consider

the deformation of the theory to the spontaneous symmetry breaking phase with unbroken

symmetry K = HNéel∩HVBS = SO(2)S. Then the gapless theory of the Goldstone boson living

in the coset G/K = S2
S×S1

R with WZW term would be a suitable dual description of the DQCP

theory. Indeed, we will show this construction is related to the O(5) nonlinear sigma model

that served as the dual theory of various gauge theory descriptions of 3d DQCP [393]. Both

topological defects in Néel and VBS phase are present in this Goldstone boson theory, since

πk(S2
S×S1

R) = πk(S2
S)×πk(S1

R). The symmetry-breaking routes are summarized as follows,

G = SO(3)S×SO(2)R

HNéel = SO(2)S×SO(2)R HVBS = SO(3)S

K = HNéel∩HVBS = SO(2)S

⟨ΦN ⟩̸=0 ⟨ΦV ⟩̸=0

⟨ΦV ⟩̸=0 ⟨ΦN ⟩̸=0

(2.54)

We denote the generators of SO(3)S as {T 1,T 2,T 3} and SO(2)R as {T 4}. Supposing the

generators of HNéel are {T 3,T 4}, then the charge operators of the topological defects in the Néel

and VBS phase are represented by,

η̃
(1) = θ

4 ∈ H1(G/HVBS,R), ξ̃
(2)

= θ
1∧θ

2 ∈ H2(G/HNéel,R). (2.55)

In the ordered phase with global symmetry K = HNéel∩HVBS = SO(2)S, the generator is {T 3},

and the cohomology generators are,

η
(1) = θ

4 ∈ H1(G/K,R), ξ
(2) = θ

1∧θ
2 ∈ H2(G/K,R). (2.56)

In this case, η̃
(1) = η(1) and ξ̃

(2)
= ξ (2) since the global symmetry G is the tensor product of

two subgroups. Wedge product of the two generators yields a generator of the higher degree
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cohomology group, η(1)∧ξ (2) = θ 4∧θ 1∧θ 2 ∈ H3(G/K,R).

The WZW term in the 2+1d DQCP assigns a phase to the linking between the VBS

vortex and hedgehog defect or the linking between S2
S and S1

R in S4 [324]. The way to define the

linking is to find the surface D2
R that is bounded by the circle S1

R and the intersection with S2
S

gives the linking number. The form on D2
R is denoted by η̂(1) and the WZW term is,

Γ
(4) = ξ

(2)∧dη̂
(1). (2.57)

More explicitly, we can parameterize S2
S and S1

R by 3-component unit-vector nnnS and 2-component

unit-vector nnnR, then ξ (2) = εabcna
Sdnb

S ∧ dnc
S, η(1) = n1

Rdn2
R. The 1-form is closed when

restricting on the circle, but not closed on the disk, dη̂(1) = dn1
Rdn2

R. Therefore, the WZW

term is given by Γ(4) = εabcdena
Sdnb

Sdnc
Sdnd

Rdne
R, which appears in the SO(5) NLSM of DQCP

[157, 393, 235, 285, 410].

When coupled to the background gauge field the anomaly of the gauged WZW term

comes from the mixed θ term in 4d which matches the anomaly in the bulk SPT phase

with global symmetry SO(3)S×SO(2)R. We can further embed SO(3)S×SO(2)R ↪→ SO(5),

the corresponding anomaly is described by 1
2w4 ∈ H4(BSO(5),U(1)), upon pull-back to

SO(3)S×SO(2)R, the anomaly becomes,

1
2

w4(AS⊕AR) =
1
2

w2(AS)w2(AR) =
1
2

FR

2π
w2(AS), (2.58)

where FR = dAR and w2 is the second Stiefel Whitney class of SO(3) bundle. This anomaly also

matches with that in 3d CP1 model in [219, 272]. The same anomaly in WZW theory and 3d CP1

model is also a check of the infrared duality of the different theories [393, 340]. Recent works on

quantum spin liquid have examined related gauge theories and their corresponding NLSM with

WZW term, and the target spaces of the NLSM are Stiefel manifold or Grassmannian manifold

[465, 439, 427]. It would also be interesting to construct other 2+1d DQCP theories that saturate
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the anomaly discussed in [214, 134]. Similar construction and anomaly matching can be applied

to 1+1d system [178, 194, 323, 281, 428].

2.5.2 Deconfined quantum critical point and intertwinement of
topological defects in 4d

In contrast to the extensive theoretical and numerical studies of deconfined quantum

critical points in 2d and 3d, the 4d generalization of DQCP is rarely explored. One difficulty is

that the gauge fields tend to be deconfined in higher dimensions and many gauge theories then

describe the deconfined quantum critical phases instead of critical points. Nevertheless, previous

works focus on the gauge theory description and find interesting examples of deconfined quantum

critical point with mixed ’t Hooft anomaly that implies the intertwinement of symmetries [42].

Regardless of the specific models and their critical behaviors, it is interesting to study

the intertwinement of topological defects in 4d which manifests the ’t Hooft anomaly in the UV

theory, since there are more types of topological defects in higher dimensions. This also offers a

way to understand the higher dimensional SPTs, since the WZW term essentially describes the

linking between extended operators in the bulk where the SPT lives in.

We construct the nonlinear sigma model with WZW term to describe this phenomenon in

the following subsections and construct the corresponding fermionic parton theories in Sec. 2.6.

Our construction turns out to describe the deconfined quantum critical phase (DQCPh), since

the minimal fermionic parton theory contains U(1) gauge field, which is deconfined in the

3+1d [402, 401, 449]. Because the inputs of our construction are the global symmetries and

corresponding mixed ’t Hooft anomaly, it may have different gauge theory descriptions with the

same global symmetry and anomaly. It is interesting to find specific gauge theory description

that realizes the deconfined quantum critical point.

From the previous discussion, the DQCP theory is anomalous and can be thought of as

the boundary of one higher dimensional SPT. The 4d DQCPh theory can serve as the boundary of

5d SPT. The 5d SPT with only ZT
2 symmetry is Z2 classified, this SPT is described by

∫
Y 5 w2w3
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[203, 202] and recently studied in [78, 77, 126], where wi ∈H i(Y 5,Z2) is the ith Stiefel-Whitney

class. In the presence of symmetry, similar topological terms are possible for the all-fermion

electrodynamics [224] and the new SU(2) anomaly [400]. Hence, it is possible to have an

anomalous theory at the boundary of the nontrivial SPT with the anomaly described in the

above mentioned examples. In the following, we will discuss a series of models with the

new SU(2) anomaly, these models describe the gapless theories between two spontaneously

symmetry-breaking phases.

Symmetry breaking and topological defects

Recent work shows that the DQCP (or DQCPh, depending on the model details)

can present among the Grand Unified Theories (GUTs) in which the standard model with

global symmetry generated by kSM = su(3)⊕ su(2)L ⊕ u(1)Y ⊕ u(1)X can be embedded,

the three GUTs are SO(10) GUT with gSO(10) = so(10), Pati-Salam (PS) model with

hPS = so(6) ⊕ so(4) = su(4) ⊕ su(2)L ⊕ su(2)R and Georgi-Glashow (GG) model with

hGG = su(5)⊕ u(1)X [402, 401, 449]. The gauge symmetry is “ungauging” such that they

can be viewed as global symmetries. In other words, the dynamical gauge fields in the original

theories are background gauge fields in these alternative theories. Therefore, the Higgs phases and

transitions become symmetry-breaking phases and transitions. When condensing the symmetric

Φ54 or antisymmetric Φ45 scalar fields charged under SO(10) in the SO(10) GUT described

in [449], one can get the symmetry breaking phases with unbroken symmetry hPS or hGG

respectively, these symmetries can be further broken down to kSM. The symmetry-breaking

pattern is summarized as follows.

gSO(10)

hPS hGG

kSM = hPS∩hGG

⟨Φ54⟩̸=0 ⟨Φ45⟩̸=0

⟨Φ45⟩̸=0 ⟨Φ54⟩̸=0

(2.59)
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where Φ45,Φ54 are traceless symmetric and antisymmetric higgs fields of SO(10). The possible

topological defects in the PS and GG phases are classified by,

π2

(
SO(10)

SO(6)×SO(4)

)
= Z2, π2

(
SO(10)
U(5)

)
= Z. (2.60)

The topological defects in the symmetry breaking phases are codimension 3 defects

corresponding to the line operators in 4d. The topological defects in the PS phase are

Grassmannian manifold and Z2 classified, meaning that two of such defects can be deformed to

nothing.

As discussed around Eq. (2.4) and Sec. 2.5.1, since the coset SO(2n)/(SO(2m)×

SO(2n− 2m)) and SO(2n)/U(n) have vanishing π1 and π0, the 2nd homotopy group is

isomorphic to the 2nd homology group. We can use the corresponding cohomology generators

as the charge operators of these topological defects. However, it is impossible to directly express

the charge operator of Z2 classified topological defect of SO(2n)/(SO(2m)× SO(2n− 2m))

within the de Rham cohomology, more generally it is impossible for the Zn classified topological

defects, since the normalized generator of de Rham cohomology yields Z-valued closed form.

Mathematically, one may consider mod n reduction of the cohomology group or using the Cech

cohomology. But the current situation is reminiscent of the non-perturbative SU(2) anomaly

which is characterized by π4(SU(2)) = Z2 [421], the way to reproduce the non-perturbative

anomaly perturbatively is by embedding SU(2) ↪→ SU(3), and the non-perturbative SU(2)

anomaly is seen by the WZW term of SU(3) group [422]. As in Sec. 2.5.1, we attempt to

embed the space SO(2n)/(SO(2m)× SO(2n− 2m)) into a larger space, the natural choice

is the Goldstone boson in the SM phase with both order parameters condensed and the

unbroken symmetry is K. Indeed, we find that the embedding into G/K can capture both

topological defects even this Z2 classified topological defects in the PS phase with target space

SO(2n)/(SO(2m)×SO(2n−2m)).

The above statement can be seen by examining the homotopy group of the target
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space G/K. The short exact sequence of the global symmetry G,K and coset is

0→ K→ G→ G/K→ 0, this induces the long exact sequence for the homotopy group, and the

relevant part is,

...→ π2(G)→ π2(G/K)→ π1(K)→ π1(G)→ π1(G/K)→ ... (2.61)

The homotopy groups of G = SO(n) is known, π2(SO(n)) = 0,π1(SO(n)) = Z2,n≥ 3 and G/K

is contractible π1(G/K) = 0, the long exact sequence becomes,

0→ π2(G/K)→ π1(K)→ Z2→ 0 (2.62)

Therefore π2(G/K) = π1(K) = π1(SU(3)× SU(2)×U(1)×U(1)) = Z⊕Z quotient by Z2,

where the two Zs correspond to the topological defects in PS and GG phase respectively. This

construction is valid for a series of theories with G = SO(2n),n≥ 2.

Construction of Lie algebras

In this subsection, we describe the embedding of so(2m)⊕so(2n−2m) and u(n) into the

so(2n) Lie algebra. The so(2n) Lie algebra is represented by n(2n−1) 2n×2n anitsymmetric

real matrices, which generate the rotation of a 2n-vector. so(2m)⊕ so(2n− 2m) consists of

the 2n×2n anitsymmetric real matrices that rotate within the first 2m elements, or within the

last 2(n−m) elements in the 2n-vector. The u(n) is embedded in the so(2n) by Kronecker

producting the symmetric generators of u(n) with iσ2 and antisymmetric generators of u(n) with

iσ0.

In our case, m = 2⌊n/2⌋ in so(2m)⊕ so(2n− 2m), where m is taking the floor of n/2.

The intersection of u(n) and so(2m)⊕so(2n−2m) is isomorphic to u(m)⊕u(n−m) and always

contain two u(1)s, in the upper-left block u(1)+ and lower-right block u(1)− of the original

so(2n) respectively. Hence, u(1)++u(1)− ⊂ u(n) rotates the upper and lower block with the

same phase, while u(1)+−u(1)− ⊂ so(2m)⊕ so(2n−2m) rotates the upper and lower block

66



with the opposite phase.

Since the intersection of Lie algebras is u(m)⊕u(n−m), the symmetry K generated by

this Lie algebra contains two U(1) factors, π2(G/K) = π1(K) = Z⊕Z due to Eq. (2.62). We

have identified that one of the U(1) factors is in U(n), the other relates to SO(2m)×SO(2n−2m).

Hence, the topological defects in G/K correspond to those in symmetry breaking phases with

only unbroken U(n) or SO(2m)×SO(2n−2m). Since they are Z classified, we can find the de

Rham cohomology expressions of the charge operators corresponding to the topological defects,

η
(2) ∈ H2(G/K,R), ξ

(2) ∈ H2(G/K,R), (2.63)

where η(2) = η̃
(2) ∈ H2(G/U(n),R) corresponds to the charge operator of topological

defect in G breaking down to HU = U(n) phase, and ξ (2) should relate to ξ̃
(2) ∈

H2(G/SO(2m)SO(2n−2m),Z2) which corresponds to the charge operator of topological defect

in G breaks down to HSO = SO(2m)×SO(2n−2m) phase.

For SO(8), these generators of the cohomology group is given by,

η
(2)
U = θ

1∧θ
7 +θ

6∧θ
12 +θ

2∧θ
8 +θ

3∧θ
9 +θ

4∧θ
10 +θ

5∧θ
11 ∈ H2(G/K,R), (2.64)

ξ
(2)
SO =−θ

1∧θ
7 +θ

6∧θ
12 +θ

14∧θ
20 +θ

15∧θ
21 +θ

16∧θ
22 +θ

17∧θ
23 ∈ H2(G/K,R),

(2.65)

where the indices 1∼ 12 are the generators of the coset so(8)/u(4), while

{2,3,4,5,8,9,10,11,14,15,16,17,20,21,22,23} (2.66)

are the generators of the coset so(8)/so(4)⊕ so(4). The η
(2)
U ∈ H2(G/K,R) coincides with the

nontrivial generator in H2(SO(8)/U(4),R). And it is worth mentioning that the first two terms in

ξ
(2)
SO will cancel each other when pull-back to S2, the remain terms are all in so(8)/so(4)⊕so(4),

this further supports that ξ
(2)
SO relates to the generator in H2(SO(8)/SO(4)SO(4),Z2).
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Wess-Zumino-Witten term

As illustrated in Sec. 2.5.1, one can construct a WZW term by wedge product of the

charge operators,

η
(2)
U ∧ξ

(2)
SO ∈ H4(G/K,R). (2.67)

However, to properly include the linking information, an additional degree of freedom should

be included. Intuitively, two 2-spheres can link with each other in S5 but cannot be properly

described in 4-dimension, this is similar to the lower dimension example that the linking of two

circles needs to be embedded in S3 and the linking is essentially the intersection between one

circle and the disk that is bounded by the other circle. Following this procedure, one needs to

find the 3-disk D3 that is bounded by one of the 2-spheres, say corresponding to ξ
(2)
SO , then ξ

(2)
SO

is no longer closed, and the WZW term that encodes the linking of two topological defects is,

Γ
(5) = η

(2)
U ∧dξ

(2)
SO ∈ H5(Ĝ/K,R), (2.68)

where Ĝ/K is the extension of G/K such that it contains a 3-disk which is bounded by

a 2-sphere. This term corresponds to φW1W2 in Eq. (2.48). As mentioned in [402], the

mixed anomaly of U(n) and SO(2m)× SO(2n− 2m) is contained in SO(2n). The gauged

WZW term then matches with the anomaly from the Chern-Simons term, for the SO(2n)

global symmetry, dCS(5) = W3(SO(2n))2 ∈ H6(BSO(2n),Z), whose mod 2 reduction is

w3(SO(2n))2 ∈ H6(BSO(2n),Z2) corresponding to the image of w2w3(SO(2n)) [231]. This

model is akin to the Stiefel liquid in 2+1d, where the target space is Stiefel manifold, and the

anomaly is carefully studied in [465, 439].

Intertwinement of the topological defects and higher linking number

Since both topological defects are codimension 3 and Z classified, their charge operators

are represented by the generators of the second cohomology of G/K, H2(G/K,Z) = Z⊕Z.
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As discussed previously, the two Zs correspond to the two u(1) factors in K and one is in the

u(n), another is in the so(2m)⊕ so(2n−2m). To illustrate the intertwinement of the topological

defects, we consider two 2-spheres embedded in the target space G/K,

S2
U⊔S2

SO
f−→ G/K. (2.69)

where ⊔ is the disjoint union of two manifolds. Intuitively, we are considering the mapping that

sends two disjoint 2-spheres into the homogeneous space G/K, such that the second cohomology

of G/K is pull-back via f ∗ to the second cohomology of each sphere, f ∗η(2)
U = ω

(2)
U ∈H2(S2

U,R)

and f ∗ξ (2)
SO = ω(2)SO ∈ H2(S2

SO,R). The two different topological defects are then simply

understood by these two spheres. The linking of the two spheres is characterized by the degree

of the map that sends the disjoint spheres into S5 [109]. We can further embed S5 h
↪−→ Ĝ/K, then

the map is summarized as,

S2
U⊔S2

SO
g−→ S5 h

↪−→ Ĝ/K. (2.70)

Hence, the WZW term Γ(5) in Eq. (2.68) is pull-back via h∗ to the non-trivial element of

H5(S5,R), and deg(g) =−Lk(S2
U,S

2
SO) is the linking number of S2

U and S2
SO in S5 [109]. The

WZW term on S5 captures the essential intertwinement of the different topological defects in

G/K.

Explicit construction for G = SO(2n),n≥ 4

In the following example, we are focusing on global symmetry SO(8), and the subgroups

are HSO = SO(4)×SO(4) and HU = U(4). This construction also applies to G = SO(2n),n≥ 4.

We first construct the map from S2
U⊔S2

SO→ G/K, the two spheres are related to the two

u(1) factors in K. The 2-sphere can be viewed as the homogeneous space S2 = SO(3)
SO(2) , thus, we

take the generators of SO(3)⊂ G and modulo the subgroup SO(2)⊂ G. Since the two S2s do
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not intersect with each other, we take two commuting so(3) to construct S2s, the starting point is,

T A = {σ20,σ12,σ32}, T̃ A = {σ02,σ21,σ23}. (2.71)

We choose one element of each set as the generator of SO(2), then the Goldstone boson field for

each S2 is given by, for example,

(θ1,φ1) ∈ S2
U→U1 = ei(θ1 sinφ1,θ1 cosφ1)·(T 1,T 2)⊺ ∈ SO(3)/SO(2)

(θ2,φ2) ∈ S2
SO→U2 = ei(θ2 sinφ2,θ2 cosφ2)·(T̃ 1,T̃ 2)⊺ ∈ SO(3)/SO(2) (2.72)

It is easy to show that (UidUi)
2 corresponds to the generator of H2(S2

i ,R). The Goldstone boson

fields are equivalent under the right multiplication of h ∈ H, therefore, we have

U1 = n1 · (T A)⊺, U2 = n2 · (T̃ A)⊺ (2.73)

where ni = (sinθi cosφi,sinθi sinφi,cosθi) is the 3-vector on the 2-sphere, and generator of the

second cohomology is given by det(ni,dni,dni). Moreover, one can construct the 6-vector on 5-

sphere by interpolating the ni vector, the 6-vector is given by n = (cosψn1,sinψn2),ψ ∈ (0,π].

The corresponding Goldstone boson field is cosψ(σ1⊗U1)+ sinψ(σ3⊗U2). The 5-form is

given by ω(5) = det(n,dn,dn,dn,dn,dn) which is the volume form of S5, when pull back to

S2
U⊔S2

SO, the integral on S5 gives the linking number of S2
U and S2

SO in S5 [109].

The skeleton theory of the Eq. (2.68) together with the kinetic term is given by the O(6)

nonlinear sigma model with WZW term,

∫
X

1
2g

(∂µn)2 +
2π i

Ω5

∫
Y

εabcde f nadnb∧dnc∧dnd ∧dne∧dn f (2.74)

where Ω5 = π3 is the area of 5-sphere. Similar action appears in Ref. [183] and previously in

Ref. [43]. The Eq. (2.74) can be viewed as the boundary of the bulk SPT with SO(6) symmetry
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which is described by the nonlinear sigma model with θ -term [41, 445]. With this skeleton

theory Eq. (2.74), one can see that the charge operators of the topological defects are given by

ω
(2)
U = εabcnadnb∧dnc and ω

(2)
SO = εde f nddne∧dn f where a,b,c are in {1,2,3} and d,e, f are

in {4,5,6}. The WZW term in Eq. (2.74) calculates the linking number between the two charge

operators,

2π i

Ω5

∫
Y

εabcde f nadnb∧dnc∧dnd ∧dne∧dn f = 2π i
∫

Y
ω

(2)
U ∧dω

(2)
SO = 2π iLk(S2

U,S
2
SO). (2.75)

If fixing the position of one charge operator ω
(2)
U , and move the other charge operator ω

(2)
SO around

the fixed position one ω
(2)
U , then the WZW term describes that the worldsheet of the moving

monopole ω
(2)
SO detects the flux of ω

(2)
U . And the WZW term assigns phase to their linking

number, this demonstrates essentially the intertwinement of charge operators of topological

defects.

Since the nonlinear sigma model with the WZW term can be viewed as the boundary

theory of the bulk SPT, one can instead see the intertwinement in the bulk SPT. Once coupling

the charge operators of the defects to 2-form background gauge fields B(2),C(2), the bulk SPT

is described by, 1
π

∫
Y B(2)∧dC(2). The linking between the surface operators ei

∮
B,ei

∮
C is also

given by the above linking number [174].

These bosonic fields can be further embedded into G/K by embedding the generators

T A, T̃ A into the generators of G/K. In the following section Sec. 2.6.3, we will couple these

Goldstone boson fields to the fermionic field and construct the fermionic sigma model. The

fermionic sigma model also shows the intertwinement of the charge operators is related to the

higher linking number of two S2s in S5.

2.6 Fermionic sigma model and WZW term

In this section, we construct the fermion model that reproduces NLSM with WZW for

general homogeneous space G/H. The fermions are coupled to the fluctuating bosonic fields

71



living in G/H. After integrating out the fermion fields [4, 182], the resulting effective action is

the NLSM with WZW given in Sec. 2.5. We call such models as fermionic sigma model and they

provide an alternative insight into the intertwinement of symmetry defects in higher dimensions.

2.6.1 General G-symmetric action and fermionic sigma model

The bosonic fields introduced in Sec. 2.2.2 transforms nonlinearly under the global

symmetry G as in Eq. (2.6). We can consider a field χ that transforms under G as,

χ
g−→ χ

′ = D(h−1(g,π))χ, (2.76)

with some representation D. The χ field is like a representative point on the coset, and it can be

rotated to the general one by the Goldstone boson field. The χ field can be converted into the

field ψ =U(π)χ that transforms as an ordinary linear transformation under G,

ψ(x)
g−→ ψ

′(x) = D(U(π ′))χ ′(x)

= D(g−1U(π)h(g,π))D(h−1(g,π))χ(x) = D(g−1)D(U(π))χ(x) = D(g−1)ψ(x) (2.77)

We can also introduce the covariant derivative, DV χ . Under the G transformation it becomes,

DV χ = (∂µ +V )χ
g−→ ∂µ(h−1(π,g)χ)+(V +h−1dh)h−1(π,g)χ = h−1(π,g)DV χ. (2.78)

Meanwhile, as in Eq. (2.13), φ
g−→ h−1φh. Therefore, the general G invariant action can be

constructed by χ,DV χ,φ , which is also invariant under the unbroken symmetry H [413, 95, 59].

To construct the fermionic sigma model, we introduce a mass matrix M0 as a reference

point, and it satisfies,

hM0h−1 = M0. (2.79)

For example, M0 = diag(1, ..,1,−1, ...,−1) with n times +1, m times -1, is the matrix that breaks
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SO(n+m)→ SO(n)×SO(m). The χ̄M0χ is then G-symmetric,

g : χ̄M0χ → χ̄D(h−1)−1M0D(h−1)χ = χ̄M0χ (2.80)

Upon rewriting the term in the ψ basis, the G-symmetric action is,

ψ̄ iγµ
∂µψ + ψ̄U(π)M0U(π)−1

ψ. (2.81)

where ψ is the complex fermion that transforms linearly under G. Eq. (2.81) is the general

fermionic sigma model where the fermion mass manifold G/H is parameterized by the bosonic

field U .

2.6.2 Reproducing the WZW term from the fermionic sigma model

We follow the Ref. [4] and recent presentation in Ref. [182] to derive the Wess-Zumino-

Witten term by integrating out the fermion, the partition function of the anomalous theory

depends on the Goldstone boson field is,

ZT [U ] =
∫

Dψ̄Dψe−S [ψ̄,ψ,U ], (2.82)

S [ψ̄,ψ,U ] =
∫

dnx ψ̄(iγµ
∂µ + imU(π)M0U(π)†)ψ

≡
∫

dnx ψ̄(i/∂ + imMU)ψ ≡
∫

dnx ψ̄D̂ψ, (2.83)

where MU ≡U(π)M0U(π)−1 and ZT [U ] contains the kinetic term and possible Wess-Zumino-

Witten term of the Goldstone boson. Following the standard derivation, the WZW action is,

SWZW =− 1
2π

1
(4π)d/2

Γ(d
2 +1)

Γ(d +1)

∫
Y

dudnx tr

{(
n

∏
i=1

(γµa∂µaMU)MU†
∂uMU

)}
(2.84)

where u is the extra coordinate on Y , ∂Y = X , Γ(z) is the Gamma function Γ(n+ 1) = n! for

integer n. Since the WZW term is written locally in 1 higher dimension than the spacetime
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manifold, we have extended MU as the map from Y to the mass manifold. After straightforward

calculation, the WZW term for G/H is in general given by,

Γ
(d+1)(U) =− 1

2π

2⌊d/2⌋

(4π)d/2

Γ(d
2 +1)

Γ(d +2)
tr
{(

[M0,U−1dU ]d+1M†
0

)}
(2.85)

where ⌊x⌋ is the floor function. Recalling that U−1dU can be decomposed into h and f parts,

U−1dU =V +φ , and [M0,T α ] = 0,T α ∈ h, we have,

[M0,U−1dU ] = [M0,φ ] = [M0,θ
aT a],a ∈ f (2.86)

It turns out, for example,

Γ
(5) =− 1

480π3 tr
{(

[M0,U−1dU ]5M†
0

)}
∈ H5(G/H,R) (2.87)

=− i

16π3 tr

(
φW 2 +

1
2

φ{W,DV φ}+ 2
3

Wφ
3 +

1
3

φ(DV φ)2 +
1
2

φ
3DV φ +

1
5

φ
5

)
(2.88)

This shows that the fermionic sigma model in Eq. (2.81) reproduces the WZW term for G/H

homogeneous space.

2.6.3 Fermionic sigma model and intertwinement of mass manifolds

In this section, we present the construction of a fermionic sigma model that could

reproduce the WZW term in Sec. 2.5.2. There are two types of topological defects in the

symmetry breaking phases, both of them are characterized by the charge operators as the

generators of the second cohomology H2(G/K). We then consider embedding two S2s into G/K,

the linking number of these two spheres is the degree of the mapping from two S2 to S5. More

explicitly, to illustrate the intertwinement of the topological defects, we consider the mapping in

Eq. (2.70), S2
U⊔S2

SO

g−→ S5 h
↪−→ Ĝ/K.

We are focusing on the case where the global symmetry is SO(8), the generalization of
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this construction to SO(2n) can be obtained by embedding SO(8) ↪→ SO(2n). The embedding

of two disjoint S2s into G/K is obtained by considering two commuting so(3)s and modulo the

so(2) subalgebra.

The Goldstone boson fields in Eq. (2.72) can be used to rotate the mass matrix and

coupled to the fermions. Therefore, we can construct the fermionic sigma model that reproduces

the WZW term, or the charge operators of the topological defects. Here we consider the fermions

that are transformed under vector representation of the global flavor symmetry SO(2n) and the

mass matrix can be an antisymmetric or symmetric representation of SO(2n).

As noted in Sec. 2.5.2 and [402, 401, 449], the higgs fields Φ45,Φ54 which are used

to approach GG and PS phase have different symmetry properties, they are symmetric and

antisymmetric respectively. The mass matrix of the fermion model can be chosen in a way that

aligns with the symmetry properties, once integrating out the fermion fields, the corresponding

charge operators of the topological defects could match with the symmetry constraints of the higgs

fields Φ45,Φ54. We are considering this symmetry constraint also applies to the SO(2n),n≥ 4

model.

However, the so(3) matrices considering in Eq. (2.71) are all antisymmetric. The way to

render the antisymmetric matrix to a symmetric one is to Kronecker product additional σ2 to the

antisymmetric matrices, to preserve the antisymmetry, one needs to Kronecker product additional

σ0 to the antisymmetric matrices. Due to the symmetry constraint [402, 401, 449], we would

like to construct one set with all symmetric matrices and the other set with all antisymmetric

matrices.

Sym : {σ220,σ212,σ232}, Asym : {σ002,σ021,σ023}. (2.89)

Hence, the first set of SU(2) matrices is symmetric, the second set is antisymmetric. The above

matrices are ready to couple to complex fermions. In the Majorana basis, the mass matrix should
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be antisymmetric, and the general form of the mass matrices in 4d is,

M = σ
21⊗S1 +σ

23⊗S2, (2.90)

where Si are the symmetric matrices, σ21,σ23 are the γ matrices. We need further add indices to

the two sets of matrices and make them symmetric,

Sym : {σ0220,σ0212,σ0232}, Sym : {σ2002,σ2021,σ2023}. (2.91)

It is convenient to block diagonalize the matrices by doing the unitary transformation ei
π

4 σ1200
,

M→ ei
π

4 σ1332
Me−i

π

4 σ1332
: Sym : {σ0220,σ0212,σ0232}, Sym : {σ3202,σ3221,σ3223}. (2.92)

One can freely choose the representative matrix in each set, and the other matrices can be

obtained by doing the SU(2) transformation,

MSO
0 = σ

0220,T a = {σ0012,σ0032}, (2.93)

MU
0 = σ

3202, T̃ a = {σ0021,σ0023}. (2.94)

Since the mass matrices are block-diagonal, one can rotate the upper block or the lower block

separately by

MSO
0 = σ

0220,T a
± = {σ0012±σ3012

2
,
σ0032±σ3032

2
} (2.95)

MU
0 = σ

3202, T̃ a
± = {σ0021±σ3021

2
,
σ0023±σ3023

2
}. (2.96)
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Hence, we obtain the map from S2 to the SU(2) mass matrices,

(θ1,φ1) ∈ S2→MSO
± =U1MSO

0 U−1
1 ∈ SU(2), U1 = ei(θ1 sinφ1,θ1 cosφ1)·(T 1

±,T
2
±)

⊺
(2.97)

(θ2,φ2) ∈ S2→MU
± =U2MU

0 U−1
2 ∈ SU(2), U2 = ei(θ2 sinφ2,θ2 cosφ2)·(T̃ 1

±,T̃
2
±)

⊺
(2.98)

where MSO
± ,MU

± satisfy [MSO
± ,MU

±] = 0. We first find that the charge operators of the topological

defects can be reproduced by the fermions coupled to the mass manifolds and evaluated on a

submanifold,

MSO
± dMSO

± dMSO
± = volS2σ

200
± , MU

±dMU
±dMU

± = volS2σ
200
± (2.99)

where volS2 = sinθidθidφi is the volume form of the S2. More interestingly, if we interpolate the

mass matrix in Eq. (2.90) by,

SU ∋M(u,θ1,φ1,θ2,φ2) = σ
21⊗uMSO+σ

23⊗
√

1−u2MU, (2.100)

such that M(0) = σ23⊗MU,M(1) = σ21⊗MSO. Note that the two mass matrices play different

roles, one is the identity mass, and the other one relates to the chiral mass. When integrating out

the fermion fields, the WZW term is,

SWZW =
2π

960π3

∫
S2×S2×I

tr
(
M−1dM

)5

=
2π

960π3

∫
S2×S2×I

120tr
(
σ

000)u2
√

1−u2 sinθ1 sinθ2dθ1dφ1dθ1dφ1du. (2.101)
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When evaluating the WZW term on an interval u ∈ [0,1],

SWZW =
2π

960π3

∫ 1

0

∫
S2

∫
S2

120tr
(
σ

000)u2
√

1−u2 sinθ1 sinθ2dθ1dφ1dθ1dφ1du (2.102)

=
∫

S2×S2

−isinθ1 sinθ2

8π
dθ1dφ1dθ2dφ2 (2.103)

= 2π i= 2π iLk(S2,S2), (2.104)

where Lk(S2,S2) is the linking number of two S2 in S5 [174, 109]. This WZW term corresponds

to φW1W2 in the previous section, where W1,W2 are the curvature of the two 2-spheres

corresponds to the generator of H2(G/Hi,R) and φ is f-valued 1-form, but interestingly, φ

relates to the chiral rotation U(1) in the global symmetry of the fermionic sigma model, which

corresponds to the exchange of two symmetry defects in the G/K NLSM in Eq. (2.68).

2.7 Summary and comments

Summary

We propose the nonlinear sigma model with target space G/K and Wess-Zumino-Witten

term as the general description of deconfined quantum critical point theory, based on the very

important features of the symmetry defects and their intertwinement in the DQCP theories.

We show the topological defects in G/K precisely correspond to the symmetry defects in each

spontaneous symmetry breaking phase in the DQCP phase diagram. The WZW term decorates

the symmetry defects in one SSB phase with the charge of the broken symmetry of the other

SSB phase. By proliferating the symmetry defects, the broken symmetry of one SSB phase is

restored but the additional charge breaks the symmetry, leading to the other SSB phase.

We connect this NLSM description with the ordinary ’t Hooft anomaly matching

argument by explicitly calculating the gauged WZW term and its corresponding bulk SPT.

When the anomalous UV symmetry G is spontaneously broken to non-zero subgroup H (which

can be anomalous or non-anomalous), the odd spacetime dimensional bulk SPT is in general
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described by relative Chern-Simons term and mixed θ term for even dimensional bulk. We

provide an alternative fermionic sigma model that reproduces the NLSM with the WZW term.

This alternative fermionic model gives insight into the detailed global symmetry actions.

We apply our framework to several examples - first revisit the ordinary 2+1d

DQCP between Néel and VBS phases. Then motivated by recent works on deconfined

quantum criticality among different grand unified theories [402, 401, 449], we studied the

deconfined quantum critical theories between two SSB phases with unbroken symmetries

HSO = SO(2m)×SO(2n−2m) and HU =U(n), and they come from the theory with G = SO(2n)

global symmetry by condensing the order parameters. Applying the G/K NLSM description

(K = U(m)×U(n−m)), we are able to find operators that correspond to the symmetry defects in

both SSB phases, due to π2(
G

U(m)×U(n−m)) = Z⊕Z. It is interesting because the symmetry defect

in the SSB phase with unbroken symmetry HSO is Grassmannian manifold and has Z2 valued

topological charge, which does not have a corresponding de Rham cohomology description.

Embedding G/HSO into larger space G/K is reminiscent of finding non-perturbative SU(2)

anomaly by embedding SU(2) ↪→ SU(3), and the non-perturbative anomaly associated with

π4(SU(2)) = Z2 can be seen from SU(3) WZW term via perturbative calculation. Then we

construct the WZW term and examine the corresponding anomaly which descends from the

SO(2n) anomaly [400, 402, 401, 449].

Furthermore, the symmetry defects in this complicated homogeneous space can be

understood by examining the embedding S2×S2 f−→ G/K. Hence, the G/K NLSM becomes the

ordinary O(6) nonlinear sigma model with the WZW term. The first and last three components

of the O(6) vector describe the 2-spheres corresponding to different symmetry defects. The

WZW term then assigns the phase to the linking of the two 2-spheres in S5.

We provide an alternative fermionic sigma model to reproduce the NLSM. The fermions

are coupled to the fluctuating bosonic fields living in the homogeneous space G/K, when

integrating out the fermions, the resulting effective action is the G/K NLSM with level-1 WZW

term. As an example, we embed the two 3-component unit vectors into G/K and construct the
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fermionic model of O(6) NLSM. We should point out that since the SO(6) is explicitly broken

down to SO(3)×SO(3), the chiral U(1) rotation in the fermion model is crucial to get the correct

linking between symmetry defects in different SSB phases. This rotation is in SO(6) but not in

SO(3)×SO(3).

Comments

The G/K NLSM with WZW description discussed in this paper is applicable to

any dimensions and different continuous symmetries of DQCP theory. However, this

description focuses on the kinematics of the DQCP theory, namely the symmetry defects,

their intertwinement, and ’t Hooft anomaly. The dynamics of the DQCP theory is much

more complicated - the operator contents and their scaling dimensions are not universal,

and the renormalization group schemes vary from different dimensions and different models.

Nevertheless, the symmetry of the G/K NLSM would imply infrared duality of gauge theories,

for example, the discrete symmetry that exchanges two types of symmetry defects becomes

particle-vortex like duality of gauge theories [393, 340, 253]. Furthermore, the duality between

different quantum field theories relates the operator contents and set the constraints on the scaling

dimensions which reveals information on dynamics [393, 315, 187].

Despite the difficulty in extracting specific dynamical information, our proposal captures

the essential features for which the DQCP is beyond ordinary symmetry-breaking transition.

In this point of view, the DQCP is not rare, and it can be more ubiquitous if incorporating

higher-form symmetry [145, 268, 227, 105, 461], categorical symmetry [190, 72], and loop

group symmetry for the system with a fermi surface [122, 392, 106]. The ongoing exploration

of non-invertible symmetries should also have their corresponding DQCP theory provided the

symmetries have mixed anomaly [70, 378, 88]. One can also apply the current approach to

understand multicritical point joined by several SSB phases. This formalism can also be used to

construct DQCP models involving average symmetries [264, 456, 229].

Chapter. 2, in full, is a reprint of the material as it appears in Da-Chuan Lu. Nonlinear
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sigma model description of deconfined quantum criticality in arbitrary dimensions. SciPost

Physics Core, 6(3):047, July 2023. The dissertation author was the primary investigator and

author of this paper.
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Chapter 3

Fermi Surface Symmetric Mass
Generation

Symmetric mass generation is a novel mechanism to give gapless fermions a mass gap by

non-perturbative interactions without generating any fermion bilinear condensation. The previous

studies of symmetric mass generation have been limited to Dirac/Weyl/Majorana fermions with

zero Fermi volume in the free fermion limit. In this work, we generalize the concept of symmetric

mass generation to Fermi liquid with a finite Fermi volume and discuss how to gap out the

Fermi surfaces by interactions without breaking the U(1) loop group symmetry or developing

topological orders. We provide examples of Fermi surface symmetric mass generation in both

(1+1)D and (2+1)D Fermi liquid systems when several Fermi surfaces together cancel the Fermi

surface anomaly. However, the U(1) loop group symmetry in these cases is still restrictive

enough to rule out all possible fermion bilinear gapping terms, such that a non-perturbative

interaction mechanism is the only way to gap out the Fermi surfaces. This symmetric Fermi

surface reconstruction is in contrast to the conventional symmetry-breaking gapping mechanism

in the Fermi liquid. As a side product, our model provides a pristine 1D lattice regularization

for the (1+1)D U(1) symmetric chiral fermion model (e.g., the 3-4-5-0 model) by utilizing

a lattice translation symmetry as an emergent U(1) symmetry at low energy. This opens up

the opportunity for efficient numerical simulations of chiral fermions in their own dimensions

without introducing mirror fermions under the domain wall fermion construction.
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3.1 Introduction

Fermi liquids are gapless quantum many-body systems of fermions that possess Fermi

surfaces and well-defined quasi-particle excitations at low energy. They are the models for the

most commonly-seen metallic materials in nature. They are probably also one of the most studied

quantum phases of matter in condensed matter physics since Landau [228, 239]. However, there

are still many novel aspects of Fermi liquids that might not have been well recognized. This

article explores one such aspect: the phenomenon of symmetric mass generation (SMG, see a

recent overview [403] and references therein) in Fermi liquids.

One intriguing property of the Fermi liquid is the surprising stability of the Fermi

surface under generic local interactions of fermions. Although the system is gapless with vastly

degenerated ground states, local interactions often do not immediately lift the ground state

degeneracy and destabilize the Fermi liquid towards gapped phases. Early understandings

of this property came from the perturbative renormalization group (RG) analysis, as the

Fermi liquid theory can emerge as a stable RG fix-point of interacting fermion systems

[353, 354, 169, 84, 117, 85, 317].

Recently, a modern understanding arose under the name of Fermi surface anomaly

[122, 121, 250], which states that the stability of the Fermi surface can be viewed as protected

by the quantum anomaly of an emergent LU(1) loop group symmetry at low energy, extending

and unifying many related discussions [302, 297, 298, 275, 305, 165, 166, 412, 82, 257, 86, 191,

272, 53, 365, 437] about Luttinger’s theorem [259] and Lieb-Schultz-Mattis theorem [238] in

fermionic systems. Loosely speaking, the LU(1) symmetry corresponds to the fermion number

nkkk conservation at each momentum point kkk on the Fermi surface (FS), which is preserved

by the Landau Fermi liquid Hamiltonian HFL = ∑kkk∈FS εkkknkkk +∑kkk,kkk′′′∈FS fkkkkkk′nkkknkkk′ + · · · . In the

presence of the Fermi surface anomaly, the Fermi liquid can only be gapped by either (i)

spontaneously breaking the LU(1) symmetry or (ii) spontaneously developing anomalous

topological orders (or other non-Fermi liquid exotic states) that saturate the Fermi surface
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anomaly. The anomaly matching is a kinematic constraint, which is non-perturbative and more

robust than the perturbative RG analysis of the Fermi liquid low-energy dynamics.

Over the past decade, the quantum anomaly [327, 415, 204, 404] has been realized as

an important theoretical tool in analyzing the protected gapless boundary states of interacting

topological insulators/superconductors, which belong to symmetry-protected topological (SPT)

phases in a grand scope (see overviews [347, 426, 416] and references therein). An interesting

phenomenon, known as symmetric mass generation (SMG) [127, 128, 326, 314, 436, 159, 414,

396, 359, 15, 61, 14, 397], was discovered in the study of interacting fermionic SPT states. It

was realized that certain SPT states might look non-trivial at the free-fermion (non-interacting)

level but can be smoothly deformed into a trivial gapped phase with a unique ground state

by fermion interactions. This implies some integer Z classification of non-interacting SPT

states can be reduced to a finite abelian elementary order-n group Zn classification for some

interacting SPT states, first emphasized by Fidkowski-Kitaev [127, 128]. Correspondingly, their

gapless boundary states can be gapped out by (and only by) interaction without breaking the

symmetry or developing the topological order (breaking emergent higher-form symmetry). This

provides a novel mechanism to generate a mass for zero-density relativistic gapless fermions

(e.g., Dirac/Weyl/Majorana fermions occupying only Fermi points with zero Fermi volumes at

the Fermi level, colloquially known as Dirac/Weyl/Majorana cones) without symmetry breaking,

which has been proposed to provide lattice regularization for the Standard Model and Grand

Unified Theories [414, 442, 444, 211, 398, 321]. This mechanism is called SMG, or “mass

without mass term”[30, 31], which is distinct from the conventional Higgs mechanism that relies

on symmetry breaking for fermion mass generation.

However, as far as we are aware of the existing literature, the SMG mechanism has not

yet been extended to fermion systems at a finite filling (with a finite density). The Fermi liquid is

one most notable examples of such, which possesses a Fermi surface enclosing a finite Fermi

volume. It is natural to ask: can SMG happen on the Fermi surface as well, gapping out the

Fermi surface by interaction without breaking the loop group symmetry of interest? As we will
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demonstrate in this article, the answer is yes.

Given the spacetime-internal symmetry G of a fermion system, the conditions [403] for

SMG to happen are: (i) the system must be free from G-anomaly such that symmetric gapping

(without topological order) becomes possible, and (ii) the symmetry G must be restricted enough

to rule out any symmetric fermion bilinear gapping term such that the gapping can only be

achieved by interaction. These defining conditions of SMG can be applied to the Fermi liquid

system by considering G as the emergent loop group symmetry on the Fermi surface. Based

on this understanding, we will investigate the Fermi surface SMG in the presence of the LU(1)

symmetry. The general feature is that even though a single Fermi surface is anomalous, it is

possible to cancel the Fermi surface anomaly among multiple Fermi surfaces (or Fermi surfaces

with multiple fermion flavors), such that interactions can drive the transition from the Fermi

liquid phase to a symmetric gapped phase. We shall name this phenomenon as the “Fermi surface

Symmetric Mass Generation”.

The Fermi surface SMG provides us a different possibility to create a gap to all

excitations on the Fermi surface without condensing any fermion bilinear order parameter,

which makes it distinct from the superconducting gap (i.e., condensing Cooper pairs) or the

density wave gap (i.e., condensing excitons) that are more familiar in condensed matter physics.

Nevertheless, it does involve condensing some multi-fermion bound states that transform trivially

under the symmetry transformation. One simplest example is the charge-4e superconductor

[213, 200, 35, 318, 34, 168, 277, 195], which condenses fermion quartets (four-fermion bound

states) that preserves at least the Z4 subgroup of the charge U(1) symmetry. In this work, we will

provide more carefully designed examples preserving the full U(1) symmetry (and other lattice

symmetries), but the essential idea of condensing symmetric multi-fermion operators to generate

a many-body excitation gap is the same. Therefore, the Fermi surface SMG is intrinsically a

strong non-perturbative interaction effect of fermions. The interaction may look irrelevant at the

free-fermion (or the Fermi liquid) fixed-point. However, strong enough interaction can still drive

the gap-opening transition through non-perturbative effects.
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The article will be organized as follows. In Sec. 3.2, we will present a lattice model of

Fermi surface SMG in (1+1)D, as the pristine lattice regularization of the 3-4-5-0 chiral fermion

model, whose phase diagram can be reliably analyzed by RG approach. In Sec. 3.3, we will

extend the discussion of Fermi surface SMG to (2+1)D in a concrete lattice model, which can

be exactly solved in both the weak and strong interaction limits. Through these examples, we

establish the Fermi surface SMG as a general mechanism to gap out anomaly-free Fermi surfaces

in different dimensions. We summarize our result and discuss its connection to future directions

in Sec. 3.4.

3.2 Fermi Surface SMG in (1+1)D

3.2.1 (1+1)D Fermi Liquid and Fermi Surface Anomaly

In the free-fermion limit, the (1+1)D Fermi liquid can be realized as a system of fermions

occupying a segment of single-particle momentum eigenstates in the 1D momentum space (or

Brillouin zone), which can be described by a Hamiltonian H = ∑k c†
kεkck, where ck (or c†

k) is

the fermion annihilation (or creation) operator of the single-particle mode at momentum k. For

now, we only consider spinless fermions, such that the ck operator does not carry spin (or any

other internal degrees of freedom). As an example, suppose the band structure is described by

εk = (k2− k2
F)/(2m) for non-relativistic fermions with a finite chemical potential µ = k2

F/(2m).

The ground state of the Hamiltonian H will have fermions occupying the momentum segment

k ∈ [−kF ,kF ] bounded by the Fermi momentum kF , as illustrated in Fig. 3.1(a).

The low-energy degrees of freedom in the (1+1)D Fermi liquids can be modeled by the

chiral fermions near the 0D Fermi surfaces (namely, Fermi points) at ±kF , which are described

by the following Lagrangian density

L = c†
L(i∂t− vF i∂x)cL + c†

R(i∂t + vF i∂x)cR, (3.1)

where vF = kF/m is the Fermi velocity. The operator cL (or cR) annihilates the left (or right)
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Figure 3.1. (a) A typical single-band Fermi liquid with Fermi surface anomaly. (b) Two-band
model of a Fermi liquid with the Fermi surface anomaly canceled. Chiral fermions with linearized
dispersions around different Fermi points emerge at low energy.

moving fermion modes, defined as

cR/L(x) =
∫

Λ

−Λ

dκ c±kF+κei(±kF+κ)x (3.2)

around the Fermi points within a small momentum cutoff Λ≪ kF . The low-energy effective

theory L in Eq. (3.1) has an emergent U(1)L×U(1)R symmetry (more precisely as an emanant

symmetry [80], since the translation and charge conservation symmetry are not the subgroup of

U(1)L×U(1)R symmetry), corresponding to the separate charge conservation of the left- and

right-moving chiral fermions. Under the symmetry transformation with the periodic φL and φR

in [0,2π),

U(1)L : cL→ eiφLcL,cR→ cR;

U(1)R : cL→ cL,cR→ eiφRcR.

(3.3)

They can be as well understood as a recombination of the vector U(1)V and axial U(1)A
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symmetries, by rewriting φL = φ − kF δx and φR = φ + kF δx,

U(1)V : ck→ eiφ ck⇒

 cL→ eiφ cL,

cR→ eiφ cR;

U(1)A : ck→ eik δxck⇒

 cL→ e−ikF δxcL,

cR→ e+ikF δxcR.

(3.4)

More precisely, the combined symmetry group should be denoted as U(1)V ×ZF
2
U(1)A ≡

U(1)V×U(1)A
ZF

2
, because the U(1)V and U(1)A symmetries share the fermion parity ZF

2 subgroup

(under which cL,R→−cL,R). The physical meaning of the vector U(1)V symmetry is the total

U(1) charge conservation of the fermions, and the axial U(1)A symmetry can be considered an

effective representation of the translation symmetry in the infrared (IR) limit (that translates all

fermions by displacement δx along the 1D system). Although translation symmetry is described

by a non-compact symmetry group Z at the lattice scale, its action on the low-energy chiral

fermion fields cL,cR behaves as a compact U(1)A emergent symmetry [272, 356].

The stability of the Fermi liquid is protected by the Fermi surface anomaly, which can be

viewed as the mixed anomaly between the U(1)V and U(1)A symmetries. The anomaly index is

given by [259, 238, 86]

1× kF −1× (−kF) = 2kF = 2πν , (3.5)

which can be related to the fermion filling fraction ν . The system is anomalous if the filling ν is

not an integer. Without breaking the charge U(1) and translation symmetries, it is impossible

to drive the Fermi liquid to a trivial gap phase due to the non-vanishing Fermi surface anomaly.

This can be viewed as a consequence of the Lieb-Schultz-Mattis (LSM) theorem [238]. The

situation is also similar to the chiral fermion edge states on the (1+1)D boundary of a (2+1)D

quantum Hall insulator.
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3.2.2 Two-Band Model and Anomaly Cancellation

To generate a gap for these low-energy fermions in (1+1)D Fermi liquids, the Fermi

surface anomaly must be canceled. Here we present a two-band toy model that achieves anomaly

cancellation and enables gapping out the Fermi surface without breaking the charge U(1) and

translation symmetries and without generating any Fermi bilinear condensation. It will provide a

concrete example of SMG in (1+1)D Fermi liquids.

Consider a 1D lattice (a chain of sites) with two types of fermions ciA and ciB per site.

The A-type fermion ciA carries charge qA under a global U(1) symmetry, and the B-type fermion

ciB carries charge qB under the same U(1) symmetry. The Hamiltonian takes the general form of

H =−∑
i j
(tA

i jc
†
iAc jA + tB

i jc
†
iBc jB +h.c.)−∑

i
(µAc†

iAciA +µBc†
iBciB)+Hint (3.6)

with Hint being some fermion interactions to be specified later in Eq. (3.16). The specific details

of the hopping coefficients tA
i j and tB

i j are not important to our discussion as long as they produce

a band structure that looks like Fig. 3.1(b) in the Brillouin zone. The A-type fermion forms an

electron-like band, and the B-type fermion forms a hole-like band. The two bands overlap in the

energy spectrum. This will realize a two-band Fermi liquid in general. The Hamiltonian H in

Eq. (3.6) has a U(1)× (Z⋊Z2) symmetry (parameterized by a periodic angle φ ∈ [0,2π) and an

integer n ∈ Z as follows)

U(1) : ciA→ eiqAφ ciA, ciB→ eiqBφ ciB;

Z : ciA→ c(i+n)A, ciB→ c(i+n)B;

Z2 : ciA→ c(−i)A, ciB→ c(−i)B.

(3.7)

They correspond to the total charge conservation symmetry U(1), the lattice translation symmetry

Z, and the lattice reflection symmetry Z2. The question is whether we can gap the Fermi liquid

without breaking all these symmetries in (1+1)D.
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One significant obstruction towards gapping is the Fermi surface anomaly, which can

also be interpreted as a mixed anomaly between the charge U(1) and (the IR correspondence

of) the translation symmetry. To cancel the Fermi surface anomaly, we need to fine-tune the

chemical potentials µA and µB such that the anomaly index vanishes

qAνA +qBνB = 0 mod 1, (3.8)

where νA and νB are the filling fractions of the A and B bands (for the hole-like B band, we may

assign νB < 0 such that |νB| corresponds to the hole-filling). This is also known as the charge

compensation condition in semiconductor physics.

If the A-type and B-type fermions carry the same charge as qA = qB = 1, the anomaly

cancellation condition Eq. (3.8) simply requires νA =−νB. In this case, the electron-like Fermi

surface of the A-type fermion and the hole-like Fermi surface of the B-type fermion are perfectly

nested (with zero nesting momentum). A gap can be opened simply by tuning on a fermion

bilinear term ∑i(c
†
iAciB + h.c.) in the Hamiltonian, which preserves the full U(1)× (Z⋊Z2)

symmetry. This is the familiar band hybridization mechanism to open a band gap in a charge-

compensated Fermi liquid, which drives a metal to a band insulator without breaking symmetry.

However, we are more interested in the non-trivial case when the fermions carry different

charges qA ̸= qB. For example, let us consider the case of qA = 1 and qB = 3, then the anomaly

cancellation condition Eq. (3.8) requires νA =−3νB, i.e. the electron-like Fermi volume in the

A band must be three times as large as the hole-like Fermi volume in the B band to cancel the

Fermi surface anomaly. Defining the fermion operators ckA,ckB in the momentum space by the

Fourier transformation

ckA = ∑
i

ciAe−iki, ckB = ∑
i

ciBe−iki, (3.9)

the desired band structure can be effectively described by the following band Hamiltonian
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(suppressing the interaction for now)

H = ∑
k
(c†

kAεkAckA + c†
kBεkBckB), (3.10)

with the band dispersions (see Fig. 3.1(b))

εkA =
k2− (3kF)

2

2mA
, εkB =−k2− k2

F
2mB

. (3.11)

Here we assume mA,mB > 0. The Fermi momentum kF = |νB|π is set by the filling |νB| which is

typically an irrational number (without fine-tuning). The key feature is that the Fermi momenta

of the A and B energy bands must have a 3 : 1 ratio that matches the inverse charge ratio

(qA/qB)
−1 precisely. In this case, the energy band hybridization is forbidden by the charge

U(1) symmetry as the two bands now carry different charges. Even if the band hybridization is

spontaneously generated at the price of breaking the U(1) symmetry, it does not gap the Fermi

liquid because the Fermi surfaces of the two bands are no longer nested at the Fermi level, such

that the band hybridization will only create some avoided energy band crossing below the Fermi

level. Then the system remains metallic because the (upper) hybridized band still crosses the

Fermi level.

One can show that it is impossible to symmetrically gap the Fermi liquid by any fermion

bilinear terms in this charge-compensated two-band system with qA = 1 and qB = 3, even if the

Fermi surface anomaly has already been canceled by the charge-compensated filling νA =−3νB.

Although the anomaly vanishes (i.e. there is no obstruction towards gapping in principle), the

symmetry is still restrictive enough to forbid any fermion bilinear gapping term, such that the

only possible gapping mechanism rests on non-perturbative fermion interaction effects.
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To see this, we can single out the low-energy chiral fermions near the four Fermi points:

cAR = c(3kF )A, cBR = c(−kF )B,

cBL = c(kF )B, cAL = c(−3kF )A,

(3.12)

where A,B label the bands that they originated from and L,R label their chiralities (i.e. left- or

right-moving), according to Fig. 3.1(b). Similar to Eq. (3.1), the low-energy effective Lagrangian

density reads

L = ∑
a

c†
a(i∂t + vai∂x)ca, (3.13)

where the index a sums over the four Fermi point labels AR, BR, BL, AL. Here va denotes the

Fermi velocity near the Fermi point a.

The original U(1)×Z symmetry at the lattice fermion level reduces to the emergent

U(1)V ×ZF
2
U(1)A symmetry for the low-energy chiral fermions ca (see App. C.1 for more

explanations)

U(1)⇒ U(1)V : ca→ eiq
V
a φV ca,

Z⇒ U(1)A : ca→ eiq
A
a φAca.

(3.14)

Tab. 3.1 summarizes their charge assignment under U(1)V and U(1)A, where the vector U(1)V

symmetry is just the charge U(1) symmetry and the axial U(1)A symmetry is an emergent

symmetry corresponding to the lattice translation symmetry Z. Alternatively, they can be

recombined into the U(1) 3V+A
2
×U(1) 3V−A

2
symmetry, such that it becomes obvious that all

fermion bilinear back-scattering terms (either the Dirac mass c†
acb or the Majorana mass cacb for

a ̸= b and a,b ∈ {AR,BR,BL,AL}) are forbidden by the symmetry because they are all charged

non-trivially under the U(1) 3V+A
2
×U(1) 3V−A

2
symmetry due to the distinct charge assignment

to every chiral fermion. Given this situation, the only hope to gap the Fermi liquid is to evoke

the SMG mechanism that generates the mass for all chiral fermions by non-perturbative multi-
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fermion interactions.

Table 3.1. Charge assignments of low-energy fermions. See also the model in [394] on the same
charge assignments.

fermion chirality U(1)V U(1)A U(1) 3V+A
2

U(1) 3V−A
2

ca sgnva qV
a qA

a
1
2(3qV

a +qA
a )

1
2(3qV

a −qA
a )

cAR −1 (left) 1 3 3 0
cBR −1 (left) 3 −1 4 5
cBL +1 (right) 3 1 5 4
cAL +1 (right) 1 −3 0 3

3.2.3 SMG Interaction and RG Analysis

It is worth mentioning that the charge-compensated two-band model with qA = 1 and

qB = 3 essentially regularizes the 3-4-5-0 chiral fermion model [40, 148] on a pristine 1D lattice

(without introducing any compact extra dimensions). The emergent U(1) 3V±A
2

symmetries act

as the lattice translations decorated by appropriate internal U(1) rotations, described by the

following Z symmetry groups (parameterized by integer n ∈ Z) at the lattice level: (see App. C.1

for derivation)

Z (for 3V±A
2 ) :

 ciA→ e±i3kF nc(i+n)A,

ciB→ e±i9kF nc(i+n)B.
(3.15)

The 3-4-5-0 model is a toy model for studying the long-standing problem: the lattice

regularization of the chiral fermion theory in high-energy physics [292, 293, 291, 369, 119,

201, 19, 276, 398]. Many variants of the model are studied in the lattice community (see

references therein [310, 73]). This model is anomaly-free — perturbative local gauge anomaly

free within any linear combination of the U(1)V ×ZF
2
U(1)A checked by the Adler-Bell-Jackiw

method [5, 28], perturbative local gravitational anomaly free because of the zero chiral central

charge cL− cR = 0, also nonperturbative global anomaly free from any gauge or gravitational

fields checked by the cobordism [390]. However, it is known much later that symmetric gapping
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can only be achieved by minimally six-fermion interactions among the four flavors of 3-4-5-0

fermions. The SMG interaction was first proposed by Wang and Wen [396, 397], which was

later discussed by Tong [381] and only recently verified by the density matrix renormalization

group (DMRG) [419, 338] numerical simulation in Ref. [452].

Given the existing knowledge about the SMG interaction in the 3-4-5-0 chiral fermion

model, we can map the Wang-Wen interaction [396, 397] back to our lattice model following the

correspondence listed in Tab. 3.1, which gives us the following SMG interaction (see App. C.2

for more details)

Hint = g∑
i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A +h.c.. (3.16)

This is a six-fermion interaction across three adjacent sites on the 1D lattice. It describes the

process that first annihilates both A- and B-type fermions on the center site (which annihilates

four units of charges on the site i) and then separately converts A-type fermions to B-type

fermions on the two adjacent sites (which creates two units of charges on each of the site i−1

and i+1), such that the U(1)V charge is conserved. The interaction is also manifestly translation

and reflection symmetric, so the full U(1)V × (Z⋊Z2) symmetry is preserved by the interaction

as expected. With this interaction, we claim that the lattice model Eq. (3.6) will exhibit an (ersatz)

Fermi liquid to SMG insulator transition when the interaction strength g exceeds a finite critical

value gc.

To show that the proposed interaction Eq. (3.16) indeed drives the Fermi liquid to a

gapped interacting insulator, we bosonize [261, 130] the fermion operator ca ∼ : eiϕa : (with

a∈ {AR,BR,BL,AL}) and cast the lattice model to an effective Luttinger liquid theory, described

by the following Lagrangian density

L =
1

4π
(∂tϕ

⊺K∂xϕ−∂xϕ
⊺V ∂xϕ)

+ ∑
α=1,2

gα cos
(
l⊺αϕ
)
,

(3.17)
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where ϕ = (ϕAR,ϕBR,ϕBL,ϕAL)
⊺ are compact scalar bosons. The K matrix and the lα vectors

are given by

K =

[1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
, l1 =

[ 1
−2
1
2

]
, l2 =

[ 2
1
−2
1

]
. (3.18)

As shown in App. C.2, the six-fermion interaction Hint in Eq. (3.16) translates to the cosine

terms g1 and g2 in the Luttinger liquid theory in Eq. (3.17), with g1 = g2 = g enforced by the Z2

reflection symmetry (as the Z2 transformation exchanges the g1 and g2 terms). The RG flow in

the log energy scale ℓ=− lnΛ is given by [221, 196]

dg
dℓ

= (2−∆int)g,
d∆
−1
int

dℓ
= π

2g2, (3.19)

where ∆int is the scaling dimension of the SMG interaction. The RG flow diagram is shown in

Fig. 3.2.
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Figure 3.2. The RG flow of the coupling g and the scaling dimension ∆int of the SMG interaction.
The abbreviations stand for the following terminology: SMG for symmetric mass generation, FL
for Fermi liquid, EFL for ersatz Fermi liquid, LL for Luttinger liquid.

At the Fermi liquid (FL) fixed-point, we have ∆int =
1
2 l⊺α lα = 5 > 2, meaning that the

SMG interaction is perturbatively irrelevant. If the bare coupling g (the interaction strength at the

lattice scale) is weak (g < gc), it will just flow to zero and disappear in the IR theory. However,

the scaling dimensions of all operators will be renormalized as the coupling g flows toward
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zero. Therefore, the FL fixed-point will be deformed into the Luttinger liquid (LL) fixed-line,

along which the fermion quasi-particle is no longer well-defined, but the system remains gapless.

Despite the different dynamical properties, the LL still preserves all the kinematic properties

(e.g. emergent symmetries and anomalies) as the FL, which can be unified under the concept of

ersatz Fermi liquid (EFL) [122].

If the bare coupling g is strong enough (g> gc), the scaling dimension ∆int can be reduced

to ∆int < 2 such that the SMG interaction becomes relevant and flows strong. As the cosine

term in Eq. (3.17) gets strong, the corresponding vertex operators eil
⊺
α ϕ (α = 1,2) condense. Any

other operators that braid non-trivially with the condensed operators will be gapped, which

includes all the fermion operators. Therefore the system enters the SMG insulating phase with

all fermion excitations gapped without breaking the U(1)× (Z⋊Z2) symmetry. This has been

confirmed by the DMRG simulation in Ref. [452] for a related model using the domain wall

fermion construction, where it has been verified that the fermion two-point function indeed

decays exponentially in the SMG phase — a direct piece of evidence for the gap generation.

On the lattice level, this corresponds to condensing the six-fermion bound state by developing

the ground state expectation value of ⟨c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A⟩ ̸= 0. So the gapping

is achieved by the multi-fermion condensation (involving more than two fermions), which is

distinct from the fermion bilinear condensation in the conventional gapping mechanisms of

Fermi liquids (such as the band hybridization or Cooper pairing mechanisms).

The RG analysis also indicates that the ersatz Fermi liquid to SMG insulator transition

(at g = gc) is of the Berezinskii-Kosterlitz-Thouless (BKT) [32, 33, 222] transition universality

in (1+1)D.

The above analysis established the Fermi surface SMG phenomenon in the lattice model

Eq. (3.6) (equipped with the gapping interaction Eq. (3.16)). The significance of this lattice

model is that it provides a pristine 1D lattice regularization of the 3-4-5-0 chiral fermion model

by using lattice translation to realize the axial U(1)A symmetry at low energy. In contrast to

the domain wall fermion constructions [397, 398, 452], our construction does not require the
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introduction of a (2+1)D bulk to realize the chiral fermions as boundary modes. Such pristine

1D lattice regularization is advantageous for the numerical simulation of chiral fermions, as the

model contains no redundant bulk (or mirror) fermions, such that the computational resources

can be used more efficiently. We will leave the numerical exploration of this model to future

research.

3.3 Fermi Surface SMG in (2+1)D

3.3.1 (2+1)D Fermi Liquid and Fermi Surface Anomaly

Given the example of Fermi surface SMG in (1+1)D, we would like to further explore

similar physics in higher dimensions. The most important low-energy features of a (2+1)D Fermi

liquid are the gapless fermions on its 1D Fermi surface. Suppose we parameterize the 1D Fermi

surface kkkF(θ) ∈ ∂VF by a continuous and periodic parameter θ , such that kkkF(θ +2π) = kkkF(θ)

(where we do not require θ to literally represent the geometrical angle, as the Fermi surface

may not be a perfect circle in general). The fermions cθ on the Fermi surface have an emergent

symmetry described by the loop group of U(1) [122, 121], denoted as LU(1), under which

LU(1) : cθ → eiφ(θ)cθ , (3.20)

where the U(1) phase factor eiφ(θ) is a smooth function of θ with the periodicity

eiφ(θ+2π)= eiφ(θ). Both the (global) charge U(1) and the translation symmetries R2 are subgroups

of LU(1):

U(1) : cθ → eiqφ cθ , R2 : cθ → eiδxxx·kkkF (θ)cθ , (3.21)

assuming the fermions cθ carry charge q under the global U(1) symmetry and are translated by

the vector δxxx ∈ R2.

The presence of the Fermi surface causes a mixed anomaly between the U(1) and
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translation symmetries [417], which is characterized by the anomaly index

q
2(2π)2

∮
dθ(kkkF ×∂θ kkkF)3 =

qVF

(2π)2 = qν , (3.22)

where VF stands for the Fermi volume in the momentum space, and ν is the filling factor. If the

Fermi surface anomaly is non-vanishing, it is impossible to trivially gap out the Fermi liquid

without breaking any symmetry or developing any topological order. The Fermi surface SMG is

only possible if the Fermi liquid system contains multiple Fermi surfaces of opposite anomaly

indices, such that their anomalies cancel as a whole.

3.3.2 Kagome-Triangular Lattice Model

We present a concrete lattice model to demonstrate the Fermi surface SMG in (2+1)D.

Consider two types of spinless fermions labeled by A and B that are charged under a global

U(1) symmetry with charges qA = 1 and qB = 3, respectively. The A-type (or B-type) fermion

is defined on a Kagome (or triangular) lattice. As depicted in Fig. 3.3(a), the Kagome and the

triangular lattices lie on top of each other, with the site I of the triangular lattice aligned with the

upper triangle△I on the Kagome lattice. We will use the lower-case letters i, j (or the upper-case

letters I,J) to label the Kagome (or the triangular) lattice sites.

The lattice model is described by the following Hamiltonian

H = HA +HB +Hint, CF,

HA =−tA ∑
⟨i j⟩

(c†
i c j +h.c.)−µA ∑

i
c†

i ci,

HB =−tB ∑
⟨IJ⟩

(c†
I cJ +h.c.)−µB ∑

I
c†

I cI,

Hint, CF =−g∑
I

∑
i jk∈△I

(c†
I cic jck +h.c.),

(3.23)

where ⟨i j⟩ (or ⟨IJ⟩) denotes the nearest neighboring link on the A (or B) lattices and i jk ∈△I
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Figure 3.3. (a) In the real space, we design the overlapping Kagome (A) and triangular (B)
lattices. The green triangle marks out the unit cell. In the momentum k space, we draw many
contours to represent various equal energy curves of the energy band, at different filling levels
(equally spaced by 1/8 filling fraction). We illustrate the A-type (in blue) and B-type (in red)
Fermi surfaces (b) at a general filling such as νA = 3/8 and νB = 7/8(= −1/8), or (c) at a
special filling νA = νB = 3/4(=−1/4) where the Fermi surfaces coincide.

stands for the three A-sites i, j,k at the vertices of the upper triangle surrounding the B-site

labeled by I. The model has a U(1) symmetry that acts as

U(1) : ci→ eiφ ci, cI → ei3φ cI. (3.24)

The Hamiltonian in Eq. (3.23) preserves the internal U(1) symmetry and all symmetries of the

Kagome-triangular lattice (most importantly, the lattice translation symmetry).

The model Eq. (3.23) describes the two types of fermions hopping separately on their

corresponding lattices. Because every unit cell contains four sites (three from the Kagome lattice

and one from the triangle lattice), the hopping model will give rise to four energy bands (three

bands for A-type fermions and one band for B-type fermions). The chemical potentials µA and

µB are adjusted to ensure the desired filling of these fermions. We will focus on a simple case

when only the lowest A-type (Kagome lattice) bands and the single B-type (triangular lattice)

bands are filled by filling fractions νA and νB respectively, such that the Fermi surface only

involves two of the four bands.
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The A-type and B-type fermions are coupled together only through a four-fermion

interaction Hint, CF in Eq. (3.23) that fuses three A-type (charge-1) fermions to one B-type

(charge-3) fermions (and vice versa) within each unit cell. We will call it a charge fusion (CF)

interaction. The CF interaction breaks the separate U(1) charge conservation laws for A-type

and B-type fermions in the hopping model to a joint U(1) charge conservation, associated with

the symmetry action in Eq. (3.24). Similar interactions also appear in a recent study [236] of

quantum breakdown.

Without interaction (g= 0), the system is in a Fermi liquid phase. According to Eq. (3.22),

the Fermi surface anomaly cancellation condition requires

qAνA +qBνB = 0 mod 1. (3.25)

Given the charge assignment of qA = 1 and qB = 3, it requires νA =−3νB. There is no further

requirement on the choice of νA itself. With a generic choice of filling (assuming νA < 3/4)

as in Fig. 3.3(b), the A-type fermions (on the Kagome lattice) will form an electron-like Fermi

surface, whose Fermi volume is three times as large as that of the hole-like Fermi surfaces formed

by the B-type fermions (on the triangular lattice). Although the Fermi liquid has a vanishing

Fermi surface anomaly, the charge U(1) and the lattice translation symmetries are still restrictive

enough to forbid any gap opening on the free-fermion level. For example, any pairing (charge-2e

superconducting) gap will break the U(1) symmetry. The only possibility to gap the Fermi liquid

relies on the multi-fermion interaction.

We claim that the charge fusion interaction Hint, CF in Eq. (3.23) is a valid SMG interaction

that drives the Fermi liquid into a trivially gaped insulator without breaking symmetry (or

developing any topological order). To see this, we go to the strong coupling limit by taking

g→ ∞. Of course, the chemical potentials µA,µB must increase correspondingly to keep the

fermion fillings fixed. The model Hamiltonian decouples to each unit cell in the strong coupling
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limit

H = ∑
I|i jk∈△I

−µA(ni +n j +nk)−µBnI−g(c†
I cic jck +h.c.), (3.26)

where ni = c†
i ci (and nI = c†

I cI) denotes the fermion number operator. Within each unit cell,

there are only two relevant states |1110⟩ and |0001⟩ (in the Fock state basis
∣∣nin jnknI

〉
) acted

by the Hamiltonian. Their hybridization will produce the ground state in each unit cell. The

full-system ground state will be the following direct product state

|SMG⟩=
⊗

I

(√
p |1110⟩+

√
1− p |0001⟩

)
I, (3.27)

where p = 1
2

(
1+ −3µA+µB√

(−3µA+µB)2+4g2

)
is the probability to observe the |1110⟩ state in the unit cell,

which is tunable by adjusting µA,µB relative to g. The fermion fillings (per unit cell) in the

ground state |SMG⟩ will be

νA = 3p, νB = 1− p =−p mod 1, (3.28)

which automatically satisfies the anomaly cancellation condition νA =−3νB (as it should be).

The ground state |SMG⟩ is non-degenerated and gapped from all excited states (with a gap of

the order g). It also preserves the charge U(1) and all the lattice symmetries and does not have

topological order. Therefore, we have explicitly shown that the system ends up in the SMG

insulator phase as g→ ∞. As a gapped phase, we expect it to be stable against perturbations

(such as the hopping terms tA, tB) over a finite region in the parameter space. The SMG phase is

a strongly interacting insulating phase, which has no correspondence in the free-fermion picture.

Established the Fermi liquid (metallic) phase at g = 0 and the SMG insulator phase at

g→∞, there must be an SMG transition (an interaction-driven metal-insulator transition) at some

intermediate coupling strength gc. However, the nature of the transition is still an open question,

101



which we will leave for future numerical study. In the following, we will only analyze the SMG

transition at a special filling: νA = νB = 3/4, where the Fermi surfaces coincide precisely and

take the perfect hexagon shapes as shown in Fig. 3.3(c). This allows us to gain some analytic

control of the problem.

3.3.3 RG Analysis of the SMG Transition

In this subsection, we analyze the interaction effect in Eq. (3.23) when the filling is

νA = νB = 3/4. In this case, the Fermi surface of the system contains three Van Hove singularities

(VHSs), also known as hot spots, located at three distinct M points as shown in Fig. 3.3(c). This

allows us to study the interaction effects using the hot-spot renormalization group (RG) method at

the one-loop level [144, 319, 289, 186, 244, 245, 306, 448]. The hot-spot RG approach assumes

that the low-energy physics emerges from the correlated effects of fermions near the VHSs,

where the density of states diverges. This divergence leads to the a high instability towards gap

opening.

Under RG, the charge fusion interaction Hint, CF will generate two types of density-density

interactions at the one-loop level, namely, Hint, AA = ∑i, j nin j and Hint, AB = ∑i,I ninI as well

as other (less important) exchange interactions. These density-density interactions are more

important in the sense that they will in turn contribute to the correction of Hint, CF. Therefore,

we should include Hint, CF,Hint, AA,Hint, AB altogether in the RG analysis and study the RG flow

jointly.

To proceed, we transform the interactions into the momentum space. The fermion

operators are labeled by the flavor index S=A,B and the hot-spot index α,β ∈ {1,2,3} (referring

to the three different VHSs). We note that Hint, CF would vanish if it is naively restricted to the

hot spots because the momentum conservation requires multiple A-type fermion operators to

appear on the same hot spot, which violates the Pauli exclusion principle of fermions. So we

need to introduce point splitting in the momentum space around each hot spot. Our strategy

is to further split the A-type fermion into three modes As labeled by s = 1,2,3, and define the
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interaction,

Hint, CF = grs ∑
α

ε
i jkc†

Bα
cAiαcA jαcAkα

+grt ∑
α ̸=β

ε
i jkc†

Bα
cAiαcA jβ cAkβ +h.c. (3.29)

grs and grt are the CF interaction decomposed into different momentum transfer channels: the

intra-hot-spot scattering grs and the inter-hot-spot scattering grt.

These CF interactions receive corrections from the following density-density interactions

at the one-loop level,

Hint, AA +Hint, AB = gas ∑
α,st

nAsαnAtα +(As↔ At)

+gbt ∑
α ̸=β ,s

nBαnAsβ +(As↔ B)+h.c.+ ... (3.30)

where ... refers to the other interactions that are decoupled from grs,grt,gas,gbt in the RG

equations. The scattering processes of these four important interactions are illustrated in Fig. 3.4.

The complete set of all possible interactions is presented in App. C.3.

We derive the RG equations based on the systematic approach developed in Ref. [251].

Since we are interested in the flow of Hint, CF, the relevant part of the RG equations reads,

dgbt

dℓ
= 2d0dABg2

bt,
dgas

dℓ
=−2g2

as, (3.31)

dgrs

dℓ
=−6gasgrs,

dgrt

dℓ
= 4d0dABgbtgrt−2gasgrt.

where the RG parameter is defined by the Cooper-pairing susceptibility of A-type fermions

ℓ= χpp,AA(kkk = 0,E)∼ ν0 log2(Λ/E), in which ν0 log(Λ/E) is the diverging density of states at

the VHS, E is the running energy scale and Λ is the high energy cutoff. d0 = dχph,AA(QQQ)/dℓ≤ 1

is the nesting parameter of A-type fermions, which saturates to one in the perfectly nested limit

103



(d0 → 1). In our case, different VHSs are half-nested (only one of the two crossing Fermi

surfaces is perfectly nested between every pair of different VHSs), so d0 = 1/2 is a suitable

estimation. Similarly, we define dAB = dχpp,AB(000)/dℓ, which depends on the energies of A and

B-type fermions near the VHS. The full RG equations and details are listed in App. C.3.

1

2 3

(a)

gbt

gas

1

2 3

1′

2′3′
(b)

grs

grt

Figure 3.4. Scattering of fermions between Van Hove singularities (VHSs) by (a) density-density
interactions gbt (red), gas (blue) and (b) non-vanishing processes grs (yellow), grt (green) of
Hint, CF. Thin (or thick) arrows correspond to A-type (or B-type) fermions.

According to the one-loop RG equations, if the density-density interactions gbt,gas are

initially zero, then the CF interactions grs,grt remain marginal along the RG flow. However, if

we turn on small density-density interactions gbt,gas with correct signs (gbt > 0 or gas < 0), the

charge fusion interactions grs,grt will be marginally relevant. The solutions of RG equations

Eq. (3.31) are

gbt(ℓ) =
gbt(0)

1−2d0dABgbt(0)ℓ
, gas(ℓ) =

gas(0)
1+2gas(0)ℓ

,

grs(ℓ) =
grs(0)

(1+2gas(0)ℓ)3 ,

grt(ℓ) =
grt(0)

(1+2gas(0)ℓ)(1−2d0dABgbt(0)ℓ)2 . (3.32)

As the RG parameter ℓ increases under the RG flow, the coupling strengths can diverge at some

critical scale ℓc, when any of the denominators in Eq. (3.32) vanish. The critical scale is set by

the bare density-density interaction strengths gbt(0) and gas(0), but the CF interaction strengths

grs,grt diverge faster than the density-density interactions as the critical scale is approached.
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Therefore, the RG fixed points are characterized by the behavior of grs,grt.

O(4) DQCP
〈ϕ1〉 = 〈ϕ2〉 = 0

1st order
transition〈ϕ2〉 ≠ 0

symmetric
gapped

〈ϕ1〉 ≠ 0

r1

r2
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(5
)
D
Q
C
P

O(4) multi-
critical

XY

SO(5)
multi-critical

Figure 3.5. The RG phase diagram with respect to the density-density interactions gas,gbt. In the
Fermi liquid (FL) phase, the gapping interaction flows to zero. In the symmetric mass generation
(SMG) phase, the gapping interaction flows to infinity.

Depending on the bare density-density interaction strengths gas(0) and gbt(0), the

system can flow towards different RG fixed points as shown Fig. 3.5. When gas(0) > 0 and

gbt(0)< 0, all interactions flow to zero, which corresponds to the Fermi liquid fixed point. When

gas(0) < min(0,−d0dABgbt(0)), both charge fusion interactions grs,grt flow to infinity, which

should correspond to the SMG phase according to the previous lattice model analysis. However,

we also find a region in the phase diagram, described by gbt > max(0,−gas/d0dAB), where

grs→ 0 and grt→ ∞, i.e. flowing towards different limits. We are not sure how to interpret the

physical meaning of this RG fixed point. It might still be in the SMG phase as one interaction

still flows strong. But it could as well end up in a spontaneous symmetry breaking (SSB) phase

that breaks the LU(1) symmetry since the A-type and B-type Fermi surfaces have pretty strong

nesting instability. This might also be an artifact of the hot-spot RG method, as it does not fully

capture all low-energy fermionic degrees of freedom of the Fermi surface.

Admittedly, it is not possible to determine whether the full Fermi surface is gapped using

the hot-spot RG analysis alone. This is because the hot-spot RG approach only takes into account

the fermions near the VHSs, and does not consider the Fermi surface freedom away from the

VHSs. In order to determine whether the strong coupling fixed point is a fully gapped state,
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we have to rely on lattice model analysis in the strong coupling limit. The exact ground state

solution Eq. (3.27) provides evidence to support the argument that the strong coupling fixed point

is indeed a fully gapped state.

To improve, functional RG [418, 331, 116, 407] might provide a better resolution of the

Fermi surface and remove the uncertainty in the phase diagram Fig. 3.5. A recent study [151]

has demonstrated the functional RG method in a triangle lattice model with spinless fermions.

The same technique might apply to our model as well. However, we will leave such study for

future research.

By tuning gas(0) across zero on the gbt(0)< 0 side, one can drive a FL to SMG transition.

The gapping interaction is marginally relevant at the transition point. According to the solution of

the RG equations in Eq. (3.32), the coupling diverges at the critical scale ℓc ∼ ν0 log2(Λ/∆SMG)

when the denominator (1+2gas(0)lc) vanishes. This implies that the SMG gap ∆SMG (the energy

gap between the ground state and the first excited state) opens up as [362, 278]

∆SMG ∼ Λexp
(
−c/

√
gas(0)ν0

)
, (3.33)

where Λ is the UV cutoff energy scale, ν0 is the coefficient in front of the diverging density of

state at the VHS, and c is some non-universal constant.

3.4 Summary and Discussion

In this work, we propose the concept of Fermi surface SMG: a mechanism to gap out

Fermi surfaces by non-perturbative interaction effects without breaking the LU(1) symmetry.

This phenomenon can only happen when the Fermi surface anomaly is canceled out in the

fermion system. We present (1+1)D and (2+1)D examples of Fermi surface SMG. We expect

that the mechanism can generally occur in all dimensions.

Fermi surface SMG belongs to a broader class of phenomena, called the symmetric

Fermi surface reconstruction (SFSR), as summarised in Fig. 3.6. The SFSR is in contrast to the
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more conventional symmetry-breaking Fermi surface reconstruction, where the Fermi surface is

reconstructed (or gapped) by developing spontaneous symmetry-breaking orders. Depending

on the cancellation of the Fermi surface anomaly, the SFSR further splits into two classes: the

Fermi surface symmetric mass generation (SMG) if the anomaly vanishes, or the Fermi surface

topological mass generation (TMG) if the anomaly does not vanish. The former class, the Fermi

surface SMG, is the focus of this work. The latter class, the Fermi surface TMG, is also discussed

in the literature, where the non-vanishing Fermi surface anomaly is absorbed by an anomalous

topological quantum field theory (TQFT), such that the SFSR is achieved by developing the

corresponding topological order. This gives rise to deconfined/fractionalized Fermi liquid (FL∗)

[349, 351, 147] or orthogonal metal [290, 173, 74]. Symmetry extension [399] has provided a

unified framework, to understand TMG and SMG for bosons or fermions of zero Fermi volume

[371, 395, 160, 215, 313, 312], where the symmetric gapping can be achieved by extending the

symmetry group to lift any gapping obstruction that was otherwise imposed by the symmetry.

Similar constructions can be applied to understand SFSR more generally.

Fermi Liquid

Preserves LU(1)?

Symetry-breaking
Fermi surface
reconstruction

(Superconductivity,
density wave ...)

Symetric
Fermi surface
reconstruction

LU(1) anomaly free?

Fermi surface
TMG

(Deconfined FL,
orthognal metal ...)

Fermi surface
SMG

(This work)

no yes

no yes

Figure 3.6. Classification of Fermi surface reconstruction mechanisms, based on the LU(1)
loop group symmetry. Symmetric Fermi surface reconstruction (SFSR) contains two broad
classes: (1) Fermi surface symmetric mass generation (SMG) if the total Fermi surface anomaly
is canceled. (2) Fermi surface topological mass generation (TMG) if the total Fermi surface
anomaly is matched by topological order with low energy topological field theory.

Fermi surface SMG deforms an anomaly-free (charge-compensated) Fermi liquid state to
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a fully gapped product state. Although the resulting SMG gapped state does not have non-trivial

features like topological order, the SMG transition from the Fermi liquid phase to the SMG

phase can still be quite exotic. The SMG transition of relativistic fermions has been proposed to

be a deconfined quantum critical point [447, 446], where the physical fermion fractionalizes to

bosonic and fermionic partons with emergent gauge fluctuations at and only at the critical point.

It is conceivable that similar scenarios might apply to the Fermi surface SMG transition as well,

where deconfined Fermi liquid (orthogonal metal) could emerge at the critical point. The lattice

models presented in this study lay the ground for future theoretical and numerical studies of the

exotic SMG transition in these models.

It is also known that the fermion single-particle Green’s function has symmetry-protected

zeros at zero frequency in the SMG phase [443, 62, 65, 433]. It will be interesting to investigate

further the Green’s function structure in the Fermi surface SMG phase. Whether or not the SMG

interaction will replace the original Fermi surface (a loop of poles) with a loop of zeros in the

Green’s function is still an open question to explore.

Another potential experimental connection is to apply the Fermi surface SMG to

understand the nature of pseudo-gap phases, which is an exotic state of electrons where the Fermi

surface is partially gapped without obvious symmetry breaking. It has been observed in many

correlated materials. The recent proposal of the ancilla qubit approach [458, 457] for pseudo-gap

physics draws a connection between the pseudo-gap metal to Fermi liquid transition with the

Fermi surface SMG transition in the ancilla layers, as both transitions are described by field

theories of fermionic deconfined quantum critical points [447, 446, 464, 463, 176]. The Fermi

surface anomaly constrains the dynamical behavior of such field theories and can potentially

shed light on the open problem of pseudo-gap transition in correlated materials.

Chapter. 3, in full, is a reprint of the material as it appears in Da-Chuan Lu, Meng Zeng,

Juven Wang, and Yi-Zhuang You. Fermi surface symmetric mass generation. Physical Review B,

107(19):195133, May 2023. The dissertation author was the primary investigator and author of

this paper.
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Chapter 4

Green’s Function Zeros in Fermi Surface
Symmetric Mass Generation

The Fermi surface symmetric mass generation (SMG) is an intrinsically interaction-

driven mechanism that opens an excitation gap on the Fermi surface without invoking symmetry-

breaking or topological order. We explore this phenomenon within a bilayer square lattice model

of spin-1/2 fermions, where the system can be tuned from a metallic Fermi liquid phase to a

strongly-interacting SMG insulator phase by an inter-layer spin-spin interaction. The SMG

insulator preserves all symmetries and has no mean-field interpretation at the single-particle level.

It is characterized by zeros in the fermion Green’s function, which encapsulate the same Fermi

volume in momentum space as the original Fermi surface, a feature mandated by the Luttinger

theorem. Utilizing both numerical and field-theoretical methods, we provide compelling evidence

for these Green’s function zeros across both strong and weak coupling regimes of the SMG

phase. Our findings highlight the robustness of the zero Fermi surface, which offers promising

avenues for experimental identification of SMG insulators through spectroscopy experiments

despite potential spectral broadening from noise or dissipation.

4.1 Introduction

Symmetric mass generation (SMG) [127, 128, 396, 359, 15, 61, 381, 403] is an

interaction-driven mechanism that creates many-body excitation gaps in anomaly-free fermion
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systems without condensing any fermion bilinear operator or developing topological orders. It

has emerged as a alternative symmetry-preserving approach for mass generation in relativistic

fermion systems, which is distinct from the traditional symmetry-breaking Higgs mechanism

[288, 287, 153, 8, 123, 170]. The prospect of SMG offering a potential solution to the long-

standing fermion doubling problem [293, 292, 291, 369, 119, 360, 201] has sparked significant

interest in the lattice gauge theory community [414, 442, 444, 30, 14, 13, 12, 107, 16, 336, 55,

57, 211, 210, 397, 398, 66, 321, 63, 56, 58, 452, 67, 64, 161]. In condensed matter physics, SMG

was initially explored within the framework of the interaction-reduced classification of fermionic

symmetry protected topological (SPT) states [127, 128, 383, 326, 314, 436, 159, 391, 271, 206,

451, 79, 441, 158, 364, 316, 420, 405, 205, 395, 406, 160, 1, 23], and has been recently extended

to systems with Fermi surfaces [463, 458, 464, 457, 295, 254], given the growing understanding

that Fermi liquids can be perceived as fermionic SPT states within the phase space [52, 250].

One important feature of the SMG gapped state lies in the zeros of fermion Green’s

function [162, 450, 62, 447, 65, 433] at low-energy. Investigations reveal that the poles of the

fermion Green’s function in the pristine gapless fermion state will be replaced by zeros in the

gapped SMG state as the fermion system goes across the SMG transition upon increasing the

interaction strength. This pole-to-zero transition was postulated [450] as a direct indicator of

the SMG transition [447, 446] that can be probed by spectroscopy experiments. However, the

presence of similar zeros in the Green’s function within Fermi surface SMG states has not been

investigated yet, and it is the focus of our present research.

Fermi surface SMG [254] refers to the occurrence of SMG phenomena on Fermi surfaces

with non-zero Fermi volumes. It describes scenarios where the fermion interaction transforms

a gapless Fermi liquid state (metal) into a non-degenerate, gapped, direct product state (trivial

insulator), without breaking any symmetry (for example, without invoking Cooper pairing

or density wave orders). Such a metal-insulator transition is viable when Fermi surfaces

collaboratively cancel the Fermi surface anomaly [392, 417, 254]. This anomaly can be

perceived as a mixed anomaly between the translation symmetry and the charge conservation
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U(1) symmetry on the lattice [82, 86, 53, 377, 417, 392, 80], or as an anomaly of an emergent

loop LU(1) symmetry [122, 121, 356] in the infrared theory.

In this work, we present evidence of robust Green’s function zeros in Fermi surface SMG

states. Let t be the energy scale of band dispersion and J be the energy scale of SMG gapping

interaction, we investigate the problem from two parameter regimes:

• Deep in the SMG phase (J/t≫ 1), we start with an exact-solvable SMG product state in a

lattice model and calculate the fermion Green’s function by treating the fermion hopping

as perturbation [345]. We find that the Green’s function GSMG(ω,kkk) deep in the SMG

phase takes the following form

GSMG(ω,kkk) =
ω +αεkkk/J2

(ω− εkkk/2)2− J2 , (4.1)

where (ω,kkk) labels the frequency-momentum of the the fermion. εkkk is the energy dispersion

of the original band structure in the free-fermion limit, and α is an order-one number

depending on other details of the system. One salient feature of GSMG is that it has a

series of zeros at ω =−αεkkk/J2 in the frequency-momentum space. At ω = 0, the Green’s

function zeros form a zero Fermi surface that replaces the original Fermi surface.

• If the SMG phase is adjacent to a spontaneous symmetry breaking (SSB) phase, we use

perturbative field theory to argue that the Green’s function in the SMG phase near the

symmetry-breaking transition (J/t ≳ 1) should take the form of [388, 118, 409]

G′SMG(ω,kkk) =
ω + εkkk

ω2− ε2
kkk −∆2

0
(4.2)

where we assume that the SSB order parameter retains a finite amplitude ∆0 in the SMG

phase, but its phase is randomly fluctuating [409]. Again, G′SMG features a series of zeros

at ω =−εkkk, with the same zero Fermi surface.

Many previous works [7, 298, 118, 152] suggest that the Luttinger theorem [259] will
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not be violated in the presence of the interaction that preserves the translation and charge

conservation symmetry. However, quasi-particles (poles of Green’s function) may not exist in

the strongly correlated systems, the Fermi surface is instead defined by the surface of Green’s

function zeros at zero frequency, i.e., G(0,kkk) = 0, and the Green’s function changes sign on the

two sides of the zero Fermi surface, or the so-called Luttinger surface [367, 118, 122, 337, 429].

This can be regarded as the remnant of the conventional Fermi surface in the strongly interacting

gapped phase. Our analysis shows that the volume enclosed by the zeros of the Green’s function

in the SMG phase is the same as the Fermi volume in the Fermi liquid phase, which agrees with

the Luttinger theorem.

The paper will be structured as follows. We start by introducing a concrete lattice model

for Fermi surface SMG in Sec. 4.2.1 and briefly discussing its phase diagram. We give theoretical

arguments for Green’s function zeros in the SMG phase from the Luttinger theorem in Sec. 4.2.2

(general), and the particle-hole symmetry in Sec. 4.2.3 (specific). We provide numerical and

field theoretical evidence of Green’s function zeros from both the strong coupling Sec. 4.3.1 and

the weak coupling Sec. 4.3.2 perspectives. We comment on the robustness of probing the zero

structure in spectroscopy experiments in Sec. 4.4. We conclude in Sec. 4.5 with a discussion of

the relevance of our model to the nickelate superconductor La3Ni2O7.

4.2 Argument For Green’s Function Zeros

4.2.1 Lattice Model and Phase Diagram

As a specific example of Fermi surface SMG, we consider a bilayer square lattice

[453, 325, 322] model of spin-1/2 fermions, as illustrated in Fig. 4.1(a). Let cilσ be the fermion

annihilation operator on site-i layer-l (l = 1,2) and spin-σ (σ =↑,↓). The model is described by

the following Hamiltonian

H =−t ∑
⟨i j⟩,l,σ

(c†
ilσ c jlσ +h.c.)+ J ∑

i
SSSi1 ·SSSi2, (4.3)
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where SSSil := 1
2c†

ilσ σσσσσ ′cilσ ′ denotes the spin operator with σσσ := (σ1,σ2,σ3) being the Pauli

matrices. The Hamiltonian H contains a nearest-neighbor hopping t of the fermions within each

layer and an inter-layer Heisenberg spin-spin interaction with antiferromagnetic coupling J > 0.

The Heisenberg interaction should be understood as a four-fermion interaction, that there is no

explicitly formed local moment degrees of freedom. Unlike the standard t-J model [71], we do

not impose any on-site single-occupancy constraint [163] here. We assume that the fermions are

half-filled in each layer.

t
t
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Figure 4.1. (a) Bilayer square lattice model with intra-layer hopping and inter-layer spin
interaction. (b) Fermi sea and Fermi surface at J = 0 in the Brillouin zone. A high-symmetry
path is traced out in gray. (c) A conjectured phase diagram consist of a Fermi liquid (FL) fixed
point, a spontaneous symmetry breaking (SSB) phase, a XY transition, and a SMG insulating
phase.

In the non-interacting limit (J/t→ 0), the ground state of the tight-binding Hamiltonian

in Eq. (4.3) is a Fermi liquid with a four-fold degenerated (two layers and two spins) square-

shaped Fermi surface in the Brillouin zone, as shown in Fig. 4.1(b). The fermion system is

gapless in this limit. However, given that the fermion carries one unit charge under the U(1)

symmetry, the Fermi surface anomaly vanishes due to [86, 250]

4

∑
a=1

qaνa = 4×1× 1
2
= 0 mod 1, (4.4)
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where a indexes the four-fold degenerated Fermi surface with qa = 1 being the U(1) charge

carried by the fermion and νa = 1/2 being the filling fraction. This implies there must be a way

to gap out the Fermi surface into a trivial insulator while preserving both the translation and the

U(1) charge conservation symmetries. Nevertheless, these symmetry requirements are restrictive

enough to rule out all possible fermion bilinear gapping mechanisms, leaving Fermi surface

SMG the only available option.

One possible SMG gapping interaction is the interlayer Heisenberg spin-spin interaction

J in Eq. (4.3). In the strong interaction limit (J/t→ ∞), the system has a unique ground state,

given by

|0⟩=
⊗

i

(c†
i1↑c

†
i2↓− c†

i1↓c
†
i2↑) |vac⟩ , (4.5)

which is a direct product of the inter-layer spin-singlet state on every site. |vac⟩ stands for the

vacuum state of fermions (i.e. cilσ |vac⟩ = 0). The SMG ground state |0⟩ does not break any

symmetry and does not have topological order. All excitations are gapped by an energy of the

order J from the ground state. Any local perturbation far below the energy scale J can not close

this excitation gap, so the SMG phase is expected to be stable in a large parameter regime as

long as J≫ t.

Given the distinct ground states in the two limits of J/t, we anticipate at least one

quantum phase transition separating the Fermi liquid and the SMG insulator. However, due to

the perfect nesting of the Fermi surface, the Fermi liquid state is unstable towards spontaneous

symmetry breaking (SSB) upon infinitesimal interaction, so a more plausible phase diagram

should look like Fig. 4.1(c), where an intermediate SSB phase sets in. A mean-field analysis

based on the Fermi liquid fixed point shows that there are two degenerated leading instabilities:

(i) the inter-layer exciton condensation (EC) and (ii) the inter-layer superconductivity (SC). They

are respectively described by the following order parameters

φEC = ∑
i,σ
(−)ic†

i1σ
ci2σ , φSC = ∑

i,σ
(−)σ c†

i1σ
c†

i2σ̄
. (4.6)
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Here, (−)i denotes the stagger sign on the square lattice of lattice momentum (π,π). (−)σ =+1

for σ =↑ and −1 for σ =↓. σ̄ stands for the opposite spin of σ .

The energetic degeneracy of these two SSB orders can be explained by the fact that their

order parameters φEC and φSC are related by a particle-hole transformation ci2σ → (−)i(−)σ c†
i2σ̄

in the second layer only, which is a symmetry of the model Hamiltonian in Eq. (4.3). The

EC ⟨φEC⟩ ≠ 0 spontaneously breaks the translation and interlayer U(1) symmetry, and the SC

⟨φSC⟩ ̸= 0 spontaneously breaks the total U(1) symmetry. Both of them gap out the Fermi

surfaces fully, leading to an SSB insulator (or superconductor). The SSB and SMG phases are

likely separated by an XY transition, at which the symmetry gets restored. We will leave the

numerical verification of the proposed phase diagram Fig. 4.1(c) for future study, as the main

focus of this research is to investigate the structure of fermion Green’s function in the SMG

insulating phase.

We note that the model Eq. (4.3) was also introduced as the “coupled ancilla qubit” model

to describe the pseudo-gap physics in the recent literature [458, 457, 295]. Its honeycomb lattice

version has been investigated in recent numerical simulations [176], where a direct quantum

phase transition between semimetal and insulator phases was observed.

4.2.2 Luttinger Theorem and Green’s Function Zeros

The Luttinger theorem [260, 259] asserts that in a fermion many-body system with lattice

translation and charge U(1) symmetries, the ground state charge density ⟨N⟩/V (i.e., the U(1)

charge per unit cell) is tied to the momentum space volume in which the real part of the zero-

frequency fermion Green’s function is positive ReG(0,kkk)> 0. This can be formally expressed

as
⟨N⟩
V

= N f

∫
ReG(0,kkk)>0

d2kkk
(2π)2 . (4.7)

Here, the U(1) symmetry generator N = ∑i,l,σ c†
ilσ cilσ measures the total charge, and the volume

V = ∑i 1 is defined as the number of unit cells in the lattice system. N f = 4 counts the fermion
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flavor number (or the Fermi surface degeneracy), including two layers and two spins. The

Green’s function G(ω,kkk) in Eq. (4.7) is defined by the fermion two-point correlation as

⟨clσ (ω,kkk)cl′σ ′(ω,kkk)†⟩= G(ω,kkk)δll′δσσ ′. (4.8)

The correlation function is proportional to an identity matrix in the flavor (layer-spin) space

because of the layer U(1) : clσ → e(−)
l iθ clσ , the layer interchange Z2 : c1σ ↔ c2σ , and the spin

SU(2) : clσ → (eiθθθ ·σσσ/2)σσ ′clσ ′ symmetries.

The Luttinger theorem applies to the Fermi liquid and SMG states in the bilayer square

lattice model Eq. (4.3), as both states preserve the translation and charge U(1) symmetries. Given

that the fermions are half-filled (ν = 1/2) in the system, the Fermi volume should be

∫
ReG(0,kkk)>0

d2kkk
(2π)2 =

⟨N⟩
V N f

= ν =
1
2
. (4.9)

The Fermi volume is enclosed by the Fermi surface, across which ReG(0,kkk) changes sign. The

sign change can be achieved either by poles or zeros in the Green’s function.

In the Fermi liquid state, the required Fermi volume is satisfied via Green’s function

poles along the Fermi surface, as pictured in Fig. 4.1(b). However, the SMG insulator is a fully

gapped state of fermions that has no low-energy quasi-particles (below the energy scale J).

Consequently, the Green’s function G(ω,kkk) cannot develop poles at ω = 0, meaning the required

Fermi volume can only be satisfied by Green’s function zeros. Therefore, the Lutinger theorem

implies that there must be robust Green’s function zeros at low energy in the SMG phase, and

the zero Fermi surface must enclose half of the Brillouin zone volume in place of the original

pole Fermi surface.

It is known that the Luttinger theorem can be violated in the presence of topological

order [349, 351, 305, 301, 290, 82, 337, 329, 53, 358]. However, this concern does not affect our

discussion in the SMG phase, because the SMG insulator is a trivial insulator without topological
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order.

4.2.3 Particle-Hole Symmetry and Zero Fermi Surface

The Luttinger theorem only constrains the Fermi volume but does not impose

requirements on the shape of the Fermi surface. However, in this particular example of the

bilayer square lattice model Eq. (4.3), the system has sufficient symmetries to determine even

the shape of the Fermi surface.

The key symmetry here is a particle-hole symmetry ZC
2 , which acts as

cilσ → (−)i(−)σ c†
ilσ̄ . (4.10)

The Hamiltonian H in Eq. (4.3) is invariant under this transformation. Since the Green’s function

is an identity matrix in the flavor space Eq. (4.8) which is invariant under any flavor basis

transformation, we can omit the flavor indices and focus on the frequency-momentum dependence

of the Green’s function, written as

G(ω,kkk) = ∑
t,xxx,t ′,xxx′

⟨c(t,xxx)c(t ′,xxx′)†⟩ei(ω(t−t ′)−kkk·(xxx−xxx′)). (4.11)

Given Eq. (4.10), the fermion field c(t,xxx) transforms under the ZC
2 symmetry as

c(t,xxx)→ c(t,xxx)†eiQQQ·xxx, c(t,xxx)†→ c(t,xxx)e−iQQQ·xxx, (4.12)

where QQQ = (π,π) is the momentum associated with the stagger sign factor (−)i on the square

lattice. As a consequence, the Green’s function transforms as

G(ω,kkk)→−G(−ω,QQQ− kkk). (4.13)

Furthermore, there are also two diagonal reflection symmetries on the square lattice, which maps
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kkk = (kx,ky) to (ky,kx) or (−ky,−kx) in the momentum space.

Both the Fermi liquid and the SMG states preserve the particle-hole symmetry ZC
2 and

the lattice reflection symmetry, which requires the Green’s function to be invariant under the

combined symmetry transformations. So the zero-frequency Green’s function must satisfy

G(0,kx,ky) =−G(0,π± ky,π± kx), (4.14)

meaning that the sign change of G(0,kkk) should happen along kx± ky = π mod 2π , which

precisely describes the shape of the Fermi surface. The Fermi surface is pole-like in the Fermi

liquid state and becomes zero-like in the SMG state, but its shape and volume remain the same.

However, it should be noted that the precise overlap of the zero Fermi surface in the SMG

insulator and the pole Fermi surface in the Fermi liquid is a fine-tuned feature of the bilayer

square lattice model Eq. (4.3). In more general cases, such as including further neighbor hopping

in the model, the particle-hole symmetry would cease to exist, thus the invariance in the shape of

the Fermi surface is no longer guaranteed. Nevertheless, the Luttinger theorem can still ensure

the invariance in the Fermi volume, thereby providing the SMG insulator with robust Green’s

function zeros.

To verify this proposition, we will analyze the behavior of the Green’s function in the

SMG phase from both strong and weak coupling perspectives in Sec. 4.3. Our calculations

suggest that, for this specific model, the SMG state indeed possesses a Fermi surface (of Green’s

function zeros) that is identical in shape to that in the Fermi liquid state.

4.3 Evidence of Green’s Function Zeros

4.3.1 Strong Coupling Analysis

We will first focus on the strong interaction limit (J/t→ ∞), where the system is deep

in the SMG phase and the exact ground state is known (see Eq. (4.5)). We start from this

limit and turn on the hopping term as a perturbation. We employ exact diagonalization and
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cluster perturbation theory (CPT) [345, 346] to compute the Green’s function in the SMG phase.

The details of our method are described in Appendix D.1. It is valid to use a small cluster to

reconstruct the Green’s function in the SMG phase since the ground state is close to a product

state that does not have long-range correlation or long-range quantum entanglement. This is

quite different from the Hubbard model, where the Fermi surface anomaly is non-vanishing, and

the infrared phase must be either SSB order or topological order [349, 301, 290, 82]. In either

case, the ground state wave functions cannot be reconstructed from the small clusters due to the

long-range correlation/entanglement. This argument has been noted in the original paper on the

CPT method [345].

1 2

34

Figure 4.2. Partition the square lattice into 2×2 clusters. The many-body Hamiltonian is exactly
diagonalized within each cluster. The effect of inter-cluster hopping is included in an RPA-like
approach.

To be specific, we first partition the square lattice (including both layers) into 2×2 square

clusters as shown in Fig. 4.2. Let us first ignore the inter-cluster hopping. Within each cluster,

we represent the Hamiltonian in the many-body Hilbert space and use the Lanczos method to

obtain the lowest ∼ 2000 eigenvalues and eigenvectors. The Green’s function in the cluster can

then be obtained by the Källén–Lehmann representation

G0(ω)i j = ∑
m>0

⟨0|ci |m⟩⟨m|c†
j |0⟩

ω− (Em−E0)
+
⟨m|ci |0⟩⟨0|c†

j |m⟩
ω +(Em−E0)

, (4.15)

where |m⟩ is the mth excited state with energy Em, and |0⟩ is the ground state with energy E0,

whose wave function was previously given in Eq. (4.5). Since the four fermion flavors (two spins
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and two layers) are identical under the internal flavor symmetry, we can drop the flavor index

in the Green’s function and only focus on one particular flavor with the site indices i, j, where

i, j = 1,2,3,4 as indicated in Fig. 4.2. The convergence of the Green’s function can be verified

by including more eigenstates from the Lanczos method. We checked that increasing the number

of eigenpairs to ∼ 8000 will not change the result significantly, indicating that the result with

∼ 2000 eigenpairs has already converged.

Now we restore the inter-cluster hoping to extend the Green’s function from small clusters

to the infinite lattice. The Green’s function of super-lattice momentum kkk can be obtained from

the random phase approximation (RPA) approach [345],

G(ω,kkk)i j =

(
G0(ω)

1−T (kkk)G0(ω)

)
i j
, (4.16)

where the T (kkk) matrix

T (kkk) =−t



0 e−i2kx 0 ei2ky

ei2kx 0 ei2ky 0

0 e−i2ky 0 ei2kx

e−i2ky 0 e−i2kx 0


(4.17)

describes the inter-cluster fermion hopping. The resulting Green’s function G(ω,kkk)i j is defined

in the folded Brillouin zone kkk ∈ (−π/2,π/2]×2 with sub-lattice indices i, j. To unfold the

Green’s function to the original Brillouin zone kkk ∈ (−π,π]×2, we perform the following (partial)

Fourier transform

G(ω,kkk) =
1
L ∑

i, j
e−ikkk·(rrri−rrr j)G(ω,kkk)i j. (4.18)

We numerically calculated the unfolded Green’s function G(ω,kkk) using the above-

mentioned cluster perturbation method. We take a large interaction strength J/t = 8 deep in the

SMG phase and present the resulting Green’s function in Fig. 4.3. From Fig. 4.3(a), the poles of
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Figure 4.3. Fermion Green’s function Eq. (4.18) deep in the SMG insulator phase, at J = 8t.
(a) The imaginary part (spectral function) −2ImG(ω + i0+,kkk) shows the pole (spectral peak)
structure. (b) The real part ReG(ω,kkk) shows the pole (divergence) and zero (purple contour)
structures. (c) Same as (b) but zoomed in near ω = 0 to show the dispersion of Green’s function
zeros.

the Green’s function form two dispersing bands around ω =±J, which resembles the upper and

lower Hubbard bands in the Hubbard model. This indicates the quasi-particles are fully gapped

in the SMG phase. Meanwhile, from Fig. 4.3(b,c), the zeros of the Green’s function appear

around ω =−αεkkk/J2 with some non-universal but positive coefficient α > 0. We find that the

“dispersion” of zeros is reversed compared to the original band dispersion εkkk. In Fig. 4.4, we also

numerically confirmed that the “bandwidth” wzero of zeros is suppressed by the interaction J as

wzero ∼ J−2 as J→ ∞.

Building upon the above observation of the poles and zeros of the Green’s function, we

put forth the following empirical formula:

GSMG(ω,kkk) =
ω +αεkkk/J2

(ω− εkkk/2)2− J2 , (4.19)

as an approximate description of our numerical result Eq. (4.18). An important aspect of this
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Figure 4.4. Scaling of the Green’s function zero “bandwidth” wzero with the interaction strength
J. Circles represent the numerically calculated wtext at different J, and the line is a fit to the data.

formula is the positioning of the Green’s function zeros precisely around the initial Fermi surface

(where εkkk = 0) at ω = 0. This is indicated by the small arrows in Fig. 4.3(c).

Assuming ReGSMG(0,kkk) = 0 as the definition of the zero Fermi surface in the SMG

phase, it would encompass the same Fermi volume as the pole Fermi surface in the Fermi liquid

phase. As both translation and charge conservation symmetries remain unbroken in the SMG

phase, the Luttinger theorem mandates the preservation of the Fermi volume. Given that the

SMG state is a fully gapped trivial insulator, there is no pole (no quasi-particle) at low energy,

thus the Green’s function can only rely on zeros to fulfill the Fermi volume required by the

Luttinger theorem, which is explicitly demonstrated by Eq. (4.19).

4.3.2 Weak Coupling Analysis

Nevertheless, SMG is not the sole mechanism for gapping out the Fermi surface. SSB

might also open a full gap on the Fermi surface, which corresponds to the Higgs mechanism

for fermion mass generation. Specifically, in the bilayer square lattice model Eq. (4.3), due to

the perfect nesting of the Fermi surface, the Fermi liquid exhibits strong instability toward SSB

orders. Without loss of generality, we will focus on the inter-layer exciton condensation in the

weak coupling limit. The corresponding order parameter φEC was introduced in Eq. (4.6), which

carries momentum QQQ = (π,π). The exciton condensation leads to an SSB insulating phase, as

noted in the phase diagram Fig. 4.1(c). However, there are significant differences between the
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SMG insulator and the SSB insulator, especially in terms of the structure of Green’s function

zeros.
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Figure 4.5. Fermion Green’s function Eq. (4.20) GSSB in the SSB insulator phase, assuming
a gap size of |∆| = t. (a) The imaginary part −2ImG(ω + i0+,kkk)11 in the ⟨c†

kkkckkk⟩ channel,
showing the pole (quasi-particle peak) along gapped bands. (b) The real part of the determinant
RedetG(ω,kkk). No zero within the gap. In both plots, the frequency is shifted by a small
imaginary part ω → ω +0.01it for better visualization of spectral features.

In the SSB insulator phase, the Brillouin zone folds by the nesting vector QQQ = (π,π).

The fermion Green’s function can be written in the (ckkk,ckkk+QQQ)
⊺ basis (omitting layers and spins

freedom) as

GSSB(ω,kkk) =
ωσ0 + εkkkσ3 +Re∆σ1 + Im∆σ2

ω2− ε2
kkk −|∆|2

, (4.20)

where ∆ = J⟨φEC⟩ denotes the exciton gap induced by the exciton condensation ⟨φEC⟩ ̸= 0. The

properties of GSSB are illustrated in Fig. 4.5. The spectral function in Fig. 4.5(a) depicts the

quasi-particle peak along the band dispersion, reflecting a gapped (insulating) band structure.

Since GSSB is a matrix, its zero structure should be defined by its determinant being zero,

i.e., detGSSB(ω,kkk) = 0, which is the only way to define the zero structure in a basis independent

manner. Fig. 4.5(b) indicates the determinant of GSSB remains the same sign within the band gap

induced by the exciton condensation. Since GSSB does not preserve the translation symmetry

(as ∆→−∆ is translation-odd), and ∆ is non-zero, detGSSB does not have zeros crossing ω = 0

at the original Fermi surface. These two observations are linked: the absence of translation

symmetry makes the Luttinger theorem ineffective, hence there is no expectation for the zero
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Fermi surface in the SSB insulator.

As the interaction J intensifies, the SSB insulator ultimately transitions into the

SMG insulator, as depicted in the phase diagram Fig. 4.1(c). During this transition, the

broken symmetry is restored, yet the fermion excitation gap remains intact, similar to

the pseudo-gap phenomenon seen in correlated materials [230, 209]. In the context of

modeling fermion spectral functions, the pseudo-gap phenomenon can be interpreted as a

consequence of the phase (or orientation) fluctuations of fermion bilinear order parameters

[131, 225, 226, 132, 99, 233, 234, 438]. In this picture, the order parameter ∆ = ∆0eiθ maintains

a finite amplitude ∆0 as we enter the SMG phase from the adjacent SSB phase, but its phase θ is

disordered by long-wavelength random fluctuations. Consequently, on the large scale, ∆ cannot

condense to form long-range order; but on a smaller scale, ∆0 still provides a local excitation gap

everywhere for fermions.

Based on this picture of the SMG state, the simplest treatment is to focus on the long

wavelength fluctuation of ∆ and estimate its self-energy correction for the fermion by

Σ(ω,kkk) = = E
∆

∆̂
†G0(ω,kkk)∆̂ =

∆2
0

ωσ0 + εkkkσ3 , (4.21)

where the vertex operator is ∆̂ := Re∆σ1 + Im∆σ2 and the bare Green’s function is

G0(ω,kkk) = (ωσ0−εkkkσ3)−1. Here we have assumed that the correlation length ξ of the bosonic

field ∆ is long enough that its momentum is negligible for fermions. This assumption is valid

near the transition to the SSB phase, as the correlation length diverges (ξ → ∞) at the transition.

Using this self-energy to correct the bare Green’s function, we obtain

G(ω,kkk) = (G0(ω,kkk)−1−Σ(ω,kkk))−1

=
ωσ0 + εkkkσ3

ω2− ε2
kkk −∆2

0
.

(4.22)

Since the translation symmetry has been restored in the SMG phase, we can unfold the Green’s

124



function back to the original Brillouin zone (by taking the G(ω,kkk)11 component), which leads to

a weak coupling description of the Green’s function in the shallow SMG phase near the transition

to the SSB phase

G′SMG(ω,kkk) =
ω + εkkk

ω2− ε2
kkk −∆2

0
. (4.23)

A more rigorous treatment of a similar problem can be found in Ref. [409], which includes finite

momentum fluctuations of ∆. The major effect of these fluctuations is to introduce a spectral

broadening for the fermion Green’s function as if replacing ω → ω + iδ in Eq. (4.23). It was

also found that the broadening δ ∼ ξ−1 scales inversely with the correlation length ξ of the

order parameter, which justifies our simple treatment in the large-ξ regime. Similar Green’s

functions as Eq. (4.23) was previously constructed to describe non-Fermi liquid [118] statisfying

the Luttinger theorem. However, its physical meaning is now clarified as Green’s function in the

SMG phase.
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Figure 4.6. Fermion Green’s function Eq. (4.23) G′SMG in the SMG insulator phase near the phase
transition to an adjacent SSB phase, assuming a local gap size of ∆0 = t. (a) The imaginary part
(spectral function) −2ImG(ω + i0+,kkk) shows the pole (quasi-particle peak) along gapped bands.
(b) The real part ReG(ω,kkk) exhibits the zero (purple contour) crossing ω = 0 at the original
Fermi surface. In both plots, the frequency is shifted by a small imaginary part ω → ω +0.01it
for better visualization of spectral features.

The features of G′SMG in Eq. (4.23) are presented in Fig. 4.6. When comparing Fig. 4.6(a)

and Fig. 4.5(a), we can observe that the pole structure of G′SMG is identical to that of GSSB (in

the diagonal component), both showcasing a gapped spectrum. However, they significantly
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differ in their zero structures, as seen by comparing Fig. 4.6(b) and Fig. 4.5(b). Due to the

restoration of symmetry, the low-energy zeros reemerge in the Green’s function in the SMG

phase. Additionally, its zero Fermi surface perfectly aligns with the original pole Fermi surface,

fulfilling the Luttinger theorem’s requirement for the Fermi volume.

Comparing the Green’s function in the SMG phase derived from the strong coupling

analysis Eq. (4.19) and the weak coupling analysis Eq. (4.23) (see also Fig. 4.3 and Fig. 4.6), we

find that despite the apparent difference in high-energy spectral features, the zero Fermi surface

defined by G(0,kkk) = 0 remains a resilient low-energy feature. The persistent zero Fermi surface

in the SMG phase is a consequence of the Luttinger theorem.

Nonetheless, besides the low-energy zero structure, it is also intriguing to understand

how the high-energy spectral feature deforms from the weak coupling case to the strong coupling

case. However, this problem requires non-perturbative numerical simulations. Fortunately, the

bilayer square lattice model Eq. (4.3) admits a sign-problem-free [382] quantum Monte Carlo

[142, 334, 44, 172, 171] simulation. We will leave this interesting direction for future research.

4.4 Probing Green’s Function Zeros

While Green’s function zeros are an important feature of the SMG insulator, they are

not directly observable in experiments. Spectroscopy experiments, such as angle-resolved

photoemission spectroscopy (ARPES), can directly probe the fermion’s spectral function

A(ω,kkk) =−2ImG(ω + i0+,kkk), which is the imaginary part of Green’s function. By employing

the Kramers-Kronig (KK) relation to recover the real part of Green’s function from the spectral

function,

ReG(ω,kkk) =
1

2π
P
∫

dω
′A(ω

′,kkk)
ω ′−ω

, (4.24)

we can indirectly study the zero structure of the Green’s function.

However, the spectral function might be broadened in experimental data due to noise

or dissipation. We are interested in studying how sensitive the reconstructed Green’s function
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Figure 4.7. (a) Broadened spectral function from the one in Fig. 4.3. (b) Reconstructed Green’s
function real part by the KK relation, showing robust Green’s function zeros (purple contour)
crossing ω = 0.

zero is to these disturbances, in order to understand the stability of the method. Following

Sec. 4.3.1, we start from the strong coupling limit and use the CPT approach to calculate Green’s

function. To account for the spectral broadening effect, we replace ω with ω + iδ , where δ is

relatively large, say, about the order of the hopping t. Based on the broadened spectral function

in Fig. 4.7(a), we use the KK relation to reconstruct the real part, as shown in Fig. 4.7(b). We

find that the zero Fermi surface maintains the same shape, but the zero “dispersion” bandwidth

gets larger.

The increase in bandwidth can be understood by taking the SMG Green’s function

GSMG(ω,kkk) in Eq. (4.19), and solving for its zeros ReG(ω + iδ ,kkk) = 0. To the leading order of

1/J and δ , the solution is given by

ω(kkk) =−
(

1+
δ 2

α

)
αεkkk

J2 + · · · , (4.25)

meaning that the bandwidth of Green’s function zero dispersion will increase by δ 2/α , but the

corresponding Luttinger surface remains unchanged. Therefore, the Green’s function zero in the

SMG phase is a robust feature that can be potentially identified from spectroscopy measurements,

even in the presence of noises or dissipations.
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4.5 Summary and Discussions

In this paper, we investigated the Fermi surface SMG in a bilayer square lattice model.

A crucial finding of this study lies in the robust Green’s function zero in the SMG phase.

Traditionally, a Fermi liquid state is characterized by poles in the Green’s function along the

Fermi surface. However, as the fermion system is driven into the SMG state by interaction effects,

these poles are replaced by zeros. This is a robust phenomenon underlined by the constraints of

the Luttinger theorem.

Our exploration is not limited to theoretical assertions. We also offer a tangible

demonstration of this occurrence in the bilayer square lattice model. By applying both strong and

weak coupling analyses, we provide a comprehensive portrayal of the fermion Green’s function

across different interaction regimes. We highlight that the emergence of the zero Fermi surface

is not an ephemeral or fine-tuned phenomenon, but rather a robust and enduring feature of the

SMG phase. We show that even when the system is subjected to spectral broadening, the zero

Fermi surface persists, retaining the Fermi volume.

The results of this study confirm the robustness of the zero Fermi surface and underscore

the possibility of observing it in experimental setups, such as through ARPES. Despite not being

directly observable, the zero structure of the Green’s function could be inferred indirectly via the

KK relation.

The bilayer square lattice model may be relevant to the nickelate superconductor recently

discovered in pressurized La3Ni2O7 [368, 175], which is a layered two-dimensional material

where each layer consists of nickel atoms arranged in a bilayer square lattice. The Fermi surface

is dominated by dz2 and dx2−y2 electrons of Ni. The dz2 electron has a relatively small intra-layer

hopping t due to the rather localized dz2 orbital wave function in the xy-plane but enjoys a large

interlayer antiferromagnetic Heisenberg interaction J due to the super-exchange mechanism

mediated by the apical oxygen. This likely puts the dz2 electrons in an SMG insulator phase in

the bilayer square lattice model and opens up opportunities to investigate the proposed Green’s
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function zeros in real materials. The potential implication of SMG physics on the nickelate

high-Tc superconductor still requires further theoretical research in the future.

Chapter. 4, in full, is a reprint of the material as it appears in Da-Chuan Lu, Meng

Zeng, and Yi-Zhuang You. Green’s function zeros in Fermi surface symmetric mass generation.

Physical Review B, 108(20):205117, November 2023. The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

Self-duality under gauging a non-
invertible symmetry

We discuss two-dimensional conformal field theories (CFTs) which are invariant under

gauging a non-invertible global symmetry. At every point on the orbifold branch of c = 1 CFTs,

it is known that the theory is self-dual under gauging a Z2×Z2 symmetry, and has Rep(H8) and

Rep(D8) fusion category symmetries as a result. We find that gauging the entire Rep(H8) fusion

category symmetry maps the orbifold theory at radius R to that at radius 2/R. At R =
√

2, which

corresponds to two decoupled Ising CFTs (Ising2 in short), the theory is self-dual under gauging

the Rep(H8) symmetry. This implies the existence of a topological defect line in the Ising2 CFT

obtained from half-space gauging of the Rep(H8) symmetry, which commutes with the c = 1

Virasoro algebra but does not preserve the fully extended chiral algebra. We bootstrap its action

on the c = 1 Virasoro primary operators, and find that there are no relevant or marginal operators

preserving it. Mathematically, the new topological line combines with the Rep(H8) symmetry

to form a bigger fusion category which is a Z2-extension of Rep(H8). We solve the pentagon

equations including the additional topological line and find 8 solutions, where two of them are

realized in the Ising2 CFT. Finally, we show that the torus partition functions of the Monster2

CFT and Ising×Monster CFT are also invariant under gauging the Rep(H8) symmetry.
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5.1 Introduction

Given a quantum field theory (QFT), it is a useful strategy to first analyze in detail its

global symmetries and ’t Hooft anomalies, before one asks more difficult dynamical questions

(for instance, its long-distance behavior). The understanding of the former can drastically

constrain the possible answers to the latter [370]. The advent of generalized global symmetries

[145] has increased the power of symmetries and one’s ability to constrain possible answers to

the dynamical questions in QFTs. At the same time, a new challenging quest emerges, which is

to effectively discover new generalized symmetries in familiar and important classes of QFTs.

The task of finding all the generalized global symmetries of a given QFT turns out to be a

difficult one, and to date there is no systematic way to achieve such a goal for generic QFTs. See

[268, 96, 155, 49, 258, 335, 36, 355] for recent reviews on generalized global symmetries.

This paper focuses on finite generalized symmetries in 1+1d CFTs described by fusion

categories [39, 70].1 Such symmetries are generated by topological defect lines, which commute

with both the left- and right-moving Virasoro algebras (also known as totally transmissive

defects). Topological defect lines in 1+1d CFTs have been studied extensively, with various

applications and perspectives. See, for instance, [39, 70, 386, 299, 300, 309, 137, 138, 139, 3,

2, 280, 141, 60, 50, 379, 98, 241, 304, 218, 69, 378, 181, 54, 199, 240, 68, 249, 197, 454, 243,

320, 90, 26, 164, 385, 115, 75, 282, 38, 37, 180, 357].

Other than topological quantum field theories (TQFTs), the only QFTs for which the full

set of generalized symmetries is known are the Virasoro minimal model CFTs, whose central

charge c < 1. Perhaps the next simplest class of QFTs for which one may hope to classify all

the generalized symmetries would be the c = 1 CFTs [150], which includes free compact boson

and its orbifold. They play an important role both in condensed matter physics and in string

theory. For instance, the orbifold branch of c = 1 describes the critical line on the phase diagram

1We focus on internal symmetries, and do not consider spacetime symmetries such as time-reversal. Also, we
always work with unitary, compact, bosonic CFTs with a unique vacuum.
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of the Ashkin-Teller model on the lattice [11, 216, 330, 149]. The Ashkin-Teller model is

widely used to describe 1+1d deconfined quantum critical points [194, 179, 455], SPT transitions

[387, 376, 311] and edges of 2+1d gauge theories [333, 462, 361].

Many topological defect lines are known for c = 1 CFTs [378, 140, 17, 27, 188], and

in particular, [378] provides a zoo of fusion category symmetries at c = 1. However, the full

classification of topological defect lines at c = 1 is not yet accomplished. It is interesting to study

the origin and physical consequences of these topological defect lines in concrete models, and

also to discover new ones.

Below, we find a new topological defect line at c = 1, at a point on the orbifold branch

of the moduli space of c = 1 CFTs where the theory is described by two decoupled Ising CFTs

(Ising2 in short). Our finding is based on a generalized version of the “half-space gauging,”

discussed in [378, 88, 87] (see also [217, 198]). Given a QFT in arbitrary spacetime dimensions

which is self-dual under gauging a discrete symmetry, which we may call the “parent” symmetry,

one can construct a codimension-1 topological defect by gauging the parent symmetry in only half

of spacetime. The resulting codimension-1 topological defect obeys a universal non-invertible

fusion algebra, generating a “child” non-invertible symmetry. The most standard example of

such a construction is in the 1+1d Ising CFT, where the parent symmetry is the Z2 spin-flip

symmetry, and the child non-invertible symmetry is generated by the Kramers-Wannier duality

defect line [299, 300, 309, 137, 138, 139, 3, 2, 342].

In the known examples of half-space gauging, the parent symmetry is generally a discrete,

invertible (higher-form) symmetry, whereas the child symmetry is non-invertible. Below, we

discuss a generalization of this, where the parent symmetry is also non-invertible, and described

by a fusion category C . Given a 1+1d QFT which is self-dual under gauging a fusion category

symmetry C , we claim that one can construct a new topological defect line obtained by gauging

C in only half of spacetime. We elaborate on this more in Section 5.3, and briefly summarize it

below.

Let {Li} be the set of simple topological lines in C . By “gauging C ,” we always mean
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that we gauge an algebra object of the form

A =
⊕

i

⟨Li⟩Li. (5.1)

where ⟨Li⟩ is the quantum dimension of the line Li. There exists an algebra object of the form

(5.1) which can be gauged if and only if the fusion category symmetry C can be realized in a

trivially gapped phase, namely if C is anomaly-free [90]. This is a generalization of the familiar

fact that ’t Hooft anomalies are obstruction to gauging a global symmetry, to the case of fusion

category symmetries. For instance, recall that a necessary condition for the fusion category C

to be anomaly-free is that all the quantum dimensions ⟨Li⟩ are non-negative integers [70], and

notice that (5.1) is a well-defined object in C only when such a condition is satisfied. Given an

anomaly-free fusion category, there may exist more than one algebra object of the form (5.1)

which can be gauged, and this generalizes the choice of discrete torsion.

Now, let T be a 1+1d QFT with a non-anomalous fusion category symmetry C and an

algebra object A of the form (5.1) which can be gauged. The partition function of the gauged

theory, denoted as T /C , is obtained from that of T by inserting a fine mesh of the algebra

object A across the dual triangulation of the spacetime manifold [141, 39].

Instead of gauging C everywhere on the spacetime manifold, we may gauge it in only

half of spacetime, i.e. by inserting a mesh of the algebra object A in half of spacetime. This

“half-space gauging” of C produces a topological interface between the two theories T and

T /C .

If the theory T is self-dual under gauging C , then the half-space gauging results in a

topological defect line of T , which we denote as D . Such a topological line D obeys a fusion
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algebra:

D⊗D = A =
⊕

i

⟨Li⟩Li = 1⊕·· · ,

D⊗Li = Li⊗D = ⟨Li⟩D .

(5.2)

Here, D is the orientation-reversal of D . We note that the resulting line D is non-invertible.

The quantum dimension of the line D is determined by the total dimension of the parent fusion

category C , namely

⟨D⟩=
√

∑
i
⟨Li⟩2 . (5.3)

As a concrete example, we discuss c = 1 CFTs as mentioned above. In particular, we

take the CFTs on the orbifold branch of the c = 1 moduli space, and the “parent” fusion category

symmetry to be the Rep(H8) symmetry which was discussed in [378]. Here, Rep(H8) denotes

the representation category of a 8-dimensional Hopf algebra constructed by Kac and Paljutkin.

It is also one of the Tambara-Yamagami categories based on Z2×Z2. The Rep(H8) symmetry,

which exists everywhere on the orbifold branch of c = 1, is free of an anomaly, and admits

a unique algebra object of the form (5.1) which can be gauged. The simple lines of Rep(H8)

consist of four invertible lines 1, a, b, ab, generating a Z2×Z2 symmetry, and one non-invertible

line N , satisfying N ⊗N = 1⊕a⊕b⊕ab.

We find that gauging the algebra object A = 1⊕a⊕b⊕ab⊕2N on the orbifold branch

of c = 1 maps the theory at radius R to that at 2/R, and vice versa (our convention is such that

the T-duality acts as R↔ 1/R). Thus, at a generic point, the orbifold CFT is not self-dual under

gauging Rep(H8), and instead such a gauging defines an order 2 operation on the orbfold branch.

However, the special point R =
√

2, namely the Ising2 CFT, remains invariant under gauging

Rep(H8). See Figure 5.1.

This implies the existence of a new topological defect line D in the Ising2 CFT, coming
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Figure 5.1. Moduli space of c = 1 CFTs [150]. The horizontal line is the circle branch consisting
of free compact boson CFTs with radius R, and the vertical line is the orbifold branch obtained
from gauging the charge conjugation symmetry of the circle branch theories. In addition, there
are 3 isolated points (not shown). Along the orbifold branch, two theories at radii R and 2/R are
related by gauging the Rep(H8) symmetry, and R =

√
2, corresponding to the Ising2 CFT, is a

fixed point under this gauging.

from the half-space gauging of Rep(H8).2 Since gauging Rep(H8) is an order 2 operation, we

propose that D is a self-dual line, namely D = D . This new topological line then obeys the

following fusion algebra:

D⊗D = 1⊕a⊕b⊕ab⊕2N ,

D⊗g = g⊗D = D ,

D⊗N = N ⊗D = 2D ,

(5.4)

where g ∈ {1,a,b,ab}. In particular, ⟨D⟩ =
√

8 /∈ Z>0, implying a nontrivial anomaly of the

fusion category symmetry.

The Ising2 CFT is rational with respect to the fully extended chiral algebra, namely two

copies of the Ising chiral algebra. The new topological defect line D does not preserve this

extended chiral algebra, and only a subalgebra of it (which includes the c = 1 Virasoro algebra)

2This topological defect line D of the Ising2 CFT can be shown to be the product of a “cosine” line [69, 378] with
a Kramers-Wannier duality line from one of the Ising factors [112]. A similar comment applies to the topological
line D ′ in Section 5.5 which obeys the same fusion algebra as D . We thank Yifan Wang for discussions on this
point.
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is preserved.

We carefully analyze the action of this new topological line D on the c = 1 Virasoro

primary operators of the Ising2 CFT, by imposing several consistency conditions. We find that

there are no relevant or marginal operators preserving D . Furthermore, by examining the spin

selection rules derived from the explicit solutions to the pentagon identities based on the fusion

algebra (5.4), we determine the full fusion category structure formed by the line D and the

original Rep(H8) symmetry. Mathematically, the resulting fusion category is a Z2-extension of

Rep(H8). We find that there are 8 such Z2-extensions satisfying the fusion algebra (5.4), denoted

as E
(i,κD ,εD )
Z2

Rep(H8) with i,κD ,εD =±. Among these, the ones corresponding to κD = εD =+

and i =± are physically realized in the Ising2 CFT (related by the Z2 symmetry that exchanges

the two Ising factors). Here, εD is the Frobenius-Schur indicator of D .

Finally, at the level of torus partition functions, we find that the Monster2 and

Ising×Monster CFTs are also self-dual under gauging Rep(H8). The Monster CFT is a c = 24

holomorphic CFT with an extremely rich global symmetry group, the Monster group [136].

Similar to the Ising CFT, the Monster CFT is self-dual under gauging a Z2 symmetry, and has

the corresponding Kramers-Wannier-like duality defect line [241]. We leave for the future more

detailed studies of potential new topological defect lines coming from half-space gauging of

Rep(H8) in these additional examples.

The rest of the paper is organized as follows. In Section 5.2, we begin by reviewing

several properties of topological defect lines in 1+1d, finite invertible symmetries and their (half-

space) gauging, as well as group extensions of fusion categories. In Section 5.3, we generalize

the half-space gauging to the case where the parent symmetry is already non-invertible. We also

explain how to explicitly gauge the Rep(H8) symmetry and compute the torus partition function

of the gauged theory. In Section 5.4, we gauge the Rep(H8) symmetry along the orbifold branch

of c = 1, and find that the Ising2 CFT is self-dual under this gauging. In Section 5.5, we discuss

in more detail several properties of the new topological defect line in the Ising2 CFT, including

its action on the Virasoro primary operators. In Section 5.6, we discuss various other 1+1d

136



CFTs with the Rep(H8) symmetry. We find that the Monster2 and Ising×Monster CFTs are also

self-dual at the level of torus partition functions. We also provide non-examples, namely theories

with the Rep(H8) symmetry which are not self-dual under gauging. Finally, in Section 5.7, we

explicitly solve the pentagon identities based on the fusion algebra (5.4), and find 8 solutions. We

derive the spin selection rules, which allow us to physically distinguish the 8 fusion categories.

Two of them are realized in the Ising2 CFT.

5.2 Review

We first briefly review several defining properties of topological defect lines in 1+1d

CFTs [141, 39, 70] to set up the notations, as well as the half-space gauging for the case where

the parent symmetry is an invertible symmetry. Finally, group extension of fusion categories

[125] is also reviewed.

5.2.1 Topological defect lines in 1+1d

Topological defect lines (denoted as L ) are line operators which commute with the

stress-energy tensor, and various correlation functions are invariant under local deformations of

them. We focus on topological defect lines which satisfy the mathematical axioms of (unitary)

fusion categories [141, 39, 70]. Such topological lines generate finite (generalized) symmetries

in 1+1d.3 For instance, we can fuse two topological lines La and Lb by putting them close to

each other and generate a new topological line, which then in general decomposes into a finite

sum of other topological lines,

La⊗Lb =
⊕

c
Nc

abLc, Nc
ab ∈ Z≥0. (5.5)

The simple topological lines are those that cannot be written as a sum of at least two other lines.

We denote the trivial topological line as 1.

3There are topological defect lines which go beyond the mathematical definition of fusion categories [69, 378],
the simplest example being just an ordinary continuous symmetry in 1+1d.
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When Nc
ab ̸= 0, two topological lines La and Lb can join each other locally and become

the line Lc at a trivalent junction. The set of topological junction operators form a vector space

whose complex dimension is given by Nc
ab. We always fix a basis of the junction vector space

and use the Greek letters µ,ν , · · ·= 1,2, · · · ,Nc
ab to denote the corresponding basis vectors.4

µ

La Lb

Lc

, µ = 1,2, · · · ,Nc
ab . (5.6)

Given three topological defect lines, there are two possible ways they can fuse together. They

are related by the so-called associativity map. In the explicitly chosen basis, the associativity

map is characterized by the F-symbols,

La Lb Lc

Leµ

ν

Ld

= ∑
f ,ρ,σ

[
Fabc

d

]
(e,µ,ν),( f ,ρ,σ)

La Lb Lc

L f

Ld

ρ

σ

. (5.7)

The F-symbols satisfy the consistent conditions known as pentagon equations (our conventions

follow [22]),

∑
δ

[
F f cd

e

]
(g,β ,γ)(l,ν ,δ )

[
Fabl

e

]
( f ,α,δ )(k,µ,λ )

= ∑
h,σ ,ψ,ρ

[
Fabc

g

]
( f ,α,β )(h,ψ,σ)

[
Fahd

e

]
(g,σ ,γ)(k,ρ,λ )

[
Fbcd

k

]
(h,ψ,ρ)(l,ν ,µ)

. (5.8)

Fusion category symmetries are ubiquitous in 1+1d. For instance, the category Vecω
G

describes an ordinary finite 0-form symmetry G with an ’t Hooft anomaly [ω] ∈ H3(G,U(1)).

The simple lines are labeled by group elements, Lg with g ∈ G, and their fusion rules are

4Later we will also use µ (and µ only) to denote the multiplication junction of an algebra object. The reader
should be able to distinguish the two based on the context.
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O
L

L ·O

Figure 5.2. Action of a topological defect line L on a local operator O . We start with the line
L wrapping around the local operator O . After shrinking L , O is transformed by L to another
local operator L ·O .

|O⟩ ∈HL

L ←→

O(x)

Figure 5.3. Under the state-operator correspondence, a state in the defect Hilbert space HL is
mapped to a non-local operator O which is attached to L .

governed by the group multiplication law, Lg⊗Lh = Lgh. Below, we denote the line Lg by the

corresponding group element g for simplicity. Then, the F-symbols are given by

[
Fg,h,k

ghk

]
gh,hk

= ω(g,h,k). (5.9)

The action of G on a local operator is obtained by encircling the local operator with a

closed loop of g. Similarly, an arbitrary topological defect line L can act on a local operator O ,

as shown in Figure 5.2. We denote such an action of a topological line L on a local operator O

as L ·O .

A topological defect line L may end on a (non-local) operator O , and under the state-

operator map, such a non-local operator O is mapped to a state in the Hilbert space HL quantized

on S1 but with the boundary condition twisted by L , see Figure 5.3. HL is known as the defect

(or twisted) Hilbert space.

Topological defect lines can also act on non-local operators, via the lasso diagram

[70, 240] in Figure 5.4. To define the action of L2 on a non-local operator O attached to

139



L1

O

µ

ν

L2

L3

Figure 5.4. The lasso diagram describing the action of a topological defect line L2 on a non-local
operator O attached to L1. To fully determine the action, we need to also specify the line L3 as
well as two junctions µ,ν .

L1, we must additionally specify a line L3 and two junctions µ,ν . Under the state-operator

correspondence, this defines an operator L̂2(L3,µ,ν) acting on the defect Hilbert space HL1 .5

The twisted partition function TrHL1

(
L̂2(L3,µ,ν)q

L0−c/24qL0−c/24
)

is an important

observable of the 1+1d CFT. From the state-operator map applied to Figure 5.4, we see that this

twisted partition function corresponds to the torus partition function with the following network

of topological defect lines inserted:

TrHL1

(
L̂2(L3,µ,ν)q

L0−c/24qL0−c/24
)
≡ Z[L1,L2,L3; µ,ν ](τ) =

L1

L2
L3

µ

ν
. (5.10)

When every fusion coefficient Nc
ab = 0,1, we will simply drop the µ,ν indices, and write

Z[L1,L2,L3]. These twisted torus partition functions are constrained by the covariance under

the modular transformations. For instance, under the S-transformation, we find

Z[L1,L2,L3]

(
−1

τ

)
= ∑

Lk

[
FL1,L2,L1

L2

]
L3Lk

Z[L2,L1,Lk](τ). (5.11)

5One may also define a more general map from HL1 to a different defect Hilbert space HL4 , by a similar
diagram as in Figure 5.4, with the topmost topological line replaced by L4.
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5.2.2 Invertible symmetries and gauging

Here, we review and rephrase the gauging of an anomaly-free finite group symmetry G

in terms of an algebra object A , which generalizes naturally to the case of general non-invertible

symmetries [141, 39]. For an ordinary global symmetry, an ’t Hooft anomaly is characterized as

an obstruction to gauge the symmetry, and its nontriviality implies that the low-energy phase

cannot be trivially gapped while preserving the symmetry. For a (bosonic) theory in d spacetime

dimensions with a finite, internal 0-form symmetry G, possible ’t Hooft anomalies are classified

by the elements of Hd+1(G,U(1)). In particular, the ’t Hooft anomaly associated to a non-trivial

class [ω(g,h,k)] ∈ H3(G,U(1)) obstructs orbifolding a 1+1d CFT with the 0-form symmetry G.

When the obstruction vanishes, H2(G,U(1)) then parameterizes inequivalent ways of gauging

G, known as the discrete torsion.

Let C = Vecω
G below, where we keep ω to be arbitrary for now. We will see that ω must

be trivial for it to be possible to gauge G consistently. To gauge G in a CFT T and to compute

the corresponding orbifold partition function on a torus, we consider

ZT /G =
1
|G| ∑

g,h∈G
gh=hg

ϕ(g,h)
ϕ(h,g)

ZT [g,h,gh] =
1
|G| ∑

g,h∈G
gh=hg

ϕ(g,h)
ϕ(h,g)

g

h
gh

, (5.12)

where [ϕ] ∈ H2(G,U(1)) is a choice of the discrete torsion. Each diagram with non-trivial g and

h is a choice of a resolution of the 4-way junction diagram, and there exists another resolution

g

h −→

g

h
gh ?

=

g

h
gh

. (5.13)

The two resolutions represent two different local trivializations of the same G-bundle, and they

must agree in order for the gauging to be consistent. The ’t Hooft anomaly ω exactly measures
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the ambiguity in the resolution of the twisted partition function.

Alternatively, we can also obtain the orbifold partition function (5.12) by inserting a

single mesh of the non-simple topological defect line A =
⊕

g∈G
g:

ZT /G =

A

A

A

A
A

µ

µ∨

. (5.14)

The consistency of the gauging requires the line A to be an algebra object in C (with a few

additional conditions) [141, 39]. First, it requires the data of a fusion junction (multiplication)

µ ∈ HomC (A ⊗A ,A ) and a splitting junction (comultiplication) µ∨ ∈ HomC (A ,A ⊗A ).

In our case, they are given by

A

A A

µ =
1√
|G| ∑

g,h∈G
ϕ(g,h)

gh

g h

,

A

A A

µ∨

=
1√
|G| ∑

g,h∈G
ϕ
∨(g,h)

gh

g h

,

(5.15)

where ϕ∨(g,h) = 1
ϕ(g,h) . Expanding (5.14) using (5.15), we indeed recover (5.12):

A

A

A

A
A

µ

µ∨

=
1
|G| ∑

g,g′,h,h′∈G
δg,g′δh,h′δgh,h′g′ϕ(g,h)ϕ

∨(h′,g′)

g

h

g

h gh
h′g′h′

g′

=
1
|G| ∑

g,h∈G
gh=hg

ϕ(g,h)
ϕ(h,g)

g

h

g

h
gh

.

(5.16)

The partition function (5.14) admits an alternative resolution, similarly to (5.13), and the
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different resolutions should agree with each other in order for the orbifold partition function to

be well-defined. This requires the following condition on the junctions µ , µ∨:

A

A

A

A
A

µ

µ∨

=

A

A

A

A
A

µ∨

µ

−→

A

A

A

A
A

µ

µ∨

=

A

A

A

A
A

µ∨

µ

, (5.17)

which requires ϕ∨(g,h) = 1
ϕ(g,h) for the anomaly free ordinary symmetry. This is called the

Frobenius condition. The multiplication µ must satisfy the associativity condition (and there is a

similar coassociativity condition on µ∨):

A

A

A

AA

µ

µ

= A

A

A

AA

µ

µ

⇐⇒ ∑
g,h,k∈G

ϕ(g,h)ϕ(gh,k) gh

g

ghk

kh

= ∑
g,h,k∈G

ϕ(h,k)ϕ(g,hk) hk

g

ghk

kh

(5.18)

which in components reads
ϕ(g,h)ϕ(gh,k)
ϕ(h,k)ϕ(g,hk)

= ω(g,h,k). (5.19)

The equation (5.19) can be solved if and only if ω is cohomologically trivial in H3(G,U(1)), i.e.

the symmetry G is anomaly-free. When [ω] is trivial, the inequivalent solutions are classified by

H2(G,U(1)) corresponding to different discrete torsions. Additional conditions required for a

consistent gauging of a general algebra object A will be reviewed later.

For a CFT T with a Z2 symmetry generated by a topological line a, H2(Z2,U(1)) is
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trivial, and there is a unique orbifold torus partition function,

ZT /Z2 =
1
2
(ZT [1,1,1]+ZT [1,a,a]+ZT [a,1,a]+ZT [a,a,1]) . (5.20)

For a Z2×Z2 symmetry, generated by two topological lines a and b, H2(Z2×Z2,U(1)) = Z2,

and there are two different ways to orbifold (differing by the ± sign in the last line),

ZT /Z2×Z2 =
1
4
(ZT [1,1,1]+ZT [1,a,a]+ZT [1,b,b]+ZT [1,ab,ab]

+ZT [a,1,a]+ZT [b,1,b]+ZT [ab,1,ab]+ZT [a,a,1]+ZT [b,b,1]+ZT [ab,ab,1]

±ZT [a,b,ab]±ZT [a,ab,b]±ZT [b,a,ab]±ZT [b,ab,a]±ZT [ab,a,b]±ZT [ab,b,a]) .

(5.21)

5.2.3 Half-space gauging and non-invertible symmetries

A useful way to discover a class of non-invertible, codimension-1 topological defects in

general spacetime dimensions is through the “half-space gauging” (or “half-gauging” in short)

[378, 88, 87]. Consider a 1+1d CFT T with a non-anomalous global (abelian) symmetry G.

We divide the spacetime into left and right regions, and gauge the symmetry G only in the right

region. At the codimension-1 interface between the left and right, we impose the topological

Dirichlet boundary condition for the discrete G gauge field. If T is isomorphic to the gauged

theory T /G, then the interface defines a topological defect line N in theory T :

T T /G∼= T

N

. (5.22)

A well-known example is the Kramers-Wannier duality in the Ising CFT, where the

Ising CFT is self-dual under the Z2 orbifold Eq. (5.20). The half-gauging in this case produces
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the Kramers-Wannier duality defect line [299, 300, 309, 137, 138, 139, 3, 2, 342]. With this

additional duality line N as well as the Z2 symmetry, the symmetry of the Ising CFT is

described by the Tambara-Yamagami fusion category, TY(Z2,χ,+1). The notation for general

Tambara-Yamagami fusion categories is explained momentarily.

More generally, if the theory is self-dual under gauging an anomaly free abelian symmetry

A, then it admits a TY(A,χ,ε) fusion category symmetry [374].6 The simple objects of

TY(A,χ,ε) category are group-like lines g of the abelian group A, and a non-invertible line N .

These simple lines satisfy the following fusion rules,

g⊗h = gh , g⊗N = N ⊗g = N , N ⊗N =
⊕
g∈A

g . (5.23)

The only non-trivial F-symbols are

[FgN h
N ]N ,N = [FN gN

h ]N ,N = χ(g,h) ,

[FN N N
N ]g,h =

ε√
|A|

χ(g,h)−1 ,
(5.24)

where ε =±1 is the Frobenius-Schur indicator for N , which is classified by ε ∈H3(Z2,U(1)) =

Z2, and χ : A×A→U(1) is a non-degenerate symmetric bicharacter, which satisfies

χ(g,h) = χ(h,g) , χ(gh,k) = χ(g,k)χ(h,k) , χ(g,hk) = χ(g,h)χ(g,k) . (5.25)

The fusion rules Eq. (5.23) and the F-symbols Eq. (5.24) define the fusion category TY(A,χ,ε)

[374]. For the case of A = Z2, the choice of χ is unique, and there are two distinct Tambara-

Yamagami fusion categories based on Z2 corresponding to ε =±1. We will denote these two

categories as TY(Z2)± ≡ TY(Z2,χ,±1). The TY(Z2)+ category is realized in the Ising CFT

as mentioned above, whereas the TY(Z2)− category is realized in the SU(2)2 WZW model, for

6To be more precise, for there to be a TY(A,χ,ε) fusion category symmetry, the theory must be self-dual under
the gauging with an appropriately chosen discrete torsion such that the gauging is of order 2 [87] (see also [378]).

145



instance.

Similar to ordinary global symmetries, fusion category symmetries can also have an ’t

Hooft anomaly, which obstructs the existence of a symmetric trivially gapped phase [70, 379].

For instance, the anomaly-free condition for TY(A,χ,ε) contains two parts, roughly speaking, (1)

the quantum dimension of the duality line should be an integer and (2) the total Frobenius-Schur

indicator should be trivial [379, 454, 373, 269, 10].

5.2.4 Group extension of a fusion category

The Tambara-Yamagami fusion category is a special example of a group extended fusion

category. In general, a fusion category C is a G-extension of the fusion category C ′ if C is

a G-graded fusion category whose trivial grading component C1 = C ′. Namely, C admits a

decomposition of abelian categories

C =
⊕
g∈G

Cg (5.26)

with C1 = C ′, such that the tensor product ⊗ maps Cg×Ch to Cgh for every g,h ∈ G.

Consider the case G = Z2 = {1,η}. In this langauge, the Tambara-Yamagami fusion

category TY(A,χ,ε) is a Z2-extension of the fusion category VecA ≡ TY(A,χ,ε)1 where the

non-trivial grading component TY(A,χ,ε)η contains a unique simple object N . Note that a

graded fusion category does not necessarily contain non-invertible symmetries, as one can see

from the simplest G-graded fusion category VecG.

The trivial grading component C1 is a tensor subcategory of C , and each Cg is a C1-

bimodule category. This observation leads to the classification of G-extensions of a fusion

category [125] which we briefly review now. The grading components Cg satisfy the G-

multiplication rule under the tensor product ⊠C1 of C1-bimodule categories:

Cg ⊠C1 Ch ≃ Cgh , ∀g,h ∈ G . (5.27)

In particular, this means that C1 acts as an identity under ⊠C1 , C1⊠C1 Cg = Cg ⊠C1 C1 = Cg,
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and each Cg admits an inverse Cg−1 under ⊠C1 . Namely, Cg is an invertible C1-bimodule

category.

This implies that the G-extension of a fusion category C contains the data of a group

homomorphism ρ from G to the so-called Brauer-Picard group BrPic(C ) of the fusion category

C , whose elements are invertible C -bimodule categories and the group multiplication is the

tensor product ⊠C .

However, not every ρ : G → BrPic(C ) can be made into a G-extension of C , and

furthermore, the extension associated to a given ρ is not necessarily unique in general. The

obstructions and additional data required to specify a G-extension are worked out in [125]

and are interpreted physically in [25]. It starts with an important observation that BrPic(C ) is

isomorphic to EqBr(Z (C )), the group of braided equivalences of the Drinfeld center Z (C ).

The latter is simply the symmetry group of the symmetry topological field theory (symTFT) of the

fusion category C [22]. The additional data contain a choice of the symmetry fractionalization

class M ∈ H2
[ρ](G,A) where A is the group of Abelian anyons in the symTFT Z (C ), and a

choice of the discrete torsion ε ∈ H3(G,U(1)). The combined data (ρ,M,ε) must satisfy the

conditions that the obstruction class O3
[ρ] ∈ H3

[ρ](G,A) to the fractionalization of the symmetry

ρ : G → EqBr(Z (C )) as well as the ’t Hooft anomaly O4(ρ,M) ∈ H4(G,U(1)) of the G

symmetry with the chosen fractionalization both vanish.

We introduce the following notation

E
(ρ,M,ε)
G C (5.28)

to denote the G-extension of the fusion category C with the data (ρ,M,ε). In this work, we focus

on G = Z2 = {1,η} and also on a special class of graded extensions in which the η-component

of the extension contains a unique simple object D , and we will denote this type of extensions
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by adding an underline E . Then, the grading structure uniquely determines the fusion rules:

L ⊗D = D⊗L = ⟨L ⟩D , D⊗D =
⊕

simpleL

⟨L ⟩L , (5.29)

where L lines are in the trivial grading component. It immediately follows that such an

extension can exist only if ⟨L ⟩ ∈ Z>0 for every L . As an example, the Tambara-Yamagami

fusion category can be written as

TY(A,χ,ε) = E
(χ,ε)
Z2

VecA . (5.30)

In the case where the corresponding extension data (ρ,M,ε) are not known explicitly, we will

replace the superscript by suitable labels which distinguish different extensions.

5.3 (Half-)gauging non-invertible symmetries in 1+1d

In this section, we first review how to gauge non-invertible symmetries using an algebra

object [141, 39], generalizing the discussion in Section 5.2.2. We then argue that given a theory

that is self-dual under gauging a non-invertible symmetry, one can obtain a new topological

defect line by half-space gauging. Finally, we work out how to gauge the non-invertible Rep(H8)

symmetry.

5.3.1 Gauging non-invertible symmetries using algebra objects

As motivated in Section 5.2.2, to gauge a (finite) symmetry is to insert a mesh of the

corresponding algebra object A across the spacetime manifold. To begin with, an algebra object

is characterized by a triple (A ,µ,u). Here, µ ∈ HomC (A ⊗A ,A ) is a fusion junction of A ,

also known as the multiplication morphism, and u ∈ HomC (1,A ) is the unit morphism. They
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satisfy the following consistent conditions:

A

A

A

AA

µ

µ

= A

A

A

AA

µ

µ

,

A

A

A

u

µ =

A

A

A

u

µ =

A

A

. (5.31)

Throughout the paper, we focus on the case where A contains every simple object Li of C with

multiplicities given by the quantum dimensions,

A =
⊕

i

⟨Li⟩Li . (5.32)

Algebra objects (A ,µ,u) of this form are in 1-to-1 correspondence with fiber functors of the

fusion category [303, 90]. An algebra object A of the form (5.32) is an example of a haploid

algebra object, that is, the multiplicity of 1 in A is 1. This fixes the unit morphism u up to

rescaling.

To insert a mesh of A on a Riemann surface which implements the gauging, we first

choose a triangulation, and insert A along the edges of the dual triangulation. To do this,

we need not only the fusion junction µ but also a splitting junction µ∨ ∈ HomC (A ,A ⊗A ).

Furthermore, in order for the gauging to be unambiguously defined, the result must be invariant

under changing the triangulation of the Riemann surface. Any two triangulations of a Riemann

surface can be transformed into each other via a sequence of the fusion and bubble moves

[92, 143, 208],

fusion←−−→ ,
bubble←−−−→ . (5.33)

This leads to various additional constraints that the algebra object A and the junctions µ , µ∨
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must satisfy, including (5.17) and (5.18). Mathematically, these conditions are summarized by

saying that A must be a symmetric ∆-separable Frobenius algebra object in the fusion category

C [141, 39]. Some of them are listed below:

A

A

A

AA

µ

µ

= A

A

A

AA

µ

µ

,
A

A

A

A A

µ∨

µ∨
=

A

A

A

A A

µ∨

µ∨
,

A

A

A

µ∨

µ

= A .

(5.34)

In practice, solving the above set of conditions is enough to guarantee that one has a symmetric

∆-separable Frobenius algebra object, due to the fact that every semisimple haploid algebra

object admits a unique coalgebra structure (namely µ∨, the counit is unique up to rescaling) such

that it becomes a symmetric ∆-separable Frobenius algebra [303, 141].

When we gauge a finite group symmetry, we obtain a quantum (or dual) symmetry in

the gauged theory [384]. Similarly, when we gauge a general algebra object A , we also get

a quantum symmetry in the gauged theory [39, 218]. The quantum symmetry one gets after

gauging A is described by the fusion category A CA , that is, the category of A -A -bimodule

objects (M ,λ ,ρ) in C . Here, λ and ρ describe left/right multiplication structures of A on M ,

A

M

M

λ ,

M

M

A

ρ , (5.35)

satisfying

A

A

M

MA

µ

λ

= M

A

M

MA

λ

λ

, M

M

M

AA

ρ

ρ

= A

M

M

AA

µ

ρ

, M

A

M

AM

λ

ρ

= M

A

M

AM

ρ

λ

.

(5.36)
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Generally, a bimodule object can be decomposed as a direct sum of several other bimodule

objects. The ones which can not be decomposed are called indecomposable bimodule objects,

and they are the simple topological defect lines generating the quantum symmetry in the gauged

theory. The intuition is that the conditions in (5.36) allow the line M to be inserted and deformed

across the mesh of A in a consistent way.

5.3.2 Half-gauging and graded extensions

Here, we provide a description of half-gauging non-invertible symmetries, generalizing

the discussion in Section 5.2.3. We begin by describing the topological interface obtained from

gauging an algebra object A on half of the spacetime. Let us consider a CFT T with a fusion

category symmetry C . If C is anomaly-free, then we can find an algebra object A of the form

(5.32). Gauging the algebra object A leads to the CFT T /C with the quantum fusion category

symmetry A CA . It is then possible to consider gauging the symmetry C on only half of the

spacetime to obtain the theory T /C on half-space which is separated from T by a topological

interface I ,

T with C -sym T /C with A CA -sym

I

. (5.37)

The topological interface I is a simple object in the category CA of the right A -modules in

C , given by A itself. Here, CA naturally carries the structure of a C -A CA -bimodule category.

Namely, the topological lines in C acts on the interface from the left, whereas the quantum

topological lines in A CA acts on the interface from the right. Since we are interested in A of

the form (5.32), CA contains a unique simple object, therefore the topological interface I is

uniquely defined. If we have an invertible symmetry C = VecG, such an interface is the one

coming from imposing the topological Dirichlet boundary condition for the discrete G gauge

field at the interface, recovering the ordinary half-gauging construction in Section 5.2.3.
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In the special case where A CA ≃ C and T ≃ T /C , the topological interface I can

be regarded as a topological defect line D in the theory T . In general, such a defect D is

not necessarily the same as its orientation reversal D , but in the following we will restrict to

the case where D = D . Since the fusion category symmetry C (or equivalently, A CC
∼= C ) is

gauged across the defect D , any topological defect line L ∈ C must become transparent up to

its quantum dimension ⟨L ⟩ when it crosses D . This implies the following fusion rule

L ⊗D = D⊗L = ⟨L ⟩D , ∀L ∈ C . (5.38)

Recall that ⟨L ⟩ ∈ Z>0 for every L in an anomaly-free (unitary) fusion category, and the above

fusion algebra is consistent. Since D = D , we must also have

D⊗D = D⊗D =
⊕

simpleL

⟨L ⟩L = A . (5.39)

This is because the fusion D ⊗D corresponds to gauging C inside a thin slab sandwiched by

the two lines D and D , and such a gauging, which is given by inserting a mesh of A inside

the slab, reduces to a single A line in the limit where the thickness of the slab goes to zero,

by using the consistency conditions that A satisfies. Comparing with (5.29), we find that the

self-duality under gauging the fusion category symmetry C leads to a bigger fusion category

symmetry described by a Z2-extension E Z2
C of C , where the nontrivial grading component has

the unique simple object D . When C is an invertible symmetry, (5.38) and (5.39) are fusion

rules for the Tambara-Yamagami fusion category.

However, as discussed in Section 5.2.4, fusion category with the fusion rules (5.38) and

(5.39) is in general not unique. How does the additional data arise from the above discussion?

First, when we say that the quantum symmetry A CA is the same as the original symmetry C ,

we must explicitly specify how the topological lines and the junctions between them in C are
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related to the ones in A CA , and vice versa. Such a choice is not unique in general.7 Furthermore,

in general there may be more than one set of consistent local junction data we can choose for

the global fusion (5.39). These choices must be made in order to unambiguously determine the

larger symmetry E Z2
C .

When applying this to a concrete CFT T , the choice of the additional data mentioned

above must be compatible with the other data in the T , and we generally expect the theory T to

realize only a subset of possible E Z2
C symmetries.

It is interesting to point out that one should not expect that E Z2
C can be uniquely fixed

in a theory T in general. An example is the critical 3-states Potts model, see [70] for instance.

There, the theory is self-dual under gauging a Z3 symmetry, but the theory admits two duality

lines N and N ′ both describing this self-dual property. They realize two different Z2-extensions

of the Z3 symmetry in the same theory T .

5.3.3 Rep(H8) symmetry and its gauging

Rep(H8) is the representation category of the Hopf algebra H8 and it is also a Tambara-

Yamagami fusion category TY(Z2×Z2,χdiag,+1) describing self-duality under gauging Z2×Z2.

It contains 5 simple topological defect lines–4 invertible lines 1,a,b,ab generating the non-

anomalous Za
2×Zb

2 symmetry and a non-invertible duality line N . If we parameterize elements

of Za
2×Zb

2 as g ≡ (g1,g2) such that a ≡ (1,0),b ≡ (0,1), then the bicharacter is given by

χdiag(g,h) = (−1)g1h1+g2h2 . For simplicity, we will drop the subscript diag and write χdiag

simply as χ for the rest of the paper. Rep(H8) is anomaly-free and there exists a unique way of

gauging it since it admits a unique fiber functor [378].

One way to obtain a theory with the Rep(H8) symmetry is by stacking two (potentially

7In the categorical language, we need to choose a tensor equivalence between the fusion categories C and A CA ,
and we expect it to be classified by the group Aut(C ) of autoequivalences of the fusion category C . Given a choice
of tensor equivalence, we can make CA either to be a C -C -bimodule category, or to be a A CA -A CA -bimodule
category. Both can then be used to further construct the extensions E Z2

C and E Z2 A CA . Since C ≃ A CA , E Z2
C

has the same fusion rules as E Z2 A CA but generically we do not expect them to be equivalent. Since the choice of
ρ is equivalent to the choice of invertible C -C -bimodule categories with a unique simple object, we then expect the
number of the inequivalent choices of ρ does not exceed 2|Aut(C )|.

153



different) theories with the symmetry of the Ising CFT, namely the Tambara-Yamagami fusion

category TY(Z2)+. In this case, the Za
2×Zb

2 symmetry comes from the Z2 symmetries of the

two theories, and the duality line NRep(H8) = NIsing,1NIsing,2 is the diagonal duality line.

The unique algebra object of the form A = 1⊕a⊕b⊕ab⊕2N and the corresponding

junctions µ , µ∨ can be explicitly computed by solving the conditions Eq. (5.34).8 We find that

fusion junction µ and the splitting junction µ∨ are given by

A A

A

µ = ∑
g,h∈Z2×Z2

ψ(g,h)

g h

gh

+ ∑
g∈Z2×Z2

[L(g)]µ ν

g Nµ

Nν

+ ∑
g∈Z2×Z2

[R(g)]µ ν

Nµ
g

Nν

+ ∑
g∈Z2×Z2

W (g)µν

Nµ Nν

g

,

(5.40)

where

ψ(g,h) =
1

2
√

2

(1 1 1 1
1 1 1 1
1 −1 1 −1
1 −1 1 −1

)
, L(g) =

1
2
√

2

(
σ

0,−σ
3,−σ

1,−iσ2) ,
R(g) =

1
2
√

2

(
σ

0,σ3,σ1,−iσ2) , W (g) =
1
4
(
σ

3−σ
1,−σ

0 + iσ2,σ0 + iσ2,−σ
1−σ

3) ,
(5.41)

8The Rep(H8) fusion category in total contains six (Morita classes of) algebra objects that can be gauged
[124, 307, 112]. They are 1⊕a⊕b⊕ab⊕2N and 1⊕ab⊕N , which include the non-invertible line, and the
ones corresponding to gauging various invertible symmetries.
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and

A A

A

µ∨ = ∑
g,h∈Z2×Z2

ψ
∨(g,h)

g h

gh

+ ∑
g∈Z2×Z2

[L∨(g)]µ ν

g Nν

Nµ

+ ∑
g∈Z2×Z2

[R∨(g)]µ ν

Nν g

Nµ

+ ∑
g∈Z2×Z2

[W∨(g)]µν

Nµ Nν

g

,

(5.42)

where

ψ
∨(g,h) =

1
2
√

2

(1 1 1 1
1 1 1 1
1 −1 1 −1
1 −1 1 −1

)
, L∨(g) =

1
2
√

2

(
σ

0,−σ
3,−σ

1, iσ2) ,
R∨(g) =

1
2
√

2

(
σ

0,σ3,σ1, iσ2) , W∨(g) =
1
4
(
σ

3−σ
1,−σ

0 + iσ2,σ0 + iσ2,−σ
1−σ

3) .
(5.43)

More details on finding such an algebra object are given in App. E.1. The torus partition function

of the gauged theory T /Rep(H8) is computed by expanding the following diagram in terms of

simple topological defect lines:

A

A

A

A
A

µ

µ∨

. (5.44)
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We find

ZT /Rep(H8)(τ) =
1
8

(
ZT [1,1,1](τ)+ZT [1,a,a](τ)+ZT [a,1,a](τ)+ZT [a,a,1](τ)

+ZT [1,b,b](τ)+ZT [b,1,b](τ)+ZT [b,b,1](τ)

+ZT [1,ab,ab](τ)+ZT [ab,1,ab](τ)+ZT [ab,ab,1](τ)

−ZT [a,b,ab](τ)−ZT [b,a,ab](τ)−ZT [b,ab,a](τ)

−ZT [ab,a,b](τ)−ZT [a,ab,b](τ)−ZT [ab,b,a](τ)

+2ZT [1,N ,N ](τ)+2ZT [N ,1,N ](τ)+2ZT [N ,N ,1](τ)

+2ZT [ab,N ,N ](τ)+2ZT [N ,ab,N ](τ)+2ZT [N ,N ,ab](τ)
)
.

(5.45)

Here, the terms on the RHS that come with −1 coefficients have a sign ambiguity, due to the

freedom to shift the counterterm associated to the nontrivial element of H2(Za
2×Zb

2,U(1))∼= Z2.

On the other hand, the Rep(H8) symmetry implies that the theory is invariant under gauging the

Za
2×Zb

2 symmetry with an appropriate choice of such a counterterm. We fix the counterterm

ambiguity by requiring the theory to be self-dual under gauging Za
2×Zb

2 with no discrete torsion.

This leads to the relation

ZT [1,1,1](τ) =
1
4

(
ZT [1,1,1](τ)+ZT [1,a,a](τ)+ZT [a,1,a](τ)+ZT [a,a,1](τ)

+ZT [1,b,b](τ)+ZT [b,1,b](τ)+ZT [b,b,1](τ)

+ZT [1,ab,ab](τ)+ZT [ab,1,ab](τ)+ZT [ab,ab,1](τ)

+ZT [a,b,ab](τ)+ZT [b,a,ab](τ)+ZT [b,ab,a](τ)

+ZT [ab,a,b](τ)+ZT [a,ab,b](τ)+ZT [ab,b,a](τ)
)
.

(5.46)
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Using (5.46) to simplify (5.45), we find

ZT /Rep(H8)(τ) =
1
4

(
−ZT [1,1,1](τ)+ZT [1,a,a](τ)+ZT [a,1,a](τ)+ZT [a,a,1](τ)

+ZT [1,b,b](τ)+ZT [b,1,b](τ)+ZT [b,b,1](τ)

+ZT [1,ab,ab](τ)+ZT [ab,1,ab](τ)+ZT [ab,ab,1](τ)

+ZT [1,N ,N ](τ)+ZT [N ,1,N ](τ)+ZT [N ,N ,1](τ)

+ZT [ab,N ,N ](τ)+ZT [N ,ab,N ](τ)+ZT [N ,N ,ab](τ)
)
.

(5.47)

The twisted partition functions on the RHS containing only invertible symmetries can be

computed via modular transformations once their action on the Hilbert space is known. The

twisted partition functions containing the duality line N can be computed using the following

relation:

ZT [N ,1,N ](τ)+ZT [N ,ab,N ](τ) = ZT [N ,1,N ](τ +2)+ZT [N ,1,N ](τ−2) ,

(5.48)

where the RHS can be computed once we know the action of N on the Hilbert space. To see

this relation, notice that

N =
1
2 ∑

g
χ(1,g)

N

g =
1
2 ∑

g
χ(1,g)

N g
,

N =
1
2 ∑

g
χ(1,g)

N

g =
1
2 ∑

g
χ(1,g)χ(g,g)

N g
,

(5.49)

and use the relation χ(1,g)(1+ χ(g,g)) = 2δg1,g2 . The rest of the twisted partition functions
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can be obtained by performing a modular transformation to the LHS of (5.48):

ZT [N ,N ,1](τ)+ZT [N ,N ,ab](τ) = ZT [N ,1,N ](τ +1)+ZT [N ,ab,N ](τ +1),

ZT [1,N ,N ](τ)+ZT [ab,N ,N ](τ) = ZT [N ,1,N ]

(
−1

τ

)
+ZT [N ,ab,N ]

(
−1

τ

)
.

(5.50)

To summarize, the torus partition function of the gauged theory T /Rep(H8) can be computed

once we know the action of Rep(H8) on the (untwisted) Hilbert space of T .

When we gauge a Z2 = {1,η} symmetry, we keep the Z2-invariant sector of the Hilbert

space H as well as the Z2-invariant sector of the defect Hilbert space Hη . It is natural to

ask what is the analog in the case of gauging Rep(H8). We will show that there is a similar

interpretation.

Let us first study the defect Hilbert space of invertible symmetries. Different topological

sectors and their charges under the Rep(H8) symmetry are listed in Table 5.1. This can be

obtained by solving the irreps of the algebra of lasso actions following Appendix E.3.2.

For H ≡H1 and Hab, the action of the duality line N can be unambiguously defined,

therefore we expect the gauging to keep the states where N acts by its quantum dimension

⟨N ⟩= 2. Indeed, looking at the corresponding partition functions from (5.45),

ZT /Rep(H8),H =
1
8
(ZT [1,1,1]+ZT [1,a,a]+ZT [1,b,b]+ZT [1,ab,ab]+2ZT [1,N ,N ]) ,

ZT /Rep(H8),Hab
=

1
8
(ZT [ab,1,ab]+ZT [ab,ab,1]−ZT [ab,b,a]−ZT [ab,b,a]+2ZT [ab,N ,N ]) ,

(5.51)

we see that the gauging keeps only the states with charge (1,1,1,1,2) under (1,a,b,ab,N ) in

H and the states with charge (1,−1,−1,1,2) in Hab. In the latter case, we are keeping the

states which are odd under both Za
2 and Zb

2 because of the non-trivial discrete torsion of Za
2×Zb

2

in the algebra object.

For Ha and Hb, the situation is more subtle, with no analog in the invertible symmetry
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Table 5.1. Topological sectors of defect Hilbert spaces of invertible symmetries together with
their charges and spins. We also use the simple anyons in the symTFT of Z2×Z2 to label the
topological sectors. The duality line N corresponds to the Zem

2 symmetry which exchanges ei
with mi. In the special case where the anyon is invariant under Zem

2 , the corresponding topological
sector will split into two where the duality line N acts differently.

1 a b ab N Z (VecZ2×Z2) spin s mod 1
1 1 1 1 2 1 0
1 1 1 1 −2 1 0

H1 1 −1 1 −1 0 e1 0
1 1 −1 −1 0 e2 0
1 −1 −1 1 0 e1e2 0
1 −1 1 −1 2i m1e1

1
2

1 −1 1 −1 −2i m1e1
1
2

Ha 1 1 1 1 0 m1 0
1 1 −1 −1 0 m1e2 0
1 −1 −1 1 0 m1e1e2

1
2

1 1 −1 −1 2i m2e2
1
2

1 1 −1 −1 −2i m2e2
1
2

Hb 1 1 1 1 0 m2 0
1 −1 1 −1 0 m2e1 0
1 −1 −1 1 0 m2e1e2

1
2

1 −1 −1 1 2 m1m2e1e2 0
1 −1 −1 1 −2 m1m2e1e2 0

Hab 1 1 1 1 0 m1m2 0
1 −1 1 −1 0 m1m2e1

1
2

1 1 −1 −1 0 m1m2e2
1
2
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case. Here, the action of the duality N can not be unambiguously defined and as a result it

acts as ±2i or 0. It no longer makes sense to keep the sectors where N acts as ±2i, and this is

confirmed by the fact that both sectors have fractional spins. From the partition functions

ZT /Rep(H8),Ha =
1
2
· 1

4
(ZT [a,1,a]+ZT [a,a,1]−ZT [a,ab,b]−ZT [a,b,ab]) ,

ZT /Rep(H8),Hb
=

1
2
· 1

4
(ZT [b,1,b]+ZT [b,b,1]−ZT [b,ab,a]−ZT [b,a,ab]) ,

(5.52)

we find that we keep the states with charge (1,1,−1,−1,0) in Ha and the states with charge

(1,−1,+1,−1,0) in Hb. But in both cases, there is an extra undesired factor of 1
2 in the partition

function. This seems to be pathological, but notice that the two sectors are actually identical

because of the self-duality under gauging Za
2×Zb

2. Therefore, we should really interpret this as

keeping a single sector in Ha (which is identified with the corresponding sector in Hb in the

gauged theory).

Finally, let us consider the defect Hilbert space HN . In this case, the action of the duality

line N splits into 4 operators which we denote as UN ,g. Among these, only two of them, UN ,1

and UN ,ab can be unambiguously defined with charges ±1, as shown in Table 5.2. Meanwhile,

there are only two invertible lines 1 and ab acting unambiguously with charges ±1. Therefore,

it is natural to expect that the Rep(H8)-gauging will project HN to the states where these four

operators acting trivially as +1. Indeed, we can confirm this from the corresponding partition

function

ZT /Rep(H8),HN
=

1
4
(ZT [N ,1,N ]+ZT [N ,ab,N ]+ZT [N ,N ,1]+ZT [N ,N ,ab]).

(5.53)

To summarize, similar to the gauging of finite invertible symmetries, we find gauging the

non-invertible Rep(H8) symmetry can be understood as projecting to the invariant states (up to

the quantum dimension) of the topological lines whose actions can be unambiguously defined on

each defect Hilbert space.

160



Table 5.2. Topological sectors of HN together with their charges solved by performing similar
calculations as in Appendix E.3.2. Notice that in this case, the spin s can be determined using
the fact that e2π is is the same as the UN ,1 action.

1 a b ab UN ,1 UN ,a UN ,b UN ,ab spin s mod 1

HN

1 −i −i −1 e
3π i
4 e−

3π i
4 e−

3π i
4 e−

π i
4 3

8
1 −i −i −1 e−

π i
4 e

π i
4 e

π i
4 e

3π i
4 7

8
1 i i −1 e−

3π i
4 e

3π i
4 e

3π i
4 e

π i
4 5

8
1 i i −1 e

π i
4 e−

π i
4 e−

π i
4 e−

3π i
4 1

8
1 i −i 1 1 −i i 1 0
1 −i i 1 1 i −i 1 0
1 i −i 1 −1 i −i −1 1

2
1 −i i 1 −1 −i i −1 1

2

To conclude this section, we argue that the quantum symmetry after gauging is again

Rep(H8). As pointed out in [267], gauging any possible algebra object (not necessarily of

the form (5.32)) in Rep(H8) leads to either Rep(H8) or Vecω
D8

for some [ω] ∈ H3(D8,U(1)).

Obviously the two can be distinguished by the number of invertible lines. It is straightforward

to check using (5.36) that there are only 4 indecomposable bimodule objects with quantum

dimension 1. Hence, the quantum symmetry must be Rep(H8).

5.4 Gauging Rep(H8) at c = 1

The primary example with the Rep(H8) symmetry that we consider will be c = 1 CFTs

[378]. In particular, we show below that a stack of two decoupled Ising CFTs (Ising2 in short)

is invariant under gauging its Rep(H8) symmetry. This in turn implies the existence of a new

topological defect line in the Ising2 CFT coming from the half-space gauging of the Rep(H8)

symmetry, which will be discussed in Section 5.5.

Before we begin, we briefly review the Rep(H8) symmetry that is realized at c = 1,

following [378]. First, recall that the moduli space of (known) c = 1 CFTs consists of two

continuous branches and three isolated points [150], as shown in Figure 5.1.

One of the continuous branches, called the circle branch, corresponds to the free compact
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boson CFTs parameterized by the radius R of the compact boson. The other continuous branch,

also parameterized by R, arises from gauging the charge conjugation symmetry (denoted as ZC
2 )

of the free boson CFTs, and we call it the orbifold branch. The orbifold branch and circle branch

meet at the Berezinskii–Kosterlitz–Thouless (BKT) transition point where the minimal winding

vertex operator V0,1 becomes relevant. In our convention, the BKT point corresponds to R = 2 of

the circle branch and R = 1 of the orbifold branch, and T-duality acts as R↔ 1/R.

As was discussed in [378], the Rep(H8) fusion category symmetry is realized at every

point along the orbifold branch. The simplest way to understand this is as follows. First, at

R =
√

2 on the orbifold branch, the theory corresponds to the Ising2 CFT [149], which has

the TY(Z2)+⊠TY(Z2)+ fusion category symmetry. Denote the simple topological lines of

the two TY(Z2)+ fusion categories as {1,a,N1} and {1,b,N2}, respectively, where a, b are

Z2 symmetry lines and N1, N2 are Kramers-Wannier duality lines. The Rep(H8) symmetry is

realized as a subcategory of the TY(Z2)+⊠TY(Z2)+ fusion category, consisting of the simple

lines {1,a,b,ab,N } where N ≡N1N2.

To arrive at other values of R ̸=
√

2 on the orbifold branch, one can deform the

Ising2 CFT by the exactly marginal operator ε1ε2, where εi’s stand for the energy operators

with (h, h̄) = (1
2 ,

1
2) from the two Ising factors. Such a deformation explicitly breaks the

TY(Z2)+ ⊠TY(Z2)+ fusion category symmetry down to its Rep(H8) subcategory, and this

shows that the Rep(H8) symmetry is preserved across the entire orbifold branch.

Throughout the paper, we consider the gauging of symmetries only at the level of torus

partition functions. Generally, the torus partition function alone may not be enough to fully

determine a 1+1d CFT. However, at c = 1, all the known CFTs have distinct torus partition

functions (up to T-duality) and hence computing the torus partition function will be sufficient for

identifying the theory after gauging, assuming that the classification in [150] is complete.

Finally, as a side remark, we mention that there is another Z2×Z2 Tambara-Yamagami

fusion category, that is equivalent to the representation category Rep(D8) of the dihedral group

of order 8, which also exists as a symmetry along the orbifold branch [378]. The Rep(D8)
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fusion category has the same fusion algebra as Rep(H8), but has different F-symbols [39, 379].

The Rep(D8) symmetry is free of an ’t Hooft anomaly, and one may also consider gauging

the Rep(D8) symmetry on the orbifold branch. We will leave this analysis for the future, and

focus on the Rep(H8) symmetry in this work. It is worth mentioning, however, that there is one

additional feature that appears when gauging the Rep(D8) symmetry which does not occur in

the case of Rep(H8). Namely, there are three inequivalent ways to gauge the Rep(D8) symmetry,

whereas for the Rep(H8) symmetry we do not have such multiple options. This is due to the fact

that Rep(D8) admits three distinct fiber functors, whereas Rep(H8) admits a unique fiber functor

[379].

5.4.1 Ising2 is self-dual under gauging Rep(H8)

Before we discuss the c = 1 CFTs on the orbifold branch at a generic value of R, here we

first show that the Ising2 CFT (corresponding to R =
√

2) is self-dual under gauging Rep(H8).

The computation is simpler in this case since the Rep(H8) symmetry commutes with the fully

extended chiral algebra, namely two copies of the Ising chiral algebra (c = 1
2 Virasoro algebra),

with respect to which the theory is rational. With respect to the extended chiral algebra, there are

9 primary operators,

1, σ1, σ2, ε1, ε2, σ1σ2, σ1ε2, ε1σ2, ε1ε2 , (5.54)

where σi and εi are the spin and energy operators coming from the two Ising factors, respectively.

The spin operators have conformal weights ( 1
16 ,

1
16) and the energy operators have conformal

weights (1
2 ,

1
2).

We now proceed to gauge the Rep(H8) symmetry of the Ising2 CFT on a torus. From the
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general analysis in Section 5.3, the torus partition function after gauging is given by

ZIsing2/Rep(H8)
(τ) =

1
4

(
−ZIsing2[1,1,1](τ)

+ZIsing2[1,a,a](τ)+ZIsing2[a,1,a](τ)+ZIsing2 [a,a,1](τ)

+ZIsing2[1,b,b](τ)+ZIsing2[b,1,b](τ)+ZIsing2 [b,b,1](τ)

+ZIsing2[1,ab,ab](τ)+ZIsing2 [ab,1,ab](τ)+ZIsing2[ab,ab,1](τ)

+ZIsing2[1,N ,N ](τ)+ZIsing2[N ,1,N ](τ)+ZIsing2 [N ,N ,1](τ)

+ZIsing2[ab,N ,N ](τ)+ZIsing2[N ,ab,N ](τ)+ZIsing2[N ,N ,ab](τ)
)
.

(5.55)

The twisted partition functions appearing on the RHS of (5.55) can be computed

straightforwardly, since they are simply products of two decoupled Ising CFT partition functions

twisted by various topological lines. Generally, torus partition functions of the diagonal minimal

models (such as the Ising CFT) twisted by arbitrary topological lines are known [309, 70]. To

begin with, we have

ZIsing2(τ)≡ ZIsing2[1,1,1](τ) =

(
|χ Ising

0 (τ)|2 + |χ Ising
1

16
(τ)|2 + |χ Ising

1
2

(τ)|2
)2

, (5.56)

where the Ising characters are

χ
Ising
0 =

1
2

(√
ϑ3

η
+

√
ϑ4

η

)
,

χ
Ising
1
2

=
1
2

(√
ϑ3

η
−

√
ϑ4

η

)
,

χ
Ising
1
16

=
1√
2

√
ϑ2

η
.

(5.57)

The partition functions where one of the Z2 symmetry lines, a, b, or ab, is inserted along
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the spatial cycle can be read off from the action of the Z2 symmetries on the primaries (5.54):

ZIsing2[1,a,a](τ) = ZIsing2 [1,b,b](τ)

=
(
|χ Ising

0 (τ)|2−|χ Ising
1
16

(τ)|2 + |χ Ising
1
2

(τ)|2
)

×
(
|χ Ising

0 (τ)|2 + |χ Ising
1
16

(τ)|2 + |χ Ising
1
2

(τ)|2
)
,

ZIsing2[1,ab,ab](τ) =
(
|χ Ising

0 (τ)|2−|χ Ising
1
16

(τ)|2 + |χ Ising
1
2

(τ)|2
)2

.

(5.58)

Recall that the modular S and T matrices for the Ising characters (5.57) are given by

S =
1
2


1 1

√
2

1 1 −
√

2
√

2 −
√

2 0

 , T = e−
π i
24


1 0 0

0 −1 0

0 0 e
π i
8

 . (5.59)

Applying the S-transformation to (5.58), we obtain the twisted partition functions where the Z2

symmetry lines are now wrapping around the Euclidean time cycle:

ZIsing2[a,1,a](τ) = ZIsing2[b,1,b](τ)

=
(

χ
Ising
0 (τ)χ

Ising
1
2

(τ)+χ
Ising
1
2

(τ)χ
Ising
0 (τ)+ |χ Ising

1
16

(τ)|2
)

×
(
|χ Ising

0 (τ)|2 + |χ Ising
1

16
(τ)|2 + |χ Ising

1
2

(τ)|2
)
,

ZIsing2[ab,1,ab](τ) =
(

χ
Ising
0 (τ)χ

Ising
1
2

(τ)+χ
Ising
1
2

(τ)χ
Ising
0 (τ)+ |χ Ising

1
16

(τ)|2
)2

.

(5.60)
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Further performing an additional T -transformation, we get

ZIsing2[a,a,1](τ) = ZIsing2 [b,b,1](τ)

=
(
−χ

Ising
0 (τ)χ

Ising
1
2

(τ)−χ
Ising
1
2

(τ)χ
Ising
0 (τ)+ |χ Ising

1
16

(τ)|2
)

×
(
|χ Ising

0 (τ)|2 + |χ Ising
1
16

(τ)|2 + |χ Ising
1
2

(τ)|2
)
,

ZIsing2[ab,ab,1](τ) =
(
−χ

Ising
0 (τ)χ

Ising
1
2

(τ)−χ
Ising
1
2

(τ)χ
Ising
0 (τ)+ |χ Ising

1
16

(τ)|2
)2

.

(5.61)

Next, if we insert the N ≡N1N2 line along the spatial cycle, we obtain

ZIsing2 [1,N ,N ](τ) = 2
(
|χ Ising

0 (τ)|2−|χ Ising
1
2

(τ)|2
)2

, (5.62)

since the spin operators map to non-local operators and do not contribute to the torus partition

function, and the energy operators flip the sign under the action of N . The factor of 2 comes

from the quantum dimension of the line, ⟨N ⟩= 2. Performing the S-transformation, we obtain

ZIsing2 [N ,1,N ](τ) =

(
χ

Ising
0 (τ)χ 1

16
(τ)+χ

Ising
1
2

(τ)χ 1
16
(τ)+ c.c.

)2

. (5.63)

Now, we apply the identity (5.48) that was derived in Section 5.3 to obtain

ZIsing2[N ,1,N ](τ)+ZIsing2[N ,ab,N ](τ)

= ZIsing2[N ,1,N ](τ +2)+ZIsing2[N ,1,N ](τ−2)

=

(
e−

2π i
8 χ

Ising
0 (τ)χ 1

16
(τ)+ e−

2π i
8 χ

Ising
1
2

(τ)χ 1
16
(τ)+ c.c.

)2

+

(
e

2π i
8 χ

Ising
0 (τ)χ 1

16
(τ)+ e

2π i
8 χ

Ising
1
2

(τ)χ 1
16
(τ)+ c.c.

)2

.

(5.64)

Alternatively, we can also separately obtain ZIsing2[N ,ab,N ](τ) as a product of two Ising CFT

partition functions, namely ZIsing2 [N ,ab,N ](τ) = ZIsing[N1,a,N1](τ)×ZIsing[N2,b,N2](τ),

since N = N1N2. However, to compute the RHS of (5.55), the combination (5.64) is sufficient.
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Finally, we use (5.50) to obtain

ZIsing2 [1,N ,N ](τ)+ZIsing2[ab,N ,N ](τ) =

ZIsing2 [N ,1,N ](−1/τ)+ZIsing2[N ,ab,N ](−1/τ) ,

ZIsing2[N ,N ,1](τ)+ZIsing2[N ,N ,ab](τ) =

ZIsing2[N ,1,N ](τ +1)+ZIsing2[N ,ab,N ](τ +1) .

(5.65)

The explicit expressions in terms of the Ising characters are easily obtained from (5.64) and the

S and T matrices in (5.59).

Plugging in all the ingredients into the RHS of (5.55), we finally obtain

ZIsing2/Rep(H8)
(τ) =

(
|χ Ising

0 (τ)|2 + |χ Ising
1

16
(τ)|2 + |χ Ising

1
2

(τ)|2
)2

= ZIsing2(τ) .

(5.66)

We conclude that the Ising2 CFT is invariant under gauging its Rep(H8) symmetry as claimed.

To be more precise, we confirmed this fact only at the level of the torus partition function. As was

mentioned earlier, this is sufficient to prove the invariance of the full theory under the gauging,

under the assumption that the classification of c = 1 CFTs given in [150] is complete.

5.4.2 c = 1 orbifold branch: R↔ 2/R

Next, we move on to gauge the Rep(H8) symmetry at a generic point on the orbifold

branch. We will find that the theory at radius R is mapped to that at radius at 2/R and vice versa

under gauging the Rep(H8) symmetry. The Ising2 CFT at R =
√

2 is a fixed point under this

gauging, consistent with the analysis in the previous subsection.
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Circle branch

We begin by briefly reviewing various facts about the c = 1 compact boson along the

circle branch to set up the conventions. The action is

S =
R2

4π

∫
dφ ∧⋆dφ =

R2

2π

∫
d2z∂φ∂̄φ (5.67)

where φ ∼ φ +2π . Our convention for the radius R is such that the T-duality acts as R↔ 1/R

and the self-dual radius is at R = 1, where the theory is described by the SU(2)1 WZW model.

The model has a symmetry

(U(1)m×U(1)w)⋊ZC
2 . (5.68)

The momentum symmetry U(1)m is generated by the current Jm = −iR2

2π
⋆dφ and the winding

symmetry U(1)w is generated by the current Jw = 1
2π

dφ . The conservation equations are given

by dJm = dJw = 0. The charge conjugation symmetry ZC
2 acts as φ →−φ .

At every radius R, there is a u(1)×u(1) current algebra generated by j(z) = ∂φ(z) and

j̄(z̄) = ∂̄ φ(z̄). The current algebra primaries are the local vertex operators,

Vn,w(z, z̄) = einφ(z,z̄)+iwφ̃(z,z̄) , (5.69)

where n,w ∈ Z label the charges under the U(1)m and U(1)w symmetries, respectively. Here, φ̃

is the dual boson satisfying dφ̃ =−iR2 ⋆dφ . The conformal weights of the vertex operators are

hn,w =
1
4

( n
R
+wR

)2
, h̄n,w =

1
4

( n
R
−wR

)2
. (5.70)

The torus partition function is given by

Zcirc
R (τ) =

1
|η(τ)|2 ∑

n,w∈Z

q
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

, (5.71)
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where q = e2π iτ as usual. Each term of the torus partition function (5.71) is a u(1)×u(1) current

algebra character.

Alternatively, we can also consider decomposing the torus partition function (5.71) into

the characters of the Virasoro algebra. This will become useful later when we consider the

Rep(H8) symmetry and its gauging along the orbifold branch. At c = 1, the Virasoro characters

are given as follows [212]. For a generic conformal weight h, we have

χh(τ) =
qh

η(τ)
. (5.72)

However, when h = ℓ2/4 for some integer ℓ, there are null states in the Verma module and the

character is instead given by

χℓ2/4(τ) =
1

η(τ)

(
qℓ

2/4−q(ℓ+2)2/4
)
. (5.73)

The precise spectrum of Virasoro primary operators on the circle branch depends on the

value of the radius R. For a generic value of R (such that R /∈ Q), the torus partition function

(5.71) decomposes into the Virasoro characters as follows:

Zcirc
R (τ) =

1
|η(τ)|2

 ∑
n,w∈Z

(n,w)̸=(0,0)

q
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

+ ∑
ℓ,m∈Z≥0

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

) .

(5.74)

From this, we read off the spectrum of Virasoro primary operators at a generic value of R:

Vn,w , n,w ∈ Z ,(n,w) ̸= (0,0) , (h, h̄) = (
1
4
(

n
R
+wR)2,

1
4
(

n
R
−wR)2) ,

Cℓ,m , ℓ,m ∈ Z≥0 , (h, h̄) = (ℓ2,m2) .

(5.75)
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The operators Cℓ,m are made out of the (normal-ordered) Schur polynomials of currents j(z),

j̄(z̄) and their derivatives [389, 114, 113]. For instance, C1,1 = j(z) j̄(z̄) is the exactly marginal

operator (namely the kinetic term), and C0,0 is the identity operator.

The ZC
2 charge conjugation symmetry acts on the Virasoro primaries as

ZC
2 : Vn,w→V−n,−w ,

Cℓ,m→ (−1)ℓ+mCℓ,m .

(5.76)

Denote the topological defect line that generates the ZC
2 symmetry as η . From the action of the

ZC
2 symmetry on the primary operators, we can obtain the partition function of the free boson

where the η line is inserted along the spatial cycle:

Zcirc
R [1,η ,η ](τ) =

1
|η(τ)|2 ∑

ℓ,m∈Z≥0

(−1)ℓ+m(qℓ
2
−q(ℓ+1)2

)(q̄m2
− q̄(m+1)2

)

=
|ϑ3(τ)ϑ4(τ)|
|η(τ)|2

.

(5.77)

By performing the S-transformation, we obtain the twisted partition function

Zcirc
R [η ,1,η ](τ) =

1
|η(τ)|2 ∑

ℓ,m∈Z≥0

2q
1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2
=
|ϑ3(τ)ϑ2(τ)|
|η(τ)|2

. (5.78)

From (5.78), we read off the spectrum of Virasoro primary operators in the twisted Hilbert

space associated with η [113]. First of all, we see that the twisted sector operators are doubly-

degenerate, which is a consequence of the fact that the Zm
2 ×Zw

2 subgroup of the momentum and

winding symmetries acts projectively on the ZC
2 twisted sector due to a mixed anomaly between

the three symmetries [378]. We denote the Virasoro primaries in the ZC
2 twisted sector as

D(i)
ℓ,m , ℓ,m ∈ Z≥0 , i = 1,2 , (h, h̄) = (

1
4
(ℓ+

1
2
)2,

1
4
(m+

1
2
)2) . (5.79)

The ZC
2 charge of the twisted sector operators (5.79) is given by 2(h− h̄) = 1

2(ℓ−m)(ℓ+m+1)
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[70, 242]. Namely,

ZC
2 : D(i)

ℓ,m→ (−1)
1
2 (ℓ−m)(ℓ+m+1)D(i)

ℓ,m . (5.80)

Orbifold branch and its Rep(H8) symmetry

By gauging the ZC
2 charge conjugation symmetry of the compact boson, we obtain the

orbifold branch theories, which we again label by the radius R. The torus partition function is

given by

Zorb
R (τ) =

1
2
(
Zcirc

R [1,1,1](τ)+Zcirc
R [1,η ,η ](τ)+Zcirc

R [η ,1,η ](τ)+Zcirc
R [η ,η ,1](τ)

)
=

1
2

(
Zcirc

R (τ)+
|ϑ3(τ)ϑ4(τ)|
|η(τ)|2

+
|ϑ3(τ)ϑ2(τ)|
|η(τ)|2

+
|ϑ4(τ)ϑ2(τ)|
|η(τ)|2

)
.

(5.81)

Primary operators on the orbifold branch consist of the ZC
2 -invariant operators of the circle

branch, including the twisted sector operators (5.79). At a generic radius R, they are

V+
n,w ≡

1√
2
(Vn,w +V−n,−w), n,w ∈ Z,(n,w) ̸= (0,0), (h, h̄) = (

1
4
(

n
R
+wR)2,

1
4
(

n
R
−wR)2) ,

Cℓ,m , ℓ,m ∈ Z≥0 , ℓ+m ∈ 2Z , (h, h̄) = (ℓ2,m2) ,

D(i)
ℓ,m, ℓ,m ∈ Z≥0, i = 1,2,

1
2
(ℓ−m)(ℓ+m+1) ∈ 2Z, (h, h̄) = (

1
4
(ℓ+

1
2
)2,

1
4
(m+

1
2
)2),

(5.82)

modulo the identification V+
n,w =V+

−n,−w. At the Ising2 point, the exactly marginal operator C1,1

coincides with the ε1ε2 operator.

We may decompose the torus partition function on the orbifold branch (5.81) into the
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Virasoro characters (assuming a generic value of R),

Zorb
R (τ) =

1
|η(τ)|2

{1
2 ∑

n,w∈Z
(n,w)̸=(0,0)

q
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

+ ∑
ℓ,m∈Z≥0
ℓ+m∈2Z

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)
+ ∑

ℓ,m∈Z≥0
1
2 (ℓ−m)(ℓ+m+1)∈2Z

2q
1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2
}
.

(5.83)

The factor of 1/2 in front of the first summation is to account for the double counting coming

from the identification V+
n,w =V+

−n,−w. The first two terms in (5.83) add up to the first two terms

of (5.81), and the last term of (5.83) is the same as the sum of the last two terms of (5.81).

The action of the Rep(H8) symmetry on the Virasoro primary operators (5.82) along the

orbifold branch is given in [378], which we quote below. First, the two Z2 symmetries (denoted

as Za
2 and Zb

2) act as

Za
2 : V+

n,w→ (−1)nV+
n,w ,

(D(1)
ℓ,m,D

(2)
ℓ,m)→ (−iD(2)

ℓ,m, iD
(1)
ℓ,m) ,

Cℓ,m→Cℓ,m ,

(5.84)

and

Zb
2 : V+

n,w→ (−1)nV+
n,w ,

(D(1)
ℓ,m,D

(2)
ℓ,m)→ (iD(2)

ℓ,m,−iD(1)
ℓ,m) ,

Cℓ,m→Cℓ,m ,

(5.85)

respectively. The operators Cℓ,m are invariant under Za
2 × Zb

2. The diagonal subgroup

Zab
2 ⊂ Za

2×Zb
2 corresponds to the quantum symmetry of the charge conjugation ZC

2 on the

circle branch, which can be seen from the fact that all the twisted sector operators D(i)
ℓ,m are odd
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under Zab
2 , whereas the other operators V+

n,w, Cℓ,m are even.

On the other hand, the line N acts as

N : V+
n,w→ 2in(−1)wV+

n,w for n ∈ 2Z ,

Cℓ,m→ 2Cℓ,m ,

other operators→ non-local operators .

(5.86)

The factors of 2 come from the quantum dimension of the N line. The action indicates that the

operators Cℓ,m also commute with the N line, and hence with the entire Rep(H8). For instance,

the exactly marginal operator C1,1 lets us move up and down on the orbifold branch, while

preserving Rep(H8).

Gauging Rep(H8)

We now study the Rep(H8) gauging on the orbifold branch. As discussed in Section 5.3.3,

we only need to know the action of the Rep(H8) symmetry on the Hilbert space, or equivalently,

on the local primary operators to compute the relevant twisted partition functions, which has

been spelled out above. For simplicitly, below we perform the computation at a generic irrational

point. However, the conclusion remains the same for any values of R.

From (5.47), we have

Zorb/Rep(H8)
R (τ) =

1
4

(
−Zorb

R [1,1,1](τ)

+Zorb
R [1,a,a](τ)+Zorb

R [a,1,a](τ)+Zorb
R [a,a,1](τ)

+Zorb
R [1,b,b](τ)+Zorb

R [b,1,b](τ)+Zorb
R [b,b,1](τ)

+Zorb
R [1,ab,ab](τ)+Zorb

R [ab,1,ab](τ)+Zorb
R [ab,ab,1](τ)

+Zorb
R [1,N ,N ](τ)+Zorb

R [N ,1,N ](τ)+Zorb
R [N ,N ,1](τ)

+Zorb
R [ab,N ,N ](τ)+Zorb

R [N ,ab,N ](τ)+Zorb
R [N ,N ,ab](τ)

)
.

(5.87)
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From the action of Za
2, Zb

2 symmetries on the Virasoro primaries (5.84), (5.85), we read off

Zorb
R [1,a,a](τ) = Zorb

R [1,b,b](τ) =
1

2|η(τ)|2

∑
n,w∈Z

(n,w)̸=(0,0)

(−1)nq
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

+
1

|η(τ)|2 ∑
ℓ,m∈Z≥0
ℓ+m∈2Z

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)

=
1
2

1
|η(τ)|2

(
∑

n,w∈Z

(−1)nq
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

+ ∑
ℓ,m∈Z

(−1)ℓ+mqℓ
2
q̄m2

)

=
1
2

1
|η(τ)|2

(
∑

n,w∈Z

(−1)nq
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

+ |ϑ3(τ)ϑ4(τ)|

)
, (5.88)

where in the second step we have used

∑
ℓ,m∈Z≥0
ℓ+m∈2Z

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)
=

1
2 ∑
ℓ,m∈Z

(−1)ℓ+mqℓ
2
q̄m2

+
1
2
, (5.89)

and absorbed 1
2 into the (n,w) = (0,0) term of the first summation. In the last step, we used

∑
n
(−1)nqn2

= ϑ4(2τ) =
√

ϑ3(τ)ϑ4(τ).

The modular S-transformation is computed using the Poisson resummation, and we

obtain

Zorb
R [a,1,a](τ) = Zorb

R [b,1,b](τ)

=
1

|η(τ)|2

(
1
2 ∑

n,w∈Z

q
1
4(

w
R+(n+ 1

2 )R)
2

q̄
1
4(

w
R−(n+

1
2 )R)

2

+
1
4 ∑
ℓ,m∈Z

q
1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2

)

=
1
2

1
|η(τ)|2

(
∑

n,w∈Z

q
1
4(

w
R+(n+ 1

2 )R)
2

q̄
1
4(

w
R−(n+

1
2 )R)

2

+ |ϑ2(τ)ϑ3(τ)|

)
.

(5.90)

We can see that the result can be combined into a non-negative integer summation over Virasoro

characters if we appropriately restrict the range of the summation variables. The spin selection

rule for a non-anomaous Z2 symmetry, h− h̄ ∈ Z/2 is also satisfied [242]. Further performing
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the T -transformation, we obtain

Zorb
R [a,a,1](τ) = Zorb

R [b,b,1](τ)

=
1

2|η(τ)|2 ∑
n,w∈Z

(−1)wq
1
4(

w
R+(n+ 1

2 )R)
2

q̄
1
4(

w
R−(n+

1
2 )R)

2

+
1

4|η(τ)|2 ∑
ℓ,m∈Z

(−1)
1
2 (ℓ−m)(ℓ+m+1)q

1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2

=
1
2

1
|η(τ)|2

(
∑

n,w∈Z

(−1)wq
1
4(

w
R+(n+ 1

2 )R)
2

q̄
1
4(

w
R−(n+

1
2 )R)

2

+ |ϑ2(τ)ϑ4(τ)|

)
.

(5.91)

Next, recall that the diagonal Zab
2 ⊂ Za

2×Zb
2 symmetry generated by the line ab is the

quantum symmetry of the ZC
2 charge conjugation symmetry on the circle branch [378]. Therefore,

gauging Zab
2 brings us back to the circle branch,

Zcirc
R (τ) =

1
2

(
Zorb

R [1,1,1](τ)+Zorb
R [1,ab,ab](τ)+Zorb

R [ab,1,ab](τ)+Zorb
R [ab,ab,1](τ)

)
.

(5.92)

From this, we obtain

Zorb
R [1,ab,ab](τ)+Zorb

R [ab,1,ab](τ)+Zorb
R [ab,ab,1](τ)

= 2Zcirc
R (τ)−Zorb

R [1,1,1](τ)

=
3
2

1
|η(τ)|2 ∑

n,w∈Z

q
1
4(

n
R+wR)

2

q̄
1
4(

n
R−wR)

2

− 1
2|η(τ)|2

(|ϑ3(τ)ϑ4(τ)|+ |ϑ2(τ)ϑ3(τ)|+ |ϑ2(τ)ϑ4(τ)|) .

(5.93)

Finally, we have [378]

Zorb
R [N ,1,N ](τ)

=
1

2|η(τ)|2

(
∑

m,n∈Z

q
1
4

(
n+1/2

R +
(m+1/2)R

2

)2

q̄
1
4

(
n+1/2

R − (m+1/2)R
2

)2

+ ∑
m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
.

(5.94)
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By applying the identity (5.48), we obtain

Zorb
R [N ,1,N ](τ)+Zorb

R [N ,ab,N ](τ) =
1

|η(τ)|2 ∑
m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

=
2

|η(τ)|2
|ϑ2(τ)ϑ3(τ)| .

(5.95)

We then use the identities (5.50) to obtain

Zorb
R [1,N ,N ](τ)+Zorb

R [ab,N ,N ](τ) =
2

|η(τ)|2
|ϑ3(τ)ϑ4(τ)| ,

Zorb
R [N ,N ,1](τ)+Zorb

R [N ,N ,ab](τ) =
2

|η(τ)|2
|ϑ2(τ)ϑ4(τ)| .

(5.96)

By plugging all the twisted partition functions into the RHS of (5.87), we find

Zorb/Rep(H8)
R (τ) = Zorb

2/R(τ) . (5.97)

That is, the orbifold theories at radii R and 2/R are mapped into each other under gauging the

Rep(H8) symmetry as claimed. In particular, at the Ising2 point R =
√

2, we confirm again that

the theory is self-dual under gauging the Rep(H8) symmetry.

5.5 A new topological defect line in the Ising2 CFT

The fact that the Ising2 CFT is invariant under gauging the Rep(H8) symmetry implies

the existence of a new topological defect line D coming from the half-space gauging of the

Rep(H8) symmetry, according to the general considerations in Section 5.3. In this section, we

(partially) bootstrap the action of the topological line D on the c = 1 Virasoro primary operators.

Upon the modular S-transformation, we then also obtain the spectrum of operators in the twisted

Hilbert space associated with D .

The topological line D does not commute with the fully extended chiral algebra, but

preserves the c = 1 Virasoro algebra. Moreover, there does not exist any relevant or marginal
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operator which is invariant under the action of D . The exactly marginal operator ε1ε2 =C1,1

anticommutes with D . The latter property is reminiscent of the fact that the energy operator in

the Ising CFT anticommutes with the Kramers-Wannier duality line. See [379, 378] for many

other known topological defect lines in the Ising2 CFT.

5.5.1 Virasoro primaries

The fact that the new topological line D does not commute with the fully extended chiral

algebra of the Ising2 CFT, namely two copies of the Ising chiral algebra, is easy to check, since

the Ising2 CFT is a diagonal rational CFT for that extended chiral algebra. In any diagonal

rational CFT, the full spectrum of topological line operators which commute with the extended

chiral algebra is known, where they are referred to as Verlinde lines [386, 309]. The Verlinde

lines in the Ising2 CFT form the fusion category TY(Z2)+⊠TY(Z2)+, and by inspecting the

fusion algebra, it is straightforward to confirm that D is not one of the Verlinde lines.

Being topological, D commutes with the c = 1 Virasoro algebra, and we will attempt

to find the action of D on the c = 1 Virasoro primaries. The spectrum of Virasoro primaries at

a generic point on the orbifold branch was reviewed in Section 5.4 (see (5.82)). However, at

R =
√

2 corresponding to the Ising2 CFT, there are additional null states that do not appear at

generic values of R, and the full spectrum of Virasoro primaries is more involved. Below we list

all the c = 1 Virasoro primaries of the Ising2 CFT and their conformal weights:

V+
n,w , n,w ∈ Z ,n ̸=±2w , (h, h̄) = (

1
8
(n+2w)2,

1
8
(n−2w)2) ,

A+
w,m , w ∈ Z>0 ,m ∈ Z≥0 , (h, h̄) = (2w2,m2) ,

B+
w,ℓ , w ∈ Z>0 , ℓ ∈ Z≥0 , (h, h̄) = (ℓ2,2w2) ,

Cℓ,m , ℓ,m ∈ Z≥0 , ℓ+m ∈ 2Z , (h, h̄) = (ℓ2,m2) ,

D(i)
ℓ,m , ℓ,m ∈ Z≥0 , i = 1,2 ,

1
2
(ℓ−m)(ℓ+m+1) ∈ 2Z , (h, h̄) = (

1
4
(ℓ+

1
2
)2,

1
4
(m+

1
2
)2) .

(5.98)
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We review (5.98) in more detail in Appendix E.2. The operators V+
n,w, Cℓ,m and D(i)

ℓ,m are identical

to those in (5.82) at generic R, whereas the operators A+
w,m and B+

w,ℓ are new primary operators

appearing at R =
√

2 due to some of the generic modules at generic R splitting into infinitely-

many degenerate modules at R =
√

2. There is an identification V+
n,w = V+

−n,−w, and to avoid

double-counting, we may restrict to n≥ 1,w ∈ Z or n = 0,w≥ 1.

The torus partition function of the Ising2 CFT decomposes into a sum over the c = 1

Virasoro characters given in (5.72) and (5.73) as follows:

ZIsing2(τ) =
1

|η(τ)|2
{

∑
n∈Z≥1,w∈Z

n ̸=±2w

q
1
8 (n+2w)2

q̄
1
8 (n−2w)2

+ ∑
w∈Z≥1

q
1
2 w2

q̄
1
2 w2

+ ∑
w∈Z≥1,m∈Z≥0

q2w2
(

q̄m2
− q̄(m+1)2

)
+ ∑

w∈Z≥1,ℓ∈Z≥0

(
qℓ

2
−q(ℓ+1)2

)
q̄2w2

+ ∑
ℓ,m∈Z≥0
ℓ+m∈2Z

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)
+ ∑

ℓ,m∈Z≥0
1
2 (ℓ−m)(ℓ+m+1)∈2Z

2q
1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2
}
.

(5.99)

Individual terms appearing in the torus partition function can be recognized as the contributions

coming from the c = 1 Virasoro families corresponding to (5.98).

5.5.2 Bootstrapping the action of D

Here, we will partially determine the action of D on the Virasoro primary operators

(5.98) by demanding the following set of conditions:

• Consistency with the fusion algebra (5.39)

• Well-defined defect Hilbert space of D

• Spin selection rule (5.137)

Let us elaborate on the conditions in more detail. First, recall that (from (5.39))

D⊗D = 1⊕a⊕b⊕ab⊕2N . (5.100)
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This fusion algebra implies that D acts non-invertibly on local operators which are not invariant

under the Rep(H8) symmetry. That is, such operators are annihilated when surrounded by a

closed loop of D , or equivalently, they are mapped to non-local operators when D sweeps past

them. Moreover, on the local operators which are Rep(H8)-invariant, the action of D is order 2,

up to the quantum dimension ⟨D⟩=
√

8. Specifically, we have

D · (D ·O) = 8O if O is Rep(H8)-invariant ,

D ·O = 0 if O is not Rep(H8)-invariant ,
(5.101)

where the notation D ·O means the action of D on a local operator O by surrounding O with a

closed loop of D (see Figure 5.2). By the state-operator map, such an action is related to the

action of D as an operator on the state |O⟩.

Second, we require the twisted Hilbert space associated with D to decompose properly

into a direct sum of c = 1 Virasoro representations [309]. Namely, we require the twisted

torus partition function to decompose into c = 1 Virasoro characters with non-negative integer

coefficients,

ZIsing2[D ,1,D ](τ)
!
= ∑

h,h̄

nh,h̄χh(τ)χ h̄(τ) , nh,h̄ ∈ Z≥0 . (5.102)

Such a condition is also known as a modular bootstrap condition. Since the twisted partition

function (5.102) is related by the S-transformation to the partition function where D is

inserted along the spatial cycle, ZIsing2[D ,1,D ](τ) = ZIsing2[1,D ,D ](−1/τ), the condition that

nh,h̄ ∈ Z≥0 significantly constrains the action of D on the primaries.

Finally, the spin s = h− h̄ of the operators in the twisted Hilbert space of D is constrained

to take only a particular set of values, shown in (5.137). Such conditions on the spin of twisted

sector operators are commonly referred to as spin selection rules [70]. The spin selection rule

depends on the structure of the full fusion category formed by D and the topological lines of

Rep(H8), namely it is determined by the fusion algebra as well as the F-symbols. In Section 5.7,

by solving the pentagon equations, we show that there are 8 fusion categories with the fusion
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algebra (5.4). All of the 8 fusion categories are distinguished from each other by different spin

selection rules. Here, we will use the spin selection rule (5.137) but postpone its derivation until

Section 5.7. The spin selection rule not only imposes a consistency condition on the action of D ,

but it also lets us to determine which of the 8 fusion categories are actually realized in the Ising2

CFT once the action of D is obtained.

We now proceed to find the action of D on the primaries which solves the consistency

conditions listed above. In particular, we focus on the action of D on the Rep(H8)-invariant

operators. The Za
2 and Zb

2 symmetries act on V+
n,w as V+

n,w→ (−1)nV+
n,w, and leaves A+

w,m, B+
w,ℓ,

Cℓ,m invariant. They also act nontrivially on D(i)
ℓ,m operators for all values of ℓ and m. The line

N acts on the Virasoro primaries as [378]

N : V+
2k,w→ 2(−1)k+wV+

2k,w ,

A+
w,m, B+

w,ℓ, Cℓ,m are left invariant up to quantum dimension ,

other operators→ non-local operators .

(5.103)

We see that V+
2k,w with k +w ∈ 2Z as well as A+

w,m, B+
w,ℓ, Cℓ,m operators are invariant under

the Rep(H8)-symmetry. Taking into account the fact that O and D ·O should have the same

conformal dimensions (h, h̄), the general ansatz for the action of D we can consider is

D :

V+
2k,w

V+
2w,k

→√8Xk,w

V+
2k,w

V+
2w,k

 ,

A+
w,m→

√
8(−1) f (w,m)A+

w,m ,

B+
w,ℓ→

√
8(−1)g(w,ℓ)B+

w,ℓ ,

Cℓ,m→
√

8(−1)h(ℓ,m)Cℓ,m ,

other operators→ non-local operators .

(5.104)

Here, Xk,w are 2×2 matrices satisfying X2
k,w = 1, and f , g, h are Z2-valued functions. Note that
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V+
2k,w and V+

2w,k have the same conformal dimensions, and they can mix with each other under

the action of D (also recall that k ̸= w from (5.98)). The general ansatz (5.104) solves the first

consistency condition (5.101).

It turns out that the set of consistency conditions we impose is not sufficient to fully

determine the form of the matrices Xk,w. However, we propose that

TrXk,w = 0 for all k and w . (5.105)

Under this assumption, we can write down the torus partition function with the D line wrapping

around the spatial cycle as

ZIsing2[1,D ,D ](τ) =

√
8

|η(τ)|2
{

∑
w∈Z≥1,m∈Z≥0

(−1) f (w,m)q2w2
(

q̄m2
− q̄(m+1)2

)
+ ∑

w∈Z≥1,ℓ∈Z≥0

(−1)g(w,ℓ)
(

qℓ
2
−q(ℓ+1)2

)
q̄2w2

+ ∑
ℓ,m∈Z≥0
ℓ+m∈2Z

(−1)h(ℓ,m)
(

qℓ
2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)}
.

(5.106)

The A+
w,m, B+

w,ℓ, Cℓ,m operators contribute to the above partition function.

Next, we proceed to constrain the Z2-valued functions f , g, h by imposing the condition

(5.102). We find that the following solves (5.102):

f (w,m) = m+αw ,

g(w, ℓ) = ℓ+βw ,

h(ℓ,m) = ℓ .

(5.107)

Here, α,β = 0,1, whose values will be further constrained below by imposing the spin selection
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rule. More specifically, (5.107) leads to

ZIsing2[D ,1,D ](τ) =
1

|η(τ)|2
{

∑
w∈Z,m∈Z≥0

q
1
8 (w+

α

2 )
2
q̄

1
4 (m+ 1

2 )
2
+ ∑

w∈Z,ℓ∈Z≥0

q
1
4 (ℓ+

1
2 )

2
q̄

1
8 (w+

β

2 )
2
}
,

(5.108)

and we explicitly see that the condition (5.102) is satisfied.

The twisted torus partition function (5.108) provides us with the information about the

spectrum of operators in the twisted Hilbert space of D . In particular, we see the primary

operators of conformal dimensions (1
8(w+ α

2 )
2, 1

4(m+ 1
2)

2) for all w ∈ Z, m ∈ Z≥0, as well as

those with dimensions (1
4(ℓ+

1
2)

2, 1
8(w+ β

2 )
2) for all ℓ ∈ Z≥0, w ∈ Z. To further constrain the

values of α and β , we now impose the spin selection rule (5.137). Namely, as explained in more

detail in Section 5.7, the spin s = h− h̄ mod 1
2 of every operator in the twisted sector of D must

take one of the 4 allowed values appearing in one of the 8 rows in (5.137). A priori, we do not

know which of the 8 fusion categories, corresponding to the 8 rows in (5.137), is realized by D .

We find that

(α,β ) = (0,1) is consistent with E
(−,+,+)
Z2

Rep(H8) in Tab. 5.4 ,

(α,β ) = (1,0) is consistent with E
(+,+,+)
Z2

Rep(H8) in Tab. 5.3 ,
(5.109)

whereas (α,β ) = (0,0) and (α,β ) = (1,1) do not satisfy any of the 8 spin selection rules in

(5.137).

Therefore, we have so far two possible candidate actions of D corresponding to the

choice of (α,β ) = (0,1) or (α,β ) = (1,0). In fact, these two choices are related by another

Z2-symmetry that is present in the Ising2 CFT, namely the Z2 symmetry which swaps the two

Ising factors. We denote this symmetry as Zswap
2 , and the corresponding topological line as r. It

combines with Za
2×Zb

2 to form a dihedral group of order 8. By tracking the decomposition of

the Ising2 characters into the c = 1 Virasoro characters, one can show that Zswap
2 acts on A+

w,m

and B+
w,ℓ as (−1)w, and composing D with the Zswap

2 line has the effect of shifting both α and β
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by 1 mod 2, see (5.104) and (5.107).

Without loss of generality, we may let D to be the topological line corresponding to

the solution (α,β ) = (0,1). Then, another topological line D ′ ≡Dr obtained by composing D

with the Zswap
2 -symmetry line r also satisfy the same fusion algebra (5.4), but it has different

F-symbols and correspond to the other solution (α,β ) = (1,0). To conclude, we find that two

of the 8 possible fusion categories, that are found in Section 5.7, are realized in the Ising2 CFT.

Namely, the two Z2-extensions of Rep(H8), denoted as E
(−,+,+)
Z2

Rep(H8) and E
(+,+,+)
Z2

Rep(H8),

are realized respectively by D and D ′. The notation is explained in more detail in Section 5.7.

The Fronbenius-Schur indicator for the D line is εD =+1, and similarly for D ′.

As claimed earlier, we see that there are no relevant operators preserving D , simply

due to the fact there are no relevant operators preserving Rep(H8) and (5.101). Furthermore,

the only marginal operator C1,1, which is Rep(H8)-invariant, anticommutes with D , namely

D ·C1,1 =−
√

8C1,1 where the factor of
√

8 comes from the quantum dimension of D . The fact

that C1,1 should anticommute with D is intuitively clear. Starting from the Ising2 point on the

orbifold branch, one may deform the theory by C1,1 either with a positive coefficient or with a

negative coefficient. Since C1,1 anticommutes with D , D now becomes a topological interface

between the two deformed theories. This is nothing but the topological interface between the

theories at R and 2/R (in the vicinity of R =
√

2) coming from the half-space gauging of Rep(H8).

5.6 Stacking two theories with TY(Z2)+ symmetries

In this section, we study gauging the Rep(H8) symmetry of the theories obtained by

stacking two (potentially different) theories with TY(Z2)+ symmetries. Motivated by the

previous example, i.e. Ising2, of self-duality under gauging Rep(H8), we want to see if it is true

that every theory obtained in such a way is self-dual under gauging Rep(H8). We will start with

a generic analysis and show that this is not the case in general. We will provide some additional

special examples which are self-dual under gauging, and then provide some examples which are
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not.

5.6.1 General analysis

Here, we consider taking two generic CFTs, both with TY(Z2)+ fusion category

symmetry, and gauge the Rep(H8) subcategory. We will find that, in general, the theory is

not self-dual under gauging Rep(H8), and we will also see from the general result why the known

example is self-dual under Rep(H8) gauging–essentially it requires some factorization property

of topological sectors. Below, the nontrivial simple lines of the TY(Z2)+ categories of the two

CFTs are denoted as {η1,N1} and {η2,N2}, respectively.

First, note that the topological sectors and their modular properties of a 1+1d

CFT with a TY(Z2)+ symmetry can be characterized by the anyons in the symTFT

Z (TY(Z2)+) = Ising⊠ Ising. Since TY(Z2)+ fusion category itself can be equipped with

a braiding structure to become a modular tensor category (MTC) Ising, the bulk symTFT is

simply the Ising MTC together with its orientation reversal Ising. For more details on this theory,

see [22].

We denote the simple anyons in the 3d Ising TFT as (1,ψ,σ), and the simple anyons in

its orientation reversal Ising as (1,ψ,σ). Let us order the 9 anyons in Ising× Ising as

(1,1),(1,ψ),(1,σ),(ψ,1),(ψ,ψ),(ψ,σ),(σ ,1),(σ ,ψ),(σ ,σ) . (5.110)
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In this basis, the S and T matrices are given by

S =



1
4

1
4

1
2
√

2
1
4

1
4

1
2
√

2
1

2
√

2
1

2
√

2
1
2

1
4

1
4 − 1

2
√

2
1
4

1
4 − 1

2
√

2
1

2
√

2
1

2
√

2
−1

2

1
2
√

2
− 1

2
√

2
0 1

2
√

2
− 1

2
√

2
0 1

2 −1
2 0

1
4

1
4

1
2
√

2
1
4

1
4

1
2
√

2
− 1

2
√

2
− 1

2
√

2
−1

2

1
4

1
4 − 1

2
√

2
1
4

1
4 − 1

2
√

2
− 1

2
√

2
− 1

2
√

2
1
2

1
2
√

2
− 1

2
√

2
0 1

2
√

2
− 1

2
√

2
0 −1

2
1
2 0

1
2
√

2
1

2
√

2
1
2 − 1

2
√

2
− 1

2
√

2
−1

2 0 0 0

1
2
√

2
1

2
√

2
−1

2 − 1
2
√

2
− 1

2
√

2
1
2 0 0 0

1
2 −1

2 0 −1
2

1
2 0 0 0 0



, (5.111)

T =



1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 e−
iπ
8 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 −e−
iπ
8 0 0 0

0 0 0 0 0 0 e
iπ
8 0 0

0 0 0 0 0 0 0 −e
iπ
8 0

0 0 0 0 0 0 0 0 1



. (5.112)

Let us denote the torus partition function of the topological sector corresponding to an anyon

a as Zi,a(τ) where i = 1,2 labels the two stacked CFTs. Then, we can express the following
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twisted partition functions as

Zi[1,1,1](τ) = Zi,(1,1)(τ)+Zi,(ψ,ψ)(τ)+Zi,(σ ,σ)(τ) ,

Zi[ηi,1,ηi](τ) = Zi,(1,ψ)(τ)+Zi,(ψ,1)(τ)+Zi,(σ ,σ)(τ) ,

Zi[Ni,1,Ni](τ) = Zi,(1,σ)(τ)+Zi,(σ ,1)(τ)+Zi,(σ ,ψ)(τ)+Zi,(ψ,σ)(τ) .

(5.113)

The twisted partition functions of the stacked theory T1×T2 can be computed from the twisted

partition functions Zi. For instance,

ZT1×T2 [1,1,1] = Z1[1,1,1]Z2[1,1,1], ZT1×T2 [a,1,a] = Z1[η1,1,η1]Z2[1,1,1],

ZT1×T2 [b,1,b] = Z1[1,1,1]Z2[η2,1,η2], ZT1×T2[ab,1,ab] = Z1[η1,1,η1]Z2[η2,1,η2],

ZT1×T2 [N ,1,N ] = Z1[N1,1,N1]Z2[N2,1,N2].

(5.114)

Using modular transformations (5.111) and the general formula in Section 5.3.3, we find

ZT1×T2/Rep(H8)(τ) =Z1,(1,1)(τ)Z2,(1,1)(τ)+Z1,(ψ,1)(τ)Z2,(1,ψ)(τ)+Z1,(1,ψ)(τ)Z2,(ψ,1)(τ)

+Z1,(ψ,ψ)(τ)Z2,(ψ,ψ)(τ)+Z1,(ψ,σ)(τ)Z2,(σ ,ψ)(τ)+Z1,(σ ,ψ)(τ)Z2,(ψ,σ)(τ)

+Z1,(σ ,σ)(τ)Z2,(σ ,σ)(τ)+Z1,(1,σ)(τ)Z2,(σ ,1)(τ)+Z1,(σ ,1)(τ)Z2,(1,σ)(τ),

(5.115)

while
ZT1×T2(τ) =

(
Z1,(1,1)(τ)+Z1,(ψ,ψ)(τ)+Z1,(σ ,σ)(τ)

)
(

Z2,(1,1)(τ)+Z2,(ψ,ψ)(τ)+Z2,(σ ,σ)(τ)
)
.

(5.116)

Thus we have shown that stacking two theories with TY(Z2)+ symmetries does not necessarily

lead to self-duality under gauging Rep(H8).

5.6.2 Additional examples

Here, we provide a sufficient condition for self-duality under gauging Rep(H8), which

allows us to find additional examples which are self-dual.
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Comparing two partition functions (5.115) and (5.116), we notice that a sufficient

condition for the theory T1×T2 to be self-dual under gauging Rep(H8) is

Zi,(a,b)(τ) = Zi,a(τ)Zi,b(τ), ∀a,b, (5.117)

as well as

Z1,a(τ) = Z2,a(τ) or Z1,a(τ) = Z2,a(τ). (5.118)

Then,

ZT1×T2/Rep(H8)(τ) =
(

Z1,1(τ)Z2,1(τ)+Z1,ψ(τ)Z2,ψ(τ)+Z1,σ (τ)Z2,σ (τ)
)

×
(

Z2,1(τ)Z1,1(τ)+Z2,ψ(τ)Z1,ψ(τ)+Z2,σ (τ)Z1,σ (τ)
)

=
(

Z1,1(τ)Z1,1(τ)+Z1,ψ(τ)Z1,ψ(τ)+Z1,σ (τ)Z1,σ (τ)
)

×
(

Z2,1(τ)Z2,1(τ)+Z2,ψ(τ)Z2,ψ(τ)+Z2,σ (τ)Z2,σ (τ)
)

= ZT1×T2(τ),

(5.119)

where in the first equal sign we used (5.117) and the in the second equal sign we used (5.118).

Indeed, in the case of the Ising2 CFT, the partition function for the Ising CFT does

factorize as (5.117) with

(
ZIsing,1(τ),ZIsing,ψ(τ),ZIsing,σ (τ)

)
=

(
χ

Ising
0 (τ),χ

Ising
1
2

(τ),χ
Ising
1
16

(τ)

)
,(

ZIsing,1(τ),ZIsing,ψ(τ),ZIsing,σ (τ)
)
=

(
χ

Ising
0 (τ),χ

Ising
1
2

(τ),χ
Ising
1

16
(τ)

)
.

(5.120)

To search for additional examples, we notice that the partition function of the Monster CFT

also has the property (5.117). The Monster CFT is a holomorphic CFT with central charge

cL = c = 24 [136, 135], and it enjoys a TY(Z2)+ symmetry [241]. Its twisted partition functions

can be expressed in terms of the Ising characters (c = 1/2) and the Baby Monster (c = 47/2)
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characters in a factorized way as (5.117), where

(
ZMonster,1(τ),ZMonster,ψ(τ),ZMonster,σ (τ)

)
=

(
χ

Ising
0 (τ),χ

Ising
1
2

(τ),χ
Ising
1
16

(τ)

)
,(

ZMonster,1(τ),ZMonster,ψ(τ),ZMonster,σ (τ)
)
=

(
χ

Baby
0 (τ),χ

Baby
3
2

(τ),χ
Baby
31
16

(τ)

)
.

(5.121)

Then, by (5.117), (5.118), (5.119), we conclude that both Monster2 CFT and the Ising×Monster

CFT are self-dual under gauging Rep(H8) (at the level of the torus partition functions), and

therefore it is natural to suspect that the new topological defect line D exists in these theories as

well. The self-duality under gauging Rep(H8) can alternatively be checked by directly calculating

the twisted partition functions of the Monster CFT following [241]. More detailed analysis on

these new topological lines is left for the future.

5.6.3 Non-examples

In this subsection, we provide two examples which are not self-dual under gauging the

Rep(H8) symmetry. One of them is a nontrivial CFT and the other is a TQFT.

Two copies of U(1)4

Here, we consider a stack of 2 copies of c = 1 compact boson theories at radius R =
√

2.

The compact boson at radius R =
√

2 has TY(Z2)+ symmetry [378]. It also enjoys the U(1)4

extended chiral algebra under which the theory is rational. We have the following twisted

partition functions [378]:

ZU(1)4 [1,1,1] =
2

∑
m=−1

|K2
m(τ)|2,

ZU(1)4 [1,η ,η ] =
2

∑
m=−1

(−1)m|K2
m(τ)|2,

ZU(1)4 [1,N ,N ] =
√

2K2
0 (τ)

(
∑

m∈Z≥0

(−1)m
χm2(τ)

)
.

(5.122)
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Here, χm2(τ) are the Virasoro characters with scaling dimension m2 (see (5.73)), and K2
m are

characters of the U(1)4 chiral algebra and given by

K2
m(τ) =

1
η(τ) ∑

r∈Z

q2(r+m
4 )

2

, m =−1,0,1,2. (5.123)

K2
m(τ)’s have the modular properties

K2
n

(
−1

τ

)
=

1
2

2

∑
m=−1

e−
πimn

2 K2
m(τ), K2

n (τ +1) = e
πin2

4 −
πi
12 K2

n (τ). (5.124)

It is then straightforward to use modular transformations together with (5.114) to compute the

partition function of (U(1)4×U(1)4)/Rep(H8) following the general analysis in Section 5.3.3.

We find

Z(U(1)4×U(1)4)/Rep(H8)(τ) =
1
2

K2
0 (τ)

2
(

K2
0 (τ)

2
+A2

)
+4K2

0 (τ)K
2
1 (τ)(B

2 +C2)

+4K2
1 (τ)

2K2
1 (τ)

2
+8K1

2 (τ)K
2
2 (τ)BC+3K2

0 (τ)K2
0 (τ)K

2
2 (τ)K2

2 (τ)+
1
2

K2
2 (τ)

2K2
2 (τ)

2

= q
1

12 q
1
12 +4q

5
24 q

5
24 +4q

1
3 q

1
3 +12q

7
12 q

7
12 + · · · ,

(5.125)

where

A = ∑
m∈Z≥0

(−1)m
χm2(τ), B = ∑

m∈Z≥0,
m=0,3 mod 4

χ (m+1/2)2
4

(τ), C = ∑
m∈Z≥0,

m=1,2 mod 4

χ (m+1/2)2
4

(τ). (5.126)

On the other hand,

ZU(1)4×U(1)4(τ) =

(
2

∑
m=−1

|K2
m(τ)|2

)2

= q
1
12 q

1
12 +4q

5
24 q

5
24 +4q

1
3 q

1
3 +8q

7
12 q

7
12 + · · · . (5.127)

Hence, we conclude that U(1)4×U(1)4 is not self-dual under gauging Rep(H8).
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Regular Ising2 TQFT

Given a fusion category C , 1+1d C -symmetric TQFTs are classified by the

module categories over C [181]. Here we consider a 1+1d TQFT which has the

C = TY(Z2)+⊠TY(Z2)+ symmetry. The nontrivial simple objects in the first TY(Z2)+ factor

are denoted as η1, N1, and those in the second factor as η2, N2. We will consider the TQFT

which corresponds to the regular module category of C , that is, C viewed as a module category

over itself. The untwisted (closed) Hilbert space H is spanned by the states labeled by the

simple objects in C ,

H = span{|1⟩ , |η1⟩ , |η2⟩ , |η1η2⟩ , |N1⟩ , |N2⟩ , |η2N1⟩ , |η1N2⟩ , |N ⟩} , (5.128)

where N ≡N1N2. In particular, the theory has 9 degenerate states, and it represents a phase

where the C -symmetry is spontaneously broken completely. More generally, the twisted Hilbert

space of a simple topological line Li is given by

HLi
∼=
⊕

j

Hom(L j,Li⊗L j) . (5.129)

We now consider gauging the Rep(H8) subcategory of C = TY(Z2)+⊠TY(Z2)+. The

action of C on H is determined by the fusion coefficients. Namely, when a simple topological

line Li in C acts on a basis state
∣∣L j

〉
, we have Li

∣∣L j
〉
= ∑

k
Nk

i j |Lk⟩, and then the action is

linearly extended to arbitrary states in H . The action on the twisted sectors are determined from

the lasso actions. We can obtain the following twisted torus partition functions which are needed
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for the Rep(H8) gauging:

ZT QFT [1,1,1] = 9 ,

ZT QFT [1,η1,η1] = ZT QFT [η1,1,η1] = ZT QFT [η1,η1,1] = 3 ,

ZT QFT [1,η2,η2] = ZT QFT [η2,1,η2] = ZT QFT [η2,η2,1] = 3 ,

ZT QFT [1,η1η2,η1η2] = ZT QFT [η1η2,1,η1η2] = ZT QFT [η1η2,η1η2,1] = 1 ,

ZT QFT [η1,η2,η1η2] = ZT QFT [η2,η1,η1η2] = ZT QFT [η2,η1η2,η1] = 1 ,

ZT QFT [η1η2,η1,η2] = ZT QFT [η1,η1η2,η2] = ZT QFT [η1η2,η2,η1] = 1 ,

ZT QFT [1,N ,N ] = ZT QFT [N ,1,N ] = ZT QFT [N ,N ,1] = 0 .

(5.130)

The torus partition function after gauging Rep(H8) is then given by

ZT QFT/Rep(H8) = 3 (5.131)

which differs from the original torus partition function ZT QFT = 9.9 Therefore, this TQFT serves

as another non-example, which has the Ising2 fusion category symmetry and yet is not invariant

under gauging the Rep(H8) subcategory.

5.7 Fusion categories including the new topological line:
E

(i,κD ,εD )
Z2

Rep(H8)

The fusion rules involving the new topological defect line D are given by (5.4). The

fusion rules and F-symbols only involving 1,a,b,ab,N are inherited from Rep(H8). In this

section, we solve the pentagon equations with the additional D line, and calculate the spin

selection rules using the lasso action of topological defect lines on defect operators. There are 8

gauge-inequivalent solutions to the pentagon equations, which differ by three Z2-valued phases.

The spin selection rules can unambiguously distinguish all 8 fusion categories. In particular, the

9The resulting theory after gauging Rep(H8) would correspond to a module category of C with 3 simple objects.

191



Ising2 CFT realizes 2 of the 8 solutions in Tab. 5.3 and Tab. 5.4. More details on calculations are

presented in App. E.3.

5.7.1 F-symbols

Recall that non-trivial F-symbols of Rep(H8) are

[FgN h
N ](N ,1,1),(N ,1,1) = χ(g,h) , [FN gN

h ](N ,1,1),(N ,1,1) = χ(g,h) ,

[FN N N
N ](g,1,1),(h,1,1) =

1
2

χ
−1(g,h) .

(5.132)

All other F-symbols of Rep(H8) are trivial. With the additional D line, we explicitly solve the

pentagon equations. The 8 inequivalent solutions for the F-symbols are listed in Tab. 5.3 and

Tab. 5.4. We denote these 8 fusion categories as E
(i,κD ,εD )
Z2

Rep(H8) with i =±,κD =±,εD =±.
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Table 5.4. The other 4 sets of F-symbols for E
(−,κD ,εD )
Z2

Rep(H8) involving the D line, specified
by κD =±1,εD =±1. Omitted F-symbols (left part in Tab. 5.3) are the same as Tab. 5.3. The
two sets of F-symbols cannot be nicely grouped together because the difference is not an overall
phase.

[FgDh
D ](D ,1,1),(D ,1,1)

(1 1 1 1
1 −1 −1 1
1 −1 −1 1
1 1 1 1

)
[FN Dg

D ](D ,µ,1),(D ,1,ν) (σ0,−σ2,σ2,−σ0)

[FgDN
D ](D ,1,µ),(D ,ν ,1) (σ0,σ2,−σ2,−σ0)

[FN DN
D ](D ,µ,ν),(D ,ρ,σ)

κD

2
√

2

((
1−i −1−i
−1−i 1−i

) (
−1−i 1−i
−1+i 1+i

)
(
−1−i −1+i
1−i 1+i

) (
1−i 1+i
1+i 1−i

)
)

[FDgD
h ](D ,1,1),(D ,1,1)

(1 1 1 1
1 −1 −1 1
1 −1 −1 1
1 1 1 1

)
[FDgD

N ](D ,1,µ),(D ,1,ν) (σ0,−σ2,σ2,−σ0)

[FDN D
g ](D ,µ,1),(D ,ν ,1) (−σ1+σ3

√
2

, iσ
1+σ3
√

2
,−iσ1+σ3

√
2

, σ1−σ3
√

2
)

[FDN D
N ](D ,µ,ν),(D ,ρ,σ) κD


(

1
2 −

1
2

− i
2 −

i
2

) (
− 1

2 −
1
2

− i
2

i
2

)
(

i
2

i
2

1
2 −

1
2

) (
i
2 −

i
2

− 1
2 −

1
2

)


[FDDD
D ](g,1,1),(h,1,1)

εD

2
√

2

(
1 1 1 −1
1 −1 −1 −1
1 −1 −1 −1
−1 −1 −1 1

)
[FDDD

D ](g,1,1),(N ,µ,ν) εD(−σ0

2 , −σ2

2 , σ2

2 , −σ0

2 )

[FDDD
D ](N ,µ,ν),(g,1,1) εD(σ1−σ3

2
√

2
, i(σ

1+σ3)

2
√

2
,− i(σ1+σ3)

2
√

2
, σ1−σ3

2
√

2
)

[FDDD
D ](N ,µ,ν),(N ,ρ,σ)

εD κD

2
√

2

((
1 −1
−1 −1

) (
i i
i −i

)
(
−i −i
−i i

) (
1 −1
−1 −1

)
)

The 8 solutions differ by the three Z2-valued phases i =±,κD =±,εD =± appearing

in FLDR
D ,FDLD

R , [FDDD
D ]L,R, where L,R ∈ {1,a,b,ab,N }. In particular, εD ∈ H3(Z2,U(1)) is

the Frobenius-Schur indicator for the new topological line D .

We briefly discuss how to interpret the above 8 solutions in terms of the classification

data (ρ,M,ε). First, specifying ρ : Z2 → BrPic(Rep(H8)) is equivalent to specifying a

bimodule category Cη with a unique simple object D and the corresponding F-symbols are

Fr1r2D
D ,Fr1Dr2

D ,FDr1r2
D ’s. Next, we need to verify that indeed Cη is an invertible Rep(H8)-

bimodule category, and if so, we make a choice of the Rep(H8)-bimodule equivalence functor

194



between Cη ⊠Rep(H8) Cη and Rep(H8). This data is equivalent to the choice of the symmetry

fractionalization class M ∈ H2
[ρ](Z2,A) in the symTFT point of view and the corresponding

F-symbols are FDDr1
r2 ,FDr1D

r2 ,Fr1DD
r2 . Finally, the choice of the Frobenius-Schur indicator εD is

the choice of the discrete torsion of Z2 in the symTFT picture, and the corresponding F-symbol

data is the ± sign in
[
FDDD

D

]
11

. We summarize the above discussion in Table 5.5.

Table 5.5. The correspondence between the abstract structure appearing in the classification
analysis and the concrete F-symbols, where ri ∈ Rep(H8). We drop the labels for the internal
channel of the F-symbol for simplicity.

Abstract structure F-symbols Classification data
Left Rep(H8)-module

category structure Fr1r2D
D

ρ : Z2→ BrPic(Rep(H8))Right Rep(H8)-module
category structure FDr1r2

D

Bimodule structure that glues the
left/right module structure together Fr1Dr2

D

A choice of the equivalence functor
Cη ⊠Rep(H8) Cη ≃ Rep(H8)

FDDr1
r2 ,FDr1D

r2 ,Fr1DD
r2 M ∈ H2

[ρ](Z2,A)

A choice of the FS indicator the ± sign in
[
FDDD

D

]
11

εD ∈ H3(Z2,U(1))

As one can see in Tables 5.3 and 5.4, there are 4 distinct sets of (Fr1r2D
D ,Fr1Dr2

D ,FDr1r2
D )’s.

This implies there are 4 distinct choices of ρ . For each given ρ , there is a unique choice of M,

and two choices for the Frobenius-Schur indicator.10

5.7.2 Lasso actions and spin selection rules

Here, we derive the spin selection rules for the defect Hilbert space HD following

[249, 70]. By using the lasso actions of the topological defect lines on the defect Hilbert space

HD , the allowed values of the spin s of operators in HD are constrained.

The lasso actions of topological defect lines {1,a,b,ab,N } define maps acting on the

defect Hilbert space of D . The corresponding defect line configurations are shown both on the

10On the other hand, Aut(TY(A,χ,ε)) is given by Aut(A,χ) which is the group of automorphisms of A preserving
χ , see [146, Section 4.2]. We can then compute Aut(Rep(H8)) = Z2, and the discussion in Footnote 7 suggests
there should be no more than 4 distinct choices of ρ , which is consistent with the above analysis.
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cylinder (left) and on the plane (right) below:

D g
or

D

OD

g

≡Ug,
D

N
µ

ν or

D

OD

N

µ

ν

≡UN ,µν . (5.133)

Both Ug,UN ,µν maps HD →HD . The compositions of the lasso actions in Eq. (5.133) satisfy

Ug ·Uh = [FhDg
D ](D ,1,1),(D ,1,1)[F

Dhg
D ](D ,1,1),(hg,1,1)[F

ghD
D ]−1

(D ,1,1),(gh,1,1)Ugh ,

Ug ·UN ,µν = [FN Dg
D ](D ,µ,1),(D ,1,ρ)[F

gN D
D ]−1

(D ,ρ,1),(N ,1,σ)[F
DN g
D ](D ,ν ,1),(N ,1,λ )UN ,σλ ,

UN ,µν ·Ug = [FgDN
D ](D ,1,ν),(D ,ρ,1)[F

N gD
D ]−1

(D ,1,µ),(N ,1,σ)[F
DgN
D ](D ,1,ρ),(N ,1,λ )UN ,σλ ,

UN ,µν ·UN ,ρσ = 2[FDN D
N ](D ,ρ,ν),(D ,ρ ′,ν ′)

∑
g
[FN N D

D ]−1
(D ,ν ′,µ),(g,1,1)[F

DN N
D ](D ,σ ,ρ ′),(g,1,1)Ug .

(5.134)

The composition of more general lasso actions are listed in App. E.3.2. There are 8 1-dimensional

representations for this algebra of Ug,UN ,µν , for each set of F-symbols. The spin mod 1
2 of the

operators in the defect Hilbert space is obtained by

e4π is = ∑
g

FDDD
D ,(1,1,1),(g,1,1)Ug +∑

µν

FDDD
D ,(1,1,1),(N ,µ,ν)UN ,µν , (5.135)
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which is derived using the following diagram,

D = ∑
g

FDDD
D ,(1,1,1),(g,1,1)

D

g +∑
µν

FDDD
D ,(1,1,1),(N ,µ,ν)

D

N
µ

ν

(5.136)

= ∑
g

FDDD
D ,(1,1,1),(g,1,1) D g

+∑
µν

FDDD
D ,(1,1,1),(N ,µ,ν) D

N
µ

ν .

The spin selection rules s mod 1
2 for the 8 different solutions of F-symbols in Tab. 5.3 and

Tab. 5.4 are given by

E
(+,+,+)
Z2

Rep(H8);Tab.5.3,κD =+,εD =+ 1
16

7
32

7
16

15
32

E
(+,+,−)
Z2

Rep(H8);Tab.5.3,κD =+,εD =− 3
16

7
32

5
16

15
32

E
(+,−,+)
Z2

Rep(H8);Tab.5.3,κD =−,εD =+ 1
16

3
32

11
32

7
16

E
(+,−,−)
Z2

Rep(H8);Tab.5.3,κD =−,εD =− 3
32

3
16

5
16

11
32

E
(−,+,+)
Z2

Rep(H8);Tab.5.4,κD =+,εD =+ 1
32

1
16

9
32

7
16

E
(−,+,−)
Z2

Rep(H8);Tab.5.4,κD =+,εD =− 1
32

3
16

9
32

5
16

E
(−,−,+)
Z2

Rep(H8);Tab.5.4,κD =−,εD =+ 1
16

5
32

13
32

7
16

E
(−,−,−)
Z2

Rep(H8);Tab.5.4,κD =−,εD =− 5
32

3
16

5
16

13
32

(5.137)

The spin selection rules for E
(+,κD ,εD )
Z2

Rep(H8) and E
(−,κD ,εD )
Z2

Rep(H8) are related by s↔−s.

Chapter. 5, in full, is a reprint of the material as it appears in Yichul Choi, Da-Chuan

Lu, and Zhengdi Sun. Self-duality under gauging a non-invertible symmetry. Journal of High

Energy Physics, 2024(1):142, January 2024. The dissertation author was one of the primary

investigator and author of this paper.
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Appendix A

Appendix to Chapter. 1

A.1 Large-N renormalization group

The theory considered in the main text is the QED3 with level-k Chern-Simons term and

Yukawa coupling between the fermion bilinear terms and the scalar fields,

L = ψ̄(1N f ⊗ γ
µ)(∂µ − iaµ)ψ +φaψ̄(Ma⊗12)ψ

+
1

2g2 φa(ra−∂
2)φa +

λ

4
(φaφa)

2

+
ik
4π

ε
µνλ aµ∂νaλ +

1
4e2 fµν f µν

(A.1)

where ψ, ψ̄ represents N f flavors of 2-component Dirac fermion fields, 1N ,Ma act on

the N f -dimensional flavor space while 12,γ
µ ,Γ(m),I act on the 2-dimensional spinor space.

Γ(m),µ1,...,µm is defined as γ [µ1...γµm] (antisymmetrize the indices) and any product of γ matrices

can be reduced to this form. Since the spacetime dimension is 3, Γ(i) and Γ(3−i) are related

by the Levi-Civita tensor. φa with a = 1, ...,Nb represent the scalar fields which are coupled

to the fermion bilinears via a Yukawa type interaction. The last term in the Lagrangian is the

Chern-Simons term with level k.
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The bare propagators and vertices can be read off from the Lagrangian Eq. (A.1),

=−i
pµ(1N f ⊗ γµ)

p2 , a b = D(0)
ab (q) =

g2

q2 δa,b

µ ν = Π
(0)
µν(q) =

e2

q2

(
q2δµν −qµqν +

k
2π

e2εµνρqρ

q2 +( k
2π
)2e4

+ξ
qµqν

q2

) (A.2)

where ξ is the gauge parameter. The vertices are,

µ = i1N f ⊗ γ
µ , a = Ma⊗12 (A.3)

The bare gauge and critical boson propagator will receive corrections, in the large-N

limit, the corrections are dominated by fermion loops, for the gauge propagator,

k+q

k

µ ν = (−1)[i1N f ⊗ γ
µ ][−i

kρ(1N f ⊗ γρ)

k2 ][i1N f ⊗ γ
ν ][−i

(k+q)σ (1N f ⊗ γσ )

(k+q)2 ]

= (−1) tr
[
1N f ⊗ γ

µ
γ

ρ
γ

ν
γ

σ
]∫ d3k

(2π)3
kρ(k+q)σ

k2(k+q)2

=−
N f |q|

16
(δµν −

qµqν

q2 )

(A.4)

where N f comes from trace over the identity matrix 1N f . Similar for the critical boson

propagator,

k+q

k

a b = (−1)[Ma⊗12][−i
kρ(1N f ⊗ γρ)

k2 ][Mb⊗12][−i
(k+q)σ (1N f ⊗ γσ )

(k+q)2 ]

= tr
[
MaMb⊗ γ

ρ
γ

σ

]∫ d3k
(2π)3

kρ(k+q)σ

k2(k+q)2

=− tr
[
MaMb

] |q|
8
≡−M

|q|
8

δab

(A.5)

where in the last step we define tr
[
MaMb] = Mδab, this is true when Ma is irreducible
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representation. The corrected propagator can be found by using Dyson’s equation,

Π(q) = {[Π(0)(q)]−1−Σ
(0)(q)}−1

Note that in the large-N limit, this model flows to an interacting conformal field theory in the

infrared limit, where the momentum scale q is much smaller than the coupling constants e,g,

therefore the leading order of the dressed gauge and critical boson propagators are,

µ ν =µ ν+µ ν+µ ν

Πµν(q)≃
A

N f |q|

(
δµν −ξ

qµqν

q2

)
+

B
N f

εµνρqρ

q2 +O(|q|/e2)

(A.6)

a b = a b+a b+a b

Dab(q)≃
8

M|q|
δab +O(|q|/g2)≡ D(q)δab

(A.7)

where A =
(
16−1 +16κ2)−1

,B =
(
(256κ)−1 +κ

)−1, and κ = k/(2πN f ), a simple check is

when k = 0, A = 16,B = 0 match the coefficients in the large-N analysis of QED3 theory. Note

that κ is not inverse proportional to the ’t Hooft coupling and can be any real number, the large-N

limit is to take N f ,k to ∞ while keeping κ fixed. We also keep the gauge parameter ξ in the

calculation and check that the final result does not depend on ξ .

200



A.1.1 Basic diagrams for 1/N corrections: self-energy

We extract the logarithmic divergences from the diagrams and using k,Λ to denote the

external momentum and UV cutoff respectively, the self-energy corrections are,

=
∫ d3q

(2π)3 [Πµν(q)][i1N f ⊗ γ
µ ][−i

(k+q)σ (1N f ⊗ γσ )

(k+q)2 ][i1N f ⊗ γ
ν ]

= (i1N f ⊗ γ
µ)kµ

A(1−3ξ )

6π2N f
ln(k/Λ)+ reg.

(A.8)

=
∫ d3q

(2π)3 [D(q)δab][Ma⊗12][−i
(k+q)σ (1N f ⊗ γσ )

(k+q)2 ][Mb⊗12]

= (i1N f ⊗ γ
µ)kµ

8CM

6π2M
ln(k/Λ)+ reg.

(A.9)

where we define MaMa =CM1N f in analogy of the Casimir.

A.1.2 Basic diagrams for 1/N corrections: vertex corrections

The four-fermion interactions in general can be added to the Lagrangian perturbatively,

and assuming the small four-fermion perturbations won’t drive the system to other fixed points.

The general form for such interactions is,

K(α,(m1),I),(β ,(m2),J)ψ̄(V α ⊗Γ
(m1),I)ψψ̄(V β ⊗Γ

(m2),J)ψ

For simplicity and physical relevance, we will consider a subset of the four-fermion interactions

with the form,

L ⊃Lint = uα,(m),I(ψ̄(V α ⊗Γ
(m),I)ψ)2 (A.10)
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We introduce the diagrams for the interaction vertices as,

= uα,(m),I(V
α ⊗Γ

(m),I), = K(α,(m1),I),(β ,(m2),J)


(V α ⊗Γ(m1),I)

⊗

(V β ⊗Γ(m2),J)


(A.11)

The vertex corrections are

= uα,(m),I(V
α ⊗Γ

(m),I)
A(−3−2Cγ,(m),I +3ξ )

6π2N f
ln(k/Λ)+ reg. (A.12)

= uα,(m),I(V
α ⊗Γ

(m),I)
8Cγ,(m),ICM,α

6π2M
ln(k/Λ)+ reg. (A.13)

where we define CM,α ,Cγ,(m),I as MaV αMa ≡CM,αV α and γµΓ(m),Iγµ ≡Cγ,(m),IΓ
(m),I , repeated

indices a,µ mean summation.

Note that there are also two-loop diagrams for the 1/N corrections, we begin with the calculation

of the mass bubbles,

Π
Anticlockwise
L,R =−iuα,(m),I tr

[
(VL)(1N f ⊗ γ

a)(VR)(V α ⊗ (γb
Γ
(m),I

γ
c))
]

1
128q3 (qaqbqc−q2qcδa,b−q2qbδa,c +q2qaδb,c),

(A.14)

Π
Clockwise
L,R = iuα,(m),I tr

[
(VL)(V α ⊗ (γb

Γ
(m),I

γ
c)(VR)(1N f ⊗ γ

a))
]

1
128q3 (qaqbqc−q2qcδa,b−q2qbδa,c +q2qaδb,c),

(A.15)

where VL,VR stands for the vertex insertion, they could be gauge-gauge, boson-boson or gauge-

boson. The formula is complicated in general. For the 3-dimensional theory, the γ-matrices

are simply the Pauli matrices and m in Γ(m),I is up to 3. Besides, Γ(3),{i1,i2,i3} = iε i1,i2,i3Γ(0),
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Γ(2),{i1,i2} = iε i1,i2
lΓ

(1),l .

The gauge-gauge insertion:

Only Γ(0),Γ(3) will have non-zero contribution, as their relation is discussed previously,

we can calculate Γ(0) and derive the result for Γ(3). The mass bubble result for Γ(0) is,

= uα,(0) tr(V )
qlε

li j

4q
(A.16)

The two-loop diagrams give similar results for Γ(0),Γ(3),

=


uα,(0)(1N f ⊗Γ

(0))
tr(V )

N f

(A2−B2)

4π2N f
ln(k/Λ)+ reg. for m = 0

uα,(3),{i1,i2,i3}(1N f ⊗Γ
(3),{i1,i2,i3})

tr(V )

N f

(A2−B2)

4π2N f
ln(k/Λ)+ reg. for m = 3

(A.17)

The boson-boson insertion:

The non-zero contributions will occur only if tr
(
MiM jV α

)
= − tr

(
MiV αM j), this

requires non-trivial choices of the Ma,V α . If so, the two-loop contributions are,

for tr
(
MiM jV α

)
=− tr

(
MiV αM j)

=


−iuα,(1),i1 tr

(
MiV αM j)qi1

4q
for m = 1

−iuα,(2),{i1,i2} tr
(
MiV αM j) iqlε

l,i1,i2

2q
for m = 2

(A.18)
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=


uα,(1),i1(M

iM j⊗Γ
(1),i1)

−8tr
(
MiV αM j)

3π2M2 ln(k/Λ)+ reg. for m = 1

uα,(2),{i1,i2}(M
iM j⊗Γ

(2),{i1,i2})
−8tr

(
MiV αM j)

3π2M2 ln(k/Λ)+ reg. for m = 2

(A.19)

For example, the boson 2-loop will contribute when Ma = {12,σ
1,σ2} and V α =

{12,σ
1,σ2,σ3} and it will only contribute to the current-current interaction.

Mixed gauge-boson insertion

The mixed gauge-boson insertion will vanish for all the choices of V α and Γ(m),I , part of

the reason is because tr
(
MiV α

)
= tr

(
V αMi) and it will never have a minus sign.

A.1.3 Basic diagrams for 1/N corrections: ladder corrections

The four-fermion interaction vertices as depicted in Eq. (A.11) will receive O(1/N)

correction from gauge and boson propagators as well,

+

= K(α,(m1),I),(β ,(m2),J)


V α

⊗

V β

⊗



Γ(m1),Iγµ

⊗

Γ(m2),Jγµ

+


Γ(m1),Iγµ

⊗

γµΓ(m2),J


 −2A

6π2N f
ln(k/Λ)+ reg. (A.20)

⇒ u(α,(m),I)


V α

⊗

V α

⊗



Γ(m),Iγµ

⊗

Γ(m),Iγµ

+


Γ(m),Iγµ

⊗

γµΓ(m),I


 −2A

6π2N f
ln(k/Λ)+ reg. (A.21)

where the last equation is the correction for the simplified four-fermion interaction as in Eq. A.10.
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Table A.1. The definition for the coefficients that are universal for chosen fermion-boson vertex
and interaction matrix.

Notation Definition
κ k/(2πN f )

A A =
(
16−1 +16κ2)−1

B B =
(
(256κ)−1 +κ

)−1

M tr
[
MaMb]= Mδab

CM MaMa =CM1N f

CM,α MaV αMa ≡CM,αV α

Cγ,(m),I
γµΓ(m),Iγµ ≡Cγ,(m),IΓ

(m),I

Cγ,(0), = 3,Cγ,(1),µ =−1
f ab
c σaσb = f ab

c σ c, 1
2 tr
(
σaσbσ c)

Fα

β
({Ma}), F̃α

β ({Ma})
Fα

β
({Ma}) = ∑a∈{Ma} f αa

β
f αa
β

,
F̃α

β ({Ma}) = ∑a∈{Ma} f αa
β

f aα

β
, α,β ∈ {V α}

+

= K(α,(m1),I),(β ,(m2),J)




V αMa

⊗

V β Ma

⊗


Γ(m1),Iγµ

⊗

Γ(m2),Jγµ

−


V αMa

⊗

MaV β

⊗


Γ(m1),Iγµ

⊗

γµΓ(m2),J




−8
6π2M

ln(k/Λ)+ reg. (A.22)

= u(α,(m),I)




V αMa

⊗

V αMa

⊗


Γ(m),Iγµ

⊗

Γ(m),Iγµ

−


V αMa

⊗

MaV α

⊗


Γ(m),Iγµ

⊗

γµΓ(m),I


 −8

6π2M
ln(k/Λ)+ reg.

(A.23)

the repeated indices µ,a should be summed over.

A.1.4 Examples

Above general calculations will be concrete with certain assumptions,
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1. Since Γ(i) and Γ(3−i) are related by Levi-Civita symbol in 3 dimension, we only need to

consider Γ(0) = 12 and Γ(1),µ = γµ .

2. For the physical relevance, we consider the four-fermion interactions in the form of

uα,m(ψ̄(V α ⊗12)ψ)2 and uα,µ(ψ̄(V α ⊗ γµ)ψ)2 with µ = 0,1,2.

3. We further assume V α ,Ma are represented by Pauli matrices. This kind of interaction

vertices arise when doing fermionic parton construction of the spin models, i.e. the spin

operators correspond to the fermion bilinears with Pauli matrices inserted in the middle.

4. We also view V αs as the basis of certain vector space and form a set {V α} as well

as Mas form a set {Ma}, such that V αMa ∈ {V α}. For example, for {Ma} = {12} or

{Ma}= {12,σ
3}, {V α} can be {V α}= {12,σ

3} or {V α}= {12,σ
1,σ2,σ3}

Since V α ,Ma can be represented by Pauli matrices as assumed, we can exploit the underlying

algebraic structure of Pauli matrices. We further define the structure constants when multiplying

the V α ,Ma as

V αMb = ∑
β

f αb
β

V β , MbV α = ∑
β

f bα

β
V β (A.24)

where f αb
β

, f bα

β
can be viewed as σaσb = ∑c f ab

c σ c with a,b,c being restricted. The f ab
c for

Pauli matrices are,

f ab
c = iεab

c ,with a,b,c = 1,2,3, f 0a
b = δ

a
b , f a0

b = δ
a
b , f ab

0 = δ
ab,with a,b = 0,1,2,3. (A.25)

The structure constants are also calculated by,

f ab
c =

1
2

tr
(

σ
a
σ

b
σ

c
)

(A.26)
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The γ,Γ matrices are also represented by Pauli matrices and therefore have this structure as well,

Γ
i
γ

µ = ∑
j

f iµ
j Γ

j, γ
µ

Γ
i = ∑

j
f µi

j Γ
j. (A.27)

We arrange the coupling constants in a vector as uα,i = (uα,m,uα,0,uα,1,uα,2), where the

first term is the mass-mass interaction and the last 3 terms are the current-current interactions in

τ,x,y directions. The corresponding γ-matrices are Γi = {12,γ
0,γ1,γ2}= {12,σ

3,σ1,σ2}.

With the structure constants, the ladder corrections Eq. A.20 can be simplified as,

u(α,(m),I)


V α

⊗

V α

⊗



Γ(m),Iγµ

⊗

Γ(m),Iγµ

+


Γ(m),Iγµ

⊗

γµΓ(m),I


 −2A

6π2N f
ln(k/Λ)+ reg. (A.28)

=u(α,i)


V α

⊗

V α

⊗


Γ j

⊗

Γ j

∑
µ

(
f iµ

j f iµ
j + f iµ

j f µi
j

) −2A
6π2N f

ln(k/Λ)+ reg. (A.29)

=u(α,i)


V α

⊗

V α

⊗


Γ j

⊗

Γ j


(
1dim{V α}⊗

(
Fi

j + F̃i
j

)) −2A
6π2N f

ln(k/Λ)+ reg. (A.30)

where Fi
j ≡ ∑µ={3,1,2} f iµ

j f iµ
j , F̃i

j ≡ ∑µ={3,1,2} f iµ
j f µi

j , i, j = 0,3,1,2 and Eq. A.22 can be

207



simplified as,

u(α,(m),I)




V αMa

⊗

V αMa

⊗


Γ(m),Iγµ

⊗

Γ(m),Iγµ

−


V αMa

⊗

MaV α

⊗


Γ(m),Iγµ

⊗

γµΓ(m),I


 −8

6π2M
ln(k/Λ)+ reg.

(A.31)

=u(α,i)


V β

⊗

V β

⊗


Γ j

⊗

Γ j


((

∑
a

f αa
β

f αa
β

)(
∑
µ

f iµ
j f iµ

j

)
−
(

∑
a

f αa
β

f aα

β

)(
∑
µ

f iµ
j f µi

j

))

−8
6π2M

ln(k/Λ)+ reg. (A.32)

=u(α,i)


V β

⊗

V β

⊗


Γ j

⊗

Γ j


(

Fα

β
({Ma})⊗Fi

j− F̃α

β ({Ma})⊗ F̃i
j

) −8
6π2M

ln(k/Λ)+ reg. (A.33)

Both of the ladder contributions will depend on the structure constants with specific forms, and

we define Fα

β
({Ma})≡∑a∈{Ma} f αa

β
f αa
β

, F̃α

β ({Ma})≡∑a∈{Ma} f αa
β

f aα

β
, α,β ∈ {V α} similar to

the above definition for the Γ-matrices.

The self-energy corrections and the vertex corrections will be diagonal matrices acting

on the vector uα,i. The self-energy corrections are the same for every uα,i, while the vertex

corrections depend on the α, i. As listed in the Table. A.1, the coefficient Cγ,(0),= 3,Cγ,(1),µ =−1

are distinct for mass-mass and current-current. The structure constants in Eq. A.25 also have

these distinctions, this suggests the RG equations are in block forms.

A.1.5 Renormalization group equation for four-fermion interactions

The 1/N corrections for the four-fermion interaction vertices are,
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−2×

{
+ +

(
+

)

+ + +

+

(
+

)
+

}
.

(A.34)

As discussed previously, for generic boson-fermion vertices, the ladder correction

diagram of one interaction vertex will contribute to another interaction vertex, therefore, one

need to include all the possible interaction vertices as the basis. For example, if {Ma}= {12,σ
3}

and {V α}= {12,σ
1}, then σ2,σ3 also need to be included in {V α}.

We will analyze the example in the main text Section. 1.3.2 in detail. Due

to the reason provided in the previous paragraph, we choose the interaction vertex to

be {V α} = {12,σ
1,σ2,σ3} ⊗ 1N and {Ma} = {},{12} ⊗ 1N ,{σ3} ⊗ 1N ,{12,σ

3} ⊗ 1N .

Combining with the Γ-matrices, the basis of the interaction vertices uα,i = (uα,m,uα,0,uα,1,uα,2)

is 4×4 = 16 dimensional. The RG equation is organized as,

duα,i

dℓ
=

(
−1+ 64

3π2(2N)
M(α,i),(β , j)

)
uβ , j (A.35)

where α,β are the indices of the flavors, and i, j are the indices of the Γ-matrices, i = 0,1,2,3

corresponds to {12,γ
0,γ1,γ2}= {12,σ

3,σ1,σ2} in 3d.

The matrix M(α,i),(β , j) contains several parts,

M(α,i),(β , j) = Msv
(α,i),(β , j)+MgL

(α,i),(β , j)+MbL
(α,i),(β , j) (A.36)
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The self-energy and vertex corrections are in the diagonal,

Msv
(α,0),(β ,0) =

(
16A

6π2N f
+
−2tr(V α)

N f

(A2−B2)

4π2N f
+
−16(CM +3CM,α)

6π2M

)
1α,β (A.37)

Msv
(α,i),(β ,i) =

(
0+
−16(CM−CM,α)

6π2M

)
1α,β , with i = 1,2,3 (A.38)

The ladder correction from the gauge vertex contributes the off-diagonal part,

MgL
(α,0),(β ,i) = MgL

(α,i),(β ,0) =
8A

6π2N f
1α,β , with i = 1,2,3. (A.39)

The ladder corrections from the boson vertex are complicated, in the (i, j) space, there are two

parts,

MbL
(α,0),(β ,i) = MbL

(α,i),(β ,0) =
16

6π2M
(Fα

β
({Ma})− F̃α

β ({Ma})), with i = 1,2,3 (A.40)

MbL
(α,i),(β , j) =

16
6π2M

(−Fα

β
({Ma})− F̃α

β ({Ma})), with i, j = 1,2,3, i ̸= j (A.41)

where Fα

β
({Ma}) = ∑a∈{Ma} f αa

β
f αa
β

, F̃α

β ({Ma}) = ∑a∈{Ma} f αa
β

f aα

β
, α,β ∈ {V α} is defined

previously. This can be simplified if we take subset of {V α} with proper {Ma}, and restrict the

indices α,β in the subset.

The first quadrant, continuous O(4) DQCP: There is no critical boson in the system,

{Ma}= {}. There is no mixture in the flavor space of the eigen-channel. For V a = 12N ,

du0,i

dℓ
=

(
−1+

64
3π2(2N)

M(0,i),(0, j)

)
u0, j, M =

1
256κ2 +1



4(512κ2−1)
256κ2+1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


(A.42)
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In our case, 2N = 2,κ = 0, the RG equation becomes,

du0,i

dℓ
=



−1− 128
3π2

32
3π2

32
3π2

32
3π2

32
3π2 −1 0 0

32
3π2 0 −1 0

32
3π2 0 0 −1


u0, j (A.43)

And the eigenvalues of this matrix are all negative, meaning the perturbation is irrelevant among

all the channels.

For V α = σα ⊗1N ,α = 1,2,3, the RG equations are the same for different αs,

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(α, j)

)
uα, j, M =

1
256κ2 +1



2 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


(A.44)

In our case, there is one relevant channel, and plug that into the Eq. A.44, we get,

uα,i = gα(3,1,1,1)T ,
dgα

dℓ
= 2.24gα . (A.45)

Follow the same procedure, we will present the RG equations and the relevant channel results

for other cases.

The r2 axis, continuous SO(5) DQCP: The boson corresponding to the singlet mass is critical,
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{Ma}= {12N}. There is also no mixture in the flavor space. For V α = 12N ,

du0,i

dℓ
=

(
−1+

64
3π2(2N)

M(0,i),(0, j)

)
u0, j, (A.46)

M =



4(512κ2−1)

(256κ2+1)
2 − 1

2
1

256κ2+1
1

256κ2+1
1

256κ2+1

1
256κ2+1 0 −1

4 −1
4

1
256κ2+1 −1

4 0 −1
4

1
256κ2+1 −1

4 −1
4 0


. (A.47)

There is no relevant channel in this case.

Again, for V α = σα ⊗1N ,α = 1,2,3, the RG equations are the same for different αs,

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(α, j)

)
uα, j, (A.48)

M =



2
256κ2+1 −

1
2

1
256κ2+1

1
256κ2+1

1
256κ2+1

1
256κ2+1 0 −1

4 −1
4

1
256κ2+1 −1

4 0 −1
4

1
256κ2+1 −1

4 −1
4 0


(A.49)

And the relevant channel is the same as the case of the first quadrant, but with a smaller

eigenvalue,

uα,i = gα(3,1,1,1)T ,
dgα

dℓ
= 1.70gα . (A.50)

The r1 axis, transition between the O(4) DQCP and first-order transition: The boson

corresponding to the triplet mass is critical, {Ma} = {σ3⊗1N}. There are mixture between

V 0,V 3 and also between V 1,V 2, we will present the RG equation for V 0,V 3 and V 1,V 2 separately.
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For {V 0,V 3},

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(β , j)

)
uβ , j, (A.51)

M=



P (256κ2 +1)−112 (256κ2 +1)−112 (256κ2 +1)−112

(256κ2 +1)−112 02 −1
4σ1 −1

4σ1

(256κ2 +1)−112 −1
4σ1 02 −1

4σ1

(256κ2 +1)−112 −1
4σ1 −1

4σ1 02


(A.52)

where P=

 4(512κ2−1)

(256κ2+1)
2 − 1

2 0

0 2
256κ2+1 −

1
2

. And the 2×2 matrices act on the {V 0,V 3} space,

02 is 2×2 matrix with all entries being 0. The only relevant channel is,

uα,i = g(0,3)((−0.03,0.82),(−0.071,0.32),(−0.071,0.32),(−0.071,0.32))T , (A.53)

dg(0,3)
dℓ

= 1.89g(0,3). (A.54)

For {V 1,V 2},

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(β , j)

)
uβ , j, (A.55)

M=



(
2

256κ2+1 +
1
4

)
12 S S S

S −1
412 02 02

S 02 −1
412 02

S 02 02 −1
412


. (A.56)
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where S= (256κ2 +1)−112− 1
4σ1. There are two relevant channels,

uα,i = g(1)
(1,2)((−3,3),(−1,1),(−1,1),(−1,1))T ,

dg(1)
(1,2)

dℓ
= 2.78g(1)

(1,2), (A.57)

uα,i = g(2)
(1,2)((4.1,4.1),(1,1),(1,1),(1,1))

T ,
dg(2)

(1,2)

dℓ
= 2.02g(2)

(1,2). (A.58)

The first channel is antisymmetric combination of V 1,V 2 and the second is symmetric

combination.

The origin, multi-critical point: Both bosons are critical, the boson-fermion vertices are

{Ma}= {12N ,σ
3⊗1N}. Again, there will be mixture between V 0,V 3 and also between V 1,V 2.

For {V 0,V 3},

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(β , j)

)
uβ , j, (A.59)

M=



K R R R

R 02 −1
4(12 +σ1) −1

4(12 +σ1)

R −1
4(12 +σ1) 02 −1

4(12 +σ1)

R −1
4(12 +σ1) −1

4(12 +σ1) 02


. (A.60)

where K =

 4(512κ2−1)

(256κ2+1)
2 −1 0

0 2
256κ2+1 −1

 and R = (256κ2 + 1)−112. And the relevant

channel is the same as previous case with a smaller eigenvalue,

uα,i = g(0,3)((−0.03,0.82),(−0.071,0.32),(−0.071,0.32),(−0.071,0.32))T , (A.61)

dg(0,3)
dℓ

= 1.35g(0,3). (A.62)
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For {V 1,V 2},

duα,i

dℓ
=

(
−1+

64
3π2(2N)

M(α,i),(β , j)

)
uβ , j, (A.63)

M=



Q S S S

S −1
412 −1

412 −1
412

S −1
412 −1

412 −1
412

S −1
412 −1

412 −1
412


. (A.64)

where Q=
(

2
256κ2+1 −

1
4

)
12, S= (256κ2 +1)−112− 1

4σ1. There are two relevant channels,

uα,i = g(1)
(1,2)((−3,3),(−1,1),(−1,1),(−1,1))T ,

dg(1)
(1,2)

dℓ
= 2.24g(1)

(1,2), (A.65)

uα,i = g(2)
(1,2)((4.1,4.1),(1,1),(1,1),(1,1))

T ,
dg(2)

(1,2)

dℓ
= 1.49g(2)

(1,2). (A.66)

The first relevant channel is the antisymmetric combination of V 1,V 2, it is interesting that this

relevant channel has the same scaling dimension as the relevant channel V 3 with (3,1,1,1)T in

the O(4) DQCP (Eq. A.45).

A.1.6 Mass scaling

Combining the diagrams in previous sections allows us to calculate the scaling dimension

for the fermion mass term, which corresponds to the vertex ψ̄V α ⊗Γ(0)ψ ≡ ψ̄V α ⊗12ψ . As

discussed in the main text, we use the N f = 2 QED3 description of DQCP, and consider its

large-N generalization. The vertex of singlet mass is thus V α = 12N and for the triplet mass is
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V α = σ3⊗1N . The diagram equation for the corrections of the mass scaling dimension is,

+ +

+ +

(A.67)

For Ma being full rank, M = 2N, CM equals to the number of critical boson Nb. For singlet mass

term, CM,α = Nb, but for the triplet mass, CM,α depends on the choices of Ma, the coefficient is

calculated explicitly by CM,α = tr[(∑a MaV αMa)V α ]/ tr[V αV α ]. For boson associated to singlet

mass, the result is simple, Ma = 1, with a = 1, ...,Nb, CM,α = Nb.

For the mass scaling, m = 0, Cγ,(0),{} = 3, and there is no two-loop correction by critical

boson. Collecting the logarithmic divergent part, we get,

∆ψ̄12Nψ = 2− 128(512κ2−1)
3π2(2N)(1+256κ2)2 +

16Nb

3π2(2N)
(A.68)

∆ψ̄(σ3⊗1N)ψ
= 2− 64

3π2(2N)(1+256κ2)
+

4(3CM,α +Nb)

3π2(2N)
(A.69)

where the last term in each equation comes from the critical boson contribution. This general

result agrees with previous work with certain parameters.

A.1.7 Boson mass scaling

We can also calculate the scaling dimension of the boson operator φ 2
a . Following Ref. [47],

we define the scalar two-point function as Gφ

ab ≡ ⟨φa(p)φb(−p)⟩, and its O(1/N) 1PI scalar

self-energy contribution is represented by Σ
φ(1)
ab (p). From the Dyson’s equation, the two-point

function to O(1/N) is,

Gφ

ab = Dab(p)+Dac(p)Σφ(1)
cd (p)Gφ

db(p)≃ Dab(p)+Dac(p)Σφ(1)
cd (p)Ddb(p) (A.70)
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where the self-energy is obtained by summing over the basic diagrams for fermion mass scaling

but with nontrivial choices of Mas. Because of the coupling φaψ̄Maψ , the self-energy corrections

depend on Mas and can therefore change the scaling dimensions of the corresponding bosons.

The self-energy has the following generic form,

Σ
φ(1)
ab (p) = δab

ca|p|
π2N

ln
(

Λ2

p2

)
(A.71)

For example, for Ma = 1, c = 2
3 −

16(512κ2−1)
3(256κ2+1)

2
κ→0
= 6, and for Ma is traceless, c =

2
3 −

8
3(256κ2+1)

κ→0
= −2. The self-energy will contribute to the scaling dimension of the φ 2

in the following diagram,

(A.72)

where the shaded bubble is the self-energy correction Σ
φ(1)
ab (p). There is one more diagram at

O(1/N) will contribute to the scaling of φ 2, as following,

,

(A.73)

the fermion “box” is the summation of fermions running clockwise and anti-clockwise. The

scaling dimension of φ 2 is combining Eq. A.72 and Eq. A.73, this gives,

∆φ 2
a
= 2− 16ca

π2N
+

8
π2N

. (A.74)

Note that the hourglass diagram (the first diagram in Eq. A.75) won’t contribute to the anomalous

dimension, a simple argument is that similar diagram with one internal boson line appears

in the self-energy correction (second and third diagram in Eq. A.75) and it contributes to the

anomalous dimension, while the hourglass diagram has two internal boson line, the power in the
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Table A.2. The scaling dimensions of φ 2
a with several choices of the boson-fermion vertices,

these choices correspond to the axis and origin of the phase diagram Fig. 1.3 in the main text.

{Ma} ∆φ 2
a

{12} 2− 8
3π2N +

256(512κ2−1)
3π2(256κ2+1)

2
N

κ→0
= 2− 88

π2N

{σ3} 2− 8
3π2N + 128

3π2(256κ2+1)N
κ→0
= 2+ 40

π2N

{12,σ
3} {2− 40

3π2N +
256(512κ2−1)

3π2(256κ2+1)
2
N
,2− 40

3π2N + 128
3π2(256κ2+1)N

} κ→0
= {2− 296

3π2N ,2+
88

3π2N}

denominator is larger by 1, hence, it won’t contribute to the anomalous dimension.

, ⊂ (A.75)

With O(1/N) correction, the scaling dimension of the boson operator φ 2
a are listed in the

Tabel. A.2. These scaling dimensions are not trustworthy for small fermion flavors N, but they

show a trend for the scaling dimensions when having different boson-fermion vertices in large N.

A.2 Details of N f = 2 QED3 and self-duality

The single flavor fermion coupled to the U(1) gauge field is dual to free fermion theory

and this is dubbed as fermion/fermion duality[177, 340],

iΨ̄ /DA1Ψ⇐⇒ iχ̄ /Da1 χ− 2
4π

b1db1 +
1

2π
a1db1 +

1
2π

A1db1−
1

4π
A1dA1−2CSg, (A.76)

iΨ̄ /DA2Ψ⇐⇒ iχ̄ /Da2 χ +
1

4π
a2da2 +

2
4π

b2db2−
1

2π
a2db2−

1
2π

A2db2 +2CSg, (A.77)

where CSg denotes the gravitational Chern-Simons term which will vanish in the flat spacetimes.

The second line is the orientation reversed (time-reversal) version of the first one. We can then

product them together on each side with the substitution A1→ A,A2→ A−2X . Next, adding

the counterterms 1
2π

Ad(Y −X)+ 1
4π
(XdX −Y dY )+ 1

4π
AdA+2CSg to both sides and gauging
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A, after integrating out most of the gauge fields, we get,

iΨ̄1 /DaΨ1 + iΨ̄2 /Da−2X Ψ2 +
1

4π
ada+

1
2π

ad(Y −X)+
1

4π
(XdX−Y dY )+2CSg⇐⇒ (A.78)

iχ̄1 /Dã−2Y χ1 + iχ̄2 /Dãχ2 +
1

4π
ãdã+

1
2π

ãd(X−Y )+
1

4π
(Y dY −XdX)+2CSg, (A.79)

the self-duality exchanges X ↔ Y and χi↔Ψī. After relabeling the dynamical gauge fields a, ã,

it gives back Eq. (1.1) and Eq. (1.2).

The self-duality exchanges the monopole symmetry and the Cartan subgroup of the flavor

symmetry. It is also the duality between strong and weak couplings, this can be seen from the

duality transformations amongst the derivation and their corresponding transformations in the

3+1d bulk. Considering the 2+1d U(1) gauge matter theories live at the boundary of 3+1d U(1)

gauge theory with the coupling constant τ ,

I(A) =
1

8π

∫
X

d4x
√

g
(

2π

e2 FmnFmn +
iθ

4π
εmnpqFmnF pq

)
(A.80)

=
i

8π

∫
X

d4x
√

g(τ̄F+
mnF+mn− τF−mnF−mn), τ =

θ

2π
+

2π i

e2 (A.81)

where g is the metric for the spacetime, the theory and the transformation properties are well-

defined also in the curved spacetime. F = dA and F is decomposed into self-dual and anti-self-

dual pieces, F±mn =
1
2(Fmn± (⋆F)mn) with (⋆F)mn =

1
2εmnpqF pq, also (⋆F)mn(⋆F)mn = FmnFmn.

The S transformation and T transformation act as,

S : τ → τ
′ =−1

τ
,

0 −1

1 0

 ,
∫

∂X
J ·A→

∫
∂X

J ·a− 1
2π

adA′ (A.82)

−S : τ → τ
′ =−1

τ
,

0 −1

1 0

 ,
∫

∂X
J ·A→

∫
∂X

J ·a+ 1
2π

adA′ (A.83)

219



T [k] : τ → τ
′ = τ + k,

1 k

0 1

 ,
∫

∂X
J ·A→

∫
∂X

J ·A− k
4π

AdA (A.84)

The SL(2,Z) matrix acts on the coupling constant τ as,

τ → τ
′ =

aτ +b
cτ +d

,

a b

c d

 ∈ SL(2,Z) (A.85)

The fermion/fermion duality in the derivation of the N f = 2 QED3 self-duality is essential

in connecting the left-hand-side and the right-hand-side (the other procedures, adding the

counterterms and gauging the background gauge fields are the same for both hand sides). Using

the above notation, the fermion/fermion duality and its orientation reversed version is,

T [1]◦ (−S)◦T [2]◦ (−S), τ → 1
2
− 1

2(2τ−1)
(A.86)

S◦T [−2]◦S◦T [−1], τ → 1
2
− 1

2(2τ−1)
. (A.87)

Take the coupling of the bulk theory τ = 1
2 +

2π i
e2 , under the duality τ → 1

2 −
1

2(2τ−1) =
1
2 +

e2i
8π

. If

e→ 0, which is the weak coupling limit, the dual theory has the strong coupling with τ→ 1
2 +0i.

This suggests the fermion/fermion duality is a strong-weak duality, and similar calculation can

be done for the N f = 2 QED3 , which involves the U(1)×U(1) gauge theory in the bulk.

A.3 Connection to the gapless Z2 spin liquid in Ref. [352]

A.3.1 Matrix form of fermion operators

The 2 flavor Nambu spinor can be written in matrix form,

Xi =

 fi↑ − f †
i↓

fi↓ f †
i↑

 (A.88)
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The SU(2) gauge symmetry and physical spin symmetry act as,

SU(2)g : Xi→XiU
†
g,i (A.89)

SU(2)s : Xi→Us,iXi. (A.90)

In majorana basis, one has,

Xi =
1√
2
(χ0 + iχaσ

a). (A.91)

Note that there is a discrepancy in the conventional notation and this, but it is merely relabeling,



f↑

f †
↑

f↓

f †
↓


=



1 i 0 0

1 −i 0 0

0 0 1 i

0 0 1 −i





χ1,1

χ1,2

χ2,1

χ2,2


=



1 0 0 i

1 0 0 −i

0 i −1 0

0 −i −1 0





χ0

χ1

χ2

χ3


(A.92)

the relabeling is, 

χ0

χ1

χ2

χ3


=



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0





χ1,1

χ1,2

χ2,1

χ2,2


. (A.93)

χa→ χa1,a2 .

A.3.2 Hamiltonian and Higgs fields

Define the 4×2 matrix operator,

Xα,v;β =
1√
2
(χ0,v1αβ + iχa,vσ

a
αβ

) (A.94)

Xv =
1√
2
(χ0,vσ

0 + iχa,vσ
a) (A.95)
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with χa,v,a = 0 ∼ 3,v = 1,2. The γ-matrices act on the spinor index m in χm,a,v, and it is left

implicit. The mean-field Lagrangian is,

L = iTr
{

X̄γ
µ

∂µX
}

= iTr
{
(χT

0,vγ
0
σ

0− iχT
a,vγ

0
σ

a)γµ
∂µ(χ0,vσ

0 + iχb,vσ
b)
}

= ∑
a,v

iχT
a,vγ

0
γ

µ
∂µ χa,v

where γµ = {σ2,σ3,σ1} and X̄ = X†γ0.

Let’s now proceed to translate the Lagrangian for the Higgs fields in Ref. [352], the

matrix µ i acts on the v indices, one of the Z2 Higgs field is,

Φ
a
1 Tr{σaX̄µ

z
γ

xX}

=Φ
c
1 Tr
{

σ
c(χT

0,vγ
0
σ

0− iχT
a,vγ

0
σ

a)µz
v,wγ

x(χ0,wσ
0 + iχb,wσ

b)
}

=Φ
c
1i(χ

T
0,vγ

0
γ

x
µ

z
v,wχc,w−χ

T
c,vγ

0
γ

x
µ

z
v,wχ0,w) (A.96)

one can also get the matrices that act on the index a,

c = 1,δi,0δ j,1−δi,1δ j,0 =−i(σ02 +σ
32) (A.97)

c = 2,δi,0δ j,1−δi,1δ j,0 =−i(σ20 +σ
23) (A.98)

c = 3,δi,0δ j,1−δi,1δ j,0 =−i(σ12 +σ
21) (A.99)

To compare with our model, we need to change the basis following Eq. A.93,

c = 1,−iM1 =−i(σ12 +σ
21) (A.100)

c = 2,−iM2 =−i(σ20 +σ
23) (A.101)

c = 3,−iM3 =−i(σ02 +σ
32) (A.102)
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and using the basis χm,v,a1,a2 , therefore, the Higgs field becomes,

Φ
c
1χ

T [(γ0
γ

x)⊗µ
z⊗Mc]χ (A.103)

the other Z2 Higgs field is,

Φ
c
2χ

T [(γ0
γ

y)⊗µ
x⊗Mc]χ (A.104)

and the U(1) Higgs field is,

Φ
c
3χ

T [γ0(γykx + γ
xky)⊗µ

y⊗Mc]χ (A.105)

A.3.3 The Higgs configuration

Ref. [352] proposes the staggered flux state is obtained when ⟨Φ3⟩ ∝ (0,0,δφ) and the

Z2Azz13 state follows from ⟨Φ1⟩ ∝ (γ1− γ2,γ1 + γ2,0) and ⟨Φ2⟩ ∝ (−γ1− γ2,γ1− γ2,0). Recall

that, γµ = {σ2,σ3,σ1} and

c = 1,−iM1 =−i(σ12 +σ
21) (A.106)

c = 2,−iM2 =−i(σ20 +σ
23) (A.107)

c = 3,−iM3 =−i(σ02 +σ
32). (A.108)

When condensing the Higgs fields, it corresponds to generate the mass for the combination of

the fermion bilinears,

Φ
1,2
1 : σ

1312 +σ
1321,σ1320 +σ

1323 (A.109)

Φ
1,2
2 : σ

3112 +σ
3121,σ3120 +σ

3123 (A.110)

Φ
3
3 : σ

1202ky +σ
1232ky,σ

3202kx +σ
3232kx (A.111)
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and the kinetic terms are,

σ
1000kx,σ

3000ky. (A.112)

The only Pauli matrix commutes with the above matrices is σ0230, which is also the symmetry

generator.

Our model

In our model, the kinetic terms are,

σ
100kx,σ

300ky (A.113)

and the pairing terms are

σ
323,σ321,σ123,σ121 (A.114)

and the Pauli matrices that commute with the above are,

σ
012,σ020,σ032 (A.115)

A.3.4 Basis rotation

We can match both theories by examining their symmetry generators. The only matrix

σ0230 that commutes with other matrices in Ref. [352] can be rotated to,

σ
0012, by ei

π

4 σ0222
(A.116)

σ
0020, by ei

π

4 σ0210
(A.117)

σ
0332, by ei

π

4 σ0102
(A.118)
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where the rotation is generated by σ I → e−i
π

4 σ J
σ Iei

π

4 σ J
. The Z2 Higgs fields in Eq. (A.109) will

be rotated to,

Φ
1,2
1 : σ

1312 +σ
1321,σ1102 +σ

1323

Φ
1,2
2 : σ

3112 +σ
3121,−σ

3302 +σ
3123 by ei

π

4 σ0222
(A.119)

Φ
1,2
1 : σ

1102 +σ
1321,σ1320 +σ

1323

Φ
1,2
2 :−σ

3302 +σ
3121,σ3120 +σ

3123 by ei
π

4 σ0210
(A.120)

Φ
1,2
1 :−σ

1210 +σ
1321,−σ

1222 +σ
1323

Φ
1,2
2 : σ

3112−σ
3023,σ3120 +σ

3021 by ei
π

4 σ0102
(A.121)

If one takes the second index as labeling the original theory and the dual theory in our model,

some terms of the Z2 Higgs fields in Ref. [352] correspond to the pairing in the form of

σ121,σ123,σ321,σ323 that appear in both the original theory and the dual theory according to

the Eq. (A.121). For example,

...+χ
T

σ
1321

χ = ...+χ
T
1 σ

121
χ1−χ

T
2 σ

121
χ2 ∼ ...+ψ

⊺
σ

2
γ

0
γ

x
ψ− ψ̃

⊺
σ

2
γ

0
γ

x
ψ̃ (A.122)

...+χ
T

σ
3021

χ = ...+χ
T
1 σ

321
χ1 +χ

T
2 σ

321
χ2 ∼ ...+ψ

⊺
σ

2
γ

0
γ

y
ψ + ψ̃

⊺
σ

2
γ

0
γ

y
ψ̃ (A.123)

where ψ is the original fermion and ψ̃ is the dual fermion, they are corresponding to the pairing

fermion bilinears that appear in the Z2 Higgs fields Eq. (A.121). However, the dual fermion

pairings are not explicit in the self-dual N f = 2 QED3 theory and the linear combinations with

another fermion bilinears are crucial to obtain the Z2 Higgs fields in Ref. [352], for example,

Φ1
1χT (−σ1210 +σ1321)χ in the first line of Eq. (A.121).
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Appendix B

Appendix to Chapter. 2

B.1 de Rham cohomology of Lie groups and homogeneous
spaces

B.1.1 de Rham complex

Let ei denote the basis for the Lie algebra g and θ i for the 1-forms for g∗, which is the

dual space of g. The p-forms on g are the alternating multi-linear maps ω : g× ...×g→ R. For

xa being the basis for space V , the V -valued p-form on g, ω ∈ Λp(g∗,V ) can be written as,

ω = Aα
i1,..,ip

xαθ
i1 ∧ ...∧θ

ip. (B.1)

For example, the Maurer-Cartan 1-forms are Lie algebra valued 1-forms,

θ = θ
AT A ∈ Λ

1(g∗,g). (B.2)

The exterior derivative sends the p-forms to p+1-forms d : Λp(g∗,V )→ Λp+1(g∗,V )

and follows the rule,

dθ
i =−1

2
f i

jkθ
j∧θ

k, dxα = Bβ

αixβ θ
i, (B.3)

where f i
jk is the structure factor for the Lie algebra and Bβ

αi is a certain linear map for the V -space.
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For h⊂ g being a subalgebra of g, the relative cochain is given by,

Λ
p(g∗,h,V ) = {ω ∈ Λ

p(g∗,V )|iy(ω) = 0 and iy(dω) = 0,∀y ∈ h}. (B.4)

where iy is the interior product, in other words, the forms ωs as well as dωs do not contain

θ is from the subalgebra h parts, and the forms are invariant under adjoint action of H. In the

following, we will mainly consider Λp(g∗,R) and Λp(g∗,h,R) which is relevant to the Wess-

Zumino-Witten term for G,G/H and other topological terms in the physical actions, thus, no xα

dependence.

The condition to construct relative cochain implies

Lyω = (diy + iyd)ω = 0 (B.5)

where Ly is the Lie derivative with respect to y, the relative cochain is then given by,

Λ
p(g∗,h,R) = {ω ∈

p∧
(g/h)∗|Lyω = 0,∀y ∈ h}. (B.6)

the Lie derivative action is explicitly expressed in terms of the components of the Maurer-Cartan

1-form,

Lyω
(n) =−

n

∑
i=1

1
n!

ωa1,...,an f b j,y,a jθ
a1 ∧ ...∧θ

b j ∧ ...∧θ
an = 0. (B.7)

The relative cochain can be constructed by first finding the space spanned by
∧p(g/h)∗ and then

using Ly,y ∈ H iteratively to eliminate non-invariant bases.

B.1.2 Cohomology

A p-form ω ∈ Λp(g∗,h,R) is closed, if dω = 0; and exact if it can be expressed by

a (p− 1)-form η by ω = dη . Since d2 = 0 for any differential forms ω , the exact forms are

necessarily closed but the closed forms can be non-exact.
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The cohomology H∗(G,R) and H∗(G/H,R) measures the closed forms not being exact.

Consequently, the p-forms cannot be expressed locally in p−1 dimension by Stokes theorem.

We explicitly calculate the cohomology group using the basis of the general p-form

generated by the exterior product of the 1-form components θ is. For example, the basis for the

2-forms in Λ2(g∗,R) are,

{θ 1∧θ
2,θ 1∧θ

3, ...,θ dim(G)−1∧θ
dim(G)}. (B.8)

The exterior derivative can therefore be expressed as a matrix d̃ab,

d{(θ i)∧p}a = d̃p
ab{(θ

i)∧(p+1)}b (B.9)

The matrix d̃p
ab is a

(
dim(G)

p

)
×
(

dim(G)
p+1

)
matrix. The subspace of the closed p-forms Cp is the

null-space or the kernel of the matrix (d̃p
ab)

T ,

subspace of the closed p-forms: Cp = ker(d̃p
ab)

⊺ (B.10)

The subspace of the exact p-forms Zp is the the orthogonal complement of the kernel of (d̃p−1
ab ),

subspace of the exact p-forms: Zp = (ker d̃p−1
ab )⊥ (B.11)

This can be obtained by Gaussian elimination of the matrix d̃p−1
ab . Therefore, the cohomology is

the quotient,

H p =
ker(d̃p

ab)
⊺

(ker d̃p−1
ab )⊥

(B.12)

Algorithmically, we denoted the space of closed p-form as Cp and exact p-form as Zp, they are

both matrices, and the cohomology is,

[kerCp · (Zp)⊺ ·Zp · (Cp)⊺] ·Cp (B.13)
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For the relative cochain, one needs to further impose the constraint in Eq. (B.6). This constraint

corresponds to dropping the basis which contains indices corresponding to that in h and invariant

under the adjoint transformation of H. One can start with the basis constructed by wedge product

of θ as, where a ∈ g/h, and then use the Lie derivative for each h ∈ H to eliminate non-zero

bases.

B.1.3 Examples

Using the de Rham cohomology, we are able to calculate the following examples. And

we compare our results with the general results which are cited from [274] if not citing others.

SU(4): Our calculation gives,

H3(SU(4),R) = R, H5(SU(4),R) = R. (B.14)

In general, H∗(SU(n)) = Λ(e3,e5, ...,e2n−1), where ei ∈ H i(SU(n),R), the cohomology ring is

generated by wedge product.

SO(6)/(SO(4)× SO(2)), dim = 15−7 = 8 even dimensional: Our calculation gives,

H2
(

SO(6)
SO(4)×SO(2)

,R

)
= R, H4

(
SO(6)

SO(4)×SO(2)
,R

)
= R⊕R. (B.15)

In general,

H∗(SO(2n+2)/(SO(2n)×SO(2))) = (1+ t2n)(1+ t2 + t4 + ...+ t2n) (B.16)

For n = 2,H∗(SO(6)/(SO(4)×SO(2))) = 1+ t2 + 2t4 + t6 + t8, where tn corresponds to the

degree n generator, 2t4 means 2 independent degree 4 generators. In general, the Poincare

229



polynomial for H∗( SO(2n)
SO(2k)×SO(2n−2k)) is in [167],

H∗( SO(8)
SO(4)×SO(4)) 1+3t4 +4t8 + ...

H∗( SO(10)
SO(4)×SO(6)) 1+2t4 + t6 +3t8...

(B.17)

also,

H∗( SO(8)
SO(2)4 ) 1+4t2 +9t4 + ...

H∗(SO(10)
SO(2)5 ) 1+5t2 +14t4...

(B.18)

Our explicit calculation of cohomology up to 4 degree agrees with the general results.

SO(6)/U(3): Our calculation gives,

H2
(
SO(6)
U(3)

,R

)
= R, H4

(
SO(6)
U(3)

,R

)
= R. (B.19)

In general, H∗(SO(2n)/U(n)) = ∆(e2,e4, ...,e2n−2).

Our calculation of other cohomology of cosets with G = SO,

SO(8)
SO(4)×SO(4) SO(8)/U(4) SO(10)

SO(4)×SO(6) SO(10)/U(5)

H2(G/H,R) ∅(Z2) R ∅(Z2) R
(B.20)

The torsion Z2 of H2( SO(8)
SO(4)×SO(4)) cannot be detected by de Rham cohomology.

Cohomology of G/K

The cohomology of G/K is relevant to the symmetry defects in spontaneously symmetry-

breaking phases. The Lie group K is generated by the Lie algebra k = h1 ∩ h2, and our

cohomology calculation gives,

SO(6)
SOSO∩U

SO(8)
SOSO∩U

SO(10)
SOSO∩U

H2(G/H,R) R⊕R R⊕R R⊕R
(B.21)
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where R⊕R in H2(SO(6)/(SOSO∩U)) are the same generators of H2(G/H1),H2(G/H2). For

SO(8),SO(10), one is the same generator of SO/U, another is the new from both SO/U and

SO/SO parts.

Other cosets

SU(4)/SO(4): Our calculation shows,

H4
(

SU(4)
SO(4)

,R

)
= R, H5

(
SU(4)
SO(4)

,R

)
= R (B.22)

In general,

H∗
(

SU(n)
SO(n)

,R

)
=


Λ(e5, ...,e4m+1) n = 2m+1

Λ(e5, ...,e4m−2)⊗∆(e2m) n = 2m
(B.23)

SO(6)/(SO(3)× SO(3)), dim = 15−6 = 9 odd dimensional: Our calculation shows,

H4
(

SO(6)
SO(3)×SO(3)

,R

)
= R, H5

(
SO(6)

SO(3)×SO(3)
,R

)
= R (B.24)

B.2 Cartan homotopy formula

B.2.1 Review of Cartan homotopy method

If two connections are of the same bundle, one can consider the interpolation [286],

At = A0 + t(A1−A0), Ft ≡ dAt +A 2
t (B.25)

Another useful formula,

DA η = dη +[A ,η ], (B.26)

[η(p),ω(q)] = η
(p)∧ω

(q)− (−1)pq
ω

(q)∧η
(p) (B.27)
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Define the anti-deriviative operator ℓt ,

ℓtAt = 0, ℓtFt = δ t(A1−A0), (B.28)

ℓt(η
(p)

ω
(q)) = (ℓtη

(p))ω(q)+(−1)p
η
(p)(ℓtω

(q)) (B.29)

we have,

(dℓt + ℓtd)At = δ t
∂At

∂ t
(B.30)

(dℓt + ℓtd)Ft = δ t
∂Ft

∂ t
(B.31)

This shows that for any polynomial S(A ,F ), we have

(dℓt + ℓtd)S(At ,Ft) = δ t
∂

∂ t
S(At ,Ft) (B.32)

this yields,

S(A1,F1)−S(A0,F0) = (dk01 + k01d)S(At ,Ft) (B.33)

where

k01S(At ,Ft)≡
∫ 1

0
δ tℓtS(At ,Ft) (B.34)

B.2.2 Details of gauged WZW term

We would like to use the Carton homotopy method to derive the additional exact form in

the gauged WZW term. As discussed around Eq. (2.33), the general gauged WZW for symmetry

breaking of G→ H has the form,

¯
Γ
(d+1)(U,A,Ah)≡ CS(AU ,AU

h )−CS(A,Ah) = Γ
(d+1)(U)+dα

(d)(U,A,Ah). (B.35)

232



For h=∅, the gauged WZW term is given by the Chern-Simons form,

¯
Γ
(d+1)(U,A)≡ CS(AU)−CS(A) = Γ

(d+1)(U)+dα
(d)(U,A). (B.36)

For presentation simplicity, we focus on d = 2 and first calculate the case when h = ∅, then

h ̸=∅.

The case when h=∅

Consider the path of interpolation, At = tU−1AU +U−1dU = tU−1AU +θ , such that

A1 = AU ,A0 = θ . The difference between Chern-Simons forms is then,

CS(3)(AU)−CS(3)(θ) = d
∫

t
ℓtCS

(3)(At)+
∫

t
ℓtdCS(3)(At). (B.37)

The last term on the right-hand side (RHS) gives CS(3)(A), while the first term in the RHS gives,

d
∫

t
ℓt(AtFt−

1
3

A3
t ) =−d

∫
t
(AtA) = d(−dUU−1A), (B.38)

since ℓtFt =U−1AU, ℓtAt = 0. Therefore, α(2) =−dUU−1A. In short,

CS(3)(AU)−CS(3)(θ) = CS(3)(A)−d(dUU−1A). (B.39)

Hence, the gauged WZW term in d = 2 is,

¯
Γ
(3)(U,A) = Γ

(3)
G (U)+d(dUU−1A), (B.40)

where Γ
(3)
G (U) is given in Eq. (2.49). This indeed shows that the gauge field only supports on

d-dimensional manifold.
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The case when h ̸=∅

Consider the path of interpolation, At = tU−1AU +θ ,Ah,t = tU−1AhU +V , the difference

of the relative Chern-Simons form is,

CS(3)(AU ,AU
h )−CS(3)(θ ,V ) = d

∫
t
ℓtCS

(3)(At ,Ah,t)+
∫

t
ℓtdCS(3)(At ,Ah,t). (B.41)

Similarly, the last term in the RHS gives CS(3)(A,Ah), the first term in RHS is,

d
∫

t
ℓt tr

(
(At−Ah,t)Ft +(At−Ah,t)Fh,t + ...

)
(B.42)

=d
∫

t
tr
(
tU−1AfU +φ

)
U−1(A+Ah)U (B.43)

=d tr
(
UφU−1(A+Ah)

)
(B.44)

where ℓtFt,i = Ai, ℓtAi = 0, and ... is the polynomial A2
t −AtA2

h,t−
1
3(A

3
t −A3

h,t) which vanishes

under ℓt . Then the gauged WZW term is given by,

¯
Γ
(3)(U,A,Ah) = CS(AU ,AU

h )−CS(A,Ah) = Γ
(3)(U)+d tr

(
UφU−1(A+Ah)

)
(B.45)

where Γ(3)(U) is given in Eq. (2.47).
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Appendix C

Appendix to Chapter. 3

C.1 Emergent U(1) Symmetries in the (1+1)D Two-Band
Model

Start from the definition of charge U(1) (parameterized by a periodic angle φ ∈ [0,2π))

and lattice translation Z (parameterized by an integer n ∈ Z) symmetries as defined in Eq. (3.7)

U(1) : ciA→ eiqAφ ciA, ciB→ eiqBφ ciB;

Z : ciA→ c(i+n)A, ciB→ c(i+n)B.

(C.1)

Follow the definition Eq. (3.9) of the fermion operators in the momentum space

ckA = ∑
i

ciAe−iki, ckB = ∑
i

ciBe−iki, (C.2)

where the wave number k ∈ [−π,π) is a dimensionless periodic variable defined in the first

Brillouin zone. (Note: the dimensionful momentum p should be related to the dimensionless wave

number k by p = ℏk/a with a being the lattice constant and the site coordinate x ∈ R is related to

the site index i ∈ Z by x = ai, such that the Fourier factor e−ipx/ℏ = e−iki is consistent with the

quantum mechanics convention.) It is straightforward to show that the U(1)×Z symmetry acts
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in the momentum space as

U(1) : ckA→ eiqAφ ckA,ckB→ eiqBφ ckB;

Z : ckA→ eiknckA,ckB→ eiknckB.

(C.3)

Apply these transformations to the low-energy fermion near the four Fermi points. According to

Eq. (3.12)

cAR = c(3kF )A,

cBR = c(−kF )B,

cBL = c(kF )B,

cAL = c(−3kF )A,

(C.4)

Eq. (C.3) becomes

U(1) :



cAR → eiqAφ cAR,

cBR → eiqBφ cBR,

cBL → eiqBφ cBL,

cAL → eiqAφ cAL;

Z :



cAR → e3ikF ncAR,

cBR → e−ikF ncBR,

cBL → eikF ncBL,

cAL → e−3ikF ncAL.

(C.5)

Because kF = |νB|π is almost always (i.e., with probability 1) a irrational multiple of π (because

|νB| is almost always an irrational number without fine tuning), kFn mod 2π can approach any

angle in [0,2π) (with 2π periodicity) as close as we want (given n ∈ Z). This allows us to define
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two angular variables φV and φA, both are periodic in [0,2π),

φV = φ , φA = kFn mod 2π, (C.6)

then Eq. (C.5) can be compactly written as

UV symmetry⇒ IR symmetry

U(1)⇒ U(1)V : ca→ eiq
V
a φV ca,

Z⇒ U(1)A : ca→ eiq
A
a φAca,

(C.7)

for a = AR,BR,BL,AL enumerating over the four Fermi point labels, together with the charge

vectors (given that qA = 1 and qB = 3):

qqqV =



qA

qB

qB

qA


=



1

3

3

1


, qqqA =



3

−1

1

−3


. (C.8)

Therefore, the global charge U(1) symmetry is simply reinterpreted as the U(1)V vector symmetry,

and the translation symmetry (described by a non-compact Z group) in the UV becomes an

emergent U(1)A axial symmetry (described by a compact U(1) group) in the IR. The symmetry

transformation in Eq. (C.7) precisely matches Eq. (3.14) in the main text with the correct charge

assignment as listed in Tab. 3.1.

Recombining the charge vectors of U(1)V and U(1)A, we can define two alternative

emergent U(1) symmetries, denoted as U(1) 3V±A
2

with the charge vectors

qqq
3V±A

2 =
1
2
(3qqqV ±qqqA), (C.9)

as their names implied. More explicitly, the charge vectors match the chiral charge assignements
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for the 3-4-5-0 fermions:

qqq
3V+A

2 =



3

4

5

0


, qqq

3V−A
2 =



0

5

4

3


. (C.10)

The fermions are expected to transform under U(1) 3V±A
2

as (parameterized by the periodic angles

φ± ∈ [0,2π))

U(1) 3V±A
2

: ca→ ei
1
2 (3qV

a±qA
a )φ±ca. (C.11)

This can be viewed as the combined transformation of U(1)V and U(1)A with the vector rotation

angle φV and the axial rotation angle φA given by

φV =
3
2

φ±, φA =±1
2

φ±, (C.12)

as can be verified by comparing Eq. (C.11) with Eq. (C.7). Now we can connect these rotation

angle back to the original U(1)×Z symmetry of the lattice fermions using the relation Eq. (C.6),

φ =
3
2

φ±, ±1
2

φ± = kFn mod 2π. (C.13)

Eliminate φ± from the equations, we obtain the relation

φ =±3kFn mod 2π, (C.14)

for the U(1) 3V±A
2

symmetries. Therefore, in order to reproduce the IR emergent U(1) 3V±A
2

symmetries, the corresponding UV symmetries (at the lattice level) must be such implemented

that every n-step translation should be followed by a charge U(1) rotation with the rotation angle
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φ =±3kFn. So we establish the following correspondence between the IR and UV symmetries

IR symmetry⇒ UV symmetry

U(1) 3V±A
2
⇒ Z(3V±A

2 ) :

 ciA→ e±3iqAkF nc(i+n)A,

ciB→ e±3iqBkF nc(i+n)B.

(C.15)

Here the compact U(1) symmetries in the IR get mapped to the non-compact symmetries Z in

the UV, because the UV symmetries are parameterized by the integer variable n ∈ Z. Given that

qA = 1 and qB = 3, Eq. (C.15) becomes Eq. (3.15), as claimed in the main text. Therefore the

3-4-5-0 chiral fermion model is indeed realized in by the (1+1)D two-band lattice model at low

energy.

C.2 Wang-Wen Interaction

In the bonsonization language, the Wang-Wen interaction is described by

Lint = ∑
α=1,2

gα cos
(
l⊺αϕ
)

(C.16)

with ϕ = (ϕAR,ϕBR,ϕBL,ϕAL)
⊺ and the interaction vectors given by

l1 =
[ 1
−2
1
2

]
, l2 =

[ 2
1
−2
1

]
. (C.17)

Mapping back to the chiral fermions by the correspondence ca ∼ : eiϕa :, the interaction reads

Hint =
g1

2
(cARcBL)(c

†
BRcAL)

2 +h.c.

+
g2

2
(cBRcAL)(cARc†

BL)
2 +h.c..

(C.18)
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According to Eq. (3.12) and use the inverse Fourier transformation,

cAR = c(3kF )A = ∑
i

ciAe3ikF i,

cBR = c(−kF )B = ∑
i

ciBe−ikF i,

cBL = c(kF )B = ∑
i

ciBeikF i,

cAL = c(−3kF )A = ∑
i

ciAe−3ikF i.

(C.19)

Plugging Eq. (C.19) into Eq. (C.18), the interaction becomes

Hint = ∑
i1,··· ,i6

gi1···i6(c
†
i1Bci2A)(ci3Bci4A)(c

†
i5Bci6A)+h.c., (C.20)

with

gi1···i6 =
g1

2
eikF (i1−3i2+i3+3i4+i5−3i6)

+
g2

2
eikF (−i1+3i2−i3−3i4−i5+3i6).

(C.21)

Notice that under lattice reflection symmetry Z2 : ciA→ c(−i)A,ciB→ c(−i)B, g1 and g2 maps to

each other. To simplify, we can impose the reflection symmetry and requires g1 = g2 = g, then

the coupling coefficient is

gi1···i6 = gcos
(
kF(i1−3i2 + i3 +3i4 + i5−3i6)

)
. (C.22)

The dominant s-wave interaction is given by

i1−3i2 + i3 +3i4 + i5−3i6 = 0, (C.23)
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such that gi1···i6 = g is uniform. We seek a local interaction that has minimal span on the lattice.

The optimal solution of Eq. (C.23) is given by

i1 = i2 = i−1, i3 = i4 = i, i5 = i6 = i+1, (C.24)

for any choice of i. With this solution Eq. (C.24), Eq. (C.20) reduces to

Hint = g∑
i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A +h.c.. (C.25)

which is the SMG interaction Eq. (3.16) proposed in the main text.

C.3 Full Renormalization Group Equations

We start with the interaction Hint, CF

Hint, CF = grs ∑
α

ε
i jkc†

Bα
cAiαcA jαcAkα

+grt ∑
α ̸=β

ε
i jkc†

Bα
cAiαcA jβ cAkβ +h.c. (C.26)

Under RG, the following density-density and exchange interactions will be generated

Hint, AA = gas ∑
α,st

nAsαnAtα +gat ∑
α ̸=β ,st

nAsαnAtβ

+gae ∑
α ̸=β ,st

c†
Asα

cAsβ c†
Atβ

cAtα +(As↔ At)+h.c. (C.27)

and

Hint, AB = gbs ∑
α,s

nBαnAsα +gbt ∑
α ̸=β ,s

nBαnAsβ

+gbe ∑
α ̸=β ,s

c†
Bα

cBβ c†
Asβ

cAsα +(As↔ B)+h.c. (C.28)
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There is an additional density-density interaction that will correct Hint, AA,Hint, AB,

Hint, BB = gbb ∑
αβ

nBαnBβ − c†
Bα

cBβ c†
Bβ

cBα . (C.29)

Putting all interactions together, the complete RG equations are

dgbb

dℓ
= 4d0dBBg2

bb +3d0g2
be

dgbs

dℓ
=−2dABg2

bs +
9g2

rs
2

+g2
rt

dgbt

dℓ
= 2d0dABg2

bt

dgbe

dℓ
=−6d0gaegbe +2d0gatgbe +4d0dBBgbbgbe +3grsgrt +

g2
rt

2
dgas

dℓ
=−2g2

as

dgat

dℓ
= 2d0g2

at−d0dABg2
rt

dgae

dℓ
=−d0dABg2

rt +4d0gaegat−6d0g2
ae−2d0dBBg2

be

dgrs

dℓ
=−6gasgrs

dgrt

dℓ
= 4d0dABgbtgrt−2gasgrt

where dAB = dχpp,AB(000)/dℓ,dBB = dχpp,BB(000)/dℓ. These ratios depend on the energies of A

and B-type fermions near the VHSs. The two types of fermions have similar band structures,

which can be approximated as EA,B
kkk = εA,B f (kkk). The ratios are then given by dAB =

2|εA|
|εA|+|εB|

and dBB =
|εA|
|εB| . If A and B-type fermions have the same band structure, then dAB = dBB = 1.
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Appendix D

Appendix to Chapter. 4

D.1 Cluster Perturbation Theory

Here we review the details of cluster perturbation theory (CPT) originally developed in

[345]. Denote the superlattice lattice points by RRR, then the position of any original lattice point

would be given by RRR+ rrr, where rrr is the relative position of the lattice point to the location RRR

of the cluster containing that particular lattice point. For clusters of size L, the generic Green’s

function in real space can be denoted by GRRR,RRR′
i, j , with i, j = 1, ...,L, where the time-dependence is

implicitly assumed and same goes for the frequency-dependence in Fourier space. Due to the

translation invariance of the clusters on the superlattice, the real space Green’s function can be

firstly partially Fourier-transformed to give,

GRRR,RRR′
i, j =

1
N ∑

qqq
G(qqq)i jeiqqq·(RRR−RRR′), (D.1)

where the qqq-summation is over the Brillouin zone (BZ) of the superlattice and N is the number

of clusters on the superlattice, which goes to infinity in the thermodynamic limit. In contrast

to the translation invariance of the (RRR,RRR′)-part of GRRR,RRR′
i, j , or equivalently it only depends on

the difference RRR−RRR′ as can be seen in Eq. (D.1), the (i, j)-part of the Green’s function loses

translation invariance due to the introduction of clusters. This is so because correlation between

two points within the same cluster is not manifestly the same with the correlation between
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another pair of equally separated points across clusters. Therefore, it takes two lattice momenta

to fully characterize GRRR,RRR′
i, j in Fourier space. More precisely, we have,

G(kkk,kkk′) =
1

NL ∑
RRR,RRR′

∑
i, j

GRRR,RRR′
i, j eikkk·(RRR+rrri)−ikkk′·(RRR′+rrr j). (D.2)

Then we can plug Eq. (D.1) into Eq. (D.2) and integrate out the superlattice lattice vectors RRR,RRR′

to obtain the following,

G(kkk,kkk′) =
1
L ∑

i, j
∑
qqq

G(qqq)i jδ̃kkk,qqqδ̃kkk′,qqqei(kkk·rrri−kkk′·rrr j), (D.3)

where the δ̃ -function denotes the fact that the two wavevectors are equivalent only up to a

superlattice reciprocal lattice vector QQQ because QQQ ·RRR = 2πZ in the phase factor. More precisely,

we have

δ̃kkk,qqq =
L

∑
s=1

δkkk,qqq+QQQs
, (D.4)

where QQQs with s = 1, ...,L are the L inequivalent wave vectors in the reciprocal lattice of the

original lattice (see the 1d case shown in Fig. D.1). Then we can perform the qqq-summation in

Eq. (D.3) to have,

G(kkk,kkk′) =
1
L ∑

i, j
∑
s,s′

G(kkk−QQQs)i jδkkk′−kkk,QQQs−QQQs′
ei(kkk·rrri−kkk′·rrr j)

= ∑
i, j

∑
∆QQQ

G(kkk)i jδkkk′−kkk,∆QQQei(kkk·rrri−kkk′·rrr j),

(D.5)

where we have used the fact that G(qqq)i j is invariant under the shift by a superlattice reciprocal

lattice vector QQQs.

The translation invariant approximation for the Green’s function on the original lattice is
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K
Q

Original reciprocal space
Superlattice reciprocal space

Figure D.1. Reciprocal lattice in 1d for a 4-site cluster. K labels the reciprocal lattice vector for
the original lattice and Q labels the reciprocal lattice vector for the superlattice. More precisely,
Ks =

2π

a s and Qs =
2π

La s, where a is the lattice constant of the original lattice, L = 4 here and
s ∈ Z .

obtained when ∆QQQ = 0, i.e. kkk = kkk′. Therefore, the Green’s function becomes,

G(kkk) = ∑
i, j

G(kkk)i jeikkk·(rrri−rrr j). (D.6)

Now we just need to calculate Gi, j(kkk) using cluster perturbation. The idea is to treat

hopping between clusters as perturbation when consider strong on-site interactions. In particular,

Ĥ = Ĥ0 +V̂, (D.7)

where Ĥ0 contains intra-cluster terms and V̂ contains inter-cluster hopping. Considering nearest-

neighbor hopping between the square clusters used in the main text. The cluster construction is

reproduced in Fig. D.2 with the 4 sites in each cluster labeled by 1,2,3,4. The hopping matrix is

given by (setting lattice constant a = 1)

V RRR,RRR′
i, j =− tδRRR,RRR′−2x̂(δi,2δ j,1 +δi,3δ j,4)

− tδRRR,RRR′+2x̂(δi,1δ j,2 +δi,4δ j,3)

− tδRRR,RRR′−2ŷ(δi,1δ j,4 +δi,2δ j,3)

− tδRRR,RRR′+2ŷ(δi,3δ j,2 +δi,4δ j,1)

(D.8)
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R

R+2y

R+2xR-2x

R-2y

1 2

34

Figure D.2. Cluster diagram showing the hopping between neighboring clusters (dashed line).
The four sites inside each cluster are numbered as shown.

Fourier transforming V RRR,RRR′
i, j into the superlattice reciprocal space, we have

Vi, j(qqq) =−tei2qx(δi,2δ j,1 +δi,3δ j,4)

− te−i2qx(δi,1δ j,2 +δi,4δ j,3)

− tei2qy(δi,1δ j,4 +δi,2δ j,3)

− te−i2qy(δi,3δ j,2 +δi,4δ j,1)

=−t



0 e−i2qqqx 0 ei2qqqy

ei2qqqx 0 ei2qqqy 0

0 e−i2qqqy 0 ei2qqqx

e−i2qqqy 0 e−i2qqqx 0


i, j

,

(D.9)

which is the form presented in Eq. (4.17) in the main text. Then the interacting Green’s function
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is given by

Ĝ(qqq) =
1

ω− Ĥ
=

1
ω− Ĥ0−V̂ (qqq)

=
Ĝ0

1−V̂ (qqq)Ĝ0
,

(D.10)

where Ĝ0 ≡ (ω− Ĥ0)
−1 is the intra-cluster Green’s function that can be easily obtained by exact

diagonalization as long as the cluster size is not too big. The obtained G(qqq)i j can now be plugged

into Eq. (D.6) to calculate the CPT Green’s function for the interacting system.
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Appendix E

Appendix to Chapter. 5

E.1 Details on solving the algebra object in Rep(H8)

The fusion and splitting junctions satisfy the conditions in Eq. (5.34). The first two

conditions can fix the form of the junctions and the last one fixes the normalization. From the

first condition in Eq. (5.34), we have

ψ(g,h)ψ(gh,k) = ψ(g,hk)ψ(h,k), (E.1)

L(h)L(g) = ψ(g,h)L(gh), R(g)R(h) = ψ(g,h)R(gh), (E.2)

L(g)R(h) = χ(g,h)R(h)L(g), (E.3)

W (gh)R(h)⊺ = ψ(g,h)W (g), L(g)W (gh) = ψ(g,h)W (h), (E.4)

R(g)W (h) = χ(g,h)W (h)L(g)⊺, (E.5)

[W (g)]ab[L(g)]cd = ∑
h

1
2

χ(g,h)−1[W (h)]bc[R(h)]ad, (E.6)

where L(g),R(g),W (g) are 2×2 matrices and their multiplication is matrix multiplication. χ

is the bicharacter in Rep(H8). Eq. (E.1) states that ψ(g,h) is a 2-cocycle of Z2×Z2, and is

classified by H2(Z2×Z2,U(1))=Z2. Only the non-trivial one will solve the following equations.

Eq. (E.2) states L(g),R(g) furnish the projective representation of Z2×Z2, and W (g) can be

solved accordingly. The splitting junctions can be solved similarly. The junctions are normalized

such that the last condition in Eq. (5.34) is satisfied.

248



E.2 More on Virasoro primaries of Ising2

Here we work out the spectrum of c = 1 Virasoro primary operators at the Ising2 point.

To do so, we begin from the R =
√

2 point on the circle branch. The conformal weights of the

vertex operators Vn,w are

hn,w =
1
4

(
n√
2
+w
√

2
)2

=
1
8
(n+2w)2 ,

h̄n,w =
1
4

(
n√
2
−w
√

2
)2

=
1
8
(n−2w)2 .

(E.7)

When n = 2w ̸= 0, there are null states since h̄2w,w = 0, and the Verma module corresponding to

the vertex operator V2w,w breaks into infinitely many irreducible c = 1 Virasoro modules. We

denote the corresponding c = 1 Virasoro primaries as Aw,m, where w∈ Z\{0} and m∈ Z≥0. The

conformal weights of Aw,m are (h, h̄) = (2w2,m2). Similarly, when n =−2w ̸= 0, we have null

states since h−2w,w = 0, and the Verma module decomposes into infinitely many irreducible c = 1

Virasoro modules. The corresponding Virasoro primaries are denoted as Bw,ℓ with w ∈ Z\{0}

and ℓ ∈ Z≥0, whose conformal weights are (h, h̄) = (ℓ2,2w2). Finally, the (n,w) = (0,0) module

decomposes into the irreducible c = 1 Virasoro modules with the primary operators denoted as

Cℓ,m with ℓ,m ∈ Z≥0, whose conformal weights are (h, h̄) = (ℓ2,m2).

To summarize, the c = 1 Virasoro primaries at R =
√

2 on the circle branch are

Vn,w , n,w ∈ Z ,n ̸=±2w , (h, h̄) = (
1
8
(n+2w)2,

1
8
(n−2w)2) ,

Aw,m , w ∈ Z\{0} ,m ∈ Z≥0 , (h, h̄) = (2w2,m2) ,

Bw,ℓ , w ∈ Z\{0} , ℓ ∈ Z≥0 , (h, h̄) = (ℓ2,2w2) ,

Cℓ,m , ℓ,m ∈ Z≥0 , (h, h̄) = (ℓ2,m2) .

(E.8)

Correspondingly, the torus partition function can be decomposed into the c = 1 Virasoro
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characters:

Zcirc
R=
√

2(τ) =
1

|η(τ)|2 ∑
n,w∈Z

q
1
8 (n+2w)2

q̄
1
8 (n−2w)2

=
1

|η(τ)|2 ∑
n,w∈Z
n̸=±2w

q
1
8 (n+2w)2

q̄
1
8 (n−2w)2

+
1

|η(τ)|2 ∑
w∈Z\{0}
m∈Z≥0

q2w2
(

q̄m2
− q̄(m+1)2

)

+
1

|η(τ)|2 ∑
w∈Z\{0}
ℓ∈Z≥0

(
qℓ

2
−q(ℓ+1)2

)
q̄2w2

+
1

|η(τ)|2 ∑
ℓ,m∈Z≥0

(
qℓ

2
−q(ℓ+1)2

)(
q̄m2
− q̄(m+1)2

)
.

(E.9)

The ZC
2 charge conjugation symmetry acts on the Virasoro primaries (E.8) as

ZC
2 : Vn,w→V−n,−w ,

Aw,m→ (−1)mA−w,m ,

Bw,ℓ→ (−1)ℓB−w,ℓ ,

Cℓ,m→ (−1)ℓ+mCℓ,m .

(E.10)

The ZC
2 twisted sector spectrum can be read off from the twisted partition function (which

actually does not depend on the value of R)

Zcirc
R=
√

2[η ,1,η ](τ) =
1

|η(τ)|2 ∑
ℓ,m∈Z≥0

2q
1
4 (ℓ+

1
2 )

2
q̄

1
4 (m+ 1

2 )
2
. (E.11)

We see that the twisted sector operators are doubly-degenerate, which is a consequence of the

fact that the Zm
2 ×Zw

2 subgroup of the momentum and winding symmetries acts projectively on

the ZC
2 twisted sector due to a mixed anomaly between the three symmetries. We denote the

Virasoro primaries in the ZC
2 twisted sector as

D(i)
ℓ,m , ℓ,m ∈ Z≥0 , i = 1,2 , (h, h̄) = (

1
4
(ℓ+

1
2
)2,

1
4
(m+

1
2
)2) . (E.12)
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The ZC
2 charge of a twisted sector operator is given by 2(h− h̄) = 1

2(ℓ−m)(ℓ+m+1). Namely,

ZC
2 : D(i)

ℓ,m→ (−1)
1
2 (ℓ−m)(ℓ+m+1)D(i)

ℓ,m . (E.13)

We are ready to write down all the c = 1 Virasoro primaries at the Ising2 point, namely

at R =
√

2 on the orbifold branch. These are the operators on the circle branch which are ZC
2

invariant:

V+
n,w ≡

1√
2
(Vn,w +V−n,−w) , n,w ∈ Z ,n ̸=±2w , (h, h̄) = (

1
8
(n+2w)2,

1
8
(n−2w)2) ,

A+
w,m ≡

1√
2
(Aw,m +(−1)mA−w,m) , w ∈ Z>0 ,m ∈ Z≥0 , (h, h̄) = (2w2,m2) ,

B+
w,ℓ ≡

1√
2
(Bw,ℓ+(−1)ℓB−w,ℓ) , w ∈ Z>0 , ℓ ∈ Z≥0 , (h, h̄) = (ℓ2,2w2) ,

Cℓ,m , ℓ,m ∈ Z≥0 , ℓ+m ∈ 2Z , (h, h̄) = (ℓ2,m2) ,

D(i)
ℓ,m , ℓ,m ∈ Z≥0 , i = 1,2 ,

1
2
(ℓ−m)(ℓ+m+1) ∈ 2Z , (h, h̄) = (

1
4
(ℓ+

1
2
)2,

1
4
(m+

1
2
)2) ,

(E.14)

modulo the identification V+
n,w =V+

−n,−w.

E.3 Calculation details for E
(i,κD ,εD )
Z2

Rep(H8)

We provide some details on the pentagon equations for E
(i,κD ,εD )
Z2

Rep(H8) and lasso

actions in the defect Hilbert space of D .

E.3.1 Gauge fixing

The fusion vertices generally can be transformed by unitary matrices, and the F-symbols

related by these transformations lead to equivalent fusion categories. For the purpose of

classifying inequivalent fusion categories, this introduces tremendous redundancies when solving

the pentagon equations. We will follow the physics convention to refer these redundancies as

gauge redundancies in this context.
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The finite number of inequivalent solutions can be obtained by gauge fixing. To solve the

pentagon equations for E
(i,κD ,εD )
Z2

Rep(H8), the fusion vertices involving the new defect D need

to be gauge fixed. In particular, we set F-symbols with at least one of a,b,c = 1 to be 1, and

also fix the expressions for

[FabD
D ](ab,1,1),(D ,1,1), [FaN D

D ](N ,1,µ),(D ,ν ,1), [FDab
D ](D ,1,1),(ab,1,1), [FDN a

D ](D ,µ,1),(N ,1,ν),

[FDDa
b ](ba−1,1,1),(D ,1,1), [FDDa

N ](N ,µ,1),(D ,1,ν).

(E.15)

There will be residual gauge transformations which will further eliminate gauge-equivalent

solutions. The explicit expressions for the choices and gauge-inequivalent solutions are listed in

Tab. 5.3 and Tab. 5.4.

E.3.2 General lasso actions in the defect Hilbert space of D

In this section, we derive the composition of general lasso actions in the defect Hilbert

space of D . We define the notation,

D
a

µ
ν b or

D

O

µ

ν

a

b
≡U [a,b][µ,ν ]≡

D

O

µ

ν

a

a
b , (E.16)
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where a,b ∈ E
(i,κD ,εD )
Z2

Rep(H8). We only keep the start and end points of the a line for simplicity.

The multiplication is given by,

D

O

c

c
d

ρ

σ

a

a
b

µ

ν

D = ∑
f ′,σ ′,µ ′

Fcda
b,(D ,σ ,µ)( f ′,σ ′,µ ′)

D

O

c

a
d
ρ

σ ′

c

a
b
µ ′

ν

f ′

= ∑
f ′,µ ′,ν ′

f ′′,µ ′′,ν ′′
e,α,β

Fcda
b,(D ,σ ,µ)( f ′,σ ′,µ ′)F

Dca
f ′,(d,ρ,µ ′),( f ′′,µ ′′,ν ′′)(F

ac f ′
D )−1

(b,ν ′,ν)(e,α,β )

D

O

α µ ′′

β

ν ′′

f ′′e

c
a

f ′

= ∑
f ′,µ ′,ν ′,ν ′′

e,α,β

√
dadc

de
Fcda

b,(D ,σ ,µ)( f ′,σ ′,µ ′)F
Dca
f ′,(d,ρ,µ ′),(e,α,ν ′′)(F

ac f ′
D )−1

(b,ν ′,ν)(e,α,β )

D

O

ν ′′

β

e

e
f ′
.

(E.17)
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[88] Yichul Choi, Clay Córdova, Po-Shen Hsin, Ho Tat Lam, and Shu-Heng Shao.
Noninvertible duality defects in 3 +1 dimensions. Phys. Rev. D, 105(12):125016, June
2022.

[89] Yichul Choi, Da-Chuan Lu, and Zhengdi Sun. Self-duality under gauging a non-invertible
symmetry. Journal of High Energy Physics, 2024(1):142, January 2024.

260



[90] Yichul Choi, Brandon C. Rayhaun, Yaman Sanghavi, and Shu-Heng Shao. Comments on
Boundaries, Anomalies, and Non-Invertible Symmetries. 5 2023.

[91] Chong-Sun Chu, Pei-Ming Ho, and Bruno Zumino. Non-abelian anomalies and effective
actions for a homogeneous space g/h. Nuclear Physics B, 475(1-2):484–504, 1996.

[92] Stephen-wei Chung, Masafumi Fukuma, and Alfred Shapere. Structure of topological
lattice field theories in three dimensions. International Journal of Modern Physics A,
9(08):1305–1360, 1994.

[93] TE Clark and ST Love. The chiral anomaly and goldstone-wilczek current in even
dimensions. Physics Letters B, 158(3):234–238, 1985.

[94] Sidney Coleman. Aspects of symmetry: selected Erice lectures. Cambridge University
Press, 1988.

[95] Sidney Coleman, Julius Wess, and Bruno Zumino. Structure of phenomenological
lagrangians. i. Physical Review, 177(5):2239, 1969.

[96] Clay Cordova, Thomas T. Dumitrescu, Kenneth Intriligator, and Shu-Heng Shao.
Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond.
In 2022 Snowmass Summer Study, 5 2022.
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