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EPIGRAPH

La Nature est un temple où de vivants piliers

Laissent parfois sortir de confuses paroles;

L’homme y passe à travers des forêts de symboles

Qui l’observent avec des regards familiers.

—Charles Baudelaire

Nature is a temple in which living pillars

Sometimes give voice to confused words;

Man passes there through forests of symbols

Which look at him with understanding eyes.

— Translated by William Aggeler, 1954
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ABSTRACT OF THE DISSERTATION

A high-throughput microfluidic platform for genome-scale transcriptional dynamics and
environmental sensing

by

Grégoire Thouvenin

Doctor of Philosophy in Bioengineering

University of California San Diego, 2021

Professor Jeff Hasty, Chair

Genome-scale technologies have transformed our understanding of the biomolecular

signaling networks that underpin cellular function and adaptation. Omics-level analysis has

cemented the view that biological signal processing is not the result of linear pathways, but an

emergent property of complex networks whose functions and dynamics we now seek to understand.

In model organisms such as E. coli, biomolecular networks are often elucidated by observing how

gene expression patterns change in reaction to experimentally-induced perturbations. However,

the high-throughput experimental techniques traditionally used for this purpose are inherently

destructive and only offer snapshots of a cell’s state. As such, these technologies do not fully

capture the information encoded in the dynamics of biomolecular networks, which are complex,

time-dependent signals.

xv



In the past twenty years, microfluidic technology combined with fluorescence microscopy

has established itself as a powerful tool to study time-dependent biological processes while

precisely controlling the cellular environment. This thesis focuses on bridging the gap between

genome-wide assays and microfluidics-based dynamic perturbation experiments. Here I report

the development of a high-throughput microfluidic platform capable of culturing 2176 unique

microbial microcolonies in parallel and monitoring the changes in expression of fluorescent

proteins in each strain. By loading the platform with some of the readily available libraries of

fluorescent transcriptional reporters and dynamically tuning the growth media, I show that we

can measure microbial gene expression dynamics in response to environmental inputs in vivo and

genome-wide.

Chapter 1 provides an overview of the role of high-throughput microfluidics in systems and

synthetic biology research. Chapter 2 describes the design of a highly multiplexed microfluidic

platform for monitoring gene expression in GFP-tagged E. coli with both industrial and research

applications. Chapter 3 illustrates the platform’s applicability as an environmental biosensor

that uses the dynamics of 2000 E. coli GFP-promoter strains coupled with machine learning

algorithms to detect the presence of heavy metals in drinking water in real-time. Chapter 4 further

demonstrates the potential of microfluidics-based biosensing by reporting the use of devices

loaded with diverse engineered microbes to detect pollutants in seawater. Finally, in Chapter 5,

I use the platform to probe the dynamics of the S. cerevisiae proteome in response to the drug

metformin and lay the foundations for a new type of dynamics-based chemogenetic screen.

The overarching aim of this research is the capture of microbial gene expression dynamics

in response to environmental stimuli on a genome-wide scale with applications in biosensing and

the characterization of drug targets.
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Chapter 1

Introduction

1.1 Personal perspective

Reading a cellular and molecular biology textbook has always filled me with wonder.

Wonder in the face of the networks of biochemical reactions orchestrated by the cell to continually

adapt to a changing environment. Of the thousands upon thousands of molecules that act swiftly

and with precision in chaotic, crowded conditions to transform matter, transfer energy and

transmit information. Of the beautifully coordinated behavior that emerges from this intracellular

symphony. As an engineer flipping through the pages of a said textbook and discovering the

well-tuned functions accomplished by this “molecular soup”, I was rapt with excitement. And

full of questions. How could we map out these networks of reactions? Find the design principles

that underlie them? Or more intriguingly yet, work with those systems and create new functions

inside cells? It was a special moment to realize as a student that we had entered an age in which

we could tangle with the cell’s inner workings, build with biology, and find new ways to interact

with living matter. I knew then that I wanted to become a scientist.

1



Quantitative Biology

Born a descriptive science, biology has morphed into a quantitative discipline. Rapid

progress in experimental technology, imaging tools, and computational power has fuelled this

transformation and propelled biology into a new era [1]. This thesis is a small contribution to a

series of technological developments whose harbinger was the sequencing of the human genome

at the turn of the millennium. The post-genomic age has radically changed how we conduct

biological research. Endowed with new tools, biologists now face an ever-increasing volume of

“omics” data that describes the genes (genomics), mRNA (transcriptomics), proteins (proteomics),

and metabolites (metabolomics) inside our cells. Yet this avalanche of data does not always

equate better mechanistic understanding [2]. “The map is not the territory” [3], particularly when

it comes to predicting the function of biological networks and untangling the “technical debt” of

evolution [4].

Numerous scientific disciplines have rallied to help link biological maps to territories of

understanding. Mathematics, physics, chemistry, computer science, but also engineering have

brought new tools and conceptual approaches to the life sciences. They have bolstered the effort

to uncover generalizable principles that govern the molecular underpinnings of life [5]. This

movement to make biology quantitative can be traced back to Schrödinger’s “What is life?”. In

his 1944 book, [6], the physicist of feline infamy initiated an approach to biological systems

that relies more heavily on the laws of the physical sciences that govern the rest of the material

world [7]. In this vein, quantitative biology strives to bridge components with systems, formulate

predictions via quantitative models, guide the design of new experiments and technology, and

power the generality of (falsifiable) ideas [8].

2



1.2 Systems and synthetic biology

Two of quantitative biology’s offsprings are systems biology and synthetic biology. Both

are interdisciplinary approaches that aim to understand, predict, and control living systems [9].

Both have directly benefited from the modern tools of molecular biology, genomic analyses, and

high-throughput measurement techniques [10]. While the exact definition of these young fields

is difficult to pin down [11], systems biology is often characterized as a top-down knowledge-

driven approach, and synthetic biology as a bottom-up, application-driven approach with roots in

engineering [12, 13]. Systems biology includes the reconstruction of genome-scale biochemical

reaction networks in silico [8, 14], and focuses not on the components of the network as much as

the relationship between them. This approach links the states of intracellular biological networks

to physiological states [15, 16] and enables holistic modeling of entire cells [9]. Systems biology

has numerous applications in bioprocess development [17], metabolic engineering or the modeling

of complex diseases [18]. Additionally, systems biology presents biologists with an interesting

epistemological challenge. The analysis of large omics data sets now goes beyond complementing

hypothesis-driven experimentation. It is a source of new hypotheses and knowledge [19].

Synthetic biologists often quote the physicist Richard Feynman to explain their approach

to biology: “What I cannot create, I do not understand.” Since its inception in the early two-

thousands, the field’s main focus has been creating synthetic gene circuits by assembling modular

genetic elements [20], mostly in microbial organisms. By exploiting the diversity of genetic

parts found in nature, synthetic biologists have re-created numerous functions in cells. Toggle

switches [21, 22], logic gates [23, 24] oscillators [25–27] and sensors [22, 28, 29] are some

salient examples. Additional offshoots of the field include the construction of entirely synthetic

genomes [30–32], the expansion of the genetic code [33] and cell-free synthetic biology [34]. Un-

derlying these efforts is an attempt to bring principles of engineering (abstraction, standardization,

characterization, modularity, decoupling) and foundational technologies to biology [35].
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The acts of designing, modeling, and studying synthetic gene circuits have a two-fold

repercussion. First, insight is gained into how evolution shaped biological networks to perform

specific tasks in the cell. Second, we learn to create genetic circuits that have a multitude

of societal applications. Genetically engineered “living factories [36] can produce chemicals

[37, 38], biofuels [39], biomaterials [40], detect chemical cues in their environment [41–44] or

autonomously treat diseases [36, 45–47]. Living factories leverage the richness of the biological

world to build a more healthy and sustainable future. The desire to engineer biological machines

and build better tools to study them is what drove me to pursue a Ph.D.

There are limits to both holistic and engineering approaches to understanding gene

networks. On the one hand, the search for design principles using a holistic approach can be

made difficult by low signal-to-noise datasets ladened with confounding factors, the existence of

nonlinear interactions between components, and genotype-phenotype disparity [2]. Performed

without the appropriate experimental grounding, systems biology describes phenomena in a

vacuum and creates in silico models with little real-world significance. On the other hand, the

engineering approach faces the simple reality that organisms are far from machines [48, 49].

“Biology is messy” is a term you will often hear in the lab when an experiment does not produce

the expected results. While this may be simply the reflection that one’s experiments were “messy”

(!), it also reveals the context-sensitivity and unpredictability of biology that separate it from

engineering disciplines. Francois Jacob, one of the fathers of molecular biology, famously called

evolution “a tinkerer” [50] to describe how it has shaped and continues to shape living organisms.

Biological networks were forged by evolution through the random repurposing of pre-existing

forms [7]. They are not, like electronic networks, designed by an engineer. Hence the engineering

approach is bound to remain a metaphor.

It is essential to connect models of gene circuits with experimental truth in both top-

down and bottom-up approaches. Both synthetic and systems biology benefit from experiments

that characterize the relationships between the molecules that compose genetic network. These
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experiments are particularly valuable to those seeking to understand the genetic program when

they include the spatial dimension, temporal dimension and place the cell in different contexts [51].

1.3 The dynamic phenotype

To uncover generalizable principles about the function of the cell, it is necessary to

consider the environment in which cells evolve. That environment is not the artificial, nutrient-

plenty one offered by conventional in vitro molecular biology assays. Take the life of an ordinary

E. coli. We initially stumble upon the bacillus growing slowly in the environment. Suddenly, it is

ingested by a mammal and undergoes a series of brutal changes. Its temperature rises dramatically

from 20°C to 37°C. Oxygen levels drop. Acidity rises strongly as it reaches the mammal’s

stomach, where it is assaulted by an army of enzymes. As it progresses down the intestinal tract,

pH rises again, and it finds itself dividing at a much faster rate and competing for nutrients with

other species of bacteria. Finally, it finds itself out in the open again and is exposed to oxygen,

lower temperatures and the absence of nutrients [51]. To survive this series of unfortunate events,

E. coli displays a dynamic phenotype and uses many layers of regulatory feedback to assess and

precisely react to its environment.

Dynamic phenotypes are pervasive throughout biology and govern many important bio-

logical processes such as cellular differentiation [52, 53], stress response [54, 55] and epigenetic

regulation [56]. An increasing body of evidence points to dynamics as a key strategy that bio-

logical systems use to encode information [57] and dysregulation of dynamics as a hallmark of

disease [58, 59] and aging [60]. Thus characterizing the dynamic nature of changes that occur

upon a cell’s exposure to stimuli at the omic level is necessary to understand the mechanisms of

adaptation that pervade through life [61].
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1.4 Capturing gene expression dynamics

The importance of complex feedback in controlling the real-time response to external

stimuli has created a need for a new generation of cell-based technologies that enable both

the collection and analysis of long time, high-throughput temporal data [62]. This is the main

motivation for the work I accomplished in graduate school and present in this thesis. These novel

technologies will map out with greater certainty the expression dynamics that genes display after

reacting to a stimuli [63, 64]. And will thus allow us to differentiate transient from sustained

expression patterns, fast from slow response kinetics and drive towards an understanding of the

causal relationships between genes that belong to the same networks [65].

Despite the importance of capturing time-series data, measurement techniques used

to study biological dynamics suffer from a variety of drawbacks [14] (see Table 1.1). High-

throughput, omics techniques (including RNA-seq [66, 67] , ribosome profiling [68], mass

spectrometry [69], and microarray-based expression profiling [70, 71]) are destructive in nature

and only offer snapshots of a cell’s state [14]. Other techniques such as qPCR [72] , and

flow cytometry [73] also require multiple experiments to capture more than one timepoint and

track more than a handful of genes. Fluorimetric plate reader and batch culture experiments,

while better positioned to capture time series data, are also limited in the number of genes they

can track. In addition, these techniques rarely give scientists full control over the type and

duration of perturbation that can be applied to biological signaling networks. Finally, microfluidic

technologies, especially when combined with fluorescence microscopy, offer a method to study

cell phenotype at a high resolution within a chemostatic environment; however, these approaches

are notoriously low-throughput and limited to very few genes-of-interest.

Our ability to measure large-scale dynamics has not kept pace with our rapidly growing

ability to take information-rich single-time point measurements. This paucity of data describing

biological signaling dynamics helps explain why bridging network structure with function remains
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Table 1.1: Methods to assay gene expression dynamics. Adapted from [14]

Method Time course Scope Throughput Live vs. Dead Ref.

Flow cytometry Snapshot Single cells Medium Either [73]
RT - qPCR Snapshot Population Medium Destructive [72]
RNA-seq Snapshot Population High Destructive [74]
Microarray Snapshot Population High Destructive [75]
Fluorescence Microscopy Dynamic Single cells Low Live [76]
Fermenter Dynamic Population Low Live [77]
Plate reader Dynamic Population Medium Live [78]
Dynomics Dynamic Population High Live [79]

a challenge despite the accumulation of functional genomics data [80–82] and the progress of

computational methods and analysis [62,83]. To bridge this gap, I develop in this thesis a broadly

applicable research platform (Dynomics) combining large-scale microfluidic technology with

fluorescence microscopy. This platform will capture high-quality time series data simultaneously

for thousands of signaling network constituents in live cells [84, 85].

1.5 Microfluidics and time-lapse fluorescence microscopy for

quantitative biology

In the past twenty years, microfluidics has emerged as a powerful tool in biology dynamics.

Microfluidic platforms enable scientists to precisely control cells’ environment and capture their

behavior using high-resolution microscopy [86]. The micro-scale features of microfluidics offer

control over cell location and growth [87] while the laminar flow conditions enable precise

delivery of media [88, 89]. Finally, the small scale of those devices minimizes resource use :

reagents, consumables, and time [90]. As a result, microfluidic devices have been engineered

to serve a multitude of research purposes in both synthetic and systems biology [91]. These

include studying single-cell gene expression dynamics, tissue growth, biofilms, the effects of
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temperature and chemical gradients or accomplishing cell sorting, on-chip DNA amplification

and sequencing [92–105].

However, the use of microfluidics has principally been low-throughput, allowing users

to track the behavior of a few nodes to answer narrow biological questions [106–108]. While

individual devices have been developed for loading, culturing, stimulating or tracking cells, few

systems attempt to bring together these capabilities necessary for the study of gene expression

dynamics at the ”omics” scale. To further increase the throughput of microfluidics, novel

parallelized platforms with automated data extraction pipelines are required [109].

1.6 High-throughput microfluidics and the Dynomics platform

Recently, several studies have demonstrated how microfluidic parallelization and au-

tomation of cell handling permit the simultaneous tracking of hundreds to thousands of strains

in parallel. These studies represented significant steps towards increasing the upper bound of

throughput in microfluidics-based experiments. Common to those studies is the use of fluorescent

libraries for model organisms such as S. cerevisiae [110,111], E. coli [112,113] or mammalian cell

lines [114]. In these existing libraries, the signals associated with the production of a fluorescent

protein are measured for each strain to monitor gene expression and protein localization. This

combination of microfluidics and genome-scale fluorescent reporter strain libraries has facilitated

the study of genomic transcriptional dynamics.

These approaches, however, have been hampered by the “Pareto Frontier”‘ of microflu-

idics: the inevitable trade-off between device complexity and ease-of-use [115]. This resulted in

short experimental lifespans, limited temporal resolution, static environmental conditions, and the

development of single-purpose devices. For the few high-throughput microfluidic devices able to

handle entire libraries, experimental protocols require complicated fluidic connections and valves

that can take hours to set up [88, 110, 113]. Such devices are also not compatible with the high
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temporal resolution needed to study signaling networks. For example, in the oxidative response

network in S. cerevisiae, the time scale of protein expression change is on the order of minutes,

yet current large-scale screening devices image with a period of over 20 minutes [110]. Finally,

these platforms are not all capable of finely and continually controlling environmental conditions,

despite such control being one of the most salient advantages of microfluidics [90]. All the above

prevent the democratization of potentially transformative technology and its application towards

a systems-level, fundamental understanding of the rules of signaling pathway dynamics [111].

1.7 Thesis overview

Dynomics is a broadly applicable research platform that bridges the gap between microflu-

idic dynamic perturbation experiments and genome-wide assays.

The Dynomics microfluidic platform enables continuous growth, precise environmental

control, and simultaneous optical monitoring of up to 2176 unique microcolonies of E. coli

or S. cerevisiae for up to 14 days. The platform meshes hardware (a large-scale microfluidic

device and associated custom optical enclosure) and software (an automated data extraction

pipeline and downstream machine-learning algorithms) to achieve this aim. In the Dynomics

microfluidic device, all strains grow in physically separate microchambers but are exposed to the

same dynamically tunable media. This unique setup allows for tracking genetic markers such

as the expression levels of fluorescent protein over time for each strain. By loading the device

with some of the readily available genome-scale libraries of fluorescent transcriptional reporters,

Dynomics can be used to resolve genome-scale transcriptional dynamics.

Chapter 2 of this thesis details the design and development of the Dynomics microfluidic

platform and its use to generate data from fluorescent E. coli subjected to dynamical environmental

perturbations. Chapter 3 demonstrates the use of Dynomics as a versatile biosensing platform

capable of detecting time-varying concentrations of toxins using a library of fluorescent E. coli and
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machine learning algorithms. In this work, 2000 fluorescent E. coli reporter strains were screened

against nine heavy metals at levels close to or below EPA drinking water limits, identifying

naturally responsive genes and highlighting their transcriptional dynamics. Machine learning

techniques were used to capture the most salient and discernible patterns in the genome-scale

transcriptional response to each heavy metal. Chapter 4 further demonstrates the applicability

of Dynomics as a biosensing platform by detecting pollutants in challenging environment of

seawater. To this end, I showed that different types of genetically engineered E. coli can be

used in a microfluidic environment to sense chemical inputs in seawater continuously. Finally,

in Chapter 5, I leverage Dynomics to monitor the time-resolved response of the S. Cerevisiae

proteome to the drug Metformin, illustrating the platform’s use for dynamics-based chemogenetic

screens and the elucidation of drug targets.

In the broad context of biological research, the significance of this research is the develop-

ment and application of a technology that can reveal insights embedded in temporal responses of

microbial biological networks and elucidate gene regulatory phenomena that are fundamentally

dynamical in nature.
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Chapter 2

Development of a microfluidic platform for

high-throughput and continuous culturing

of fluorescent E. coli

2.1 Introduction

In this chapter, I describe the design, development and validation of a microfluidic

chemostat array capable of continuously culturing and monitoring up to 2,176 unique strains

of E. coli. Coupled to time-lapse fluorescence microscopy via a custom optical system, this

high-throughput multiplexed microfluidic device is designed to bridge omics-scale throughput

with a precisely controlled dynamic environment, resulting in high-quality time-series data.

To obtain a functional, highly parallelized microfluidic platform, the geometry of the

device was optimized for cell loading, continuous cell growth, and the collection of fluorescence

responses upon exposure of cells to experimentally-induced environmental stimuli.
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2.2 Microfluidic device design

2.2.1 Design endpoints

The design goal was to produce a 62 mm x 88 mm microfluidic device that allows for high-

throughput, long-term (a week or more) culturing of up to two thousand microbial microcolonies.

The device was designed to be housed in an optical enclosure that includes the hardware and

software to capture transmitted light and GFP fluorescence images at high temporal resolution

with a 70 mm x 70 mm field of view. To improve experimental tractability and dissemination of

the platform, the device was conceived with a single layer design that requires minimal fluidic

connections to the outside and contains no valves. In addition, the device was designed to be

compatible with high-throughput cell loading using a Singer ROTOR colony-picking robot. This

added the following design requirements: a cell trap region at least 400 µm in diameter where

each initial cell spot would be placed and a 1.125 mm spacing between each cell trap in both the

x and the y dimension to match the 6144-format of the Society for Biomolecular Sciences (SBS).

2.2.2 Cell trap design

Development

The Dynomics microfluidic device cell traps are the fruit of an iterated design process

and were optimized for reliable trap filling, cell retention, and strength of the fluorescent signal

obtained from each spotted microcolony. The goal was also to minimize the variability between

any two positions on the device. Finally, we sought to minimize excess cell mass streaming out

of each cell trap which leads to clogging of media channels and shortens experimental lifetime.

Figure 2.1a shows the ’gill’ cell traps initially designed for this purpose. Gill traps had a

high aspect ratio which resulted in a high fluorescence signal. However, we noticed convective

flow into the reservoir that entered the first gill and left through the last gill leading to poor
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cell retention. The Gill-Shunt design (Figure 2.1b) was designed to reduce convective flow in

the gill traps by providing a path of lesser resistance for flow to follow before cell traps are

filled. Although this design helped redirect flow, cell retention was still variable across the gills.

The cell traps in Figure 2.1c were designed to increase retention by constraining the cells in a

”mushroom” shaped cell trap. Although this solved the cell retention issue, the growth state of

cells in the mushrooms was variable, leading to inconsistent responses across mushrooms. Further

investigation revealed that the variability was often due to either the rapid emptying of cells from

a mushroom due to fluid flow instabilities, or to heterogeneous cell compaction and growth states

within each mushroom. Figure 2.1d shows the simplest trap possible, a single open side trap in

which cells are directly spotted. Cells in this 50 µm tall trap accumulated too much biomass and

clogged the device quickly. Figure 2.1e shows a design similar to 2.1d with an added spotting

post to limit biomass while providing a support pillar for the spotting process. This design also

resulted in excessive biomass and device clogging. Figure 2.1f shows a funneled cone design

also 50 µm in height that restricted cell mass. This design was iterated for use in the channel-free

design (Figure 2.1g-j). Figure 2.1g has a 4 µm spotting region and 50 µm funneled cone. Figure

2.1h shows a teardrop wall in order to prevent upstream cells from gathering on downstream

trap walls. It has a 4 µm spotting region and 50 µm funneled cone similar to Figure 2.1g. The

narrow funneled cone prevented clogging and large biomass, but the 50 µm height still resulted in

variability in the growth state. Similarly, Figure 2.1i also has a teardrop shape and 4 µm spotting

region. Instead of a 50 µm cone, this design has 50 µm gills as the cell trap. The gills reduced cell

mass and clogging, but still showed variability in growth state. Figure 2.1j has a 4 µm spotting

region and 4 µm cone. This design limited biofilm formation, decreased growth state variability,

and had sufficient fluorescence signal. This trap design formed the basis for the final iteration of

our cell trap design. It was successfully adapted to work with the manifold channel design (Figure

2.1k), successfully retaining cells in a homogeneous growth state with detectable fluorescence

signal.
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Figure 2.1: E. coli growing in different cell traps designed for multi-strain microfluidic devices.
Cell trap designs tested to maximize E. coli cell retention, homogeneous growth states, and
fluorescence signal. Gill traps with (a) and without (b) shunts inconsistently filled traps. Dead
end gills (c) and side traps (d,e) lead to heterogeneous growth states. Channel-free traps (f-j) were
tested with 4 µm (f,j) and 50 µm (g-i) openings with various opening sizes for cell retention. k)
The final trap design used with the manifold channel system

Final cell trap design

Dynomics device cell traps possess a spotting area large enough to be seeded with a

microcolony grown on an agar plate at 6144 density. The trap has a “light bulb” shape, with the

area of the trap furthest away from the minor channel possessing a disk-shaped geometry with a

large 500 µm diameter to receive the microcolony transferred from the 6144-density agar plate
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(Figure 2.15). As cells grow out of the spotting area, the trap geometry narrows and eventually

forms a rectangular area of 100 µm by 110 µm (named the bulb).

While previous designs in the Hasty lab used “monolayer” (1 µm deep [116]) or “pseudo-

monolayer” (1.7 µm deep [26]) cell traps for the culturing of single sheets of E. coli, the Dynomics

traps are 4 µm tall. This increases the number of cells in the imaged area and hence the signal-

to-noise ratio. Increased depth of the trap is also necessary to contain the large amount of cells

deposited into the trap during a spotting event. In our final design (Fig. 2.1k), the minor channel

intersects the cell trap at a right angle, which allows for the rapid clearance of cells growing out of

the cell trap. Despite cell trap and minor channel being orthogonal, the height difference between

them shields the bacteria from shear stress. Indeed, in microfluidic devices with low aspect ratio

channels, the resistance of a channel scales with the cube of the height [90]. Given that the cell

trap has a 4 µm height, the fluid velocity into the cell trap is only a fraction of the one in the

adjacent minor channel, which is 50 µm tall and experiences 200 µm/s flow on average. Although

flow of media into the trap is minimal, the small scale of the bulb area allows the rapid inward

diffusion of nutrients and outwards diffusion of waste between the channel and cell trap relative

to the timescale of bacterial growth. Consequently, cells in the part of the trap that is closest to

the fresh media supplied by the channel grow exponentially and form a homogeneous layer of

cells. Cells further away from the channel and its flow of fresh nutrients remain in stationary

or decline phase. While we image all the areas of the trap (numbered 1 through 4 in Figure 2.8

A), we have found the data collected from the front of the bulb (labelled ”bulb 1”) consistently

produced data with the highest signal to noise ratio.
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Figure 2.2: Different channel systems tested during the development of a multi-strain microfluidic
device constrained to 1.125 mm spacing between traps for compatibility with 6144-SBS format. a)
Binary splitting channel system traditionally used in microfluidics. b) Shared channel system. c)
Channel-free system. d) Manifold channel system which was selected for used in the 2,176-strain
device. Black arrows denote flow direction.

2.2.3 Channel system design

Development

Adequate channel design complements cell trap design to limit flow rate variability across

the device and to prevent clog formation that limits device experimental lifespan. Channel design

was also the fruit of a design-build-test-learn process, which is described below.

Figure 2.2a illustrates a binary splitting channel system design often seen in microfluidic

devices. While it has the advantage of offering symmetrical splitting of flow channels leading

to identical flow rates across the device, this channel system requires large amounts of space

and is not scalable to the level of a two-thousand strain device. In addition, it increases the

number of zones with low fluid velocity in the device. A critical factor in the prevention of

clog formation in microfluidic devices is the maintenance of a constant shear flow to remove

excess cells from accumulating along the media channel walls. Regions with low flow rates
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are potential areas where E. coli cells can settle, proliferate, and begin to form a biofilm. The

shared channel system (Figure 2.2b) is designed with of a single inlet channel splitting into

multiple channels of equal length that feed cell trap positioned in series. This design helps with

even flow rate across the device and limits clogging. However, it also increases the chances of

cross-contamination of strains due to convective flow into the traps and multiple cell traps sharing

the same inlet channel. To eliminate this, we also tested an open channel design (Figure 2.2c)

where flow comes in from the top of the traps, with no channels present other than inlet and

outlet plumbing (Figure 9c). The traps were rotated 15◦ to avoid flow paths from the mouth

of one cell trap from feeding into another, thus avoiding cross-contamination, and maximizing

nutrient availability. While the channel-free system has the smallest channel footprint, analysis

using fluorescent microbeads showed that flow direction unexpectedly changes near some traps,

resulting in cross-contamination. The unpredicted changes in direction of flow were likely due

to small differences in the height of the open area due to imperfections in the silicon wafer

fabrication process.

2.2.4 Media flow considerations

The final channel design is a manifold system depicted in Figure 2.2d. It consists of an

inlet channel that splits into major media channels with a height of 230 µms. Major channels, in

turn, split into parallel minor channels 50 µms tall. Finally, each minor channel feeds a unique

cell trap described in 2.2.2. During outflow, minor channels combine again into major outlet

media channels. Of all the channel systems tested, the manifold channel system is the only one

to meet the design endpoints, allowing consistent replenishing of media at each cell trap and

limiting cross-contamination and variability in flow rates across the device. It also enables 1.125

mm spacing between cell traps, a constraint tied to our robotic loading method.
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Flow rate

To further characterize the Dynomics device and validate our design choices, we sought

to measure the average flow rate across the device. To this effect, we used fluorescent micro

bead flow analysis, a technique previously used in the Hasty lab to characterize microfluidic

devices [116]. Fluorescent beads of 0.5 µm flowing in the channels were imaged upon 200ms

exposure to fluorescent light. The resulting bead trace lengths were averaged to produce an

estimate of flow velocity in the channel at the level of the cell trap. We averaged at least 100

bead traces for 30 positions spread out over the device to produce Figure 2.3. This bar plot

shows that some variation exists in the flow rates across the device. This is partly due to the

manifold geometry of the chip and the small imperfections that can arise in the microfluidic wafer

microfabrication process. Overall, variation in flow is limited given the scale of the device (RSD

<30%) and did not seem to affect cell response to stimuli (see 2.2.5). We note here that further

mitigation of flow rate variability could be done via the use of COMSOL modeling or fluid flow

circuit analysis.

Figure 2.3: Overview of flow rate across 2176-strain device. Average flow rate for 30 cell trap
positions spread across 6 columns and 5 rows of the Dynomics chip. Some variability exists
between positions, with cell traps towards the center of the chip experiencing slower flow rates.
Further characterization of the impact of this variability in flow rates showed that impact on cell
growth was limited.
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Pump-driven flow

In the initial iterations of our device, we used small-scale peristaltic pumps to drive flow

through our large-scale microfluidic devices. While we eventually reverted to using the true and

tried method of hydraulic head difference-driven flow which provides more stable flow rates, we

solved an interesting problem tied to the use of peristaltic pumps with microfluidic devices along

the way which is presented below.
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Figure 2.4: Cell washout caused by pump-driven pressure fluctuations. a) i. Cells grow to fill the
trap. ii. When pumps are briefly paused for an induction, the pressure change causes cells to surge
out of the traps. iii-iv. When pumps resume normal operation, cells break off and exit the trap,
affecting the density of cells in the mouth of the cone where data is extracted. b) Representative
trace from a trap with washout. Pumps are paused at the beginning and end of the induction (gray
bar). Washout causes a significant drop in fluorescence and a weak induction response.

When using a peristaltic pump to drive flow on a microfluidic device, a user is required

to pause the pump to introduce novel experimental conditions (e.g. introducing an inducer) to

the cells growing on the chip. This is necessary to prevent air bubbles from entering the chip

and obscuring flow. However, doing so causes pressure on the chip to drop during the pause and

yo rapidly increase when pumps resume motion. This pressure fluctuation causes cells to surge

out of the traps as seen in Figure 2.4a. Additional pressure waves are caused by the peristaltic
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pumps successively pinching and releasing tubing to deliver media. Cell washout causes a sharp

change in signal at the beginning and end of each induction as seen in Figure 2.4b. To prevent

such deviations in pressure, we implemented a passive flow stabilization technique [117], whose

effects are akin to a capacitor. Our hydraulic capacitor takes advantage of air’s higher compliance

relative to the media flown into the chip. The operational setup involves a syringe (5mL, Becton

Dickinson) filled with a predetermined ratio of air to media and fitted in-line between the pump

and chip (Figure 2.3a.). When a pressure wave travels to the air/media interface in the closed

volume of the syringe, the air absorbs the pressure wave. Due to its greater compressibility, the

air will restitute a pressure variation more slowly and evenly. This setup both smoothes out the

pressure drop due to pause-pumps events, and dampens the naturally pulsatile outflow from the

peristaltic pumps. We tested the capacitor on Dynomics devices imaged at 4x magnification

on an Olympus IX81 microscope and on the Dynomics optical enclosures (see Fig. 2.14).

These experiments showed improved filling of the cell traps and reduced washout and clogging

(Figure 2.5b.). When comparing transmittance traces between experiments with and without

capacitors, we observe higher overall stability in capacitor runs (Figure 2.5c.).
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Figure 2.5: Use of an in-line capacitor with a Dynomics microfluidic device. a) Simplified
diagram of the setup of our in-line capacitor b) Improved filling of cell traps when capacitor
is implemented c) Transmittance traces for an E. coli growing in our device strain across five
experiments without capacitors (gray) and one with a capacitor (purple).
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2.2.5 Final design
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Figure 2.6: The Dynomics microfluidic device. a) Design of the Dynomics 2,176-strain microflu-
idic device with cell traps in red and media channels in blue and yellow. b) Detailed schematic of
four strain banks with arrows showing direction of media flow.

The microfluidic design of Dynomics is simple in nature, consisting of a single-layer

with a single media inlet and outlet, greatly reducing the complexity typically associated with

multi-strain devices [110, 111, 113]. The single media inlet feeds two halves of the device, each

containing 17 rows and 64 columns of cell traps, for a total of 2,176 cell traps (Fig. 2.6a). Cell

traps are 4 µm tall and receive fresh media from 230µm tall major channels that split off into

50 µm tall minor channels. Waste from each cell trap flows into a common major channel (Fig.

2.6b). This device geometry ensures each cell chamber region is fluidically isolated to prevent

strain cross-contamination. Cells grown on agar plates are transferred to the PDMS device,

with a unique microcolony of isogenic E. coli directly spotted into the center of each cell trap

22



before bonding of the device to a glass slide. Spacing between the reservoir regions is 1.125 mm

for compatibility with standard SBS-format 6144-density spacing. Once the device is bonded

using plasma bonding, growth media is flown onto the device via gravity-driven flow induced by

hydraulic-head difference between inlet and outlet syringes connected to the microfluidic device.

Spotted cells grow to fill each trap within 24 hours.

The Dynomics enclosure shown in Fig 2.14 serves as a stand-alone microscope for imag-

ing the microfluidic device. The optical enclosure images in both bright-field and fluorescence

channels with a 36 µm optical resolution, comparable to a lab-grade microscope at 4x magnifica-

tion. With a nominal imaging frequency of 2 minutes, Dynomics allows us to adjust environmental

conditions and measure the resulting changes in gene expression at a high temporal resolution.

Characterization of cell growth in Dynomics

To further characterize the cell state of E. coli growing on our device, we took higher

magnification time-series images of the bulb1/bulb2 areas (see Fig.2.8) using a Olympus IX81

inverted microscope at 6X magnification. While precise growth rate can be estimated in monolayer

traps by tracking single cells, the size and 4µm depth of Dynomics cell traps does not allow

for single cell tracking [118]. Hence we obtained a proxy for growth rate by approximating

“time-to-exit” of cells: the amount of time cells take to grow from the boundary of non-growing

cells to the mouth of the trap where they are washed away. Time-series images were used to

produce kymographs of time-to-exit, such as the one depicted in Figure 2.7. We recorded an

average time-to-exit of 18h, corresponding to over 50 doublings of E. coli growing in exponential

phase. This result, helps explain the long relaxation time observed post-induction in Figures 2.8

and 2.11. Indeed, the fast-folding GFPmut2 produced by the strains loaded to the device is a

stable protein. Most proteins in E. coli are not actively degraded during exponential growth [119].

Therefore dilution by cell growth governs the off kinetics of the observed GFP signal, which is

dictated by cells dividing and growing out of the trap.
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Figure 2.7: E. coli growing in Dynomics traps. Higher magnification images are taken on
a research-grade microscope at 6X to investigate the long relaxation time of the GFP signal
following an induction response. Left: image of a dynomics cell trap from which the kymograph
was extracted. Right: 2D kymograph from a cell trap with estimated cell exit trajectories in red
ranging from 16 to 20 hours. Kymographs are x vs. t scans, where the intensity along a given line
is plotted for all images of a time-series

Spatial dynamics and depth-dependent cell phenotype

Data collected from Dynomics experiments is extracted from the area of the cell trap

containing well-fed and actively growing cells (labelled ”bulb 1”, see Fig.2.8A). Cells further

up the trap experience diffusion-limited access to nutrients [120]. Plotting gene response across

the difference bulb areas shows the depth-dependent response of strains from the E. coli GFP-

promoter library exposed to heavy metals and carbon source shifts and is shown in Fig. 2.8. We

observe that areas further up the cell trap exhibit a stronger change in GFP expression when the

stimuli is a changing carbon source rather than exposure to elevated levels of heavy metals. This

may hint at stronger depth-dependency of transcriptional response for genes directly tied to carbon

metabolism in our device. We note here that the fast-growing cells present in bulb 1 (the area from

which data is extracted) are not physically separated from the stationary phase cells present deeper

in the trap (bulb 2,3 & 4 areas). Hence bulb 1 area is not entirely shielded from phenotypically
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distinct cells that exist further up the trap. This source of experimental noise will likely be added

to the intrinsic noise that naturally arises in gene expression [121] and metabolomic profiles [122]

across clonal populations growing in strictly identical conditions. Work from the Hasty lab and

other groups [123, 124] has further investigated this source of extrinsic noise in microfluidic

devices and show that phenotypic differences emerge when the colony consumes nutrients at a

faster rate than the diffusion-based replenishment of those nutrients from the channel, thereby

creating a metabolite gradient across the cell pack. To reduce the effect of metabolite gradients

in our cell traps, we increased the concentration of Glucose present in the minimal media used

for Dynomics experiments from 0.4% to 2% (see Table 3.3) and limited our analysis to the data

extracted from the ”bulb 1” area.
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Figure 2.8: Spatial dynamics in Dynomics: A) A Dynomics cell trap loaded with fluorescent E.
coli, with labeled regions representing the different depths of fluorescence time-series extraction.
B) The zntA promoter strain from the Alon library [112] only shows a response to Cd(II) at the
front of the cell trap region. C) The cueO promoter strain responds to Cu(III) in the first two
extraction regions. D) The lacZ promoter strain response throughout the entire trap when the
carbon source is changed from glucose to lactose, then back to glucose.
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Reproducibility

Given the novelty of using robotic spotting to load multiple strains onto a microfluidic

device to capture gene expression dynamics, we sought to characterize the variability of the data

collected both within and across Dynomics experiments.

To that effect, we initially loaded the device with a set of seven strains of the Uri Alon

E. coli GFP-promoter library [112] using over 300 replicates for each of the seven strains. The

GFP-promoter library contains approximately 2,000 unique E. coli strains in which 50-150 bp

“promoter regions” were inserted into low copy (pSC101) plasmids upstream of a strong ribosome

binding site and GFP , each strain drives the production of a fluorescent protein using a unique

promoter from the E. coli genome [112]. Previous work indicated that this library can serve as an

accurate tool to measure promoter activities [112, 125]

The seven strains were chosen for their relevance in E. coli metabolism or ability to

be selectively activated via external inducers. We chose three strains containing the promoter

region for sigma factors (rpoS, rpoD and rpoH) and two other strains with previously established

promoter responsiveness to environmental stressors (cueO, a copper-responsive gene, and zntA

a zinc- and cadmium-responsive gene). We also selected two negative control strains whose

expression was expected to remain unchanged across conditions (fimD and U139). To test our

device, we monitored the response of the seven strains to cell state stressors. We call these

step-function perturbations “inductions”, corresponding to a period of four hours during which

the media being flown into the device is switched to a media source containing the stressor. After

a 4h induction, the cells are given sufficient time for the change in GFP expression to decay

back to the uninduced steady state before a new induction is performed (approximately 20h).

An induction with 0.5 µm Cd(II) is plotted for an experiment in which 2176 replicates of the

zntA strain were loaded in Dynomics in Figure 2.11. In performing these inductions, we noted

good agreement in the overall shape of induction response (including relaxation time) both across

strains and across replicate inductions.
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Figure 2.9: Distribution of first derivatives in baseline vs induced state for control strains loaded
on Dynomics. Finite difference of background subtracted, smoothed and normalized GFP data is
plotted for 4 control strains. The baseline (uninduced) state is plotted in blue while the induced
state, corresponding to exposure to 0.04µm Cd(II) is plotted in red. rpoD is the exponential
growth σ factor, rpoS the stationary phase and general stress response σ factor and rpoH the heat
shock σ factor. zntA is a zinc/cadmium/lead-transporting P-type ATPase specifically upregulated
when exposure to Cd(II).

Figure 2.9 shows the first derivative value of the seven control over five separate experi-

ments during which the control strains were exposed to the same Cd(II) induction. It enables a

further assessment of the variability of gene expression data collected across Dynomics experi-

ments. In Fig 2.9, strains that do not specifically respond to Cd(II), such as rpoH (the heat shock

σ factor), rpoD (the exponential growth σ factor) and rpoS (the stationary phase σ factor) display

only small deviations from their basal state (blue histogram) when Cd(II) is introduced in the

media (red histogram). This contrasts with the strong bimodality of the Cadmium-responsive

promoter zntA, whose induced state exhibits much higher first derivative features. We note here

that the leftward shift of the induced state histograms for rpoD and rpoS may be indicative of

some change in growth rate or metabolic state induced by the exposure to Cd(II). It is well
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documented that in E. coli, exposure to sources of stress affects metabolism, growth rate, and

gene expression in a global, non-specific fashion [126] as those properties are interrelated [127].

Having extensively characterized the Dynomics device and the initial data produced by

step function inductions, we progressed to performing experiments with the entire E. coli GFP-

promoter library [112] which we report in Chapter 3. We also developed an induction protocol

that enabled repeated inductions to be carried out over the course of many days using Dynomics

as shown in Figure 2.10. Finally, we demonstrated our ability to perform periodic induction

scenarios. Periodic inductions combined with systems-engineering approaches have been used to

study the properties of signal transduction cascades [128], and are one of the salient advantages of

microfluidic platforms such as Dynomics. Fig 2.10 demonstrates frequency-dependent changes

in gene expression upon periodic 0.04 µM Cd(II) inductions of increasing period.

Figure 2.10: Response of zntA to frequency-encoded signals on Dynomics. Mean fluorescence
(solid blue) and SD (shaded blue) of the E. coli zntA promoter driving GFP to repeated cadmium
inductions (gray bars) with periods increasing from left to right (30 min, 2 h, 4 h, and 8 h)
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Figure 2.11: Device validation with a Dynomics chip with 2,176 replicates of the zntA strain from
the E. coli GFP-promoter library [112]. a) Mean (dark blue) plus/minus one standard deviation
(light blue) for the 2,176 strain responding to three consecutive four-hour 0.04 µM Cadmium
inductions. b) Histograms of the decay half-life of post-induction responses (i.e the time taken
for a strain’s fluorescence levels to decay back down to its half-peak value) are overlaid for the
three inductions plotted in a).
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2.2.6 HD biopixel design

While the design presented in 2.2.5 is a functional platform for the culturing of E. coli on

the Dynomics platform, it suffers from the disadvantage of imaging cells that are connected to the

area where they are initially seeded. As seen in section 2.2.5, this creates some depth-dependent

phenotype in the bulb area (see Figure 2.8), which may be a confounding effect for studies that

target metabolism and growth-state dependent gene expression patterns. In addition, the bulb

design limits the use of the Dynomics platform to E. coli, as S. cerevisiae strains were observed

to not robustly grow in the bulb area. Elizabeth Stasiowski and Richard O’Laughlin developed a

device [129] which solves both problems by decoupling the spotting area from the cell growth

area. This novel device is capable of hydrodynamic trapping - a technique that enables cells

spotted from a bulb area to seed a set of four downstream cell traps named HD (hydrodynamic)

”biopixels” [130]. The HD biopixels are cone-shaped traps 70 µm by 70 µm with a 4µm height.

2µm-tall ”conduits” at the bottom of the trap enable cells to be naturally sucked into the trap for

rapid and consistent seeding of the biopixels (see Fig. 2.12).

This HD biopixel Dynomics device was designed to host 2176 unique S. cerevisiae

microcolonies in a layout that matches the previously published chip for E. coli [79] presented in

(Fig. 2.6a). I demonstrated that this design could alternatively be used to culture E. coli. The

advantages of using this device are multiple. First, four biological replicates (corresponding

to four HD biopixel traps) are collected for each strain instead of one previously (one ”bulb”

trap, see Fig. 2.1). Second, cells receive media from both ends of the trap and therefore are

less likely to experience diffusion-limited access to nutrients, and diffusion-limited depletion

of waste. Figure 2.13 shows the difference in the response of fluorescent E. coli cells growing

either in the ”bulb” area from the original design or the ”biopixel” area from this new design. The

advantages of the new design are clear, with higher response amplitude and faster signal decay

when observing a lacZ reporter strain from the Alon library [112] responding to IPTG.
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5 cm

25 µm

1 cm

Figure 2.12: E. coli growing on 2176-strain HD biopixel device Top left: view of 2176-strain
microfluidic device. Top right : combined view of GFP (green) and brightfield (gray) image
of a subset of 500 E. coli strains growing on the device. Each strain has a different baseline
GFP expression level. Bottom left: View of one of the 2176 device positions, with upstream
spotting area and downstream array of 4 biopixels where cells are monitored for their changes
in fluorescence. Biopixel cell traps reach confluence 10-12h after initial seeding of the device.
Bottom right: View at 20X of two out of the four biopixel traps present for each spotted position
on the device. The bottom left panel is adapted from [129]
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Figure 2.13: lacZ responding to IPTG in the HD biopixel dynomics device. a) The mean (dark
line) ±1 standard deviation (shaded) of 544 copies of the lacZ reporter strain from the Alon GFP
library [112] is plotted as it responds to three 1mM IPTG inductions of 2 hrs, 2 hrs and 1hr
duration when measured in either the bulb area (orange) or biopixel area (blue) of the HD biopixel
Dynomics device. Response amplitude is higher and decay time is lower for cells growing in the
HD biopixels. The grey window denotes when IPTG was present. b) Schematic of a trap on the
HD biopixel Dynomics device with Bulb and Biopixel areas highlighted. Adapted from [129]
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2.3 Methods

2.3.1 Dynomics optical enclosure

The Dynomics optical enclosure is a stand-alone microscope for imaging the microfluidic

device with a 70 mm x 70 mm field-of-view (Figure 2.14a). The enclosure includes an SBIG

STX-16803 CCD camera (a1), a custom lens stack assembly (a2), two blue excitation LEDs

(a3) and associated drivers (a7) for GFP imaging, a green LED (a5), associated driver (a7), and

diffuser stack assembly (a4) for transmitted light imaging, a temperature-controlled enclosure

where the microfluidic device is mounted (a4), all necessary power supplies and wiring (a8), and

a Tegra computer with custom software (a7) to control the LEDs, imaging, temperature, and

to sync the images onto servers via WiFi. The enclosure costs about $15,000, compared to an

off-the-shelf microscope that can cost an order of magnitude more. The optical enclosure images

in both transmitted light and fluorescence channels with a 36 µm optical resolution, comparable

to a lab-grade microscope at 4x magnification (Fig. 2.14c-e). With a nominal imaging frequency

of 2 minutes, Dynomics allows us to adjust environmental conditions and measure the resulting

changes in gene expression at a high temporal resolution.

2.3.2 Robotic loading of Dynomics microfluidic devices

To enable the loading of our 2176-strain microfluidic device, the first step was to arrange

cells in the appropriate grid format at a 6144-density format. Fluorescent strain libraries are

often stored in 96-well glycerol. We use a Singer ROTOR strain handling robot (Fig. 2.15a) to

sequentially condense strains from 96- to 384-density using pin pad-based bulk strain movement

(Fig. 2.15b). After this initial step, single colony picking was required to pattern the strains in

the desired grid on 1536-density agar plates for loading of the device. We used a Singer Stinger

(Fig. 2.15c) to create four cell grids on 1536-density agar plates for this step (Figure 2.15d). The

penultimate step, done immediately prior to spotting to the PDMS device is to condense the four
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Figure 2.14: The Dynomics custom optical enclosure. a) Components include (1) a SBIG
STX-16803 CCD camera, (2) a custom lens stack assembly, (3) blue excitation LEDs for GFP
fluorescence imaging, (4) a temperature-controlled enclosure where the microfluidic device is
mounted, (5) a green LED and associated diffusers and lenses for transmitted light imaging, (6)
a Tegra computer and software for controlling imaging and transferring images to a server, (7)
LED drivers, and (8) all associated power supplies and wiring. b) An image of a large-scale
microfluidic device mounted in (a4). c-e) The Dynomics microfluidic device imaged on a standard
research grade scope with 4x magnification, and on the Dynomics enclosure for both transmitted
light (d) and fluorescence (c,e) channels. The Dynomics enclosure has 36 µm resolution.

1536-density plates into one final 6144-density plate. In the final step, cells grown on agar in the

6144-format are transferred to the PDMS device (pre-exposed to Oxygen plasma, see 2.3.9) in a

single step. Once cells are spotted, the device is completed by bonding to a glass slide.

The ROTOR loading protocol is a reliable way to load Dynomics devices, with the caveat

of being a slow process in the initial arrangement of cells (the transfer from 384- to 1563- density

using the Stinger). In parallel to the ROTOR-based loading protocol, we developed a new hybrid

protocol combining two strain-handling robots: the Singer ROTOR HDA plating robot (that

transfer many strains at a time, albeit in a predetermined geometrical pattern) and the acoustic

droplet ejection Labcyte ECHO 550 (which can spot individual stains onto any position on target

plat, see Fig. 2.16). We used the ECHO to transfer strains from a 384 well plate to 1536-density
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96-density Agar Plate 1536-density Agar Plate 6144-density Agar Plate 6144-density 
Microfluidic Device

Figure 2.15: Cell arraying equipment and workflow for loading high-throughput microfluidic
devices. a) Singer ROTOR HDA. 3) A 384-density long-pin RePad, used for bulk movement
of strains. c) Singer Stinger, an attachment used for single colony movement. d) Workflow
used to load strains onto a 2176-strain large-scale microfluidic device. Cells are re-arrayed
from 96-density to 1536-density using the Stinger. 1536- density plates are combined into a
6144-density format, and then spotted to the microfluidic device

agar plates in an array whose shape and inter-strain spacing (each strain distant from one another

by 1.125mm in x- and y-axis) corresponded to the layout of our microfluidic device. Once the

strains and their replicates are re-arrayed to agar plates, we use the ROTOR HDA to transfer all

2176 strains at once onto a PDMS microfluidic device, as described in the original protocol. The

advantage of the hybrid protocol is that different patternings of strains can be rapidly obtained

from the source 384 plates, which is useful if there is a need for rapid iteration regarding which

strains should be present on the device. The ECHO 550 can also be used to transfer cells directly

into the 6144-format using a protocol developed by Nicholas Csicsery from the Hasty Lab.

However, the limited accuracy and precision of the spotting at that scale limits its use to the

loading of smaller devices, such as the 48-strain devices used in Chapter 4. We believe this

loading protocol can be of great usefulness to members of the synthetic biology community who

wish to load microfluidic devices flexibly and rapidly with multiple strains.
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Figure 2.16: Individual E. coli strains can be loaded onto PDMS microfluidic devices using
two different techniques. Contact transfer involves spotting cells from agar to PDMS using a
Singer ROTOR colony-picking robot, but this technology is not as high-throughput or adaptable
as liquid-handling methods. Acoustic transfer using the Labcyte Echo reduces the strain-to-chip
loading time approximately four-fold and allows flexible selection and arrangement of strains to
be loaded on chip.

Below is the step-by-step loading and bonding protocol for mid-scale and large-scale

devices, for both E. coli and S. cerevisiae and was reproduced with permission from Graham et

al. [79] and Elizabeth Stasiowski’s PhD thesis [129]

2.3.3 Wafer fabrication

Our group has previously described the steps to design and build a silicon wafer patterned

with the features of the microfluidic device [90]. Briefly, the device is designed using AutoCAD

or similar software, with each set of features of one desired height designed on an individual mask.

Masks are printed by CAD/Art Services, Bandon, OR. A silicon wafer is built using standard soft

photolithography techniques with SU-8 negative photoresist, layering each set of features with a

unique height. The wafer is then coated with silane to prevent SU-8 features from tearing off the

wafer with successive PDMS pours.

36



2.3.4 PDMS device fabrication

Timing: 3 hours

1. In a clean weighing dish, mix 70 grams of the Dow Corning Sylgard 184 elastomer base

with 7 grams of the Dow Corning Sylgard 184 curing agent. Mix vigorously with a clean

stir rod for 5-10 minutes until the PDMS solution is well mixed.

2. Place the PDMS mixture in a vacuum desiccator to remove bubbles. Vent the vacuum

desiccator as needed so that the bubbles do not spill over the weighing dish.

3. Place a 5” x 5” x 0.125” glass plate in the center of a two-layer 8” x 8” piece of aluminum

foil. Carefully fold up the aluminum to create a dish around the glass plate. Overlap the

aluminum foil over the edges of the glass to minimize PDMS leaking underneath the glass

dish.

4. Place the patterned silicon wafer on the center of the glass plate and pour the PDMS mixture

onto the center of the wafer, using a spatula if necessary to get the viscous mixture onto the

wafer.

5. Place the wafer stack into a leveled vacuum desiccator and degas until all bubbles are

removed.

6. Once the bubbles are removed, use the blunt ends of two pipette tips to center the wafer if

it slid to one side, and gently push down on opposite sides of the wafer to push out PDMS

that seeped under the wafer.

7. Place the wafer stack into a level oven and bake at 95◦C for 1 hour.

8. Remove the wafer stack from the oven. Use a razor blade to cut off the foil from the wafer

stack and cut off the excess PDMS around the wafer.
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9. Gently slide a razor blade horizontally between the wafer and glass plate and then remove

it. Repeat this around the circumference of the wafer until the wafer separates from the

glass plate. Note: The razor blade must slide horizontally between the glass and the wafer.

Wafers are extremely fragile and if the razor blade is angled then the wafer will break.

10. Using a razor blade, remove any excess PDMS from the bottom of the wafer. Peel the

PDMS off of the feature side of the wafer in the direction of the major channels.

11. Place the PDMS on a cutting mat with the feature-side up to keep the PDMS clean. Using

a razor blade, cut out each PDMS device. Punch out the inlet and outlet channels using a

stainless-steel puncher.

12. Rinse each device with 70% ethanol and blow it dry with compressed air or pressurized

nitrogen gas.

13. Remove debris from each device using Scotch tape, cleaning the feature side four times

and the non-feature side twice. Use forceps to gently press the tape into the features to

remove all debris. Leave tape on each side to keep the devices clean.

2.3.5 Glass slide preparation

Timing: 1 hour

1. Sonicate glass slides in a 2% Helmanex III solution for 30 minutes at 40◦C.

2. Rinse glass slides with deionized water, rubbing them with a clean latex glove.

3. Completely dry the glass slides with pressurized nitrogen gas and ensure that no streaks are

visible.

4. Store glass slides in a clean, dust-free environment until used.
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2.3.6 Cell Preparation

Timing: 48-72 hours

1. Using Singer Plus Plates, pour agar plates with the appropriate cell culture media on a

level surface, pouring 42 mL of media + agar into each plate. Allow plates to dry on the

benchtop with the lids covered for 48 hours before parafilming and storing at 4◦C.

2. Fill 96-well or 384-well liquid plates with overnight cultures of the strains of interest, or

thaw glycerol stocks of strains of interest in a 96-well of 384-well density format.

3. Using the Singer ROTOR, spot the liquid plate onto an agar Plus Plate. Use the default

pinning settings for both the source and target plates.

• If spotting E. coli , grow the cells at 37◦C overnight.

• If spotting S. cerevisiae, grow the cells at 30◦C for 2 days.

4. Using the Singer Stinger single colony arrayer, rearray the 96-agar or 384-density agar plate

onto a set of 4, 1536-density plates that matches the array of the microfluidic device(s).

These plates will later be combined into one, 6144-density plate that will be spotted to the

microfluidic devices. Note: if spotting devices with fewer strains, multiple devices can be

arrayed onto one set of 1536-plates.

5. Grow the cells overnight.

• If spotting E. coli , grow the cells at 30◦C overnight.

• If spotting S. cerevisiae, grow the cells on the benchtop overnight.

Note: 1536-density plates can be stored in the fridge and continually used as source plates

for up to 6 months.
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2.3.7 6144-density plate and acrylic tool preparation

Timing: 1 hour for E. coli, 25 hours for S. cerevisiae

A: If spotting E. coli :

1. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one 6144-

density agar plate using the ”1:4 Array” program and the pinning settings listed in Table 2.1.

Repeat this for two target plates.

2. Grow one of the target plates for one hour at 37◦C if the source plates have been used less

than three times, or for 90 minutes at 37◦C if the plates have been used more than three

times.

3. Using the other 6144-denstiy target plate, the ”Replicate” program on the Singer ROTOR,

and the pinning settings listed in Table 2.1, spot cells from 6144-density target plate onto

the clean acrylic alignment tool. These cells will be used as alignment markers for the

PDMS device.

B. If spotting S. cerevisiae:

1. Using the Singer ROTOR, replicate the 4x 1536-density agar source plates onto 4x 1536-

density agar source plates using the ”Replicate” program. Grow the plates at 37◦C

overnight.

2. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one

6144-density agar plate using the ”1:4 Array” program and the pinning settings listed in

Table 2.1.

3. Using the ”Replicate” program on the Singer ROTOR and the pinning setting listed in

Table 2.1, spot cells from 6144-density target plate onto the clean acrylic alignment tool.

These cells will be used as alignment markers for the PDMS device.
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Table 2.1: Singer ROTOR pinning settings for each step of the microfluidic device loading
process.

Source Target Source Target Source Target
1536 agar to 6144 agar 58 64 19 10 2 1
6144 agar to acrylic 50 100 10 10 0.6 0.6
6144 agar to microfluidic
device for E. coli 55 70 10 10 0.6 0.6

6144 agar to microfluidic
device for S. cerevisiae 50 64 10 10 0.6 0.6

2.3.8 Aligning the PDMS to the acrylic tool

Timing: 30 minutes

A. If spotting multiple devices with fewer strains:

1. Using a photolithography mask aligner or similar system, set the acrylic tool on top of the

mask holder with the alignment cells facing up. Bring the cells of one device into focus.

2. Remove the Scotch tape from one PDMS device, avoiding touching the feature side of the

device.

3. Gently place the PDMS device on top of the alignment cells, feature-side up, such that the

center of the spotting regions is centered over the cells.

4. Place tape on top of the PDMS, pressing the PDMS down to ensure adhesion of the PDMS

onto the acrylic tool.

5. Repeat this for each device on the acrylic tool.

B. If spotting one large device with many strains:

1. Using a photolithography mask aligner or similar system, place the PDMS device feature-

side-down on top of the wafer chuck. Remove the tape from the non-feature side of the

PDMS.
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2. Place the acrylic tool on top of the mask holder, with the alignment cells facing down,

above the PDMS.

3. Using the micrometers on the mask aligner, align the center of the spotting regions with the

center of the alignment cells.

4. Bring the PDMS and acrylic tool into contact using the wafer chuck.

5. Remove the tape from the feature-side of the PDMS and check the alignment, ensuring that

the PDMS did not shift when it came into contact with the acrylic tool. If necessary, adjust

the alignment.

6. Re-tape the feature side of the PDMS until ready to expose the PDMS to oxygen plasma.

2.3.9 Oxygen plasma exposure

Timing: 10 minutes

1. Expose the clean 4x3” glass slide and the PDMS acrylic stack to 30W of oxygen plasma

for 30 seconds.

2. Blow any dust off the glass slide and PDMS acrylic stack with compressed nitrogen.

2.3.10 Loading and bonding the device

Timing: 10 minutes

1. Using the Singer ROTOR and the parameters listed in Table 2.1, spot the cells from the

6144-density agar plate to the oxygen plasma exposed PDMS acrylic stack.

2. Peel the spotted PDMS off the acrylic piece and gently place it face down on the center of

the oxygen-plasma-exposed glass slide.
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3. Gently tap the top of the PDMS, ensuring that the device bonds to the glass.

4. Incubate the device at 37◦C for at least two hours.

2.3.11 Experimental set-up

Timing: 40 minutes

1. Place the bonded PMDS device in a vacuum desiccator for at least twenty minutes.

2. Prepare an inlet syringe using methods previously described by our group [90].

3. Prepare and outlet syringe (mid-scale) using methods previously described by our group [90]

or prepare an outlet tube and metal connector feeding into a waste bottle.

4. Mount the bonded PDMS device on the desired imaging platform, plugging in the inlet

syringe first and then the outlet tube when a bead of liquid has formed on the outlet port.

5. Image the device at the desired temporal resolution.
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Chapter 3

A microfluidic and machine learning

platform for genome-scale transcriptional

dynamics and environmental biosensing

3.1 Introduction

Progress in DNA sequencing, synthesis, and assembly has fostered the use of microbes

for a variety of medical, industrial, and environmental purposes. One of the applications to

emerge from synthetic biology research in recent years is the use of microbes as biosensors to

detect a variety of environmental toxins, including heavy metals. The detection of heavy metals

in human, environmental and industrial settings is important given the danger they represent

for ecosystems and human populations [131]. To this effect, various groups have worked on

developing microbial biosensors by coupling metalloregulatory proteins (such as metal-sensing

transcription factors) [132, 133] or two-component systems [134] to various output modules

(bioluminescent [135], fluorescent [133], enzymatic [136] or even bioelectrochemical [137])

within eukaryotic microorganisms and prokaryotes. Light-based sensing offers the advantage of
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being both a non-invasive and a sensitive form of measurement. Amongst light-based reporters,

fluorescent proteins offers the further advantage of stability and do not impose too high a metabolic

burden on the cell. Contrarily to other bio luminescent outputs, fluorescent proteins does not

require consumption of energy sources such as ATP for their signal to be produced.

Compared to classical analytical techniques, whole-cell microbial biosensors offer the

advantage of rapid, in situ detection and produce both qualitative and quantitative outputs in

response to heavy metal ions [138]. Their use can increase the flexibility of the environmental

monitoring process, limit costs, and improve the temporal and spatial resolution of heavy metal

detection.

Microorganisms such as E. coli have evolved complex networks to ensure metal home-

ostasis in fluctuating environments. The E. coli genome contains genes that code for proteins

specifically tailored to the detection, uptake, storage, and efflux of heavy metals [139, 140].

While previous approaches to microorganism-based heavy metal sensing have mostly relied on

engineering a small number of biosensors that are specific to one metal [140,141], few approaches

have leveraged a microorganism’s genome-wide response to detect environmental stressors.

Heavy metal detection

Heavy metal detection is typically performed by collecting grab-samples at the water

source and performing highly sensitive and quantitative testing in centralized laboratories using

spectroscopy-based techniques (such as atomic absorption spectroscopy or inductively coupled

plasma mass spectrometry [142]). This process is not well suited for frequent field application

due to its time-consuming nature (transport, sample pre-treatment) and cost (complex instruments

and trained technicians are required) . This can result in days separating sampling from results

and limit their application in developing countries [133, 143].
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3.2 Approach

We used the device described in Chapter 2 as a high-throughput microfluidic biosensor to

simultaneously co-culture and monitor 1,807 strains of a promoter-GFP E. coli library [144] under

time-varying environmental conditions, successfully detecting the presence of Cu(II), Zn(II),

Fe(III), Pb(II), Cd(II), and Cr(VI). Initially, time series and fold-change data are used to identify

and quantify responsive strains. The data is further leveraged via both deep learning classifiers,

for real-time detection of inducers, and XAI algorithms, to quantify each strain’s impact on

the classifier’s predictions and understand which strains are responding to each metal In this

chapter, we loaded the platform Dynomics with the E. coli GFP-promoter library (which contains

more than half the genes in the E. coli genome) to monitor the dynamic response of the many

genes (including metalloregulatory) that are involved in heavy metal stress response. Our device

will serve as a “biosensor array” and provide a comprehensive view of E. coli’s transcriptional

response to heavy-metal exposure.

Our biosensing approach differs significantly from the rational engineering of orthogonal

sensors. Since we use a library of “agnostic” transcriptional reporters initially developed as a tool

to measure general gene expression dynamics in E .coli, these strains display the cross talk that

naturally exists in E. coli gene regulatory networks. The question for our biosensor thus shifts

from avoiding cross-talk to discerning unique fingerprints in the genome-wide transcriptional

response induced by each heavy metal. By recording the time-series response of the 1,807

promoters of the Alon library with Dynomics, we effectively obtain a time-varying “barcode”

response to each metal. Conceptually, while a cross-talking strain may perturb classification in

the context of single-strain biosensors, the likelihood that thousands of different strains exhibiting

the same reaction when exposed to different heavy metals becomes very slim and allows for

accurate machine-learning based classification. We believe robustness in the face of cross-talk is,

in fact, one of the differentiating properties of our sensor.
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Figure 3.1: The Dynomics platform for biosensing. Fluorescent strain libraries are loaded onto
large-scale microfluidic devices that can be fully captured in a single image using custom optics.
Parallel cultures of E. coli are subjected to multiple exposures of different stimuli with time series
and fold-changes used to quantify responsive strains. Machine learning algorithms are trained on
pre-processed data to enable real-time stimulus detection.

3.3 Screening for responsive promoters to heavy metals

Using the Dynomics platform with a previously developed GFP E. coli promoter library

[112], 1,807 unique E. coli promoters were screened against nine heavy metals (Cu(II), Zn(II),

Fe(III), Pb(II), Cd(II), Cr(VI), Hg(II), As(III), Sb(III)) at environmentally relevant concentrations

(Table metal). Screening experiments lasted 7-14 days, with cells exposed to a different heavy

metal every 24 hours (Figure 3.2).

Promoters responsive to each metal can be identified through a combination of clustering

and fold-change analysis. A high-level view of the 1,807 promoter time traces (Figure 3.3a)

and subsequent clustering (Figure 3.3b) reveal distinct classes of transcriptional responses to

a single four hour zinc exposure. In (Figure 3.3b), clusters 1 and 2 include promoters that are

up- and down-regulated, respectively, in the presence of zinc, but return to baseline expression
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Figure 3.2: Responsive strains over the duration of a Dynomics experiment. Normalized fluores-
cence for two strains is plotted over the duration of one experiment, with four-hour heavy metal
inductions (gray bars) occurring once daily.

levels within 15 hours of zinc removal. Clusters 3 and 4 include promoters that are up- and

down-regulated, respectively, with slower dynamics. Gene ontology (GO) enrichment analysis

suggests that from these four clusters, genes associated with cellular stress are up-regulated

(cellular detoxification and antibiotic metabolic process) while genes involved in metabolism

and biosynthesis are down-regulated (nitrogen metabolism and glutamine family amino acid

biosynthesis). The full list of GO terms and their associated p-values are listed in Table 3.1.

Individual responsive strains for each metal were identified based on their fold-change

response (Figure 3.4a) to four-hour metal exposures, which were repeated in random order

once every 24 hours. Fold-change detection highlights the promoters displaying the strongest

response to each metal. Subsequent investigation of the most responsive strains (Figure 3.4b)

quantitatively elucidates dynamics, such as amplitude, relaxation time, and response rate, all of

which important factors for their use in the study of gene expression regulation and continuous

biosensing applications.

There is a growing body of knowledge concerning genes in the E. coli genome that code

for proteins specifically tailored to the detection, uptake, storage, and efflux of heavy metals [139].
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Figure 3.3: Dynomics as a screening tool for heavy metal responsive promoters in E. coli . a)
Fluorescence response of an E. coli promoter library during a four hour 50 ppb Zn induction
(dotted window). Each row represents the promoter activity, normalized between 0 and 1, of a
single strain, with 1,995 total strains represented. Four clusters from agglomerative clustering are
labeled on the right. b) Four clusters of strains calculated from agglomerative clustering from
the data in panel a. The mean (dark blue line) and standard deviation (dark blue shading) of all
strains in each cluster is plotted. The dotted window denotes when zinc was present.

One of the advantages of collecting genome-wide transcriptional responses to heavy metal

stressors with our platform is that we can observe responses from both these metalloregulatory

genes and from a larger group of genes not directly tied to heavy metals homeostasis, but whose

modified activity reflect the overall stress imposed to the cell.

Indeed, many of the strongly-responding genes in our dataset, both in terms of response

fold-change (Fig. 3.4) or SHAP values (Fig. 3.9) are well-characterized, metal-specific regulatory

proteins. Such proteins play different roles within the cell such as metal detoxification (cueO) ,
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Table 3.1: Gene ontology enrichment analysis of the clusters obtained by agglomerative clustering
of Figure 3.3.

Cluster GO	biological	process	complete Fold	Enrichment P-value
localization	(GO:0051179) 0.74 4.11E-02
transport	(GO:0006810) 0.71 3.30E-02
transmembrane	transport	(GO:0055085) 0.62 4.47E-02
protein	autoprocessing	(GO:0016540) 9.7 4.59E-02
transcription	antitermination	(GO:0031564) 9.7 4.59E-02
carbon	utilization	(GO:0015976) 9.7 4.59E-02
cellular	response	to	light	stimulus	(GO:0071482) 9.7 4.59E-02
cellular	response	to	radiation	(GO:0071478) 9.7 4.59E-02
regulation	of	single-species	biofilm	formation	(GO:1900190) 9.7 4.59E-02
cellular	response	to	UV	(GO:0034644) 9.7 4.59E-02
bacterial	transcription	(GO:0001121) 9.7 1.29E-02
one-carbon	metabolic	process	(GO:0006730) 7.28 2.11E-02
tetrahydrofolate	metabolic	process	(GO:0046653) 5.54 1.43E-02
folic	acid-containing	compound	metabolic	process	(GO:0006760) 4.31 2.68E-02
pteridine-containing	compound	metabolic	process	(GO:0042558) 3.88 3.48E-02
positive	regulation	of	nitrogen	compound	metabolic	process	(GO:0051173) 2.11 3.44E-02
macromolecule	metabolic	process	(GO:0043170) 0.66 4.19E-02
transmembrane	transport	(GO:0055085) 0.33 4.02E-02
thiamine-containing	compound	biosynthetic	process	(GO:0042724) 5.29 2.57E-02
cellular	detoxification	(GO:1990748) 5.29 2.57E-02
thiamine	biosynthetic	process	(GO:0009228) 5.29 2.57E-02
thiamine-containing	compound	metabolic	process	(GO:0042723) 4.23 4.07E-02
thiamine	metabolic	process	(GO:0006772) 4.23 4.07E-02
antibiotic	catabolic	process	(GO:0017001) 3.53 2.15E-02
detoxification	(GO:0098754) 3.53 2.15E-02
cellular	response	to	toxic	substance	(GO:0097237) 3.53 2.15E-02
reactive	oxygen	species	metabolic	process	(GO:0072593) 3.31 4.21E-02
tetrapyrrole	biosynthetic	process	(GO:0033014) 3.17 2.99E-02
tetrapyrrole	metabolic	process	(GO:0033013) 3.17 2.99E-02
response	to	toxic	substance	(GO:0009636) 2.91 5.74E-03
antibiotic	metabolic	process	(GO:0016999) 2.8 1.46E-02
vitamin	biosynthetic	process	(GO:0009110) 2.65 1.29E-02
water-soluble	vitamin	biosynthetic	process	(GO:0042364) 2.65 1.29E-02
water-soluble	vitamin	metabolic	process	(GO:0006767) 2.43 1.78E-02
vitamin	metabolic	process	(GO:0006766) 2.43 1.78E-02
drug	catabolic	process	(GO:0042737) 2.41 2.54E-02
drug	metabolic	process	(GO:0017144) 2.17 1.33E-03
positive	regulation	of	biological	process	(GO:0048518) 0.38 4.72E-02
arginine	biosynthetic	process	(GO:0006526) 2.79 4.34E-02
arginine	metabolic	process	(GO:0006525) 2.54 4.22E-02
glutamine	family	amino	acid	biosynthetic	process	(GO:0009084) 2.36 3.63E-02
drug	transport	(GO:0015893) 1.77 4.98E-02
transmembrane	transport	(GO:0055085) 1.48 2.65E-02
localization	(GO:0051179) 1.28 4.48E-02
drug	metabolic	process	(GO:0017144) 0.5 2.90E-02

4

1

2

3

metal-transport (zntA, znuA and znuC) or metal-related transcription factor activity (iscR). Within

those metalloregulatory proteins, some response specifically to one metal (cueO, for example,
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responds specifically to Copper [145], see Fig. 3.4), while others experience cross-talk (zntA

responds to Cadmium, Lead and Zinc, a behavior that is well documented [146]).

As mentioned in the discussion, the up-regulated gene clusters identified from genome-

wide response time series (Fig. 3.3 ) are enriched in gene ontology terms for cellular detoxification

and response to toxic substances. This is reflective of the non-specific stress response concur-

rent with heavy metal exposure. This is also reflected in our fold-change and SHAP analysis,

with genes such as codB (involved in cytosine transport), ilvC (involved in biosynthesis), yeeE

(membrane protein) and ybiN (Ribosomal RNA large subunit methyltransferase) experiencing

non-specific upregulation in response to Iron induction, for example.

Overall, the methods of data analysis reveal each metal to have responsive promoters

with a unique signature of up- and down-regulation. However, in view of the ultimate task of a

biosensor, which is to distinguish the presence of a metal based on a real-time transcriptional

data, fold-change alone is difficult due to promoter non-specificity, cross-talk, noise, and low

amplitude responses.

3.4 Machine Learning

To better discriminate between E. coli’s response to the heavy metals used in our screening,

we trained and tested two types of machine learning models on the Dynomics data. The first

model, known as extreme gradient boosted trees (XGBoost), is a popular decision tree ensemble-

based classifier known for its ability to learn nonlinear models [147]. The second, known as

a long short-term memory recurrent neural network (LSTM-RNN), is a DNN [148] selected

because of its ability to effectively utilize sample sequence history to classify time series data, a

property not shared by XGBoost.

Both classification algorithms outperformed random guessing of the majority class (no

toxin) on the standardized experiments’ feature set, with the LSTM-RNN performing the best
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Figure 3.4: a) Fold change for top responding strains to all metals. Log2 of the average fold
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of 0.05, 0.01, 0.001, respectively. b) Significant single strain normalized fluorescence response
(blue line) and standard deviation (blue shading) across all inductions for a given metal (dotted
window).

overall. As seen by examining the diagonal elements in the confusion matrix in Fig.3.5, the

LSTM-RNN was able distinguish both biotic and xenobiotic metal-spiked water from pure water

with a high level of reliability.

The LSTM-RNN found iron and copper to be easily-detectable biotic metals, which is

not surprising given their importance to E. coli cellular function [145, 149]. Cadmium was the

most readily detected xenobiotic metal with the LSTM-RNN classifier, though it was sometimes

confused with zinc. E. coli are known to use the same sensing and transport systems to capture

and export excess amounts of these two metals, which possess the same number of valence
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electrons [146, 150]. Most classification errors occurred during the 10-40 minutes at the start

or end of the induction periods, when the LSTM-RNN occasionally had difficulty determining

the exact time that each metal was added or removed from the media (Fig. 3.7B). This is most

pronounced with the prediction of lead, for which the classifier incorrectly predicted no toxin for

48% of time points where lead was present. This is largely due to the weak promoter responses

induced by 0.03 ppm lead, which is only double the Environmental Protection Agency (EPA)

maximum contaminant level. In lead exposures with poor prediction, time points at the start of

the four hour induction window are misclassified as no toxin, while lead is accurately predicted

near the end of this window.

While past studies have used machine learning frameworks to assign cells to chronologi-

cally distinct phenotypes based on their transcriptomes [151], we believe this is the first instance

of a multiclass classifier successfully leveraging genome-wide transcriptional dynamics in live

cells to predict exposure of a biological organism to an environmental stressor.

3.5 Explainable artificial intelligence

Over the last two decades, computer science has experienced a massive increase in com-

puting and algorithmic power in the field of artificial intelligence (AI) [152]. Concurrently,

the rise of -omics technologies has lead to exponential increase in the volume of experimental

data [153–155]. Machine learning has not yet fully delivered on its potential to facilitate scientific

discovery because of the ”black box problem”: as an algorithm’s ability to model complex

phenomena grows, its decision-making processes become more and more obscured from its oper-

ators. While AI has demonstrated proficiency in discovering the ”what” of scientific phenomena,

researchers are still left struggling to understand the corresponding ”why”. Hence, the rise of deep

neural networks, which currently are the most extreme algorithmic embodiment of the black-box

problem, has motivated a search for explainable artificial intelligence (XAI) techniques [156].
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No Toxin

Cd(II)

Pb(II)

Cr(VI)

Zn(II)

Cu(II)

Fe(III)

0.853 0.004 0.004 0.002 0.008 0.003 0.007

0.002 0.022 0.000 0.000 0.003 0.000 0.000

0.009 0.001 0.006 0.000 0.001 0.001 0.000

0.003 0.002 0.000 0.007 0.001 0.001 0.000

0.001 0.006 0.000 0.000 0.016 0.000 0.001

0.003 0.000 0.000 0.000 0.000 0.013 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.018

Frequency
0.968 0.005 0.005 0.003 0.009 0.003 0.007

0.089 0.780 0.002 0.008 0.116 0.003 0.001

0.478 0.081 0.327 0.021 0.042 0.037 0.013

0.205 0.111 0.033 0.514 0.035 0.098 0.004

0.036 0.258 0.001 0.006 0.666 0.001 0.031

0.172 0.003 0.027 0.007 0.012 0.774 0.004

0.022 0.004 0.000 0.000 0.010 0.000 0.964
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0.979 0.124 0.372 0.223 0.274 0.152 0.258

0.003 0.612 0.004 0.022 0.113 0.006 0.001

0.010 0.042 0.539 0.036 0.027 0.039 0.010

0.003 0.045 0.043 0.696 0.018 0.082 0.002

0.001 0.173 0.002 0.013 0.555 0.002 0.029

0.003 0.001 0.040 0.010 0.007 0.721 0.003
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0.006 0.686 0.002 0.012 0.114 0.004 0.001

0.020 0.055 0.407 0.027 0.033 0.038 0.011

0.007 0.065 0.037 0.591 0.024 0.089 0.003

0.002 0.207 0.002 0.008 0.605 0.001 0.030

0.006 0.002 0.032 0.008 0.009 0.747 0.003

0.001 0.002 0.000 0.000 0.008 0.000 0.809
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Figure 3.5: Confusion matrices showing the frequency, recall, precision, and F1 score of the
LSTM-RNN classifier in predicting six metals across all experimental data (14,332 time points).
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No Toxin

Cd(II)

Pb(II)

Cr(VI)

Zn(II)

Cu(II)

Fe(III)

0.883 0.002 0.000 0.000 0.002 0.001 0.001

0.009 0.019 0.000 0.000 0.002 0.000 0.000

0.017 0.000 0.000 0.000 0.001 0.000 0.000

0.009 0.002 0.000 0.001 0.000 0.000 0.000

0.007 0.003 0.000 0.000 0.010 0.000 0.000

0.005 0.000 0.000 0.000 0.000 0.012 0.000

0.007 0.000 0.000 0.000 0.000 0.000 0.006

Frequency
0.496 0.001 0.000 0.000 0.001 0.001 0.000

0.149 0.317 0.002 0.000 0.032 0.000 0.000

0.477 0.003 0.001 0.000 0.020 0.000 0.000

0.364 0.072 0.004 0.057 0.003 0.000 0.000

0.166 0.076 0.000 0.000 0.250 0.000 0.008

0.155 0.000 0.000 0.001 0.000 0.343 0.000

0.268 0.001 0.000 0.000 0.000 0.000 0.231
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0.471 0.042 0.238 0.063 0.058 0.048 0.048

0.005 0.365 0.121 0.000 0.067 0.000 0.000

0.009 0.002 0.027 0.000 0.023 0.000 0.000

0.005 0.032 0.103 0.424 0.002 0.000 0.000

0.004 0.058 0.011 0.000 0.349 0.000 0.023

0.003 0.000 0.000 0.013 0.000 0.452 0.000

0.004 0.001 0.000 0.000 0.000 0.000 0.429
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No T
oxi

n
Cd(I

I)
Pb(I

I)
Cr(V

I)
Zn(I

I)
Cu(I

I)
Fe(I

II)
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Figure 3.6: Confusion matrices showing the frequency, recall, precision, and F1 score of the
XGBoost classifier in predicting six metals across all experimental data (14,332 time points).
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Figure 3.7: LSTM-RNN classifier applied to time series data for all six detectable metals in two
different experiments. Misclassified time points are shown in red.

The quantitative life sciences have seen some excellent efforts to create research-focused XAI,

but these techniques are either model-specific [157] or limited in their applicability because of

non-uniqueness or computational complexities [158, 159]. Recently, however, contributions from

coalitional game theory have lead to the development of a mathematically-consistent method for

understanding the decision-making process of any AI classifier [160, 161].

Taking advantage of these recent XAI advances, we trained a Shapley additive explanations

(SHAP) XAI on both our XGBoost and LSTM learners [160, 162]. Viewing both SHAP values

(impact on classifier output) and feature values (data fed to the classifier) with respect to time offers

insight into how the classifier operates in real-time (Figure 3.8). The cause of misclassification

is made clearer, as SHAP dynamics reveal that the predictive impact of a strain often varies

within an induction window, particularly at its start and end. Furthermore, we see how some

promoters, such as zntA, positively contribute to the detection of multiple metals, which causes

the classifier to rely on promoters with less-pronounced responses to distinguish the exposed

metal. As a result of the combination of experimental noise and weaker responses, the SHAP
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values of these differentiating strains are often smaller and vary more with time, explaining the

misclassification of the metals. Finally, promoters that may not have been identified as responsive

using fold-change analysis because of subtle, low-amplitude, and noisy responses can be identified

via XAI. While these subtle responders may not serve as stand-alone biosensor strains, they

provide promising targets for future sensor engineering efforts. These insights highlight the ability

of the LSTM-RNN classifier to compile the influence of many strains, prominent and subtle, to

make a more often than not accurate prediction of the present metal exposure.
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Figure 3.8: Dynamic SHAP and feature values during metal exposures. Feature (blue) and SHAP
(orange) time trajectories for individual promoters during metal exposures. Solid lines show the
mean value over all inductions for that metal and shaded regions around lines represents standard
deviation. Dashed black lines represent the metal exposure window. While some promoters
are responsive to many different metals, additional information from other promoters helps the
classifier to differentiate each metal. Many promoters with noisy and subtle metal responses also
contribute to classifier performance.
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The SHAP-XAI highlights the similarities and differences between how the LSTM-RNN

and XGBoost make decisions. Figure 3.9 shows the 15 promoters with the highest mean impact

on the model and the promoterless strain U139. Both methods rely heavily on the metal-sensing

promoter zntA for the detection and discrimination of multiple metals, especially cadmium and

zinc. Beyond zntA, XGBoost relies heavily on single strains to detect single metals, in a manner

comparable to human attention patterns. While XGBoost is not as proficient as the LSTM-

RNN classifier at predicting metals, coupled with SHAP-XAI, XGBoost is able to identify top

responding strains for each metal. The LSTM-RNN, on the other hand, utilizes many strains of

moderate influence in a combinatorial fashion; this tendency to find a different representation

than that of the human visual system has been noted in other works [163].
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The ability of the XAI-coupled classifiers to identify promoters involved in metal response

serves as a valuable scientific tool, suggesting potential pathways for further investigation. This is

highlighted by looking at a subset of the ten most-impactful promoters individually for cadmium
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and iron inductions (Figure 3.10). These summary plots illustrate how the two classifiers make

similar decisions through different methods. In the case of cadmium, zntA plays a significant

role for both classifiers, while different sets of genes involved in ion transport or amino acid

synthesis are identified for each. Most notably, the metE and metB promoters which are involved

in methionine synthesis, an amino acid known to chelate cadmium, are identified by XGBoost,

while the LSTM-RNN only uses the metE regulator, metR, for detection. Similarly with iron, we

see XGBoost rely on members of the argenine synthesis, argA and argC, while the LSTM-RNN

relies on different promoters that are involved in other metabolic or biosynthetic processes.
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3.6 Biosensor validation

Given the severe impact of heavy metals on human health [164] and the persistence of

water quality issues in the US [165] we sought to deploy the Dynomics platform as a real-time

water quality biosensor. To validate this device for heavy metal sensing outside of a laboratory

setting, we conducted experiments with media made from municipal water samples from San

Diego, Seattle, Chicago, Miami-Dade, and New York City with added cadmium. Figure 3.11a

shows the LSTM-RNN classifier predictions for cadmium exposures on each city’s water supply.

While there is some misclassification of cadmium for zinc, there are few instances of incorrectly

predicting the presence of a toxin versus water, even with largely different water compositions

between each city.
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Figure 3.11: Dynomics and machine learning on environmental samples. a) LSTM-RNN
classification of cadmium contamination added to five different urban water sources. The colors
correspond to the metals in the inset in (b). b) Multi-class, multi-label classification of water
samples from the San Juan River during the 2015 Gold King Mine waste water spill. Independent
probabilities of each class are determined by the sigmoid activation function. The plot shows
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the metals plotted in the inset.
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The Dynomics device was also exposed to samples collected from the Gold King Mine

Spill in August 2015. Figure 3.11b shows the predictions of the LSTM-RNN classifier on

samples from the spill, collected from the San Juan River. The classifier predictions are output as

multi-class, multi-label probability vectors. As the sample was introduced onto the device, the

probability of water decreased significantly while the probabilities of the other metals increased.

The metal with the highest probability, iron, was also the most abundant metal in the samples

as measured by ICP-MS (Table 3.2). Despite the classifier not being trained on combinations

of metals, nor at the concentrations present in these samples, the ability to reliably report the

presence of the most prominent metal, and, to a lesser degree, the less abundant metals, suggests

the broad applicability of this platform for heavy metal detection.

Table 3.2: Concentration of metals in HM9 media made with San Juan River samples as measured
by ICP-MS at the Environmental Complex Analysis Lab at UC San Diego.

Metal Concentration

Aluminum 100.9 ppm
Vanadium 1.263 ppm
Chromium 88.83 ppb
Manganese 828.3 ppm
Iron 151.8 ppm
Cobalt 1.289 ppm
Nickel 1.634 ppm
Copper 1.215 ppm
Zinc 2.947 ppm
Gallium 63.73 ppb
Arsenic 64.94 ppb
Silver 22.45 ppb
Cadmium 48.16 ppb
Thallium 33.52 ppb
Lead 209.3 ppb
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3.7 Discussion

Adaptation to rapidly changing environments is a hallmark of bacterial life and requires

critical dynamic properties, many of which can be traced down to rapid and specific control of

gene expression [166]. Transcriptomic technologies [167–169] have identified genes involved in

environmental stress response and furthered understanding of their mode of regulation. In this

work, we developed a high-throughput microfluidic platform to track the transcriptional dynamics

of thousands of E. coli genes in parallel. The Dynomics platform offers a novel experimental

approach through its high temporal resolution, degree of multiplexing, and precise experimental

control. In a high-throughput screen using Dynomics, we simultaneously exposed 1,807 strains of

the promoter-based E. coli GFP library to nine different heavy metals. The fine-grained temporal

gene expression data it produced highlighted the unique dynamics of stimuli-specific genes

previously reported as heavy metal responsive [168], and identified gene clusters that shared

similar response dynamics.

Our platform possesses the genome-scale coverage and high sampling frequency needed

to probe bacterial gene regulatory networks and screen large strain libraries for motifs such as

nonlinear interaction patterns and feedback loops. These phenomena are ubiquitous in biology,

yet difficult to discern using static gene expression data [14].

We illustrate our platform’s potential for exploring the dynamics of transcriptional net-

works by applying machine learning techniques to examine heavy metal stress responses in E.

coli. Here we demonstrate that supervised machine learning can infer exposure to environmental

stressors from real-time observation of transcriptional activity at the genome-scale. Time series

from 1,807 strains were used to differentiate between multiple biotic and xenobiotic heavy metals.

We believe this study is the first instance of dynamic mapping between transcriptomic changes

captured in live microorganisms on the one hand, and their surrounding environment in the

other. These data, with genome-scale coverage and high sampling frequency, could be used in
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future studies to screen large strain libraries for common motifs, such as nonlinear interaction

patterns and feedback loops, which are difficult to discern using static gene expression data [14].

Our findings suggest that E. coli’s internal models of its environment can be instantiated in the

dynamics of its adaptive response to heavy metal stress [170].

While machine learning is well poised to address the complexity of large, multi-dimensional

biological data sets such as the ones generated by our platform, more powerful algorithms often

lose in interpretability what they gain in predictive powers. We addressed this shortcoming by

using recent XAI techniques to gain insight into the features used by the predictive algorithms

trained on our data. The SHAP XAI revealed that formally different algorithms rely on different

biological features to classify transcriptomic adaptation to stress. While a decision-tree model

relied heavily on a small number of strains, a more performant deep learning algorithm based its

prediction on many strains of moderate influence (Fig. 3.10). These findings reveal that there are

different ways to segregate the high-dimensional space explored by an organism’s transcriptome

during sensory response.

Finally, we show the real-world applicability of our platform for the detection of heavy

metals in both urban water sources and field samples from a recent environmental catastrophe.

As compared to conventional methods of metal quantification, such as atomic absorption spec-

troscopy or ICP-MS, the Dynomics platform sacrifices detection sensitivity for the ability to

report continuous measurements, eliminating the need to take discrete samples. Although the

Dynomics platform sometimes experiences a slight lag in the detection of metals when they are

first introduced or removed, the platform is still a significant improvement over grab-sampling.

While previous approaches to microorganism-based heavy metal sensing have relied on engi-

neering a small number of biosensors that are specific to one metal [171], here we use E. coli’s

transcriptomic response at the genome-scale to detect environmental stressors. Our biosensor was

robust to the differences in ionic composition of five urban water sources and consistently detected

cadmium in those samples. In addition, it was able to simultaneously detect multiple target metals
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in mine spill samples, despite not being trained to perform this type of multi-class, multi-label

classification. This result suggests our approach may outperform single purpose biosensors in

accuracy and robustness, and may be adaptable to more varied sensing tasks via optimization

through testing combinations of metals and different concentrations of metals. In summary,

combining high-throughput microfluidics and machine learning can produce new insights into the

coordination of cellular processes at a system-level and this new type of data can be leveraged for

environmental monitoring.

3.8 Materials and methods

3.8.1 Wafer Fabrication

The silicon wafer was fabricated using standard photolithography techniques previously

described by our group [90]. The cell trap layer was fabricated using 2005 SU-8 photoresist with

a spin speed of 5000 rpm and had a resulting height of 3.85-4.05 µm, the minor channel layer

was fabricated using 2075 SU-8 photoresist with a spin speed of 4250 rpm and had a resulting

height of 45-50 µm, and the major channel layer was fabricated using 2075 SU-8 photoresist with

a spin speed of 1200 on top of an undeveloped major channel layer, resulting in a final height of

200-260 µm.

3.8.2 Microfluidic device fabrication

The microfluidic devices were fabricated, loaded, and bonded with the E. coli promoter

library [112] using the protocol in section 2.3.2.
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3.8.3 Experimental protocol

Microfludic experiments were performed on the Dynomics custom optical enclosure.

Continuous imaging occurred every ten minutes, imaging both the transmitted light and GFP

fluorescence channels. The inlet port was connected to a 140 mL syringe (Covidien Monoject

Syringe) and PTFE tubing (Cole Palmer PTFE#24 AWG tubing) with LB media with Kanamycin,

0.075% Tween-20, and 50 mM Methyl α-D-mannopyranoside. The waste port was connected

to PTFE tubing and a 1L waste bottle. The height difference between the inlet and outlet was

39” corresponding to a flow rate of 11 mL/hr. Tween-20 and Methyl α-D-mannopyranoside

were used in the media to prevent biofilming and therefore increase the longevity of microfluidic

experiments. Tween-20 has been used by our group in many experiments without an adverse

effect on E. coli [43, 90]. Methyl α-D-mannopyranoside inhibits normal surface attachment of

type I pili but cannot be metabolized by E. coli [172]. After 16-24 hours of growth on LB media

for cells to fill the traps, the media was switched to an HM9 minimal media described in Table

3.3, which was based on a previous study [173] and optimized for microfluidic E. coli growth

with minimal traces of metals. Cells were grown on HM9 for 48 hours before inducing with

heavy metals.

Heavy metal inductions occurred once a day for four hours. To induce, the HM9 in the inlet

syringe was slowly pipetted out of the syringe and the HM9 + metal media was slowly pipetted in.

To remove the heavy metal media after the 4 hour induction, the HM9 + metal media was pipetted

out, and the remaining dead volume was washed with 2, 5 mL HM9 wash steps. Then the HM9

media was pipetted in to fill the syringe. The order of daily metal inductions were randomized for

each experiment. Inductions of each metal were performed across multiple experiments, with

each experiment lasting 7-14 days. The number of inductions and concentrations for each metal

is listed in Table 3.4.
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Table 3.3: HM9 minimal media recipe.
Chemical Concentration (mM)

Potassium Chloride 49.6
MOPS pH 7.2 40
β-Glycerol phosphate disodium salt pentahydrate 4
Dextrose 22.2
Ammonium chloride 18.70
Magnesium Sulfate, 7-Hydrate 0.2
Calcium Chloride Dihydrate 0.01
Iron(III) Chloride hexahydrate 0.001
Kanamycin sulfate from Streptomyces kanamyceticus 0.086
Tween 20 0.611
Methyl α-D-mannopyranoside 50

3.8.4 Live-cell imaging and data

Microfluidic devices were imaged using the Dynomics custom optical enclosure contin-

uously every ten minutes in both the transmitted light and GFP fluorescence channels with a 1

second and 60 second exposure respectively.

Images were synced from the enclosure to a server via WiFi for further data processing.

Custom software produced flat-field-corrected images in both channels in real-time to remove

optical vignetting using the following equation:

C = m∗ R−D
F ′−D′

(3.1)

where R is the raw image to be flat-field corrected (Figure 3.12a), D is the dark-current image for

that device, taken at the same exposure settings as R, F ′ is a raw image taken by the camera with

no device present, D′ is the dark-current image taken at same exposure as F ′, m is the mean value

for all values in the array (F ′−D′), and C is the resulting corrected image (Figure 3.12b).

Flat-field corrected images were then registered to an extraction mask to account for

the device drifting from thermal expansion, with mean transmitted light and green fluorescence

channels from masked bulb and background regions extracted (Figure 3.13).
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Table 3.4: Metal induction count by concentration for fold change analysis and machine learning
analysis

Metal EPA MCL
(ppb)

Concentration
Tested (ppb)

Fold Change
Induction Count

Machine Learning
Induction Count

Arsenic 10 30 7 7
Antimony 6 1000 7 7

Cadmium 5
4.50 12 12
8.99 0 1

Chromium 100 260 6 6
Copper 1300 127 8 8

Iron 300
279 6 6
558 0 1

5580 0 1

Lead 15
14.92 0 3
29.84 6 6
298.4 0 1

Mercury 2 2 6 6

Zinc 5000
50 5 5

500 0 3
1310 0 1

Raw data was initially processed as:

GFPRaw =
GFPBulb−GFPBackground

GFPBackground
(3.2)

For fold change analysis, fluorescence values were passed through a median filter

(scipy.signal.medfilt, kernel size=11) and normalized by promoterless strains (Figure 3.14).

Promoterless strains U139 and U66 from the GFP promoter library [112] were spotted at various

locations across each device, with 20 device positions of each, for 40 in total. Normalized

fluorescence for Figure 3.4 was thus determined as:

GFPnormalized =
scipy.signal.med f ilt(GFPRaw)−mean(scipy.signal.med f ilt(GFPPromoterless))

mean(scipy.signal.med f ilt(GFPPromoterless))

(3.3)

Fold change in Figure 3.4 was calculated as the quotient of the normalized fluorescence at the first
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Raw Image Flat-field Corrected ImageRaw Imagea b

Figure 3.12: A full Dynomics image taken on custom optics before (a) and after (b) flat-field
correction.

and last time point of each metal exposure. P-values were determined by a dependent two-sided t-

test on the log2 fluorescent values at the start and end of each metal exposure (scipy.stats.ttest rel).

3.8.5 Gene ontology enrichment analysis

We performed enrichment analysis [174] on gene clusters obtained via agglomerative

clustering of promoter activity, normalized between 0 and 1, of 1,995 strains responding to a 50

ppb Zn induction (Figure 3.3). Table 3.1 lists the enriched GO terms obtained for each cluster via

http://pantherdb.org/. The statistical method used was Fisher’s exact test with no correction

for multiple testing. No correction was selected as we chose to minimize the number of false

negatives over the number of false positives. We note that this increases the likelihood of finding

enrichment terms by chance only. The reference list for the GO enrichment analysis was the

1,807 unique genes of the GFP-promoter library [112].
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Figure 3.13: Data extraction from a Dynomics image. 2,176 device positions are simultaneously
imaged in both transmitted light (gray) and green fluorescence (16 color) channels. At each time
point for each device position, the mean fluorescence of the boxed bulb and background (BG)
regions are extracted.

3.8.6 Machine learning

We transformed our eighteen standardized experiments’ time points into a first derivative-

based feature for the training and testing feature sets. All data used for machine learning results

were pre-processed into first derivative-based features. Intuitively, a first derivative-based feature

is an excellent candidate for any sort of machine learning model because it is what the human brain

instinctively monitors when looking for changes in strain-promoter behavior. Any significant

modification in the mean or variance of the first derivative of a given promoter while induced or

uninduced could signify that the promoter is sensitive to that particular environmental perturbation.

The engineering of a first derivative-approximation feature essentially amounts to distilling out

the pure changes in the original feature’s behavior, while effectively filtering out any changes that

could be due to extraneous local or global environmental influences. Figure 3.15 illustrates the

results of the feature engineering process.

In order to optimize the classifiers, extensive Bayesian Optimization searches were used

to find optimal hyperparameter combinations [175]. Throughout our hyperparameter searches,
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Figure 3.14: Normalization process for data presented in Figure 3.4. Raw data was median
filtered, then divided by the mean traces of promoterless strains U139 and U66. Dark lines show
the mean of all time series while shaded regions represent the standard deviation.

we used leave-one-out cross-validation on a per-experiment basis and appropriate overfitting-

prevention strategies to ensure that any resultant classifier would generalize to future data sets.

All classifiers were evaluated using the F1-macro scoring metric. The F1-macro score, which is

the per-class average of the harmonic mean of precision and recall, was especially well-suited

because of our data set’s large multi-class imbalances, with water making up approximately 86%

of the final feature set [176]. Finally, all generalization evaluations were performed by recording

the results of using leave-one-out cross-validation with early stopping and then taking the mean

prediction across the cross-validation’s output.

Additional feature preprocessing

In addition to the data preprocessing and feature engineering that were explicitly enumer-

ate in the previous subsection, other steps were often taken when training and testing any machine

learning algorithms. These additional steps each dropped some portion of the final feature set, but

only after the features had been calculated using the entire original experiments. Dropping these

time points before calculating the features would have introduced potential discontinuities to any
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Figure 3.15: Raw and processed fluorescent signals: Our feature engineering eliminates a
significant amount of intra-experiment variability by rendering the raw signal into a first derivative-
like feature. This variability is due to differing hardware between Dynomics devices, among other
sources.

features approximating the first-derivative. All features were processed and cached in permanent

memory. Only the cached features were used for any further analysis.

All experiments included transient periods over the first several days of the experiment.

These transients were caused by the colonies’ recoveries post-spotting shock, their growth-to-

effluence within their individual traps, and their second recovering following the switch to minimal

HM9 growth media. In addition, since most experiments were run until the microfluidic chips

were deemed unusable due to clogging by biofilms, the final hours of most experiments did not

yield high-quality water data. Since the beginnings and the ends of the experiments represented

non-steady state local and global growth conditions, the features from these periods were dropped

prior to analysis and machine learning. This trimming was done by removing features more than

eighteen hours before the first induction and more than four hours after the final metal induction.

In addition, inductions using undetectable metals, such as arsenic, mercury, and antimony,

and special inductions that introduced any non-standard inducers were dropped from the feature

set post-processing. Mercury, arsenic, and antimony exposures were also fed into the classifiers,

but despite extensive feature-engineering efforts, no classifier was able to successfully detect
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these metals. This negative result was most likely a consequence of the absence of the E. coli ars

and mer operons from the Alon promoter library [125]. These operons are known to be highly

efficient at sensing and exporting arsenic and mercury, respectively, from their cells [177,178]. In

addition, upon further review, we found that the tested concentrations of both metals were over

an order of magnitude lower than the known in-batch minimum inhibitory concentrations for E.

coli [179]. To focus classification on detectable metals, features during these metal inductions

were relabeled as No Toxin.

3.8.7 Municipal water experimental set-up

Water samples were obtained from the Department of Water Management at the City of

Chicago, in Chicago, IL, the Alex Orr Water Treatment Plant in Miami, FL, the New York City

Department of Environmental Protection and Bureau of Water Supply in Corona, NY, the Seattle

Public Utilities Water Quality Lab in Seattle WA, and the Alvarado Water Treatment Plant in

San Diego, CA. HM9 media for each city water experiment was prepared by diluting 5x HM9

concentrate made from milliQ water with the water obtained from each city. The microfluidic

device was initially grown on LB media with Kanamycin, 0.075% Tween-20, and 50 mM Methyl

α-D-mannopyranoside until traps were filled to confluence and then switched to HM9 made with

city water for the remainder of the experiment. Cadmium diluted in the HM9 city water media

was used to perform inductions as described in Section 3.8.3.

3.8.8 Gold King Mine spill experimental set-up

Water was collected from Mexican Hat, Utah in August, 2015 when the Gold King

Mine Spill plume reached the collection point in the San Animas River. Samples were stored in

0.5% HCl Acid until tested. HM9 media was prepared by diluting 5x HM9 concentrate made

from milliQ water with filtered San Animas samples. The pH was adjusted to 7.05. The metal
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concentrations of the HM9 San Animas samples were tested by ICP-MS at the Environmental and

Complex Analysis Laboratory (ECAL) at UC San Diego. Four hour inductions were performed

as described in Section 3.8.3.
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Chapter 4

A microfluidic biosensor for the detection

of contaminants in seawater

4.1 Introduction

As discussed in Chapters 1 and 3, the use of biological systems and especially bacteria as

biosensors for in situ analysis of water samples offers multiple advantages. Microbes naturally

operate a vast range of niches, often residing in environments that are toxic to other organisms. In

those niches, they withstand variations in temperature, pH, and salinity. As such, biosensor-based

analysis seldom requires complex sample pre-treatment and can function with low-volume sam-

ples. Biosensors also benefit from the improvements and cost-effectiveness of microelectronics,

optical devices, and wireless communication modules to which they are interfaced. As such,

biosensors offer both low operational costs and relative ease of use. This is an advantage in the

development of sensing networks deployed over large areas [180].

In parallel, the discovery, characterization, and modularization of genetic parts brought

about by synthetic biology have fostered the development of a new generation of whole-cell

biosensors. Scientists are developing a growing catalog of genetically-encoded sensor modules
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that can respond to various environmental stimuli. The sensors modules often stem from naturally

occurring microbial stress responses or metabolic pathways, a logical reflection of the diverse

and unpredictable stimuli to which bacteria are naturally exposed to [181, 182]. The diversity of

sensor modules is particularly important in the context of seawater pollution, where the source

of pollutants is diverse (sewage, agricultural run-off, industrial discharge), as is the nature of

the pollutants: both inorganic compounds (e.g. heavy metals) and organic compounds (e.g

hydrocarbons) can be present [180]. The use of whole-cell biosensors also offers the promise of

rapid detection: in microbial cells, sensor modules are rewired to transducing modules to produce

measurable colorimetric, fluorescent, or enzymatic outputs, often within 5 minutes of exposure to

the input [183].

Microbial biosensors are thus poised for use in the sensing of complex targets in marine

environments [184]. However, a number of challenges prevent widespread use in the field.

Firstly, biosensors developed in the lab often under-perform when exposed to their “working

environment”, Secondly, biosensors need to be combined with an adequate platform for cell

culturing, and multiplexed sample handling. Thirdly, there are biosafety risks associated with

using genetically engineered microbes in the field [133, 185]. In this chapter, I present work that

directly addresses the first two of those challenges.

4.2 Approach

In line with the application of the dynomics platform as a multiplexed biosensor in Chapter

3, here I describe the extension of the platform’s biosensing capabilities to the detection of a wider

range of chemical and biological contaminants in the context of real-time seawater monitoring.

For a proof of principle application of our seawater biosensing platform, we decided to

focus on a set of contaminants of concern (COCs) described by Kara Sorenson and co-workers

( [186]) as being of particular relevance to Navy divers, and aimed to detect those chemicals at
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concentrations up to a hundred fold below those at which they become a health hazard during

frequent dives in contaminated waters (see Table 4.1). To this end, we used a medium-scale

multiplexed microfluidic device capable of handling up to 48 separate strains loaded with E. coli

sensor strains using the robotic loading techniques described in chapter 2 (see Fig. 4.8. Once

cells are loaded into the device, they grow on seawater-containing media and are repetitively

exposed to various dilutions of the COCs. Their fluorescent responses are measured over time to

ensure their sensing abilities are not hindered by prolonged growth in seawater.

While E. coli is commonly found in the gastrointestinal tract of mammals, prior research

has shown that some strains of E. coli are capable of surviving prolonged exposure to seawater,

an environment they may be exposed to after a transit through sewage or coastal animals [187].

Growth of the enteric bacterium is reportedly more robust in the face of the stress-inducing pH,

temperature, and salinity of seawater when the exposure to light radiation is limited and organic

nutrients availability is sufficient [188]. Some unknowns remained regarding the viability of

the E. coli laboratory strain (and synthetic biology workhorse) MG1655 grown in seawater in

a microfluidic device for prolonged periods of time, as most of those studies used different E.

coli strains for their viability studies, and most observed the presence of cells in a viable but non

culturable state [189, 190]. Although not a primary object of this study, we note here that the

ability of microfluidics-based assays to reliably create controlled microenvironments is a boon to

the study of microbial ecologies in their natural contexts, with applications in the study of biofilm

formation and antibiotic resistance [191].

Of contaminants of concern presented in Table 4.1, we note the presence of some of the

heavy metals discussed in chapter 3 such as chromium (Cr), cadmium (Cd), lead (Pb), arsenic

(As), mercury (Hg), Selenium (Se), and zinc (Zn). In addition to those metals, we also note the

presence in our target compounds of monoaromatic hydrocarbon (notably Benzene and Styrene),

which present a whole new class of chemicals for which to validate our seawater-compatible

microfluidic sensor. Faced with the added challenge of sensing a more varied set of inputs we
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aimed to augment our sensing technology by combining our microfluidic platform with two types

of bacterial sensors: one-component (OCS) and two-component systems (TCS) (see Figure 4.1)

The first major family of bacterial sensors are one-component systems (OCSs) [182] and

are illustrated in Figure 4.1. In OCS sensors, a cytoplasmic transcription factor directly binds the

input, and responds by activating one or more output promoters. The metal-responsive strains

of the E. coli GFP library used in chapters 2 and 3 are of the OCS type and require inputs to

diffuse or be transported across the cell membrane in order for them to bind to a cytoplasmic

transcription factor and elicit a response. In this chapter, we describe the use of a small set of

eight engineered E. coli to detect heavy metals in seawater (see Section 4.5.1).

The second family of bacterial sensors, TCSs, are one of the predominant channels by

which bacteria senses extracellular signals, including phosphate, nitrate, and carbon sources [192].

They are composed of a tandem of proteins: a membrane-bound histidine kinase sensor and

a cytoplasmic response regulator, with the first activating the latter upon external stimulus.

TCSs can sense inputs outside the cell via their membrane-bound sensors. TCSs also hold the

advantage of being modular, as signal input, (phospho)transfer and output response are separate

processes [29, 193, 194]. In this chapter, we describe the use of a library of over 500 TCS E. coli

sensing strains engineered by the Jeff Tabor lab [134] for the purpose of detecting both organic

and nonorganic toxic compounds (Figure 4.1).

Our hypothesis for this work was that the inclusion of both OCS and TCS-based strains

in our microfluidic biosensor array sensing array would allow for the continuous monitoring of

seawater samples with broad sensing applications in a variety of fields.
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Figure 4.1: Schematic of sensing system for different types of contaminants of concern to Navy
divers. Left : monoaromatic contaminants can be sensed at the extracellular level using TCSs.
Right : heavy metals can be sensed using the OCSs due to the presence of metal importers and
diffusion of metals across the E.coli cell membrane.

4.3 Results

4.3.1 Sensing heavy metals in seawater

We validated that E. coli sensor strains can grow uninterruptedly in seawater-containing

media in our multi-strain microfluidic device (see Methods Figure 4.8). We grew up to 6 different

E. coli biosensing strains (see Table 4.1) in either lysogeny broth or M9 minimal media containing

25% (filtered) seawater for up to 7 days. E. coli produced a noticeable physiological response to

media augmented with 25% seawater: cell growth was impacted and cells tended to aggregate,

which led to frequent clogging of our microfluidic devices Hence the upper limit of 7 days was

not due to a decrease in cell viability, but to the clogging or our devices. Clogging occurs when

large amounts of cells grew out of the cell traps and accumulate in inlet and outlet channels that

are designed to be cell-free (see Figure 4.8). We chose to perform all subsequent experiments in a

10% seawater background to limit the effects of osmotic stress on cell growth. Although osmotic
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Table 4.1: Toxins of interest for seawater biosensing, including inorganic and organic contami-
nants of concern, and the concentration at which chronic exposure is toxic to Navy divers. Table
adapted from Sorensen, 2009 [186]

Toxin Detection target

Arsenic (As) 0.01 mM
Cadmium (Cd) 0.02 mM
Mercury (Hg) 0.17 mM
Chromium (Cr) 0.89 mM
Zinc (Zn) 275.3 mM
Lead (Pb) 0.07 mM
Selenium (Se) 2.03 mM
Benzene 0.06 mM
Styrene 9.03 mM

stress at 10% seawater still had the effect of increasing the adherence of cells growing out of the

trap to the PDMS channel walls, we were able to reliably perform experiments lasting over 10-25

days with cells growing in 10% seawater. These results indicate that seawater-containing media

can be used for long-term culturing of MG1655 E. coli , with toxins added to the media during

induction periods.

We performed quintuplicate inductions for 1/10, 1/50, 1/250, and 1/1000 dilutions of the

target concentration for the metals (As, Cd, Hg, Cr, Zn, and Pb, see table 4.1) in three background

media environments: regular HM9 (with Milli-Q water, see Section 3.3), media with 10% natural

seawater, and media with 10% synthetic seawater, totaling over 600h of microfluidic induction

data. Our OCS metal sensing sensor strains produced detectable responses for all metal COCs in

all media conditions at 100 fold dilution of the target levels except for Zn(II). Zn(II) inductions

proved to be toxic for the cells at any level above 1:10’000 dilution of target levels. Hg(II) and

Cd(II) were detectable up to a 1000 fold dilution of EC concentrations. Table 4.2 gives the

observed detection limit in 10% seawater.
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Figure 4.2: a: A zntA-based biosensing strain, Pb7, responding to 2µM Cd(II) (a 1:10 dilution of
the target level) in media with either 10% seawater, 10% synthetic seawater or lab water (Milli-Q).
b) Hg-sensing strain Hg3 responding to Hg at a 1:1000 dilution of the target concentration. GFP
signal was background subtracted, normalized and smoothed. For each condition in a and b eight
biological replicates are plotted, with the mean in dark and standard deviation above and below
the mean in a shade of the same color. c) Three sensor strains (Pb7, Cd1 and As7) responding
to a 4h heavy metal induction every 24 hours for a period of 19 days of continuous growth in
microfluidics. Inductions are color-coded according to the heavy metal and shaded according to
the dilution of the target level (lightest, medium and darkest shade corresponding to a 1:250, 1:50
and 1:10 dilution of target sensing levels for each metal respectively

OCS-based sensing strains produced similar responses to heavy metal inductions per-

formed in synthetic seawater and natural seawater. Differences were more pronounced between

the inductions performed in seawater and Milli-Q, which may be attributed to the effects of

osmotic stress on the engineered strains’ response. Osmotic stress has previously been reported to

affect cell volume [195], cytoplasm and cell membrane properties [188] and gene expression [196].

81



Table 4.2: Detection limits for seawater contaminants and the sensing strain with which it was
achieved. The detection limit corresponds to the lowest concentration tested for a given COC that
produced a significant variation in the fluorescence signal of the apposite sensing strain. The fold
change is the ratio of the detection target to the detection limit. A high fold change indicates a
signal was detected at levels below the target concentration.

E. coli Detection limit Fold-change
COC sensor strain in seawater below target

Arsenic (As) As7 2.0 µM 5
Cadmium (Cd) Pb7 0.2 µM 100
Mercury (Hg) Hg3 7.0 µM 23

Chromium (Cr) Cr14 88.5 µM 10
Zinc (Zn) Pb7 2750.0 µM 100
Lead (Pb) Pb7 0.3 µM 248
Selenium TCS Library 400.0 µM 5
Benzene StySR N/A N/A
Styrene StySR 76.0 µM 119

An overview of the data collected for the seawater experiments is given in Figure 4.2 which

examples of single-strain response to 4 hours inductions (panels a and b), and repeated inductions

of three strains are shown during 19 days of continuous sensing with one heavy metal induction

per day (panel c). The long duration over which we cultured MG1655 supersedes those previously

reported in the literature. While E. coli has previously been used to sense contaminants in 25%

seawater with no negative impacts on growth during 2-4 hour experiment, [190] we believe this is

the first instance of continuously exponentially growing microbes housed in microfluidic devices

being used to detect multiple contaminants in seawater continuously and for days.

Our results are further differentiated from previous seawater-sensing efforts by the mul-

tiplexing abilities offered by our microfluidic setup on which are up to 48 strains. Exposure to

each toxin produced a unique “fingerprint” of responses by the array of 48 fluorescent bacteria,

allowing for finer discrimination between contaminants. We illustrate the breadth of our sensor’s

coverage in Figure 4.3 displaying a heat-map of five different strains responding to the 10X

dilution of the target sensing levels for five metals. Fig4.3 reveals the existence of cross-talk
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Figure 4.3: c) Heat-map of fold change over pre-induction baseline for 5 strains (rows) responding
to 5 heavy metals (columns) at levels 10 fold below those deemed toxic to Navy divers by the
Sorensen toxicology group. Metals can be distinguished based on the pattern of responses they
produce in the five sensing strains. Fold-change is computed by dividing the peak of a strain’s
fluorescent signal by its fluorescence level prior to the induction

between metals. For example, the merR gene (present in strain Hg3 c.f Table 4.2) responds to

both Hg(III) and Cd(II). This is not surprising in itself - the literature shows that metalloregu-

latory protein often responds to a subset of metal ions [140], but illustrates the limitations of

single-strain biosensors. Given cross talk, a comprehensive fingerprint of gene expression change

across multiple sensor strains allows for accurate discrimination between metals.

4.3.2 Sensing styrene using a TCS biosensor

We cultured StySR, a TCS-based sensor strain on our microfluidic platform with the aim

of detecting monoaromatic compounds (see Table 4.1). StySR is a sensing strain engineered by

the Tabor Lab at Rice University to detect Styrene and Benzene that uses the sty promoter of

Pseudomonas sp. [197] (see Figure 4.7).

We used a syringe-pump-based set-up to ensure all the media-containing syringes were
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hermetically closed to avoid any volatilization of monoaromatics from the media which would

generate both safety concerns and prevent StySR from detecting the target compounds. We

performed triplicate 4h styrene inductions in M9 media at a concentration of 76 µM (8mg/ml),

resulting in a quantifiable and reproducible fluorescent response (Fig. 4.4). Time-trace analysis

of the styrene induction on our microfluidic platform showed that StySR produced a fluorescence

fold-change that was comparable to results produced by the Tabor lab’s flow cytometry charac-

terization of the strain’s styrene response. These results validate our platform’s ability to use

TCS-based sensors to detect volatile organic compounds in addition to one-component systems

for the detection of heavy metals.

Compared to the detection of heavy metals, the detection of monoaromatics in our

microfluidic proved to be difficult due to the cumbersome setup needed to pressurize the fluidic

circuit and avoid any volatilization of the targeted compounds. This significantly increased the

time to set up each experiment and increased their failure rate. While microfluidics represents

a powerful tool way to perform biosensing, the use of microfluidics to sense volatile targets

in a high-throughput fashion presents itself with a unique set of challenges that may prevent

widespread use without further engineering efforts.
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Figure 4.4: Detection of styrene using the StySR system. a) TCS system used for Styrene
detection. b) Response curve of the SySR strain measured by fluorescence cytometry. c) GFP
response of StySR over time in a microfluidic setup. Fold change compared to control is calculated
using data acquired from a 76 µM (8mg/ml) styrene inductions across 3 replicates and compared
to the negative control strain.
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4.3.3 Sensing using a library of engineered TCS biosensor strains

We interfaced a library of over 500 TCS sensors with our multiplexed microfluidic

platform to leverage the sensing potential of microbial TCS systems and generate rapid, high-

throughput biosensing data for a wide range of contaminant. The goal of this approach was to

identify contaminants by interpreting the pattern created by the responses of the entire library

exposed to a sample. In this section, we present the work accomplished to integrate the TCS

library with a two-thousand strain microfluidic device and the detection of two contaminants that

serve as a proof of concept for this “synthetic olfaction” approach.

We received a library of TCS strains which were engineered by the Tabor lab according to

the methods described in Schmidt et al. [134]. The library contains 521 genetically engineered E.

coli, each containing an uncharacterized TCS identified by the Tabor lab by mining gut bacterial

genomes available on the NIH Human Microbiome Project. In each sensor strain, the TCS is

rewired to synthetic output promoters driving sfGFP via a DNA-binding domain. Thus, each

strain in the library is capable of producing sfGFP in the presence of inputs that activate their

TCS system.

Contrarily to the OCS-based heavy metal sensing strains whose behavior had been

previously characterized in our lab (see Section 3.1), the Tabor library strains had not been tested

in microfluidic devices. We used a biopixel-type cell trap with hydrodynamic-trapping described

in Chapter 2 (see 2.12) to culture the TCS library strains in either 48- or 2176-strain microfluidic

devices. We loaded cells onto our microfluidic devices using either the acoustic droplet ejection

or pinpad-based robotic spotting techniques described in Chapter 2.3. While the growth of the

strains was more robust on LB media, we found that M9 minimal media improved the detection

of the strains’ fluorescent response due to its lower autofluorescence. However, we also found

that M9 did not robustly support the exponential growth of the entire population of cells in

each microfluidic trap, creating variability in the observed response profiles. This can likely

be explained by the diffusion-limited access to nutrients for cells residing deep in the biopixel
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trap and far away from the media-supplying channels [120]. Hence we pivoted towards using

EZ rich media for TCS library experiments, a media which is defined, rich, and possesses low

autofluorescence [198].

Figure 4.5: TCS library strains responding to Nitrate and Selenite. Time-series response of the
three uncharacterized TCS strain and one positive control strain (NarXL) when induced with a)
0.1 mM Sodium Nitrate for 4h (yellow shaded region) or b) 400 µM Sodium Selenite. The mean
response across 4 to 9 replicates is shown in dark blue, with the shaded blue area representing
plus/minus one standard deviation

In order to validate our TCS library pipeline, we relied on the existence of the library’s

internal positive control strains (NarXL), which can detect Nitrate [29]. We induced the entire

TCS library with 0.1 mM Sodium Nitrate and observed a clear response of NarXL. Moreover,

we also detected another nitrate-sensing strain, EFF33904.1 (see Fig. 4.5). In Figure 4.5 we

also report clear responses from two strains in response to Sodium Selenite, one of the toxic

compounds initially identified as being of particular interest to seawater biosensing (see Table

4.1). In addition to using single strains to detect COCs, the response profiles of multiple strains

can be leveraged using machine learning algorithms, as previously demonstrated in Chapter 3 [79].

An example of an approach that uses unsupervised machine learning techniques to visualize
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the library’s response to an inducer is displayed in Fig. 4.6, which shows a PCA biplot of the

521 TCS library strains exposed to 0.1 mM Sodium Nitrate. PCA is a commonly used method

of dimensionality reduction that has been extensively applied to genomic and transcriptomic

data [199]. It uses linear combinations of variables to generate orthogonal axes that efficiently

capture the variation present in the data with fewer variables. In this plot, each point represents

an aggregate view of the library as it progresses through the different stages of the response to

the induction and shows that multiple strains contribute to the overall change in the library’s

time-dependent GFP expression profile.

Figure 4.6: PCA of TCS library response to Nitrate Left: PCA bi-plot of TCS library responding
to 0.1mM NaNO3. The bi-plot represents the scores of 119-time points in the PC1/PC2 plane.
The arrows represent the loadings for the strains with the highest loadings in PC1/PC2 (i.e which
strain contributes the most to the first two PCA axis, with the arrows showing in which “direction”
a strain exerts traction in the PC1/2 plane). We used the first derivative of the smoothed, mean-
centered GFP expression data, with each strain representing the mean of 4-10 replicates of each
strain. Right: Time-series response of the five strains with the highest loadings in PC1/PC2
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4.4 Discussion

Field-deployable technologies that can detect toxic compounds in maritime environments

are necessary to adequately monitor seawater quality for environmental and human health pur-

poses. We have developed a novel biosensing platform based on engineered sensor bacteria,

microfluidics, and “synthetic olfaction” to detect chemical contaminants of concern in seawater.

We have used a suite of engineered bacterial strains capable of producing a fluorescent response

to specific chemicals (i.e. heavy metals and monoaromatic compounds) while being exposed

to seawater. Multiplexed microfluidic and optical technologies were combined to culture the

bacteria and monitor their fluorescence response over long periods of time. Live bacteria and the

accompanying hardware were combined in a field-deployable “sensor box” capable of analyzing

real seawater samples in the field.

4.5 Materials and Methods

4.5.1 Strains and plasmids construction

The heavy metal bisoensing strains used in this study (see Table 4.3) were previously

developed by our group for heavy metal sensing in drinking water [200], except for Cr14 which

was created for this study. All strains were engineered by using known response pathways that

mediate resistance to heavy metal in various microorganisms [201–205]. As7 uses arsRp from

the E. coli R773 plasmid to drive a synthetic operon encoding both arsR and sfGFP [206]. To

further increase signal we used the strong Lutz RBS to enhance sfGFP [207]. To detect cadmium,

we use two strains, named Pb7 and Cd1. The construct in Pb7 is composed of the E. coli zntA

promoter (zntAp which was identified using RNA-Seq) driving Lutz-sfGFP. The Cd1 construct

uses cadCp to drive a synthetic operon of cadC and sfGFP using a native E. coli RBS. The cadC

components are derived from the Staphylococcus aureus pi258 plasmid [208]. To detect lead, we
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again use Pb7 along with another strain called Zn6. Zn6 has zraPp (identified using RNA-Seq)

driving Lutz-sfGFP. For mercury, we use the Hg3 strain, which contains merRp driving merR

and Lutz-sfGFP with the mer components originally derived from Shigella flexneri 2b [201, 204].

For chromium, we use a strain known as Cr14. This strain has sulAp (identified using RNA-Seq)

driving Lutz-sfGFP.

Table 4.3: E. coli biosensing strains for the detection of heavy metals in seawater

Strain Gene Sensing Secondary
name description target sensing targets

As7 arsenate resistance Arsenic (As) Cd, Hg
Cd1 cadmium resistance Cadmium (Cd) Hg
Hg3 mercury resistance Mercury (Hg) Cd
Pb7 zinc/cobalt/lead efflux system Lead (Pb) Cd, Hg
Zn6 zinc homeostasis protein Zinc (Zn) Hg
Cr14 cell division inhibitor Chromium (Cr) N/A

The StySR TCS biosensor strain engineered by Moshe Baruch from the Tabor lab. The

StyS/StyR TCS is ported from Pseudomonas sp., with the sensor kinase placed on one plasmid

and the response regulator (RR) on the other. The RR drives the expression of GFP,

Response 
regulator

Ptarget

styR PstyA

Sensor kinase 

styS

Figure 4.7: Design of the expression plasmids for the TCS StySR system

89



4.5.2 Microfluidic sensor

Sensor design: Our biosensor device, capable of culturing E. coli continuously in seawater-

containing media, is an evolution of microfluidic devices previously designed for urban water

biosensing (see Chapters 2 and 3). Our device consists of a single media inlet and outlet, and

a manifold geometry to mitigate the risk of clogging, a potential limiting factor when using

environmental samples. In this design, the single media inlet feeds 8 columns and 6 rows of cell

traps, which are 4µm tall and receive fresh media from 150 µm tall major channels that split off

into 50µm tall minor channels. Waste from each cell trap flows into a common major channel

(the manifolds, see Fig.1). This device geometry ensures each cell chamber region is fluidically

isolated to prevent strain cross-contamination. Spacing between the reservoir regions is 1.125

mm for compatibility with standard SBS-format 6144-density spacing for robotic loading. The

trap has a “light bulb” shape, with the area of the trap furthest away from the minor channel

possessing a disk-shaped geometry with a large 500 µm diameter to receive the cells loaded

by the cell loading robot. As cells grow out of the spotting area, they reach four 100µm by 90

µm regions named the “biopixels” which are 4µm tall. These are the areas in which cells are

constantly supplied with fresh nutrients from the minor channels and from which fluorescence

data is extracted. Having four biopixels associated with each strain loading region allows us to

collect more data for each strain. Results: We have evolved a 48-strain microfluidic device that

can be loaded with robotic loading techniques which builds on previous designs that have shown

robust biosensing performance with urban water samples. Our device allows engineered E. coli

to grow in a controlled microenvironment for long periods of time in seawater-containing media.

The device geometry has been optimized to limit clogging and facilitate operator use.
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Figure 4.8: A) CAD drawing of 48-strain microfluidic device. B) PDMS microfluidic device
with microcentrifuge tube for reference. C) Closeup of 4 cell traps. The major channels supplying
nutrients across the device are in yellow (150 µm tall). Minor channels feed (red, 50µ m tall)
individual cell traps (green 4µ m tall). Cell traps possess a round geometry to accommodate cell
loading and four biopixel rectangles for cell growth and imaging.

4.5.3 Setting up a microfluidics experiment

Sensing of heavy metals in seawater, synthetic seawater and Milli-Q water at various con-

centrations. We loaded our biosensor device with 8 replicates of 6 engineered strains responsive

to heavy metal COCs presented in Table 4.3.

Each microfluidic device was checked carefully prior to loading the media to ensure no

dust or broken features were present. Before setting up a microfluidics experiment, devices are

placed in a vacuum for 20 min to facilitate wetting. Loaded devices are wetted with Lysogeny

Broth (LB) growth media, which is continuously flown through the device via hydraulic head

pressure difference until the cell traps (the regions of the device where the cells are imaged)

become full. Cells are grown on LB media until they reach confluence in their parallelized

microchambers. This process takes about 12h (see Fig. 2.12). The media is then switched to

HM9 minimal media (see Tab. 3.3) containing 10-25% of filtered water. Two media ports were

connected to plastic PTFE #24 (Cole Parmer) tubing, which connected to 60 ml syringes with the

inlet syringe containing fresh medium at a height of 30” at the outlet syringe at 5” above chip

level. Flow-rate was about 1ml/hour for 48-strain devices and 10ml/hour for 2176-strain devices.
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Devices were imaged in our sensor boxes and exposed daily to COCs for 4 hours before

returning to uncontaminated media for 20 hours. The un-induction period allows the strains whose

fluorescence output increases in response to toxins to return to their pre-induction baseline. Using

this method, we conducted 5 replicate toxin inductions at 4 concentration levels for 5 out of the 6

target heavy metals (As, Cd, Cr, Hg and Pb). Zn inductions were found to lead to cell death at the

tested levels. The concentration levels chosen for inductions corresponding to 1X, 5X, 25X, 100X

dilutions of the contaminant levels considered to be toxic for chronically exposed divers by the

Kara Sorensen’s Navy toxicology group (Table 4.1). Since we supplemented our growth media

with 10% seawater to limit the levels of osmotic stress, the actual levels the biosensor strains were

exposed to were 10X, 50X, 250X and 1000X dilutions of the Sorensen concentrations. Seawater

was obtained from the seawater tap at the Scripps Institute of Oceanography (La Jolla, California)

and filtered using Nalgene sterile disposable bottle filters with 0.2 µm SFCA membrane prior

to being mixed with concentrated media (either HM9 as described in Table 3.3 Or EZ rich

media [198]. In addition, we performed duplicates of the same inductions in synthetic seawater

(Ricca Substitute Ocean Water without Heavy Metals ASTMD1141) and single inductions in

reference lab grade-purified water (Milli-Q). Over 150 inductions were performed in total.

4.5.4 Data extraction pipeline and data processing.

One of the advantages of using engineered bacteria for biosensing purposes is the rapidity

of their response to environmental toxins (in the order of 10min). To capture this rapid response

we acquire fluorescence images of the bacteria growing in our microfluidic device every 5 minutes.

To translate the pixel value of the bacteria’s fluorescence levels in the biopixels into a meaningful

response trajectories, we use a previously developed automated software pipeline [79]. This

pipeline is composed of an image processing and data extraction module, and a large MySQL

database to store the processed data. Wireless communication between the sensor box and the

database enables data to be stored and accessed remotely.
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As with many biological measurement methods, one of the important aspects of microfluidics-

based experimentation is finding appropriate techniques to process the raw data. In the case

of experiments carried out in parallel on multiple sensor boxes, there is the added challenge of

different boxes having slightly different background fluorescent values. In addition, most sensor

experiments experience some global fluorescent drift as a result of the maturing of the strains and

their adjustment to growth or induction media, especially when sample-to-sample variation exists

between the seawater samples added to the media. To mitigate those effects we have explored

different data normalization techniques and have developed a three-step processing technique

depicted. First, we subtract the local background signal to cancel out local fluctuations across

the PDMS device. Second, we standardize each cell trap’s fluorescent response with respect to

itself. Finally, we smooth the signal using Holt-Winters exponential smoothing. This process

helps standardize the data within experiments (across biological replicates on-chip) and across

experiments (same induction protocol applied across experiments and sensor boxes).

4.5.5 Syringe system used for styrene inductions

Eliminating the headspace in media syringes is crucial for performing inductions with

monoaromatics (MAOs) such as styrene as they are highly volatile and will diffuse into the

surrounding atmosphere if they are not trapped. Diffusion of MAOs out of solution not only poses

a potential safety hazard, but also impacts the reliability of the device as diffusion of MAOs would

affect the concentration sensed by the cells during the course of an experiment or field test. In our

protocol, we use a syringe pump to eliminate headspace in syringes containing MAO inducer.

Specifically, we prepare syringes with defined concentrations of MAO in M9 media by mixing

the MAO with M9 media and drawing the solution into a syringe in a fume hood. The capped

syringe is then affixed to a syringe pump and connected to a valve that feeds to the microfluidic

device using plastic tubing. At the start of an experiment, during the cell grow-up phase, the

valve is positioned so that regular LB or M9 media flows through the device from an uncapped
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syringe via gravity-driven flow. Once cells have filled the trapping regions and the fluorescent

signal from the cells has stabilized, an induction is performed by turning on the syringe pump and

switching the valve so that media from the MAO-spiked syringe can flow into the microfluidic

device. The flow-rate of the syringe pump is set to match the flow-rate used during the cell-grow

up phase where hydrostatic pressure (rather than a pump) is used to maintain flow. Additionally,

the syringe connected to the waste port of the device is capped with a plunger to prevent MAO

contamination into the surrounding air for safety purposes. After an induction is complete, the

valve is switched back to the syringes containing normal media, and the syringe pump is turned

off. Using this system, we were able to introduce relevant concentrations of styrene in M9 media

into our microfluidic platform and measure a fluorescent response from the stySR sensing strain.

Although this protocol allowed us to safely introduce styrene containing media into our device

while essentially eliminating any headspace for volatilization in the source syringe, the number of

fluidic connections and moving parts in this system made it somewhat prone to the formation of

air bubbles in the microfluidic device.

Figure 4.9: Custom sensor box used for biosensing in the field: a) Device enclosure, note
temperature controller (upper left) and peristaltic pump (lower right) mounted to the aluminum
front panel. b) Enclosure with front panel opened to expose internal components. b1: Electronics
sub-enclosure, b2: temperature controller, b3: AC power distribution devices, b4: tri-output DC
power supply, b5: Ziva optical assembly, b6: fan/heater, b7: DC power distribution block, b8:
peristaltic pump.
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4.5.6 Sensor box

We used previously-developed custom ”sensor boxes” to image our multi-strain microflu-

idic devices. Senor boxes contains the hardware and software needed to sustain maintain a

constant temperature for cell growth, handle image acquisition and perform data processing. The

custom optical system using low-cost, off-the-shelf components to image 48 separate microbial

strains within a single field of view in both transmitted light and GFP fluorescence channels

(this number can fluctuate based on the MFD design). The enclosure’s environmental control is

handled by a fan-heater capable of maintaining optimal E. coli growth temperature of 37°C over

an ambient range of at approximately 25°C – 33°C.

4.6 Acknowledgements

This chapter was co-authored with Alyssia Chiang, Andrew Lezia, Bryan Thai, Michael

Ferry, Moshe Baruch and Jeff Hasty. The dissertation author was the primary author and researcher

of this material.

95



Chapter 5

Investigating the dynamics of S. cerevisiae

proteome dynamics in response to the

anti-aging drug metformin

5.1 Introduction

5.1.1 S. cerevisiae as a tool for chemogenomic screens

S. cerevisiae, commonly known as brewer’s yeast, is a key model organism for eukaryotic

systems and synthetic biology. It offers great experimental tractability with a short generation

time, economic culture requirements, and the availability of numerous mutant libraries [209]. S.

cerevisiae’s genome is well-characterized: a large number of its pathways have been mapped, and

many of those are conserved in higher eukaryotes. S. cerevisiae’s pathways are therefore relevant

for studying processes tied to aging and disease (e.g. DNA repair mechanisms, mitochondrial

homeostasis, protein folding, and stress response) [209]. As a result, S. cerevisiae has been

extensively used in studies that map genome-wide response to environmental, nutrient, and

chemical perturbations, including anti-aging drugs [210]. By identifying the main effects of
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these perturbations on a genome scale, these studies have furthered our understanding of cellular

metabolism, signaling pathways, and disease mechanisms [61, 211]. In this space, cell-based

assays that have both genome-wide coverage and the capacity to capture the dynamics of pathways

would offer an advantage of existing screens [212].

We present here an experimental strategy to map out target pathways of drugs, based on

gene expression dynamics of over 2500 different proteins in yeast.

5.1.2 The drug metformin and its effect on S. Cerevisiae

Metformin is an antiglycemic diabetes drug initially discovered in 1921 and used in

patients with type II diabetes to decrease blood glucose levels [213]. Recent studies have pointed

at additional health benefits of metformin treatments, including anti-cancer and anti-aging effects.

These studies span multiple organisms: metformin treatment improved the healthspan of S.

Cerevisiae [213], C. elegans [214], rats [215] and humans [210, 216, 217]. Yet, we possess an

incomplete understanding of the targets and mechanisms through which metformin acts [218].

A couple of studies have been conducted on the S. Cerevisiae response to metformin, but

all of them were performed using either static assays (microarrays [213] and agar plate-based

protein-fragment complementation assay [212]) or using low-throughput fluorometric plate reader

assays [219]. Metformin response in yeast has some important features, which are conserved

across these experimental paradigms and show a broad effect of the drug on cellular metabolism.

I summarize these effects below.

Energy metabolism

According to previous S. Cerevisiae screens, Metformin exerts an important effect on

energy metabolism and glucose metabolism in particular. Metformin was observed to produce a

transcriptional response similar to glucose deprivation [213], with cells exposed to the drug relying

more heavily on aerobic respiration and ethanol fermentation, while simultaneously stimulating
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glucose transport and the AMPK pathway [212, 213]. Additional observations have show that

metformin treatment leads to discrepancies in electron transport, indicating that metformin targets

mitochondrial function [220].

Iron-binding proteins

It has been proposed that the metformin-induced disruption in mitochondrial activity

mentioned above may stem from the metal binding property of the compound [221]. Additional

studies have determined that metformin interferes with iron distribution in the cell, leading to

an iron-deficiency-like state. Stynen et al. [212] found that iron-binding proteins (e.g those

including iron–sulfur clusters) showed a reduced activity while proteins that counteract iron

depletion (e.g ion transport machinery) have an increased activity [220]. Li et al. found that

metformin suppressed the production or iron-binding heme [220]. The effect of metformin on

intracellular iron levels and iron-related proteins is coherent with its effect on central metabolism

and may play a direct role in its life-span increasing effects [212,222] via a hypoxia-type response

and respiratory uncoupling [213].

Additional effects

Additional effects of metformin on S. cerevisiae metabolism and signaling pathways have

been reported across the literature.

• Metformin was shown to impact the protein synthesis machinery (including ribosome

biogenesis and translational processes), an effect that is generally attributed to deficiencies

in the TOR signaling pathway [212, 213].

• Metformin leads to a transcriptional down-regulation of sulfur-containing amino acid,

especially methionine. It is worth noting that a decrease in cellular methionine levels was

proved to delay aging in multiple organisms [223]
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• Metformin seems to induce filamentous growth signaling pathways, lipid and phosphate

metabolisms [213], purine biosynthesis and DNA repair [212, 213], the latter being of

particular interest for the use of metformin in cancer therapies.

Overall, the literature on metformin effects in yeast highlights the broad effects of the

drug and the interconnectedness of the cellular functions that it affects, emphasizing the need for

high-throughput analysis.

5.1.3 Approach

Given the development of an S. Cerevisiae - compatible Dynomics device (see 2.2.6), there

was an opportunity to apply it towards chemogenetic screens by using the existing S. Cerevisiae

GPF library [144], a counterpart to the E. Coli library used in Chapters 2 and 3 . This library has

been used in a variety of studies to characterize protein function, abundance, and localization

using high-throughput microscopy [84] and a microchemostat array [110]. Each member of the S.

Cerevisiae library has the GFP gene fused to a known ORF. Expression driven by the endogenous

ORF promoter generates a full-length protein with a COOH-terminus GFP fusion. The library

covers 75% of the S. Cerevisiae proteome (4100 proteins represented out of 5797 identified) in

that manner [144], making it one of the most comprehensive libraries available for proteome-wide

screens.

We are able to load the library on the Dynomics platform by splitting it into two 2176-

strain devices. We can then subject each half to the same environmental conditions, generating

proteome response dynamics with a 10 min resolution in real-time. This approach can greatly

complement existing transcriptomic and proteomic methods used to characterize the S. Cerevisiae

response to environmental stimuli, including the global cellular to drugs such as metformin. We

used our platform to characterize the monitor the proteome response to 10h-long metformin

inductions and to compare it with iron deprivation inductions of the same duration. This approach

yields high temporal resolution data of the protein expression dynamics that occur during these
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environmental stimuli. While existing studies have shed some light on the intracellular processes

affected by metformin, these previous approaches did not yield rich dynamics-based information

on the effect of the drug at a genome-scale. High-frequency time-course sampling of gene

expression of the metformin response may help distinguish between transient and sustained

expression patterns and, ultimately, lead to a better understanding of the gene regulatory networks

underpinning the global cellular response to the drug [125].

5.2 Results

5.2.1 Quantitative real-time observation of response to metformin

The Dynamics-based metformin screen revealed 1115 and 1094 proteins with an increased

or reduced signal, respectively, out of the 4149 unique strains in the S. cerevisiae GFP library.

The response of the 2209 strains is displayed as a heat map in Figure 5.1. The rest of the

strains produced a signal that was equivalent to the non-fluorescent control strain and were

discarded from the analysis (see Methods section 5.4.2). There was no correlation between the

abundance of the protein and the direction (up vs. down-regulation) in the metformin screen.

Signal upregulation and downregulation was contained within +40% to -25% of the mean strain

behavior, a reminder that measured fluorescence in library strains is a proxy for protein number,

and that our measurements are principally useful to measure the change in protein number rather

than quantification of protein number.

The response from the library is also displayed as a volcano plot in Figure 5.2 which dis-

plays the significance vs. fold-change for each gene and is extensively used in omics experiments.

Although volcano plots provide an overview of the responses to metformin and iron deprivation,

a more detailed analysis is required to understand the cellular response.

A large number of the key pathways previously reported being affected by metformin

(glucose metabolism, amino acid synthesis, lipid biosynthesis - see 5.1.2) show modified activity
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Figure 5.1: Time-series response of S. cerevisiae GFP library to metformin exposure. Relative
intensity of 2720 strains exposed to metformin hydrochloride. a) 2720 strains loaded on two
dynomics microfluidics platform are induced with 100mM Metformin for a period of 10 hours
indicated by the dotted black line. Each row represents the normalized fluorescence of a single.
b) Six genes with noticeable responses from panel a) are highlighted, with each corresponding
strain’s mean fluorescence plotted in dark blue. One standard deviation above and below the
mean is indicated in a lighter shade of blue. The role of the protein encoded by each gene is
indicated on the right

.

upon metformin induction on Dynomics. There are, however, also important departures from

what was previously reported in the effect of metformin on iron-binding proteins and purine

biosynthesis. These differences may be the fruit of the different experimental paradigms used to

study the effect of metformin, but also due to the dynamics-based information that we report here

for the first time. We summarize the overlap and discrepancies between our data and what was

previously reported in the literature below.
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Figure 5.2: Volcano plot of the S. cerevisiae GFP library exposed to Metformin
.

Energy metabolism

The response of the S. cerevisiae GFP library growing on Dynomics to drug-supplemented

mediums shows that central glucose metabolism is impacted, a well-documented effect [212,213].

Glucose transporters are upregulated (HXT2 is shown in Fig. 5.1) as are TCA cycle and respiration

enzymes (the fumarate hydratase FUM1 is amongst the top 20 most upregulated proteins, as

measured by fold-change). We also observed disruption of mitochondria-associated proteins with

MMR1 and YTA12 amongst the 20 most significantly down-regulated proteins in the assay while
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ACN9 (a mitochondrial protein involved in the assembly of succinate dehydrogenase) is amongst

the 20 most strongly upregulated proteins. This confirms the impact of metformin on the electron

transport chain and ATP synthesis [220].

Iron-related genes

The effect of metformin on iron-binding proteins in our assay did not map as closely to

what was previously reported in the literature. While iron transporters FET3, FTH1, and FTR1

showed increase activity in response to metformin in the protein-fragment complementation

screen [212] and microarray assays [213], we observed little effect of metformin on FET3 and

FTH1, and down-regulation of FTR1 on Dynomics. Interestingly, FTR1 experiences an initial

burst of upregulation in the hour following metformin exposure in our assay (Fig. 5.1 bottom

right), before decaying to lower-than-baseline levels.

Proteins with iron-sulfur complexes exhibited behavior that overlapped much more closely

with what was reported using classical screening techniques. ISA2, which acts in the mitochondria,

was upregulated, while RLI1, which lives in the cytoplasm and is required for ribosome biogenesis,

was down-regulated. We note that other protein synthesis machinery genes (RPL5, YTM1) were

also strongly downregulated, hinting at an important role of metformin on translation. Suppression

of translation has been reported to be a common trait of quiescence, which lengthens chronological

life span [213].

Amino acid and Lipid biosynthesis

Previous studies have demonstrated that metformin treatment leads to transcriptional

suppression of sulfur-containing amino acids, especially metformin [213]. In addition, phenotypes

involving decreased methionine levels have also been shown to delay aging in yeast, mouse and

human cells [224]. We observed significant downregulation of methionine-associated genes in our

assay. SAM1 and SAM2 were strongly down-regulated genes (see 5.1 top right), concurrent with
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their down-regulation in the protein-fragment complementation screen from Stynen et al. [212].

We also observed downregulation of the arginine biosynthesis pathway, notably ARG1.

Purine nucleotide biosynthesis

A strong signal from our data was the upregulation of purine nucleotide biosynthesis.

ADE2, ADE3, ADE4, ADE5-7, ADE6, ADE12, and ADE17 were all upregulated, with ADE17

the most-strongly upregulated across our data. Surprisingly, both the microarray-based and

protein-fragment complementation studies of yeast response to metformin measured repressed

purine metabolic pathways. This may warrant further studies, as mutations in de novo purine

biosynthesis pathways have been observed to extend the yeast chronological life span [225].

Lipid biosynthesis

We observed most proteins with a role in lipid biosynthesis to be downregulated (see

SUR4 in Fig. 5.1), with the important exception of FAA4, which also participates in stress

response, and ACC1, which catalyzes carboxylation of acetyl-CoA and into fatty acid precursors.

Lipid metabolism was previously shown to be affected by metformin [213].

Signaling pathways

Metformin has been observed to affect TOR signaling in yeast. This effect may be

upstream of the protein translation inhibitory effects of the drug, and downstream of the decrease

in amino acid levels that it also causes [213]. We observed the transcription factor GCN4, one of

the master regulators for gene expression in S. cerevisiae to be rapidly and strongly activated in our

assay (see Figure 5.1). We also observed KSS1, a mitogen-activated protein kinase that controls

filamentous growth to be activated, which is in line with previous findings from microarray data.
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5.2.2 Comparing the meformin and iron-deprivation response

Multiple studies have advanced the notion that metformin treatment induced an iron

deprivation-like state. We also observed multiple iron-binding proteins to be affected by met-

formin treatment. To explore this phenomenon further, we decided to expose the S. cerevisiae

GFP library to iron-depleted media for a period of 10 hours, corresponding to the duration to

which the library was exposed to metformin. We performed these experiments in triplicate.

A volcano plot of the iron-deprivation response is also displayed in 5.2. Qualitatively,

iron deprivation leads to more down-regulation than upregulation, which differs from the more

balanced effect of metformin. We observed a strong signal for proteins listed as possessing iron

ion binding properties on the Saccharomyces Genome Database (FET3, FTH1, FTR1, CCC1,

MTD1, ISA2, and RLI1) which is in line with previous studies [226].

Fold-change analysis revealed that 777 and 375 were up- and down-regulated in both

conditions, respectively. To narrow down the analysis, we focused on the 20 genes that had the

most similar fold change across the two conditions, as shown in Figure 5.3. Of those 20 similarly-

regulated genes, several of those that were upregulated were linked to iron homeostasis, such as

AFT2, an Iron-regulated transcriptional activator, and YPK9, which has a role in sequestering

heavy metals. While we did not observe a strong effect of metformin on iron transport proteins,

iron-binding proteins saw their activity upregulated, which partially reconciles our data with that

of previous studies.

One of the strongly upregulated genes across both conditions was MTD1, which plays a

one-carbon metabolism and was observed to respond to metformin in prior studies [212]. DNA

replication stress proteins are activated in Figure 5.3 (PHM7, ZRP1) while amino acid synthesis

proteins (ARG5,6 /ASN11 /MEU1) are downregulated. Both trends conform to previous analyses

performed using metformin in yeast.

While fold change analysis highlighted genes that are likely to play a role in the S.

Cerevisiae response to both metformin and iron deprivation, we note that grouping genes by
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Figure 5.3: Genes with similar fold change-response to metformin and iron starvation. The
top 20 genes (across 2720) with the most similar fold change are displayed. Left: Log2 of the
average fold change across three replicates in response to either 100mM Metformin (M) or iron
deprivation (I). Center: time-series response of those genes when exposed to metformin. The
period of 10 hours during which cells are exposed to metformin is indicated by the dotted black
line. Center: time-series response of those genes when exposed to iron deprivation

similar fold-change does not necessarily match genes with similar dynamics. This highlights the

importance of capturing dynamics-based comparisons between expression signatures for more

in-depth analysis.

5.3 Discussion

Our dynamics-based metformin screen is a proof of concept that S. cerevisiae drug

response can be measured in real-time and over long periods of time using the Dynomics platform
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adapted. Our screen showed good overlap with existing studies on the effect of metformin on

the S. cerevisaie proteome, notably in the upregulation of energy metabolism, disruption of

mitochondrial function and lipid biosynthesis, and downregulation of iron-sulfur-containing

proteins. We also saw a strong signal that departed from previous studies in the upregulation of

purine biosynthesis and the lack of upregulation of iron transport proteins. Taken together, these

results confirm that the cellular machinery impacted by metformin and that are relevant to life span

are deeply inter-connected. In turn, this stresses the importance of performing high-throughput

assays to uncover these interactions and drive towards a better understanding of drug mechanism

of action.

While this preliminary analysis confirms the utility of our dynamics-based chemogenomic

screen, additional analysis using ad hoc dynamics-based modeling tools are needed to fully

leverage the data produced by Dynomics and validate the hits produced by our screen. This is

particularly important given the lack of a standard for processing time-course microfluidics-based

genomics data and the risk of false positives in datasets possessing high dimensionality. The

integration of this data with other omics datasets, omics computational tools, and causal modeling

approaches would be a step forward in the construction of system-based models that predict

cellular response to perturbations [63].

In this chapter, we established that the Dynomics platform can be used to profile global cel-

lular responses to the action of therapeutic molecules with potential applications in the diagnosis

and treatment of aging-related diseases.
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5.4 Methods

5.4.1 Experimental set up

The S. cerevisiae GFP library [144] library was spotted across two 2176-strain microfluidic

devices with HD biopixels (see 2.2.6) using the protocol described in section 2.3.2. The silicon

wafer was fabricated using standard photolithography techniques previously described by our

group [90, 129]. Cells were grown in Synthetic Defined media (using Sunrise components) with

2% Glucose (Difco) using a flow rate of 5 mL/hr on each device. Cells took about 24hours to reach

confluence in the HD biopixel microchambers. Once the microchambers are filled, we monitored

library response by taking fluorescent images every ten minutes with 1 second exposure time

for transmitted light images and 1 minute exposure time for GFP fluorescence images. 100mM

Metformin Hydrochloride (Sigma D150959) and iron deprivation inductions were performed

by swapping the media in the inlet syringe with media premixed with the inducer. Inductions

were carried out in triplicate across at least two experiments. We note here that concentrations

of the Metformin induction (100mM) are high compared to clinically relevant ranges of 10 µM,

but chosen consistent with previous S. Cerevisiae-based screens of the drug due to yeast’s high

resistance to a variety of drugs because of their efficient multidrug efflux pumps [212].

5.4.2 Data processing

Images were flat-field corrected and registered to an extraction mask to account for drifting

and thermal expansion as described in section 3.8.4.

The mean pixel value for each biopixel was extracted and normalized by the inverted

transmitted light signal to account for variation in the number of cells per trap over the course

of an induction. We smooth the signal using Holt-Winters exponential smoothing. A strain

containing only a histidine selection marker without GFP was present in each microfluidic device.

This strain was yRO136 (BY4741 his3::SpHIS5 (HISMX6)). The histidine selection marker
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inserted into this strain was from Addgene plasmid 44836. We divided the mean HD biopixel

fluorescence values from these strains on each chip from all other strain fluorescence values on

that chip and discarded all strains that were below 1. Finally, each strain’s signal is divided by the

mean of all strains to obtain the differentiating signal for each strain compared to the mean.

Fold change in Figure 5.2 was calculated as the quotient of the normalized fluorescence at

the first and last time point of each metal exposure. P-values were determined by a dependent

two-sided t-test on the log2 fluorescent values at the start and end of each metal exposure

(scipy.stats.ttest rel).
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[77] Isaac Nuñez, Tamara Matute, Roberto Herrera, Juan Keymer, Timothy Marzullo, Timothy
Rudge, and Fernán Federici. Low cost and open source multi-fluorescence imaging system
for teaching and research in biology and bioengineering. PLoS ONE, 2017.

[78] Jacob Beal, Traci Haddock-Angelli, Markus Gershater, and Kim et al. De Mora. Repro-
ducibility of fluorescent expression from engineered biological constructs in E. coli. PLoS
ONE, 2016.

[79] Garrett Graham, Nicholas Csicsery, Elizabeth Stasiowski, Gregoire Thouvenin, William H.
Mather, Michael Ferry, Scott Cookson, and Jeff Hasty. Genome-scale transcriptional

115



dynamics and environmental biosensing. Proceedings of the National Academy of Sciences
of the United States of America, 2020.

[80] Roger P. Alexander, Philip M. Kim, Thierry Emonet, and Mark B. Gerstein. Understanding
modularity in molecular networks requires dynamics. Science Signaling, 2(81), 2009.

[81] Heather A. Piwowar, Michael J. Becich, Howard Bilofsky, and Rebecca S. Crowley.
Towards a data sharing culture: Recommendations for leadership from academic health
centers, 2008.

[82] Jeremy P. Birnholtz and Matthew J. Bietz. Data at work: Supporting sharing in science
and engineering. In Proceedings of the 2003 international ACM SIGGROUP conference
on Supporting group work (GROUP ’03), 2003.
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The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science,
2008.

[129] E. Stasiowski. Multiplexed microfluidics utilizing genome-scale dynamics for biosensing
and fermentation monitoring, 2019.

[130] Arthur Prindle, Phillip Samayoa, Ivan Razinkov, Tal Danino, Lev S. Tsimring, and Jeff
Hasty. A sensing array of radically coupled genetic ’biopixels’. Nature, 2012.

[131] N. Rajmohan and S. A. Prathapar. Extent of arsenic contamination and its impact on the
food chain and human health in the Eastern Ganges Basin: A review. IWMI Working
Papers, 2014.

119



[132] Regina Mahr and Julia Frunzke. Transcription factor-based biosensors in biotechnology:
current state and future prospects, 2016.
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[138] Lara Tess Bereza-Malcolm, Gülay Mann, and Ashley Edwin Franks. Environmental
Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology
Approach. ACS Synthetic Biology, 2015.

[139] Pete Chandrangsu, Christopher Rensing, and John D. Helmann. Metal homeostasis and
resistance in bacteria, 2017.

[140] Zhen Ma, Faith E. Jacobsen, and David P. Giedroc. Coordination chemistry of bacterial
metal transport and sensing. Chemical Reviews, 2009.

[141] Xinyi Wan, Francesca Volpetti, Ekaterina Petrova, Chris French, Sebastian J. Maerkl, and
Baojun Wang. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic
metals. Nature Chemical Biology, 2019.

[142] Sayantani Sikdar and Madhusree Kundu. A Review on Detection and Abatement of Heavy
Metals. ChemBioEng Reviews, 2018.

[143] Zhiqiang Wang, Xia Sun, Caihong Li, Xianquan He, and Gang Liu. On-site detection of
heavy metals in agriculture land by a disposable sensor based virtual instrument. Computers
and Electronics in Agriculture, 2016.

[144] Won-ki Huh, James V Falvo, Luke C Gerke, Adam S Carroll, Russell W Howson,
Jonathan S Weissman, and Erin K O Shea. Global analysis of protein localization in
budding yeast. Nature, 425:686–691, 2003.

120



[145] G. Grass and C. Rensing. CueO is a multi-copper oxidase that confers copper tolerance in
Escherichia coli. Biochemical and Biophysical Research Communications, 286(5):902–
908, 2001.

[146] Rakesh Sharma, Christopher Rensing, P Rosen, Bharati Mitra, and Barry P Rosen. The
ATP Hydrolytic Activity of Purified ZntA , a Pb(II)/Cd(II)/Zn(II)-translocating ATPase
from Escherichia coli. The journal of biological chemistry, 275(Ii):3873–3878, 2000.

[147] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. ArXiv
e-prints, 2016.

[148] Sepp Hochreiter and Jurgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1–32, 1997.

[149] Jonathan P. McHugh, Francisco Rodrı́guez-Quiñones, Hossein Abdul-Tehrani, Dim-
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