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ABSTRACT 

 

Characterizing the Influence of Perturbations in Global State on Working Memory 

 

by 

 

Jordan Graham Garrett 

 

 When accomplishing goal-directed behavior in naturalistic settings our global 

physiological state can vary dramatically, oscillating between periods of wakefulness, 

emotional stress, and physical activity. Fluctuations in global state, in turn, induce a cascade 

of neuromodulatory changes that affect how the brain processes sensory information from the 

external environment. Despite the inextricable link between global state and brain function, 

goal-directed behavior has predominantly been studied when the body is stationary and at 

rest. Thus, it is unclear as to whether perturbations in global state modulate cognitive 

processes dependent on this sensory information, such as working memory (WM). The 

current body of work aims to determine how changes in global state induced by an acute bout 

of aerobic exercise modulate WM and its underlying neural correlates. Study 1 investigated 

the relationship between acute exercise and cognition, which revealed that aerobic exercise 

induces a small enhancement in general task-performance. Moderator analyses indicated that 

time-dependent measures of cognition were especially improved by exercise-induced 

perturbations in global state. Importantly, executive functions, such as inhibitory control and 

WM, were influenced by engaging in physical activity. Building on these meta-analytic 

results, Study 2 investigated whether the fidelity of spatial WM representations is impacted 
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during an instance of aerobic exercise. Participants completed a delayed change detection 

task both at rest and during a bout of low-intensity cycling while neural activity was 

concurrently recorded using electroencephalography (EEG). An inverted encoding modeling 

technique was employed to estimate location-selective channel response functions from 

topographical patterns of alpha-band (8-12 Hz) activity. Importantly, robust spatially 

selective responses were reconstructed both at rest and during exercise throughout the 

stimulus encoding and retention period, demonstrating for the first time that the fidelity of 

spatial WM representations could be tracked in a physiologically active state. The selectivity 

of these responses was degraded during exercise relative to rest, suggesting that the fidelity 

of location representations may be diminished. Study 3 further investigated the impact of 

exercise on WM encoding and maintenance abilities. Participants completed a delayed 

change detection task that consisted of varying set sizes. Importantly, on some of the trials 

participants were required to encode target stimuli while simultaneously ignoring distractors, 

thus enabling the evaluation of WM filtering efficiency. Analyses of an event-related 

potential known as contralateral delay activity (CDA), which tracks the number of items 

stored in WM, indicated that there was no difference in WM load between rest and exercise 

conditions. Decoding analyses revealed that patterns of voltage potentials across the scalp 

tracked WM load both at rest and during exercise. These results suggest that WM filtering 

efficiency and the number of items that can be actively stored are robust to perturbations in 

global state caused by light intensity exercise. Together, this collection of studies illuminates 

the selective impact of exercise on WM processes, and highlights the importance of 

considering global state when developing theoretical frameworks of cognition.  
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Chapter I: Introduction 

 Throughout our daily routine our global physiological state fluctuates, going from 

being relaxed to stressed, energized to fatigued, or sedentary to physically active. These 

fluctuations induce a cascade of neuromodulatory changes that, in turn, perturb multiple 

brain systems. However, theoretical accounts of human cognition and its neural correlates 

fail to consider the influence of global state given that they are predominantly based on 

experiments conducted in standard laboratory conditions. It is possible that these frameworks 

only represent a snapshot of brain function that evolves along a trajectory within a high-

dimensional space, where each dimension corresponds to an aspect of global state 

(McCormick et al., 2020). Bearing this in mind, the goal of the present body of work is to 

determine the impact of global state on cognitive processes and their underlying neural 

mechanisms. A manipulation of global state is achieved through the use of physical activity, 

which was chosen since many of our daily tasks require engaging the body (e.g., walking to 

class or in a grocery store, playing sports, etc.). Visuospatial working memory (WM) serves 

as the aspect of cognition tested, given that it integrates information across multiple sensory 

modalities and is a platform for goal-directed behavior.  

Theoretical Background 

Effect of State on Brain and Behavior 

 Global states can be organized in a hierarchical manner, where the top-level of the 

hierarchy consists of a distinction between sleep and wakefulness. Nested within these states 

are sub-states that either change discretely or along a continuum (McCormick, Nestvogel, & 



  

2 
 

He, 2020). For instance, sleep is typically divided into two discrete states, rapid eye 

movement (REM) and non-REM (NREM). REM sleep is characterized by the body entering 

a form of paralysis (muscle atonia) with periods of twitching, low-voltage and fast-frequency 

cortical activity that resembles wakefulness, prominent hippocampal theta oscillations, and 

decreased internal heat production (Blumberg et al., 2020; Mukai & Yamanaka, 2023; Peever 

& Fuller, 2017). This sleep state is thought to be critical for memory consolidation and 

development, a notion that is supported by the reactivation of brain regions engaged during 

learning periods (Mukai & Yamanaka, 2023). NREM sleep, on the other hand, is 

conventionally binned into three stages along a continuum of increasing relative depth. Stage 

1 represents the period when an organism first falls asleep and is most prone to being 

disturbed. Stage 2 is defined by the presence of two distinct neural features, transient bursts 

of cortical activity between 11-15 Hz (i.e., sleep spindles) and sharp biphasic waveforms 

known as K-complexes. A hallmark of stage 3 are delta oscillations (i.e., slow waves) that 

mediate homeostatic processes, can be used as an index of sleep need, and also play a role in 

memory consolidation (Bellesi et al., 2014; Carskadon & Dement, 2005; Purcell et al., 2017). 

Taken together, neural activity and their functional roles can differ amongst sub-states, even 

when the organism engages in a relatively passive behavior. 

 Contrary to sleep, sub-states of wakefulness are not as clearly defined and have a 

considerable degree of overlap. One framework is a change in state along dimensions 

representative of mood, stress, and arousal. A core component of mood/emotion is valence 

(e.g., happy, angry, fearful), which can vary in its intensity and influence behavior in a 

nonlinear fashion (e.g., fear leading to fight or flight) (R. Lapate & Schackman, 2018). The 

neural circuitry that mediates the regulation and production of emotions are distributed 
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throughout the brain, with core regions including the amygdala, striatum, insula, and frontal 

cortices (Underwood et al., 2021). Contemporary theories of emotional processing emphasize 

a reciprocal relationship between the amygdala, ventral medial prefrontal cortex (vmPFC) 

and orbitofrontal cortex (OBFC), where the amygdala ascribes valence to an experience 

while vmPFC and OBFC regulate behavioral reactions and decision making (Salzman & 

Fusi, 2010; Šimić et al., 2021). For example, Lapate et al., (2022) observed a decrease in 

reaction time (RT) on a modified Go/No-Go task when participants viewed happy versus 

fearful faces and an increase in inhibitory control for fearful faces. A joint representation of 

emotion and action was found in the lateral frontal pole that positively correlated with task 

performance, indicating that the emotional context in which information is processed impacts 

the execution of behavioral goals. This influence can persist long after the emotional state has 

been experienced. Memory research has shown that percepts formed during an emotional 

event are augmented with feelings of excitation or agitation that are often paired with a 

physiological response (e.g., increased heart rate, sweating), leading to robust representations 

that are easier to retrieve (Kensinger & Ford, 2020; J. Wang et al., 2022). Indeed, the 

precision of visuospatial WM representations is increased in a negative relative to positive or 

neutral emotional state (Xie & Zhang, 2016). In contrast, threat-induced anxiety has been 

found to disrupt the accuracy of visuospatial WM, but have no impact on verbal WM 

(Shackman et al., 2006). The key takeaway is that cognition is sensitive to both perceived 

and experienced emotions, and these effects can have a lasting impact on behavior. 

The neural mechanisms of stress have been well documented. Two central systems 

that respond to physical, chemical, and psychological stressors are the sympatho-

adrenomedullary (SAM) and hypothalamic-pituitary-adrenal (HPA) axes. Early and transient 
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physiological reactions to a stressor are engendered by the SAM, which secretes the 

catecholamines epinephrine (E) and norepinephrine (NE) into the bloodstream. These 

neurochemicals bind to adrenergic receptors present in the central nervous system, smooth 

muscles, and organs, promoting the canonical “fight or flight” response. A primary output of 

the HPA is the endogenous glucocorticoid cortisol, an anticipatory hormone that is secreted 

by the adrenal glands. Once released, cortisol is circulated throughout the body, leading to 

the modulation of metabolic, cardiovascular, and immunological systems. Physiological 

responses to stress are regulated by cortisol, which inhibits HPA activity through a negative 

feedback loop. Relative to the SAM, this system is slower and produces a more sustained 

response, with peak cortisol typically occurring 15-20 minutes post stress onset (Lightman, 

2008). Acute physiological changes produced by both of these systems modulate the circuitry 

of multiple brain networks (Russell & Lightman, 2019). NE release promotes communication 

between neurons by decreasing the threshold for actional potential generation and facilitating 

the transmission of action potential trains (O’Donnell et al., 2012). Cortisol increases 

corticospinal excitability, leading to motor evoked potentials with increased amplitude 

(Milani et al., 2010). Cortisol can also modify the synaptic plasticity and excitatory synaptic 

responses of pyramidal neurons in the hippocampus and prefrontal cortex (PFC) (Chaouloff 

& Groc, 2011; Dos-Santos et al., 2023). These neuromodulatory effects, in turn, impact 

cognitive function. There is evidence for an enhancement of memory consolidation during a 

stressful event, and decrements in memory retrieval and working memory (Barsegyan et al., 

2010; Birnbaum et al., 1999; de Quervain et al., 2009). Threats and stressors have been 

shown to stimulate the locus coeruleus, a major producer of NE and central node in both 

attention and reward processing networks (Aston-Jones & Cohen, 2005; L. S. Morris et al., 
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2020; Y. Zhang et al., 2023). Lastly, acute stress influences decision making by biasing 

choices in risk-seekers toward riskier options and promoting a more conservative behavior in 

those that are risk averse (Morgado et al., 2015).  

  Most of the findings discussed thus far stem from studies that induced relatively 

small perturbations of global state. More extreme manipulations provide insights into brain 

function and cognition well outside standard operating conditions (i.e., homeostasis). For 

example, Kramer, Coyne, & Strayer (1993) tested cognitive processing in mountain climbers 

before ascending the West Buttress route on Mount Denali to determine the effects of high 

altitude. Relative to matched controls at sea-level, climbers displayed a deficit in learning on 

pattern comparison and code substitution tasks, and decreased reaction time (RT) on a 

memory retrieval task. These deficits did not correlate with symptoms of acute mountain 

sickness, suggesting that the physiological effects of being at high-altitude impact cognitive 

performance even after acclimatization. Bullock et al., (2021) interrogated how these 

physiological effects in turn modulate neural activity. Global state was manipulated by 

changing the levels of arterial blood gases to induce hypercapnia, hypocapnia, and normoxia, 

while electroencephalography (EEG) was recorded during the completion of a sustained 

attention task under each of these states. Importantly, task-related parieto-occipital alpha 

power was modulated as a function of state, with an increase during hypocapnia and a 

decrease during hypercapnia. P3 amplitude and theta power were also attenuated during 

hypocapnia, suggesting that attention and executive control are sensitive to the levels of 

oxygen and carbon dioxide present in the bloodstream. Similar to changes in altitude, 

changes in barometric pressure can drastically influence our brains. For example, when going 

below the depth of 120 meters divers can experience high-pressure neurological syndrome. 
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Symptoms of this condition include headache, vertigo, shivering/tremors, neuropsychiatric 

disturbances, and changes in EEG (Jain, 1994; Opatz & Gunga, 2021). Examination of 156 

saturation divers (diving between 65-1,000 feet) revealed the presence of focal slow waves in 

temporal regions, and a decrease in P1 latency as the age of the diver increased (Todnem et 

al., 1991). Professional saturation divers serve as a unique population for studying the long-

term effects of barometric pressure on cognition, since they often have to remain at these 

depths for extensive durations (e.g., months) due to the amount of time it takes to 

decompress. Interestingly, it is unclear if there exists an extreme change in global state that 

would augment neural activity and cognition.  

Arousal is often operationalized as the level of wakefulness that an organism displays, 

or the amount of attention/awareness it allocates toward processing information within its 

environment. In the current work, arousal is instead used to represent the degree an organism 

engages its body in gross motor movements, such as physical activity. The influence of this 

state on neural activity and behavior is discussed in the next section. 

Impact of Exercise on Neurochemical Levels 

 Engaging in physical activity causes widespread changes in numerous cells, tissues, 

and organs in response to meeting the metabolic demands of contracting skeletal muscles 

(Hawley et al., 2014). Cardiovascular adjustments during exercise are mediated by three 

autonomic signaling pathways. The first is a feedforward signal to activate areas of the 

brainstem responsible for regulating heart rate, blood pressure, and respiration. The second is 

feedback from thinly (un)myelinated type III and IV afferents in contracting muscles that 

increase sympathetic drive. The final signal is generated by baroreceptors in the carotid sinus 



  

7 
 

and aortic arch that notify centers of the brainstem of changes in blood pressure. In contrast 

to the redistribution of blood flow away from visceral organs toward activated skeletal 

muscles, blood flow to the central nervous system remains relatively unchanged during 

exercise. Critically, muscles are endocrine glands that secrete myokines and exerkines, which 

are cytokines, peptides, and nucleic acids that exert either autocrine, paracrine, or endocrine 

effects (Severinsen & Pedersen, 2020). One major myokine that crosses the blood-brain 

barrier (BBB) is the protein cathepsin-B (CTSB). Across multiple species, CTSB levels have 

been shown to increase during physical activity, and found to enhance the expression of both 

doublecortin and brain-derived neurotrophic factor (BDNF) in hippocampal progenitor cells 

of adult mice (Moon et al., 2016). Another myokine whose secretion levels are increased 

during exercise is irisin, which similarly stimulates the expression of BDNF in mouse 

hippocampus (Wrann et al., 2013). A major metabolic pathway that fuels motor movements 

during exercise is aerobic glycolysis, which produces the byproduct lactate. For many years 

lactate was considered a metabolic waste product, but relatively recent research has 

recognized that it is able to cross the BBB, can serve as an alternative energy source in 

cerebral glycolysis, and modulates neural activity, calcium signaling, axonal myelination and 

angiogenesis (Basso & Suzuki, 2017; Delezie & Handschin, 2018; Hargreaves & Spriet, 

2020; Schurr, 2014). Note, muscles secrete hundreds of peptides during physical activity, and 

biological function has been identified for only 5% of them (Severinsen & Pedersen, 2020), 

suggesting that there remains much to be discovered on the modulatory effects that muscles 

exert on the brain. 

 Exercise also impacts neurotransmission across multiple cortical networks. 

Dopaminergic neurons are critical for the control of motor movements, and rodent studies 
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suggest that the rate of dopamine (DA) synthesis and metabolism increases subsequent to a 

single bout of exercise (Chaouloff, 1989). Using in vivo microdialysis, Meeusen et al., (1997) 

observed an increase in extracellular levels of DA, NE, and glutamate in rat striatum during a 

60 minute session of treadmill running, regardless of whether or not the animal had 

undergone exercise training for 6 weeks. Similarly, Hattori, Naoi, & Nishino (1994) observed 

an increase in striatal DA turnover during running and that this increase was dependent on 

running speed with a threshold of 300-600 cm/min, suggesting that DA is modulated in an 

intensity dependent fashion. Chaouloff et al., (1987) also detected an increase in DA levels 

within rat hippocampus, midbrain and hypothalamus, but observed no change in DA levels 

within the frontal cortex or striatum. This implies that exercise impacts the neurotransmitter 

levels in selective brain regions (Basso & Suzuki, 2017). Indeed, there is evidence for an 

increase in 5-HT in rat cerebellum, midbrain, and frontal cortex following an 8-week 

treadmill program relative to sedentary controls, along with elevated NE levels in the 

midbrain and frontal cortex (Bailey et al., 1992; Brown et al., 1979). By surgically removing 

rat brains after a bout of 30 minute treadmill running, Otuska et al., (2016) investigated the 

impact of acute exercise on serotonergic and corticotropin-releasing factor neurons in the 

dorsal raphe and hypothalamic paraventricular nucleus, respectively. Running at a low 

(15m/min) compared to high (25m/min) speed was found to elicit an increase in c-Fos, a 

transcription factor and functional marker of neuronal activity, expression by 5-HT neurons. 

Few studies have also observed increases in central levels of acetylcholine in the 

extracellular space of the parietal lobe and hippocampus (Kurosawa et al., 1993; Nakajima et 

al., 2003). An important caveat to consider when interpreting acute effects of exercise in 

rodents is that many of the studies involved a training period that can last up to weeks, 
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making it possible that these effects are confounded by long-term physiological changes (but 

see Meesuen et al., 1997).  

Despite the extensive evidence for exercise-induced changes in central 

neurotransmitter levels in animal models, relatively little research has tested for an equivalent 

effect in humans, given the invasive nature of techniques used to monitor their synthesis and 

metabolism. Only one study has investigated the dynamics of human striatal DA levels 

subsequent a 30 minute instance of treadmill running using positron emission tomography, 

and observed no change relative to a baseline period (Wang et al., 2000). Though this appears 

to conflict with findings from animal studies, it is possible that the exercise intensity was too 

low to elicit changes, especially since participants had a history of engaging in regular 

exercise. Research on the modulation of neurochemicals as a function of exercise in humans 

is predominantly based on peripheral levels, with samples being collected from either 

bloodwork or saliva. For example, Zimmer et al (2016) conducted a large-scale randomized 

controlled trial to determine the impact of low (45% heart rate max (HRmax)), moderate (65% 

HRmax), and high intensity (85% HRmax) cycling on serum 5-HT and performance on the 

Stroop color word task. Relative to a control group, serum 5-HT only significantly increased 

post high intensity exercise. This increase was correlated with a decrease in RT when naming 

words printed in incongruent ink, suggesting an improvement of selective attention. Recently, 

Parthimos et al., (2022) tested for a correlation between changes in plasma amino acid 

neurotransmitter levels and cognitive performance in professional athletes after completing 

three simulated high-intensity basketball games. Glutamate, tyrosine, alanine, phenylalanine, 

and glycine concentrations were significantly higher post exercise. In regards to behavior, 

only participants who had engaged in exercise displayed an increase in accuracy on the Digit 
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Span Backward task, and a decrease in the amount of time taken to complete version B of the 

Trail Making Test. Peripheral levels of neurotrophic factors such as BDNF, VEGF, and IGF-1 

have also been shown to be modulated by exercise (Basso & Suzuki, 2017; Cotman et al., 

2007). Furthermore, it is well established that peripheral concentrations of NE and E increase 

when skeletal muscles are engaged in physical work (Christensen & Galbo, 1983; Gray & 

Beetham, 1957; Raab, 1943; Zouhal et al., 2008). Thus, exercise has a similar impact on 

neurochemical levels in humans as it does animals. However, a limitation with analyzing 

peripheral concentrations is that they may not accurately reflect central levels (Basso & 

Suzuki, 2017).   

Exercise Modulates Neural Population Dynamics 

  Widespread exercise-induced changes in neurochemical levels in turn modulate 

neuronal tuning. Using a novel experimental setup, Niell & Stryker (2010) investigated the 

tuning response of neurons in the primary visual cortex (V1) and thalamic lateral geniculate 

nucleus (LGN) of awake mice while they ran on a freely rotating spherical treadmill. Local 

field potential recordings revealed a suppression in low-frequency power (~10-30 Hz) and a 

dramatic increase in high-frequency power (~50-70 Hz) during periods of locomotion 

relative to when the mouse was stationary. Critically, single-unit recordings of narrow- and 

broad-spiking V1 neurons demonstrated a multiplicative gain in orientation tuning during 

locomotion. In contrast, LGN neurons were not modulated by changes in behavioral state, 

reflecting the selective impact of physical activity on neuronal tuning. Corroborating these 

findings, Ayaz et al., (2013) observed that locomotion decreased the strength of surround 

suppression in V1 neurons, allowing them to integrate over larger regions of visual space. To 
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determine the cortical circuitry responsible for these modulations in V1 neural tuning 

properties, Fu et al., (2014) utilized two-photon imaging to record the in vivo calcium signals 

of vasoactive intestinal peptide (VIP)-positive GABAergic neurons during locomotion. 

Locomotion was found to increase the calcium response of VIP-positive neurons, 

independent of visual stimulation, through nicotinic inputs from the basal forebrain. 

Optogenetic activation of VIP neurons during stationary periods were found to induce an 

increase in the activity of excitatory neurons similar to what is observed during locomotion, 

suggesting that they play a critical role in physical activity induced changes in visual neural 

response properties. Such changes in neuronal responses as a function of locomotion have 

also been observed in other animal models (Chiappe et al., 2010; Maimon et al., 2010; 

Rother et al., 2023; Turner et al., 2022), and extend to other sensory modalities (Henschke et 

al., 2021; Schildberger et al., 1988; Vivaldo et al., 2023).  

 Electrophysiological studies of humans engaged in exercise have reported similar 

alterations in sensory related neural activity. To investigate the impact of exercise on visual 

processing, Bullock, Cecotti, & Giesbrecht (2015) recorded EEG while participants 

completed a three-stimulus visual-oddball task under three conditions: rest, low, and high 

intensity cycling. P1, an event related potential (ERP) component that reflects the allocation 

of attention at early stages of visual processing, mean amplitude evoked by standard stimuli 

was greater during low intensity exercise relative to rest. Occipital and parietal-occipital P1 

peak latency for target stimuli was decreased during low intensity cycling compared to both 

rest and high intensity cycling, suggesting that the modulation of visual processing speed is 

intensity dependent. P3a peak latency, an index of stimulus classification speed, evoked by 

distractor stimuli was significantly decreased in both exercise conditions relative to rest. 
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Hence, the activity of neuronal populations underlying multiple stages of visual processing is 

modulated during an exercised state. Indeed, Bullock et al., (2017) applied an inverted 

encoding model (IEM) to reconstruct orientation selective responses from steady state visual 

evoked potentials (SSVEPs) recorded during rest and both low and high intensity cycling. 

Low intensity cycling was found to induce a multiplicative gain in orientation selectivity 

relative to both rest and high intensity exercise, corroborating animal studies that observed 

changes in feature-selective responses during locomotion. Furthermore, Cao & Hӓndel 

(2019) assessed visual processing of stimuli presented in the periphery compared to the 

central fovea while standing and walking. Participants were shown a central flickering 

grating at varying levels of background contrasts and instructed to report the presence of a 

briefly presented target. SSVEP power evoked by the flickering grating decreased as 

background contrast increased during walking but not standing, suggesting an increase in 

peripheral processing. In a follow up behavioral experiment, relative target detection 

threshold was found to decrease as eccentricities from fixation increased during locomotion. 

Together, these empirical results establish the notion that multiple stages of sensory 

processing are modulated by an acute bout of physical exercise.  

 Non-sensory evoked neural population level responses are also impacted while in an 

exercised state. Functional near-infrared spectroscopy (fNIRS) imaging studies provide 

evidence for an effect of acute exercise on hemodynamic activation patterns in prefrontal 

cortices (Herold et al., 2018). Yanagisawa et al., (2010) applied fNIRS to participants that 

completed a Stroop task post a moderate (50% VO2peak) bout of cycling to examine exercise-

induced effects on task-related activity. The Stroop interference effect significantly decreased 

post-exercise, and this effect coincided with an increase in left dorsolateral prefrontal cortex 
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(DLPFC) activation. Increases of Stroop-interference related activation in left DLPFC have 

also been reported post low intensity (30% VO2peak) cycling (Byun et al., 2014) and high 

intensity interval training (HIIT) (Kujach et al., 2018), indicating that processing in cortices 

that subserve executive function may be enhanced after acute exercise. In contrast, during 

exercise such processing may be diminished. Pontifex & Hillman (2007) recorded EEG 

while participants concurrently completed a flanker task and cycled at a moderate intensity 

(60% HRmax). Response accuracy on incongruent trials was decreased relative during 

exercise relative to rest. Although frontal P3 amplitude was increased during exercise, its 

latency was also increased, suggesting a decrease in the efficiency of attentional control. 

Such a differential impact of exercise on the neural substrates of executive process during 

versus post-cessation led to the development of the transient hypofrontality hypothesis 

(Dietrich, 2006). This theory posits that the demand on finite metabolic resources to support 

continuous neural activation of cortices responsible for sustaining movement, integrating 

sensory information, and regulating autonomic processes during exercise results in a transient 

decrease in resources available for frontal cortices. Following exercise, the PFC is believed 

to receive an influx of oxygenated blood, engendering enhanced activation. Contrary to this 

hypothesis, fNIRS imaging has shown that oxygenated hemoglobin levels in the lateral PFC 

remain unchanged when exercising at various intensities (Tempest & Reiss, 2019). 

Nevertheless, neural population activity underlying multiple cognitive functions is selectively 

impacted by perturbations in global state caused by physical activity. 

Exercise and Cognition 
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Acute exercise alters performance across a range of cognitive domains. Hippocampal 

dependent processes such as memory and learning have been shown to benefit from acute 

physical activity. Coles & Tomporowski (2008) probed both short- and long-term memory 

performance on the Brown-Peterson task and a free-recall test, respectively, before and after 

a 40 minute bout of moderate cycling. No change was observed in short-term memory 

accuracy. In regard to long-term memory, participants recalled significantly more words from 

both the start and end of a list compared to control conditions, suggesting that exercise 

impacts both the primacy and recency effect. Winter et al., (2007) assessed the influence of 

low-impact aerobic and high-impact anaerobic running on vocabulary learning speed, which 

was operationalized as the number of correctly identified picture and German word pairs 

from the first to last block of the task. Intense anaerobic running increased learning speed by 

20% relative to low-impact running and a resting condition, and this effect was associated 

with increases in peripheral BDNF. Thus, it is possible that BDNF is a mechanism of 

exercise-induced enhancements of learning and memory, and that this effect is dependent on 

intensity. To test this notion, Etnier et al., (2016) examined performance on the Rey Auditory 

Verbal Learning Test (RAVLT) after participants completed a 30 minute bout of treadmill 

running at their VO2max and +/- 20% of their ventilatory threshold (VT). Word recall 30 

minutes after encoding, short-term memory, and learning did not differ as a function of 

exercise intensity. However, word recall 24 hours post-encoding was significantly higher 

after exercising at one's VO2max relative to 20% below VT. Although serum BDNF 

significantly increased post-exercise, this increase did not differ as a function of intensity nor 

was it correlated with memory performance. Interestingly, increases in peripheral levels of 

BDNF after high-intensity cycling are accompanied by improvements in face-name 
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recognition memory (Griffin et al., 2011), portraying the difficulty with establishing the 

molecular substrates of enhancements engendered by acute exercise in humans. Recently, 

changes in long term potentiation (LTP) have been proposed to drive the effect of exercise on 

memory (D. Moore & Loprinzi, 2020). Meta-analytic synthesis of behavioral results indicate 

that acute aerobic exercise has a moderate positive effect on long-term memory (Roig et al., 

2013), yet this relationship is likely to be much more nuanced. Long-term memory 

performance may be differentially impacted contingent on if the body is engaged in exercise 

prior to encoding, during encoding, or during consolidation (Schmidt-Kassow et al., 2014; 

Sng et al., 2018; van Dongen et al., 2016).   

A majority of research on exercise and cognition has been dedicated to understanding 

the impact on executive function, in particular inhibitory control. Meta-analytic modeling has 

demonstrated that exercise has a small positive influence on time-dependent measures of 

inhibition, and that this relationship is moderated by participant age and exercise intensity, 

with high intensity activities eliciting larger effects (Oberste et al., 2019). Indeed, there is 

extensive evidence for a reduction in response time on the Stroop, Eriksen Flanker, and 

Go/No-Go tasks due to exercise (Cantelon & Giles, 2021; Levin et al., 2021; Yanagisawa et 

al., 2010). Tia, Mou, & Qiu (2021) investigated both the immediate and sustained effects of a 

single bout of HIIT and moderate treadmill running on flanker task performance, and found 

that RT on incongruent trials was reduced post-HIIT for up to 90 minutes. Post-exercise 

improvements in RT have been associated with enhanced DLPFC activation (Yanagisawa et 

al., 2010), while EEG studies have reported increased P3 and decreased N450 amplitude (Y.-

K. Chang et al., 2017; Hsieh et al., 2018) and decreased N2 latency (Chueh et al., 2023). 

Relatively less research has focused on the sensitivity of other executive functions to 
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exercise, such as cognitive flexibility, planning, and decision making. There is evidence that 

moderate and vigorous exercise reduces the RT cost when switching between global and 

local target features of visual compound stimuli, and this effect is sensitive to age and sports-

related cognitive expertise (Pesce et al., 2003, 2007; Pesce & Audiffren, 2011). In a large 

sample size study of 110 participants, Mou et al., (2023) investigated how 20 minutes of 

moderate intensity treadmill running or HIIT influenced set switching in the more-odd 

shifting task. Briefly, this task requires participants to make differing responses contingent on 

the color, value, and parity of a presented number. Participants were median split into low- 

and high-performers based on baseline measurements of cognitive flexibility to test an a 

priori hypothesis that exercise induced effects are moderated by baseline cognitive 

performance. Indeed, individuals with lower baseline scores experienced a reduction in RT 

on switch trials after both moderate exercise and HIIT, while individuals with higher baseline 

scores only experienced a reduction post-HIIT. In contrast, accuracy remained unchanged, 

regardless of baseline score. Meta-analytic modeling suggests that overall exercise has a 

small positive influence on set switching, and this relationship is moderated by exercise 

intensity with low-intensity exercise inducing the largest benefits (Oberste et al., 2021). A 

commonly used assessment of planning capabilities is the Tower of London task, and after a 

30 minute bout of moderate cycling both planning efficiency (i.e., total move score) and 

response inhibition (i.e., total initial times) are enhanced for up to 60 minutes (Hung et al., 

2013). In regards to the influence of exercise on decision making, a recent study applied a 

drift-diffusion model to behavioral performance on a perceptual discrimination task 

completed both during and after high intensity intermittent cycling (Karen et al., 2023). 

Relative to performance pre-exercise, the drift rate and boundary parameters of the model 
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significantly increased while the non-decision time parameter decreased post-exercise, 

suggesting that participants adopted a more conservative decision making strategy. No 

change in model parameters were observed during cycling, though RT decreased in the last 

relative to the first exercise block. Overall, acute exercise selectively impacts the processing 

speed of aspects of executive function.  

Attention is a nonunitary cognitive ability with aspects that are sensitive to changes in 

global state caused by physical activity. During moderate intensity cycling with a variable 

load RT on the sustained attention to response task (SART) has been shown to decrease 

without compromising accuracy (Radel et al., 2018). This enhancement co-occurred with an 

increase in saliva α-amylase concentration, an indirect indicator of norepinephrine levels, and 

DLPFC activation. Huertas et al., (2011) explored how components of the attention networks 

task were impacted during moderate and high intensity cycling relative to a resting condition 

in highly experienced cyclists. RT on no-cue trials was significantly reduced during moderate 

intensity exercise, indicating an enhancement of the alerting component. Additionally, there 

is evidence for a facilitation of target detection speed on odd-ball tasks during moderate 

(Yagi et al., 1999) and high intensity exercise (Bullock et al., 2015). Hence, the speed of 

attentional processing is enhanced when in a physically active state. A similar effect has been 

shown to occur after exercise. Chang et al., (2015) tested performance on the attention 

networks task post an instance of moderate intensity cycling in high-fit amateur basketball 

players. Compared to a control group, RT on incongruent trials was significantly reduced 

after exercise, signifying an improvement in executive control. Larger P3 amplitude across 

frontal, central, and parietal electrodes associated with the alerting and executive control 

components were also observed as a result of exercise. It is worth mentioning that selective 
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attention is a critical component in many of the tasks used to probe executive function (e.g., 

Stroop, flanker tasks, switching tasks), which may implicate induced modulations of 

attention as the driver for enhancements of executive processes.  

Working Memory     

 Sensory information is temporarily stored in WM, where it is integrated into either a 

single or multiple malleable percepts that are used to guide future actions. A distinguishing 

trait of this memory system is that it is capacity limited, irrespective of the sampled sensory 

system. Extensive research has been dedicated towards understanding these capacity limits 

and determining how visual information is stored, giving rise to two competing theoretical 

frameworks. The first is the notion that percepts are maintained with a fixed and equivalent 

resolution in WM within discrete slots (Luck & Vogel, 1997). In the event that the number of 

observed sensory stimuli exceeds the number of slots, which is typically estimated to be 

between three to four, this theory assumes that no information is stored for excess stimuli 

(Luck & Vogel, 2013; W. Zhang & Luck, 2008). Evidence in favor of this account stems 

largely from performance on the ubiquitous change detection task (Rouder et al., 2011) and 

sustained delay period activity, a classic hallmark of actively maintaining memoranda in 

mind, that scales with WM set size (Riggall & Postle, 2012; Song & Jiang, 2006; Todd & 

Marois, 2005). ERP studies have repeatedly shown that when subjects are cued to memorize 

stimuli on one side of a presented bilateral array, a sustained negative potential emerges 

during the delay period that correlates to individual WM capacity. This neural signal is 

known as contralateral delay activity (CDA), given that it is a difference wave between 

activity at posterior electrodes ipsilateral to the cued stimuli from those that are contralateral, 
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and its amplitude increases as set size increases with an asymptote at three to four stimuli 

(Adam et al., 2018; Luria et al., 2016; Vogel & Machizawa, 2004). Notably, this property can 

be used to determine how efficiently goal-relevant information is encoded into WM and 

distractors are ignored (Vogel et al., 2005). In contrast to the slots account, continuous 

resource models posit that visuospatial WM capacity can be flexibly divided amongst all 

observed stimuli at the expense of resolution (Bays & Husain, 2008). This notion stems from 

the observation that relatively small deviations in probe stimulus features from sample 

stimulus features (e.g., small location displacement) results in poor change detection even at 

low sample sizes. Further, the precision of encoded representations decreases as the number 

of items increase, even at supra-capacity set sizes (Bays et al., 2009; Keshvari et al., 2013; 

Ma et al., 2014; Wilken & Ma, 2004). Evidence in favor of both theoretical frameworks can 

be seen in the memory error distributions of continuous response tasks. When applying a 

mixture model to these distributions, it has been shown that guess rate (i.e., height of fitted 

uniform distribution) increases while precision (i.e., standard deviation of fitted von-mises 

distribution) decreases as set size gets larger (Adam et al., 2017; W. Zhang & Luck, 2008). 

Critically, guess rate drastically increases while precision remains unchanged from sub- to 

supra-capacity set sizes, suggesting that a fusion of slots and resource models capture the 

fidelity of WM representations and the capacity of this storage system. Note, this remains an 

area of active research, and this debate has evolved to the matter of whether information is 

encoded into WM as discrete-representations or with variable precision across trials and 

stimuli (Ma et al., 2014; Ngiam, 2023). 

   There exists a large corpus of work implicating the frontoparietal network as a 

storage system for WM representations. In a classic study, Funahashi, Bruce & Goldman-
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Rakic (1989) recorded single unit activity in the principal sulcus (PS) and frontal eye fields 

(FEF) of the prefrontal cortex of macaques during the completion of an oculomotor delayed-

response task. A critical manipulation in this task was requiring monkeys to remain fixated 

on a central stimulus throughout the cue and delay periods, allowing for the dissociation 

between neural activity corresponding to the execution of motor movements and activity 

reflecting WM maintenance. Neurons within both regions displayed increased excitatory or 

inhibitory activity during the delay period relative to an intertrial interval, as well as 

directional tuning toward memorized locations, signifying that lateral PFC supports WM 

processes (Sreenivasan & DEsposito, 2019). Extending these findings, Chafee & Golman-

Rakic (1998) recorded single-unit activity in prefrontal area 8a and parietal area 7ip during 

the same task, and observed neurons in both cortical areas that exhibited sustained delay 

period activity and similar spatial tuning profiles. Human neuroimaging studies have also 

reported WM related activation within frontal and parietal areas using univariate measures of 

population-level activity such as the blood-oxygenated-level-dependent (BOLD) signal with 

functional magnetic resonance imaging (fMRI) (D’Esposito et al., 2000; Postle et al., 2004; 

Riggall & Postle, 2012) and both spectral power (Jensen & Tesche, 2002; Sauseng et al., 

2010) and ERP amplitude (Vogel & Machizawa, 2004; Vogel, McCollough, Machizawa, 

2005; Adam et al., 2018) in EEG. Note, the role of the PFC in the storage of WM stimulus 

representations remains contested, and it is argued to instead support the representation of 

abstract task rules (Serences, 2016; Sreenivasan & DEsposito, 2019). Relatively recent use of 

multivariate techniques has revealed that WM representations are also stored in sensory 

cortices. Harrison and Tong (2009) used fMRI to monitor neural activity during an 

orientation discrimination task in which participants were first presented with a sequence of 
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two oriented gratings, and after a brief delay were retro-cued to use either the first or second 

stimulus as a reference against a rotated test grating. Despite the absence of a sustained 

elevation in the BOLD response during the delay period, successful orientation decoding 

accuracy was observed throughout the trial period using activity from areas V1-V4. 

Classifiers trained on neural activity recorded when oriented gratings were passively viewed 

in a follow-up experiment successfully generalized to activity during the WM task, 

suggesting that WM representations have a format similar to sensory percepts. Indeed, 

decoding of feature-selective WM representations from activity generated by sensory cortices 

has been successfully replicated across many fMRI studies (Ester et al., 2009, 2015; 

Serences, 2016; Serences et al., 2009). These findings led to a reigniting of the sensory 

recruitment hypothesis, which proposes that visual WM representations are stored in the 

same visual cortical areas used to encode stimulus features ( Adam et al., 2022; but see 

Bettencourt & Xu, 2016). Critically, these representations are stored in a “sensory-like” 

format. Altogether, univariate measures of neural activity can be used to index the capacity 

limits of visuospatial WM (e.g., CDA), while multivariate modeling can be used to capture 

the structure of these feature-selective representations.    

Exercise and Working Memory 

 Similar to other executive functions, WM is sensitive to exercise-induced changes in 

global state. Tempest et al., (2017) investigated performance on the 2-back task during 60 

minute bouts of light and vigorous intensity cycling, and observed a significant decline in 

memory sensitivity (i.e., d-prime) over time in the latter exercise condition. This decrement 

corresponded to a significant increase in blood lactate concentration over time and enhanced 
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activation in the PFC. In contrast, Zheng et al., (2022) observed no change in 2-back 

accuracy during moderate intensity cycling relative to rest. Rather, exercise significantly 

decreased both RT and oxygenated hemoglobin levels in the bilateral frontal polar area, 

DLPFC, and right premotor and supplementary motor cortex. Quelhas Martins et al., (2013) 

found evidence for an increase in the number of correct responses on the paced serial 

addition test (PASAT) during moderate intensity cycling relative to a resting condition. 

Further, response latency slopes were reduced on the Sternberg task during low and moderate 

intensity cycling compared to a control condition. After engaging in exercise, WM 

processing speed has been shown to be enhanced (Loprinzi, 2018). For example, RT on a 

spatial 2-back task was reduced after a 20 minute instance of HIIT in highly fit participants, 

and after both a 10 minute instance of HIIT and 20 minutes of moderate intensity running in 

low fit participants (Mou et al., 2023). RT was also reduced on a modified Sterberg task for 

up to 30 minutes post moderate intensity running (Pontifex et al., 2009). Hence, during 

exercise the speed and accuracy of WM may be differentially influenced depending on 

exercise intensity and type, while after exercise WM performance may be enhanced 

(Loprinzi, 2018; Cantelon & Giles, 2021).  

Outstanding Questions 

 The ameliorating influence of exercise on cognition is not consistent. For all of the 

studies recounted so far reporting significant positive effects, there exist an equivalent 

number of studies that have observed either a negative or null effect. Heterogeneity in 

empirical results is thought to reflect the moderation of exercise-induced effects by 

participant traits (e.g., age, baseline cognitive performance, fitness level) and exercised 
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protocol characteristics (e.g., intensity, type, duration) (Basso & Suzuki, 2017; Cantelon & 

Giles, 2021; Chang et al., 2012). Numerous meta-analyses have been conducted over the 

years to extract a cohesive and statistically based understanding of the relationship between 

acute exercise and cognition, however they have largely focused only on executive function, 

older adults, and adolescents (Chang et al., 2012; Ishihara et al., 2021; Liu et al., 2020; 

Moreau & Chou, 2019). Further they only have used the frequentist approach, which can fail 

to accurately capture heterogeneity both with and between studies and does not characterize 

the relative probabilistic evidence in favor of exercise modulating behavioral task 

performance. In addition, despite the extensive evidence in favor of altered neural tuning and 

sensory processing during a physically active state, it is unclear how the neural correlates of 

cognitive functions dependent on this sensory information may be impacted in turn. More 

specifically, the neural processes supporting WM encoding and maintenance may be 

modulated by exercise, especially since activity in regions of the frontoparietal-occipital 

network is changed during exercise relative to a sedentary state.  

 The current dissertation aims to investigate these outstanding questions and is 

organized as follows. Chapter II details a Bayesian meta-analytic investigation of the impact 

of physical activity on cognitive task performance with the intention of characterizing the 

relative evidence in favor of acute exercise modulating cognition1. Chapter III applies a 

multivariate technique to EEG recorded during exercise to compare the fidelity of spatial 

 
1 These data are currently being considered for publication: Garrett, J., Chak, C., Bullock, T., 
& Giesbrecht, B. (Under Review). Acute Physical Activity has Selective Effects on 
Cognition in Young-Adults. Nature Communications Psychology. 
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WM representations in a physically active state relative to a sedentary state.2 Chapter IV 

investigates how exercise impacts the ability to selectively encode information into WM 

encoding and the amount of information that can be stored. Chapter V synthesizes presented 

results with current frameworks of global state and brain function and discusses remaining 

gaps in the literature.   

 
2 These data have been published: Garrett, J., Bullock, T., & Giesbrecht, B. (2021). Tracking 
the contents of spatial working memory during an acute bout of aerobic exercise. Journal of 
Cognitive Neuroscience, 33(7), 1271-1286. https://doi.org/10.1162/jocn_a_01714 
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Chapter II: Acute Physical Activity has Selective Effects on 

Cognition in Young-Adults 

INTRODUCTION 

A single bout of exercise induces a cascade of neuromodulatory changes that 

influences multiple brain systems (Basso & Suzuki, 2017; Hillman et al., 2008). This 

includes an increase in the synthesis of neurotransmitters (e.g., acetylcholine, dopamine, 

GABA, glutamate) and neurotrophic factors (e.g., BDNF), which can occur in a brain-region 

specific manner (see Basso & Suzuki, 2017 for review). Given these impacts on the brain, it 

would be reasonable to hypothesize that single brief bouts of exercise are associated with 

changes in performance across a range of cognitive domains. Consistent with this hypothesis, 

there is abundant evidence that attention (Alves et al., 2014; Chang et al., 2015; Davranche & 

Audiffren, 2004; Lambourne et al., 2010), working memory (Chen et al., 2016; S. C. Kao et 

al., 2020; Quelhas Martins et al., 2013; Roig et al., 2013; Schaefer et al., 2010), decision 

making (Kamijo et al., 2004; Kamijo & Takeda, 2009), and cognitive control (Hillman et al., 

2009; Kamijo et al., 2007) are facilitated by brief bouts of physical exercise. However, there 

is also evidence suggesting that exercise has little, or no, effect on cognitive task 

performance. For instance, Komiyama et al. (2016) observed no difference in accuracy on a 

spatial delayed response task between exercise and rest conditions. Further, Lambourne et al. 

(2010) found no change in working memory performance either during or after a single bout 

of exercise. The discrepant pattern of results in the literature investigating the link between 

exercise and performance on cognitive tasks is surprising given the consistent and robust 

physiological effects of even brief bouts of physical activity. However, it is unclear whether 
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this limited impact of exercise on performance reflects the true state of affairs or whether the 

apparent lack of robust influence is due to vast empirical discrepancies across studies in the 

literature. Studying the impact of single exercise sessions on cognition can provide insight 

into how changes in our body's physiological state impacts behavior. This understanding can 

then guide the creation of more effective longer-term exercise interventions, which 

essentially involve regularly repeating brief exercise sessions over an extended period. 

Meta-analytic techniques are a set of powerful tools that can expose dominant trends 

within a methodologically heterogeneous literature. There is a consensus amongst narrative 

reviews and previous meta-analyses that an acute bout of exercise has a small positive 

influence on behavioral performance (Basso & Suzuki, 2017; Cantelon & Giles, 2021; Chang 

et al., 2012; Haverkamp et al., 2020; Lambourne & Tomporowski, 2010; McMorris et al., 

2011; Moreau & Chou, 2019; Oberste et al., 2019). The nature of this effect is moderated by 

exercise protocol, cognitive task, and participant characteristics. For instance, Lambourne & 

Tomporowski (2010) observed that task performance during exercise was dependent on 

exercise modality, the type of cognitive task and when it was completed relative to exercise 

onset. Similarly, post-exercise performance was moderated by exercise modality and the type 

of cognitive task. Chang et al. (2012) reported that post-exercise cognitive performance was 

influenced by exercise intensity duration, and the time of cognitive test relative to exercise 

cessation. Interestingly, the authors found that study sample age was a significant moderator, 

where larger positive effects were found for high school (14-17 years), adult (31-60 years), 

and older adult (>60 years) samples compared to elementary (6-13 years) and young adult 

(18-30 years) samples. Multiple meta-analyses have observed that the effect of exercise is 

dependent on cognitive domain, with measures of executive function, attention, crystallized 
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intelligence, and information processing speed showing the largest gains (Chang et al., 2012; 

Haverkamp et al., 2020; Ishihara et al., 2021; Logan et al., 2023; Ludyga et al., 2016). 

Further, there is evidence that exercise has a differential influence on the speed and accuracy 

of cognitive processes. McMorris et al. (2011) observed that acute, intermediate exercise 

facilitated response times on working memory tasks, while accuracy was compromised. In 

contrast, exercise has been shown to boost both the accuracy and speed of cognitive control 

(Oberste et al., 2019). Altogether, it is important to consider cognitive task, participant, and 

physical activity characteristics to develop a holistic model of the relationship between 

exercise and cognition.   

While these earlier meta-analyses have provided unique insights into understanding 

the relationship between acute exercise and cognition, they have two major limitations. First, 

the most recent holistic quantitative synthesis of the extant literature was published over a 

decade ago (Chang et al., 2012). Meanwhile, the exercise and cognition literature has grown 

drastically. According to the electronic database Web of Science, almost 6,000 articles 

associated with the search term “exercise and cognition” have been published since this last 

holistic meta-analysis. In addition, more recent meta-analyses have primarily focused on 

executive processes (Haverkamp et al., 2020; Ludyga et al., 2016; Moreau & Chou, 2019; 

Oberste et al., 2021). Thus, previous models may provide an outdated and limited account of 

exercise-induced influences on other aspects of cognition, such as perception, long-term 

memory, and learning. Second, previous meta-analytic approaches employed frequentist 

statistical methods, which are based on a decision threshold rather than a characterization of 

the relevant evidence. As a result, it is possible that acute exercise and moderator variables 

are deemed to have a significant influence on task performance despite the fact that there 
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may only be a small degree of probabilistic evidence in favor of this notion. In addition, 

relying on a decision threshold prevents these models from conveying the likelihood that an 

exercise protocol elicits a change in cognitive task performance. Past frequentist meta-

analytic models also treated heterogeneity parameters as a fixed quantity and utilize only a 

point estimate, which can lead to an underestimation of the variability either between or 

within studies (Borenstein et al., 2010; Hackenberger, 2020; Sutton et al., 2000; Sutton & 

Abrams, 2001). This is especially true when the number of modeled studies is low (Chung et 

al., 2013; Kontopantelis et al., 2013; Sidik & Jonkman, 2007). When considered together, 

there is a clear need for an updated meta-analysis using an approach that addresses these 

limitations. 

The current study addressed these limitations in two ways. First, a comprehensive 

literature search was conducted spanning the years 1995-2023. To quantify the influence of 

exercise on cognition in young healthy adults, the search was limited to non-clinical studies 

whose subjects were between 18-45 years old. The analysis focused on subjects within this 

age range considering that exercise research has predominantly been dedicated toward 

studying the effects in children and older adults (Erickson et al., 2019; Stillman et al., 2020). 

Studies were required to be experimental in nature, and consist of both an acute exercise 

manipulation and cognitive task measurements. A broad range of cognitive domains 

encompassing tasks probing perception to executive function were included in the meta-

analysis. Similarly, a wide range of exercise types and testing contexts were included. For 

example, traditional laboratory exposures to exercise (e.g., cycling, running) and sport 

activities in real-world settings were viable candidates for analysis. By casting a wide net, the 
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current study provides a large scope and updated summary of the current state of the exercise 

and cognition literature.  

Second, the current study uses a Bayesian meta-analytic approach to synthesize 

studies across the acute exercise and cognition literature. The Bayesian approach affords a 

flexible modeling framework that uses reported effect sizes to characterize the relative 

evidence in favor of a modulatory account. Inherently, a random effects meta-analytic model 

is hierarchical in nature, making it well suited for Bayesian methods. When utilized within 

this statistical framework, priors are placed on parameters at the highest level of the model 

such as the estimated pooled effect size and measures of heterogeneity. This approach has 

several advantages compared its frequentist counterpart. First, the use of priors on 

heterogeneity parameters can attenuate the underestimation of variation both between and 

within studies (Thompson & Sharp, 1999; Williams et al., 2018), leading to a clearer 

understanding of sources of heterogeneity and an increased precision when estimating the 

pooled effect size (Kruschke & Liddell, 2018). Furthermore, priors provide additional 

constraints on low-level parameter estimates and a greater degree of “shrinkage” of outliers 

towards the overall pooled effect size or mode(s) of grouping variables (Kruschke, 2014; 

Kruschke & Liddell, 2018). Therefore, a Bayesian meta-analysis is more robust to outliers 

and can be more conservative when proper priors are employed. Second, the method yields a 

posterior distribution for all parameter estimates. This grants the capability of directly 

modeling the degree of uncertainty in heterogeneity estimates (Thompson & Sharp, 1999). 

Posterior distributions can be used to compute the probability that an exercise protocol elicits 

a change in task performance of a given magnitude (e.g., large effect size). Compared to the 

approximation of p-values and confidence intervals, which require additional assumptions for 
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hierarchical models, calculating the high-density interval (HDI), which indicates the most 

credible outcomes in the posterior distribution, for complex hierarchical models is seamless 

(Kruschke & Liddell, 2018). Third, it is possible to incorporate knowledge from previous 

meta-analyses when constructing prior distributions. This affords the ability to quantitatively 

compare the observed data to the predictions of previous models.  

  Considering the results of past meta-analyses, exercise was expected to have a small 

positive influence on cognition. Cognitive task and exercise characteristics were anticipated 

to moderate this relationship, as evidenced by nonzero parameter estimates, reflecting the 

selective nature of exercise-induced effects. Model comparisons were conducted to evaluate 

how moderator inclusion improved predictive performance, and robustness of parameter 

estimates were determined by employing multiple priors and likelihood functions. 

METHODS 

Literature Search 

 Studies investigating the impact of an acute bout of exercise on cognition were 

obtained through searches of the electronic databases PsychInfo and Google Scholar 

according to the PRISMA guidelines (Moher et al., 2015). On 09 September 2023, databases 

were queried using a search string that combined the following physical activity and 

cognitive domain keywords: [“exercise” OR “physical activity” OR “physical exertion” OR 

“physical fatigue”] AND [“perception” OR “attention” OR “working memory” OR 

“executive function” OR “memory” OR “decision making” OR “motor skill” OR “skill 

acquisition” OR “language” OR “reasoning”]. For the PsychInfo search, the filters “journal 

article”, “English”, “empirical study”, “human”, and “peer reviewed” were applied. Search 
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results were limited to studies published between 1995-2023 and whose subjects were 

between 18-45 years of age.  

Eligibility Criteria 

 Studies were deemed eligible for inclusion in the meta-analysis if they met all of the 

following criteria: assessed the influence of an acute bout of exercise on cognition, compared 

the effects of exercise with an active and/or passive control group(s), utilized cognitive tasks 

that measured reaction time (RT) and/or accuracy, tested cognition either during, pre-,  or 

post- exercise and consisted of cognitively normal subjects. Note, an acute bout was defined 

as an instance of physical activity that occurred within a single 24-hour period (Chang et al., 

2012). Two researchers independently screened records based on their title, abstract, and full-

text. In the case of discrepancies, a third researcher resolved them by reading the full-text.  

Data Extraction and Coding 

 Information concerning experimental design and procedures, exercise details (i.e., 

type, intensity, duration), and sample characteristics were extracted from the final list of 

studies by a single researcher. Means and standard deviations of accuracy and/or RT 

measures on all cognitive tasks were inserted into an electronic spreadsheet for the 

calculation of effect sizes. The primary outcome measures for each domain were inserted 

separately if a task assessed multiple cognitive domains. Regarding studies that probed 

cognition at multiple time points during or post-exercise, measures for each time point were 

also recorded separately. If the statistics necessary for calculating effect sizes were not 

reported in the full-text of the article, the authors were contacted and asked to provide them.  
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 All effect sizes were categorized into one of seven cognitive domains that were 

generally based on the DSM-5 (Sachdev et al., 2014): executive function, information 

processing, perception, attention, learning, motor skills, and memory. The classification 

criteria used for categorizing a cognitive task into a domain is provided in the 

Supplementary Material. To account for variability in the metric used to measure exercise 

intensity across studies (e.g., ventilatory threshold, heart rate), each intensity was labeled as 

either light, moderate, or vigorous according to the American College of Sports Medicine 

guidelines (Garber et al., 2011). Exercise durations were grouped into one of five time bins: 

≤ 16 minutes, 20-27 minutes, 30-35 minutes, 40-45 minutes, ≥ 60 minutes. In the event that a 

study did not provide the exercise duration, its time bin was labeled as “undefined”. Exercise 

types were based on the modality reported in each study, yielding the following 

categorizations: cycling, high intensity interval training (HIIT), running, walking, circuit 

training, resistance exercise, and sports activity. The latter category encompassed studies that 

used sports-related exercises that did not fit into the other labels, such as rock climbing or 

soccer. The time at which cognitive task performance was evaluated relative to exercise was 

categorized as either during exercise or 0, 15, 20-75, and ≥ 180 minutes after cessation. 

Lastly, effect sizes were coded according to task performance dependent measures (i.e., RT 

vs accuracy). Note, the levels of each categorical moderator were chosen with the intention 

of achieving a balance between specificity and statistical power to yield reliable estimates 

that can inform the design of future exercise studies.   

Calculating Effect Sizes 
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 Cohen’s d effect sizes were calculated for studies that tested cognition pre-/post-

exercise without a control condition by dividing the mean change in performance by the 

standard deviation of the pre-test. If the study included a control group (e.g., rest), the mean 

change of the control condition was subtracted from the mean change of the exercise 

condition and divided by the pooled standard deviation of pretest scores (Hedges & Olkin, 

1985; Lambourne & Tomporowski, 2010). For studies that tested cognition during, or only 

after exercise, the mean of the control condition was subtracted from the mean of the exercise 

condition and divided by the standard deviation of the control condition (McMorris et al., 

2011). All effect sizes were converted into the bias-corrected standardized mean difference, 

Hedge’s g, by multiplying them by the correction factor J = 1 −  3
4𝑑𝑑𝑑𝑑−1

  where df is the 

degrees of freedom (Borenstein et al., 2021). The sign of effect sizes for response time and 

error were reversed to reflect a positive influence of exercise on cognitive task performance. 

Once effect sizes were extracted from each study, inspection of a funnel plot and Egger’s 

regression test were conducted to assess the risk of publication bias. 

Bayesian Hierarchical Modeling 

 The overall effect of exercise on cognition was assessed using a Bayesian hierarchical 

model (Higgins et al., 2009; Röver, 2020), which was implemented through the R package 

brms (Bürkner, 2018). In the first level of the model, a study’s observed effect size(s) θ�𝑖𝑖𝑖𝑖 was 

assumed to be an estimate of the true effect size θ𝑖𝑖. The observed effect(s) 𝜃𝜃�𝑖𝑖𝑖𝑖 were modeled 

as being sampled from a normally distributed population underlying study k with a mean 

equivalent to the true effect and a variance of σ𝑖𝑖2 . In the second level of the model, the true 

effect size 𝜃𝜃𝑖𝑖 was assumed to have been drawn from an overarching distribution whose mean 
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represented the overall pooled effect μ, and whose variance depicted the degree of between 

study heterogeneity 𝜏𝜏2. The final level of the model contained weakly informative priors. A 

standard normal prior was used for the pooled effect, while the prior for 𝜏𝜏2 was a Half-

Cauchy distribution with location and scale parameters set to 0 and 0.5, respectively.  

Following the main meta-analysis, subgroup analyses were conducted to determine 

potential moderators of the relationship between exercise and cognitive task performance. 

More specifically, we analyzed the influence of the following primary moderators: cognitive 

domain, time of cognitive test relative to exercise, task outcome measure, exercise intensity, 

duration, and type. The following secondary moderators were also analyzed to determine the 

influence of study and participant characteristics on the overall pooled effect size: average 

sample age, body mass index (BMI kg/m2), height (cm), weight (kg), VO2 max (ml/kg/min), 

percentage of female participants, within- vs between-study design, and publication year. 

With the exception of publication year and the percentage of female participants, all 

secondary moderators were mean centered for interpretability. A standard normal distribution 

was used as a weakly informative prior for the difference in effect sizes between subgroups. 

When reporting model parameter estimates, we use the [mode ± standard deviation] and the 

89% HDI of posterior distribution. 

Statistical Inference 

 For all estimated effect sizes, Bayes Factors (BFs) were used to determine the degree 

of evidence in favor of a difference from zero. BFs were approximated using the reciprocal 

of the Savage-Dickey density ratio, which was implemented using the function 

bayesfactor_parameters from the bayestestR package (Makowski et al., 2019). This method 
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involves dividing the height of the prior distribution for the null value by the height of the 

posterior distribution at the same value, and represents the credibility of the null value for a 

parameter once the data has been taken into consideration. BFs were also used to ascertain 

the predictive performance of subgroup models. After each model was compared to a null 

counterpart (i.e., moderator excluded) using the function bayesfactor_models, an inclusion 

BF (bayesfactor_inclusion) was estimated to determine if including a moderator improved 

predictive power (Hinne et al., 2020). To estimate stable BFs, a large number of sampling 

iterations (10,000) and warmup samples (2,000) were used for each of four chains when 

estimating model parameters (Schad et al., 2021). BFs were interpreted following the 

guidelines proposed by Jeffreys (1961). A BF between 1 and 3 indicates “anecdotal” 

evidence for the alternative hypothesis, between 3 and 10 indicates “moderate” evidence, 

between 10 and 30 indicates “strong” evidence, and greater than 30 indicates “very strong” 

evidence (Dienes, 2016; Kass & Raftery, 1995; Kruschke & Liddell, 2018; Wetzels et al., 

2011). The reciprocal of these ranges signifies evidence in favor of the null hypothesis (e.g., 

0.33-1 = anecdotal evidence). When conducting subgroup analyses with more than two 

factors, orthonormal coding was employed to ensure that an identical prior was used for each 

factor level and that estimated BFs were accurate (Rouder et al., 2012). Parameter estimates 

were extracted from all models using the R package emmeans.   

Sensitivity Analysis 

 A popular criticism of the Bayesian approach is that priors are chosen subjectively, 

which in turn can bias parameter estimates and their corresponding BFs (Goldstein, 2006; 

Kruschke, 2014). Although utilizing weakly informative priors mitigates bias, a sensitivity 
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analysis that evaluates the contribution of both priors and the likelihood function must be 

conducted to determine if the model results are robust (Depaoli et al., 2020; Lambert et al., 

2005; McElreath, 2018; Williams et al., 2018). Thus, we replicated the previously described 

modeling approach with the exception of using two different priors for the overall pooled 

effect size. The first was a normal distribution with a mean of zero and standard deviation of 

½. Since this prior adds greater weight to the probability that exercise has no influence on 

task performance, we denoted it as the no effect (NE) prior. The second prior was constructed 

by synthesizing estimates from previous meta-analyses on acute exercise and cognition 

(Chang et al., 2012; Lambourne & Tomporowski, 2010; McMorris et al., 2011; Moreau & 

Chou, 2019; Oberste et al., 2019), resulting in a normal distribution with a mean of 0.24 and 

standard deviation of 0.57. This prior was denoted as the positive effect (PE) prior.  

The influence of the likelihood function was assessed by modeling study effect sizes 

as being sampled from a t-distribution. An advantage of using this likelihood function, 

compared to a normal distribution, is that model parameter estimates are stable with outliers 

(Kruschke, 2014). The Half-Cauchy prior was used for the scale of the distribution, while a 

standard normal prior was used for its mean. For its shape (i.e., degree of freedom) an 

exponential distribution with a rate equal to 1/29 served as a prior. To determine if meta-

analytic estimates were robust across the alternative priors and likelihood function, we 

visually compared the posterior distributions across models for large deviations (Depaoli et 

al., 2020).  

RESULTS 

Description of Studies 
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  The literature search yielded 15,900 peer reviewed journal articles, and after 

removing duplicates 8,295 remained. Subsequent an initial screening based off the titles and 

abstracts, 805 studies were identified as potential candidates for modeling. 113 of these 

studies were deemed eligible for inclusion in the meta-analysis according to their full-text 

contents (Figure 1). In total, 642 effect sizes were extracted from these studies, representing  

data from 4,390 

subjects. A majority of 

the effects measured 

the influence of 

exercise on executive 

function (k = 434) and 

attention (k = 109). 

Fewer effects were 

measured during 

exercise (k = 82) 

relative to after the 

cessation of exercise (k 

= 560). Visual 

inspection of a funnel 

plot suggested that the 

effect sizes were distributed symmetrically (Figure 2A), however there was very strong 

evidence for asymmetry according to Egger’s regression intercept (β = 1.18 ± 0.25; HDI = 

[0.78, 1.58]; BF = 253.24) suggesting the presence of publication bias. This was addressed 

 
Figure 1. PRISMA flow diagram of literature search and study selection for 
meta-analytic modeling. 
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by employing the trim and fill approach, which imputes low-precision effect sizes until the 

funnel plot is symmetrical (Duval & Tweedie, 2000).  

Overall Effect  

 The meta-analysis indicated that there was moderate evidence for an acute bout of 

exercise to have a small positive influence on overall performance across cognitive domains 

(g = 0.13 ± 0.04; HDI = [0.06, 0.20]; BF = 3.67) (Figure 2B & 2D). According to the 

posterior distribution, there was a low probability that the estimated pooled effect was less 

than or equal to zero (p = 0.01) and an 80% chance that the effect size fell between the range 

of 0 to 0.2 (Figure 2C). 

 
Figure 2. A) Funnel plot of study effect sizes. Imputed effect sizes after using the trim and fill method are 
represented by the unfilled circles. Vertical blue line indicates the estimated pooled effect sizes, while dashed 
black lines represent a pseudo 95% confidence limits. B) Posterior distribution of estimated pooled effect. 
Horizontal black line indicates bounds of 89% HDI. C) Empirical cumulative density function of distribution in 
B, where the dashed black line indicates the pooled effect. D) Representation of using the Savage-Dickey ratio 
to calculate BFs. The density of the null value in the prior distribution (red) is divided by its density in the 
posterior distribution (blue) to yield probabilistic evidence in favor of the alternative hypothesis. E) Posterior 
distributions of between and within study heterogeneity.  
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Table 1. 
Study description and estimated effect sizes 

Study N Experimental 
Design 

Exercise 
Type 

Exercise 
Intensity 

Duration 
(min) 

Cognitive 
Domain 

Test 
Time 

N 
Effects 

g 89% HDI 

Hogervorst et al., 
1996 

15 Within Cycling Vigorous 60 Inhibition Pre-
Post 

1 0.03 -0.39, 
0.47 

McMorris & 
Graydon, 1996 

20 Within Cycling Moderate 
 

Vigorous 

2 Executive 
Function 

During 6 0.11 -0.19, 
0.45 

Brisswalter et al., 
1997 

20 Within Cycling Vigorous 40 Information 
Processing 

Pre-
Post 

4 0 -0.36, 
0.35 

Arcelin & 
Delignieres, 1998 

22 Within Cycling Moderate 10 Information 
Processing 

During 2 0.03 -0.35, 
0.44 

McMorris et al., 1999 9 Within Cycling Moderate 
 

Vigorous 

Task 
Completion 

Executive 
Function 

During 4 0.01 -0.34, 
0.38 

Collardeau et al., 
2001 

11 Within Running Vigorous 90 Perception Pre-
Post 

2 -
0.05 

-0.47, 
0.34 

Deuster et al., 2002 13 Within Running Vigorous Volitional 
Exhaustion 

Attention 
 Learning 
 Executive 
Function 

Pre-
Post 

24 0.16 -0.05, 
0.39 

Hillman et al., 2003 19 Within Running Vigorous 30 Executive 
Function 

Post 2 -
0.08 

-0.44, 
0.35 

Pesce et al., 2003 16 Within Cycling Moderate Task 
Completion 

Attention During 2 0.25 -0.15, 
0.70 

Davranche et al., 
2005a 

7 Within Cycling Maximal Volitional 
Exhaustion 

Perception Pre-
Post 

2 0.08 -0.32, 
0.49 
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Davranche & Pichon, 
2005b 

12 Within Cycling Maximal Volitional 
Exhaustion 

Perception During 1 0.06 -0.37, 
0.49 

Pesce et al., 2007 48 Within Cycling Vigorous Task 
Duration 

Attention During 2 0.14 -0.24, 
0.57 

Vickers & Williams, 
2007 

10 Within Cycling Moderate 
 

Vigorous 

2 Motor 
Skills 

Pre-
Post 

4 -
0.05 

-0.43, 
0.29 

Lo Bue-Estes et al., 
2008 

26 Between Running Vigorous 20 Executive 
Function 
Memory 

Pre-
Post 

8 0.01 -0.28, 
0.32 

Coles & 
Tomporowski, 2008 

18 Within Cycling Moderate 40 Executive 
Function 

Pre-
Post 

1 0 -0.41, 
0.44 

Fontana et al., 2009 32 Within Running Light 
 

Moderate 
 

Vigorous 

4 Executive 
Function 

During 6 0.07 -0.23, 
0.40 

Luft et al., 2009 30 Within Running Vigorous 20 Attention 
Information 
Processing 
 Memory 

Pre-
Post 

10 -
0.11 

-0.39, 
0.16 

Pontifex et al., 2009 21 Within Running 
 Resistance 

Vigorous 30 Executive 
Function 

Pre-
Post 

4 -
0.31 

-0.69, 
0.05 

Srygley et al., 2009 52 Within Walking Light Task 
Completion 

Executive 
Function 

During 2 0.03 -0.4, 0.39 

Thomson et al., 2009 163 Within Treadmill Vigorous 27 Executive 
Function 

Pre-
Post 

2 0.1 -0.3, 0.49 

Lambourne et al., 
2010 

19 Within Cycling Moderate 40 Executive 
Function 

Pre, 
During, 

Post 

4 -
0.36 

-0.76, 0 
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Norling et al., 2010 121 Between Running Light 
 

Moderate 
 

Vigorous 

30 Attention Pre-
Post 

3 0.08 -0.28, 
0.46 

Young et al., 2010 27 Within Running Moderate 7 Motor 
Skills 

Pre-
Post 

1 -
0.02 

-0.47, 
0.39 

Chang et al., 2011 42 Between Cycling Vigorous 30 Executive 
Function 

Pre-
Post 

3 -
0.02 

-0.37, 
0.35 

Green & Helton, 
2011 

12 Within Climbing Moderate 3 Memory During 1 -0.2 -0.71, 
0.20 

Ohlinger et al., 2011 50 Within Walking Light Task 
Completion 

Attention 
Executive 
Function 

During 3 -
0.01 

-0.38, 
0.35 

Hope et al., 2012 52 Between Punching Vigorous Volitional 
Exhaustion 

Memory Post 3 -
0.42 

-0.83, -
0.02 

Lambourne, 2012 16 Within Cycling Vigorous 35 Executive 
Function 

Pre-
Post 

1 -
0.01 

-0.46, 
0.39 

Moore et al., 2012 30 Between Cycling Moderate 6-54 Perception 
 Executive 
Function 
 Attention 

Pre-
Post 

5 -
0.12 

-0.43, 
0.23 

Quelhas Martins et 
al., 2013 

24 Between Cycling Moderate 8 Executive 
Function 

During 1 0.1 -0.33, 
0.53 

Roberts & Cole, 2013 40 Within Circuit Light 
 

Moderate 

1-5 Executive 
Function 

Pre-
Post 

8 -
0.05 

-0.34, 
0.25 

Bullock & 
Giesbrecht, 2014 

26 Between Cycling Moderate 136 Perception Pre, 
Post 

8 -
0.14 

-0.44, 
0.15 
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Byun et al., 2014 25 Within Cycling Light 10 Executive 
Function 

Pre-
Post 

2 0.17 -0.23, 
0.58 

Darling & Helton, 
2014 

12 Within Climbing Moderate 5 Memory During 2 -0.1 -0.51, 
0.29 

Nibbeling et al., 2014 22 Between Running Vigorous 10 Motor 
Skills 

 Executive 
Function 
 Memory 
 Attention 

Post 5 -
0.08 

-0.43, 
0.24 

Pontifex et al., 2015 34 Within Running Moderate 20 Attention Pre-
Post 

2 0 -0.39, 0.4 

Schmidt-Kassow et 
al., 2014 

18; 
31 

Within Walking Light 30 Memory During 2 0.05 -0.36, 
0.43 

Tsai et al., 2014 60 Between Resistance Moderate 
 

Vigorous 

45 Executive 
Function 

Pre-
Post 

4 0.02 -0.33, 
0.36 

Bantoft et al., 2016 45 Within Walking Light < 60 Executive 
Function 
 Attention 

 
Information 
Processing 

During 4 -0.1 -0.39, 
0.17 

Larson et al., 2015 69 Between Walking Light 60 Executive 
Function 

During 2 -
0.03 

-0.43, 
0.35 

Osgood, 2015 86 Between Sport 
Activity 

Light 2 Attention Post 1 -
0.06 

-0.47, 
0.37 

Perciavalle et al., 
2015 

30 Within Cycling Vigorous Volitional 
Exhaustion 

Executive 
Function 

Pre-
Post 

4 0.22 -0.11, 
0.61 
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Shia et al., 2015 17 Within Cycling Vigorous 45 Attention Pre-
Post 

1 -
0.11 

-0.55, 0.3 

Stevens et al., 2015 35; 
34 

Between Cycling Light 
 

Moderate 

15 Learning During 4 0.04 -0.31, 0.4 

Weng et al., 2015 26 Within Cycling Moderate 30 Executive 
Function 

Pre-
Post 

4 0.29 -0.07, 
0.67 

Alloway et al., 2016 72 Within Running Light 8 Executive 
Function 

Pre-
Post 

1 -
0.01 

-0.43, 
0.42 

Ando et al., 2012 14 Within Cycling Moderate 
 

Vigorous 

6 Perception During 2 -
0.08 

-0.48, 
0.31 

Brush et al., 2016 28 Within Resistance Light 
 

Vigorous 

45  
 Executive 
Function 

Post 60 -0.1 -0.26, 
0.04 

Connell et al., 2016 24 Between Cycling Moderate 180 Attention Pre-
Post 

4 -
0.21 

-0.6, 0.12 

Hsieh et al., 2016a 20 Within Resistance Moderate 
Vigorous 

30 Executive 
Function 

Pre-
Post 

1 0.04 -0.39, 
0.46 

Hsieh et al., 2016b 18 Within Resistance Moderate 30 Executive 
Function 

Post 1 0.03 -0.39, 
0.47 

Komiyama et al., 
2016 

10 Within Cycling Moderate 30 Executive 
Function 

During 3 0.04 -0.33, 
0.42 

Lowe et al., 2016 51 Within Walking Light 
 

Moderate 

20 Executive 
Function 

Pre-
Post 

4 0.01 -0.34, 
0.35 

Torbeyns et al., 2016 23 Within Cycling Light 30 Memory 
 Executive 

During 6 -0.1 -0.42, 
0.22 
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Function 
 Attention 

Tsukamoto et al., 
2016 

12 Within Cycling Moderate 
 

Vigorous 

40 Executive 
Function 

Pre-
Post 

16 -
0.19 

-0.45, 
0.07 

Zach & Shalom, 
2016 

20 Within Running 
Volleyball 
 Resistance 

Vigorous 15; Game 
duration 

Executive 
Function 

Pre-
Post 

6 0.37 0.02, 0.7 

Chang et al., 2017 30 Within Cycling Vigorous 30 Executive 
Function 

Post 1 0.35 -0.07, 0.9 

Crush & Loprinzi, 
2017 

352 Between Running Moderate 10; 20; 30; 
45; 60 

Executive 
Function 
 Attention 

Post 75 -
0.14 

-0.28, 0.0 

González Fernández 
et al., 2017 

18 Within Cycling Light 45 Attention During 1 0.02 -0.39, 
0.45 

Lindheimer et al., 
2017 

60 Between Cycling Light 25 Executive 
Function 

Pre-
Post 

16 -
0.12 

-0.35, 
0.12 

Lowe et al., 2017 28 Within Walking Light 
 

Moderate 

20 Executive 
Function 

Pre-
Post 

4 -
0.31 

-0.68, 
0.06 

Luu & Hall, 2017 31 Within Yoga Light 25 Executive 
Function 

Pre-
Post 

2 -
0.19 

-0.62, 
0.19 

Randolph & 
O’Connor, 2017 

18 Within Walking Light 10 Attention 
Executive 
Function 

 
Information 
Processing 

Pre-
Post 

28 -
0.06 

-0.25, 
0.14 
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Slutsky et al., 2017 24 Between Cycling Light 15 Attention 
Executive 
Function 

Pre-
Post 

7 -
0.18 

-0.47, 
0.14 

Sudo et al., 2017 32 Between Cycling Vigorous Volitional 
Exhaustion 

Executive 
Function 

Pre-
Post 

3 0.28 -0.07, 0.7 

Cuttler et al., 2017 120 Between Resistance 
 Walking 

Light 
 

Moderate 

30 Memory 
 Attention 

Pre-
Post 

6 -
0.61 

-0.98, -
0.25 

Daikoku et al., 2018 44 Between Cycling Light 3 Memory During 1 -
0.04 

-0.5, 0.35 

Elkana et al., 2018 69 Between Cycling Moderate 15 Executive 
Function 

Pre-
Post 

1 -
0.03 

-0.5, 0.35 

Fenesi et al., 2018 77 Between Calisthenics Light 13 Learning 
Memory 

Post 2 0.16 -0.24, 
0.55 

Kendall, 2018 60 Between HIIT Vigorous 20 Information 
Processing 
 Learning 
 Cognitive 

Control 

Post 8 0.82 0.42, 
1.16 

Legrand et al., 2018 101 Between Running Moderate 15 Attention 
 Executive 
Function 

Pre-
Post 

2 0.05 -0.34, 
0.44 

Samani & Heath, 
2018 

14 Within Cycling Vigorous 10 Executive 
Function 

Pre-
Post 

1 0.08 -0.34, 
0.52 

Siddiqui & Loprinzi, 
2018 

20 Within Walking Moderate 20 Memory 
Executive 
Function 

Pre, 
During, 

Post 

4 0.02 -0.31, 0.4 

Sng et al., 2018 80 Between Walking Light 15 Memory During, 
Post 

4 -
0.25 

-0.62, 0.1 
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Wade & Loprinzi, 
2018 

34 Between Walking Moderate 15 Memory Post 1 -
0.13 

-0.56, 0.3 

Yamazaki et al., 2018 30 Within Cycling Light 
 

Moderate 

10 Attention 
 Executive 
Function 

Pre-
Post 

16 0.07 -0.16, 
0.32 

Baker et al., 2019 19 Within Cycling Light 120 Attention 
 Executive 
Function 

During 3 -
0.06 

-0.44, 
0.31 

Du Rietz et al., 2019 26 Within Cycling Vigorous 20 Attention 
 Executive 
Function 

Pre-
Post 

4 -
0.06 

-0.42, 
0.28 

Engeroff et al., 2019 26 Within Resistance Moderate 
 

Vigorous 
 

Maximal 

60 Executive 
Function 

Pre-
Post 

4 0.1 -0.26, 
0.45 

Haynes et al., 2019 24 Within Walking Light 15 Memory During, 
Post 

9 -
0.04 

-0.32, 
0.24 

Johnson & Loprinzi, 
2019 

40 Within Walking Moderate 
Vigorous 

15 Memory Post 2 -
0.01 

-0.04, 
0.38 

McGowan et al., 
2019 

58 Within Running Moderate 20 Executive 
Function 

Pre-
Post 

2 -
0.02 

-0.39, 
0.39 

Mehren et al., 2019 31; 
32 

Within Cycling Vigorous 30 Executive 
Function 

Post 8 0.15 -0.14, 
0.45 

Schmidt et al., 2019 15; 
19 

Within Running Vigorous 38 Attention Pre-
Post 

6 -
0.24 

-0.57, 
0.09 

Stenling et al., 2019 32 Within Walking Moderate 3 Executive 
Function 
Attention 

Post 8 0 -0.29, 
0.29 
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Wu et al., 2019 35 Within Cycling 
 Resistance 

Light 
 

Vigorous 

30 Executive 
Function 

Post 8 0.28 -0.03, 
0.59 

Zhou & Qin, 2019 72 Between Cycling Light 25 Executive 
Function 

Pre-
Post 

2 -
0.05 

-0.42, 
0.37 

Aly & Kojima, 2020 40 Between Cycling Light 20 Executive 
Function 

Pre-
Post 

2 0.07 -0.32, 
0.47 

Chacko et al., 2020 15 Within Cycling Vigorous 30 Executive 
Function 

Pre-
Post 

2 0.06 -0.32, 
0.49 

Kao et al., 2020 23 Within Walking Light 20 Executive 
Function 

Post 4 0.24 -0.10, 
0.63 

Morris et al., 2020 14 Within Cycling Moderate 30 Attention 
 Executive 
Function 

Pre-
Post 

6 -
0.01 

-0.33, 0.3 

Walsh et al., 2020 15; 
13 

Within Walking Moderate 20 Executive 
Function 
 Attention 

Pre-
Post 

8 0.01 -0.31, 
0.29 

Kao et al., 2021 36 Within HIIT 
Walking 

Moderate 16 Executive 
Function 

Post 2 0.32 -0.06, 
0.78 

Kim et al., 2021 16 Within Walking Vigorous 10 Executive 
Function 

Pre-
Post 

2 -
0.03 

-0.38, 
0.41 

Klatt & Smeeton, 
2021 

27 Within Cycling Vigorous Task 
Completion 

Memory During 4 -
0.15 

-0.5, 0.21 

Kuhne et al., 2021 50 Between Cycling Moderate 40-55 Memory Post 2 -
0.09 

-0.49, 
0.29 

Manocchio & Lowe, 
2021 

22 Within Walking Light 
Moderate 

20 Attention 
Executive 
Function 

Pre-
Post 

8 -
0.06 

-0.34, 
0.25 



  

 
 

48
 

Miyashiro et al., 2021 17 Within Push-Ups Vigorous 20 Executive 
Function 

Post 1 0 -0.45, 
0.41 

Trammell & Aguilar, 
2020 

28 Within Running Vigorous 20 Memory 
Executive 
Function 

Pre-
Post 

5 -
0.11 

-0.47, 0.2 

Zhu et al., 2021 16 Within Cycling 
Running 

Moderate 
Vigorous 

40 Executive 
Function 

Pre-
Post 

16 0.1 -0.14, 
0.34 

Aguirre-Loaiza et al., 
2022 

19 Between Cycling Vigorous 20 Executive 
Function 

Pre-
Post 

4 -
0.06 

-0.41, 0.3 

Drollette & 
Meadows, 2022 

22 Within HIIT Vigorous 9 Executive 
Function 

Post 6 0.06 -0.24, 
0.39 

Engeroff et al., 2022 26 Within Resistance Moderate 
Vigorous 

60 Attention Pre-
Post 

16 -
0.17 

-0.39, 
0.08 

Frith et al., 2022 45 Within Running Moderate 15 Executive 
Function 

During 1 0.06 -0.4, 0.46 

Kao et al., 2022 27 Within Running Moderate 24 Attention 
Executive 
Function 

Pre-
Post 

5 -
0.04 

-0.35, 
0.31 

LaCount et al., 2022 18 Within HIIT Vigorous 16 Attention 
Executive 
Function 

Information 
Processing 

Post 3 -
0.09 

-0.46, 
0.28 

Loprinzi & Storm, 
2023 

180; 
225; 
158 

Between Treadmill Moderate 
Vigorous 

25 Memory Post 6 -
0.02 

-0.33, 0.3 

Shirzad et al., 2022 28 Within Cycling Light 26 Executive 
Function 

Pre-
Post 

2 -
0.23 

-0.64, 
0.17 
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Zheng et al., 2022 27 Within Cycling Moderate 15 Executive 
Function 

During 2 0.27 -0.11, 
0.72 

Chueh et al., 2023 30 Within Step 
Exercise 

Vigorous 20 Attention 
Executive 
Function 

Pre-
Post 

8 0.15 -0.15, 
0.44 

Yamada et al., 2023 85 Within Recumbent 
Bike 

Vigorous 20 Executive 
Function 

Pre-
Post 

4 0.02 -0.31, 
0.38 

B. Zhang et al., 2023 18 Within Cycling Moderate 25 Perception Post 4 0.29 -0.09, 
0.65 

D. Zhang et al., 2023 76 Within Cycling Light 20 Attention Pre-
Post 

4 0.03 -0.33, 
0.36 
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There was a large amount of heterogeneity within (τ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖= 0.65 ± 0.03; HDI = [0.60, 0.70]; 

𝐼𝐼𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖2 = 81.19%) and moderate amount between (τ𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖= 0.29 ± 0.05; HDI = [0.20,  

0.38]; 𝐼𝐼𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖2  = 15.9%) studies (Figure 2E).   

Subgroup Analyses 

 Primary subgroup analyses revealed that acute exercise reduced RT on cognitive tasks 

(g = 0.27; HDI = [0.18, 0.36]; BF = 6.71 × 103) but had no impact on accuracy (g = 0.04; 

HDI = [-0.04, 0.12]; BF = 6.15 × 10−2) (Table 2) (Figure 3A). Engaging in either cycling (g 

= 0.21; HDI = [0.11, 0.32]; BF = 14.74) or HIIT (g = 0.73; HDI = [0.40, 1.09]; BF = 26.05) 

was found to have an enhancing effect on performance in cognitive tasks (Figure 3B). In 

regard to cognitive domain, there was evidence that acute exercise has a positive influence on  

 
Figure 3. Posterior distributions of A) cognitive and B) exercise moderators. The horizontal black line indicates 
the 89% HDI interval, while the black dot represents the mode of the posterior distribution.  
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  Table 2.  
Primary Moderator Estimates 

Exercise Moderator 
Variable N g 89% HDI BF10 

 Cognitive Moderator 
Variable N g 89% HDI BF10 

Intensity      Domain     
Light 167 0.10 -0.02, 0.22 0.13  Attention 109 0.06 -0.08, 0.17 0.08 
Moderate 222 0.07 -0.03, 0.18 0.09  Executive Function 434 0.18 0.10, 0.27 36.97 

Vigorous 253 0.19 0.09, 0.28 5.03  Information Processing 15 0.12 -0.17, 0.41 0.14 
      Learning 12 0.24 -0.11, 0.59 0.25 

Duration (minutes)      Memory 44 -
0.06 -0.25, 0.13 0.08 

≤ 16 161 0.14 0.02, 0.26 0.30  Motor Skills 6 -
0.03 -0.51, 0.49 0.20 

20-27 152 0.15 0.02, 0.26 0.32  Perception 22 0.13 -0.17, 0.44 0.15 
30-35 93 0.08 -0.08, 0.22 0.09       
40-45 113 0.04 -0.13, 0.21 0.09       
> 60 48 -0.03 -0.21, 0.15 0.08  Task Outcome     
Not provided 75 0.37 0.17, 0.57 6.21  Accuracy 377 0.04 -0.04, 0.12 6.15e-2 
      Reaction Time 265 0.27 0.18, 0.36 6.71e3 
Type           
Circuit 8 0.08 -0.33, 0.53 0.26       

Cycling 204 0.21 0.11, 0.32 14.74 
 Task Completion Time 

(relative to exercise)     

HIIT 18 0.73 0.40, 1.09 26.05  During 82 0.02 -0.18, 0.13 0.09 

Resistance 97 -0.06 -0.29, 0.14 0.11  Immediately After 315 0.16 0.11, 0.30 4.03 
Running 172 0.05 -0.10, 0.19 0.08  20-75 min post 94 0.22 0.13, 0.44 0.76 
Sport Activity 26 0.04 -0.23, 0.29 0.11  > 180 min post 151 0.08 -0.03, 0.28 0.10 
Walking 117 0.04 -0.10, 0.19 0.07       
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Table 3. 
Secondary Moderator Estimates 

Moderator Variable N g 89% HDI BF10 
Publication Year 642 0.13 0.06, 0.20 3.25 
Exp. Design 
Between 
Within 

 
193 
449 

 
0.03 
0.17 

 
-0.11, 0.16 
0.08, 0.24 

 
0.07 
12.18 

Age (Years) 
(𝜇𝜇 = 22.49) 599 0.14 0.06, 0.21 3.13 

% Female 577 0.12 0.05, 0.20 4.23 
BMI (kg/m2) 
(𝜇𝜇 =  24.02) 378 0.20 0.08, 0.30 1.28 

VO2 max (ml/kg/min) 
(𝜇𝜇 =  43.22) 299 0.19 0.05, 0.34 1.08 

Height (cm) 
(𝜇𝜇 =  158.55) 275 0.21 0.09, 0.33 2.90 

Weight (kg) 
(𝜇𝜇 =  65.02) 283 0.21 0.08, 0.33 4.28 

 

executive processes (g = 0.18; HDI = [0.10, 0.27]; BF = 36.97). Furthermore, behavioral 

performance was found to improve immediately after exercise cessation (g = 0.16; HDI = 

[0.11, 0.30]; BF = 4.03) and in response to vigorous 

intensity exercises (g = 0.19; HDI = [0.09, 0.28]; BF =

5.03). Lastly, at least moderate evidence in favor of non-

zero parameter estimates were observed for the secondary 

moderators publication year, within-subjects design, age, 

percentage of female participants, and weight (Table 3). 

To test for the possible contribution of a learning effect to 

the estimated overall pooled effect size, a separate meta-

analysis was conducted on effects from studies employing 

Table 4. 
Subgroup model comparisons 

Model BFInclusion 

No Moderators 1 
Exercise Intensity 2.16e-4 
Exercise Duration 9.35e-4 

Exercise Type 2.00e-2 
Cognitive Domain 4.97e-3 

Task Outcome 357.10 
Task Completion Time 5.52e-4 

Publication Date 9.05e-4 
Experimental Design 0.04 

Age 0 
% Female 4.53e-3 

BMI 0.04 
VO2 8.40e-3 

Height 2.89e-3 
Weight 0.01 
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a pre-/post-test design (N effect sizes = 298). Despite the estimated pooled effect size for this 

subset of data being nominally similar to the estimate for the entire dataset, there was anecdotal 

evidence in favor of the null hypothesis (g = 0.15 ± 0.06; HDI = [0.04, 0.24]; BF =0.95). 

Moderator analyses indicated that this effect did not differ as a function of whether or not a 

control group was included in the study (BFInclusion =0.12"; w/ control: g "=0.18 ±0.10"; 

HDI"="[" 0.03,0.33"]; BF"=0.51"; w/o control: g"=0.11 ±0.13"; HDI"=[-0.03,0.26]"; 

BF"=0.18" " ), suggesting that the estimated influence of exercise on general cognitive 

performance is not driven by a learning effect. 

Model Comparisons 

Model comparisons were performed to determine if including a moderator improved 

predictive performance. Only a model that included task performance measure as a moderator 

was more likely when compared to a null counterpart (BFInclusion = 357.10) (Table 4). This is 

likely due to a number of factors. First, acute exercise had a negligible impact on a majority of 

the levels in each subgroup. Second, there was a high degree of uncertainty in estimated model 

coefficients, as evidenced by their wide HDI intervals. Third, Bayesian inference automatically 

penalizes model complexity and favors more parsimonious models. If a model has many 

parameters, but a majority of them are nonzero, then a simpler counterpart will be favored.    
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Interactions Between Moderators 

 An exploratory analysis was conducted to determine if the influence of moderator 

variables was contingent on one another. Due to the computationally intensive nature of 

Bayesian modeling, analyses were limited to the following pairs of moderators: 1) exercise 

intensity and type, 2) exercise intensity and duration, 3) exercise type and duration, 4) 

cognitive domain and exercise type, 5) cognitive domain and exercise intensity, 6) cognitive 

domain and task performance measure, 7) exercise type and task performance measure. 

Although none of the pairs of interaction models had more predictive power compared to a 

null counterpart (BFInclusion ≤ 1), there were two that had nonzero parameter estimates. 

 The first model included an interaction between cognitive domain and exercise type 

(BFInclusion = 7.30 × 10−4). There was evidence in favor of cycling improving performance  

 

Figure 4. Posterior mode estimates of models including interactions between cognitive domain and A) exercise 
type and B) task outcome measure. Width of line represents 89% HDI. 
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on tasks that probed attention (g = 0.34; HDI = [0.14, 0.56]; BF = 3.05) and executive 

function (g = 0.28; HDI = [0.14, 0.40]; BF = 17.83). HIIT exercises were found to bolster 

executive function (g = 1.01; HDI = [0.61, 1.43]; BF = 155.33), while resistance exercises 

had an aversive impact on attentional performance (g = -0.76; HDI = [-1.20, -0.38]; BF =

18.07) (Figure 4A). The second model included an interaction between cognitive domain 

and task performance measure (BFInclusion = 7.56 × 10−3) and indicated that time-dependent 

measures of executive function are improved (g = 0.30; HDI = [0.19, 0.39]; BF =

1.10 × 103) (Figure 4B). 

Sensitivity Analyses 

The estimated overall effect of acute exercise on cognition was consistent across the 

NE prior (g = 0.13 ± 0.04; HDI = [0.06, 0.20]; BF = 6.52), PE prior (g = 0.12 ± 0.04; HDI =  

[0.06, 0.19]; BF = 6.51), and t likelihood function (g = 0.12 ± 0.04; HDI = [0.06, 0.18]; BF 

= 8.77) (Figure 5A). Interestingly, there was anecdotal-to-moderate evidence in favor of the 

synthesized estimate from previous meta-analyses (i.e., g = 0.24) across the PE (BF = 3.19), 

 
Figure 5. Estimates for the A) overall pooled effect size, B) between- and C) within-study heterogeneity 
parameters across the t-likelihood function (TL), weakly informed, null effect (NE), and positive effect (PE) 
priors. 



 

56 
 

NE (BF = 2.78), and standard normal (BF = 5.27) priors. Estimates of between study 

heterogeneity were also robust across the NE prior (τ𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖= 0.29 ± 0.05; HDI = [0.20, 

0.37]), the PE prior (τ𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖= 0.29 ± 0.05; HDI = [0.21, 0.37]), and t likelihood function 

(τ𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖= 0.31 ± 0.03; HDI = [0.26, 0.38]) (Figure 5B). In contrast, within study 

heterogeneity was estimated to be lower when using the t likelihood function (τ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖= 0.17 

± 0.02; HDI = [0.13, 0.19]) relative to the NE (τ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖= 0.65 ± 0.03; HDI = [0.61, 0.70]) and 

PE (τ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖= 0.65 ± 0.02; HDI = [0.60, 0.70]) priors (Figure 5C). Note, this reduction 

reflects the diminished influence of outliers on variance estimates by the inclusion of the 

shape parameter for the t distribution (v = 1.52 ± 0.14; HDI = [1.30; 1.73]). In addition to 

testing the robustness of parameter estimates, a model comparison was conducted to 

determine if either the null or positive effect prior was more probable given the data. The t-

likelihood function was not included in this comparison since it would only indicate if effect 

sizes were more likely to have been drawn from either a normal or t-distribution. When 

compared to a standard normal prior, there was anecdotal evidence in favor of both the PE 

(BF = 2.56) and NE (BF = 1.48) priors. Relative to the PE prior, there was anecdotal 

evidence against the NE prior (BF = 0.73). Altogether, parameter estimates were not biased 

by the prior or likelihood function.  

Executive Function Meta-Analysis 

Considering that the majority of the effect sizes were from tasks that probed executive 

function, and that this cognitive domain encompasses multiple sub-domains, a separate meta- 

analysis and set of meta-regressions were conducted on this subset of data. Categorization 

criteria from previous meta-analyses and systematic reviews (Ludyga et al., 2016, Ishihara et 
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al., 2021, Cantelon & Giles, 2021) were used to classify effect sizes into the following sub-

domains of executive function: working memory, cognitive control, decision making, 

planning, and inhibition. For completeness, the primary moderators used in the main meta-

analysis were also tested. 

The results were similar to the main meta-analysis. There was very strong evidence in 

favor of exercise having a small positive influence on overall task performance (𝑔𝑔 = 0.20 ± 

0.06; HDI = [0.12, 0.30]; BF = 29.57), and a moderate degree of heterogeneity both within 

(τ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖= 0.51 ± 0.03; HDI = [0.47, 0.57]) and between studies (τ𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖= 0.40 ± 0.06; HDI 

= [0.30, 0.48]). Subgroup analyses indicated that a model including the moderator task 

outcome measure was had more predictive power relative to a null counterpart (BF = 48.43). 

Paralleling the main meta-analysis, there was very strong evidence that acute exercise 
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  Table 5. 
Executive Function Moderator Estimates 

Exercise 
Moderator 
Variable 

N g 89% HDI BF10 
 Cognitive Moderator 

Variable N g 89% HDI BF10 

Intensity      Sub-Domain     
Light 107 0.23 0.08, 0.37 1.71  Cognitive Control 55 0.23 0.06, 0.39 0.73 
Moderate 151 0.15 0.01, 0.28 0.30  Decision Making 28 0.10 -0.16, 0.39 0.14 
Vigorous 175 0.24 0.12, 0.36 13.49  Inhibition 153 0.21 0.09, 0.33 3.14 
      Planning 18 0.14 -0.12, 0.38 0.15 
Duration 
(minutes)      Working Memory 179 0.22 0.11, 0.34 6.89 

≤ 16 93 0.25 0.09, 0.40 1.76       
20-27 99 0.13 -0.02, 0.27 0.19  Task Outcome     
30-35 68 0.19 0.03, 0.36 0.44  Accuracy 253 0.13 0.04, 0.23 0.63 
40-45 100 0.13 -0.06, 0.32 0.16  Reaction Time 180 0.32 0.21, 0.42 749.18 
> 60 25 0.11 -0.12, 0.32 0.13       
Not provided 48 0.53 0.29, 0.83 24.40  Type     
      Circuit 8 0.15 -0.31, 0.65 0.31 
Task Completion 
Time (relative to 
exercise) 

    
 

Cycling 133 0.28 0.15, 0.42 19.58 

During 39 0.23 0.004, 0.44 0.45  HIIT 12 0.96 0.56, 1.38 71.23 
Immediately 
After 197 0.21 0.10, 0.31 4.17  Resistance 90 -0.07 -0.33, 0.17 0.12 

20-75 min post 72 0.31 0.13, 0.47 4.11  Running 116 0.06 -0.12, 0.25 0.10 
> 180 min post 125 0.13 -0.03, 0.29 0.17  Sport Activity 11 0.30 -0.07, 0.68 0.35 
      Walking 63 0.14 -0.05, 0.34 0.18 
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improved RT on executive function tasks (g = 

0.32; HDI = [0.21, 0.42]; BF = 748.18) but 

had no effect on accuracy (g = 0.13; HDI = 

[0.04, 0.23]; BF = 0.63) (Table 5). 

Furthermore, there was moderate evidence in 

favor of a positive impact of exercise on 

inhibition (g = 0.21; HDI = [0.09, 0.33]; BF =

3.14) and working memory (g = 0.22; HDI = 

[0.11, 0.34]; BF = 6.89) (Figure 6). Yet, a 

model including executive function sub-domain as a moderator did not improve model 

performance (BFInclusion = 7.52 × 10−4), nor did models including any interactions between 

moderators.  

DISCUSSION 

A large corpus of empirical work has examined how a single bout of acute exercise 

modulates activity within multiple brain systems that underly cognition. Despite 

inconsistencies in results across empirical studies, there is consensus amongst previous 

reviews and meta-analyses that acute exercise impacts behavioral performance (Chang et al., 

2012; Lambourne & Tomporowski, 2010; Moreau & Chou, 2019) and that this relationship is 

moderated by both exercise protocol and behavioral task characteristics. The goal of the 

present work was to address two key limitations of previous meta-analyses. First, recent 

meta-analyses have a narrower focus, often limited to a single cognitive domain or a specific 

subset of domains. In contrast, the current meta-analysis presents an updated synthesis of the 

 
Figure 6. Posterior distributions for executive 
function sub-domain. Horizontal black line indicates 
the 89% HDI interval, while the black dot represents 
the mode of the posterior distribution. 
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literature spanning a much wider range of cognitive domains. Second, in contrast to previous 

frequentist approaches, a Bayesian framework was adopted allowing for the quantification of 

the degree of evidence in favor of the hypothesis that acute exercise influences cognition in 

young healthy adults. The current meta-analysis observed that acute exercise has a small 

positive influence on overall cognitive task performance, and sensitivity analyses indicated 

that the alternative hypothesis was 6.51-8.77 times more likely than the null across multiple 

priors and likelihood functions. The magnitude and directionality of this effect were 

consistent with the results of previous meta-analyses on acute exercise and cognition (Chang 

et al., 2012; Etnier et al., 1997; McMorris et al., 2011; Moreau & Chou, 2019). Subgroup 

analyses suggested that this relationship is moderated by task performance measure, 

cognitive domain, exercise type and intensity, and the time of task completion relative to 

exercise cessation. Model comparison results indicated that accounting for variations 

amongst moderator levels did not improve predictive performance. Given our eligibility 

criteria, these results are limited to healthy individuals between the ages of 18-45 years old.   

Similar to McMorris & Hale (2012), acute exercise was found to improve RT but 

have no influence on accuracy. A possible explanation for this differential impact on task 

outcome measures is that exercise modulates primary motor cortex (M1) excitability (Neva et 

al., 2021). There is accumulating evidence that acute exercise increases M1 intracortical 

facilitation (Lulic et al., 2017; Neva et al., 2017; Singh et al., 2014; Yamazaki et al., 2019) 

and inhibition (Mooney et al., 2016; Smith et al., 2014). Yamazaki et al. (2019) observed that 

the intracortical circuits of both exercised (i.e., legs) and non-exercised (i.e., hand) effectors 

are modulated by an acute bout of low intensity pedaling. Thus, alterations in the activity of 

excitatory or inhibitory circuits of non-exercised cortical representations may promote faster 
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RT on cognitive tasks. However, the lack of concurrent changes in corticospinal excitability 

or motor evoked potentials suggests that this explanation is not a viable account of a 

mechanism that engenders faster RTs. An alternative explanation is that exercise increases 

peripheral and central concentrations of catecholamines, such as norepinephrine, epinephrine, 

and dopamine, which in turn improves the speed of cognition (Basso & Suzuki, 2017; 

McMorris et al., 2009; McMorris & Hale, 2015). Indeed, acute exercise has been found to 

improve RT on choice reaction time, decision making, and interference tasks (Chang et al., 

2012; Tomporowski, 2003). Yet, it is unclear as to why changes in neurochemical levels 

would facilitate reaction time but have no impact on accuracy. Considering that physical 

activity modulates population-level tuning in the sensory areas of nonhuman animals and 

invertebrates (Ayaz et al., 2013; Fu et al., 2014; Kaneko et al., 2017; Keller et al., 2012; 

Maimon et al., 2010; Niell & Stryker, 2010; Polack et al., 2013), along with sensory 

responses in humans (Bullock et al., 2015, 2017; Cao & Händel, 2019), it stands to reason 

that the fidelity of stimulus representations would also be impacted, resulting in changes in 

accuracy. Changes in the fidelity of feature selective stimulus representations can be 

determined by applying encoding models to recorded neural activity (Brouwer & Heeger, 

2009; Bullock et al., 2017, 2023; Foster et al., 2016; MacLean et al., 2019; Samaha et al., 

2016; Sprague et al., 2015). For instance, Garrett et al. (2021) applied an inverted encoding 

model to topographical patterns of alpha band activity, recorded at the scalp, while subjects 

completed a spatial working memory task both at rest and during a bout of moderate intensity 

cycling. Notably, it was possible to reconstruct spatially selective responses during exercise, 

and the selectivity of these responses decreased during exercise relative to rest. Therefore, 

encoding models can be a powerful tool for future research to demystify how the accuracy of 
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task-relevant representations is influenced by exercise. It is also important to keep in mind 

that many psychological tasks are relatively simple to do, which can lead to ceiling effects 

that may mask the influence of exercise on accuracy measures. Lastly, the differential impact 

of exercise on accuracy and RT may be due to the relative sensitivities of these dependent 

measures to modulations of different stages of information processing. For example, there is 

evidence that in near-threshold tasks accuracy is sensitive to perceptual manipulations, 

whereas in supra-threshold (i.e., perceptually easy tasks, including many of those used in the 

studies in this meta-analysis) RT is sensitive to modulations in both perceptual and post-

perceptual processes (Mordkoff & Egeth, 1993; Santee & Egeth, 1982). Indeed, Davranche et 

al., (2023) utilized a drift diffusion model to determine which aspects of decision-making are 

modulated by HIIT. Importantly, drift rate and decision response boundary size increased 

significantly after exercise relative to before, while non-decision time decreased. This 

suggests there was an improvement in perceptual discrimination, the efficiency of non-

decisional processes (e.g., motor execution), and the adoption of a more conservative 

criterion. Future research employing computational models of response time and 

representational fidelity is needed to develop a comprehensive understanding of the selective 

influence exercise on information processing speed and accuracy.  

Parameter estimates of a model including exercise modality as a moderator suggested 

that engaging in cycling or HIIT may beneficially impact cognition, especially on attentional 

and executive processes. Cycling is a commonly used modality in exercise and cognition 

research. Numerous empirical studies have found that a bout of cycling benefits inhibition, as 

measured using either the Stroop or Eriksen Flanker task (Basso et al., 2015; Chang et al., 

2014; Davranche et al., 2009; Faulkner et al., 2016; Kamijo et al., 2007; Kunzler & Carpes, 
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2020; Yanagisawa et al., 2010). Improvements in planning (Basso et al., 2015; Hung et al., 

2013), task-switching (Bae & Masaki, 2019; Oberste et al., 2021; Pesce & Audiffren, 2011), 

and the speed of decision making (McMorris, 2009) have also been reported. In contrast to 

the ubiquity of cycling, the use of HIIT workouts in exercise and cognition research is a 

relatively recent practice, hence the small number of effect sizes from studies using this 

modality compared to other modalities. The number of effect sizes is important because low-

level parameters in a hierarchical model are influenced both by the subset of data directly 

dependent on the low-level parameter, and by high-level parameter estimates that rely on all 

of the data. This makes low-level parameter estimates indirectly dependent on the entire 

dataset, and causes shrinkage in estimates at all levels of the model. In other words, the 

estimated relationship between HIIT and behavioral performance is derived directly from the 

few representative effect sizes and indirectly from the rest of the data. The observed positive 

effect of HIIT on cognition corroborates previous findings. For example, Alves et al. (2014) 

observed that the time to complete a Stroop Task decreased after ten 1-minute bouts of 

exercising at 80% heart rate reserve relative to a control condition. Improvements in time-

dependent measures on interference tasks (i.e., Stroop and flanker) have been correlated with 

an increase in left dorsolateral prefrontal cortex activity, as measured with functional near 

infrared spectroscopy (fNIRS), and a decrease in P3 latency measured with EEG (Kao et al., 

2018). Furthermore, enhancements have also been shown to coincide with an increase in 

peripheral levels of neural growth factors and lactate (Kujach et al., 2020). Lastly, a recent 

meta-analysis on elite athletes observed that HIIT team-based sports had a positive impact on 

cognitive task performance (Logan et al., 2023). Interestingly, because of the small number 
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of published studies in the literature, it is currently unclear if the type of exercise modality 

used for HIIT workouts (e.g., cycling, sprinting, resistance) differentially impacts cognition.  

Behavioral task performance was found to be improved by engaging in vigorous 

intensity exercise. These results are surprising, considering that exercise intensity is believed 

to have an inverted-U relationship with performance; where moderate intensity exercise 

elicits the greatest enhancements while more intense, fatiguing exercise imposes decrements 

(Chang et al., 2012; Dietrich & Audiffren, 2011; Etnier et al., 1997; McMorris et al., 2009; 

McMorris & Hale, 2012; Mehren et al., 2019). This effect could be driven by HIIT workouts 

but may also depend on multiple cognitive task and exercise protocol characteristics. For 

instance, Chang et al. (2012) observed that exercise intensity  was only a significant 

moderator when cognition was tested post-exercise. Similarly, Oberste et al. (2019) found 

that exercise intensity influenced time-dependent measures of interference control but not 

accuracy. When considering these results, one must also consider that both aforementioned 

meta-analyses included studies whose subjects were children, adolescents, and older adults. 

In contrast, the current study was limited to young adults, and there is evidence that the effect 

of exercise on cognition is comparatively smaller in this age group (Chang et al., 2012; 

Oberste et al., 2019). Thus, a model containing an interaction between cognitive domain, task 

outcome measure, and age groups across the lifespan may be required to observe evidence 

for an effect of intensity. In addition, there was evidence for the enhancing effects of exercise 

post-cessation, corroborating previous research (Basso et al., 2015; Basso & Suzuki, 2017; 

Chang et al., 2012). Interestingly, in the current meta-analysis cognition was not found to be 

impacted during exercise. Prior meta-analytic findings on cognition during exercise are 
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mixed, with some reporting that it is exacerbated (Lambourne & Tomporowski, 2010), while 

others that find evidence for an enhancement (Chang et al., 2012). 

Given that the majority of the effect sizes were from tasks that probed executive 

function, a separate meta-analysis was conducted on this subset of data. This analysis 

revealed that exercise has a small positive impact on reaction time measures of executive 

processes. When looking at model parameters, there was evidence in favor of exercise 

enhancing inhibition and working memory. Behavioral research has shown that both the 

accuracy (Quelhas Martins et al., 2013) and speed of working memory (Kao et al., 2021; 

Rattray & Smee, 2016) are facilitated by an instance of physical activity. What remains to be 

determined is the neural mechanisms that engender these behavioral effects. Kao et al., 

(2021) observed that a reduction in RT on the Sternberg task post-HIIT corresponded to an 

increase in frontal alpha desynchronization during encoding, maintenance, and retrieval 

periods when working memory load is high. Neuroimaging studies have also found evidence 

for changes in the activation levels of frontal areas (Li et al., 2014) and their connectivity 

with the intraparietal sulcus post-exercise (Weng et al., 2017). These changes in neural 

activity were not accompanied by a change in behavior, suggesting that more research is 

needed to demystify the neuromodulatory effect of acute exercise on working memory. 

Engaging in repeated bouts of acute exercise over a long period of time can have 

lasting changes on baseline neurochemical levels, cortical volume, and structural/functional 

connectivity, which can alter cognitive task performance (Baniqued et al., 2018; Basso & 

Suzuki, 2017; Firth et al., 2018; Voss et al., 2011, 2013). Research investigating the influence 

of these long-term interventions on cognition has primarily focused on children or older 
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adults. Systematic reviews and meta-analyses suggest that exercise has a small to moderate 

beneficial impact on general task performance for both of these age groups, with the largest 

effect sizes observed for measures of executive function, attention, and academic 

performance (Erickson et al., 2019). Despite the relative paucity of meta-analyses on how 

exercise interventions impact cognition in healthy young adults, recent work suggests that it 

may have a similar beneficial effect. Indeed, a recent meta-analysis, conducted by Ludyga et 

al. (2020), indicated that long-term exercise interventions have a small positive influence on 

general cognition regardless of age. The magnitude of this effect was dependent on the 

interaction between intervention length and exercise duration, with longer interventions and 

sessions producing greater benefits. Integrating these findings with the current meta-analysis, 

there is support for the notion that the beneficial impact of long-term interventions on 

cognition may be a product of repeated exposure to acute exercise induced effects. 

There are a number of possible explanations as to why exercise induced effects are 

small. One possible explanation is that cognitive function is at its peak during young 

adulthood, leaving little room for improvements in task performance. Indeed, previous 

reviews and meta-analyses have observed that the effect of exercise is moderated by age 

(Erickson et al., 2019), with the greatest benefits observed for preadolescent children and 

older adults (Chang et al., 2012; Ludyga et al., 2016; Oberste et al., 2019). Contrary to this 

account, though, the largest exercise induced effects were observed for executive processes, 

which are believed to be at peak efficiency during this period in the lifespan (Ferguson et al., 

2021; Hartshorne & Germine, 2015). Furthermore, there was moderate evidence that the 

impact of exercise increased as the average age of sampled young adults also increased. 

Another explanation may be that cognition is resilient to slight or modest perturbations in 
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overall global state. For example, Bullock et al., (2021) demonstrated there was no change in 

accuracy or RT on a target detection task during experimentally induced hypoxia, 

hypercapnia, hypocapnia, and normoxia. Meta-analytic modeling of the influence of acute 

stress on executive function revealed that stress has a small negative impact on working 

memory and cognitive flexibility, but no impact on inhibition (Shields et al., 2016). This 

suggests that cognition is able to selectively adapt to changes in physiological state caused by 

various types of stressors, including exercise. A final more intriguing and functional 

explanation for exercise having a small impact on cognition is that experimental protocols do 

not typically require the engagement of the body to execute the cognitive task, but rather 

have people engage in a cognitive task while exercising (or shortly thereafter). This 

experimental design contrasts real-world tasks that require engagement of the body in the 

service of the cognitive task. When components of the exercise are incorporated into task 

goals, then larger changes in performance may be observed. Empirical research investigating 

how exercise influences task performance in embodied settings versus classic laboratory 

settings (see Gordon et al., 2021 for review) is necessary to test the plausibility of this 

explanation. In addition, the notion that the integrated action of the body and the mind are 

required to produce the largest effects of exercise on cognition is consistent with a recent 

evolutionary account of the link between cognition and exercise (Raichlen & Alexander, 

2017a). 

The discrepancy in moderator results between the current meta-analysis and previous 

meta-analyses could be due to differences in the statistical approach. Frequentist methods 

typically conduct an omnibus test to determine if levels of a moderator are significantly 

different from one another and as a measure of a model’s goodness of fit. In contrast, the 
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Bayesian approach determines how likely the observed effect sizes are under a model that 

includes a moderator and if predictive power is increased. There are a few key advantages to 

using the Bayesian approach compared to classical frequentist methods. First, it models the 

uncertainty involved in estimates of between- and within-study heterogeneity and returns a 

full posterior distribution for both parameters (Raudenbush & Bryk, 2002). With these 

posterior distributions, one can simulate possible pooled effect sizes across credible levels of 

heterogeneity and develop an informed hypothesis for a subsequent meta-analysis. Similarly, 

the posterior distributions of effect size estimates can be used as well-informed prior 

distributions for new data. Importantly, this facilitates the updating of meta-analyses as new 

research is published. It should be mentioned that the degree of between-study heterogeneity 

was numerically similar to previous meta-analyses (Chang et al., 2012; Moreau & Chou, 

2019), implying that they did not suffer from an issue of underestimation by assuming 

heterogeneity to be a fixed quantity. Second, the Bayesian approach permits the inclusion of 

prior knowledge. Across all tested priors, there was evidence in favor of a pooled effect 

derived from averaging the reported estimates of previous meta-analyses. When comparing a 

prior distribution based on this knowledge to a null effect prior, the former was found to be 

more probable. Lastly, the posterior distribution of parameter estimates can be used to 

ascertain the likelihood that one will observe an effect size of a given magnitude for an 

exercise protocol and cognitive task combination. For example, a researcher could compute 

the probability that the influence of a bout of cycling on cognitive control will fall within the 

range of large effect sizes, even if that range does not encompass the maximum a posteriori 

probability estimate. In contrast, the frequentist approach only produces the maximum 

likelihood estimate and an interval around it based on fictitious repeats of the meta-analysis. 
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Therefore, the Bayesian approach provides more information for designing future exercise 

and cognition studies. 

Limitations 

A potential limitation in the current meta-analysis is the categorization of exercise 

type using the activity reported in each study. An alternative approach is to categorize 

exercise based on the theoretical and physiological distinctions between aerobic and 

anaerobic exercise. We did not adopt this approach here because many activities used in the 

literature typically include aerobic and anaerobic components, and basing their classification 

on what authors reported provides insights into the exercise modalities that have been 

predominantly used in the literature. Another limitation is the schema used to categorize 

exercise duration. In the event that a study did not report how long participants engaged in 

exercise, these effects were classified as “not provided”, rendering them as uninterpretable. 

Lastly, sensitivity analyses were not conducted for moderator parameter estimates due to the 

high degree of computational demands. However, considering that the pooled effect size 

estimate was robust across multiple priors and likelihood functions, it is likely that moderator 

parameter estimates are also consistent. 

Conclusions 

In summary, the current meta-analytic examination has shown that there is moderate 

evidence for an acute bout of aerobic exercise enhancing overall performance on cognitive 

tasks, especially on those that probe executive function and measure response time. 

Incorporating computational models of decision-making processes, such as drift-diffusion or 

signal detection models, into exercise research may provide useful insights into the nature of 
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speeded executive processes. Furthermore, testing performance in a real-world setting where 

individuals typically engage in physical activity may amplify exercise-induced effects.  
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Chapter III: Tracking the Contents of Spatial Working Memory 

During an Acute Bout of Aerobic Exercise 

INTRODUCTION 

Non-human animals and invertebrates show robust response gain in sensory 

processing areas during locomotion when compared to rest (Ayaz, Saleem, Schölvinck, & 

Carandini, 2013; Fu et al., 2014; Kaneko, Fu, & Stryker, 2017; Keller, Bonhoeffer, & 

Hübener, 2012; Maimon, Straw, & Dickinson, 2010; Niell & Stryker, 2010; Polack, 

Friedman, & Golshani, 2013). More recently, EEG studies suggest that a similar 

enhancement in human sensory responses may occur during bouts of acute physical exercise 

(Bullock et al., 2015, 2017; Cao & Händel, 2019). If sensory processes are impacted during 

bouts of acute aerobic exercise, then this raises the possibility that higher-order cognitive 

functions relying on input from these sensory areas may also be affected. Here, we test 

whether neural representations of object locations stored in visual working memory (WM) in 

humans are modulated during a bout of acute exercise. 

WM is an essential cognitive process that is critical for maintaining and manipulating 

information. Serving as the core interface between multiple cognitive systems (e.g., learning, 

attention, perception, long-term memory), this process provides a platform for guiding goal 

directed behaviors. Previous research has produced mixed evidence regarding modulations in 

WM during exercise. For instance, meta-analytic results indicate that information processing 

speed (i.e., reaction time) in WM tasks is enhanced during cycling, while accuracy is 

diminished (McMorris, Sproule, Turner, & Hale, 2011). McMorris and colleagues proposed 

that this pattern does not reflect a speed-accuracy trade off, but rather is due to increased 
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peripheral and serum levels of neurotransmitters, which, in turn, engenders greater levels of 

neural noise in some cortical regions while facilitating activity in others. Contrary to findings 

that suggest WM is impaired during exercise, there is evidence that moderate intensity 

exercise boosts the functioning of WM overall (Martins, Kavussanu, Willoughby, & Ring, 

2013). Further, it has been shown that walking at a preferred speed compared to a seated rest 

condition can result in enhanced performance under high memory loads (Schaefer et al., 

2010). Finally, concurrent exercise also has been found to have no impact on WM 

(Lambourne, Audiffren, & Tomporowski, 2010). Given the multimodal nature of WM (e.g. 

verbal, visuospatial, auditory), the heterogeneity of these findings may stem from exercise 

differentially affecting each domain. Indeed, there is evidence for a greater improvement of 

visuospatial WM compared to verbal-auditory WM as a result of exercise (Roig, Nordbrandt, 

Geertsen, & Nielsen, 2013). Regardless of the mixed behavioral outcomes, none of these 

studies provide insight into whether the underlying neural correlates of WM representations 

are modulated during exercise. 

To investigate whether WM representations are modulated during exercise, in the 

present study participants performed a visuospatial change detection task at rest and during a 

bout of low-intensity cycling exercise while EEG was recorded at the scalp. Each trial of this 

task involved remembering the location of a single memorandum presented at 

pseudorandomized locations on the circumference of an imaginary circle centered on 

fixation. After a delay period (1750 ms), a test stimulus was presented at the same location or 

at a different location and the participant indicated whether the location of the test stimulus 

changed relative to the location of the memorandum presented at the beginning of the trial. 

Previous studies have shown that patterns of EEG alpha power (~8-12 Hz) measured at the 
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scalp covary with the locations of attended and remembered stimuli (Sauseng et al., 2005; 

Thut, Nietzel, Brandt, & Pascual-Leone, 2006; Rihs, Michel, & Thut, 2007; MacLean, 

Bullock, & Giesbrecht, 2019), implicating a key role for this oscillation in spatial attention 

and working memory. Here, alpha power was modeled using a computational technique 

known as an inverted encoding model (IEM) to estimate the location-selective 

representations of the remembered locations from the unique patterns of brain activity 

recorded during this task. The IEM technique has been applied to fMRI blood oxygen-level 

dependent (BOLD) activity in visual and parietal cortex (Brouwer & Heeger, 2009, 2011, 

2013; Serences & Saproo, 2012; Sprague, Saproo, & Serences, 2015) as well as in scalp-

recorded EEG (Garcia, Srinivasan, & Serences, 2013; Samaha, Sprague, & Postle, 2016) to 

recover feature- or location-selective information from the patterns coded in brain activity. 

Previous studies have applied this technique to patterns of scalp-recorded oscillatory activity 

in the alpha frequency band to successfully track the locations of items that are stored and 

maintained in WM with high temporal precision (Foster, Sutterer, Serences, Vogel, & Awh, 

2016; Sutterer, Foster, Serences, Vogel, & Awh, 2019; MacLean, et al., 2019).  In addition, 

previous studies not only demonstrate that EEG is well suited to recording brain activity from 

physically active human participants (Cheron, 2016, Bullock et al., 2015) , but also that the 

IEM technique can be applied effectively to the EEG steady state visually evoked response 

recorded during cycling (Bullock et al., 2017). Here, the IEM technique was used to 

reconstruct spatially selective response profiles from topographical patterns of alpha-band 

activity recorded at rest and during exercise. Replicating previous work, the IEM technique 

revealed evidence for location-specific reconstructions of item locations held in WM coded 

in alpha activity at rest. Importantly, evidence for location-specific information was also 
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observed during exercise for much of the retention period. Direct comparisons of the IEM 

reconstructions between rest and exercise revealed evidence for degraded representations 

during exercise, but only late in the retention interval. 

MATERIALS AND METHODS 

Participants 

  Thirty-four (N = 34) adult student volunteers 

from the University of California, Santa Barbara 

(UCSB) community took part in the study in 

exchange for financial compensation ($20/h). All 

participants completed the Physical Activity 

Readiness Questionnaire (PAR-Q; National Academy of Sports Medicine) to determine their 

eligibility to participate in aerobic activity. Informed consent was provided before the study 

began. All participants reported normal or corrected-to-normal vision. The procedures 

detailed below were approved by the UCSB Human Subjects Committee and the US Army 

Human Research Protection Office. 

Visual Stimuli 

Participants performed a delayed spatial change detection task (Figure 7A) to 

measure WM performance (Foster et al., 2016; Wilken & Ma, 2004; Zhang & Luck, 2008). A 

grey target circle (subtending 1.6° visual angle) served as the sample stimulus and appeared 

centered on a point in an imaginary circle circumventing 4° from a blue fixation dot 

(subtending 0.2° visual angle). The sample stimulus was presented within one of eight 

Table 6. 
Demographic Information. 

Demographics 

Measure Average Score 

N 34 (17 females) 

Age (years) 21.85 ± 0.55 

Height (in) 67.79 ± 0.63 

Weight (lb) 152.67 ± 4.47 
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equally spaced 45° location bins relative to fixation [0°, 45°, 90°, 135°, 180°, 225°, 270°, 

315°], with stimulus location jittered randomly within each bin between +1-44°. The task 

consisted of 640 trials (10 blocks of 64 trials per block) and was presented on a 28-in. 

monitor (ASUS VG278Q, 1920 x 1080) via custom scripts that used functions from 

Psychophysics ToolBox for MATLAB (Brainard, 1997). The viewing distance was ~100 cm. 

Eye-Tracking 

Gaze contingent eye-tracking was employed to ensure participants remained fixated 

throughout the trial period, and to minimize the contamination of ocular artifacts in the EEG 

signal. Further, this ensured a stable projection of the visual display on the retina. The eye-

tracker (Eyelink 1000, SR Research Ltd., Mississauga, Ontario, Canada) was positioned 50-

70 cm from both eyes and binocular tracking sampling at 500 Hz was enabled. Pupil area and 

gaze position were collected throughout the trial period in both conditions. Pupil area was 

normalized using the following equation: (x – xmin)/(xmax – xmin), where x is the area for a 

given timepoint. 

Stationary bike 

The stationary bike was a CycleOps 400 Pro Indoor Cycle (Saris Cycling Group, 

Madison, WI, USA). T2 + Profile Design Aero Bars (Profile Design, Long Beach, CA, USA) 

were attached to the handlebars and a Logitech Trackball Mouse (Logitech, Newark, CA, 

USA) was fixed to the end of the bars (Figure 7B). The addition of aero bars served two 

important purposes. First, the participant was able to lean their elbows onto the bars leaving 

their hands free to respond to the task. Second, the bars stabilized the participant and helped 

reduce head and body movement, which is a critical factor for reducing noise during EEG  
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Figure 7. (A) Delayed spatial change detection task. (B) Experimental setup. Note, the task was completed in 
a dark room for optimal eye-tracking performance. 

recording. To minimize discomfort, the bike saddle and handlebar positions were carefully 

adjusted for each participant. Heart rate was tracked using a CycleOps wireless heart rate 

monitor, while pedaling resistance and cadence were set and recorded through Trainer Road 

software (Trainer Road, Reno, NV, USA). 

EEG 

 EEG data were recorded using a Brain Products ActiCHamp system (Brain Vision 

LLC, Morrisville, NC) consisting of 64 active electrodes arranged in an actiCAP elastic cap 

and placed in accordance with the 10–20 System. The TP9 and TP10 electrodes were adhered 

directly to the right and left mastoids. Connections were established between electrodes and 

the scalp using SuperVisc gel (Brain Products), which is especially viscous, thus mitigating 
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the potential for loss of signal due to gel dispersion as well as the potential for electrodes 

bridging due to increased sweating during exercise. At the beginning of each investigation, 

all impedances were reduced to below 15 kΩ. Data were sampled at 1000 Hz and referenced 

offline to the average mastoid signal. 

Procedure 

Participants were informed of the study’s structure and the intensity at which they 

would be required to exercise. They then completed a brief set of practice trials while cycling 

to ensure that they were capable of completing the task and to assess the stability of the eye-

tracker. Participants were also familiarized with the Rating of Perceived Exertion (RPE) scale 

(RPE; Borg, 1970; 1982). RPE is a subjective rating of the intensity of physical sensations 

experienced during physical activity; the scale ranges from 6 (no exertion) to 20 (maximal 

exertion). 

Prior to mounting the stationary bike, the wireless heart rate monitor and EEG cap 

were placed on the participant. Once on the bike, the seat position was carefully adjusted to 

maximize participant comfort. When ready, participants initiated the spatial change detection 

task. Each trial began with the fixation dot in the center of the screen, along with a green dot 

(subtending 0.4° visual angle) representing the location of the participant’s gaze. The 

participant aligned their gaze dot with the fixation dot and pressed the mouse button with 

their right thumb to start the trial. The fixation dot immediately turned grey to indicate that 

the trial was underway. The sample stimulus was then presented for 250 ms (with onset 

jittered randomly between 600 ms and 1500 ms after trial initiation). Stimulus offset was 

followed by a 1750 ms retention interval, where the fixation cross exclusively remained on 
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screen. During the fixation, stimulus presentation, and retention periods, participants were 

instructed to maintain their gaze at the center of the screen and covertly shift attention to the 

position of the sample stimulus and remember its location. If gaze position deviated from 

fixation > 2.4° or eye-blinks occurred during these periods, the trial was aborted and the 

message “Broken Fixation!” appeared on the screen. Aborted trials were appended to the end 

of the trial sequence, to ensure that a complete set of trials free from blinks and other eye 

movements was obtained. At the end of the retention period, a test stimulus (identical in size 

and color to the sample stimulus) appeared, either in the same location as the sample stimulus 

(50% of trials) or in a location shifted 20° clockwise or anticlockwise from the sample 

location (50% of trials). Participants were required to indicate whether the test stimulus 

appeared at the same location or different location as the sample stimulus by pressing either 

the left or right mouse button, respectively.   

Participants completed this task in both rest and exercise conditions (counter-

balanced) while seated on a stationary bike. In the exercise condition, they engaged in low-

intensity cycling with a resistance of 50 watts of power and at a pedaling cadence of 50 

revolutions per minute (RPM). These resistance and cadence levels were based on the 

intensity and cadence used in a previous study (Bullock et al., 2017). To ensure that 

participants maintained this cadence, they were instructed to pedal in time to a metronome 

set at 100 beats per minute (equaling 50 RPM). Cadence was continuously monitored 

throughout exercise. In the resting condition, the pedals were removed and replaced with a 

box positioned under each foot. Using these boxes, participants tapped their feet to a 

metronome set at the same frequency as described in the exercise condition; totaling to 50 

taps per foot per minute (equivalent to cycling cadence of 50 RPM). This manipulation was 
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intended to attenuate possible dual-task differences between conditions that may confound 

modulations in WM. To mitigate any possible exercise-induced arousal carry-over effects, 

participants who completed the exercise condition prior to the rest condition were required to 

sit quietly until their heart rate returned to within 10% of resting activity before beginning the 

resting condition. 

Excluding warm-up and cool-down time, each condition took ~50 minutes to 

complete. The warm-up consisted of either cycling with the aforementioned 

cadence/resistance or foot tapping for 3 minutes. Prior to, and following warm-up, the RPE 

scale was displayed to the participant, who then verbally reported their current level of 

exertion to the experimenter. Exertion ratings were also collected after every two blocks. 

Each experimental session took ~3.5 hours, including instrumentation time. 

Biases in Eye Position 

 Considering that the tolerance threshold for deviations from fixation is more lenient 

than what is typical for studies of visual WM and attention (i.e., > 1°) (Luck, 2014), it is 

possible that gaze position toward stimulus location may differ between rest and exercise 

conditions. Such an effect may be the source of differences in spatial selectivity between rest 

and exercise. To rule out this possibility, eye position bias was quantified by calculating the 

distance between fixation and stimulus location for each trial using the eye-tracking data. 

Distances were baseline corrected to the mean of the 200 ms pre-stimulus period. Because 

distance was computed relative to the stimulus location, more negative values would 

represent greater deviations towards the stimulus location. For ease of interpretation, the 
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absolute value of the average baselined gaze position was computed and plotted in Figure 

10. 

EEG Preprocessing 

Custom scripts in MATLAB (version 2019a, Massachusetts, The MathWorks Inc.) 

and functions from the EEGLAB toolbox (Delorme & Makeig, 2004) were used for offline 

processing of the EEG data. The continuous data were referenced to the average mastoid 

signal and then high- and low-pass filtered between 4 Hz and 30 Hz, respectively (EEGLAB 

function pop_eegfiltnew). The data were then resampled at 250 Hz (EEGLAB function 

pop_resample), to reduce computation time and memory demands, and epoched between -1 

and 2.5 s around the onset of the stimulus. Trials that were aborted due to eye-movements 

and trials where incorrect responses were made were excluded from any analysis. Noisy 

electrodes were removed via visual inspection (mean electrodes removed [mean ± SEM] = 1 

± 0.39). Electrodes that were excluded from one condition were also excluded from the other 

condition for each participant in order to avoid introducing bias when comparing EEG results 

across conditions. Trials exceeding ± 150 μV in remaining electrodes were then excluded 

(mean trials excluded overall: 4.99 ± 0.79; Rest: 4.71 ± 1.28, Exercise: 5.26 ± 0.95). For 

computing the degree of alpha lateralization (see Alpha Lateralization below) in 

topographical patterns of activity at the scalp, noisy electrodes were interpolated to facilitate 

averaging across participants.  

Spectral Decomposition 
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Epoched data were filtered using a 3rd order Butterworth bandpass filter (MATLAB 

function butter) between 8-12 Hz. A Hilbert transformation (MATLAB function hilbert) was 

then applied to the filtered signal in order to extract a measure of instantaneous amplitude 

and phase. To avoid edge artifacts, all subsequent EEG analyses were then focused on time 

points between -0.5s to 2s (from 0.5 pre-stimulus onset to the end of the retention period). 

Prior to modeling, total power was calculated as the square of the absolute value of the 

Hilbert transformed complex values. Total power reflects continuous oscillatory activity 

independent of its phase relationship with stimulus onset.  

Alpha Lateralization 

 Numerous studies have reported alpha power to be greatest over posterior electrodes 

ipsilateral to the cued location when compared to contralateral electrodes—indicating that 

spatial attention/memory alters the topographical distribution of alpha (Kelly, Lalor, Reilly, & 

Foxe, 2006; MacLean et al., 2019; Sauseng et al., 2005; Thut et al., 2006; Worden, Foxe, 

Wang, & Simpson, 2000). Further, exercise has been shown to modulate power across 

parietal-occipital electrode sites for a range of frequencies (Ciria et al., 2018; Ciria, 

Perakakis, Luque-Casado, & Sanabria, 2019). Thus, the degree to which exercise influenced 

the systematic changes in alpha power topography was determined by normalizing (i.e., 

dividing) the difference in alpha power at contralateral and ipsilateral parietal/occipital 

electrodes sites (P5/6, P7/8, PO7/8) by the sum of power at contralateral and ipsilateral sites. 

Normalized alpha power at contralateral and ipsilateral sites was then averaged by condition 

for the stimulus (0-250 ms) and retention (500-2000 ms) time periods.  

P1 Event Related Potential (ERP) 
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Possible differences in spatial selectivity between conditions may be driven by 

modulations in the early visual evoked response. Considering this, the impact of exercise on 

the P1 ERP component was examined. Raw EEG data were first referenced to the average 

mastoid signal, and then high/low-pass filtered at 1 and 30 Hz, respectively. Note, this high-

pass filter was applied to minimize the amount of sweat and movement related artifacts (e.g., 

cycling cadence was ~0.83 Hz). Afterwards the data was epoched again between -0.5 to 2.5 s 

(from 0.5 s pre-stimulus onset to the end of the retention period). Trials exceeding ± 150 μV 

measured at scalp electrodes of interest (P1/2, P3/4, P5/6, PO7/O8, POz/Oz, O1/2) were 

excluded. Three participants retained fewer than half of their trials after applying this 

rejection criterion, thus they were excluded only from subsequent ERP analyses. Note, we 

did not exclude these participants in IEM analyses since they did not yield the same amount 

of artifact rejected trials when using a more aggressive high-pass filter (4 Hz), and the focus 

of the IEM is on WM processes rather than sensory-evoked activity. Artifact free trials (mean 

overall: 494.47 ± 14.91; Rest: 514.10 ± 76.46; Exercise: 474.84 ± 88.12) were baseline 

corrected between -100-0 ms. 

Inverted Encoding Model 

Spatially selective neural population (“channel”) response functions/profiles (CRFs) 

were estimated based on the distribution patterns of total alpha power across the scalp (Foster 

et al., 2016). First, the model was trained to estimate the extent to which the linear 

combination of a priori canonical channel responses (i.e., set of basis functions) capture the 

underlying structure of the observed data (topographical distribution of induced alpha 

power), yielding a set of regression weights. Next, these weights were tested on observed 



 

83 
 

data that were excluded during training in order to estimate the channel response. The 

parameters of these channel response estimates were then used to quantify the spatially 

selective response. This method has been successfully used to reconstruct feature- and 

location- selective responses from human fMRI data (Brouwer & Heeger, 2009, 2011, 2013; 

Ester, Sprague, & Serences, 2015; Naselaris, Kay, Nishimoto, & Gallant, 2011; Serences & 

Saproo, 2012) and EEG recorded at the scalp (Bullock et al., 2017; Foster et al., 2016; Garcia 

et al., 2013; Samaha et al., 2016; Sutterer et al., 2019; MacLean et al., 2019).  

The IEM was computed for each participant separately using total alpha power. 

Within each location bin, trials were then randomly subdivided into three samples. Note that 

since trial-based artifact rejection can result in an uneven numbers of trials per condition, it 

was necessary to ensure that any comparisons between conditions were not influenced by 

unequal trial counts. Before entering the data into the IEM, the minimum number of trials per 

location bin (n) was calculated across both conditions for each participant. To ensure equal 

numbers of trials from each location bin were entered into the model, n-1 trials were 

randomly selected from each bin. After trials were randomly subdivided into samples, these 

samples were then averaged. Thus, each condition included 24 samples of averaged trials (8 

location bins x 3 samples of averaged trials). To ensure the outcome of the model and 

subsequent analyses were not influenced by an idiosyncratic selection of trials, this process 

was repeated 10 times, with a randomized selection of trials entered into the IEM for each of 

the iterations. For each iteration, an independent IEM was computed for each time point over 

the course of the trial (250 Hz EEG sampling rate x 2.5 s = 625 time points) to model the 

temporal dynamics of the location-selective response. For each iteration (and time point), the 

independent IEMs were cross-validated using a k-fold scheme, where k = 4. The averaged 
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trials were randomly grouped into four folds, with each fold having one averaged trial per 

location bin. Training was performed using 3/4 folds. Importantly, the IEM was trained on 

equivalent numbers of trials from both rest and exercise conditions to estimate a fixed 

encoding model. This training scheme mitigates the possibility that differences in spatial 

selectivity between rest and exercise are merely a reflection of differences in the signal-to-

noise ratio between conditions (Gardner & Liu, 2019; T. Liu et al., 2018; Sprague et al., 

2018, 2019). For each participant and each of the 10 iterations, IEMs were computed using 

the following algorithm. Let m represent the number of EEG electrodes in each dataset (mean 

electrodes = 63 ± 0.38; equal across rest and exercise conditions within each participant), n1 

represents the number of trials in the training set (3 folds of 8 averaged trials) and n2 

represents the number of trials in the testing set (1 fold of 8 averaged trials). Let j be the 

number of hypothetical location selective channels (C1, j x n1), composed of half-sinusoidal 

functions raised to the seventh power as the basis set. Here, the basis set was comprised of 8 

equally spaced locations (i.e. j=8). B1 (m x n1) represents the training set and B2 (m x n2) the 

test set. A standard implementation of the general linear model (GLM) was then used to 

estimate the weight matrix (W, m x j) using the basis set (C1). More specifically, using the 

GLM: 

                                                                       𝐵𝐵1 = 𝑊𝑊𝐶𝐶1                  (1) 

Then, the ordinary least-squares estimate of W can be computed as: 

 

                                                                𝑊𝑊� = 𝐵𝐵1𝐶𝐶1𝑇𝑇(𝐶𝐶1𝐶𝐶1𝑇𝑇)−1                                               (2) 
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Using the estimated weight matrix (𝑊𝑊� , Equation 2) and the test data (𝐵𝐵2), the channel 

responses 𝐶𝐶2 (𝑗𝑗 x 𝑛𝑛2) can be estimated by: 

            �̂�𝐶2 = (𝑊𝑊� 𝑇𝑇𝑊𝑊� )−1𝑊𝑊� 𝑇𝑇𝐵𝐵2                                         (3) 

After �̂�𝐶2 was solved for each location bin, the CRF on each average trial was then circularly 

shifted to a common stimulus-centered reference frame (degrees of offset from channel’s 

designated location bin), and the centered response functions were averaged across channels. 

The model was then repeated for each time point. The final centered CRF was computed by 

averaging over all 10 iterations at each time point. 

IEM Generalization 

To examine the temporal generalization of patterns of activity underlying spatially 

selective responses, IEMs were trained at each point in time, and then tested on every other 

point in time (ensuring independence of training and test sets). To reduce computation time 

(and the number of statistical comparisons), the data were down sampled to 25 Hz prior to 

training and testing. 

Quantifying Spatially Selective Representations 

Estimated channel responses were folded around 0° channel offset, and transformed 

from [-135˚, -90˚, -45˚, 0˚, 45˚, 90˚, 135˚, 180˚] into [0˚, 45˚, 90˚, 135˚, 180˚] by averaging 

the response at corresponding offsets (± 45˚, 90˚, and 135˚; 0˚ and 180˚ were not averaged) 

for quantification. Slope was then computed (MATLAB function polyfit) as the linear 

regression weight of total alpha power across offset and served as our index for the amount 



 

86 
 

of spatial selectivity in patterns of alpha activity underlying channel responses. Larger slope 

values indicate greater spatial selectivity. 

In addition, the IEM procedure was carried out with randomly permuted location bin 

labels for 250 iterations. In theory, this should generate flat channel response profiles devoid 

of spatial information. Slopes of these corresponding channel responses (i.e., permuted 

slopes) were then calculated for each iteration, which served as our null distribution for the 

statistical analyses of “real” slope values.  

Hypothesis Testing 

All statistical inference relied on computing Bayes Factors (BFs) using functions 

from the BayesFactor toolbox for R (Morey, Rounder, & Jamil, 2015), which employs a 

Cauchy prior. A BF between 1-3 indicates “anecdotal” evidence for the alternative 

hypothesis, between 3-10 indicates “moderate” evidence, between 10-30 indicates “strong” 

evidence and greater than 30 indicates “very strong” evidence (Dienes, 2016; Kass & 

Raftery, 1995; Kruschke & Liddell, 2018; Wetzel et al., 2011). BFs < 1, on the other hand, 

indicate varying degrees of evidence in favor of the null hypothesis (0.33-1=anecdotal, 0.1-

0.33=moderate, 0.033-0.1=strong, 0.01-0.033=very strong, <0.01=extreme). To determine if 

there was evidence indicating non-zero slopes, which would be expected if the patterns of 

alpha contained any spatial information, one-sample BF t-tests were computed using the real 

location labels from each trial at each time point (“real” BFs). To test for evidence indicating 

differences between rest and exercise conditions, paired BF t-tests were used instead. The 

one-sample and paired-samples BF t-tests were conducted for each iteration and time point 
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using the permuted location labels, to generate a permuted distribution of BFs (“permuted” 

BFs) for subsequent non-parametric comparisons.  

Bayesian inference is more conservative than frequentist inference, and much less 

likely to result in false confidence (Gelman & Tuerlinckx, 2000). Despite this, the number of 

statistical tests conducted overall may still be of concern, such that it may be possible to 

observe large BFs by chance alone. Thus, a cluster-based correction procedure (Cohen, 2014) 

was performed to protect against spuriously large BFs. For each iteration of permuted slopes, 

we calculated the maximum cluster size of contiguous time points where BF ≥ 3; resulting in 

a null distribution of maximum cluster sizes. For both real and permuted BFs, only time 

points displaying at least moderate evidence (BF ≥ 3) in favor of the alternative hypothesis 

were considered for cluster-based correction. Then, the size of the real BF clusters was 

calculated and compared to the null distribution of cluster sizes. If a cluster was larger than 

95% of the null distribution of maximum cluster sizes, it was considered to be unlikely due to 

chance alone.  

The above statistical routine was also applied to the generalization matrix. To reduce 

computation time, the permutation procedure for the generalization analysis was conducted 

for 100 iterations rather than 250 iterations. 

RESULTS 

Exercise physiology 

 Average heart rate (Table 7) 

was greater during exercise 

Table 7. Mean and standard error of physiological data 
for both conditions. 

Exercise Physiology 

Condition Heart Rate (BPM) RPE Cadence 
(RPM) 

Rest 78.44 ± 2.66 6.59 ± 0.11 - 

Exercise 105.78 ± 306 8.65 ± 0.25 54.77 ± 0.65 
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(105.78 ± 3.06) as compared to rest (78.44 ± 2.66) (BF > 1,000). A similar relationship was 

observed for mean RPE scores (BF > 1,000): rest (6.59 ± 0.11), exercise (8.65 ± 0.25). 

Notably, the average RPE score for the exercise condition was within the range of 9-10 on 

the RPE scale, which corresponds to “very light” intensity exercise. In addition, normalized 

pupil area was larger in the exercise condition ~1560-2000 ms post-stimulus onset (BF ∈

[3 − 14], i.e. Bayes factor ranged between 3-14).  

Behavior  

 Task performance was measured using the sensitivity index d’ (d-prime) and response 

criterion (c) (Figure 8) from signal detection theory (see Swets, 1961 for review). Hits were 

defined as accurately detecting a difference between the location of sample and test stimuli.  

There was anecdotal-moderate evidence in favor of the null hypothesis for no 

difference between rest 

and exercise conditions 

in the measures d’ (Rest: 

2.23 ± 0.13, Exercise: 

2.27 ± 0.12; BF = 0.2) 

and c (Rest: 0.15 ± 0.08, 

Exercise: 0.23 ± 0.07; 

BF = 0.56). 

 
Figure 8. Working Memory task performance as measured by sensitivity 
(d’) and response criterion (c) in both conditions. Points represent each 
individual’s data, and error bars represent ± 1 SEM. 
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Topographical distribution of alpha power across the scalp 

  Prior to modeling the contribution of alpha activity to WM representations, the 

topographical distribution of power across the scalp was examined. Qualitatively, alpha 

power increased over posterior electrodes ipsilateral to the presented stimulus location in the 

resting condition, a finding consistent with prior work (Figure 9A) (Kelly et al., 2006; 

MacLean et al., 2019; Sauseng et al., 2005; Thut et al., 2006; Worden et al., 2000). More 

importantly, a similar  

 
Figure 9. (A) Topographical distribution of alpha (8–12 Hz) power across the scalp during encoding and 
retention periods, normalized across parietal/parieto-occipital electrodes within each location bin. The location 
of each head plot reflects the corresponding sample stimulus location bin. Note, a time frame of 500–2000 
msec was used for the retention period to avoid including stimulus evoked activity. (B) Alpha lateralization 
during the stimulus and retention periods as a function of exercise condition. Points represent each individual’s 
data, and error bars represent ±1 SEM. 



 

90 
 

pattern was present in the exercise condition. When analyzing the degree of alpha 

lateralization, there was moderate evidence in favor of the null hypothesis for no difference 

between conditions during both the stimulus (0-250 ms; rest: 0.06 ± 0.03, exercise: 0.04 ± 

0.02; BF =  0.22) and retention (500-2000 ms; rest: 0.04 ± 0.02, exercise: 0.02 ± 0.01; 

BF =  0.37) periods (Figure 9B).  

Reconstructing representations of stimulus location 

The IEM analysis using alpha band activity yielded evidence for spatially selective 

responses in both conditions (Figure 10). Reconstructed response profiles reached peak 

amplitude ~200 ms after stimulus onset, which is consistent with previous studies using the 

IEM approach to track locations maintained in WM (Foster et al., 2016, MacLean et al., 

2019). Comparing real slopes to the permuted null distribution revealed there was at least 

moderate evidence for differences throughout the encoding and retention periods in both  

 
Figure 10. Estimated channel responses as a function of stimulus-centered location offset (−180°, −135°, 
−90°, −45°, 0°, 45°, 90°, 135°), reconstructed over time from patterns of alpha-band activity. Plotted CRFs 
are baseline corrected relative to the average amplitude across channels in a prestimulus window of −500 to 0 
msec. 
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conditions (Figure 11A; Rest: BF ∈ [4, 3.55 × 109], Exercise: BF ∈ [3, 2.23 × 1011]), 

confirming that mental representations of remembered locations can be successfully 

reconstructed both at rest and during exercise. Nevertheless, there was evidence for decreases 

in slope between ~926-1255 ms (BF ∈ [3, 238]) and ~1643-1864 ms (BF ∈ [3, 41]) post-

stimulus onset during exercise compared to rest. These results suggest that while there was 

evidence for a location selective representation in alpha activity during exercise, this 

representation was degraded during late stages of retention (Figure 11B).  

 
Figure 11. (A) Spatially selective CRF slopes. Horizontal green and blue bars indicate time points with at 
least moderate evidence for real rest and exercise slope estimates being different from zero, respectively. 
Horizontal red bars indicate time points with at least moderate evidence for a difference between real rest and 
exercise slopes. Cluster correction was applied to all comparisons, and clusters shown are those whose size 
exceeded 95% of a permuted null distribution. (B) BFs for comparisons made at each time point. Shaded 
error bars represent ± 1 SEM. 
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Exercise modulates processes underlying spatial selectivity 

Models trained on patterns of activity within a specific time period that can recover 

spatially selective responses when tested on activity from a differing time period exhibit 

generalization (King & Dehaene, 2014; van Moorselaar et al., 2018, MacLean et al., 2019). 

Successful generalization suggests that a stable unitary code underlies a cognitive process or 

processes throughout time. In contrast, the failure of models to generalize in this fashion 

implies that the trained/tested patterns of activity represent different codes. Note, a lack of 

generalization is not an indication that neural activity during that time period does not 

 
Figure 12. IEM generalizations. Only contiguous time points with at least moderate evidence for slope 
estimates being different from zero (cluster corrected) are shown. All other time points are in dark blue. The 
y-axis represents time points trained on, whereas the x-axis is time points tested on. Successful generalization 
to the right of the main diagonal indicates forward temporal generalization, whereas the opposite direction 
indicates backward temporal generalization. 
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support representations of location in WM, given that reconstruction was successful at all 

time points after ~100 ms. 

When testing the fixed 

encoding model on activity in the 

resting condition, there was 

evidence for temporal generalization 

throughout the entire trial period 

post-stimulus onset (Figure 12 

“Test: Rest”). Strong generalization 

throughout time indicates that 

spatial selectivity at rest is 

supported by a stable unitary code. 

There was also evidence for 

temporal generalization during 

exercise, but it was degraded 

relative to a permuted null 

distribution (Figure 12 “Test: 

Exercise”). Comparing the degree 

of generalization between conditions, there was evidence for greater generalization when 

training on activity between ~900-1200 ms and testing on activity within the same time 

period in the resting condition (BF ∈ [4.89,148.12]). Taken together, these results imply that 

similar unitary codes underlie the representation of locations in WM during both rest and 

exercise, but that the stability of this code over time is degraded during exercise. 

 
Figure 13. Control analyses on spectral activity conducted to 
assess the validity of IEM findings. (A) Top: Total power 
averaged across time for all frequency bands between 4 and 30 
Hz. Peak response occurred over the alpha band range. Bottom: 
BF values comparing power at each frequency between rest and 
exercise. (B) Alpha power over time. Dashed lines indicate 
stimulus onset (0 msec) and stimulus offset (250 msec). Shaded 
error bars represent ±1 SEM. 
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Control analyses 

Differences in reconstruction are not due to differences in spectral activity 

A series of control analyses were performed on spectral activity to determine any 

confounding factors in our observed differences of selectivity between conditions. One such 

analysis was the comparison of total spectral power between the rest and exercise conditions. 

Spectral power across a range of frequency bands has been shown to be modulated during 

exercise (e.g. Bullock et al., 2017; Kubitz & Mott, 1996). Thus, it is possible that the 

observed differences in spatial selectivity and generalization may reflect exercised-induced 

fluctuations in power that are independent of working memory processes. EEG data were 

high pass filtered at 4Hz and spectral power was computed for post-stimulus neural activity 

(0-2000 ms) using a fast Fourier transform (MATLAB function fft). There was at least 

moderate evidence for a difference in power between the following frequency ranges: 7-7.4 

Hz (BF ∈ [4.11,5.81]), 11.4-13 Hz (BF ∈ [5.85,1.04 × 103]), and ~14-30 Hz (BF ∈

[3.12,1.51 × 103]) (Figure 13A).  

Considering there was evidence for a difference between conditions in the upper 

range of alpha total power averaged over the trial period (~11-12 Hz), it is possible that 

fluctuations in alpha power overtime may be driving decreased selectivity in the exercise 

condition. To assess this possibility the time-course of mean total alpha power was compared 

between both conditions. There was no evidence for differences, if anything there was 

evidence in favor of the null hypothesis (BF ∈ [0.18,0.71]) (Figure 13B). Importantly, this 

suggests that decreased spatial selectivity during exercise is a product of alterations in the 
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topographical distribution of alpha power over time rather than dramatic changes in global 

alpha power. 

Degraded reconstructions are not due to location information being carried by other 

frequencies during exercise 

Previous 

research has 

shown that 

topographical 

patterns of 

oscillatory 

activity outside 

the alpha 

frequency range 

do not track the contents of spatial WM (Foster et al., 2016). Yet, it is possible that these 

frequency bands may be recruited during a bout of exercise. This would imply that decreases 

in slope amplitude in the exercise condition reflects a possible change between  

frequency bands that support representations. Considering this, the IEM routine was applied 

to total power in a broad range of frequencies (4-30 Hz in 1 Hz increments) (Figure 14). 

When testing for non-zero slopes in the computed single frequency CRFs, at least moderate  

 
Figure 14. The IEM routine was applied to frequencies within the range of 4–30 Hz at 
1-Hz increments. Shown here are the slopes of reconstructed CRFs with at least 
moderate evidence for being different from zero (cluster corrected). Those that were not 
different are colored in dark blue. 
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evidence in favor of the alternative hypothesis was only observed for activity within the 

alpha frequency band range for both rest (BF ∈ [3, 1.86 × 106]) and exercise (BF ∈

[3, 2.15 × 107]). Evidence in favor of differences in single frequency slopes between 

conditions did not survive cluster-based corrections. Thus, decreases in alpha slope amplitude 

in the retention period during exercise (Figure 11A) do not reflect the recruitment of non-

alpha frequency bands to support representations of location specific information.  

Visual evoked response 

For each location we calculated the difference of activity in parieto-occipital 

electrodes (PO7/O8, P5/6, P7/8) ipsilateral to the presented stimulus locations from those that 

were contralateral. Then, difference waves were averaged for locations on either side of the 

vertical meridian, yielding two P1 components: one for left locations and the other for right 

 
Figure 15. P1 analyses. Top plots depict P1 components for memoranda presented at left and right locations 
in the display. Bottom plots show topographical distribution of mean P1 amplitude between 116 and 136 
msec. Electrodes colored in black represent the ones used for computation of lateralized difference ERPs. 



 

97 
 

locations (Figure 15). P1 mean amplitude was calculated by finding the peak latency of the 

positive going component between 100-150 ms post-stimulus onset, and subsequently  

amplitude ±10 ms around this peak. There was moderate evidence in favor of the null 

hypothesis of no difference between rest and exercise P1 mean amplitudes for left (Rest: 1.19 

± 0.13, Exercise: 1.3 ± 0.15; BF = 0.26) and right locations (Rest: 1.49 ± 0.17, Exercise: 

1.44 ± 0.15; BF = 0.19). These results suggest that our observed differences in spatial 

selectivity are not due to modulations of the visual evoked response. 

Eye position  

 To assess whether the difference in the spatially selective responses derived from 

alpha band activity are contaminated by differential eye movements toward remembered 

locations in the rest and exercise conditions, we compared eye position throughout the 

stimulus and retention 

periods. There was a 

small increase in eye 

position bias throughout 

the trial period in both 

conditions, but this bias 

toward the stimulus 

location did not exceed 

0.15° in either 

condition. Moreover, 

point-wise comparisons 

 
Figure 16. Top: Eye position bias (i.e., baseline corrected distance of gaze 
from stimulus location in units of degrees of visual angle) for both the rest 
and exercise conditions. Bottom: BF values for comparisons between rest and 
exercise. One time point at 538 msec showing at least moderate evidence in 
favor of the alternative hypothesis did not survive cluster correction. Shaded 
error bars represent ± 1 SEM. 
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did not reveal evidence for differences that survived cluster correction (Figure 16). If the 

cluster correction was not applied, there was a single time point that indicated moderate 

evidence (BF = 3.86) for a difference between rest and exercise conditions at ~538 ms post 

stimulus onset, but this difference was small (0.02°), occurred during a period when the 

slopes of the spatial reconstructions were declining, and did not occur at the same time point 

when evidence for differences between the slope of the spatial reconstructions in exercise and 

rest were observed. In contrast, there was moderate evidence in favor of the null hypothesis 

of no difference in eye position bias between rest and exercise at multiple timepoints 

throughout the trial period (BF ∈ [3,5.44]). Therefore, eye position biases were likely not the 

cause of decreased spatial selectivity during exercise. 

DISCUSSION 

Evidence from human, non-human animal, and invertebrate studies has demonstrated 

that early sensory visual processes are modulated during bouts of acute physical activity 

(Ayaz et al., 2013; Bullock et al., 2015; Fu et al., 2014; Kaneko et al., 2017; Pontifex & 

Hillman, 2007). The goal of the present study was to determine whether higher-order 

cognitive operations that depend on these sensory responses are also impacted during 

physical activity. EEG was recorded from human participants while they engaged in a spatial 

change detection task at rest and during a bout of cycling exercise. The IEM technique was 

then applied to activity in the alpha band in order to reconstruct spatially selective response 

profiles for item locations stored in WM. There were two key results. First, in addition to 

replicating previous work demonstrating that topographically specific patterns of alpha band 

activity track the contents of WM at rest, (Foster et al., 2016; MacLean et al., 2019), the 
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present results also demonstrate that it is possible to reconstruct spatially selective response 

profiles during item encoding and retention while participants are engaged in a bout of 

physical activity. Second, while there was evidence for a spatially selective response during 

exercise, our results also indicate that the quality of this reconstructed location information is 

degraded relative to the rest condition, but only during the late stages of the retention period.  

The finding that topographic patterns of total alpha activity track the specific position 

of a behaviorally relevant stimulus both during encoding and retention replicates a number of 

studies in the literature indicating that the neural populations that give rise to alpha 

oscillations in human EEG code information in WM in a location-selective manner (Foster et 

al., 2016; MacLean et al., 2019; Sutter et al., 2019; Sutterer, Polyn, & Woodman, 2021). The 

results reported here also show that these location-selective codes can be reconstructed from 

patterns of neural activity acquired during exercise. Critically, the slopes of the location 

selective profiles were greater than zero throughout the trial, indicating that the location 

selective WM representations coded in alpha band activity are robust to changes in global 

behavioral state.   

Despite the robust location-selective reconstructions during encoding and retention 

observed here, there was also clear evidence during the late stages of retention ( > 900 ms) 

that the selectivity of these reconstructions was degraded during exercise relative to rest. One 

possible explanation for the degraded reconstructions of spatially selective response profiles 

is that WM representations coded in the alpha band are more fragile later in the retention 

period and vulnerable to decay during exercise. Another possible explanation, that is not 

mutually exclusive with the first, is that the rest and exercise conditions may differ in their 
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attentional demands. The similar level of behavioral performance in the two tasks is 

inconsistent with this interpretation, however, the behavioral task was very easy and may 

thus not have been sensitive to more subtle differences in attentional demands between the 

two conditions. While we took measures to equate the conditions by requiring participants  to 

cycle to the beat of a metronome in the exercise condition and to tap their feet to the 

metronome in the rest condition, it is still possible that cycling to the beat of a metronome 

requires greater attentional control than foot tapping and interferes with attention-based 

rehearsal of locations in WM (Awh et al., 1998, 1999; Postle et al., 2004). Importantly, 

previous work has shown that shifts in attention from memoranda in WM towards an 

opposing task disrupts spatial selectivity (van Moorselaar et al., 2018). The notion that 

cycling can impact resource allocation in a concurrent cognitive task is supported by 

previous work demonstrating modulation of various sensory and cognitive ERP components 

(Bullock et al. 2015; Pontifex & Hillman, 2007; Yagi, Coburn, Estes, & Arruda, 1999; Grego 

et al., 2004). Future work that manipulates levels of dual-task interference between 

conditions (e.g., higher levels during rest) and employs a more complex WM task is 

necessary to elucidate the cause of decreased spatial selectivity during exercise. 

Given that topographic patterns of alpha activity also track with attended locations in 

spatial attention tasks (Samaha et al., 2016; Sauseng, Klimesch, Stadler, et al., 2005), it is 

reasonable to question whether the location selective response profiles observed here at rest 

and during exercise represent WM activity or covert spatial attention to the location of the 

memoranda. There is some evidence against a solely attention-based interpretation of the 

present results. For example, in covert attention tasks that have revealed spatially specific 

responses to attended locations, alpha power tends to ramp-up in amplitude prior to the 
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attended stimulus over ipsilateral sites (Banerjee et al., 2011; Rihs et al., 2007). Here, 

however, after the initial reduction in alpha power driven by the evoked response, total alpha 

was relatively constant up to the presentation of the test stimulus. Secondly, the presence of 

sustained delay period activity in the absence of a stimulus is a classic indicator of WM 

(Sreenivasan & DEsposito, 2019; Vogel et al., 2005; Vogel & Machizawa, 2004). Though the 

quality of reconstructions degraded over time, the slopes of profiles were greater than zero 

throughout the entire trial period. In contrast, the profiles of reconstructions observed in 

spatial attention tasks increase during periods prior to target onset (Samaha et al., 2016). It is 

important to note that we are not arguing that spatial attention is not involved, rather we are 

arguing that the pattern of results is unlikely to be driven by covert attention alone. 

Moreover, when considering the present findings together with those in the literature 

providing evidence for the strong connection between spatial WM and spatial attention, our 

results are consistent with the notion that spatial attention facilitates the coding and 

maintenance of spatial representations held in WM (Awh et al., 1998, 1999; Postle et al., 

2004, (Oberauer, 2019). 

Previous studies have reported evidence for exercise-induced enhancements of visual 

processing (Bullock et al., 2015;2017). Here, however, there was no difference in P1 mean 

amplitude or location selectivity between the two conditions during this period, indicating 

that the initial sensory coding was similar in the two conditions. These contrasting findings 

between our studies may be due to the considerable differences in visual stimulation, task 

demands, or the nature of the data submitted to an IEM. For instance, in Bullock et al., 

(2015), participants performed an oddball task with large stimuli presented at fixation. 

Bullock et al. (2017) required participants to judge orientation changes occurring in large, 
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high contrast, centrally presented flickering grating stimuli. Further, they estimated 

orientation-selective stimulus reconstructions using 15 Hz steady state stimulus evoked 

activity. Here, participants were required to remember the location of a small, gray item 

presented in the periphery and location-selective reconstructions are based on induced alpha 

band activity. The discrepancy between the results reported here and the exercise-induced 

enhancements observed in previous work from our lab (Bullock et al., 2015;2017) and by 

others (Pesce, Capranica, Tessitore, & Figura, 2003), may also reflect a difference in the 

effect of global physiological states on sensory evoked responses to attended stimuli (i.e., as 

in the previous work) and in activity that persists well-beyond the sensory evoked response, 

such as working memory retention-related activity.  

Patterns of activity coding for spatial locations displayed robust generalization 

throughout time when testing on activity in the resting condition, indicating the presence of a 

stable unitary code. This pattern of generalization is consistent with previous research 

showing the presence of a rapid selection process that supports locations held in WM when 

external visual input is continuous (MacLean et al., 2019). Although generalization when 

testing on activity in the exercise condition was not as robust relative to the resting condition, 

a stable unitary code was also found to support spatial selectivity when participants are in a 

physically active state. Importantly, the successful reconstruction of spatially selective 

responses when applying the fixed IEM to activity throughout time from each condition 

separately suggests a common unitary code underlies the maintenance of locations in WM in 

both physiological states. In later stages of the retention period, this unitary code is degraded 

when one is concurrently engaged in exercise.  
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As with all simultaneous neuroimaging and exercise studies, electromyographic 

(EMG) and sweat artifacts are potentially confounding factors in our results. The contribution 

of EMG artifacts was minimized by stabilizing each participant’s position on the bike using 

aero bars and coaching them to ensure they limited upper body movement during cycling or 

foot tapping. EMG typically occurs at higher frequencies (> 30 Hz), while sweat artifacts are 

low frequency (< 1 Hz) oscillations (Thompson, Steffert, Ros, Leach, & Gruzelier, 2008). 

Since the IEM analyses presented here were based on alpha power (8-12 Hz), it is unlikely 

that our results were seriously contaminated by these artifacts. 

In summary, we used the IEM technique to investigate how spatial selectivity for 

locations held in WM is modulated during an acute bout of aerobic exercise when compared 

to rest. Reconstruction of location-selective representations was successful during both rest 

and exercise, but stimulus representations were degraded at specific timepoints during the 

retention period as a function of exercise. Evidence was also found for processes underlying 

WM representations that were supported by a single unitary code during both rest and 

exercise. The current study is the first to demonstrate that representations of items stored in 

WM can be reconstructed during a bout of physical exercise and provides novel insight into 

both the modulation and composition of these representations during exercise when 

compared to rest. Future research will focus on uncovering how exercise-induced 

degradation of stimulus representations in WM impacts behavior in the human.  
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Chapter IV: Working Memory Encoding and Storage Dynamics 

During Cycling 

INTRODUCTION 

Naturalistic environments are rich with a vast amount of complex visual stimuli that 

far exceed the brain’s processing capacity. Selectively attending to task-relevant information 

and retaining it over short periods of time in working memory (WM) are two critical 

cognitive abilities that can be used to circumvent these processing constraints and enable the 

successful execution of goal-directed behavior. Though these cognitive functions have been 

studied extensively in sedentary organisms, little is known about how selective attention and 

WM are affected by changes in global physiological state, which fluctuates continuously 

when behaving in real-world settings. Such changes in physiological state can have a 

profound effect on neural responses to sensory inputs and the ability to process information 

(McCormick et al., 2020; McGinley et al., 2015). A powerful method to manipulate 

physiological state is to have an organism engage in physical exercise, which causes 

widespread changes in neurochemical levels and neural activity across various brain regions 

(Basso & Suzuki, 2017). Rodent and invertebrates show a robust response gain to visual 

inputs during periods of locomotion (Ayaz et al., 2013; Kaneko et al., 2017; Maimon et al., 

2010; Niell & Stryker, 2010; Vinck et al., 2015), while human electroencephalography (EEG) 

studies have shown modulations in early visual processing during an acute bout of aerobic 

exercise (Bullock et al., 2015, 2017; Cao & Händel, 2019). Considering the evidence for 

modulations in visual processing during physical activity across multiple model organisms, it 

is reasonable to expect that cognitive functions reliant on this sensory information are also 
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affected. Here, we test whether engaging in an acute bout of aerobic cycling influences the 

neural substrates of selective attention and WM.  

Lateralized change detection tasks are a ubiquitous approach for testing encoding and 

maintenance mechanisms of WM, and an event-related potential component known as 

contralateral delay activity (CDA) recorded during these tasks can be used to track the 

amount of information that has been stored in this transient memory system. This component 

emerges when participants are required to memorize a stimulus array in one visual hemifield 

while ignoring items in the other visual hemifield and can be observed by taking the 

difference in voltage potentials recorded over posterior electrodes ipsilateral the attended 

hemifield from those that are contralateral. During maintenance periods, the CDA is 

characterized by a sustained negative potential whose amplitude scales with memory set size 

up to typical estimates of WM capacity (Adam et al., 2018; Hakim et al., 2019; Vogel & 

Machizawa, 2004). Using this connection between the CDA and WM storage, one can also 

discern how efficiently selective attention encodes target stimuli from the environment into 

memory while simultaneously ignoring distractors. For example, Vogel, McCollough, & 

Machizawa (2005) recorded CDA amplitude for both low and high WM capacity individuals 

in response to memory arrays that consisted of either two targets, four targets, or two targets 

and two distractors. Low-capacity individuals displayed a CDA amplitude on trials with 

distractors similar to those with four targets, implying that WM load was higher and task-

irrelevant stimuli were erroneously encoded into memory. In contrast, the CDA amplitude for 

high-capacity individuals on distractor trials was similar to trials with only two targets, 

suggesting that WM load was lower, and distractors were sufficiently filtered during 

encoding. A drawback of using CDA amplitude as an index of WM load, though, is that it 
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requires the aggregation of neural activity across trials thereby obscuring storage dynamics 

that occur on a trial-by-trial basis. Multivariate classification analyses of voltage potential 

distributions across the scalp, on the other hand, enable the tracking of retained stimuli in a 

more sensitive and temporally resolved fashion (Adam et al., 2020). Furthermore, they can 

provide insights into how patterns of neural activity underlying WM encoding and 

maintenance mechanisms are influenced by changes in physiological state. 

Neural oscillations within the theta (4-7 Hz) and alpha (8-12 Hz) frequency bands 

play a critical role in WM encoding and maintenance processes. Indeed, there is evidence for 

alterations in frontal midline theta power as a function of WM load (Canolty et al., 2006; 

Jensen & Colgin, 2007; Jensen & Lisman, 2001; Jensen & Tesche, 2002; Moran et al., 2010; 

Sauseng et al., 2009, 2010), and that theta oscillations reflect the ability to selectively attend 

to and store task-relevant stimuli (Raghavachari et al., 2001; Sauseng et al., 2010). Similar to 

the CDA, lateralized alpha power decreases as set size increases (Adam et al., 2018) and this 

effect is more pronounced when stimuli are stored in WM relative to when sensory input 

remains constant and they are covertly attended (Hakim et al., 2019). Additionally, there exist 

a wealth of evidence that patterns of alpha power covary with spatial locations stored in WM 

and can be used to reconstruct feature-selective representations of remembered stimuli 

(Bullock et al., 2023; Foster et al., 2016; Garrett et al., 2021; MacLean et al., 2019; Sutterer 

et al., 2019). Altogether, both voltage potentials and neural oscillations can be used to capture 

the efficiency of selective attention during memory encoding and track the number of items 

that are actively retained.  



 

107 
 

A growing number of studies have reported a beneficial influence of acute exercise on 

selective attention. Bullock et al., (2015) observed a decrease in target detection speed on a 

visual-oddball task during high-intensity cycling relative to low-intensity and resting 

conditions. The amplitude of the visual P1 component evoked by non-target stimuli was also 

larger during low-intensity exercise compared to rest, and P3a latency decreased during 

exercise, indicating that attentional selection during sensory encoding stages and post-

perceptual discrimination processes may be enhanced while in a physically active state 

(Bullock & Giesbrecht, 2014; Davranche & Pichon, 2005). Indeed, Ligeza et al., (2023) 

detected increased activation in occipito-temporo-parietal cortex for to attended stimuli on a 

perceptual discrimination task subsequent a bout of high-intensity cycling compared to a 

resting condition. Performance on Stroop and flanker tasks have also consistently been 

reported to be impacted by manipulations of physical state, with exercise reducing the 

magnitude of target processing interference on incongruent trials (Hogervorst et al., 1996; 

Kamijo et al., 2004, 2007; Tian et al., 2021; Yanagisawa et al., 2010). Thus, engaging in 

acute exercise may also improve inhibitory control and prevent attentional resources from 

being allocated to distracting stimuli. In regard to WM, systematic reviews and meta-

analyses propose that aspects of this cognitive function are improved by exercise (Loprinzi et 

al., 2021; Moreau & Chou, 2019), and that this relationship is dependent on multiple exercise 

intervention and participant characteristics (Cantelon & Giles, 2021). Recently, Kao et al., 

(2021) measured EEG on a modified Sternberg task with varying set sizes following high 

intensity interval training (HIIT) and moderate intensity cycling. Relative to a sedentary 

condition, response times were faster subsequent HIIT while accuracy remained unchanged. 

Critically, set size was inversely related to frontal alpha power subsequent HIIT, but not rest, 
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suggesting that exercise may facilitate the storage of information in WM. Similarly, Drollette 

& Meadows (2022) detected an increase in the temporal stability of the CDA (i.e., amplitude 

correlation across sessions) after the cessation of a HIIT relative to rest. Thus, there is 

evidence for modulations in the WM storage dynamics post-exercise. However, what remains 

unclear is whether the neural substrates of WM storage mechanisms are influenced during 

exercise, and if modulations in sensory responses affect the ability to selectively encode 

targets and ignore distractors. 

Here, we investigated WM encoding and storage processes during exercise. To test 

this, participants completed a lateralized change detection task at rest and during a bout of 

low-intensity cycling while EEG was recorded at the scalp. WM load was measured using a 

set of neural signals, including CDA amplitude, lateralized alpha power, and multivariate 

classifiers to ascertain how exercise influences the temporal dynamics of WM encoding and 

maintenance. Replicating previous work, CDA amplitude scaled with the number of items 

stored in WM, regardless of physiological state. Furthermore, it was possible to decode WM 

load from the distribution of voltage potentials across the scalp during rest and exercise. 

Direct comparisons of CDA amplitude and classifier accuracy revealed no major differences 

between conditions, suggesting that WM encoding and maintenance mechanisms are 

preserved during low-intensity exercise.  

MATERIALS AND METHODS 

Participants 

 Thirty-two (N=32; 21 females) adult student volunteers from the University of 

California, Santa Barbara community took part in the study in exchange for financial 
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compensation ($20/hr). All participants completed the Physical Activity Readiness 

Questionnaire (PAR-Q; National Academy of Sports Medicine) to determine their eligibility 

to participate in aerobic activity. Informed consent was provided before the study began. All 

participants reported normal vision. The procedures detailed below were approved by the 

UCSB Human Subjects Committee and the US Army Human Research Protection Office.  

WM Capacity Task 

 A visual change detection task was used to estimate each participants’ WM capacity 

(Luck & Vogel, 1997). Stimulus arrays were presented within a rectangular region, 

subtending 7° x 5.2° visual angle, on a 28-in. monitor (ASUS VG278Q, 1920 × 1080) with a 

dark grey background. Colored squares (subtending 1.5° x 1.5° visual angle) served as the 

sample stimuli, each of which were randomly selected from a set of 7 discriminable colors 

(blue, green, red, yellow, magenta, cyan, orange, white, black) and were separated by at least 

1.5°. Sample arrays consisted of either 3, 6, or 8 targets. A single sample stimulus was 

randomly selected to act as a subsequent target, and on 50% of trials its color was changed. 

Capacity was estimated using the following formula, 𝐾𝐾 = 𝑁𝑁(𝐻𝐻 − 𝐹𝐹𝐹𝐹), where N represents 

the set size. H and FA indicate the hit rate (proportion of correct change trials) and false 

alarm rate (proportion of incorrect no-change trials), respectively (Cowan, 2001). Maximum 

K across set sizes served as the estimate of WM capacity, and participants were partitioned 

into low- and high-capacity groups based on a median split. 

Filtering Task Visual Stimuli 
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 Participants performed a visual memory task (Figure 17A) to measure the efficiency 

of selective attention and WM maintenance (Vogel, McCollough, Machizawa, 2005). A black 

arrow (subtending 3° visual angle) presented above a center white fixation dot (subtending 

0.1° visual angle) served as a cue that indicated which side of the screen participants needed 

to allocation their attention towards. All stimulus arrays were presented within two 4°×7.3° 

rectangular regions that were centered 3° to the left and right of the fixation dot on a grey 

background. Colored rectangles (subtending 0.65°×1.3° visual angle) served as sample and 

test stimuli. Memory target stimuli were colored red and distractors were colored blue. 

Sample stimuli orientations were drawn randomly from a set of orientations [0°, 45°, 90°, 

135°]. Their positions were randomized on each trial, with the constraint that the distance 

between each individual stimulus within a hemifield was at least 2° (center to center). The 

task consisted of 600 trials (10 blocks of 60 trials per block) and was presented via custom 

scripts that used functions from Psychophysics Toolbox for MATLAB (Brainard, 1997). The 

viewing distance was ~100 cm.  

 
Figure 17. A) Working memory filtering efficiency task. B) Experimental setup. 
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Eye-Tracking 

 Gaze contingent eye-tracking was employed to ensure participants fixated throughout 

the trial period, and to minimize the presence of ocular artifacts in recorded EEG. This also 

ensured a stable projection of the visual display on the retina. The eye-tracker (Eyelink 1000, 

SR Research Ltd., Mississauga, Ontario, Canada) was positioned 50-70 cm from both eyes 

and binocular tracking sampling at 500 Hz was enabled. Pupil area and gaze position were 

collected throughout the trial period.  

Stationary bike 

 The task was completed on the stationary ergometer ViaSprint 150p (ergoline GmbH, 

Bitz, Germany), which was controlled using a Vyntus CPX metabolic cart (Vyaire Medical 

Inc., Mettawa, Illinois, USA). Heart rate was tracked with an on-board pulse oximeter 

attached to the participant’s finger. T2 + Profile Design Aero Bars (Profile Design, Long 

Beach, CA, USA) were attached to the handlebars of the ergometer, and a Logitech Trackball 

Mouse (Logitech, Newark, CA, USA) was fixed to the end of the bars (Figure 17B). The 

addition of aero bars served two important purposes. First, participants were able to lean their 

elbows onto the bars, leaving their hands free to respond to the task. Second, the bars helped 

stabilize the participants and minimize head and body movement, which is a critical factor 

for reducing noise during EEG recording. To attenuate discomfort, each participant was 

given a pair of bike shorts, and both the bike seat and handlebar were carefully adjusted to 

their preferred dimensions. Cadence in the exercise condition was tracked by placing 

reflective tape on the pedal crank arms and adhering a USB photodiode to the bike. In the 
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resting condition, cadence was tracked using two foot-pedal switches (PCsensor, Shenzhen, 

Guangdong Province, China).  

EEG 

 EEG data were recorded using a Brain Products ActiCHamp system (Brain Vision 

LLC, Morrisville, NC) consisting of 64 active electrodes arranged in an actiCAP elastic cap 

and placed in accordance with to the 10-20 system. The TP9/10 electrodes were adhered 

directly to the left and right mastoids. Connections were established between electrodes and 

the scalp using SuperVisc gel (Brain Products), which is especially viscous, thus mitigating 

the potential for both a loss of signal due to gel dispersion and the potential for electrodes to 

bridge due to increased sweating during exercise. At the beginning of each condition, all 

impedances were reduced to below 15 kΩ. Data were sampled at 1000 Hz and referenced 

offline to the average of the mastoid signals.  

Procedure 

 In the first session, participants were informed of the study’s design and of both the 

intensity and duration they would be required to exercise. Then, they completed a change 

detection task to determine their WM capacity and a maximal aerobic test to determine their 

fitness level (VO2 max). The second session began with participants completing a brief set of 

practice trials to become familiar with the filtering efficiency task and assess the stability of 

the eye-tracker. Participants were also acquainted with the Rating of Perceived Exertion 

(RPE) scale (Borg, 1970, 1982), which is a subjective rating for the intensity of a physical 

activity that ranges from 6 (no exertion) to 20 (maximal exertion). 
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 Prior to mounting the stationary bike, participants were fitted with an EEG cap. Once 

on the bike, the seat and handlebar positions were carefully adjusted to maximize participant 

comfort. The pulse-oximeter was placed on their finger to record heart rate throughout the 

experimental session. Next, three minutes of resting EEG activity was recorded during which 

participants opened/closed their eyes every 30 seconds. When ready, participants initiated the 

filtering efficiency task. Each trial began with the fixation dot in the center of the screen, 

along with a green dot (subtending 0.4° visual angle) representing the location of the 

participant’s gaze. The participant aligned their gaze dot with fixation dot and pressed a 

mouse button with their right thumb to start the trial. The attentional cue was then presented 

for 200 ms (with onset jittered randomly between 600-1500 ms post-trial initiation). On half 

of the trials either the left or right hemifield was cued, respectively. Cue offset was then 

followed by the presentation of a set of sample stimuli in each hemifield for 100 ms. The set 

of sample stimuli consisted of either a single target (set size 1), four targets (set size 4), or a 

single target and three distractors (set size 1+3) on a third of the total number of trials, 

respectively. Memory array offset was followed by a 900 ms retention interval, where only 

the fixation dot remained on the screen. During fixation, memory array presentation, and 

retention periods, participants were instructed to maintain their gaze at center of the screen 

and covertly memorize the orientation of only target (red) rectangles in the cued hemifield. If 

gaze position deviated from fixation > 2.1° or eye-blinks occurred during these periods, the 

trial was aborted and the message “Broken Fixation!” appeared on the screen. Aborted trials 

were appended to the end of the trial sequence, to ensure that a complete set of trials free 

from blinks and other eye movements was obtained. At the end of the retention period, a test 

array that was identical in size and color to the memory array appeared. On half of the trials, 
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the orientation of a single target stimulus in the cued hemifield was rotated clockwise or 

anticlockwise by 20°. On the other half of trials, the orientations of all stimuli in the test 

array were identical to the memory array. Participants were required to indicate if any of the 

memorized target orientations were the same or different by pressing either the left or right 

mouse button, respectively. 

 Participants completed this task in both rest and exercise conditions (counter-

balanced) while seated on the stationary bike. In the exercise condition, they engaged in low-

intensity cycling with a resistance of 50 watts of power and at a pedaling cadence ~50 

revolutions per minute (RPM). These resistance and cadence levels were based on intensity 

and cadence used in previous studies (Bullock et al., 2017; Garrett, Bullock, & Giesbrecht, 

2021). To ensure that participants maintained this cadence, they were instructed to pedal in 

synchrony with a metronome set at 100 beats per minute (equaling 50 RPM). Cadence was 

continuously monitored throughout exercise. In the resting condition, the pedals were 

removed and replaced with a box positioned under each foot. Adhered to each box were the 

USB foot-pedals, and participants used their feet to depress the pedals to the beat of a 

metronome set at the same frequency as the exercise condition, totaling to 50 taps per foot 

per minute (equivalent to a cycling cadence of 50 RPM). This manipulation was intended to 

attenuate possible dual-task differences between conditions that may confound modulations 

in WM filtering efficiency. To mitigate any possible exercise-induced arousal carry-over 

effects, participants who completed the exercise condition first were required to sit quietly 

for five minutes. 
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 Excluding the five-minute warm-up and cool-down periods, each condition took ~50 

minutes to complete. The warm-up consisted of either cycling at the intensity/cadence 

previously detailed, or foot tapping for the same duration. Prior to, and following warm-up, 

the RPE scale was displayed to the participant, who then verbally reported their current level 

of exercise to the experimenter. Each experimental session took ~3.5 hours, including 

instrumentation time. 

EEG Preprocessing 

 Custom scripts in MATLAB (version 2019a, Massachusetts, The MathWorks Inc.) 

and functions from the EEGLAB toolbox (Delorme & Makeig, 2004) were used for offline 

processing of the EEG data. The continuous data were first high- and low-pass filtered 

between 1 Hz and 30 Hz, respectively (EEGLAB function pop_eegfiltnew). The data were 

then resampled at 250 Hz (EEGLAB function pop_resample), to reduce computation time 

and memory demands. Noisy electrodes were automatically detected using the EEGLAB 

functions clean_artifacts. Note, despite its utility for removing noisy segments of EEG 

recordings, artifact subspace reconstruction (ASR) was not used to maintain the continuity of 

the data. After interpolating noisy electrodes, the data was re-referenced to the average of the 

mastoid signals. Next, the EEG data was decomposed using adaptive mixture independent 

component analysis (AMICA) (Palmer, Kreutz-Delgado, & Makeig, 2012). Only components 

that were classified as consisting of true brain activity based on ICLabel (Pion-Tonachini et 

al., 2019) and a confidence threshold of at least 80% were retained. Next, the data was 

epoched between -500 and 1100 ms around the onset of the memory array. Trials that were 
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aborted due to eye-movements and trials where incorrect responses were made were 

excluded from any analysis.  

Contralateral Delay Activity 

 Preprocessed EEG trials were baseline corrected between -200-0 ms prior to memory 

array onset. Lateralized event related potentials were computed by subtracting the average 

activity of ipsilateral electrodes from the average of contralateral electrodes, with respect to 

cue direction. CDA amplitude at the following electrode pairs were used to index WM load 

and filtering efficiency: O1/O2, PO7/PO8, PO3/PO4, P7/P8, P5/P6, P3/P4. 

 Time-Frequency Analyses 

 Epoched data were filtered using a 3rd order Butterworth bandpass filter (MATLAB 

function butter) between 4-7 and 8-12 Hz to extract theta and alpha band activity, 

respectively. Instantaneous amplitude and phase of filtered signal were computed using the 

Hilbert transformation (MATLAB function hilbert). Total power, which reflects continuous 

oscillatory activity independent of its phase relationship with stimulus onsets, was calculated 

as the square of the absolute value of the complex analytic signal.  

 There is ample evidence that the topography of alpha power over posterior electrodes 

tracks the locus of covert spatial attention (Foster et al., 2016; MacLean, Giesbrecht, & 

Bullock, 2019; Sutterer et al., 2019; Garrett, Bullock, & Giesbrecht, 2021; Bullock et al., 

2023). Considering that the suppression of alpha power over electrodes contralateral to an 

attended hemifield has been shown to track with WM load (Adam et al., 2018; Fukuda et al., 

2015, 2016; Hakim et al., 2019), lateralized alpha power was also used to index WM filtering 
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efficiency. Lateralized alpha power was computed by subtracting the percent change in 

power, relative to a baseline period (-500 to -200 ms), in ipsilateral from contralateral 

electrodes. Identical electrode pairs used to compute the CDA were also used to calculate 

lateralized alpha power. Midline frontal theta power was calculated by averaging activity 

over the electrodes AFz, Fz, F1, F2, F3, and F4. 

Decoding 

 A linear discriminant pattern classifier was used to determine the extent to which the 

neural signatures of WM load and filtering efficiency were modulated by exercise. 

Employing a 10-fold cross validation scheme, three separate binary classification models 

were trained on topographical patterns of voltage activity to discriminate between pairs of the 

different WM set sizes (i.e., set size 1 vs 4, 1 vs 1+3, 1+3 vs 4). Within each fold, the number 

of trials for each set size label were balanced to ensure the classifier was not biased toward 

the more frequent label. Furthermore, each fold contained an equivalent number of trials 

between both the rest and exercise conditions, to mitigate the possibility that differences in 

decoding accuracy were merely a reflection of differences in signal-to-noise ratio between 

conditions. WM load was decoded independently at each time point using average voltage 

power within a 10 ms sliding window with 80% overlap. This decoding procedure was also 

applied to topographical patterns of delta (1-3 Hz), alpha, and theta power to determine if 

neural oscillations within these frequency bands carried information about WM load and 

filtering efficiency.  

Statistical Inference 
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 All statistical inference was performed within a Bayesian framework. Statistical 

inference within this framework can be viewed as a model selection problem, and one 

popular criterion is Bayes Factors (BFs) which indicate the degree of probabilistic evidence 

in favor of one model compared to another. Memory strength (i.e., d’ or d-prime) and 

reaction time (RT) on the filtering efficiency task were compared across conditions, set sizes, 

and K through a repeated measures ANOVA using the anovaBF function from the R package 

BayesFactor (Morey & Rouder, 2023). Rather than selecting the best fit model in an all-or-

none fashion, Bayesian Model Averaging (BMA) was implemented to estimate an inclusion 

BF (i.e., BFInclusion) for each factor (bayesfactor_inclusion; bayestestR) (Makowski et al., 

2019). In short, BFInclusion indicates how probable the observed data are, on average, under a 

model that included the factor of interest (Hinne et al., 2020). This statistical routine was also 

implemented at each time point independently to test for differences in CDA amplitude and 

power in both the theta and alpha frequency bands. Post-hoc comparisons were subsequently 

conducted using Bayesian paired samples t-tests, which were implemented using the function 

bf.ttest from the MATLAB package bayesFactor (Krekelberg, 2022). Note, this function 

utilizes a Cauchy and Jeffreys prior to estimate JZS BFs from a frequentist t-statistic and 

degrees of freedom (Morey et al., 2015; Rouder et al., 2012). A BF between 1 and 3 indicates 

“anecdotal” evidence for the alternative hypothesis, between 3 and 10 indicates “moderate” 

evidence, between 10 and 30 indicates “strong” evidence, and greater than 30 indicates “very 

strong” evidence (Dienes, 2016; Kass & Raftery, 1995; Kruschke & Liddell, 2018; Wetzels et 

al., 2011). BFs < 1, on the other hand, indicate varying degrees of evidence in favor of the 

null hypothesis (0.33–1 = anecdotal, 0.1–0.33 = moderate, 0.033–0.1 = strong, 0.01–0.033 = 

very strong, < 0.01 = extreme).  
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 Classifier results were evaluated using the following procedure. First, classifier 

accuracy at each time point was compared to chance (i.e., 50%) using a one-sample BF t-test 

to determine if WM load and filtering efficiency could be decoded from patterns of neural 

activity. To assess if classifier accuracy differed between experimental conditions, paired-

sample BF t-tests were used instead. Next, the decoding procedure was carried out with 

randomly permuted set size labels for 250 iterations. For each of these iterations, one-sample 

or paired-samples BF t-tests were conducted to generate a permuted distribution of BFs 

(“permuted” BFs) for subsequent nonparametric comparisons. Although Bayesian inference 

is more conservative than its frequentist counterpart and less likely to result in false 

confidence (Gelman & Tuerlinckx, 2000), the number of statistical tests conducted to 

evaluate classifier performance may still lead to concerns toward observing large BFs by 

chance alone. Thus, a cluster-based correction procedure (Cohen, 2014; Garrett et al., 2021) 

was performed to mitigate the misinterpretation of spuriously large BFs. For each iteration of 

permuted classifier accuracies, the maximum cluster size of contiguous time points where 

BF ≥ 3 was recorded, yielding a null distribution of maximum cluster sizes. Then, clusters 

of contiguous time points where true classifier accuracies achieved a BF ≥ 3 were compared 

to the null distribution of maximum cluster sizes. If a cluster was larger than 95% of the null 

distribution, it was considered unlikely to be spurious.  

RESULTS 

Exercise Physiology 
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 Average heart rate was greater during exercise (107.76 ± 14.58) as compared to rest 

(83.13 ± 11.96; BF = 8.66e22). RPE scores post cycling indicated that on average the 

exercise intensity was perceived as “very light” (9.59 ± 2.06), and these ratings were higher  

relative to the resting condition (6.97 ± 0.97; BF = 3.45e6).  

Behavior 

 There was at least strong evidence for an effect of set size on d’ (BFInclusion =

7.02e20) and RT (BFInclusion = 5.82). Memory strength also differed as a function of K 

(BFInclusion = 6.26e6). In contrast, there was evidence against an effect of experimental 

condition on d’ (BFInclusion = 0.12) and RT (BFInclusion = 0.2). Further, there was evidence in 

favor of the null hypothesis for the absence of any interaction between these factors on 

behavioral performance (BFInclusion ≤ 0.11). Post-hoc comparisons indicated that d’ was  

 
Figure 18. Behavioral performance on working memory filtering efficiency task as measured by sensitivity 
(d’) and response time (RT). Points represent individual’s data, and error bars represent ± 1 SEM. Asterisks 
indicate at least moderate evidence in favor of the alternative hypothesis for a non-zero difference. 
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greater for set size 1 

(2.87 ± 0.15; BF =

3.05e11) and 1+3 

(2.77 ± 0.14; BF =

27.25) relative to set 

size 4 (1.06 ±

0.08; BF = 2.70e11), 

and equivalent 

between set size 1 

versus 1+3 (BF =

0.76) (Figure 18). 

Memory strength was 

also greater for high-

capacity (2.68 ±

0.13) relative to low-

capacity subjects 

(1.78 ± 0.27;  BF =

7.58). Lastly, RT was 

fastest on set size 1 

(648.18ms ± 24.92) 

compared to set size 

1+3 (678.00ms ±

 
Figure 19. Contralateral delay activity (CDA) during both (A) rest and (B) 
exercise conditions. (C) Bayes factors for analysis of variance models testing 
the effect of condition, set size and WM capacity on CDA amplitude at each 
time point. Shaded error bars represent ± 1  SEM. Vertical dashed lines indicate 
stimulus onset, and the start and end of the CDA period, respectively.  
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26.04) and 4 (752.87ms ± 37.25) trials (1v4: BF = 1.94e3;  1v1+3: BF =

1.58e6;  1+3v4: BF = 91.70). 

CDA amplitude tracks WM load when in a physiologically active state 

Bayesian 

repeated measures 

ANOVAs conducted at 

each time point revealed 

at least moderate 

evidence for an effect of 

set size on CDA 

amplitude between ~276-

316 ms and ~432-508 ms 

post stimulus onset 

(Figure 19). However, 

there was little support for a modulation of amplitude by exercise, with only anecdotal 

evidence observed between ~144-180ms. Further, there was no support for an interaction 

between exercise and condition (BF < 1). Average CDA amplitude between 400-800 ms 

differed as a function of set size (BF =  19.44), and was more negative in set size 4 

(-0.32μV ± 0.08) compared to set size 1 (-0.01μV ± 0.04) trials (BF =  17.11)  (Figure 

20). There was also strong evidence for a difference in average CDA amplitude within this 

time window between set size 1+3 (-0.05μV ± 0.05) and set size 4 trials (BF = 7.13), but 

not compared to set size 1 trials (BF = 0.28). Interestingly, there was only anecdotal  

 
Figure 20. Average CDA amplitude between ~400-800 ms post-stimulus 
onset for both rest and exercise. Asterisks indicate at least moderate 
evidence in favor of the alternative hypothesis for a non-zero difference.  
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evidence for a difference in average CDA amplitude between low- and high-capacity 

participants (BF = 1.42), and strong evidence against the presence of an interaction between 

WM capacity and set size (BF = 0.30). Altogether, the CDA is a marker of WM storage and 

filtering efficiency that is robust to exercise-induced changes in physiological state.   

 

Topographical distribution of voltage potentials during exercise reflects WM load 

 
Figure 21. Cross-validation accuracy for binary classifiers trained to discriminate WM load using voltage 
distributions across the scalp from both conditions, and then testing on activity recorded during (A) rest and 
(B) exercise. Dashed blue (1 vs 4), red (1 vs 1+3), and green (1+3 vs 4) lines represent decoding accuracy for 
permuted controls. Vertical bars represent time points in which there was at least moderate evidence for 
greater decoding accuracy for classifiers trained with true versus permuted set size labels (after cluster 
correction). Colored dots in (B) represent reliable differences in decoding accuracy between rest and 
exercise. Dashed vertical lines indicate stimulus onset and offset. Shaded error bars represent ± 1  SEM.  
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To determine if patterns of neural activity across the scalp reflected the number of 

items actively stored in WM, binary linear classifiers were trained on single trial voltage  

distributions from both experimental conditions and tested on a single condition using a 

cross-validation training scheme. For both the rest and exercise condition, at least moderate 

evidence for above chance classification accuracy was observed when discriminating 

between set sizes 1 vs 4 and 1+3 between ~100-700 ms post-stimulus onset (Figure 21). 

Evidence for a dissociation between set size 1 vs 1+3 trials emerged later (~150-250 ms) and 

was sustained until ~550 ms. Classifiers performed equivalently between rest and exercise, 

with only a few timepoints exhibiting higher accuracy during rest when decoding set size 1 

 
Figure 22. Percent change in total and evoked theta power as a function of set size across experimental 
conditions. Bayes factors for ANOVA models testing for effects of condition, set size, and their interaction 
shown in bottom two plots. Vertical dashed lines indicate stimulus onset and offset. Shaded error bars 
represent ± 1  SEM. 
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vs 1+3 and 1 vs 4. Hence, there is little support for the neural representations of WM load 

being modulated by concurrent exercise. 

WM load is decodable from patterns of theta and alpha power 

Time frequency analyses were performed to ascertain the roles of theta- and alpha-

band activity in WM filtering efficiency and maintenance, and their potential modulation by 

changes in global state. Across all timepoints, there was strong evidence in favor of the null 

for no effect of set 

size or 

experimental 

condition on total 

and evoked frontal 

midline theta 

power (Figure 

22). Similarly, set 

size and 

experimental 

condition had no 

effect on 

lateralized 

posterior alpha 

power (Figure 

23).  

 
Figure 23. Lateralized alpha power as a function of set size during both rest and 
exercise. Bottom plot depicts Bayes factors for ANOVA models testing effects of 
condition, set size, and their interaction. Shaded error bars represent ± 1  SEM. 
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 Contrary to univariate analyses, multivariate pattern classification analyses indicated 

that total theta and alpha power carried information on the number of items stored in 

memory. In the resting condition, set size 1 was robustly discriminated from set size 4 using 

patterns of both theta and alpha power throughout stimulus presentation (~44-100 ms), the 

first half of the delay period (~100-436 ms), and later in the retention period (~744-908 ms) 

(Figure 24). Set size 1 vs 1+3 trials were also discriminable using patterns of theta and alpha 

power, but only during stimulus encoding and the first half of the delay period (~24-476 ms). 

Trials including distractors were also dissociable from those with four target stimuli during 

these time periods (~76-324 ms) using patterns of theta power, and later in the retention 

period using (~590-950 ms) patterns of alpha power. Classification results in the resting 

 
Figure 24. Cross-validation accuracy for binary classifiers trained on patterns of delta, theta, and alpha 
power during both rest and exercise. Vertical bars represent time points in which classifier accuracy was 
reliably higher than a permuted control for decoding set size 1 vs 4 (blue), 1 vs 1+3 (red), and 1+3 vs 4 
(green). Shaded error bars represent ± 1  SEM. 
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condition suggest that theta supports the filtering of distracting stimuli early on during 

stimulus encoding and maintenance, while alpha assists in the removal of accidentally 

encoded distractions later in the retention period. In the exercise condition, set size 1 trials 

were successfully discriminated from set size 4 trials during the first half of the trial period 

(~0-364 ms) and later in the delay period (~796-864 ms) using theta power. Patterns of theta 

power were also distinguishable between set size 1 and 1+3 trials during stimulus 

presentation and early in the retention period (~0-456 ms). Alpha power, on the other hand, 

was successful in discriminating between set size 1 v 4 trials during stimulus encoding (~32-

116 ms) and later in the delay period (~616-916 ms). Furthermore, classifiers trained on 

alpha power discriminated between set size 1+3 v 4 trials later in the retention period (~588-

884 ms). Classification results based on theta power during exercise suggest that distracting 

stimuli may have been erroneously encoded into working memory, while those based on 

alpha power indicate that encoded distractors may have been removed later in the retention 

period. A caveat with these interpretations, though, is that there were no observed differences 

in decoding accuracy between both rest and exercise conditions.  

DISCUSSION 

 Systematic reviews and meta-analyses have consistently reported that acute exercise 

has a beneficial effect on aspects of executive function, especially working memory and 

cognitive control (Moreau & Chou, 2019; Cantelon & Giles, 2021). Accompanying these 

findings is a wealth of empirical evidence for the modulation of early sensory processing and 

oscillatory dynamics across multiple frequency bands during physically active states 

(Bullock, Cecotti, & Giesbrecht, 2015; 2017; Cao & Händel, 2019; Garrett et al., 2021; Kao 
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et al., 2021). The aim of the current study was to determine whether acute exercise impacts 

the ability to selectively encode goal-relevant information into WM and the number of items 

that can be actively retained. EEG was recorded from participants while they completed a 

WM filtering efficiency task during a bout of light intensity cycling and at rest. Multivariate 

classifiers trained on patterns of voltage potentials, and power in the delta, theta, and alpha 

frequency bands were able to accurately detect WM load and the filtering of distractors in 

both conditions during the encoding and early retention period. However, classification 

accuracy did not robustly differ between rest and exercise. Similarly, CDA amplitude varied 

as a function of set size but not experimental condition. Taken together, these findings 

suggest that light intensity exercise does not impact the ability to ignore distracting 

information or the number of items that can be maintained in memory. More importantly, the 

present study demonstrates that it is possible to track WM load and filtering efficiency while 

individuals are in a physically active state. 

 ERP analyses reinforced the notion that CDA amplitude tracks the number of items 

retained in WM. Contrary to previous studies, though, average CDA amplitude did not differ 

as a function of WM capacity, challenging the validity of splitting individuals into low- and 

high-capacity groups in the current study. Given that memory strength on the filtering task 

differed between low- relative to high-capacity individuals, it is more likely that those in the 

former capacity group had enough cognitive control to perform adequately on distractor 

trials. Indeed, in both capacity groups the computed difference wave was more negative for 

trials that contained distractors ~250 ms post-stimulus onset, reflecting the N2pc component 

(Eimer, 1996; Luck & Hillyard, 1994). This component has been repeatedly shown to occur 

in visual search tasks for lateralized targets that are surrounded by distractors (Kiss et al., 
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2008), suggesting that it represents attentional selection mechanisms and the suppression of 

non-relevant information. Interestingly, Vogel, McCollough, & Machizawa (2005) did not 

report the presence of the N2pc and a dependency on WM capacity, which may have been 

due to the chosen baseline period. Based on the notion that low-capacity individuals fail to 

properly ignore non-relevant stimuli during the encoding period, leading to a more negative 

CDA for trials that contain distractors, it is reasonable to hypothesize that they would not 

display an N2pc component. However, this component was present in both low and high-

capacity individuals, begetting to two possible interpretations. This first is that low-capacity 

individuals are able to suppress distractors only partially, leading to the contamination of 

target representations. The second is that in the current experiment the N2pc only reflects 

initial target selection processes rather than active distractor suppression mechanisms 

(Sawaki et al., 2012), which are masked by the presence of the CDA. An interesting follow 

up experiment for future research would be to test individuals across a range of WM capacity 

estimates and assess how N2pc amplitude predicts both subsequent CDA amplitude and task 

performance on distractor trials.  Regardless, the N2pc component did not differ across both 

rest and exercise conditions, suggesting that attentional selection and distractor suppression 

are robust to perturbations in global state caused by light intensity exercise. Further, 

behavioral measures and similarities in CDA amplitude imply that exercise does not affect 

the number of items that can be held in memory. 

Classification analyses revealed that theta oscillations support the selective encoding 

and maintenance of targets early in the delay period. There is considerable evidence for 

activity within theta band tracking demands on WM. Klimesch et al., (1999) observed that 

theta power increases over frontal midline and parietal electrodes as a function of the number 
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of characters encoded and stored in short-term memory. Using MEG, Jensen & Tesche 

(2002) also detected an increase in frontal midline theta power that corresponded to the 

number of digits encoded and retained in memory on a modified Sternberg task. Cross-

frequency phase synchronization between theta and gamma oscillations is a proposed 

mechanism by which representations of multiple stimuli are organized and stored in WM 

(Jensen & Colgin, 2007; Canolty et al., 2006; Jensen & Lisman, 2001; Sauseng et al., 2010). 

Indeed, Sauseng et al., (2009) detected an increase in theta-gamma phase coupling over 

posterior electrodes that were contralateral to cued targets in a bilateral change detection task. 

Importantly, phase synchronization increased as a function of memory load and positively 

correlated with individual WM capacity. Given their observed dynamics during encoding and 

maintenance of multi-item stimulus sets, theta oscillations are thought to reflect a gating 

mechanism that controls the processing and suppression of goal relevant and irrelevant 

stimuli, respectively (Raghavachari et al., 2001; Sauseng et al., 2010). Classifiers trained on 

patterns of alpha band activity were also able to decode WM load, albeit only later in the 

retention period. It is well established that alpha oscillations track the allocation of spatial 

attention towards items encoded and actively retained in WM (Foster et al., 2016, 2019; 

Sutterer et al., 2019; MacLean, Bullock, & Giesbrecht, 2019; Garrett, Bullock, & Giesbrecht, 

2021). There is evidence that lateralized alpha power tracks the number of items stored in 

memory, with a greater degree of suppression later in the retention period as set size 

increases (Adam, Robinson, & Vogel, 2018; Fukuda, Kang, & Woodman, 2016; Fukuda, 

Mance, & Vogel, 2015). Contrary to previous work, univariate measures of theta and alpha 

band activity were not sensitive to WM and filtering of distracting information. The current 

study, though, differs in the degree of cognitive demand placed on participants while they 
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completed the filtering efficiency task. Having to concurrently maintain the execution of 

gross motor movements at a specific cadence throughout the experimental session could have 

required the exertion of more cognitive control, thus increasing frontal midline theta power 

irrespective of set size. Further, shifts in attention away from the locations of memoranda 

during the maintenance period towards cadence alignment may have diminished differences 

in contralateral and ipsilateral alpha power. Nevertheless, multivariate analyses provide 

further support for the role of theta and alpha oscillations in the efficient storage of goal-

relevant stimuli in WM. 

There are multiple reasons for the absence of exercise-induced effects. First, subjects 

engaged in a light intensity exercise protocol in an attempt to induce modulations in sensory 

responses, yet no differences in the visual evoked activity were detected. One major 

difference between the current study and those that observed enhanced sensory responses is 

that stimuli were presented bilaterally and in the periphery, rather than at fixation (Bullock et 

al., 2015). Therefore, light intensity cycling may facilitate foveal processing but have little 

impact on peripheral processing (but see Cao & Händel, 2019). Second, a more intense 

exercise may have been necessary to engender the cascade of neuromodulatory changes (e.g., 

rise in catecholamine and neutrophin levels) that promote WM function. Indeed, Drolette & 

Meadows (2022) observed that change detection accuracy improved on trials with four 

targets 40-minutes post a high intensity interval calisthenics exercise relative to a sedentary 

state. Note, similar to the current study no differences were detected in CDA or N2pc 

amplitude between exercise and control conditions, providing further evidence for the notion 

that exercise does not impact WM storage capacity. Instead of influencing the number of 

items that can be stored, exercise may rather affect the resolution of WM representations 
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(Garrett et al., 2021). Since a “supra-threshold” degree of change was used between sample 

and test arrays, low-resolution representations could have been sufficient to complete the task 

(Bays & Husain, 2008), thereby masking potential behavioral and neural differences between 

conditions. Future studies implementing whole-report response are required to gain insights 

into the impact of exercise on the allocation of attentional resources towards multiple items 

stored in memory and the fidelity of their representations. 

 In summary, we investigated how an acute bout of aerobic exercise modulates the 

selective encoding of targets into WM and the number of items that can be stored. Behavioral 

and ERP analyses indicated that attentional control and storage mechanisms are preserved 

during cycling relative to a sedentary condition. Classification analyses revealed that it is 

possible to decode WM load and filtering efficiency while subjects are engaged in physical 

activity. The current study is the first to demonstrate that it is possible to track the number of 

items actively retained in memory during exercise and provides novel insights into the 

stability of WM encoding and maintenance mechanisms across changes in physiological 

state.  
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Chapter V: General Discussion 

 Behavioral and neural responses to sensory inputs are highly dynamic and 

inextricably linked to variations in global physiological state. Yet, research on how the brain 

processes information from the external environment has predominantly focused on behavior 

and its underlying neural activity while an organism is in a sedentary state—which 

consequently may only represent a single snapshot of brain function within a high-

dimensional feature space of global states (McCormick, Nestvogel, & He, 2020). The current 

body of work serves as a collection of studies aimed toward understanding how perturbations 

in global state in turn modulate cognitive processes and their neural substrates. In particular, 

these studies examined the effects that ensue from engaging in aerobic exercise.  

   Chapter II details a data-driven approach to quantify the impact of exercise on 

cognitive task performance. A Bayesian hierarchical model was employed to meta-

analytically synthesize reported effect sizes from a large corpus of empirical studies, and test 

for exercise protocol and cognitive task characteristics that moderate the magnitude of 

exercise-induced effects. The model revealed that there was moderate probabilistic evidence 

in favor of exercise having a small positive influence on general cognition. Engaging in high-

intensity interval training (HIIT) or cycling increased the magnitude of this effect. Moreover, 

response time and executive processes such as WM and inhibition were especially sensitive 

to perturbations in global state caused by exercise. Building off these meta-analytic results, 

Chapter III and IV empirically investigated which aspects of WM and inhibitory control are 

modulated when an individual is in a physically active state. Chapter III demonstrates that 

the representations of spatial locations stored in WM can be reconstructed during a bout of 
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low-intensity cycling by applying an inverted encoding model (IEM) to topographical 

distributions of alpha power recorded with EEG. The results of this study suggest that the 

fidelity of spatial WM representations is degraded during exercise relative to a sedentary 

period, which may be due to the continuous coordination of gross motor movements taxing 

attentional resources. Interestingly, Ayaz et al., (2013) observed that neurons in mouse 

primary visual cortex displayed an increased tuning for larger stimuli during locomotion 

relative to a sedentary period, suggesting that the ability to integrate information over larger 

areas of space is increases. If low-intensity cycling induced a similar change in human visual 

cortex, then diminished IEM reconstructions (i.e., smaller slopes) may rather reflect that the 

area of space neural populations are sensitive to has expanded and that exercise facilitates 

spatial integration. Chapter IV evaluated whether the neural substrates of selective attention 

and WM storage are modulated during low-intensity cycling. The key results from this study 

were that WM load and filtering efficiency can be tracked during exercise using traditional 

event-related potential (ERP) analyses and multivariate classification techniques. 

Importantly, no major differences in WM load or filtering efficiency were detected between 

rest and exercise, suggesting that both the ability to selectively encode targets while 

simultaneously ignoring distractors and the number of items that can be retained in WM are 

preserved across small perturbations in physical state.  

 Results from the presented studies highlight the complex relationship between global 

state and cognition. Exercise selectively influenced the ability to maintain high-resolution 

stimulus representations in WM but had no impact on encoding mechanisms or storage 

capacity. One possible explanation for this selective effect is that during exercise parietal 

areas are also constantly maintaining motor representations to coordinate limb movements in 
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extrapersonal space, and spatial information from motor signals may erroneously be 

integrated into visual WM representations (Andersen et al., 1997; Andersen & Buneo, 2002; 

Beloozerova & Sirota, 2003; Snyder et al., 1998). Given their association to the allocation of 

spatial attention (Rihs et al., 2007; Sauseng, Klimesch, Schabus, et al., 2005; Thut et al., 

2006), execution of voluntary motor movements (Pfurtscheller & Aranibar, 1979; 

Pfurtscheller & Berghold, 1989; Pfurtscheller & Lopes da Silva, 1999), and integration of 

information across sensory modalities (Cecere et al., 2015; van Driel et al., 2014), alpha 

oscillations likely would reflect contaminations of spatial WM representations from motor 

signals. Provided that increased levels of representational noise during exercise is distributed 

uniformly across multiple stimuli retained in WM, then their discriminative relationship is 

preserved and the number of items that can be stored remains unchanged. An alternative 

account is that low-intensity exercise has no impact on the resolution of WM representation. 

Rather, diminished IEM reconstructions reflect an expansion in the areas that neural 

populations in visual cortex are tuned to respond to (Ayaz et al., 2013) and a facilitation of 

spatial integration. Future research in which multiple WM representations are reconstructed 

during exercise is required to adjudicate between these possible explanations. In any case, it 

is clear that specific mechanisms of a single cognitive process are sensitive to changes in 

global state. 

   A consistent finding across empirical assessments of exercise-induced effects on 

WM in Chapter III and IV is an absence of change in behavioral performance. This contrasts 

with the results of the meta-analysis discussed in Chapter I, however it is important to 

consider two key points. First, exercise was estimated to only have a small positive effect on 

WM performance (g = 0.22), thus larger sample sizes may be necessary to reliably detect 
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differences in behavioral measures. Second, the behavioral tasks were relatively simple and 

consisted of large changes between memorized and probe stimuli (Bays & Husain, 2008). 

Participants could have been performing at ceiling on these tasks, masking differences 

between conditions. Change detection designs were used to increase the number of trials that 

could be completed within experimental sessions and improve EEG recordings. Tasks 

requiring whole-report may be sensitive to exercise-induced changes in behavior and provide 

greater insights into how the structure of WM representations are modified in a physically 

active state. A more interesting factor to consider is that task goals were orthogonal to the 

exercise. In other words, there was no need to physically engage one’s body to accomplish 

the cognitive task, which contrasts with goal-directed behavior in real-world scenarios (e.g., 

rock climbing or playing sports). When viewed through the lens of the embodied cognition 

framework, perception and decision-making are inextricably intertwined with action 

dynamics (Foglia & Wilson, 2013; Gordon et al., 2021). This relationship can be observed 

when stimulus representations are associated with specific motor plans. For example, van 

Ede et al., (2019) recorded EEG on a visual WM task in which participants had to use the left 

or right index finger to rotate probe stimuli either counterclockwise or clockwise, 

respectively. Critically, classification analyses revealed a high degree of overlap in the 

temporal profiles of visual (i.e., stimulus location) and motor (i.e., response hand) selection. 

This suggests that representations of visual and motor attributes are concurrently available to 

which allows for the speedy execution of precise actions to accomplish task-goals. 

Furthermore, there is evidence that the execution of hand or eye movements can affect visual 

stimulus representations stored in WM, implying that there is a bi-directional link between 

visual WM and motor movements (see van Ede, 2020 for review). Therefore, aligning the 
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exercise with cognitive task-goals is a promising experimental manipulation that may 

produce much larger behavioral effects that better generalize to real-world scenarios.  

 Why does engaging in physical activity modulate cognitive processes and their 

underlying neural substrates? The Adaptive Capacity Model (ACM) proposes a mechanistic 

explanation for exercise-induced effects that is grounded in evolutionary neuroscience 

(Raichlen & Alexander, 2017b). The ACM posits that widespread changes in neurochemical 

levels and neural activity that occur during physical activity are the product of selection 

pressures that promoted successful foraging when humans led a highly active hunter-gatherer 

lifestyle (Kempermann et al., 2010). Analysis of modern-day hunter-gatherer communities 

shows that a majority of their daily routine is spent engaged in light to moderate physical 

activity (Gurven et al., 2013; Raichlen & Alexander, 2017b)—suggesting that cognitive 

abilities such as executive function, memory, attention, navigation, and perception evolved to 

perform optimally in a physiologically aroused state. Movement through complex naturalistic 

environments would engage each of these cognitive abilities, and as locomotor speed 

increases so too does processing demands on the brain. The ACM also proposes that the high 

degree of variability in the impact of acute physical activity on cognition across individuals 

(i.e., small effect sizes) is likely a reflection of differences in their inherited adaptive 

physiological capacity (Bouchard et al., 1999). This physiological capacity can be trained, 

however, through long-term exercise interventions that strengthen the neural architecture of 

multiple cognitive systems as evidenced by changes in structural and functional connectivity 

(Baniqued et al., 2018; Erickson et al., 2011; Hsu et al., 2017; Raichlen et al., 2016). Hence, 

a case can be made for the notion that cognition evolved to operate in a physically active 
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state rather than a sedentary one, underscoring the importance of developing a fundamental 

understanding of the bi-directional influence between the brain and body. 

 The set of studies presented here aimed to determine the impact of acute exercise on 

the neural mechanisms that support the encoding and maintenance of stimulus 

representations over short periods of time. Novel statistical methods were employed to 

synthesize results across empirical studies and to demonstrate that both the number of stimuli 

held in WM and the fidelity of their representations can be tracked during an acute bout of 

cycling. These studies serve as an important first step towards developing a comprehensive 

understanding of how the brain is capable of achieving goal-directed behavior throughout our 

daily routine across variations in global state.  
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