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Abstract

An important issue in the semantic memory literature con-
cerns the relative importance of experience-based sensorimo-
tor versus language corpus-based distributional information in
conceptual representations. Here we examine how each sort
of information is associated with the EEG response to words
in a property verification task in which participants indicated
whether or not a property term (such as ”red”) is typically ob-
tained for a concept term (such as ”APPLE”). To define and
measure each type of information, we operationalized distri-
butional and sensorimotor information using cosine distance
measurements derived from GloVe Embeddings and Lancaster
Sensorimotor Norms respectively. We then modeled single-
trial EEG responses to property words in a property verifica-
tion task using regression models. Our findings indicate that
semantic processing in this task simultaneously incorporates
distributional and sensorimotor information, and their contri-
bution is shaped by task-relevant linguistic context. We aim
for our study to contribute to a critical examination of such in-
formation operationalizations and also encourage a systematic
evaluation of their performance across tasks, particularly for
EEG measurements.
Keywords: semantic memory; distributional semantics; em-
bodied semantics; Lancaster sensorimotor norms; EEG

Introduction
Theories of human semantic processing often contrast the
assumptions and predictions of embodied or grounded ap-
proaches to meaning with those of distributional accounts.
Distributional theories propose that the meanings of words
can be derived in part from their linguistic distributions, i.e.,
the words with which they tend to co-occur (Harris, 1954).
The cognitive feasibility of these distributional proposals is
supported by decades of research demonstrating that met-
rics derived from language co-occurrence data align with
human behavioral performance on semantic tasks (Harris,
1954; Mandera, Keuleers, & Brysbaert, 2017). Embodied or
grounded frameworks, on the other hand, underscore the sig-
nificance of sensorimotor or experiential information in our
conception of meaning. In these models, comprehension in-
volves activating sensorimotor representations of the events
described in language (Barsalou, Simmons, Barbey, & Wil-
son, 2003). However, in recent years, a number of ”hybrid”
proposals have attempted to reconcile these approaches, argu-
ing that both sources of information contribute to our seman-
tic knowledge. Among hybrid accounts, there is agreement
that embodied and distributional information both play a role
in semantic representations, though claims differ regarding
the importance and extent of these contributions (Kemmerer,
2019; Binder & Desai, 2011; Louwerse, 2011).

A key question concerns how these theories are opera-

tionalized, i.e., which representations are used (and how) as
proxies for distributional, grounded, or hybrid accounts. Cru-
cially, any operationalization must also be validated against
human behavioral and neural data. In the distributional se-
mantics literature, a common method of operationalizing se-
mantic content is in the form of multidimensional vectors
that have been derived from large text corpora (Mikolov,
Chen, Corrado, & Dean, 2013). More recently, a vector-
based approach has been adopted to capture sensorimotor fea-
tures of words, typically obtained using crowd-sourced hu-
man judgments (Lynott, Connell, Brysbaert, Brand, & Car-
ney, 2020). Models created from these vector representa-
tions are taken as stand-ins for either distributional or sen-
sorimotor semantic information structures depending on their
sources. (Andrews, Vigliocco, & Vinson, 2009; Fernandino,
Tong, Conant, Humphries, & Binder, 2022; Fernandino &
Conant, 2023; Davis & Yee, 2021; Trott & Bergen, 2021).

Importantly, validating these models (and the theoretical
claims they are used to test) requires assessment of their per-
formance across various tasks and diverse neural and behav-
ioral measures (Yarkoni, 2020). In line with this, this paper
presents an investigation into how well the operationaliza-
tions of sensorimotor and distributional relationships between
concept-property pairs predict electroencephalogram (EEG)
activity during a property verification task.

In a property verification task, participants are presented
with pairs of concepts (‘APPLE’) and properties (‘red’) and
they must make rapid decisions about whether the property
is typically true for the concept. Although the property ver-
ification task is designed to encourage the use of sensorimo-
tor information, the distributional information could plausi-
bly influence online processing during task performance as
well. For example, verifying “red” is a property of “apple”
might involve simulating the sensory properties of apples,
but it might also reflect the associative strength between these
two words, e.g., how frequently ’APPLE’ and ’red’ co-occur
in linguistic contexts (Solomon & Barsalou, 2004). This
task with high-temporal EEG measurements is therefore well
suited to investigate whether and to what extent the distribu-
tional and sensorimotor information measurements simulta-
neously inform conceptual processing.

We operationalize the distributional distance between
concept-property pairs using the GloVe embeddings
(Pennington, Socher, & Manning, 2014), and sensorimotor
distance using the Lancaster Sensorimotor Norms (Lynott et
al., 2020), and assess their explanatory power in predicting
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EEG variance using linear mixed-effects regression models.
To our knowledge, this is the first study testing measurements
based on Lancaster norms on EEG activity. Further, using
multivariate modeling for evaluating the distributional and
sensorimotor measurements, our work aims to provide a
time course of their simultaneous and relative contribution to
semantic processing in this task.

Data Collection and Preprocessing
Materials The material included 576 concept–property
pairs for the property verification task. Each trial consisted
of a presentation of the concept (”APPLE”) and the potential
property (”red”) word consecutively. Out of the total trials,
480 included pairs used sensory property words, including vi-
sual (e.g., ”red”), tactile (e.g., ”prickly”), and auditory (e.g.,
”loud”) words. These 480 pairs are referred to as PROP-
ERTY trials. Half of those elicited a TRUE response (e.g.,
”APPLE-red”) and the other half a FALSE response (e.g.,
”APPLE-loud”). The rest of the 96 trials were lexical as-
sociates that were included to discourage participants from
shallow processing relying on word association. Half of the
associated trials elicited TRUE responses (ESSAY-written),
and half FALSE (BUFFALOS-winged). Only PROPERTY
trials were included in the analysis presented in this paper.

Procedure The experimental paradigm is shown in Fig 1.
Each trial began with the presentation of a fixation cross for
250ms. Between 200 and 400ms later, the CONCEPT term
was displayed in the center of the screen for 150ms, followed
by 250ms of blank screen. The property term was then pre-
sented for 200ms. The 2600ms inter-trial interval allowed
plenty of time for participants to make their decision and
press the button with their right hand to indicate TRUE and
their left hand for FALSE. Analyses in this paper were based
on data recorded from eighteen undergraduate participants.
All participants were aged between 18 and 40 years old, re-
ported normal or corrected-to-normal vision, and had no his-
tory of neurological or psychiatric disorders.

EEG Preprocessing EEG was recorded at 250Hz using a
cap with 29 electrode sites. Electrodes were referenced on-
line to the left mastoid. Blinks and horizontal eye movements
were monitored using EOG electrodes under and on the sides
of both eyes. The EEG data was later filtered using an FIR
bandpass filter from 0.1 to 40 Hz and re-referenced to the
mean of both mastoid sites. Maximum likelihood ICA was
used to identify components with artifacts and subtract them
from the data. Following artifact correction, epochs with
residual artifacts were manually rejected. All epochs were
baseline corrected using a 100ms window before the word
onset. Data preprocessing was performed using implementa-
tions in the MNE package in Python (Gramfort et al., 2013).

Analysis
Our primary goal was to investigate the explanatory power
of distributional and experiential information in predict-

Figure 1: Study Paradigm: Participants were presented with
two words in a row. The concept (e.g., APPLE) appeared in
capitals, followed by the property (red) in lowercase. The task
of the participant was to verify whether the property (e.g.,
’red’) was typically true of that concept (e.g., ’APPLE’). Par-
ticipants had 2600ms to respond before being presented with
another trial.

ing EEG elicited by words. For our analysis, we utilized
a subset (n=384) out of the unique 480 concept-property
pairs for which word frequency scores from SUBTLEX-US
(Brysbaert, New, & Keuleers, 2012), GloVe embeddings, and
Lancaster norms were all available for both of the words in
the trial. To control for the confounds introduced by using
different hands for responding to TRUE versus FALSE tri-
als, separate single-trial EEG analyses were conducted for
the Property-TRUE (n = 2836) and the Property-FALSE (n =
3093) trials, after removing the trials with wrong responses.
In this section, we first describe how these sources of in-
formation were operationalized and then detail our statistical
modeling approach.

Operationalizing distributional and sensorimotor
distance

Distributional Distance GloVe word embeddings were
used to operationalize distributional information (Pennington
et al., 2014). Specifically, we used embeddings from the
pre-trained 6B (Wikipedia 2014 + Gigaword 5) GloVe model
with 200 dimensions. These are pre-trained representations
of a word’s distributional pattern in a large corpus of text.
In general, words with more similar meanings tend to clus-
ter together in vector space. As a measure of dissimilar-
ity, we calculated the cosine distance for the pairs of words
(e.g., concepts and properties) in our stimuli (Trott & Bergen,
2021). Cosine distance is defined as 1− A·B

∥A∥·∥B∥ , where A
and B are vector representations of two words. Intuitively,
a larger cosine distance corresponds to more dissimilar vec-
tors (and thus more distinct distributional patterns). Note that
for the Property-TRUE trials, the distributional semantic dis-
tance varied from 0.4 to 1.0 (M = 0.78, SD = 0.14), and for the
Property-FALSE trials, it ranged from 0.5 to 1.2 (M = 0.89,
SD = 0.12).
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Sensorimotor Distance Following recent work in the lit-
erature on grounded meaning (Wingfield & Connell, 2023),
we used the same principle of cosine distance measurement
to capture Sensorimotor Distance using the Lancaster Senso-
rimotor Norms database (Lynott et al., 2020). The Lancaster
norms consist of average human ratings by 3,500 participants
for 39,707 words across 11 dimensions of sensorimotor in-
formation - six perceptual modalities (vision, auditory, gus-
tatory, olfactory, tactile, and interoception) and five action
effectors (foot/leg, hand/arm, torso, mouth/throat, and head
excluding mouth). As we use all 11 dimensions of the Lan-
caster norms, it is important to note that all of them may not
represent independent information as the perceptual and ac-
tion scores were collected from distinct sets of participants.
We converted the norms for each of our words into vectors
in an 11-dimensional space to measure the cosine distance
between word pairs. For the Property-TRUE trials, the sen-
sorimotor semantic distance varies from 0.0 to 0.5 (M = 0.21,
SD = 0.13), and for the Property-FALSE trials varies from
0.0 to 0.7 (M = 0.28, SD = 0.16). The Spearman correla-
tion coefficient between the distributional and sensorimotor
cosine distance for the Property-TRUE trials was rho = 0.32
(p < 0.001), and for Property-FALSE trials was rho= 0.18 (p
< 0.001) indicating that for both subsets of the data, the two
semantic distance measurements had a weak positive associ-
ation.

Modeling Approach

We first constructed linear mixed-effects regression (LMER)
models for each 100 ms averaged dataset. Conceptualizing
EEG channels as either random or as different levels of a
fixed effect poses challenges due to correlations between ad-
jacent channels. Therefore, our approach involved model-
ing predictor interactions with scalp topography dimensions,
instead of individual channels, to enhance interpretability
(Winsler, Midgley, Grainger, & Holcomb, 2018). Toward
the same goal, all predictors were z-scored. Further, with
high subject- and item-level variance in EEG data, LMER
models afforded an excellent means of controlling for these
random effects. Regression models were fit using the lme4
package in R (Bates, Mächler, Bolker, & Walker, 2015). We
also conducted a post-hoc exploration of the effects of these
distance measurements at each time point and channel level
using regression Event-Related Potentials (ERPs) as outlined
by Smith and Kutas (2015).

LMER Models From each single trial EEG epoch, we mea-
sured the mean EEG voltage at each electrode for every 100
ms window starting 0-100 ms post-word onset to 600-700
ms. We also captured the three-dimensional (X, Y, and Z
axes) location information of each scalp channel. For both
Property-TRUE and Property-FALSE trials, we fit four com-
peting models on the 100ms averaged voltage. The predictors
in these four models are described below. To further aid the
interpretability of model estimates, the three predictors of in-
terest (word frequency, distributional distance, & sensorimo-

Figure 2: Distributions of distributional and sensorimotor
cosine distance measurements (scaled) for both TRUE and
FALSE properties

tor distance) were normalized by z-scoring across both the
trial subsets. The distribution of these scaled measurements
can be observed in Fig 2.
1. Base model (B): The Base model includes the logarithmic
word frequency (WF) measurement as the only predictor. Its
description in the LMER structure would be:

¯Voltage = Intercept + (Word Frequency) * (X + Y + Z) +
(1 | subject) + (1 | word).

Word Frequency is then included as a control predictor in
the rest of the three models of theoretical interest, and all
models have the same random effects structure.

2. Distributional model (D): Base model + Distributional
Semantic Distance

3. Sensorimotor model (S): Base model + Sensorimotor
Semantic Distance

4. Distributional + Sensorimotor model (DS): Base
model + Distributional Semantic Distance + Sensorimotor
Semantic Distance

Each lmer model included an interaction between each pre-
dictor of interest with the scalp topography variables (X, Y,
and Z positions of the channels), and two random intercepts -
subject, and word (Winsler et al., 2018). Interactions of each
predictor with scalp topography variables inform whether and
how the effect varies across channels arrayed in these three
spatial dimensions. For example, interaction with the X-axis
indicates how the effect changes from the left hemisphere
channels to right hemisphere channels. Similarly, the Y-axis
interaction refers to posterior to anterior channels, and the Z-
axis refers to changes from central channels at the top of the
head to peripheral channels closer to the ears.

For model comparison, we primarily use the Akaike Infor-
mation Criterion (AIC) scores, but also employ log-likelihood
ratio tests to compare nested models. AIC scores are
(−2ln(L)+ 2k) where L is the likelihood of the model and
k the number of parameters, and thus penalize models for
complexity. Consequently, AIC scores are suitable both to
evaluate model fit and visualize it over time (Burnham & An-
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derson, 2004). We also use the significant beta values from
interactions between scalp topography variables and our pre-
dictors to estimate the topographic distribution of their ef-
fects. While this approach offers stable and robust insights
into coarse topographic patterns, it is limited for detecting
nuanced spatiotemporal dynamics that EEG can offer. To ad-
dress that, we did an exploratory rERP model fitting with our
best models.

rERP exploration rERP is a regression modeling approach
where EEG measures at each timepoint and channel across
trials is fit by an ordinary least squares regression (OLS)
(Smith & Kutas, 2015). These regressions yield a time series
of estimated coefficients βn(t,c), for each regressor Xn, time t,
and channel c. This time series of β values (dubbed the rERP)
can then be visualized just as ERPs are. Using the implemen-
tation in MNE-Python, we applied the rERP approach to the
best models from the LMER analysis for the Property-TRUE
and Property-FALSE trials, respectively.

Results
EEG LMER Model Comparison

We compared the four models we constructed for each time
window using the AIC measurements. Log-likelihood ratio
tests (LRT) were performed for the nested models. Burnham
and Anderson’s (2004) heuristics suggest that AIC differ-
ences above 4 are considered as robust evidence for a model
with more complexity. Figure 3 compares the AIC values for
D, S, and DS models scaled to the Base model; the compar-
isons are presented for all seven 100ms time windows. Here,
a more negative value indicates a better model fit relative to
the baseline model.

For the Propety-TRUE trials, AIC comparison (Fig 3a)
shows that none of the models perform better than the Base
model in the first 100 ms window. Both the AIC and LRT
statistics (Table 1) indicate that from 100 to 300 ms, (DS)
model, which includes both distributional and sensorimotor
distance offers a better fit than the other three models. Subse-
quently, however, the sensorimotor (S model) provides the
overall best account of EEG measurements until 600 ms.
From 600-700 ms, (DS) again exhibits a marginally better
fit than the S model. For the Propety-FALSE trials (Fig 3b,
and Table 1), the DS model offers the best fit across six of the
seven time windows, i.e. from 100 to 700 ms post word onset.
This suggests that the addition of the sensorimotor predictor
in DS leads to significant improvement over the D model for
most of the processing, except the first 100 ms.

Topographies of the effect

Table 2 reports the significant effects from the best models
post FDR correction with the Benjamini & Yekutieli (2001)
procedure. For the Property-TRUE trials, the sensorimotor
distance has a significant main effect from 200-600 ms win-
dows and a significant interaction with the Y axis during 300-
400 ms. This indicates that the greater sensorimotor distance

Time (ms) LRT {Chi}ˆ2 (df, p-value)
Property- TRUE Property- FALSE
S vs DS D vs DS

0-100 7.87 (4, ns) 8.79 (4, ns)
100-200 33.81 (4, <0.001) 19.44 (4, <0.001)
200-300 12.21 (4, <0.05) 65.60 (4, <0.001)
300-400 2.43 (4, ns) 28.44 (4, <0.001)
400-500 1.47 (4, ns) 26.31 (4, <0.001)
500-600 6.9 (4, ns) 20.96 (4, <0.001)
600-700 14.3 (4, <0.05) 61.05 (4, <0.001)

Table 1: Likelihood Ratio Tests (LRT) Results: Each row
presents a consecutive time window of 100 ms. The sec-
ond and third columns have LRTs comparisons with the
full model (DS). For Property-TRUE the comparison is with
the overall best model for most time windows (S). And for
Property-FALSE trials comparison is with the second-best
model for most time windows (D).

(a) AIC comparison for Property-TRUE trials

(b) AIC comparison for Property-FALSE trials

Figure 3: Scaled AIC values across all time windows. AIC is
scaled by subtracting the base (word frequency) model’s AIC
from each of D, S, and DS models for better visualization.
Lower the scaled AIC value, better the model fit.
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Time Property- TRUE Property- FALSE
Sensorimotor Distributional Sensorimotor

0-100 D*Y (1.3), D*Z (-2.8)
100-200 -0.5
200-300 -0.55 -0.5 -0.3
300-400 -0.92, S*Y (3.0) -0.5
400-500 -1.0 -0.2
500-600 -0.6
600-700 0.3 S*Y (-3.2)

Table 2: FDR corrected significant (p < 0.05) regression co-
efficients for Distributional and Sensorimotor predictors from
the overall best models- S for TRUE and DS for FALSE tri-
als. For each predictor, the corresponding regression coeffi-
cient (β, in µV) for main effects as well as for interactions
with specific axes are listed.

between the concept and the property words, ERPs to prop-
erty words elicited a negativity larger over posterior than an-
terior channels. For the Property-FALSE trials, both distri-
butional and sensorimotor distance measurements had signif-
icant main effects across the entire processing window. In
the first 100 ms, the distributional distance interacts with the
Y and the Z dimension showing that greater distances were
associated with more negative anterior and peripheral ERPs.

We use the lmer models to estimate the coefficient value
for each predictor at each channel to better visualize the mag-
nitude and topographic distribution of the effects described.
Fig 4 shows estimated betas for sensorimotor and distribu-
tional distances in three time windows between 200 and 500
ms. Fig 5 shows rERP (β time-series), along with topogra-
phies from the central time point from the 200-500 ms inter-
val to ease comparison to the LMER estimates in Fig 4. Both
analyses show that distributional and sensorimotor distance
in Property-FALSE trials elicits more anteriorly distributed
negativities compared to sensorimotor distance in Property-
TRUE trials, which elicits more posterior negativity that re-
sembles the N400 (Kutas & Federmeier, 2011).

Discussion
In the present study, we operationalized distributional and
sensorimotor information as cosine distances measured from
GloVe embeddings and the Lancaster sensorimotor norms,
and modeled the single-trial EEG elicited by property words
in a property verification task. While there have been pre-
vious suggestions about the role of both kinds of informa-
tion in property verification, the extent to which either ex-
plains neural measurements has not previously been inves-
tigated (Solomon & Barsalou, 2004). Our results broadly
demonstrate that both distributional and sensorimotor dis-
tance measures account for unique variance in the EEG, and
their contributions vary not only across semantic processing
time course but also between trials contingent on whether the
property relation was TRUE. This finding that both of the
distance measures impact the real-time recruitment of con-
ceptual knowledge on the property verification task aligns

Figure 4: Topographic distribution of beta values from the
LMER models. βi for channel (i) is estimated as β+βx ·Xi +
βy ·Xi+βz ·Zi, where β is the coefficient of the main effect for
a predictor, βx the coefficient of interaction of the predictor
with topography axis X, and (Xi,Yi,Zi) are the coordinates i.

with accounts that reconcile embodied and distributional ap-
proaches to meaning (Andrews et al., 2009).

In the early ERP, from 100-200 ms, while the model with
both distributional and sensorimotor information offers the
best fit, AIC comparisons for both types of trial show that the
distributional distance contributes more to the EEG variance
than the sensorimotor distance. This observation is consistent
with a proposal of distributional information peaking earlier
than sensorimotor information in some of the prominent hy-
brid accounts such as the Symbol Interdependency Hypothe-
sis, Linguistic Shortcut Hypothesis, and Language and Situ-
ated Simulation (LASS) theory (Louwerse, 2011; Barsalou
et al., 2008; Connell, 2018). The occurrence of property
terms during the processing of concepts poses a challenge as
EEG amplitudes likely reflect overlapping processing of both.
However, the objective here was analyzing contextual repre-
sentations of property terms and it is aligned with that objec-
tive that the concept and property terms are processed close in
time. Further, given the human reading rate of approximately
3 words per second (Brysbaert, 2019), contextual processing
serves as a more natural reflection of cognitive processes than
if it were artificially slowed down. The early ERPs associated
with property terms signify access to property information
within the context of its relationship with the concept term
and the task.

The interval of 200-500 ms is classically associated with
semantic processing effects on ERPs (viz. the N400 win-
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Figure 5: The rERP (β timeseries) for high vs low distributional and sensorimotor distance measurements from the best models
(in bracket) for (a) TRUE and (b) FALSE trials. Topographies from the central time point in the 200-500 ms window, i.e. at
350 ms, are presented to make them comparable to LMER beta estimates in Fig 4.

dow). Our analyses suggest that, for the TRUE pairs, both
sensorimotor and distributional distances are associated with
systematic effects on EEG amplitude in the earlier phase of
this window (200-300ms), and exclusively with sensorimo-
tor distance in the later phases of the brain response (300-
600ms). By contrast, for the FALSE pairs, distributional and
sensorimotor distance were both associated with EEG effects
throughout the window. This observation is in keeping with
prior analyses of behavioral measurements such as response
times and accuracy rates that suggest distributional and sen-
sorimotor information contribute variably to word processing,
depending on the features of stimuli and the task (Louwerse
& Jeuniaux, 2010). We find that the task relevance of the lin-
guistic context impacted the relative importance of our mea-
sures of distributional versus sensorimotor information on
neural measures of word processing. That is, while sensori-
motor distance was the prevailing influence on ERPs elicited
in the property TRUE pairs, both distributional and sensori-
motor distance influenced ERPs to the property FALSE pairs.
In line with dynamic accounts of semantic memory (Kumar,
2021; Kemmerer, 2019), the differing pattern of effects ob-
served here in property TRUE versus property FALSE pairs
may indicate the greater engagement of perceptual resources
during the property TRUE trials.

Both distributional and sensorimotor distance were associ-
ated with larger negativities in EEG during the N400 window,
suggesting that a larger semantic distance of either kind leads
to greater demands on semantic retrieval processes indexed
by EEG in this time window (Kutas & Federmeier, 2011). In-
terestingly, however, topographical distributions of the senso-
rimotor distance effects found here differed between the types
of trials. The sensorimotor distance effects in the TRUE tri-
als exhibit the posterior scalp distribution of the classic N400
response to words in sentences (Kutas & Federmeier, 2011),

whereas those in the FALSE trials exhibit a more frontal re-
sponse akin to that of the FN400 linked to conceptual prim-
ing (Voss & Federmeier, 2011). However, in both cases,
the negative-going brain response is reduced in amplitude as
property terms are preceded by words with lower sensorimo-
tor distance.

This topographic divergence between sensorimotor dis-
tance effects in TRUE versus FALSE trials suggests that sen-
sorimotor distance as a construct may not map onto a consis-
tent set of neural resources. Recent fMRI work also demon-
strated that models derived from experiential information ex-
plain the representational code for semantic knowledge stored
in sensory-motor cortical regions, as well as in high-level
transmodal regions (Fernandino et al., 2022). As the latter
are major contributors to the scalp-recorded N400 compo-
nent, the results of the present study are in line with such sug-
gestions regarding the importance of experiential information
in the organization of semantic memory.

In summary, this work suggests that semantic processing
in a property verification task simultaneously engages both
distributional and sensorimotor information, rather than rely-
ing exclusively on a single source of information. Both mea-
sures account for unique EEG variance, suggesting distinct, if
not entirely independent, contributions of neural mechanisms
sensitive to the statistics of language and those that maintain
some connection to the sensorimotor origins of conceptual
structure. Additionally, our findings indicate the task-relevant
linguistic context can impact the relative importance of distri-
butional versus sensorimotor semantic distance in word pro-
cessing. In keeping with the hybrid models reviewed above,
results suggest semantic memory recruits both distributional
and sensorimotor information associated with words in a dy-
namic fashion.
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