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ABSTRACT OF THE DISSERTATION 

 

Adaptation Techniques to Mitigate Impact of Process Variations and Dynamic Thermal 

Management 

 

by 

 

Ali Mirtar 

 

Doctor of Philosophy in Electrical Engineering (Computer Engineering) 

University of California, San Diego, 2015 

 

Professor Sujit Dey, Chair 

 

The goal of this dissertation is to introduce application adaptation techniques to 

maximize the quality of complex applications when certain hardware flaws exist in a platform. 

Two types of hardware flaws have been studied in this research: static hardware flaw, which is 

due to process variations, and dynamic hardware flaw, which is due to dynamic thermal 

management.  

The adaptation idea is based on the premise that complex and real-time applications 

provide a set of parameters that can be used to tune their complexity and quality. In this 

dissertation, we use this application layer opportunity to adapt applications to the effects of 

hardware drawbacks by tuning their parameters to achieve maximum quality. We then extend 



 xx 

our solution and show how our proposed application layer solution can be combined with 

conventional hardware solutions to provide a hybrid adaptation method to tackle hardware 

drawbacks.  

The experimental results on practical platforms such as MacBook Air show that using 

our application adaptation can significantly improve the quality of real-time applications, such 

as video encoder and turbo decoder, while not requiring any modification to the hardware. In 

addition, the results show these adaptation methods can be used to reduce the cooling efforts 

such as processor fan speed.  
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Chapter 1  

Introduction  

Digital devices have become part of our daily lives. Some devices such as video 

recorders, communication devices, or gaming consoles are designed for a specific function 

and purpose but some of them are generic devices that can do multiple jobs such as personal 

computers and laptops. For all of these devices, the design of a product starts with the 

functionality it should perform, such as recording a video; and then the decision is made for 

the choice and design of hardware and software based on that functionality [WHB06]. In this 

process, system designers think of what is expected from the hardware to achieve its 

objectives and what is expected from software to perform the functionality on the platform. 

This analysis leads to the design of hardware specifications in case of application specific 

digital devices. On the other hand, a general-purpose hardware is evaluated by a set of 

specifications as well and the user should check if the hardware specifications satisfy the 

requirements of an application that is going to be executed on that platform.  

Usually, there is a division between hardware and software development meaning the 

software designers assume that the hardware would guarantee its specifications during the run 

time of the application. To support this requirement, hardware designers should consider a 

large margin in their design to make sure all of the specifications hold at all times, which will 

result in additional cost and overdesign [PGS12]; otherwise, if it fails to guarantee its 

specifications from time to time [SSS04] the quality of the application might suffer 

significantly.  
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In this research a different philosophy is chosen for the design of an application. 

Instead of keeping hardware and software separate, it is considered that hardware may have 

deviated from its nominal specifications and an application layer solution is proposed to deal 

with this problem. In the proposed solution, part of application monitors hardware conditions 

and adapt its complexity in a way that it can produce maximal quality results even when the 

hardware can not guarantee its performance. It is very important to distinguish the difference 

between hardware performance and application quality in the above-mentioned solution. The 

discussion about this difference is provided after a brief introduction about causes of hardware 

performance deviations from specifications.  

1.1 Performance Deviation from Specification  

Hardware design goes through many steps such as functional specification, RTL 

design, place and route, and physical design [WHB06]. Eventually, when the design is 

completed it is sent to manufacturing to be built on silicon. The manufacturing process is the 

main source of static deviation from specification and this phenomenon is called process 

variation [BKN03]. It means after manufacturing, there would be some variations among 

produced chips performance and power consumption. It is important to recognize that the 

performance deviation from specifications that is caused by process variations is a static issue. 

Once a chip is produced, it may have for example 10% frequency below the specified nominal 

frequency, but this value would not change due to process variation any more and remains the 

same for the life of hardware.  

The first response to variation-affected chips (low performance chips) was discarding 

them or selling them at lower prices. But as process technology became deep sub-micron, the 

number of discarded chips became larger, which eventually increased the cost and diminished 
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other benefits of using sub-micron technology. Therefore, hardware solutions started to 

emerge to prevent the effects of process variations such as adaptive voltage scaling [ES07] 

and adaptive body biasing [GM08]. While these techniques help to decrease the number of 

discarded chips, they lead to system overdesign by adding certain guard bands and result in 

area and complexity increase of chips. More details about process variations and related 

methods are provided in Chapter 2. 

In addition to the static performance deviation from specifications, there can be 

dynamic performance deviation from specification due to thermal issues as well. The cooling 

methods, such as heat sinks and fans [XYP13; ZXL12], are designed to deal with silicon 

thermal issues. But these solutions are not enough and the silicon temperature can rise beyond 

hundred degrees Celsius very often. To address the thermal issues, multiple dynamic thermal 

management methods have been developed [JP07; PGP10; SCC10]. One common behavior 

between all of these methods is the fact that they eventually throttle some of the system 

resources to reduce the amount of power consumption and thereby reducing platform 

temperature. More details about DTM methods and this phenomenon are provided in Chapter 

3 and Chapter 4.  

Since DTM methods throttle system resources to reduce platform temperature, they 

reduce platform performance as well and prevent the hardware from achieving its nominal 

performance defined in its specification. It is very important to recognize that these throttling 

events happen during run time of an application and their duration and behavior can not easily 

be predicted. Therefore, a real time solution is required to address dynamic performance 

deviations from specifications caused by DTM. 

As mentioned above the problem is the deviation of hardware performance from its 

specification that causes application quality drop. There are two terms in this problem 
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statement that are closely related and may cause confusion: hardware performance and 

application quality. A discussion about the difference between these two factors is provided 

next.   

1.2 Application Quality vs. Hardware Performance 

The operational frequency of hardware is one of the simplest ways to quantify its 

performance and it is usually one of the key parameters in defining hardware specifications. 

However, hardware frequency can not fully describe the performance of a hardware. For 

example, a dual core processor is expected to have twice the performance of a single core 

processor when they have the same operational frequency.  

Therefore, other metrics have been introduced to compare processor performance such 

as total number of instructions a processor can execute per second (million instructions per 

second – MIPS) [MN04]. As different architectures become popular, it became evident that 

the measure of MIPS would not be able to compare the performance of two processors with 

different architectures. Therefore, other metrics are introduced based on the run time of an 

application such as Dhrystone benchmark [RW84] or based on the run time of a set of 

applications such as SPEC2006 benchmark [PZH09]. This way, by comparing the runtime of 

the same application on platforms with different architectures one could compare their 

performance.  

As we mentioned before, process variations and DTM may cause the platform to 

deviate from its specification and drop it performance. This means the total number of 

instructions it can execute per second would reduce, or the runtime of applications may 

increase when executing on the affected platform. But when it comes to real time applications 

these effects are not that simple any more. Real time applications are made up smaller 
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building blocks which have deadlines that should be met in order to work properly. If the 

runtimes of the building blocks get longer to the extent that they miss their deadlines, the 

behavior of the application might be affected. In the case of hard real time applications such as 

medical devices or automotive safety systems, failure to achieve the application deadline can 

be catastrophic and absolutely unacceptable. In the case of soft real time applications such as 

video play back, video recording, gaming, or communication applications, failure to meet the 

deadline would affect the quality of the application. This is where the quality of an application 

becomes important and would be different from runtime of its building blocks.  

The quality of an application is the end result that we expect from an application. For 

example, the quality of video encoding application is the quality of recorded video. For a 

gaming application, the quality can be defined as responsiveness of the game or visual details 

of the gaming graphics.  

Traditionally, the notion of desired application quality gets translated into timing 

requirements of its building blocks and then translates into hardware specification 

requirements. Then the job of software developer and hardware designer gets separated. 

Hardware designer tries to achieve those required specifications and application designer 

assumes hardware specification is guaranteed and designs his/her own software. Subsequently 

if the hardware performance deviates from its specification, the effect on application quality is 

not predictable in general and in many cases the application quality may drops significantly. 

This research changes this design paradigm and rather than separating application 

quality from hardware specification, we focus on application quality and propose an 

application layer solution to maximize the application quality while hardware performance 

varies, either statically after manufacturing, or dynamically during the operation. This 

paradigm is possible due to the design of new complex real time applications that provide a set 
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of parameters to the user to tune their complexity and quality. By use of these parameters, we 

are able to not only improve the quality of applications but also reduce margins and guard 

bands relative to actual required specifications that results in area reduction and hardware 

design simplification.   

This research is not the first attempt to use application level solutions for hardware-

induced problems such as hardware unreliability or hardware performance variations. A short 

summary of related works in this field is provided next and more detailed comparisons are 

provided in Chapter 2, Chapter 3, and Chapter 4.  

1.3 Application Level Approaches 

Many researches have worked on ideas to address hardware-induced problems 

through software solutions. Operating system (OS) and scheduling based solutions consist a 

big category of these researches. For example, the task schedulers in [TT08] and [MSG10] are 

designed for a multi processor system and they consider effects of process variations and 

optimize these platforms for power. The OS and scheduling based solutions does not limit to 

only static problems like process variations.  For example [HCQ13], [WB08], and [RV07] 

propose different schedulers to address thermal managements with different boundary 

conditions and objectives. In this research application adaptation approach is used which is a 

different method from scheduling based solutions. Scheduling based solutions would work in 

a multi-tasking or multi application situation, which is not the topic of this research.   

In [DMK10], researchers not only consider that the hardware may deviate from its 

specification; they go one step further and consider stochastic processors. In this design, the 

hardware would notify software by sending an error message if it is not able to perform its 

task as needed. With this additional information sent from hardware, software can make 
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decisions to work properly. This assumption and design have some benefits that are beyond 

the scope of this research.  Our proposed solution has a fundamental difference with this 

research. Rather than changing hardware and asking it to report errors, software monitors the 

hardware conditions and makes decision accordingly. This approach makes our proposed 

solution suitable for existing hardware and avoids redesigning the hardware.   

In addition to the above approaches that are general and can be adapted to be used 

with different applications, there are many other studies that look at specific applications and 

use their characteristics and the opportunities available within an application and use it against 

hardware-induced problems. The researchers in [WC06] and [IB07; IB10] focus on resource-

constrained platforms and target video encoding application to perform well. The work in 

[PGS12] also uses application adaptation to improve the yield of process variation affected 

video encoders. In addition to these static solutions for constrained hardware, there are many 

research targeting thermal issues while focusing on specific characteristics of the applications. 

[GQ11], [YLK07], and [YK08] target different multimedia applications and use different 

methods such as machine learning, stochastic analysis or hybrid methods to propose different 

solutions to deal with thermal issues. The proposed solutions in this research are generic and 

do not use any specific characteristics of an application. Therefore, they can be applied on a 

broad range of applications such as video encoding and communication protocols.   

A more comprehensive list of related research is provided in chapter 2, chapter 3, and 

chapter 4. The proposed solutions in each of these chapters have been compared with the 

related work separately. 
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1.4 Contributions and Overview  

As it was mentioned earlier, many complex and real time applications provide a set of 

parameters that can be used to tune their complexity and their quality. Real time video 

encoding is the main application that has been studied in this research. We have also shown 

some of the proposed solutions on turbo decoding application, which is widely used in 

communication systems.  The details about application parameters and application quality are 

discussed in the next chapters. Furthermore, three adaptation techniques are proposed in this 

research that are briefly introduced below. 

1.4.1 Static Application Adaptation 

The use of application adaptation to reduce the effects of process variations on 

application quality is discussed in Chapter 2. Process variation is a static problem by nature, 

meaning its effect may vary from chip to chip but its effects remain the same for the lifetime 

of the chip. A video encoder based on H.264 standard is discussed in this chapter and it is 

shown that by using application adaptation, the quality of affected chips would increase which 

results in yield increase and thereby reduction in cost per chip.  

1.4.2 Dynamic Application Adaptation 

Thermal issues and dynamic thermal management are the root causes of dynamic 

performance deviation from specifications. In chapter 3, a new method is proposed that uses 

application adaptation to deal with these effects for a video encoder application. The proposed 

solution in chapter 3 works in real time along with the video encoding application while the 

solution provided in chapter 2 is a static solution that is executed once before delivering the 

product. In addition, the role of cooling efforts on application quality also has been discussed 
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in chapter 3 and the results show the adaptation algorithm can help to reduce the cost of 

cooling as well. 

1.4.3 Hybrid Application Adaptation 

One of the interesting results from the study in chapter 3 is that application adaptation 

not only helps with the quality of video encoding application but it also helps to reduce 

platform temperature as well. This observation became the motivation to look at application 

adaptation as a new method to perform dynamic thermal management. Chapter 4 starts by 

introducing a new DTM method based on application adaptation called Dynamic Work 

Scaling (DWS). The results show that the effect of this DTM on application quality can vary 

from one application to another. For example it is shown that the quality of turbo decoder 

application is worse when using DWS compared to hardware based DTM.  

Based on this observation, a new hybrid method is provided that uses both DWS and 

hardware based DTM to introduce a new hybrid adaptation based DTM. It is shown that this 

method will produce higher application quality results compared to either of the DTMs 

working separately.  
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Chapter 2  

Application Adaptation for Variation-

Tolerant Video Encoding  

2.1 Introduction 

The scaling of integrated circuits (ICs) into the nanometer regime has thrown up new 

challenges for designers, foremost among which are variations in the characteristics of IC 

components. Variations threaten to diminish the fundamental benefits of technology scaling, 

such as improvements in cost-per-transistor, performance and power consumption. Variation-

aware design techniques that have been proposed thus far at the mask, circuit, and logic levels, 

are being stretched to their limits, and cannot contain the incessant increase in variations. 

Therefore, it is important to develop new approaches to design systems that are inherently 

resilient to variations in the underlying components. 
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Figure 2.1 Design process: from functional performance requirements to product delivery. Dashed-line 
sections show the common selection method for variation affected hardware. Solid-line sections show 
our proposed method based on application adaptation for variation affected hardware. 

 

 

Application adaptation is a fundamentally different approach for making systems 

variation tolerant compared to traditional hardware-based approaches (Figure 2.1). Process 

variations lead to significant unpredictability in the speed of transistors and gates, causing the 

operational frequencies of a set of manufactured instances to follow a statistical distribution 

[BKN03]. Hardware-based approaches focus on making chips variation resistant by costly 

over design or variability-aware methods (such as adaptive voltage scaling [ES07] and 

adaptive body biasing [GM08]) and reject chips with variation from nominal hardware 

specification (clock frequency). Application adaptation, instead of relying only on hardware 

performance, accepts chips with hardware variability and adapts the application accordingly to 

satisfy the functional performance requirements. Consequently, many chips that could be 

rejected due to hardware variability, would be accepted based on their functional performance 

competency even with less hardware over-design, and thereby, reduced cost per chip. 

Recent market research shows video consumption will dominate both Internet and 

mobile traffic, and hence video applications, including video encoding/decoding, will 

dominate the workload of servers, personal computers and mobile platforms. Thereby, in this 
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chapter, we focus on real-time video encoding; an application which is not only compute 

intensive, but also its real time requirement makes it the most vulnerable in terms of variation 

effects. For real-time video encoding, we define functional performance based on the metrics 

used to evaluate encoding, namely visual quality and bit-rate. By designing variation aware 

application, we increase the tolerance toward frequency variation of chip instances (leading to 

yield improvements), and avoid overdesign (reducing the cost of dealing with variations). We 

demonstrate that, in the presence of variations, application adaptation for video encoding can 

significantly increase the number of chip instances with tolerable functional performance. 

We observe two key properties of video encoding that enable our approach. First, 

there is a correlation between the amounts of computation needed, the bit-rate and the quality 

of the encoded video stream. In other words, there exists a multi-dimensional tradeoff between 

these metrics. Secondly, there is an inherent tolerance towards a nominal deviation from the 

specification of both the desired bit-rate as well as the quality of the encoded video. For 

example, the resulting quality of encoded video is often subjective, with some visual artifacts 

less perceivable than others. In other scenarios, slight increases in bit-rate may be acceptable. 

The above two properties allow us to design a video encoding system such that it would be 

able to adapt to frequency degradation in hardware without causing any perceivable 

degradation in user experience (functional performance). 

In this chapter, we develop a systematic approach to application adaptation and apply 

it to the design of a variation-tolerant real-time video encoder using the H.264 standard 

[WSB03]. To achieve this goal, we first study the parameters used in the application, and 

characterize their effects on the different metrics of the application, namely computation time, 

video quality and bit rate. Subsequently, we develop an application adaptation algorithm, 

which uses the identified parameters and their computation time-quality-bitrate 



 

 

13 

characterizations to adapt the encoding application to improve tolerance towards variation 

induced frequency degraded hardware. Using software implementation of the H264 encoder 

application on an ARM Cortex A8 processor and Intel Core i7, we demonstrate that while 

frequency degradation of the processor can lead to significant degradation in the encoder 

performance, the proposed adaptation approach can provide tolerance of up to 30% frequency 

degradation, without any noticeable loss in perceptual quality, and with nominal and 

acceptable overhead in bit rate.   

The rest of this chapter is organized as follows. In Section 2.2, we briefly introduce 

related works and highlight the differences and significance of our approach to others. In 

Section 2.3, we formulate the problem of application adaptation to tolerate hardware variation. 

In Section 2.4, we identify and characterize the parameters for adaptation of H.264 video 

encoder. Section 2.5 describes the adaptation algorithm. In Section 2.6, we introduce the 

experimental framework, and present results of applying the proposed approach on an 

embedded and server platform. Finally we present our research’s conclusions in Section 2.7. 

2.2 Related Work 

We discuss related work along two directions – techniques for variation tolerant 

system design, and techniques that optimize video encoding for resource-constrained or real-

time systems. There has been a significant body of work that has addressed variations at 

various levels of design abstraction. We focus on techniques at the architecture and system 

levels in Section 2.2.1. Similarly, there is a large body of literature on optimizing video 

encoding algorithms and implementations. We describe techniques that have been proposed 

for H.264 encoding in resource-constrained or real-time settings in Section 2.2.2. We also 

place our contributions in context of these bodies of related work. 
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2.2.1 Variation Tolerant Design 

Efforts toward variation-tolerant design at the architecture and system levels have 

increased in recent years. At the micro-architecture level, the impact of variations on the 

performance of microprocessors has been extensively analyzed [UTB06; BAS09]. Various 

architectural design techniques to mitigate the impact of variations have also been investigated 

[TST07; LB06]. At the system level, performance and power analysis techniques that consider 

variations have been proposed [CLR06; MG06; GM13]. In addition, various system-level 

design decisions, including HW/SW partitioning, scheduling, multi-island design and power 

management have been adapted to address variations [CLR10; OMM08; WY08; WNW07]. 

Most of these techniques require hardware modifications and need to be incorporated into the 

design process. The proposed approach of application adaptation is complementary to these 

techniques, and can be employed in conjunction with them when they are unable to fully hide 

the impact of variations. 

A few efforts have been made to address process variations in the software layer. 

System-level task scheduling to mitigate the impact of variations has been proposed [TT08; 

MSG10]. For example, in a multi-core system, more computationally demanding tasks may be 

scheduled on faster processor cores to minimize the overall performance impact. These 

techniques are limited in their scope, since they consider the application workload to be fixed 

and exploit whatever flexibility is available in scheduling. In contrast, our approach actively 

modifies the application workload to better suit the capabilities of the variation-impacted 

hardware platform. 

The concept of application adaptation in the context of variation tolerance was first 

proposed in [PGS12], which also focused on hardware-signatures to be used in the binning 

process of variation affected hardware. They designed an algorithm to find the boundaries of 
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each bin that maximizes the average of all the chip instances quality. However, when it comes 

to selecting the optimum parameters for each chip instance, they rely on exhaustive search to 

generate a two dimensional tradeoff curve (between visual quality and run time). With the 

increase of parameter space and additional metrics (such as bit rate), exhaustive search is 

neither efficient nor practical. Our contribution is the formulation of application adaptation as 

a multi-dimensional optimization problem, a systematic methodology and adaptation 

algorithm to realize a variation-aware adaptive video encoder. 

Significance-driven computation [MKR09] also targets quality-sensitive applications 

by recognizing that all the computations in an algorithm do not have the same effect on output 

quality. In the presence of variations, selective multi-cycle operations are used to ensure 

correct execution of significant computations without degradation in clock frequency. This 

technique is especially suitable for application-specific HW implementations, while our 

approach is targeting application level which is useful even when the hardware modification is 

not an option (such as software encoder on a processor). 

Stochastic processors, which allow variations and imperfections in hardware to 

become visible to software in the form of errors, have been proposed in [DMK10]. They also 

suggested the design of stochastic applications, which have been modified so that they are 

robust to errors in the results of computations performed by the underlying hardware. In this 

process, the computational complexity of the application is often increased. In contrast, our 

approach assumes correct execution of computations on the underlying platform, and reduces 

the computational complexity of the workload to match the degraded performance of the 

hardware in the presence of variations. 
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2.2.2 Real Time and Optimized H.264 

There have been several efforts in the field of adaptive video encoding that do not 

explicitly target variations. While this field is too vast to describe exhaustively, efforts therein 

can be divided into three categories, namely complexity reduction techniques, optimized 

encoder implementations on specific platforms, and adaptive real-time encoding. We present 

representative techniques in each of these categories, and restrict ourselves to the context of 

H.264 encoding. 

Several techniques have been proposed improved encoding algorithms that decrease 

the computational complexity of the encoding process [SMH10; KRB06; KK05; KCC06; 

LCL05], thereby reducing the total required time for encoding. Such approaches are mostly 

implementation independent and make the encoder as fast as possible but do not guarantee 

real-time encoding, which is the main objective of the proposed work. Moreover, our 

approach can be applied to the optimized algorithms that result from any of these techniques. 

In this paper, we have used x264 encoder which is a very efficient implementation of H.264 

that is 50 times faster than Joint Video Team Reference Model [JMR10] of H.264 [MV06]. 

The second category of techniques deals with optimized implementation of H.264 

encoders to utilize the specific capabilities of a hardware platform, including multiple 

processing cores, special instructions, etc. [RPC06][WC06]. These approaches do not consider 

the effect of variations. In other words, while such optimizations may enable the realization of 

a real-time encoder on an ideal hardware platform, process variations may result in an inability 

to meet real-time constraints, which is the focus of our work. 

The third category of techniques utilizes adaptive video encoding to meet real-time 

constraints on resource-constrained platforms [IB07; IB10; SBH10]. The main idea is to 

dynamically regulate computational complexity by using faster but less optimal versions of 
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various encoding steps including motion estimation. These techniques attempt to minimize the 

resulting degradation in video quality. The main difference between our work and these 

techniques is that we recognize and exploit the multi-dimensional nature of the tradeoff 

between encoding time, video quality, and bit rate. Therefore, our adaptation methodology can 

not only maintain real-time behavior of the encoder, but also work under specified quality and 

bit rate constraints. In addition, the nature of adaptation used in our work is much more fine-

grained compared to the above techniques, since variations result in a population of 

manufactured chip instances with a fairly continuous range of operating frequencies. 

Finally our approach does not require any internal modifications to either the 

hardware or the video encoding algorithms. We use the parameters that are exposed by video 

encoders to adapt them and cope with variations. Therefore, it is broadly applicable and may 

be combined with changes to the algorithm, such as new techniques for motion estimation. 

2.3 Problem Formulation 

Process variations lead to significant variability in the speed and leakage power 

consumption of transistors and gates. Since the speed of a processor is dictated by its slowest 

paths, variations will cause the operational frequencies of a set of manufactured instances to 

follow a statistical distribution [BKN03]. Considering this well-known fact, we abstract the 

effects of process variations on applications as follows. A design with process variations can 

be abstracted as a processor, or in general an instance of a hardware design, whose operating 

frequency is different from the nominal or target frequency (i.e., we have different chip 

instances with different operating frequencies). In our work, we consider hardware platforms 

whose operating frequency is different from each other in a certain range. Therefore the 

computational capacity of the hardware varies and depends on the chip instance. From an 
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application perspective, the run time, and therefore its functional performance/results can be 

different for each chip instance. 

In a video encoding application, the encoder receives raw video sequence and 

compresses the data by utilizing redundant information in the video sequence and the human’s 

limited visual perceptual. The compression can help to significantly reduce the bit rate of the 

encoded video, helping to reduce storage and/or network bandwidth needed to transmit the 

video. The functional performance of a video encoder can be measured by three metrics. The 

first metric, video quality, is measured by peak signal to noise ratio (PSNR)[HG08]. Almost 

all common video encoding applications are lossy; meaning the part of information which 

human’s eyes are not sensitive to is omitted from original data. Moreover, throughout the 

entire process of encoding we change the information content of video to some extent; 

therefore we need an end-to-end measure of video quality through the video encoding process. 

For an encoded video sequence 𝑣 we represent its video quality as 𝑉𝑄(𝑣). The second metric 

of each encoded video sequence is the required bit rate for sending it through the network 

measured by kilobits per second (kbps). For each encoded video sequence 𝑣, 𝐵𝑅(𝑣) is the 

required bit rate to send it through the network. Finally for a given encoder, the time needed to 

encode a raw video sequence is denoted as 𝑅𝑇(𝑣). The above three metrics of video encoding, 

the encoded video quality, encoded bit rate, and encoding run time along with different 

parameters of encoder (parameters are discussed in 1.4.1) form a multidimensional space, 

whose tradeoff will be exploited later to achieve variation tolerance. 

Assuming that the encoder is built on a hardware platform with no process variation, 

we call the resulting video sequence of such an encoder as 𝑣!. In the presence of process 

variations, since the hardware frequency may degrade, the encoder may  not be able to process 

frames as fast as it should. In a real-time encoder, this will result in “dropping” some of the 
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input frames that it could not process in the given time. Consequently, an encoder may 

produce a lower quality video output. The video encoded in a variation affected hardware is 

called 𝑣!. Finally, we propose a multidimensional adaptive approach to video encoding in the 

presence of process variations. This adaptive encoder uses different parameters than the 

original encoder to decrease its computational requirement and run in real-time. The decrease 

in encoding complexity may come at the expense of reduction in video quality, and increase in 

the bit rate. We denote the video sequence generated by an adaptive encoder as 𝑣!.  

Our goal for real-time variation tolerant H264 video encoding application adaptation 

is to achieve 𝑉! with the following criteria: 

 

𝑉𝑄 𝑣! ≤ 𝑽𝑸 𝒗𝒂 ≤ 𝑉𝑄 𝑣! , 

𝑽𝑸 𝒗𝒂 ≥ 𝑉𝑄 𝑣! − 𝜖, 

𝑩𝑹 𝒗𝒂 ≤ 𝐵𝑅 𝑣! + 𝛿, 

(2.1) 

 

Where ϵ is an acceptable degradation in video quality such that there is no perceptual 

difference, and 𝛿 is an accepptable increase in bit rate such that there is no unsatisfying 

increase in cost of video transmission. This leads to the following constrained maximization 

problem - to find parameter for the encoder to: 

 

Maximize: 𝑉𝑄 𝑣! ,            Subject to: 
𝑅𝑇 𝑣! − 𝑅𝑇 𝑣! ≤ 0
𝑉𝑄 𝑣! − 𝑉𝑄 𝑣! ≤ 𝜖
𝐵𝑅 𝑣! − 𝐵𝑅 𝑣! ≤ 𝛿

 (2.2) 

 

As described in the above equations, we are looking for an adaptation algorithm that, 

even in the presence of process variations in the underlying hardware, still helps the video 
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encoder to generate video sequences whose quality is as close as possible to an encoder 

running on hardware with no process variations. To achieve this goal, we use the inherent 

tolerance in video appilications in terms of 𝜖 and 𝛿. Selection of 𝜖 and 𝛿 has an important role 

on the significance of the solution.  Too big value for 𝜖 and 𝛿 removes any benefit from 

solving the optimization problem meaning that, in the extreme, we can encode with very poor 

quality or can simply not compress the input sequence. On the other hand,very tight values for 

𝜖 and 𝛿 would eliminate the opportunity for tolerance toward variations. In theory, having 

constraints on all three encoder metrics may result in no feasible solutions. If the optimization 

problem returns no solution for a hardware instance, it means that the instance does not meet 

the required functional performance and should be discarded. Note that, this adaptation 

method is independent of the platform (Software/FPGA/ASIC) and implementation method of 

encoder.  

To come up with an adaptation algorithm, it is necessary to first identify parameters 

that significantly impact the three metrics of encoder, namely encoder computation time, 

output video quality, and bit rate. It is also necessary to analyze and model the impact of these 

parameters on the three metrics so that these models may be used for adaptation in the 

presence of variations. 

2.4 Identification and Characterization of Application 

Adaptation Parameters 

As mentioned before, our approach to application adaptation will be to adapt a set of 

application parameters such that the computation complexity of the application can be 

adjusted to match the variation induced frequency degradation of the hardware, while 

maintaining the required quality of the application results. In this section, we first identify a 
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set of parameters of the H.264 encoding application which may be used for application 

adaptation. Next, we characterize the effects of the selected parameters on the H.264 encoder 

computation time (hence computation complexity), as well as its functional performance in 

terms of video quality and bit rate. 

2.4.1 Identification of Adaptive Video Encoding Parameters 

In H.264 codec, as in any other image/audio/video compression application, numerous 

parameters and tools can be used with varying effects on computation complexity, and the 

quality of the resulting image/audio/video. Since ability to reduce computation complexity in 

response to frequency degradation of the underlying hardware will be the main objective of 

our application adaptation approach, we investigated the H.264 encoding parameters available, 

and selected three that will have the most significant impact on computation complexity, while 

making varying compromises on the encoding quality (video quality and bit rate). Although 

we focused on the most effective parameters of H.264, this approach is not limited to 3 

parameters and other parameters can be applied with the same method if required. Next we 

briefly explain each of the selected parameters. 

2.4.1.1 Group of Picture Size 

In H.264, there are 3 different frame types. An I-frame is encoded using only 

information in the same frame, and is least expensive to compute. However, an I-frame is also 

most expensive in terms of bits needed to store. In contrast, a P-frame is encoded using the 

information in the previous frame(s). Hence, when consecutive frames with similarities are 

encoded as P-frames, the resulting frames have significantly less bits. However, computing P-

frames can be significantly more compute intensive than computing I-frames. Finally, the 

third frame type is B-frame. B-frames are generated using information in frames before and 

after them. Hence, they can be encoded with fewer bits than I-frames and P-frames, but takes 
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more computation time compared to them. Group of Picture (GoP) size is the total number of 

frames starting from an I-frame and a sequence of P-frames and/or B-frames until the next I-

frame. For instance, GoP size of 1 means all frames are I-frames. Computation time for 

GoP=1 will be low, but the resulting video will have significantly higher bit rate, and thereby 

significantly more expensive to transmit in terms of network bit rate needed. On the other 

hand, using a GOP size of 96 will lead to very efficient video encoding in terms of bit rate, but 

will require significantly more computation time.  

2.4.1.2 Number of Reference Frames 

As mentioned above, P-frames are encoded using information from the previous 

frames. Number of reference frames is the number of frames that are used in the process of 

encoding a P-frame. Using lower number of reference frames to encode a P-frame will lower 

the computation time needed, but may increase the bit rate needed to encode the P-frame.  

2.4.1.3 Quantization Level 

Quantization level is an integer constant that is used by the encoder to leave out 

details of the video that are unlikely to be perceived by human eyes, thereby reducing the 

amount of encoding that needs to be done, and thereby the computation time needed. Using 

higher quantization level also reduces significantly the bit rate and the file size, thereby 

reducing the application time needed for memory access as well. However, this comes at the 

expense of losing video quality. As we will see in the next section, this is the most sensitive 

parameter toward video quality.  

Note that quantization level is also used by the encoder to perform rate control when 

asked to perform Constant Bit Rate (CBR) encoding. Hence, if we use quantization level in 

our adaptation algorithm, the encoder can be used to perform Variable Bit Rate (VBR) 
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encoding only, which is also a common encoding for real-time use case. To enable CBR 

encoding, we may use other encoding parameters for adaptation, besides quantization level. 

2.4.2 Characterization of Video Encoding Parameters 

Having described the video encoding parameters we use in adaptation, in this section, 

we study and characterize them in terms of their effects on computation time, video quality 

and bit rate. In the following discussion, we use a 3-tuple (𝑔, 𝑛, 𝑞) to denote an encoding 

setting, where  𝑔 referes to GoP size, 𝑛 referes to number of reference frames, and 𝑞 refers to 

quantization level.  We conduct the characterization experiments using a few sample values 

from a possible range of values allowed for each of the parameters. For instance, according to 

the H.264 standard, quantization level can be any integer number between 0 to 51, so we use 5 

numbers 18, 23, 28, 33, and 38 as our samples (18 to 33 is the practical range to use for 

quantization). Table 2.1 shows the sample values for each parameter used for characterization, 

producing a multi-dimensional sample space for parameters.  

 

Table 2.1 Parameters and their values used for characterization 

Parameter Values 

Group of pictures 1, 6, 12, 24, 48, 96 

Number of reference frames 1, 2, 3, 4, 5 

Quantization level 18, 23, 28, 33, 38 

 

 

Next, we use x264 encoder (one of the most efficient H.264 encoder implementations) 

to encode representative video sequences using all parameter combinations from Table 2.1, 

and record the encode computation time, resulting video quality, and video bit rate for each 
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parameter sample.  The experiments are conducted on a 600 MHz ARM Cortex-A8 processor 

present in a Beagle Board [BGL15]. 

 

   
 (a)  

   
 (b)  

   
 (c)  
 
Figure 2.2 Effects of varying three selected parameters (a) GoP size, g, (b) number of reference frames, 
n, and (c) quantization level, q, on Run Time, Video Quality (PSNR), and Bit Rate of encoded video. 

 

 

 

Figure 2.2 shows some representative data points from the characterization 

experiments, highlighting the effects of each of the parameters, (a) GoP size, (b) number of 

reference frames, and (c) quantization level, resepctively. While the results shown are for a 
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popular benchmark video, Foreman video sequence with 300 frames, we have observed 

similar effects displayed for other representative videos that we experimented with. Each 

graph represents an encoding setting where one of the encoding parameters is varied (marked  

by “X” in the associated setting) while the rest are kept fixed. For example, Figure 2.2(a) 

shows three graphs, each representing results obtained (computation time, video quality, and 

video bit rate) when GoP size, 𝑔, is varied according to Table 2.1 Parameters and their values 

used for characterization, keeping the values of the other two parameters fixed as shown. We 

draw the following observations from Figure 2.2: 

1) Goup of Pictures: While the effect of GoP on video quality is nominal (< 1 dB in 

the range considered), it has high impact on computation time (up to 2X), and the resulting 

video bit rate (up to 4X). Specifically, GoP size can be reduced in the range of 48 to 1 to 

significantly reduce encoding computaion, but at the expense of also significantly increasing 

bit rate. Hence, it has to be used judiciously by the application adaptation algorithm, described 

in the next section. 

2) Reference frames: From the results shown in Figure 2.2(b), we observe that this 

parameter can be utilized to significantly reduce computation time (up to 2X), while having 

nominal impact on both video quality (< 0.2dB), and bit rate (< 5%).  

3) Quantization level: From Figure 2.2(c), this parameter can be used to significantly 

reduce encoding computation time (> 2X), but can severely degrade video quality (up to 

1.5X), and increase bit rate (up to 6X). We also observe that while it affects computation  time 

linearly, its effect on resulting bit rate is non-linear. 

In the next section, we will develop an adaptation algorithm for the H.264 encoding 

application, using the selected parameters and the characterization of their effects. 
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2.5 Application Adaptation Algorithm 

Figure 2.3 presents an overview of our application adaptation algorithm. To describe 

the adaptation algorithm, we first start from our input parameter space. Each set of parameters 

can be described as a point in a three dimensional space, in a way that each coordinate 

corresponds to one of the aforesaid parameters described in Section 2.4. For instance our input 

point 𝑃 can be described as follow; 𝑃 = 𝑥!, 𝑥!, 𝑥!  where 𝑥! is GoP size, 𝑥! is the number of 

reference frames, and 𝑥! is quantization level. Furthermore each metric of a generated video 

can be demonstrated as a function of the input point: 

𝑉𝑄 𝑃 = 𝑓!(𝑥!, 𝑥!, 𝑥!) 

𝐵𝑅 𝑃 = 𝑓!(𝑥!, 𝑥!, 𝑥!) 

𝑅𝑇 𝑃 = 𝑓!(𝑥!, 𝑥!, 𝑥!) 

(2.3) 

 

 

Figure 2.3 Application Adaptation Algorithm Overview 
 

 

Based on the characterization described in Section 2.3, we construct functions that 

represent these three metrics of interest. The inputs to the adaptation algorithm are: 

• A domain of possible parameters  𝐷 where: 
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𝐷 = {𝑃|𝑃 = 𝑥!, 𝑥!, 𝑥! , 𝑥! ∈ 𝑋! = 1,… ,96     , 𝑥2 ∈ 𝑋! = 1,… , 5  

, 𝑥! ∈ 𝑋! = 18,… ,38 } (2.4) 

 

• Three constraints 𝐶!,𝐶!  and 𝐶! . 𝐶!  is the minimum required quality. 𝐶!  is the 

maximum bit rate of the encoded stream that the encoder is allowed to produce. 𝐶! is 

the run time boundary which is extracted from the number of input frames per second. 

To satisfy the real-time requirement of application, the encoding rate should be equal 

to or faster than the number of input frames per second. 

• Three metric functions: 𝑓!(𝑃) , 𝑓!(𝑃), and 𝑓!(𝑃) 

The output of the algorithm is a set of parameters that enables the encoder to work in 

its best condition in the presence of process variations. 

The adaptation algorithm is based on two key techniques - multi-resolution search and 

symbolic manipulation of the metric functions. We empirically established that the 

computation time, bit-rate, and quality functions are monotonic functions of the adaptation 

parameters. Therefore, we first use a coarse-grained representation of the parameter space and 

use steepest ascent hill climbing [RN03] to quickly identify the sub-optimal parameter values, 

and then we use linear interpolation to select optimal parameters. In addition, we apply 

various constraints as symbolic operations on the parameter space and metrics functions, by 

restricting the domain of parameters to the values for which the multidimensional constraints 

are satisfied. We next describe the key steps of the algorithm in greater details (step numbers 

correspond to the labels in Figure 2.3). 

STEP 2. In this step, given a point 𝑃, we find its feasible neighborhood. The algorithm 

starts with an arbitrary point and continues as shown in Figure 2.3. To define the feasible 

neighborhood, we first define the neighborhood of a point 𝑃 as follows: 
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𝑁 𝑃 = 𝑥!, 𝑥!, 𝑥! = 𝑥!! , 𝑥!! , 𝑥!! 𝑥!! ∈ 𝑏! 𝑥! , 𝑥! , 𝑎! 𝑥! , 𝑖 = 1,2,3  (2.5) 

 

where 𝑏! and 𝑎!are “before” and “after” operators on a parameter: 

 

𝑏! 𝑥 = max 𝑡 𝑡 ∈ 𝑋! , 𝑡 < 𝑥  

𝑎!(𝑥) = min{𝑡|𝑡 ∈ 𝑋! , 𝑡 > 𝑥} (2.6) 

 

The feasible neighborhood of a point 𝑃 is a subset of 𝑁(𝑃)that satisfies the bitrate and 

run time constraints of the problem: 

 

𝑁! 𝑃 = 𝑃! 𝑃! ∈ 𝑁 𝑃 , 𝑓! 𝑃! ≤ 𝐶! , 𝑖 = 2,3  
(2.7) 

 

STEP 3. In this step we find the point that maximizes our quality function in the 

feasible neighborhood: 

 

𝑃∗ = arg max
!!∈!!(!)

𝑓!(𝑃′) 
(2.8) 

 

This step completes one iteration of steepest ascent hill climbing algorithm. Steepest 

ascent is designed to find function maximum point in a neighborhood and it continues 

searching until it reaches a local/global maximum. Point 𝑃 refers to the last point used in 

previous iteration (last iteration 𝑃∗) or the arbitrary initial point. 
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STEP 4. The decision to end the hill climbing algorithm is made in this step. If the 

maximum point in the neighborhood 𝑃∗ is the same as the last point 𝑃, then our initial search 

is completed. 

STEP 5. Since the last point found in STEP 4 is based on a coarse-grained sampling of 

the parameter space, the selected point 𝑃 is not the actual optimum solution. Hence, we 

perform a local search around point 𝑃 = 𝑥!, 𝑥!, 𝑥!  on all three metric functions by linear 

interpolation to derive the optimal parameter. Linear interpolation of metric function 𝑓! for 

parameter 𝑥! when other parameters are constant and only 𝑥! varies is shown as: 

 

𝑚!"𝑥 + ℎ!" (2.9) 

 

Now if we solve each linear interpolation equation for the corresponding constraint 

we obtain nine solutions: 

𝑥!"∗ =
𝐶! − ℎ!"
𝑚!"

 
(2.10) 

 

From each solution, 𝑥!"∗ , we extract one point, 𝑃!"! = 𝑥!! , 𝑥!! , 𝑥!! , from sub optimal 

point, 𝑃 = 𝑥!, 𝑥!, 𝑥! , by only changing the corresponding parameter to 𝑥!"∗  and keeping the 

rest of them the same: 

 

𝑃!"! 𝑥!! , 𝑥!! , 𝑥!! =
𝑥!! = 𝑥!"∗ 𝑘 = 𝑗
𝑥!! = 𝑥! 𝑘 ≠ 𝑗

       , 𝑘 = 1,2,3   (2.11) 

 

Out of these nine points, the one that satisfies all of the boundary conditions and also 

maximizes the video quality will be selected as the optimum point. Per our discussion in 
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Section 2.3, there might be times that a chip instance is severely affected by process variations 

to an extent that even with adaptation it does not qualify for product specification and 

therefore it should be discarded. 

It is clear that our algorithm is independent of the number of parameters. One can use 

additional parameters for characterization and the algorithm is still capable of finding the 

optimum parameter set. In addition, this approach can be applied on any other application that 

has the same characteristics, meaning its metric functions are monotonic. In a nutshell, the 

algorithm derives the optimum values for parameters that satisfy all boundary conditions and 

maximize the target functions, which are all monotonic functions. 

2.6 Experimental Results 

We have designed an experimental test-bed and methodology to emulate the effects of 

variation induced frequency degradation on an embedded and server implementation of the 

H.264 encoder, and to demonstrate the efficacy of the proposed H.264 application adaptation 

algorithm. In this section, we first describe the test-bed and methodology used. Next, we 

present results of the frequency degradation of the H.264 encoder due to variation on an 

embedded platform, and the effectiveness of the proposed adaptation algorithm to tolerate the 

variation effects. In the last subsection, we study process variation effects on a server 

implementation of H.264 encoder.  

2.6.1 Test-Bed and Methodology 

We have implemented the proposed adaptation approach to the x264 encoder [X264] 

application, which is the most popular and efficient H.264 implementation, and evaluated it 

using the Beagle Board platform [BGL15] and an Intel Core i7 based server platform. Beagle 

board (shown in Figure 2.4(a)) is a low-power, low-cost single-board embedded system based 
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on Texas Instrument’s OMAP3530 system-on-a-chip. OMAP3530 includes an ARM Cortex-

A8, graphic accelerator, image accelerator, and DSP cores. The x264 encoder application is 

implemented on the ARM Cortex-A8 running at 600 MHz, and enables real time encoding of 

smaller resolution videos like QCIF at a rate up to 15 frames per second. We will discuss the 

details of the server-based implementation in Section 2.6.3. To measure the encoded video 

quality, we use the MSU Video Quality Measurement Tool [MSU15]. 

We next describe how we emulate the process variation effects on the x264 encoder 

application. The primary effect of process variations we are addressing in this work is 

frequency degradation of the underlying hardware. Hence, we would like to set the hardware 

platform frequency to different values to emulate the variation impacts. Since the frequency 

changes on the OMAP platform are limited to a small number of discrete values, we use an 

alternative approach. We developed a CPU loader application, which runs on the Cortex CPU, 

and which can keep the CPU busy for a desired length of time. To achieve a CPU frequency 

degradation effect of D% on the x264 application, the CPU Loader is executed such that D% 

of the CPU time is used by itself, leaving the rest for the x264 application. The degraded 

frequency is also provided to the adaptation algorithm, which computes the best parameter 

values as described in the previous section. 

As mentioned in Section 2.1, we are looking at use cases where x264 will have to 

process video streams in real time. Therefore, if the underlying CPU frequency is degraded, it 

may not be possible to encode all frames; thus, dropping a portion of frames would be 

necessary. To emulate real-time behavior in the x264 encoder, including frame drops, we 

added a timer in the encoder to track frame timing and to drop delayed frames if necessary. 

We name the new real-time encoder RTx264, as shown in Figure 2.4(b). In summary, the 

video encoder application is implemented in form of real time x264 software, the process 
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variation impacts are emulated by CPU Loader, and the adaptation algorithm is executed 

offline for each given frequency degradation. 

 

 
  

(a) (b) (c) 
Figure 2.4 Test-bed for measuring the effectiveness of x264 application adaptation. (a) Beagle Board 
used to implement the x264 encoding application, (b) Software and hardware layers of the test bed, (c) 
Framework for measuring quality of video produced with variation-affected hardware, without and with 
adaptation. 

 

 

Figure 2.4(c) shows the setup used to evaluate the proposed adaptive encoder. The 

same video sequence is fed to a variation affected non-adaptive encoder, and the equally 

variation affected adaptive encoder. The resulting bit streams are quantified for video quality 

based on the original video with the MSU VQM tool [MSU15]. However, this tool requires 

that the encoded video contain the same number of frames as the reference (original) video. 

On the other hand, frequency-degraded encoder’s output video contains a lesser amount of 

frames compared to its original input sequence. To mitigate this problem, as shown in Figure 

2.4(c), we adopt the following post-processing procedure for the non-adaptive encoder. We 

developed frame replicator software that replaces each dropped frame with its predecessor-

encoded frame. It produces the same visual impression while making the input and output 

frame count the same. For instance, if the original video has five frames and only the first, 

second and fourth frames are encoded, the frame replicator produces the following 5 frames 

sequence from the encoded stream:{1,2,2,4,4}. Note that this post-processing does not need to 
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be applied on the video encoded by the adaptive encoder application, as the adaptation ensures 

that all frames are processed in time, and no frames are dropped. 

2.6.2 Results: Embedded Platform 

To assess the  video quality of the encoded videos, we first create an original encoded 

video with no added CPU load using the parameters shown in Table 2.2 List of parameters 

used for original video encoder (“perfect encoder” in Figure 2.4(c)). Next, we use the 

methodology outlined in Figure 2.4(c) to quantify the encoded video quality produced by the 

“perfect encoder”, non-adaptive encoder executing on variation affected hardware, and 

adaptive encoder executing on variation affected hardware. We use the PSNR metric of the 

MSU VQM tool [MSU15].  
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Table 2.2 List of parameters used for original video encoder 

Video Name Foreman Foreman 

Video Size 176×144 704×576 

Number of frames per second 15 15 

Total number of frames 300 300 

Quantization level 22 28 

Group of pictures 6 6 

Number of reference frames 5 3 

Platform ARM Intel 

 

 

 

Figure 2.5 Video quality with and without application adaptation on the Beagle Board platform. 
 

 

Figure 2.5 shows the video quality degradation (y-axis), measured by the PSNR 

metric, for various frequency degradation (x-axis) magnitudes. As can be seen, the encoded 

video produced by a variation affected hardware can result in significant quality degradation. 

On the other hand, the adaptive encoder displays significant tolerance to performance 

degradation due to process variations: it can peform real-time encoding without any 
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degradation in video quality even when the processor frequency degrades by upto 30%. Note 

that frequency degradation above 30%, results in a drop in adaptation algorithm effectiveness. 

 

Table 2.3 Effects of frequency degradation on bitrate 

Frequency degradation Bitrate of adaptive video 
encoder (ARM) 

0 228.4 

10 228.4 

15 234.8 

20 234.8 

25 234.8 

30 234.8 

40 234.8 

 

 

Table 2.3 Effects of frequency degradation on bitrate shows the effects of frequency 

degradation on video encoding bit rate for embedded H.264. We observe that the adaptive 

video encoder can keep the video bit rate very close to the nominal bit rate (≤ 2.8%) while the 

video quality is sustained (Figure 2.5). 

 

 
         (a)      (b)               (c)          (d) 

Figure 2.6 Impact of variations on the embedded platform (a) Distribution of frequency degradation, (b) 
Video quality distribution of non-adaptive encoder, (c) Video quality of adaptive encoder, (d) PSNR vs. 
manufacturing yield. 
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Figure 2.6 shows how the non-adaptive and adaptive encoders behave for 10,000 

variation impacted instances. To model the variation impacts, we assumed a frequency 

distribution with 𝜇 = 600  𝑀𝐻𝑧   and 𝜎 = 0.1𝜇, which is shown in Figure 2.6(a). We ran a 

Monte Carlo simulation on 10,000 instances from this distribution; for each instance, we 

evaluated both the adaptive and non-adaptive encoders. The resulting PSNR distributions are 

shown in Figure 2.6(b) and (c), respectively. We observe that, for almost all instances, the 

adaptive encoder results in video quality of at least 40 dB, whereas the non-adaptive encoder 

in most instances produces video quality below 40 dB. Figure 2.6(d) illustrates how the 

manufacturing yield varies as a function of the PSNR requirement (we reject all chip instances 

with quality lower than PSNR requirement). The adaptive encoder is able to achieve close to 

100% yield at a PSNR of around 12dB higher than the non-adaptive encoder. These results 

clearly indicate that the proposed adaptation approach contains significant potential to mitigate 

the impact of process variations in manufacturing yield without sacrificing end-user 

experience. 

 

 

Figure 2.7 Embedded platform yield using original and adaptive encoder, for different (quality, bitrate) 
constraints. 
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Figure 2.7 shows the manufacturing yield obtained for the embedded encoder 

implementation, for different PSNR and bit rate constraints (𝜖, 𝛿), with and without use of the 

proposed adaptive encoder approach.  As the figure shows, use of the adaptive encoder 

significantly improves the yield for different quality and bitrate constraints. In addition, 

adaptation is able to keep more than 90% of variation affected chip instances’ result in the 1 

dB margin of “perfect encoder”. In other words, if the inherent tolerance existing in the nature 

of video encoding application is used, most of the chip instances can tolerate the variation 

induced effects of hardware on functional performance. Otherwise, loosing these 

opportunities, hardware variations directly translate into serious impacts on functional 

performance of video application and many chip instances should be discarded. 

2.6.3 Results: Server Platform 

To demonstrate the broad applicability of our approach, we also evaluated it on a 

quad-core Intel core i7 2.7 GHz processor server platform. Note that real-time video 

transcoding (decoding and encoding) on server platforms has become an important use case 

with a significant rise in online video consumption from heterogeneous devices of varying 

resolutions and screen sizes. The major difference between the embedded and server platforms 

is computational capability. The embedded processor is a single core processor while the 

server platform contains a multi-core processor, with the ability to encode HD video (720p) at 

a rate of 25 frames per second. For our experiments, we used only one of the cores in order to 

avoid dealing with the impact of variations on parallel execution, which is an interesting topic 

for future research. By using a Virtual Machine (VM), we limited CPU access of the Ubuntu 

Linux OS to only one core. When only one core is used, the platform can encode 4CIF video 

(704×576) at a rate of 15 frames per second. As explained before, we ran the CPU loader and 

RTx264 on the same core to reflect process variation effects. 
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Figure 2.8 illustrates the video quality degradation of the H. 264 encoder, original and 

adaptive, for various performance degradations of the server platform. As in the case of the 

embedded platform, we see similar trends here: there is significant quality degradation without 

adaptation, whereas the adaptive encoder is able to tolerate up to 20% frequency degradation, 

without any loss in video quality. We ran the Monte Carlo simulation mentioned earlier for the 

server platform with 𝜇 = 2.7  𝐺𝐻𝑧 for 10,000 samples. 

 

 

Figure 2.8 Effects of frequency degradation on video quality and effectiveness of adaptation algorithm 
on server implementation. 

 

 

We also ran the Monte Carlo simulation mentioned earlier for the server platform with 

𝜇 = 2.7  𝐺𝐻𝑧 and and 𝜎 = 0.1𝜇 for 10000 samples. Figure 2.9 shows the effectiveness of our 

algorithm on the video quality distribution and manufacturing yield. Figure 2.9(b) and (c) 

show that the distribution of PSNR is pushed significantly towards higher values in the case of 

the adaptive encoder, while the manufacturing yield vs. PSNR plot in Figure 2.9(d) shows the 

ability of the adaptive encoder to achieve close to 100% yield with approximately 6dB 

improvement in the PSNR. These results indicate that our approach for adaptation is not 

limited to embedded platforms or any specific architecture, and can be applied to a variety of 

platforms. However, its effectiveness may vary from platform to platform. 
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            (a)          (b)         (c)       (d) 

Figure 2.9 Impact of variations on the server platform (a) Distribution of frequency degradation, (b) 
Video quality distribution of non-adaptive encoder, (c) Video quality of adaptive encoder, (d) PSNR vs. 
manufacturing yield. 

 

 

Figure 2.10 shows the significant impact of encoder adaptation in improving the yield 

of the server platform, reaching as high as 100% when allowing a 3dB PSNR margin and a 

10% encoding bit rate margin. In addition, comparing Figure 2.7 and Figure 2.10, we observe 

hardware platform differences (Cortex A8 vs. Core i7), results in different yield given the 

same functional performance boundaries. For instance, considering 1 dB margin in quality, 

embedded platform yield is less than 10% while server platform yield is slightly over 20%. On 

the other hand, by using adaptation and thereby using the opportunities inherited from video 

application toward variations, yield increases in both platforms greatly. 

 

 

Figure 2.10 Server platform yield using original and adaptive encoder, for different (quality, bitrate) 
constraints. 
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2.7 Conclusion 

In this paper, we presented an application adaptation technique to address the effects 

of process variations on applications such as multimedia and video encoding, and applied it to 

an H.264 encoder. Several parameters of the encoder were characterized and investigated to 

find those that have the most significant effects on video metrics such as bit rate, video 

quality, and run time. We proposed an adaptation algorithm to vary the values of these 

parameters to recover from the frequency degradation in the underlying hardware. We 

developed an experimental framework to emulate process variations and demonstrated the 

effectiveness of our approach on the Beagleboard embedded platform with the ARM Cortex-

A8 processor and a server platform with the Intel Core i7 processor. We believe that the 

proposed approach can allow applications to share the challenging task of variation-tolerance, 

reducing the need to fully contain the effects of process variations through hardware 

techniques. The proposed approach also can be extended to a range of “elastic” applications in 

the domains of audio, image and video processing. 
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Chapter 3  

An Application Adaptation Approach to 

Mitigate Impact of Dynamic Thermal 

Management on Video Encoding 

3.1 Introduction 

In chapter 2, application adaptation was used to address process variation, which is a 

static problem. It means once a chip is affected by process variation, the its effect would not 

vary any more. In this chapter, application adaptation is used to address a dynamic problem 

that varies in time: thermal management and its side effects.  

The increase in the transistor scaling, along with the rise in the complexity of today’s 

semiconductors have resulted in a higher power density [SCC10], and hence increased the 

chip temperature [KSP08]. Chip’s high temperature reduces its lifetime, functional reliability, 

and performance, while increasing its cooling costs [GQ11]. Due to limitations of cooling 

such as high costs for servers and data centers, or space and/or power requirements in portable 

devices such as smartphones and laptops, dynamic thermal management (DTM) has been 

developed as a supplement and sometimes, an alternative solution to the conventional cooling 

for thermal management of semiconductors [GQ11]. Several DTM methods have been 

developed for servers [PGP10; HAC11], general-purpose processors [KS04; JP07], 
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multiprocessors [AKC09; GGP12; JRP08], mobile platforms [SHK10], and embedded 

systems [ZC10]. While these techniques are efficient in managing temperature, they can 

introduce different types of performance related overheads or bottlenecks that effectively 

reduce the platform performance. For example, DTMs reduce the maximum number of 

instruction a CPU can execute in one second (MIPS) by reducing its frequency. This reduction 

in platform performance, caused by DTM, would simply translate into longer execution times 

for ordinary applications, but real-time applications carry timing constraints and a system 

performance reduction would impact these type of applications much more significantly. In 

case of hard real-time applications such as medical devices or vehicle control systems, timing 

constraint violation can be catastrophic, thereby absolutely unacceptable. In case of soft real-

time applications such as video encoding or graphics rendering, the timing violation would 

affect application quality. However, the quality of an application, such as visual quality of an 

encoded video, not only is dependent on the platform performance, but also is dependent on 

how the application is designed to use the platform resources. In this chapter, we will develop 

an application layer technique (application adaptation) to ensure that the negative impact of 

DTM on the platform performance has minimum effect on quality of applications. 

According to several recent market research reports, video traffic will grow 

significantly compared to other types of Internet traffic. For example, according to the Cisco 

Visual Networking Index [CSC14], the percentage of all form of IP video traffic (TV, video 

on demand [VoD], Internet, and P2P) out of all Internet traffic will increase from 66% in 2013 

to 79% in 2018. Considering the growth rate of Internet traffic, video traffic will grow three 

fold from 2013 to 2018 globally while a service such as file sharing services will only grow 

3%. The above indicates that video applications, including video encoding/decoding, will 

dominate the workload of servers, personal computers and mobile platforms. Hence, in this 
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chapter we focus on the H.264 video encoder, the most widely used video encoding standard, 

as the focus application. We study the effect of DTM on a H.264 video encoder, and develop a 

DTM-aware dynamically adaptive video encoding technique, that will vastly reduces the 

impact of DTM on the encoded video visual quality. 

Forced convection cooling (using fan) is one of the most commonly used cooling 

methods in different computing platforms. While fans help with cooling, they will add 

acoustic noise to the environment [ZXL12], and consume additional power [XYP13]. In this 

paper we study the effects of fan speed on video encoder quality and show that by using the 

proposed adaptation technique, we can reduce fan speed and still achieve better video quality 

compared to conventional DTM with maximum fan speed. 

3.1.1 Effects of DTM on H.264 Video Quality 

Real-time video encoding which is a very complex application is required to perform 

its tasks within a given hard deadline (frames per second). Figure 3.1 shows the results of 

encoding a VGA video clip of 24 seconds with an x264 encoder (a very efficient 

implementation of H.264 encoder [X264]) implemented on a MacBook laptop; with and 

without the use of a commercial DTM tool, CoolBook [ML15] while the laptop fan is rotating 

at its maximum speed which is 6200 revolutions per minute (rpm). As shown in Figure 3.1, 

due to its high computational needs, running the x264 encoder without DTM will result in 

temperatures rising above 90OC, while the encoded video quality is 44 dB PSNR (peak signal 

to noise ratio, the most widely used video quality measure). On the other hand, DTM 

maintains the temperature close to the desired value of 75OC; however, the use of DTM 

reduces the hardware performance, resulting in the encoder not being able to meet its hard 

deadlines, and consequently significantly degrading the resulting encoded video quality (about 

13 dB in this experiment). The above experimental data first shows that the cooling (fan) is 
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not sufficient for thermal management when a complex application is running on the platform. 

In addition, while available DTM techniques may be capable of maintaining a systems’ 

temperature at desired levels, their use is unacceptable from the system’s perspective, in 

particular for real-time applications due to loss in quality. 

 

 

Figure 3.1 Effects of DTM on Visual Quality of a real-time video encoder. 
 

 

3.1.2 Our Approach 

Our DTM-aware adaptive video encoding approach is based on the following two key 

properties of video encoding applications. First, there is a correlation between the amounts of 

computational work needed, the bit rate of the encoded video stream, and the quality of the 

resulting encoded video. Second, there is an inherent tolerance towards a nominal variation 

from the specification of both the desired bit rate as well as the video quality. The above two 

properties allow us to design DTM-aware adaptive video encoder such that the applications 

would be able to adapt to the dynamic changes in hardware performance due to dynamic 

thermal management without causing any perceivable degradation in user experience (visual 
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quality). We note that it is important to recognize and consider the multi-dimensional nature of 

the tradeoff between encoding speed, video quality, and bit rate. For example, it is possible to 

drastically improve encoding speed (while maintaining video quality) by only utilizing the I-

frame (I-frames have been defined in Section 3.2), or even by skipping the frame compression. 

However, both of these options would lead to unacceptable increases in the video bit rate. 

The problem is that while it is necessary to use DTM to maintain platform 

temperature, this usage would degrade the performance of the platform. This performance 

reduction causes each tasks running on the platform to take longer time. In the case of real-

time video encoding, this execution time increase will result in violation of tasks deadlines and 

eventually some of the frames would drop from the encoded video sequence. These frame 

drops result in visual quality decrease that can be measured using PSNR metric (Figure 3.1).  

In this chapter, we develop a systematic approach to design a DTM aware real-time 

video encoder, based on the H.264 standard, to address the above problem. To achieve this 

goal, we first study the parameters used in the encoder, and model their effects on different 

metrics of the video encoder, namely encoding speed, video quality, and bit rate. We also 

characterize the impact of DTM on the application (encoder) run time, and produce a thermal 

policy characterization (TPC) table. Subsequently, we develop an application adaptation 

algorithm, which uses the identified parameters, their metrics model and the TPC table, to 

dynamically adapt the video encoding application in real-time. This process changes the tasks 

of the video encoder in order to compensate the DTM-induced performance effect on video 

quality, in a way that the impact on the encoded video quality is minimized. In summary, we 

use the inherited tolerance in video applications and dynamically eliminate the negative effect 

of DTM on visual quality by marginally increasing the bit rate. Using the same experimental 

setup described in Section 3.1.1, we demonstrate that use of the dynamic adaptation technique 
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in conjunction with DTM can reduce the average drop in video quality to only 2.4 dB at a 

marginal 4% bit rate increase, as opposed to the 9.8 dB video quality loss when DTM is 

applied without the dynamic adaptation. We perform extensive experiments using different 

videos and different DTM profiles to demonstrate the ability of the proposed dynamic 

adaptation approach to mitigate the video quality loss that DTM otherwise results in. 

3.1.3 Related Work 

Several adaptive bit rate streaming [LRP05] techniques are being adopted to encode 

and deliver video with optimal video bit rates to address changing network conditions. In 

adaptive bit rate streaming [LRP05], a set of different bit rate optimized streams of the same 

video are encoded and stored on a server in advance, and based on the network conditions, one 

of the bit rate versions is selected. However, it should be noted that adaptive bit rate streaming 

techniques do not dynamically change the computational complexity of video encoding, but 

rather the encoding bit rate, and hence cannot be used to address the negative impacts of 

dynamic thermal management on the system’s computational resources.  

Adaptive video encoding techniques have been developed to enable scaling of 

encoding complexity to enable real-time encoding even on constrained computing platforms, 

or when the encoder is implemented in software [IB07; IB10]. The main idea is to design a 

single video encoder application that is capable of running in real-time on different platforms 

without any platform specific programming such as assembly codes. The encoder regulates its 

complexity based on average encoding time by using faster but less optimal versions of 

various encoding steps (including motion estimation). Adaptive techniques have also been 

developed to make video encoding energy aware, primarily in the motion estimation step 

[SBH10]. These techniques, while changing the encoding complexity, do not address the fast 

and dynamic changes in the performance of the same platform that dynamic thermal 
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management produces, which is the focus of our work. The other difference between our work 

and these techniques is that we recognize and exploit the multi-dimensional nature of the 

tradeoff between encoding speed, video quality, and bit rate. Therefore, our adaptation 

methodology not only maintains real-time behavior of the encoder, but it also works under the 

specified bit rate constraint. 

On the other hand, there have been recent efforts in modifying or developing new 

thermal management techniques for multimedia applications such as video encoding or 

decoding [GQ11; YLK07; YK08; LPP06; LPP08; HV12; FS13; PSA14]. In most of these 

research efforts [GQ11; YLK07; YK08; LPP08; HV12], existing DTM techniques have been 

modified to ensure real-time encoding/decoding, by making use of the additional time 

available from processing low complexity video frames. In [FS13], the authors developed a 

new thermal management approach based on balancing the encoding workload between 

different components of a video encoder in a multi-core processor platform. Based on the 

observation that there is a residual time after decoding each frame; a new scheduling-based 

DTM for MPEG-4 video decoding is proposed [YLK07] which utilizes the residual time for 

thermal management. Palomino et al. [PSA14] designed an application specific DTM for high 

efficiency video coding based on adopting dynamic frequency scaling for residual time of 

encoding each frame and motion characteristics of different video sequences. This way, they 

proposed an application specific DTM based on DFS. In [LPP08] the residual time of 

decoding each frame is used along with DVFS to reduce the temperature. If temperature-drop 

is not enough more residual time is borrowed by dropping a frame or just dropping its quality.  

The above approaches have several limitations. First, they require modifications of 

existing DTM techniques, or development of new ones; therefore, they cannot be used with 

existing platforms. Second, some of these approaches are platform specific, for instance, 
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[YLK07] and [LPP08] are only based on dynamic voltage and frequency scaling, [FS13] is 

based on multi-processor platform for load balancing. Therefore, they cannot be considered as 

general solutions. Third, some of these techniques have a very limited applicability; for 

example, a DTM method which works for MPEG-2 video decoding based on residual time per 

frame [LPP06] is only effective when the computational requirements of an application is 

much less than the computational capacity of the system. Therefore this cannot be applied to 

computationally intensive cases such as video encoding or decoding of complex standards like 

H.264, or even the decoding of high frame rate videos. Fourth, some of the proposed methods 

[YLK07, PSA14] are application specific DTM methods. They change the DTM decisions 

based on the requirements of a specific application. This might have negative impact on other 

applications’ quality or it may be impractical to modify the DTM of a general processor for 

just one of its applications.  

In contrast, our approach focuses on adapting the application (encoding) to the 

dynamic changes induced by DTM, instead of changing DTM decision to optimize for a 

specific application. Therefore, this method does not affect other applications’ quality. It also 

means our approach will work with existing DTM software/hardware, without the need to 

develop application specific DTM techniques for every application. Moreover, since our 

approach is independent of the exact DTM mechanism, and is only dependent on performance 

reduction induced by DTM, our approach can be used with many different DTM methods 

(DVFS, multicore methods such as load balancing and deep-sleep modes, clock gating, fetch 

gating, etc.). Thirdly, our adaptation algorithm does not need to make any assumptions about 

computing or residual time, and hence can be applied to any video encoding standards, and 

videos containing different spatial or temporal characteristics. Finally, we believe this is the 

first attempt to dynamically control video encoding complexity in response to dynamic 
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thermal management, and perform multidimensional optimization of encoding speed, quality, 

and bit rate.  

The rest of this chapter is organized as follows. In Section 3.2, we will first discuss a 

set of encoding parameters and describe their effects on encoding speed, quality, and bit rate. 

Next we review computing platform’s thermal dynamics and DTM control mechanisms. After 

reviewing DTM and video encoding backgrounds, we formulate the DTM-aware adaptation of 

a video encoding as a multidimensional optimization problem, and describe the overall 

platform with interactions between the adaptive encoder, DTM controller, and the hardware. 

In Section 3.3, after analyzing the effects of adaptation on video encoding metrics, we discuss 

a general method to reflect DTM effects on platform speed/performance and then define our 

adaptation algorithm in detail. We will provide the details of our test platform and the results 

in Section 3.4, and conclusions in Section 3.5. 

3.2 DTM Aware Adaptation: Approach and Problem 

Formulation 

As stated in the previous section, our goal is to develop an adaptation technique 

associated with the H.264 video encoding, capable of monitoring the real-time impact of a 

given DTM process. The adaptation should adjust the encoding tasks dynamically so as to 

mitigate the impact of DTM on video encoding quality as much as possible. We begin this 

section by introducing the relevant video encoding parameters that we will use for encoding 

adaptation, and point out the tradeoff associated with parameter selection for encoding speed, 

video quality, and bit rate. Then we briefly introduce thermal dynamics of a computing 

platform and the opportunities a DTM method uses to control the temperature. Next, we 

formulate the DTM aware video encoding adaptation as a multidimensional constrained 
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optimization problem. Finally, we introduce the core blocks of adaptive platform, namely 

encoder adaptation and DTM controller, and discuss how they interact with each other. 

3.2.1 H.264 Video Encoding Parameters and Tradeoffs 

In general, video encoders are lossy data compressors that reduce the size of a raw 

video sequence based on two factors, humans’ limited visual perception and redundant 

information in the video sequence. The influence of these two factors on video encoding can 

be tuned by some of the encoder parameters. The parameters of interest are quantization, 

group of pictures (GoP), number of reference frames, and search range. Selection of these 

parameters impacts the encoded video metrics such as video quality, bit rate, as well as the 

speed of video encoding. In the following paragraphs we introduce these parameters and 

briefly describe their effects on the encoding metrics. 

Quantization is the main parameter that influences encoding based on humans’ limited 

visual perception. It is used by the encoder to drop out/remove video sequence details that are 

unlikely to be perceived by the human eyes; thereby, reducing the amount of encoding needed. 

Higher quantization results in the removal of more video details and less computation time. In 

addition, using higher quantization also significantly reduces the bit rate and the file size of 

encoded streams. On the other hand, higher speed and lower bit rate comes with the price of 

video quality loss/reduction. 

Group of pictures (GoP), number of reference frames, and search range are the 

parameters that mainly influence the encoder’s effort to identify redundant information in the 

video sequence. It is necessary to introduce H.264 frame types to explain the role of above-

mentioned parameters in the encoding process. There are 3 different frame types I, P, and B in 

H.264 standard. When a frame does not require any other frames to be decoded and is encoded 

only with its own information, it is called an I-frame. A P-frame can use its own data or the 
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data from previous frames to encode, thereby making it more compressible than I frames. 

Finally, B-frames are frames encoded based on the information from both previous and 

forward frames; therefore, they have the highest amount of data compression. The maximum 

effort for reusing redundant data occurs in B-frames while minimum efforts are made in I 

frames. 

GoP size is the total number of frames starting from an I-frame and a sequence of P 

and/or B-frames, until the next I-frame is encountered. Higher GoP translates into better usage 

of redundant video information and a reduction in the final bit rate of the video encoder. 

However, this reduction comes with the price of higher computational needs, longer encoding 

time, and maybe even a lower video quality. The maximum number of frames needed to 

search for redundant information and the search range in each frame are set by number of 

reference frames and search range parameters. It is clear that using higher values for these 

parameters will result in lower bit rates and better video quality, but at the expense of more 

computational requirements and run time. 

3.2.2 Thermal Dynamics and DTM 

In this section we briefly discuss the contributing elements that impact computing 

platform’s (e.g. processors) temperature. In addition, we will discuss the DTM control 

mechanism of these elements that will have significant negative impacts on application quality  

Computing platform temperatures can be described using the formula introduced by 

Skadron et al. [SAS02]: 

𝑇! =
𝑃
𝐶!!

−
𝑇

𝐶!! ⋅ 𝑅!!
 (3.1) 
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where 𝑇 is the silicon junction temperature relative to the ambient temperature, 𝑇 is the rate of 

temperature change,  𝑃 is the power consumed by computing platform, 𝐶!!  is the thermal 

capacitance, and 𝑅!! is the thermal resistance of the computing platform. Thermal resistance 

and capacitance depend on the characteristics of the computing platform, such as its material 

and shape. On the other hand, system power consumption is dependent on design architecture 

(number of cores, pipeline, etc.) and the corresponding executing application. Power has two 

components: leakage (𝑃!"#$) and dynamic (𝑃!"#): 

𝑃 = 𝑃!"#$ + 𝑃!"# 
(3.2) 

 

Traditionally, dynamic power had greater contribution than leakage power to total 

power consumed in computing platforms. Therefore, most of the techniques target dynamic 

power portion as the key contributor in system temperatures. The well-known formula for 

dynamic power of digital circuits is: 

𝑃!"# ∝ 𝛼𝑉!𝑓 
(3.3) 

 

where 𝑉 is the circuit voltage, 𝑓 is the clock frequency and 𝛼 is the activity factor of the 

circuit [SSS04]. The activity factor is the average number of signal transitions in a circuit 

during one clock cycle. It is commonly used in the circuit level design and analysis, but 

calculating it for a complete system, which runs a complex application, is time consuming and 

impractical. Workload, 𝑤, (CPU usage for processors) is a normalized number that can 

replace the activity factor in this context. Workload is defined as the ratio of used 

computational resources to computational capacity in a platform. Therefore, dynamic power in 

terms of workload can be shown as: 
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𝑃!"# ∝ 𝑤𝑉!𝑓 
(3.4) 

 

Equation (3.1) describes a first order differential equation with the steady state 

solution of: 

𝑇!"#$%& = 𝑅!! ⋅ 𝑃 
(3.5) 

 

While conventional cooling techniques target thermal resistance of the above equation 

by adding a fan or heat sink, DTM techniques mostly impact the power consumption for 

controlling systems temperature. This is achievable by affecting the voltage, frequency, 

architecture-level knobs, or the workload. For example, a lower fan speed is more desirable 

due to lower acoustic noise and power consumption of fan. However, this reduction increases 

the thermal resistance and therefore increases steady state temperature. Therefore, DTM 

should put more effort to bring down the power and reduce the temperature. This higher effort 

of DTM can cause lower system performance and lower application quality which is not 

desirable. 

Figure 3.2 shows the DTM and application adaptation control loops. The solid-line of 

the figure depicts the conventional DTM based system. The DTM controller compares the 

computing platform’s temperature with target temperature and based on their proximity, 

makes decisions to change frequency (𝑓), voltage (𝑉) or parallelism levels (𝑤) in the 

computing platform. According to equation (3.4), these changes will affect the computing 

platform’s power, and hence will affect its temperature (equation (3.5)). On the other hand 

reduction in the hardware frequency or parallelism levels (pipelines, cores, etc.) is equivalent 

to the system’s computing resources reduction and will affect the functional quality of a 

complex application (e.g. video encoder) that heavily utilizes the system’s computing 
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capacity. Thereby, speed, visual quality, and bit rate of video encoder application will be 

affected by DTM.  

 

 

Figure 3.2 DTM control mechanism and adaptation algorithm. The solid line section of the figure 
describes conventional DTM control mechanism. The dashed line section shows our adaptation method 
that is added to DTM control loop to reduce DTM negative effects on video visual quality. W: 
Workload. P: Power. 

 

 

The dashed-line section of Figure 3.2 depicts the application adaptation control loop 

added to the DTM system. Application adaptation monitors application metrics, compares 

them with the required metrics (which are called boundary conditions and are described in 

more details in Section 3.2.3), and monitors the DTM instructions given to the system. Then 

considering application characteristics, requirements, and current DTM settings, it changes 

application complexity to fit the system’s available computing capacity. Therefore, the 

negative impact of DTM on the system’s computing resources would be compensated in the 

application level. 
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On the other hand, changes in application complexity translate into changes in the 

system work load (𝑤 ). Thereby, according to equation (3.4), it affects systems power 

consumption and hence it’s temperature. Therefore, even though the adaptation algorithm 

addresses DTM’s negative impacts on application metrics, it may have a positive impact on 

the thermal behavior of system as well. 

3.2.3 Adaptation Problem Formulation 

As discussed in Section 3.2.1, we can potentially use the four video encoding 

parameters to affect the computational complexity and thus the speed of video encoding. 

Therefore, when video encoding quality is impacted by DTM (frame drops and quality loss 

due to hardware performance degradation), choosing the right parameter values can help with 

reducing the computational needs of the encoder while allowing the encoding of video 

sequences in real time (avoid any frame drop). On the other hand, any such change in the 

values of the encoding parameters can affect the bit rate as well as the quality of the encoded 

frames. Dynamic adaptation algorithm is responsible for addressing the performance impact 

due to DTM, while keeping the encoded video quality as high as possible, and controlling the 

bit rate. 

We formulated our dynamic adaptation algorithm problem as follows. We considered 

3 video encoding systems: the first encoding system, 𝐸!, is the original encoder on hardware 

with no DTM technique; the second encoding system, 𝐸!, is also based on the original 

encoder but is on a DTM incorporated platform, resulting in dynamic changes in performance; 

third encoding system, 𝐸!, uses adaptive video encoder and the same DTM based platform as 

𝐸!. The metrics of each encoder, 𝐸, is defined as follows: 

𝑄(𝐸): Video quality of 𝐸 in terms of PSNR. 

𝐵 𝐸 : Bit rate of 𝐸 in terms of kilobits per second. 
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𝑆 𝐸 : Encoding speed of 𝐸 in terms of frames per second. 

The goal of adaptation algorithm is to dynamically search and identify the optimal 

values for encoding parameters so even in the presence of DTM, the encoder can maintain its 

speed with the maximum quality. In Addition, this should not lead to a sizable increase in bit 

rate results. This goal can be shown in the following constrained maximization form: 

Maximize:  𝑄 𝐸! ,                 

Subject  to: 𝑆 𝐸! ≥ 𝑆 𝐸!       and        𝐵 𝐸! ≤ 𝐵 𝐸! + 𝛿 (3.6) 

 

In equation (3.6), 𝛿 refers to the acceptable bit rate increase. The 𝛿 value has an 

important role on the significance and purpose of the maximization problem. For instance, if 𝛿 

has a high value, the solution to the maximization problem refers to a no encoding condition. 

On the other hand, a small 𝛿 will prevent any possible usage of the application tolerance 

towards variations from nominal specifications that makes the maximization solution 

insignificant. The selection of 𝛿 value for this research has been discussed in Section 3.4. 

Note that since the impact of DTM on the encoder speed can vary during an encoding 

session, satisfying the above conditions will require the adaptation algorithm to be dynamic 

and will, consequently, require adjusting the parameters in real time to address the DTM 

impact. 

3.2.4 Interactions between DTM and Adaptive Encoder 

Figure 3.3 shows the different components and layers of the overall system, with 

interactions between the DTM controller, hardware driver, and the underlying hardware on 

one hand, and the proposed adaptation layer on the other hand. The DTM controller makes the 

decision to change hardware settings based on the temperature readings it receives from the 

hardware driver. The hardware driver is responsible for reading the temperature from the 
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digital temperature sensors (DTS) in the hardware, and sending the appropriate commands to 

reconfigure hardware for thermal management purposes. When the DTM controller changes 

its settings, it conveys the information to both the hardware driver as well as the encoder 

adaptation layer. The adaptation algorithm, consequently, adapts the encoder parameters 

dynamically according to the algorithm described in the next section. 

 

 

Figure 3.3 DTM Aware Encoder Adaptation Platform – interaction between video adaptation and rest of 
the computing system. 

 

 

Even though from an implementation perspective, there is only a one-way 

communication between DTM and the application adaptation, in practice, the decisions made 

by the adaptation algorithm will eventually impact the DTM’s functionality. As is depicted in 

Figure 3.2, decisions made by the adaptation algorithm will affect the workload and ultimately 

change the systems temperature. Meanwhile, DTM is monitoring these effects through thermal 

sensor readings. In fact, we expect that not only will adaptation directly improve the negative 

impacts of DTM, but also through its indirect impacts on temperature, it will prevent the DTM 
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from raising the throttling of system computational capacity. These effects will be discussed in 

more details in the results section. 

3.3 DTM-Aware Adaptation Algorithm 

In this section, we introduce our algorithm to dynamically adapt the video encoder in 

response to the performance changes resulting from DTM decisions. The algorithm uses (a) an 

empirical model that associates values of the encoder parameters with values of the encoding 

metrics, and (b) a Thermal Policy Characterization (TPC) table that characterizes the effect of 

each possible DTM setting on the speed of the encoder. We first describe how we derived the 

Parameters-Metrics model, and then we discuss how to perform the thermal policy 

characterization. Finally, we discuss the adaptation algorithm. 

3.3.1 Modeling the Impact of Adaptation on Encoder Metrics 

In order to enable the adaptation algorithm to make informed decisions, it is necessary 

to characterize the relationships between the knobs available to it, i.e., the encoding 

parameters, and the encoding metrics of interest. We formulate these relationships as functions 

over a multi-dimensional space,  𝑪, in which each dimension represents one of the encoding 

parameters. For example, when the encoding parameters used are quantization (𝑞), GoP (𝑔), 

number of reference frames (𝑟), and search range (𝑠), each point in this space 𝒄 = (𝑞,𝑔, 𝑟, 𝑠), 

corresponds to a specific encoding configuration. The range of values that each parameter can 

take is constrained by the encoding standard and the encoder’s implementation. For the H.264 

standard and x264 implementation, we used the following ranges: 

𝑪 = {𝒄|𝒄 = 𝑞,𝑔, 𝑟, 𝑠 ∈ ℕ!, 𝑞 ∈ 1,50 , 𝑔 ∈ 1,250 , 𝑟 ∈ 1,5 , 𝑠 ∈    [4,16]} (3.7) 
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For each encoding configuration 𝒄 ∈ 𝑪, the encoder’s behavior is characterized by 

three metrics, which each metric can be modeled as a function over the configuration space, 𝑪. 

The first metric, which reflects visual quality, is denoted as 𝑄(𝒄). In this work, we choose the 

widely used peak signal to noise ratio (PSNR) as the visual quality metric. The second metric 

is the encoding speed, 𝑆 𝒄 , which is measured by the number of frames encoded per second. 

Finally, the bit rate of the encoded stream is denoted as 𝐵 𝒄  and is measured in terms of 

kilobits per second (kbps). 

𝑄:𝑪 → ℝ! 

𝑆:𝑪 → ℝ! 

𝐵:𝑪 → ℝ! 

(3.8) 

 

Note that the encoding quality, speed, and bit rate are dependent on the content of the 

input video stream in addition to the encoding configuration. Hence, we utilize a combination 

of offline training and online calibration in our model. The development of quality metric 

model, 𝑄:  𝑪 → ℝ!, is described in the next few paragraphs.  

The offline training consists of three steps. First, we select a subset of points in the 

configuration space, denoted as 𝑪𝒔 ⊂ 𝑪. 

𝑪𝒔 = 𝒄 𝒄 = 𝑞,𝑔, 𝑟, 𝑠 , 𝑞 ∈ 18,23,28,33,38 ,𝑔 ∈ 1,2,3,8,16,32,96 ,

𝑟 ∈ 1,2,3,4,5 , 𝑠 ∈ {4,8,12,16}} (3.9) 

 

Second, we encode a set of training videos repeatedly and store their quality while 

setting the encoder parameters by enumerating the configuration points in 𝑪𝒔. Due to the large 

size of the four-dimensional configuration space, 𝑪, it would have taken more than a year to 
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encode all of the training videos with all the possible encoding configurations in 𝑪; therefore 

only the above-mentioned sub-set is selected and encoded. 

In the third step, we expand the collected data from the configuration points in 𝑪𝒔, to 

all of the configuration points in 𝑪 by means of linear interpolation of the measured video 

qualities.  This provides us with a reference quality function, 𝑄!"#:  𝑪 → ℝ!, that will be used 

along with the online calibration in the final model: 

𝑄!"# 𝒄 = Quality measurement for configuration  𝒄 𝒄 ∈ 𝑪𝒔
Linear interpolation from measured neighbors 𝒄 ∉ 𝑪𝒔

 (3.10) 

 

As mentioned above, the reference function developed in the offline steps uses a set of 

training videos; hence, it suffers from some inaccuracy under variations in the video content. 

Therefore, we perform an online calibration on the reference function to come up with the 

model. For this purpose, we take advantage of the fact that video encoders actually measure 

the metrics of interest, namely the visual quality, bit rate, and speed (encoding frame rate), 

during the encoding of a video stream. Online calibration follows a history-based approach 

wherein we divide the encoding session into intervals (these intervals naturally correspond to 

the intervals at which the adaptation algorithm is invoked to modulate the encoding 

parameters). We use the actual measurements of quality metric during the current epoch, 𝑄∗, 

and the value provided by the reference quality function, 𝑄!"#, for the current encoding 

configuration, 𝒄∗, to come up with a scaling factor to calibrate the reference function and 

derive the model. This model then is used to predict the quality metrics for the next epoch. 

𝑄 𝒄 =
𝑄∗

𝑄!"# 𝒄∗
𝑄!"#(𝒄) (3.11) 
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We extract the reference functions for both speed and bit rate metrics, 𝑆!"# and 𝐵!"#, 

the same way we do for quality metric while performing the three steps of offline training. 

𝑆!"# 𝒄 = Speed measurement for configuration  𝒄 𝒄 ∈ 𝑪𝒔
Linear interpolation from measured neighbors 𝒄 ∉ 𝑪𝒔

 

𝐵!"# 𝒄 = Bit rate measurement for configuration  𝒄 𝒄 ∈ 𝑪𝒔
Linear interpolation from measured neighbors 𝒄 ∉ 𝑪𝒔

 
(3.12) 

 

We also define the model for these metrics the same way through calibration of 

reference function using the online measured bit rate, 𝐵∗, and speed, 𝑆∗: 

𝐵 𝒄 =
𝐵∗

𝐵!"# 𝒄∗
𝐵!"# 𝒄 ,      𝑆 𝒄 =

𝑆∗

𝑆!"# 𝒄∗
𝑆!"# 𝒄  

(3.13) 

 

To verify and study the accuracy of our modeling approach, we applied it to a set of 

test videos different from the training videos. Figure 3.4 (a), (b), and (c) show the plots of 

quality measurements versus model predictions for video clips Avatar, Soccer, and Wildlife, 

respectively. As the figure illustrates, the model is able to closely predict the visual quality 

when online calibration is performed. On the other hand, at the start of the encoding session, 

the calibration is not performed due to a lack of history, and consequently there is a bigger 

difference between the model and the measurements. Figure 3.4(d) shows the percentage of 

error from all three modeled metrics of our test videos. We observe that the model can predict 

all of the encoding metrics with less than a 3.6% error. 

Note that the models described in this section are captured on a platform without any 

DTM enabled. In the next section, we describe how we capture the impact of DTM on 

encoding speed. In Section 3.3.3, we show how the models are used in an adaptation algorithm 

to reduce the negative effects of DTM on video encoding. 
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Figure 3.4 Comparison of model prediction and measurement of visual quality for clips (a) Avatar, (b) 
Soccer, and (c) Wildlife. (d) Percent error of model predictions for Quality, Speed and Bit rate of test 
videos. 

 

 

3.3.2 Modeling the Impact of DTM on Encoder Speed 

There are different dynamic thermal management methods such as dynamic frequency 

scaling, dynamic voltage and frequency scaling, clock gating, load migration away from hot 

cores, etc. In order to use our adaptation algorithm with any of these different DTM methods, 

we need to quantify and differentiate DTM’s negative impact on the systems performance 

(e.g. instructions per second) and application performance (e.g. task run time) in a uniform 

manner. For example, different applications may experience different application performance 

(run time) degradation under the same DTM method depending on whether they are compute 

or memory intensive. To address these issues, we define Application Performance Index 
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(𝐴𝑃𝐼), which captures the impact of DTM on a specific application (in our case, video 

encoder), and is measured through a characterization process. 

We start with a premise that each of the DTM methods has a limited number of 

settings that are chosen based on the system temperature, and other factors such as the number 

of cores, number of voltage and frequency levels, etc. At any instant of time the system is 

operating in exactly one of its DTM settings. 

The Application Performance Index is defined as the amount of speed reduction 

observed in a given application due to the selection and transition from a specific DTM setting 

to another.  If the time an application takes to run under nominal conditions (no DTM) is 𝑡! 

and the time it takes for the same application to perform the same task in DTM setting 𝑆! 

while previous DTM setting was 𝑆! is 𝑡!!,!; then the 𝐴𝑃𝐼 for this DTM selection and transition 

is: 

𝐴𝑃𝐼!!,! = 𝑡!  /    𝑡!!,! (3.14) 

 

Since application execution under nominal conditions is always equal or faster than 

any other DTM setting, we have: 

𝐴0 < 𝑡! ≤ 𝑡!!,! ⇒ 0 <   𝐴𝑃𝐼!!,!   ≤ 1 
(3.15) 

 

We characterize the API for the video encoder under various DTM settings, for a 

range of training videos and find their corresponding average. The values for each DTM 

setting selection and its corresponding 𝐴𝑃𝐼 are stored in a lookup table which is called the 

Thermal Policy Characterization (TPC) table. At any time, the adaptation algorithm can look 

up the TPC table to determine the current performance impact on the encoder due to the 

current DTM settings. 
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In effect, TPC provides us with a tool that predicts the speed of an application in the 

presence of DTM from its expected speed in the absence of DTM. In our case, given the 

encoder speed in the absence of DTM (predicted by the model in Section 3.3.1) for a given 

configuration, 𝒄, one can compute encoder speed in the presence of DTM as follows: 

𝑆!"#(𝒄) = 𝐴𝑃𝐼 ⋅ 𝑆(𝒄) (3.16) 

 

Note that for a given system, the thermal policy characterization has to be only 

performed once offline. In Section 3.4.1 we will show the results of the thermal policy 

characterization on the platform used in our experiments. 

In the next section, we will introduce the adaptation algorithm and show how the 

above formula, along with the models for encoding metrics (from section 3.3.1), are used to 

address the effects of DTM. 

3.3.3 Video Encoder Adaptation 

In response to changes in the system temperature, DTM changes its settings, thereby 

changing the Application Performance Index (API). Given the current API, the objective of 

the adaptation algorithm is to select a point in the configuration space, 𝑪, such that the video 

encoder will still function in real time and satisfy the bit rate constraints, while producing 

maximum video quality. 

In this section, we will first provide an overview of the adaptation algorithm and how 

it fits into the runtime execution of the encoder. Next, we will describe the adaptation 

algorithm in detail. Finally, we will analyze the efficacy of our algorithm by comparing it to 

well-known optimization algorithms such as coordinate ascent and hill climbing. 
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Figure 3.5 Workflow of the proposed adaptation algorithm 
 

 

3.3.3.1 Adaptation Algorithm: Overview 

Figure 3.5 shows the high-level workflow of the proposed adaptation algorithm in the 

context of the video encoder. As shown, the adaptation algorithm is periodically called to 

incorporate the DTM effects at the beginning of each time interval. Three sets of data are sent 

to the adaptation algorithm at the end of each time interval; the encoding metrics which are 

measured by the encoder during the last time interval; the new application performance index 

which is drawn from TPC look-up table based on the current DTM settings; and the encoder 

parameters from the last time interval. The adaptation algorithm starts with the encoding 

parameters from the previous time interval and iteratively changes one parameter at a time. At 

each iteration, the parameter whose value is determined to be the most effective in improving 

the objective function (Equation (3.6)) is chosen. The models constructed for the encoding 

metrics (Section 3.3.1) are used to guide this search. 

encoding configuration in each interval by changing all the parameters 

simultaneously, that configuration may not remain the best for the rest of the time interval. 
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This is due to the possible dynamic change in both the video content and application 

performance index during the iteration. 

3.3.3.2 Adaptation Algorithm: Details 

We next discuss the details of the proposed adaptation algorithm. Figure 3.6 shows the 

flowchart of the adaptation algorithm. Each iteration of the algorithm, which corresponds to an 

encoding time interval, uses the following inputs: 

• Encoding configuration from the previous interval: 𝑞∗,𝑔∗, 𝑠∗, 𝑟∗ . 

• Encoding metrics measured in the previous interval: 𝑄∗, 𝑆∗, 𝐵∗. 

• Application Performance Index, 𝐴𝑃𝐼 , for the current interval, which is 

extracted from the TPC table based on the current DTM settings. 

• Constraints on encoding speed and bit rate: 𝑆! ,𝐵! . 

The adaptation algorithm consists of four key steps: extract, scale, predict, and select. 

The first three steps identify the optimum value of each parameter independently and the last 

task chooses the optimum parameter among all of them for the current iteration. 

Since we change only one parameter per iteration, we need to study the effect of each 

parameter on the encoding metrics separately, independent of other parameters. The first step, 

extract, extracts the relationship between each encoding parameter and each metric from the 

characterized model; assuming that all the parameters except the one under consideration are 

unchanged from the previous interval. Since we have four parameters and three metrics, we 

obtain 12 extracted functions. For instance 𝑄!, 𝑆!, and 𝐵! are the extracted functions for the 

GoP parameter. We next show the extraction of 𝑄!"#,!(𝑔) from the reference data 𝑄!"#(𝒄); 

the same method applies to the other parameters and metrics as well. 

𝑄!"#,!(𝑔) = 𝑄!"#(𝑞∗,𝑔, 𝑠∗, 𝑟∗) (3.17) 
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In the next step, scale, we scale each of the extracted functions as described in Section 3.3.1 to 

calibrate the reference function. For example, the scaled function of visual quality versus GoP, 

𝑄!(𝑔), is calculated as follows: 

𝑄! 𝑔 =
𝑄∗

𝑄!"#,! 𝑔∗
𝑄!"#,!(𝑔) (3.18) 

 

Similarly, the scale step finds the scaled functions corresponding to each of the other 

11 extracted functions. 

Given all three scaled functions of one parameter, the predict step calculates the 

optimum value of each parameter, i.e., the value that maximizes the visual quality while 

satisfying speed and bit rate constraints. Without loss of generality, we describe the 

functionality of this task for the GoP parameter, but it applies to all other parameters as well. 

Considering the fact that all the encoding metrics are monotonic functions of the parameters, 

we know that the optimal values are guaranteed to lie at the boundaries of the feasible solution 

regions. Therefore, we solve the following two equations at boundary conditions: 

𝐴𝑃𝐼 ⋅ 𝑆! 𝑔 = 𝑆! 
(3.19) 

𝐵! 𝑔 = 𝐵! 
(3.20) 

 

In equation (3.19), the left hand side is multiplied by the application performance 

index in order to reflect the impact of DTM on the speed of the encoder (equation (3.16)). 

Solving the above equations could result in 2 separate values for GoP, 𝑔!, 𝑔!. Of these values, 

we select the one, 𝑔! , which does not violate the other boundary condition and 

maximizes  𝑄!(𝑔). 
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As shown in Figure 3.6, the extract, scale, and predict steps are repeated for all four 

encoding parameters. After a value for each of the parameters is selected, they will be 

compared with each other in the select step. The parameter, which maximizes the quality 

without violating the constraints, is selected as the final choice for the current time interval. 

 

 

Figure 3.6 Adaptation algorithm details for each iteration. 
 

 

The encoder is provided with the new parameter values, and the algorithm continues 

to iteratively adapt the parameters based on the actions of the DTM scheme. 

3.3.3.3 Adaptation Algorithm: Discussion 

The proposed algorithm effectively takes a greedy, iterative approach to solve a 

constrained optimization problem. In this section, we describe our algorithm mathematically 

and relate it to well-known approaches, such as coordinate ascent and hill climbing. 

Consider a multivariable function: 

𝑓 𝒙 ,        𝒙 = 𝑥!, 𝑥!,… , 𝑥!!! ,        𝑥! ∈ 𝑋! ,        0 ≤ 𝑖 < 𝑚 (3.21) 

 

where 𝑚 is the number of variables and 𝑋! is the domain of the 𝑖!! variable. The objective is 

to identify the value of 𝒙 in which maximizes the value of this function. 
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From this multivariable function, we can derive a single-variable function at any given 

point, 𝒙𝒏, by keeping all variables other than the 𝑖!! one, constant. The new function can be 

mathematically described as follows: 

𝑓!𝒙
𝒏
𝑥 = 𝑓 𝑥!!,… , 𝑥!!!! , 𝑥, 𝑥!!!! ,… , 𝑥!!!! ,            0 ≤ 𝑖 < 𝑚,             

𝒙𝒏 = 𝑥!!, 𝑥!!,… , 𝑥!!!!  
(3.22) 

 

The proposed optimization algorithm is to select the next variable, 𝒙𝒏!𝟏, from current 

variable, 𝒙𝒏, in each iteration in a way that leads to the maximum value of 𝑓(𝒙). 

In our proposed algorithm, all of the variables will be evaluated independently. Then 

we compare all the variables with each other and select the one with maximum improvement 

among others. In addition, we restrict the domain of each search through the use of constraints 

(encoding speed and bit rate). Mathematically, each iteration of the algorithm may be 

described as follows: 

𝑗 = arg max
!∈[!,![

max
!∈!!!!

𝑓!!
! 𝑥  

𝑥!!!! = arg max
!∈!!!!

𝑓!!
! 𝑥  

𝑥!!!! = 𝑥!!,          0 ≤ 𝑖 < 𝑚, 𝑖 ≠ 𝑗  

(3.23) 

 

where the 𝑗!! variable is the optimum variable and 𝑋! − 𝐶 is all of the points in 𝑋! points that 

do not violate the constraints. 

Our adaptation algorithm is a variant of gradient ascent [JS05] optimization in discrete 

spaces. Gradient ascent is a first-order unconstrained optimization algorithm that finds the 

local maximum of a multivariable function using its gradient. The gradient ascent algorithm 
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was originally designed for a differentiable function in a continuous space. However, there are 

variants of gradient ascent designed for discrete spaces, such as hill climbing and coordinate 

ascent. We designed our algorithm as a greedy best-first-search implementation of gradient 

ascent which also considers problem constraints. Next, we briefly discuss the hill climbing 

and coordinate ascent algorithms and then discuss their similarities and the differences with 

our algorithm. 

In the hill climbing algorithm, the optimized value of each variable is calculated 

independently from other variables at each iteration. 

𝑥!!!! = argmax
!∈!!

𝑓!!
! 𝑥  

(3.24) 

 

However, in the coordinate ascent algorithm one variable is optimized in each 

iteration. Then, the next coordinate will be selected in the next iteration and this process 

continues in a round robin fashion. 

 

𝑥!!!! = argmax
!∈!!

𝑓!!
! 𝑥 ,              𝑖 = 𝑛  mod  𝑚 

𝑥!!!! = 𝑥!!,                      0 ≤ 𝑖 < 𝑚, 𝑖 ≠ 𝑛  mod  𝑚 

(3.25) 

 

In fact, in the hill climbing algorithm all of the variables can change at one iteration 

but will be evaluated independently. On the other hand, in coordinate ascent, only one of the 

variables can change; therefore, only its corresponding direction will be evaluated. 

The proposed algorithm covers the same search area as hill climbing, since all of the 

variables are evaluated. However, when it comes to updating variables, we only update one of 
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the variables per iteration like coordinate ascent by comparing all the variables with each other 

and selecting the one that yields the maximum improvement. The reason we do not use the hill 

climbing method directly, is that it may select points that violate the boundary conditions by 

changing multiple variables at the same time without considering their interactions. On the 

other hand, we did not find the coordinate ascent greedy enough for our purpose. Due to the 

variations in the video contents and DTM effects, the function and boundary conditions can 

vary in time. Therefore by selecting a variable in round robin order, we might choose the least 

effective variable and by the time of the next iteration, the opportunity would be lost. 

Therefore, to utilize all the available opportunities for maximization, we chose our greedy 

best-first-search over coordinate ascent. 

3.4 Experimental Results 

In this section, we discuss the experimental results using a MacBook Air, with 

specifications in Table 3.1 and a bit rate margin (𝛿) of 15%. Dynamic Thermal Management is 

done by CoolBook [ML15], a commercial DVFS-based DTM tool that allows programming 

and the use of different DVFS profiles for thermal management, consisting of different 

frequency, voltage, throttling, and trigger temperature settings. Throttling means how fast the 

DTM would react to thermal violation. The CoolBook tool does not provide any more 

information about this parameter. Trigger temperature is the thermal limit above which the 

DVFS method will be employed [LPP08]. The temperature results are the real temperature 

measurements that have been collected by Hardware Monitor [MB15] from the thermal 

sensors on the MacBook platform. The smc Fan Control [HH15] is used to set the CPU fan 

speed to its maximum at all times to make sure we are using the cooling effects as much as 

possible. 
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Table 3.1 Implementation Platform Specification 

Operating System Mac OSX 10.5.8 

Processor Intel Core 2 Duo 

Frequency 1.8 GHz 

Memory 2GB 

 

We have used seven profiles; in order to first, study the adverse effects of the DTM on 

the video encoder; and second, to show the efficacy of the proposed dynamic adaptation 

algorithm on reducing these effects. We set the trigger temperature to 75℃ for all DTM 

profiles. Profile 0, which is the reference implementation, incorporates no frequency or 

voltage scaling and the processor runs at 1.8GHz (the nominal frequency). The thermal 

management for this profile is only based on system fan and heat sink. In the rest of the 

profiles, DVFS is enabled to assist with thermal management. Table 3.2 shows the throttling 

level and frequency settings used in each dynamic thermal management profile and Table 3.3 

reports the voltage settings for each frequency. Note that the used voltage settings are among 

the ones predefined and available in the system. 

 

Table 3.2 Thermal Management Profiles 

Profile Frequencies (MHz) Throttling Level 

0 1800 N/A 

1 1800, 1400 Low 

2 1800, 1400 High 

3 1800, 900 Low 

4 1800, 900 High 

5 1800, 1600, 1400, 1200, 800 Low 

6 1800, 1600, 1400, 1200, 800 High 
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Table 3.3 Voltage vs. Frequency Selection 

Frequency (MHz) 1800 1600 1400 1200 ≤900 

Voltage (V) 1.175 1.1125 1.05 0.975 0.9 
 

The numbering of the profiles has been selected in ascending order of frequency 

scaling options. As shown by [KS04], two frequency/voltage levels are sufficient for effective 

DTM; therefore, profiles 1 to 4 have been selected with only two frequency/voltage levels. 

Profiles 5 and 6, which use five different frequency/voltage levels, have been selected based 

on DVFS designer’s recommendations. 

In the following subsections, we first present the results of the thermal policy 

characterization (Section 3.3.2) of the test platform. Next, we carry out a detailed study on the 

temporal effects of DTM on the video encoder and compare the results of encoding with and 

without our adaptation algorithm. Then, we present results for the overall visual quality of the 

adaptive encoder for different videos and different dynamic thermal management profiles. 

Finally we show the effects of fan speed on application quality and show the proposed 

adaptation help reduce the required fan speed and hence its negative effects. 

3.4.1 Thermal Policy Management Results 

As shown in Table 3.2, our test platform uses six different frequency settings. Each 

frequency setting is one state of DTM as explained in the API definition. For each frequency 

setting, several VGA video clips have been encoded, and the application performance index 

measured according to section 3.2. The measurements show the API for each state (current 

frequency setting) is independent of its previous state (previous frequency setting) for the 

DVFS-based DTM used in the test platform. Therefore, the thermal policy characterization 

table is simplified to a form only reflecting current DVFS states, which is shown in Table 2.4. 
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Table 3.4 Application Performance Index for Test Platform 

Processor Frequency (MHz) API(%) 

1800 100 

1600 89.34 

1400 77.72 

1200 66.70 

900 49.01 

800 43.56 

 

 

We observe that the APIs for the different settings of the test platform are very close 

to the ratio of CPU frequency to the nominal hardware frequency. This is due to the fact that 

the performance of the x264 encoder implementation is dominated by computation time, and 

not memory access time, as the latter has been implemented very efficiently. 

3.4.2 Effects of Encoder Parameters 

Before studying the effects and efficacy of the proposed adaptation algorithm, we take 

a look at the effects of the application parameters on the quality and bitrate of the encoded 

video, and the encoding runtime. As discussed in section 3.2.4 (Figure 3.3) the adaptation 

algorithm has a unidirectional communication with DTM and does not change the DTM. 

However, the introduction of the adaptation algorithm to the system has an indirect effect on 

the thermal management process creating an unintentional feedback loop to the system. This 

feedback effect was mentioned in section 3.2.2 (Figure 3.2). In this section the numerical 

results are studied to help understand the aforementioned feedback effects. 
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Figure 3.7 Effects of encoder parameters on video quality, video bitrate, encoding runtime, and 
platform temperature. The x-axis labels are defined as: GoP is for group of pictures, Ref refers to the 
number of reference frames, and SR refers to search range. The legend labels are defined as: ‘q’ - 
quantization, ‘g’ - group of pictures, ‘r’ - number of reference frames, and ‘s’ - search range. For each 
graph, three of the encoder parameters are kept constant, which are mentioned in the legends, while the 
fourth parameter is used as the x-axis variable.  The first column on the left shows the video quality in 
dB, the second column shows the video bitrate in kbps, the third column shows the average of encoder’s 
run time per frame in millisecond, and the rightmost column shows the average steady temperature of 
the platform. All of these plots are produced when there is no DTM. 
 

Figure 3.7 consists of 16 subfigures that show the video encoder parameter 

(quantization level, group of pictures, number of reference frames, and search range) effects 
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on encoded video quality (PSNR), encoded video bitrate, encoder runtime, and platform 

temperature. Each subfigure depicts four graphs, with each graph generated by keeping three 

of the encoder parameters constant and varying the fourth parameter. The values of the three 

constant parameters are mentioned in the figure legends and the varying parameter is 

mentioned in the x-axis label. First, the left three columns of Figure 3.7 are studied, namely 

the effects of the parameter on quality, bitrate and runtime and then the rightmost column and 

the effects of encoder parameters on platform temperature are discussed. It is crucial to 

recognize that the general behavior of the graphs in Figure 3.7 are more important than their 

values since those values will change from video to video. Plots in Figure 3.7 are constructed 

from data obtained through the characterization process described in section 3.4.1.  

Figure 3.7(a) and (b) show that the quality of the video drops linearly by increasing 

quantization level and at the same time video bitrate also drops. But unlike quality, the rate of 

change in bitrate is not linear. In fact, as the quantization level becomes smaller the bitrate 

increases much faster. This non-linear bitrate increase would give a hint that while reducing 

quantization level would increase the quality, it should be stopped at some point due to huge 

increase in bitrate. This effect has been considered in the adaptation algorithm by introducing 

the constraint for bitrate. Figure 3.7 (c) suggests that the increase in runtime due to reduction 

in quantization level is linear; therefore, one would expect the main reason for not using lower 

quantization level would be the significant increase in bitrate.  

Figure 3.7 (e) and (f) depict that it is better to use higher number of frames in a GoP 

because it can reduce the bitrate to one third with a modest quality drop. On the other hand, as 

depicted in Figure 3.7 (g), this bitrate reduction comes with about 50% increase in encoder 

runtime. If one only considers the quality-bitrate tradeoffs between quantization level and GoP 

size (Figure 3.7 (a), (b), (e), and (f)), it can be concluded it is better to have lower quantization 
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level and higher GoP size. That would be true for an offline video encoder; however, for a 

real-time video encoder, the timing requirement would prevent application of this method. In 

fact, this effect has been considered in the adaptation algorithm by introducing the timing 

constraint. 

Figure 3.7 (i) and (j) suggest that increasing the number of reference frames increases 

the video quality and reduces the bitrate. Again without considering the timing requirements, 

one would simply choose the highest number of reference frames, but as is depicted in Figure 

3.7 (k) this would increase the encoding time by approximately 50%, increasing the chance of 

timing violation and subsequently a drop in video quality. Once again the need to consider the 

timing constrain in the adaptation algorithm is evident. 

Figure 3.7 (m), (n) and (o) suggest that changing the search range does not affect any 

of the encoder metrics in this test setup (x264 implementation on MacBook Air). It should be 

mentioned that the encoder is analyzed as a black box and not intended to be modified in its 

implementation. Only control knobs of the encoder are used to find and choose its optimum 

configuration during the DTM. As the results show, in this implementation of H.264 on an 

Intel platform, changing the search range is not effective on encoder metrics; however, we 

have seen that this same parameter increases the encoder runtime by 30% on an embedded 

platform (Beagleboard [GC09]) using ARM Cortex A8 as its main CPU. It shows that encoder 

behavior is significantly platform dependent and the characterization steps mentioned in 

section 3.3.1 should be performed for each platform.   

The above analysis shows the selection of encoder parameters can be straightforward 

for an offline encoder. Without considering timing constrains (offline encoding), one would 

choose a large value for GoP and maximum number of reference frames and search range. The 

quantization level can be simply used for bitrate constraint and the parameter selection 
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problem is solved. But the parameter selection is not simple in the case of real-time video 

encoder because of significant variation in encoder runtime and possible timing violation, 

hence quality drops. Therefore, there is a need for an adaptive solution to dynamically choose 

these parameters when DTM affects the performance of the platform.  

Figure 3.7 (d), (h), (l), and (p) show the effects of varying encoder parameters on 

platform average steady temperature. The thermal model provided by [MDR14] is used to 

calculate the average steady platform temperature by varying encoder parameters. These 

graphs depict that while the change in search range is not affecting platform temperature, the 

other three encoding parameters can cause the average steady temperature of the platform to 

vary by about 20 degree Celsius. As shown in Figure 3.2, when the system gets too hot the 

thermal management starts cooling down the system by reducing frequency and voltage. This 

frequency drop reduces the overall platform speed, hence video encoding speed as well. This 

means it would take longer time to do the same job in this new configuration. The proposed 

adaptation algorithm, which is constantly monitoring the status of DTM, changes encoder 

parameters to make it faster and compensates for the platform speed reduction to avoid timing 

constraint violations. It means the adaptation algorithm changes the encoder parameters in a 

direction in which run time is reduced (Figure 3.7 (c), (g), (k), (o)). Thus far, this is the 

expectation from application adaptation. However, by comparing the two rightmost columns 

in Figure 3.7, it is noted that the same change in parameters, which reduces encoder run time, 

also reduces the platform steady temperature. This additional thermal relief provided by the 

application adaptation would help the DTM to use higher frequencies in the next time periods 

and in general use higher average frequency compared to when the DTM is applied without 

any follow-up adaptation. This phenomenon has been measured and shown in the next section 

as well.  
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As mentioned in the problem formulation, the adaptation algorithm maximizes quality 

by sacrificing bitrate. It is interesting to see the side effect of increasing the bitrate on the 

platform temperature. By comparing Figure 3.7 (f) with (h) and (j) with (l), we see the 

aggregate effect of changing encoder parameters which increases bitrate, actually reduces the 

platform’s steady state temperature. This occurs since the complexity of the encoder is 

reduced concurrently. On the other hand, comparing Figure 3.7 (b), (c), and (d) shows that 

increases in bitrate also increases the runtime and platform temperature. Therefore, the 

constraints on both timing and bitrate will control this side effect and would be limited.  

In summary, the analysis of encoder parameters on the video metrics proved the 

necessity of having both bitrate constraint as well as timing constraint in the application 

adaptation algorithm. Moreover, the results show that the complex environment and trade-offs 

between encoder parameters require an adaptive and dynamic solution rather than a static 

selection. Finally, we see that adapting the parameters to reduce run time can also reduce 

platform temperature, and hence can indirectly benefit the DTM reduce frequency/voltage by 

less amount, which in turn reduces platform performance by less amount which in turn helps 

the application to have higher quality as well. This effect is shown in section 3.4.3. 

 

3.4.3 Studying the Effects of DTM Policy on Adaptation 

In this section, we study in detail the effects of one of the DTM policies, and the 

efficiency of our proposed dynamic adaptation approach to address DTM effects. We first 

study the behavior of the original encoder at nominal frequency in the absence of DTM. Then 

we discuss the effects of DTM on the original encoder quality; and finally we show how the 

adaptive encoder can significantly improve speed and quality while DTM is effectively 
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managing the thermal impacts. We have selected profile 6, which is the recommended profile 

for thermal management by CoolBook, and tested it with a video clip from the movie Avatar. 

Encoding a clip from Avatar in real time with original x264 video encoder in the 

absence of DVFS resulted in a video stream with PSNR of 41.9 dB and a bit rate of 1505 kbps 

(Figure 3.8(b)). However, even with the processor fan spinning at maximum speed (6200 

rpm), the CPU temperature increases up to 91 degrees Celsius (Figure 3.8(a)). Our tests for 

different video sequences showed that processor temperatures could rise up to 94℃ just by 

encoding a 24 second video clip. Based on the extrapolation of the temperature curves, the 

CPU temperature can rise way beyond 100 degrees and its thermal limits. This shows the need 

for a dynamic thermal management to control the temperature. As shown by Figure 3.8(c) and 

(d), in the presence of DVFS (Profile 6) with trigger temperature of 75℃, the processor 

temperature can be contained to near 75℃ (not to exceed over 78℃), but with adverse effects 

of a drop in processor frequency (Figure 3.8(c)), and a very significant drop in the quality of 

the encoded video by about 10 dB (Figure 3.8(d)). 

In contrast, Figure 3.8(e) and (f) show what occurs when the proposed adaptive 

encoder is used while DTM is applied. Figure 3.8(e) shows that not only the temperature is 

maintained at the desired level of 75℃, but also the frequency degradation caused by DVFS, 

is reduced compared to the original encoder without dynamic adaptation (Figure 3.8(c)). This 

is possible because the adaptation algorithm dynamically changes the computational need of 

the encoder in response to the real-time changes in the application performance index affected 

by DVFS, allowing the processor to cool down faster, which in turn allows DVFS to use 

higher frequency levels (Figure 3.2). Moreover, the adaptation algorithm not only adjusts the 

encoder according to the change in application performance index so as to satisfy real-time 

speed constraints, but also maximizes video quality with limited increase in the bit rate. This 
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effect is shown in Figure 3.8(f): as DTM scales down the frequency, the PSNR drops, and the 

bit rate rises; but the adaptation algorithm finally balances them and at the end, we have a 

video with PSNR of 39.2, which is very close to the original encoder’s PSNR. 

 

 

Figure 3.8 (a) Temperature and frequency of original encoder for Profile 0, (b) PSNR and bit rate of 
original encoder for Profile 0, (c) Temperature and frequency of original encoder for Profile 6, (d) 
PSNR and bit rate of original encoder for Profile 6, (e) Temperature and frequency of adaptive encoder 
for Profile 6, (f) PSNR and bit rate of adaptive encoder for Profile 6, while encoding Avatar video clip 
in real-time. 
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In addition we observe in Figure 3.8(f) that the initial quality of video encoder is 

slightly higher than the original video encoder. The initial higher PSNR is produced for two 

reasons. First, the video encoder initially works faster, i.e. it takes less time to encode frames; 

therefore, application adaptation algorithm observes the gap between the timing constraint and 

the encoder runtime and modifies the encoder parameters to produce better quality video. 

Second, the adaptation algorithm uses a history-based model whose accuracy is shown in 

Figure 3.4. This figure depicts the transient behavior of the model as well as its error.  It is 

evident that the model has higher error in its first couple of seconds and then converges to the 

measurements. Therefore, the initial higher encoder speed and error in estimating encoder 

behavior causes the adaptation to choose encoding parameters that initially produces higher 

quality videos. After this period, encoder speed drops and the adaptation algorithm corrects 

the encoder parameters and the quality drops. Please note that the encoding parameters, which 

resulted in higher quality, could not have been used in the original encoder. It is due to the fact 

that the original encoder’s parameters are static and after the initial period the frames begin 

dropping from the video sequence and would significantly degrade video quality. 

In summary, without DVFS we can produce high quality video streams, but the 

processor temperature increases rapidly. On the other hand, having DVFS in the system helps 

control temperature but also drops the video quality more than 10 dB when the frequency 

scales down. Having the adaptive encoder and the DVFS together, the video quality does not 

drop more than 2 dB while processor temperature is remained in the safe region. This has 

come with the price of an increased bandwidth of about 12.5%. 

3.4.4 Overall Adaptive Encoder Quality 

In this subsection, we discuss the quality of the adaptation algorithm for three VGA 

size video clips Avatar, Soccer, and Wildlife. Please note that these video clips are different 
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from the training video clips used for extracting 𝑄!"#, 𝐵!"#, and 𝑆!"#. For each video, we first 

encode it using the original video encoder without DVFS (Profile 0) to obtain the highest 

video quality and to ensure that the encoder uses all of the processing capacities. Then, we 

used the bit rate of those videos as the reference when encoding each specific clip with the 

original or adaptive video encoder in the presence of the dynamic thermal management. 

 

 

Figure 3.9 PSNR and bit rate of (a) Avatar video clip, (b) Soccer video clip, and (c) Wild Life video 
clip, when original and adaptive video encoder is used for real-time encoding, using DTM Profiles 0-6. 

 

 

Clearly, adding the adaptation algorithm to the original encoder introduces some 

overhead to the encoding process. It takes some time to calculate the parameters and 

reconfigure the encoder and this time is taken from the total time budget available for the 
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encoding process. Based on our measurements, the adaptation algorithm takes 0.4 

milliseconds to execute on the platform each time it is invoked. We have used 15 frames as 

the interval to invoke the adaptation algorithm. On the other hand, the adaptation algorithm 

considers this time difference and changes the encoder parameters to compensate for it. 

Therefore, the time (or the computation capacity) taken for the adaptation algorithm will be 

translated into PSNR drop and/or bit rate increase of the encoded stream. On average, the 

overhead due to the inclusion of the adaptation algorithm to the original encoder is equivalent 

to 0.26 dB drop in PSNR and 8.3% increase in bit rate. 

As shown in Figure 3.9, the proposed adaptation algorithm has been able to improve 

video quality compared to the original encoder for all the DVFS profiles. While video quality 

of the original encoder drops about 10dB on average, the video quality of the adaptive encoder 

has dropped by an average of only 2.4 dB, with a marginal bit rate increase of about 4%. 

Finally, we observe from Figure 3.9 that the best DVFS policy for the adaptive 

encoder is policy 2 (2 frequency/voltage levels with 12% frequency derate); where the average 

video quality drop has been 1.6 dB with a marginal 2.7% bit rate increase. 

3.4.5 Effects of Fan Speed on Video Quality 

In this section we analyze the effects of varying forced convection cooling (changing 

fan speed) on the quality of encoded video in a system that utilizes DTM. As mentioned 

earlier, additional power consumption and acoustic noise are the main drawbacks of forced 

convection cooling. We show that the proposed adaptation technique can be used to achieve a 

specified video quality using a lower fan speed and hence to reduce these drawbacks. 
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Figure 3.10 Effects of fan speed on application quality under DTM only and DTM with application 
adaptation (wildlife clip and DTM profile 6). The pairs mentioned in the legend of the figure are 
defined as fan speed in rpm during the test and thermal management method used during the test 
respectively. DTM means only the conventional thermal management is used and "DTM with Adp" 
means the proposed adaptation algorithm is used along with the DTM in a test. 

 

 

The costs associated with forced convection cooling are the power consumption of 

fans [XYP13] and acoustic noise produced by rotating fans [ZXL12]. Unlike DTM, increasing 

the fan speed does not directly impact performance. On the other hand, using DTM directly 

affects the performance of the platform by reducing the number of active cores, frequency, etc. 

and hence influences the quality of application running on the platform. Therefore, the 

strategy that is adopted to jointly use forced convention cooling and DTM is as follows. First, 

since forced convection cooling does not have a direct impact on performance or application 

quality, one should use it as much as possible (until the fan is at the highest speed). Next, the 

DTM mechanism should be employed as needed to satisfy the temperature constraint. This 

way if cooling is enough to satisfy the thermal constraint, DTM will not kick in and there 

would be no negative effect on the objective function. However, cooling is not sufficient in 

our experimental platform (and in many systems in practice), requiring DTM to be invoked to 
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maintain the temperature. In all the results presented in previous sections, the fan was already 

at its maximum speed of 6200 rpm. 

Unfortunately, as explained above, using high fan speed adds significant power 

consumption and noise. Therefore, it is desirable to operate the fan at lower speeds. To 

explore this possibility, we reduced the fan speed to 3500 rpm and evaluated the effects of 

increased DTM use on application quality. Figure 3.10 shows the results of using DTM profile 

6 with two different fan speeds of 6200 rpm and 3500 rpm while encoding the wildlife video 

clip at three critical temperatures of 70, 75, and 80ºC. As expected, the quality of video 

dropped with lower fan speeds. This is because the increased use of DTM results in lower 

system performance and eventually lower application quality. For example, when the critical 

temperature is 80ºC and the fan speed drops from 6200 rpm to 3500 rpm, the video quality 

drops from 38 dB to 37.11dB due to lower convective heat dissipation and higher performance 

throttling due to the increased use of DTM. 

This general trend is also true for the case when application adaption is used. For 

example, when the fan speed is dropped from 6200 rpm to 3500 rpm for the adaptive case, the 

quality of encoded video drops from 42.11dB to 39.51dB when the critical temperature is 

80ºC. However, an interesting observation can be made from Figure 3.10 by comparing the 

DTM only scenario at 6200 rpm and the DTM with adaptation scenario at 3500 rpm. For each 

critical temperature, the encoded video quality with adaptation at the lower fan speed (3500 

rpm) is better than the quality without adaptation at even the higher fan speed (6200 rpm).  In 

other words, if we assume that the quality of a video encoder with maximum fan speed and 

conventional DTM is acceptable, then by using the proposed application adaptation technique 

we can achieve the same or even better quality while using a significantly lower fan speed 

(thereby reducing system power and noise). 
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In summary, the analysis in this section suggests a different use of the proposed 

application adaptation technique: to reduce the fan speed for a given application quality 

constraint. An interesting avenue of future work could be an algorithm that optimizes fan 

speed utilizing application adaptation under given thermal and application quality constraints. 

3.5 Conclusion 

Due to the limitations of cooling and the increase in power density, the use of 

Dynamic Thermal Management in electronic systems is inevitable. However, the DTM 

impacts on the system’s performance can be particularly problematic for compute-intensive 

and real-time applications, such as video encoding, which are the same applications that may 

need DTM the most. In this paper, we focused on H.264 video encoding as an application, and 

showed that the DTM can have an unacceptably high impacts on the performance and quality 

of the video encoding. We presented an approach that can dynamically adapt the encoder tasks 

in response to the DTM performance impact, such that the encoder can perform in real time, 

and with significantly fewer effects on the encoding quality, all with a marginal increase in the 

encoding bit rate.  We demonstrated the approach using a commercial DVFS based DTM tool 

on an Intel® CoreTM 2 Duo processor. In the future, we plan to investigate the applicability of 

the proposed approach on other compute-intensive and real-time applications like graphics 

rendering, and other platforms like mobile and multi-core server platforms, besides 

minimizing fan speed as explained in Section 3.4.4. 
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Chapter 4  

Joint Work and Voltage/Frequency 

Scaling for Quality-Optimized Dynamic 

Thermal Management 

4.1 Introduction 

The proposed solution in chapter 3 not only mitigated the impact of DTM on video 

quality but also proved to be helpful in thermal management. This interesting behavior raises 

the question of what if application adaptation can be used as a DTM method tool itself. The 

answer to this question is investigated in this chapter, and two application adaptation base 

DTMs are provided. 

Many DTM methods have been developed for general purpose processors [SSS04; 

AKC09], servers and data centers [PGP10; HAC11], mobile platforms [SHK10], and 

embedded systems [ZC10].  Even though they vary in their approaches, a common attribute is 

that they all negatively affect the performance of the computing platform, leading to an 

increase in the runtime of tasks. In the case of many real-time applications, longer runtime 

result in a loss of the application’s functional quality, which we broadly define as a metric of 

how well an application is performing the task that it is supposed to perform. For instance, we 
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define the functional quality of a video encoder as the visual quality of the video; the 

functional quality of a Turbo decoder is defined as its effective decoding throughput. The 

efficacy of previous DTM methods has been mostly quantified by the runtime increase 

[SCC10; KSP08; GQ11; PGP10; HAC11]. 

In this research we directly focus on optimizing the functional quality of a real-time 

application rather than its tasks’ run-times. We observe that complex real-time applications 

such as video encoding, gaming (3D rendering), communication coding, etc., present 

parameters that can be used to tune their computing requirement, i.e., the workload presented 

to the computing platform. Based on this insight, we first introduce a DTM method called 

dynamic work scaling (DWS), an application level DTM technique in which we scale the 

computing requirements of an application by tuning one of its parameters, and hence the 

workload that it presents, to manage the temperature of the underlying platform. Then, we 

motivate and propose a hybrid method based on DWS and conventional dynamic voltage and 

frequency scaling (DVFS). The proposed approach is called joint dynamic work and 

voltage/frequency scaling (DWVFS). We formulate this hybrid DTM as a multidimensional 

constrained optimization problem and present an analytical solution. Furthermore, we propose 

a fast algorithm to solve the optimization problem in real time to perform quality-optimized 

DTM.  Overall, the contributions of this chapter are twofold: 

• Viewing DTM from the lens of its impact on an application’s functional 

quality, and formulation of quality-optimized DTM as a constrained 

optimization problem. 

• Proposal of a hybrid DTM technique based on joint DWS and DVFS, and 

demonstration of its benefits over conventional DTM techniques. 
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In the rest of the chapter, we first review related work on dynamic thermal 

management (Section 4.2). Then, we introduce DWS as a DTM method and show its utility in 

thermal management (Section 4.3). We then formulate quality-optimized DTM as a 

constrained optimization problem, discuss the relationship between work and 

voltage/frequency scaling with the application’s quality and the platform’s temperature and 

describe an analytical solution (Section 4.4). Next, we present a fast algorithm to perform 

quality-optimized DTM using DWVFS in real-time (Section 4.5). Finally, we apply the 

proposed DTM approach to two real-time applications – a Video encoder and a Turbo decoder 

– and compare its efficacy with conventional DTM methods (Section 4.6). 

4.2 Related Work 

A variety of techniques have been proposed for dynamic thermal management, 

including instruction fetch gating [KS04], dynamic voltage and frequency scaling[KS04; 

PUA12], scheduling [CWT09; QZW08; ZXD08; HCQ13; WB08; RV07; WX10; YBR13] and 

thermal aware load balancing [ZXD08]. Many hybrid methods also have been introduced to 

use the benefits of multiple approaches and to avoid their drawbacks [KS04; KSP06]. 

In [KS04] authors have used a combination of fetch gating and DVFS. When the 

thermal violation is small, fetch gating helps thermal management and when thermal violation 

increases, DVFS kicks in to control the temperature. Kumar et al. [KSP06] have used a hybrid 

of clock gating and thermal aware scheduling for dynamic thermal management. They assign 

a thermal characteristic to each running task so that the scheduler is able to reduce the priority 

of hot tasks. Basically, this method prevents hot tasks from running when platform’s 

temperature rises. If this method is not effective enough, then clock gating is used to prevent 

more temperature rise.  
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Application-specific DTM methods have been extensively studied in the context of 

video encoding/decoding applications [GQ11; YK08; YLK07; LPP08; HV12; FS13; LPP06]. 

In these studies, common DTM techniques were adopted and the timing characteristics of 

video encoding/decoding applications were used to guarantee real-time execution.  

The main difference between our work and most of the above efforts [SCC10; GQ11; 

YK08; LPP08; HV12; HCQ13; WB08; RV07; WX10; YBR13] arises from the objective 

function. In previous work, the objective has been to maximize performance in the presence of 

thermal constraints. Note that the term performance has been quantified by application run 

time, response time, whether deadlines are met, or other timing metrics of an application. 

Instead, we propose to look at the end user experience and maximize the functional quality 

that is required from an application. This matters especially in the context of real-time 

applications where different timing violations (e.g., dropping of different frames in a video 

stream) may affect the application’s quality differently. In addition, we use an application 

layer approach compared to scheduling approaches which are OS level methods [CWT09; 

QZW08; HCQ13; WB08; RV07; WX10; YBR13]. This enables us to exploit application 

properties to design a quality-aware method, compared to other methods [CWT09; QZW08; 

KSP06; HCQ13; WB08; RV07; WX10; YBR13] which are oblivious to their effects on 

application quality and only optimize for timing requirements. Furthermore, we change the 

application itself to not only help with thermal management, but also improve application 

quality while computing capacity is limited. In contrast, other scheduler-based methods affect 

the order and the time in which tasks are being executed and they do not modify the 

application tasks themselves. Another contribution of this work is a more generic formulation 

and treatment of DWS for real-time applications. Previous DTM methods [GQ11; YK08; 

YLK07; LPP08; HV12; FS13; LPP06] that have been applied to just real-time video 
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encoding/decoding are dependent on application specifics. Therefore, they cannot easily be 

adapted to other real-time applications. In this paper we formulate the relationships between 

application-level functional quality and temperature on one hand and the computational 

requirement and computing capacity on the other, and utilize them to propose a DTM 

technique that is applicable to a broad range of real-time applications. 

4.3 Dynamic Work Scaling: a Knob for Thermal 

Management 

As we mentioned, many hardware and software (scheduling) methods have been 

developed and used for dynamic thermal management. These methods may adversely affect 

the quality of the application running on the system1 by reducing the system’s performance; 

however, they do not actually change the running application itself. In this section, we 

introduce a new method of thermal management by modifying an application’s tasks through 

its parameters. This modification results in changing the computing requirements of a real-

time application running on the system, and thereby changing the application’s workload on 

the system. 

There are many real-time and complex applications whose computing requirements 

can be controlled by their parameters. For example, quantization level for H.264 video 

encoder [PGS12], view distance for 3D graphics rendering [WD10], and number of decoding 

iterations for a Turbo decoder [SP04] in a Software Defined Radio [LMM06] can affect the 

computing requirements of the application. We study the effects of workload change on a 

                                                        
1 The two terms platform and system have been used interchangeably in this chapter. 
2 These parameters were extracted for an Apple MacBook Air laptop with a 1.8 GHz Intel Core2Duo processor. Temperature 

and power have been measured in real-time while giving a step input to the system (jump from low power to high power state). 
The parameters were then extracted using MATLAB curve fitting tools and equation (4.2). 



 

 

94 

system’s temperature in Section 4.3.1 and then we briefly discuss how changing these 

parameters can affect user experience and the application’s functional quality. 

4.3.1 DWS Concepts 

In real-time applications, specific tasks should be completed in a given time interval 

or within a deadline. For instance, in video encoding with the frame rate of 30 frames per 

second, all the tasks required for encoding a frame should be completed in less than a 1/30th of 

a second. In such applications, if the platform does not have enough computing capacity for 

the application’s tasks to finish on time, the functional quality of the application would be 

degraded. On the other hand, if the system’s computing capacity is more than the computing 

requirements of the application, the platform is not fully utilized. Modern computing 

platforms have various hardware techniques that exploit even fine-grained intervals of less-

than-complete utilization for power reduction (e.g., through clock gating). Note that this is 

orthogonal to DVFS techniques, which are applied at a coarser granularity and under software 

control. This reduced power dissipation under lower utilization in turn leads to lower thermal 

load. This characteristic of real-time applications is the foundation of the dynamic work 

scaling (DWS). We try to control the computing requirements of a real-time application and 

thereby trade-off the functional quality of the application against the thermal load that it 

generates. 

Thermal dynamics of junction temperature in an integrated circuit can be described as 

follows [SAS02]: 

𝛩! =
𝑃
𝐶!!

−
𝛩

𝐶!! ⋅ 𝑅!!
 (4.1) 
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where, 𝑃 is the power consumed in the silicon, 𝐶!! is the thermal capacitance of the silicon, 

𝑅!! is the thermal resistance of the silicon, 𝛩 is the silicon junction temperature relative to the 

ambient temperature and 𝛩′ is the rate of change in junction temperature. 

In a short time window that power is constant, the solution of equation (4.1) is: 

𝛩 𝑡 = 𝑅!!𝑃 + 𝛩! − 𝑅!!𝑃 𝑒!
!
! (4.2) 

 

where 𝛩! is the initial temperature and 𝜏 = 𝑅!!𝐶!! is the thermal time constant. 

We formulate the periodic characteristic of real-time applications mentioned earlier as 

follows. The time interval in which the application needs to perform a set task is called 𝑇. For 

instance, 𝑇 can be the required time to encode a frame in case of real time video encoding, or 

the time needed to decode a packet of data in the case of Turbo decoder in a wireless 

communication. We define the stress ratio,  𝑢, as the percentage of the time that the application 

is stressing the platform, where 0 ≤ 𝑢 ≤ 1. Therefore, the percentage of the time that system 

is in rest is (1 − 𝑢). Hence, 𝑢  is equal to one when the computing requirement of the 

application is equal or more than the computing capacity of the platform. 

We define the average power consumed during the application stress time as 𝑃! and 

the average power consumed during the rest time as 𝑃! (where 𝑃! < 𝑃!). Therefore, based on 

equation (4.2) the temperature follows 𝛩!(𝑡) during the stress time and 𝛩!(𝑡) while the 

application is at rest: 

𝛩! 𝑡 = 𝑅!!𝑃! + 𝛩!! − 𝑅!!𝑃! 𝑒
!!!

𝛩! 𝑡 = 𝑅!!𝑃! + 𝛩!! − 𝑅!!𝑃! 𝑒
!!!

 (4.3) 
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Platform temperature increases during application stress time. During rest time, 

platform gets the chance to release thermal energy and the temperature drops. Figure 4.1 

displays this pattern over time for 𝑢 = 0.75 and compares it with 𝑢 = 1, for a platform with 

𝑅!! = 1.46  𝐶 𝑊, 𝐶!! = 41.1   𝐽 𝐶, 𝑃! = 65  𝑊, 𝑃! = 13  𝑊2. Figure 4.1 illustrates that when 

the application leaves the platform in rest, the temperature drops but the amount of change in 

the temperature depends on the platform’s instantaneous temperature. Figure 4.1 suggests that 

the temperature of the platform reaches a steady condition. We are interested to know how this 

thermal steady condition is related to the stress ratio, and then use it for thermal management 

of the platform. 

 

Figure 4.1 Thermal behavior of a platform based on stress ratio of 100% and 75%. 
 

 

The system goes to steady thermal condition when the thermal behavior repeats itself 

after each time interval 𝑇. This condition can be mathematically described as follows: 

Θ! 𝑢𝑇 = Θ!!
Θ! 1 − 𝑢 𝑇 = Θ!!

 (4.4) 

 

                                                        
2 These parameters were extracted for an Apple MacBook Air laptop with a 1.8 GHz Intel Core2Duo processor. Temperature 

and power have been measured in real-time while giving a step input to the system (jump from low power to high power state). 
The parameters were then extracted using MATLAB curve fitting tools and equation (4.2). 
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By solving equation (4.3) with the conditions in equation (4.4) we derive that in the 

steady condition, temperature will oscillate between the two values of Θ!"# and Θ!"# with 

the period of 𝑇. 

Θ!"# = 𝑅!! 𝑃!
𝑒
!
! − 𝑒

!"
!

𝑒
!
! − 1

+ 𝑃!
𝑒
!"
! − 1

𝑒
!
! − 1

Θ!"# = 𝑅!! 𝑃!
𝑒
!!"
! − 𝑒

!
!

1 − 𝑒
!!
!

+ 𝑃!
1 − 𝑒

!!"
!

1 − 𝑒
!!
!

 (4.5) 

 

In practice, the time interval 𝑇  for real-time applications is in the order of 

microseconds or milliseconds; however the thermal time constant is usually in the order of 

seconds (𝑇 ≪ 𝜏). By using Taylor’s polynomial approximation, equation (4.5) simplifies to 

the following: 

Θ!"# = Θ!"# = Θ!! 𝑢 = 𝑅!! 𝑃! 1 − 𝑢 + 𝑃!𝑢  (4.6) 

 

Equation (4.6) concludes the relationship between the stress ratio and the steady 

temperature of the platform. It states that there is a linear relationship between the stress ratio 

and the steady temperature of the platform assuming the thermal time constant is large enough 

compared to the real-time application’s time interval 𝑇. 

In summary, the parameters of a real-time application can be used to change its 

computing requirements and hence its work load. Thereby, the portion of time that the 

application stresses the platform can be affected. Furthermore, the steady temperature of the 

platform is a linear function of the stress ratio. This means by controlling the application’s 
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workload through changing its parameters, one can control and manage the temperature of the 

platform (dynamic thermal management). 

4.3.2 DWS Implementation 

As we mentioned, work scaling is a potential control knob for thermal management. 

In this section, we define the objective of DWS as a DTM technique, and by using a greedy 

implementation will show its effectiveness. 

Since changing the work load of a real-time application by scaling its computational 

requirements/complexity can also affect its functional quality, we define the objective of DWS 

with respect to application function quality as follows: 

The objective of DWS for thermal management is to maximize the 

functional quality of the real-time application while making sure the 

temperature of the platform does not exceed a given critical temperature. 

The above statement can be described in the following mathematical form: 

Maximize:𝑄 𝑝  

Subject  to:Θ 𝑝 ≤ Θ! (4.7) 

 

where 𝑄 is the application’s functional quality, and Θ is the platform’s temperature, as a 

function of the application’s parameter 𝑝. Therefore, the control variable in the DWS is the 

application parameter that would vary application computing requirement and workload. 

 

DVFS: 

Every 100 millisecond: 

       Θ= Platform temperature 

       If  Θ > Θ!:   Decrease frequency and voltage one step 

      Else:           Increase frequency and voltage one step 

DWS: 

Every 100 millisecond: 

       Θ= Platform temperature 

       If  Θ > Θ!:   Decrease computing requirements one step 

       Else :         Increase computing requirements one step 

Figure 4.2 Greedy implementation of DVFS and DWS. 
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Figure 4.2 shows a greedy implementation of DWS and DVFS for DTM. Both DWS 

and DVFS algorithms will control platform temperature (perform DT M) but they use 

different control variables. We have used the greedy algorithms on two applications, H.264 

video encoder and Turbo decoder. In the case of the H.264 video encoder, the application 

parameter 𝑝 is constant rate factor (CRF), and the functional quality 𝑄 is the encoded video 

stream’s peak signal to noise ratio (PSNR). The number of iterations in the decoding loop is 

the application parameter for Turbo decoder and its effective throughput is its functional 

quality. The details and description of these applications, their parameters and their functional 

quality along with the platform specifications are provided in the results section (Section 4.6). 

 

 

Figure 4.3 The effects of DWS and DVFS on an H.264 video encoder application’s functional quality 
and platform’s temperature(a) Visual quality for DVFS, (b) Visual quality for DWS, (c) Platform 
temperature with DVFS, (d) Platform temperature with DWS. 
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Figure 4.3 compares the results of DWS and DVFS implementations described in 

Figure 4.2 for four test conditions. One test is without any DTM and the other three tests are 

with 70oC, 75oC, and 80oC as critical temperature. Figure 4.3(a) and (b) show the visual 

quality of the encoded stream (in PSNR) over time for DVFS and DWS respectively. It is 

clear that in this example, quality drop in DVFS is faster than DWS and eventually, the video 

stream produced under DWS has a better quality (higher PSNR). On the other hand, from 

Figure 4.3(c) and (d) we observe that DVFS controls the temperature better than DWS 

meaning the violation of critical temperature occurs less frequently. 

 

 
(a) 

 
(b) 

Figure 4.4 Using DVFS and DWS for Turbo decoder application. (a) Platform temperature in degree 
Celsius. (b) Turbo decoder throughput in bps. 

 

 

Figure 4.4 shows the result of using DWS and DVFS for a Turbo decoder application 

for a critical temperature of 75 degree Celsius. Figure 4.4(a) shows that both DWS and DVFS 

can control the temperature around the target temperature while without DTM, the 
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temperature rises above 100 degree Celsius. Figure 4.4(b) shows the effects of each DTM 

method on the functional quality which in this case is decoder’s effective throughput. In this 

scenario, the negative effect of DWS on application quality is more than DVFS. 

These examples are provided as proofs of concept to show that DWS can be used as a 

DTM tool in practice. In addition, in the case of video encoder, DWS produces better quality 

results than DVFS while in the case of Turbo decoder, DVFS produces better functional 

quality. The results tell us that while both DWS and DVFS can be used for DTM, their 

effectiveness and impact on application quality can be different under different application 

conditions. We investigate these conditions in the rest of this paper and study the joint effects 

of DWS and DVFS on both applications’ functional quality and platform temperature. 

4.4 Quality Optimized Dynamic Thermal 

Management 

Our goal is to provide a method that best utilizes both DWS and DVFS in order to 

obtain a quality optimized DTM methodology. To achieve this goal, we first study the joint 

effects of DWS and DVFS on temperature as well as functional quality of a real-time 

application. Next, we formulate quality-optimized DTM in the form of a constrained 

optimization problem, whose solution is the new joint dynamic work and voltage/frequency 

scaling (DWVFS) approach for DTM. 

4.4.1 Quality and Thermal Contour Lines 

We start with some definitions that will help in quantifying different behaviors of any 

real-time application in general terms, and eventually develop a generic DTM algorithm. 

Changing a platform’s voltage/frequency affects the computing capacity of the platform. 
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Therefore we define our first variable as the Computing Capacity or 𝐶! which represents the 

effect of DVFS on the platform. On the other hand, when we change a parameter of an 

application, we affect a change in the amount of computation requested from the platform. 

Therefore we define our second variable as the application’s Computing Requirements or 𝐶! 

to represent the effect of DWS. Hence the application’s functional quality and platform’s 

temperature can be describes as functions of these two variables: 

Application functional quality: 𝑄(𝐶! ,𝐶!) 

Platform temperature: Θ(𝐶! .𝐶!) 
(4.8) 

 

Since both 𝑄(𝐶! ,𝐶!) and Θ(𝐶! ,𝐶!) are functions of two variables, we use contour 

lines to study their general behavior. A contour line (or isoline) of a function with two 

variable, is a curve in which the value of the function is the same [CR96]. Contour lines can 

be used to show the general behavior of a two-variable function like its extremums or rate of 

change. For example, Figure 4.5 shows the contour lines plots of 𝑄(𝐶! ,𝐶!) and Θ(𝐶! ,𝐶!) for 

an H.264 video encoder application. The horizontal axis is the CPU frequency; as frequency 

increases the computing capacity of the platform increases. The vertical axis is the CRF which 

is one of the H.264 video encoder’s parameters. The increase in CRF decreases the computing 

requirements of the encoder (More information about CRF is provided in Section 4.6.6). 

These plots illustrate that peak quality and temperature occur at minimum CRF and maximum 

CPU frequency. We first derive the general shape of temperature contour lines and then study 

functional quality contour lines. Then, we will use them in the next subsection to formulate 

the quality optimized dynamic thermal management. 
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Figure 4.5 Contour level plots of an H.264 encoder on Intel Core2Duo, (a) functional quality in PSNR, 
(b) platform temperature in degree Celsius. 

4.4.1.1 Temperature Function 

As we mentioned earlier, platform temperature is a function of 𝐶! and 𝐶!. In addition, 

it is self-evident that increasing computing requirements of application increases the platform 

utilization as long as computing capacity is available: 

𝜕𝑢
𝜕𝐶!

= 0                𝐶! ≥ 𝐶!

𝜕𝑢
𝜕𝐶!

> 0            𝐶! < 𝐶!
 (4.9) 

 

From equation (4.6) (Section 4.3.1) and equation (4.9) we derive that by increasing 

computing requirements while computing capacity is available, the temperature increases: 

𝜕Θ
𝜕𝐶!

= 0            𝐶! ≥ 𝐶!

𝜕Θ
𝜕𝐶!

> 0            𝐶! < 𝐶!
 (4.10) 

 

The same type of relationship holds between temperature and computing capacity. 

Computing capacity is proportional to platform’s frequency and the platform’s temperature 

increases by increasing its frequency and voltage: 
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𝜕Θ
𝜕𝐶!

> 0 (4.11) 

 

Equation (4.10) and equation (4.11) provide us with enough information to find out 

the general thermal behavior of a platform. In fact, the contour lines characteristics can be 

extracted from the function’s partial derivatives as described in the following corollary: 

 

 

    
(a) (b) (c) (d) 

Figure 4.6 General shapes of contour lines with respect to the function’s partial depravities with the 
conditions specified in Corollary (a) I, (b) II, (c) III, (d) IV. 

 

 

Corollary. The contour lines plot of a two-variable function 𝑓 𝑥, 𝑦  in a domain (𝐷), 

where the sign of the partial derivatives does not change and at least one of them is non-zero, 

will be (Figure 4.6): 

I. (Theorem A1 & A2) Non-crossing decreasing lines if  𝜕𝑓 𝜕𝑥× 𝜕𝑓 𝜕𝑦 > 0 

II. (Theorem A1 & A2) Non-crossing increasing lines if  𝜕𝑓 𝜕𝑥× 𝜕𝑓 𝜕𝑦 < 0 

III. (Theorem A1) Parallel horizontal lines if 𝜕𝑓 𝜕𝑥 = 0 

IV. (Theorem A1) Parallel vertical lines if 𝜕𝑓 𝜕𝑦 = 0 
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We provide proofs of Theorems A1 and A2 in the Appendix. By applying the above 

corollary on equation (4.10) and equation (4.11), we come up with the general thermal 

behavior of a real-time application.  We define the maximum computing capacity of the 

platform as 𝐶!. Therefore the domain of temperature function 𝐷 is defined as: 

𝐷 = 𝐶! ,𝐶! 0 ≤ 𝐶! ≤ 𝐶! , 0 ≤ 𝐶! ≤ 𝐶!} (4.12) 

 

This domain does not fall into any of the categories mentioned in the corollary. 

Therefore we break it into two sub-domains: 

𝐷! = 𝐶! ,𝐶! 0 ≤ 𝐶! ≤ 𝐶! , 0 ≤ 𝐶! < 𝐶!}; 

𝐷! = 𝐷 − 𝐷! (4.13) 

 

The first domain, 𝐷!, follows Corollary I formulation and the second domain, 𝐷!, 

follows Corollary IV formulation (equation (4.10) and equation (4.11)). Figure 4.7 displays 

the general shape of the temperature contour lines of a real-time application where the contour 

lines in 𝐷! and 𝐷! are made from Figure 4.6, Corollary I and IV plots. 

 

 

Figure 4.7 The contour lines plot of platform’s temperature executing a real-time application with 
respect to computing capacity and computing requirements. The diagonal dashed-line represents 
𝐶! = 𝐶! . 
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4.4.1.2 Quality Function 

We start analysis of the quality function, 𝑄(𝐶! ,𝐶!), with the sub-domain defined in 

equation (4.13) , 𝐷!. In this subdomain, the computing requirement is smaller than computing 

capacity of the platform. Therefore, a slight change in the computing capacity will not affect 

the quality of the application. This phenomenon can be represented mathematically as: 

𝜕𝑄
𝜕𝐶!

= 0  ,        if:  𝐶! < 𝐶! (4.14) 

 

Using Corollary III, we conclude that the contour lines of the quality function are 

horizontal lines in 𝐷!  (Figure 4.8). Next we study the 𝐷!  domain where the computing 

capacity is less than computing requirements. Let’s consider an arbitrary point in this domain. 

Since the computing capacity is less than the computing requirements, the functional quality 

of application would be less than expected. Now, if the computing capacity drops, the 

functional quality suffers even more due to higher limitations induced by the platform. 

Therefore we can derive: 

𝜕𝑄
𝜕𝐶!

> 0  ,        if:  𝐶! > 𝐶! (4.15) 

 

  
(a) (b) 

Figure 4.8 The contour lines plots of a real-time application’s quality function Q with respect to 
computing capacity and computing requirements. The diagonal dashed line represents 𝐶! = 𝐶!. (a) 
Quality contour lines plot when 𝜕𝑄 𝜕𝐶! > 0  for all the points in 𝐷!. (b) Quality contour lines plot 
when 𝜕𝑄 𝜕𝐶!  changes sign in 𝐷!. The dashed-dot line represents these points (𝐶! = 𝑓(𝐶!)). 
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Now we take a look at computing requirements of an application and its role on the 

application’s quality. An application is usually designed in a way that the increase in 

computing requirements is going to increase the application’s functional quality unless it faces 

any limitations from the platform. It means: 

𝜕𝑄
𝜕𝐶!

> 0  ,        if:  𝐶! < 𝐶! (4.16) 

 

When 𝐶! > 𝐶!, the effects of 𝐶! change on quality function would be complex. One 

would expect to see higher quality in response to 𝐶!  increase; however, due to limited 

computing capacity, not only we may not achieve as much quality increase as we expected, 

but we may also lose quality due to application tasks that may not be completed. We know the 

rate of quality change with respect to computing requirement is positive right before entering 

𝐷! (equation (4.16). Therefore, 𝜕𝑄 𝜕𝐶! in 𝐷! is either always positive, or it starts positive 

and changes to negative at some point in 𝐷!. We show the points where the derivative sign 

changes with the following notation: 

𝐶! = 𝑓(𝐶!)              for   𝐶! ,𝐶! ∈ 𝐷! (4.17) 

 

In summary, there would be two scenarios. First scenario is when 𝜕𝑄 𝜕𝐶! > 0 for all 

the points in 𝐷!(equation (4.19)). Using equation (4.15) and Corollary I, we conclude that the 

general shape of quality contour lines would be in the form of Figure 4.8(a) for this scenario.  

The second scenario would be if the sign of 𝜕𝑄 𝜕𝐶! changes from positive to negative at 

some points in 𝐷! described by equation (4.17). Therefore, we divide 𝐷! into two smaller 

subdomains based on equation (4.17): 

𝐷!! = 𝐶! ,𝐶! 0 ≤ 𝐶! ≤ 𝐶! ,𝐶! < 𝐶! < 𝑓(𝐶!)} (4.18) 
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𝐷!! = 𝐷! − 𝐷!! 

 

Accordingly, the application quality change with respect to computing capacity will 

be equation (4.20): 

𝜕𝑄
𝜕𝐶!

> 0            while  𝐶! < 𝐶! < 𝐶! (4.19) 

𝜕𝑄
𝜕𝐶!

> 0            while  𝐶! < 𝐶! < 𝑓 𝐶!

𝜕𝑄
𝜕𝐶!

< 0          while  𝑓 𝐶! <   𝐶! < 𝐶!
 (4.20) 

 

Using equation (4.15), Corollary I, and Corollary II, we conclude that the general 

shape of quality contour lines would be in the form of Figure 4.8(b) for the second scenario. 

Next, we formulate quality optimized DTM into an optimization problem and solve it using 

the contour plots we introduced in this section. 

4.4.2 Quality and Thermal Management: Problem Formulation 

As we mentioned earlier, we are interested to come up with a quality optimized DTM 

based on joint dynamic work and voltage/frequency scaling (DWVFS). The objective of 

DWVFS for DTM can be described in the following statement: 

The objective of DWVFS for thermal management is to maximize the 

functional quality of the real-time application while making sure the 

temperature of the platform does not exceed a given critical temperature. 

The above statement can be described in the following mathematical form: 

Maximize:𝑄 𝐶! ,𝐶!  
Subject  to:Θ 𝐶! ,𝐶! ≤ Θ! (4.21) 

 

In the rest of this section, we derive a solution for the above optimization problem. 
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Lemma 1. The solution of the optimization problem is located on the critical 

temperature contour line: 

Θ 𝐶! ,𝐶! = Θ!, (4.22) 

 

Proof. From Figure 4.7 and Figure 4.8, we know that both functional quality and 

temperature functions will be at their peak values when 𝐶! ,𝐶! = (𝐶! ,𝐶!). In addition, all 

of the points between (𝐶! ,𝐶!) and critical temperature contour line (points in the red area in 

Figure 4.9) violate the thermal constraint and cannot be part of the solution. From equation 

(4.14) and equation (4.16), we know that for any point in 𝐷! and the blue area in Figure 4.9, 

there is another point on the 𝜃! contour line with a higher quality. Also from equation (4.15) 

we know that for any point in 𝐷! and the blue area in Figure 4.9, there is another point on the 

𝜃! contour line with a higher quality. Therefore, the solution of the equation (4.21) is located 

on the critical temperature contour line.  ∎ 

 

  
(a) (b) 

Figure 4.9 Superimposition of temperature and quality contour lines plots. Solid line is the contour plot 
of the platform’s temperature at critical temperature. The dashed-dot lines are functional quality contour 
lines. The points in the red area will violate the thermal constraint and conversely, the points in the blue 
area will not violate the thermal constraint. (a) When ∂Q ∂C! C!, C!  does not change sign. (b) When 
∂Q ∂C! C!, f C!  changes sign. 

 

In the next step, we prove Lemma 2 which shows the solution of the optimization 

problem (equation (4.21)) is not in the 𝐷! domain. 
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Lemma 2. For any point 𝐶!! ,𝐶!! ∈ 𝐷!, on the contour line Θ 𝐶! ,𝐶! = Θ!, there 

exist another point 𝐶!! ,𝐶!! ∈ 𝐷! on the contour line Θ 𝐶! ,𝐶! = Θ!, which is closer to the 

𝐷! boundary 𝐶! = 𝐶! and 𝑄 𝐶!! ,𝐶!! > 𝑄 𝐶!! ,𝐶!! . 

Proof. We choose 𝐶!! < 𝐶!! on the contour line Θ 𝐶! ,𝐶! = Θ!. Since temperature 

contour line’s slope is negative (Theorem A1, equation (4.10) and equation (4.11)) we 

derive:   𝐶!! > 𝐶!! . Therefore: 𝐶!! − 𝐶!! < 0 < 𝐶!! − 𝐶!!
Both points∈!!      

!!!!!!!
!

<
!!!!!!!

!
 , 

where both sides of the inequality are the distance formula of a point from a line [DD09]. It 

means 𝐶!! ,𝐶!!  is closer than 𝐶!! ,𝐶!!   to 𝐶! = 𝐶!. 

From above, equation (4.14) and equation (4.16) we derive: 

𝑄 𝐶!! ,𝐶!! = 𝑄 𝐶!! ,𝐶!! > 𝑄 𝐶!! ,𝐶!! ∎ 

Lemma 2 tells us for any point to be assumed as the solution of equation (4.21) in 𝐷!, 

there will be another point with better quality, which contradicts the initial assumption. 

Therefore the solution of equation (4.21) is not in 𝐷!. To identify the solution in 𝐷!, we first 

analyze applications with general contour lines of Figure 4.8(a) where 𝜕𝑄 𝜕𝐶! > 0 for all 

points in 𝐷!. 

Theorem 1. For a real-time application where 𝜕𝑄 𝜕𝐶! > 0, the solution to the 

optimization problem (equation (4.21)) is the following point: 

𝐶! ,𝐶! :  𝐶! = 𝐶!    and  Θ 𝐶! ,𝐶! = Θ! (4.23) 

 

Proof. Let’s consider an arbitrary point 𝐶!! ,𝐶!! ∈ 𝐷! on the temperature contour 

line Θ 𝐶! ,𝐶! = Θ!. We then choose another point 𝐶!! ,𝐶!! ∈ 𝐷! where 𝐶!! > 𝐶!!. It is clear 

that the second point is also on the same temperature contour line (equation (4.10)). From 

equation (4.19), we know 𝑄 𝐶!! ,𝐶!! > 𝑄 𝐶!! ,𝐶!! . This means for any point in 𝐷! that is on 
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the temperature contour line  Θ 𝐶! ,𝐶! = Θ! , there is always another point on the same 

contour line with higher quality and shorter distance to 𝐶!. Per Lemma 2, we know the 

solution is within 𝐷!. Therefore the maximum quality occurs when 𝐶! = 𝐶!. ∎ 

In addition to the above formal proof, a visual explanation helps with better 

understanding the solution. The solution given in Theorem 1 can also be achieved by 

superimposing the two contour lines plots of quality and temperature as shown in Figure 

4.9(a), where 𝐶! and 𝐶! curves are quality and temperature contours respectively. It is evident 

that 𝑄 𝐶!! > 𝑄 𝐶!! > 𝑄(𝐶!!). However, none of the points on the contour line 𝐶!! can be 

used for equation (4.21) solution due to lying in the red area and violating the thermal 

constraint. When walking across the quality contour lines from 𝐶!! to 𝐶!! the quality drops. 

Therefore, the solution of equation (4.21) can be found when the first quality contour line 

intersects with the critical temperature contour line. This occurs with 𝐶!! contour line. As it is 

shown in the plot, the first point in which a quality contour line intersects with critical 

temperature contour line is when 𝐶! = 𝐶!. This point is the same solution point given in 

Theorem 1. 

Theorem 2. For a real-time application where 𝜕𝑄 𝜕𝐶! changes sign at the points with 

𝐶! = 𝑓(𝐶!), the solution to the optimization problem (equation (4.21)) is the following: 

𝐶! ,𝐶! :Θ 𝐶! , 𝑓 𝐶! = Θ! and  𝐶! = 𝑓(𝐶!) (4.24) 

 

Proof. Per Lemma 2, we know the solution is not in 𝐷!. In addition, based on 

Corollary IV, the temperature contour line Θ 𝐶! ,𝐶! = Θ! is a vertical line that can be shown 

as 𝐶! = 𝐶!!. We extract a single-variable function from the quality function when 𝐶! = 𝐶!! in 

the following way: 
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𝑄! 𝐶! = 𝑄 𝐶!! ,𝐶! ⇒
𝑑𝑄!
𝑑𝐶!

=
𝜕𝑄
𝜕𝐶! !!!!!!

 
(4.25) 

 

From equation (4.20) and equation (4.25) we derive: 

𝑑𝑄! 𝑑𝐶! > 0,        𝐶! < 𝑓 𝐶!!
𝑑𝑄! 𝑑𝐶! < 0,        𝐶! > 𝑓 𝐶!!

 (4.26) 

 

From basic calculus we know that equation (4.26) is the definition of local maximum 

for 𝑄!(𝐶!)  at 𝐶! = 𝑓 𝐶!! .∎ 

Figure 4.9(b) helps to visually understand the proof of Theorem 2. In fact the visual 

proof of Theorem 2 follows the exact same steps of proof of Theorem 1. The solution is at the 

intersection of the first quality contour line with the critical temperature contour line, when 

walking across quality contour lines from 𝐶!! towards 𝐶!!. From Figure 4.9(b), we see this 

point is located on the border of 𝐷!! and 𝐷!! which is 𝐶! = 𝑓(𝐶!). 

In this section, we formulated DWVFS as a constrained optimization problem 

(equation (4.21)) and analytically characterized its solution. However, the derivation was 

performed under the assumption that quality and temperature, and the parameters they depend 

upon, are all continuous variables, which is not true in practice. Furthermore, even 

overlooking this assumption, equation (4.17) and equation (4.22) need to be solved 

numerically in real-time to perform DTM decisions. Therefore, in the following section, we 

propose an efficient algorithm to solve the optimization problem described in equation (4.21). 
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4.5 Joint Dynamic Work and Voltage/Frequency 

Scaling 

In this section we introduce a fast and real time method for DWVFS based on the 

solution of optimization problem described in equation (4.21).  Our method is a combination 

of offline steps and online steps. Figure 4.10 displays the block diagram of the proposed 

method. In the offline steps, we collect the necessary data to develop three models. The first 

model captures the relationship of application’s functional quality with respect to the 

application parameter and the platform voltage/frequency. The second model describes the 

relationship between the application parameter and its work load. The last model is used to 

model platform’s temperature with respect to the application’s work load and platform’s 

voltage/frequency. After a brief description of these models, we introduce the algorithm which 

finds the solution for equation (4.21), thereby maximizing application quality while 

performing thermal management. 

 

 

Figure 4.10 Joint work and voltage/frequency scaling block diagram showing offline and online steps. 
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4.5.1 Offline Models 

4.5.1.1 Quality/Work Model 

We model work load, 𝐿, and functional quality, 𝑄, as functions of two variables, 

application parameter 𝑝 and platform frequency 𝑓, in the following way: 

𝑫 = {(𝑝, 𝑓)|𝑝 ∈ 𝑷, 𝑓 ∈ 𝑭} 
𝐿:𝑫 → ℝ! 
𝑄:𝑫 → ℝ! 

(4.27) 

 

𝑷 is the set of possible values for the application parameter and 𝑭 is the set of possible 

frequencies the platform can use. 

We measure workload and functional quality of the application using a set of training 

data for all the points in 𝑫. The results of these measurements are populated in two lookup 

tables (LUT) used for reference: 𝐿!"# 𝑝, 𝑓 ,𝑄!"# 𝑝, 𝑓 , where   𝑝, 𝑓 ∈ 𝑫. 

The model uses these reference LUTs and linearly scales them based on the 

measurements of the functional quality, 𝑄∗, and work load, 𝐿∗, of the application during 

execution time: 

𝐿 𝑝, 𝑓 =
𝐿∗

𝐿!"#(𝑝∗, 𝑓∗)
⋅ 𝐿!"#(𝑝, 𝑓) 

𝑄 𝑝, 𝑓 =
𝑄∗

𝑄!"#(𝑝∗, 𝑓∗)
⋅ 𝑄!"#(𝑝, 𝑓) 

(4.28) 

 

Where 𝑝∗ and 𝑓∗ are application parameter and platform frequency used in the last 

measurement of 𝑄∗ and 𝐿∗. Equation (4.28) estimates load (𝐿) and quality (𝑄) for any 𝑝 and 𝑓 

in 𝑫 based on the measured 𝐿∗ and 𝑄∗ for 𝑝∗ and 𝑓∗. We validate the accuracy of the above 
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models by applying them on the H.264 video encoder, whose quality function can be 

challenging to model as it is highly dependent on individual video streams and their content. 

The application parameter used is CRF and the functional quality metric is PSNR. We 

collected the reference LUT from a set of training video streams. Then we applied the 

reference LUT for the modeling of three other test video streams. Figure 4.11 shows the % 

error of the Quality and Load values estimated by the models from the actual measurements, 

which are only 4% and 2% respectively, demonstrating accuracy of the models. Please note 

that the DWVFS algorithm proposed later is independent of how these models are developed. 

 

 

Figure 4.11 Accuracy of functional quality and work load models for three test videos of Wild life, 
Soccer and Mobile sequence. 

 

 

4.5.1.2 Thermal Model 

In this subsection, we describe our assumptions for thermal model that is incorporated 

in DWVFS. We discussed the thermal formula in equation (4.2) for a time period in which the 

power consumption is constant. Silicon power consumption is primarily composed of two 

components: dynamic, 𝑃!"# and static 𝑃!"#; 

𝑃 = 𝑃!"# + 𝑃!"# 
(4.29) 
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The dynamic power is proportional to the hardware work load 𝐿  as well as its 

frequency and voltage squared: 

𝑃!"# ∝ 𝑉!𝑓𝐿 
(4.30) 

 

The static power is proportional to the platform voltage and leakage current where the 

leakage current itself increases exponentially with increase in temperature [BS00]. 

𝑃!"# ∝ 𝑉!𝑓𝐿 
(4.31) 

 

where 𝛼 is the exponential proportionality coefficient and 𝛩 is the temperature in degree 

Celsius. Therefore, based on equation (4.2) and equation (4.29) through equation (4.31), we 

get the following formula for estimating the junction temperature of the platform after a time 

interval of Δ𝑡 with initial temperature of 𝛩∗ and the ambient temperature of Θ!: 

𝛩 Δ𝑡 = 𝛩∗ + 𝛩! − 𝛩∗ + 𝐾!𝑉!𝑓𝐿 + 𝐾!𝑉𝑒!!
∗ 1 − 𝑒!

!!
!  (4.32) 

 

The model provided in equation (4.32) follows the same characteristics mentioned in 

Section 4.4 for thermal contour lines (Figure 4.7). When 𝐶! < 𝐶! (𝐿 is variable) then the 

contour lines are decreasing and when 𝐶! > 𝐶! (𝐿 is constant at 100%) the contour lines are 

vertical. The next step is to find the coefficients of the model described in equation (4.32) for a 

given platform. These coefficients are extracted for a MacBook Air (test platform) by 

stressing it in different conditions and using curve fitting methods. Figure 4.12 displays the 

plots of the model provided in equation (4.32) and the measured temperature of this test 

platform in different operating conditions. Each curve on the plot corresponds to different 

frequency/voltages of the platform where these levels are predefined by manufacturer. The 

mean squared root errors (MSRE) of the model vs. measurements are about 1 degree Celsius. 
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Figure 4.12 Measured and modeled junction temperature of MacBook Air platform with Core2 Duo 
processor at 100% work load. 

 

 

4.5.2 Online DWVFS Steps 

Figure 4.13 shows the pseudo code of the online steps for the joint dynamic work and 

voltage/frequency scaling method which involves selecting the application’s parameter and 

platform’s voltage/frequency. The following paragraphs describe the proposed algorithm. 

The algorithm selects the application parameter from a set 𝑷 = {𝑝!, 𝑝!,… , 𝑝!}, sorted 

in decreasing order of computing requirement ( 𝐶! 𝑝! > 𝐶!(𝑝!) > ⋯ > 𝐶!(𝑝!) ). The 

frequency is also selected from a set 𝑭 = {𝑓!, 𝑓!,… , 𝑓!} sorted in increasing order (𝑓! < 𝑓! <

⋯ < 𝑓!). The outputs of the DWVFS algorithm are the new application parameter 𝑝, and 

platform’s frequency 𝑓. The voltage of the platform is predefined for each frequency level. 

The proposed algorithm is a combination of two nested searches in the directions of 

computing capacity and computing requirement (horizontal and vertical axes respectively in 

Figure 4.9). We have mentioned that the temperature of the platform is an increasing function 

with respect to its computing capacity (equation (4.11)).  We use this property and run a 

binary search in the direction of computing capacity over the temperature function, 𝛩 𝐶! ,𝐶! , 

as the inner search loop. In fact, the inner loop is based on Lemma 1 and the algorithm uses 
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the thermal model to identify the points that are closest to the critical temperature contour line 

(𝛩 𝑝, 𝑓 ≤ Θ!). Please note the computing capacity is represented by platform’s frequency in 

Figure 4.13. 

 

 

Figure 4.13 Pseudo code of DWVFS algorithm (online steps). 
 

 

Then the selection process completes with a linear search in the direction of 

computing requirement over the quality function, Q 𝐶! ,𝐶! , as the outer loop. Computing 

requirement is represented by the application parameter in Figure 4.13. Since 𝑷 is sorted in 

decreasing order of computing requirement, the outer loop sweeps the critical temperature 

contour line in the direction of point 𝑎 to point 𝑏 in Figure 4.9. By using functional quality 

model, it compares the functional quality of the points on 𝜃! contour line, 𝑝, 𝑓 , and ends as 

soon as the quality drops. At the end, we have identified all the points on the critical 

temperature contour line (𝐶!!  in Figure 4.9) and selected the point which produces the 

maximum functional quality among them (𝐶!! and 𝐶!! intersect in Figure 4.9). 

The proposed DWVFS algorithm is correct for both types of applications in Figure 

4.9. For the first type of application (𝜕𝑄 𝜕𝐶! > 0), Theorem 1 says the solution is the point 
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on the 𝜃!  contour line with the highest computing requirement. As we mentioned, this 

algorithm sweeps computing requirement in the decreasing order from point 𝑎 to 𝑏. In the first 

iteration, it chooses the parameter with the highest 𝐶! and the frequency which is located on 

𝜃! contour line. In the next loop iteration, algorithm compares the next point of critical 

temperature contour line and since it has smaller quality than the first point (Theorem 1), the 

algorithm ends. For the second type of application, Theorem 2 claims that the functional 

quality increases from point 𝑎 and somewhere in middle of 𝜃! contour line it drops. Again the 

algorithm captures the same behavior and finds the solution provided in Theorem 2. The 

above discussion shows that the DWVFS algorithm finds the solution for both types of 

applications and is correct by construction. 

The proposed DWVFS algorithm has a time complexity of 𝑂 𝑛𝑙𝑜𝑔 𝑚 , where n is 

the number of values of application parameter, and m is the number of available frequency 

levels for the platform. Since the value of n is not large for typical applications (for e.g., 11 

and 10 for the H.264 encoder and Turbo decoder respectively), and the value of m for typical 

platforms is small (like 5 for the MacBook Air platform), the algorithm can execute in real 

time. For example, the execution of the algorithm takes about 10 to 15 micro Seconds on the 

test platform depending on the CPU frequency; it is less than 0.04% of the decoding time for 

one H.264 frame. In the next section, we have used different DTM methods and shown the 

efficacy of DWVFS compared to other DTM methods. 

4.6 Experimental Results 

In this section, we show how the proposed thermal management technique can be 

used on two different real-time applications, namely a video encoder and a Turbo decoder. 

First, we briefly introduce the experimental setup that is used in this research. Then we discuss 
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the results of applying the proposed thermal management algorithm on the video encoder and 

Turbo decoder. 

4.6.1 Experimental Setup 

We evaluated the proposed thermal management technique using a MacBook Air 

laptop with an Intel Core2 Duo dual core processor, 2GB of RAM and a solid state disk. The 

operating system is Mac OS X 10.5. The laptop has a fan and a heat sink, which help with 

thermal control; however, they are not sufficient while running highly compute-intensive 

applications, as shown in the following sub-section. The speed of the fan can reach up to 6200 

rounds per minute. During all of our experiments, the fan operated at the maximum speed 

constantly. 

The platform provides 8 different frequency levels. The four main frequency levels 

are 1200, 1400, 1600, and 1800 MHz. In addition, by enabling an internal clock divider we 

can set platform frequency to 600, 700, 800, and 900 MHz. The selection of voltage level for 

each of these frequency levels are given by the vendor as specified in Table 3.3. 

For dynamic voltage and frequency scaling based thermal management, we used the 

two frequency levels of 1200MHz and 1800MHz. The reason for this selection is twofold. 

First, as mentioned in [KS04], effective thermal management is possible with only two 

frequency levels. In addition, the test results show that, having more number of frequencies 

reduces the application functional quality. 

The temperature sensor in the platform reports the temperature with one degree 

Celsius accuracy up to 103 degrees. If the temperature rises over 103 degrees, it reports the 

constant value of 103. Therefore, for temperatures above 103, we extrapolated the curves in 

the plots. 
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4.6.2 H.264 Video Encoder 

The first application used in this study is an H.264 video encoder. We used an open 

source and highly efficient implementation of the H.264 standard called x264 [X264]. The 

application parameter used for controlling video encoder’s computing requirement is the 

constant rate factor (CRF). CRF is the default rate control method of x264 which tries to 

achieve the same perceptual quality throughout a video stream [W264]. The CRF parameter 

can vary from 0 to 51, where a CRF of 0 produces a lossless compression and a CRF of 51 

produces the lowest quality result. We chose a range from 16 to 36 for CRF, with an 

increment of 2. It is evident that increasing CRF will decrease the computing requirement and 

vice versa. 

To measure the functional quality, we used peak signal to noise ratio (PSNR), which 

is one of the most widely used video quality metrics. To calculate PSNR, the original video 

stream is compared to the encoded video stream and the difference is measured in dB. 

The video encoder’s behavior is highly dependent on its input stream. For example, 

encoding a video stream with very little motion is less complex and easier than a high motion 

video stream. We used different video streams to capture this dependency. The first video 

stream is called wild life. Figure 4.14 shows the results of encoding the wild life clip when 

different thermal management algorithms are used. 

Figure 4.14(a) shows the temperature vs. time using different thermal management 

methods. As mentioned in Section 4.6.1, temperatures above 103oC cannot be measured by the 

platform’s temperature sensor. The dots in the plot are the projected values for temperature 

which cannot be read from the sensor. The critical temperature in this test is 80oC. As shown 

in Figure 4.14(a), all the DTM algorithms are able to control the temperature around the 

critical temperature. However, this comes with different penalties in the video quality. Figure 
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4.14(b) shows the measured quality of the video stream over the duration of the encoding 

process. As we can see, DWVFS based thermal management produces better quality 

compared to DWS and DVFS. In addition, DWS produces better quality compared to DVFS at 

all times. Figure 4.14(c) and (d) show the selection of frequency and CRF for different DTM 

algorithms. In the absence of DTM, the platform always runs with the maximum frequency 

and nominal CRF of 21. Comparing DWVFS with DWS and DVFS, we can see that DWVFS 

utilizes a combination of scaling frequency and CRF. Initially, DWVFS reduces the CRF 

(leading to higher quality) and as time passes it increases the CRF (leading to lower quality) 

for thermal management purposes. Concurrently, it also decreases the frequency in order to 

control the temperature while achieving higher quality. As depicted in Figure 4.14(c) and (d) 

the amount of increase in CRF in the case of DWVFS is not as much as in the case of DWS. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.14 Results of encoding wild life video clip with H.264 encoder using different thermal 
management algorithms. (a) Effects on the temperature. Due to thermal sensor limitation, it cannot 
report values more than 103 degree Celsius. NoDTM* plot is the projection of temperature as it rises. 
(b) Effects of different DTM methods on the encoding quality. (c) Frequency levels used during 
different thermal management algorithms. (d) CRF values used during different thermal management 
algorithms. 
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Figure 4.15 Normalized average of the selected CRF and frequency values with different DTM and 
video streams. 

 

Since the complexity and quality of a video encoder is highly dependent on the video 

stream, we used three video clips to compare the thermal management techniques. Figure 4.15 

shows the normalized averages of the selected CRF and frequency values. Normalized average 

of selected frequency is the ratio of the average frequency used during a video encoder run to 

the nominal frequency of the platform (1.8GHz). Since the CRF has inverse correlation with 

the video quality, we have used the ratio of the nominal CRF to the average of the selected 

CRF values as the normalized average CRF. As depicted in Figure 4.15, in the absence of any 

DTM algorithm, processor is always at its highest frequency and CRF is constantly at its 

nominal value. When DVFS is used, the CRFs for all the streams are still at the nominal 

values but the average frequencies can go as low as 80% of the nominal frequency depending 

on the stream. On the other hand, the frequency is always at the nominal value when DWS is 

in use for all the streams but the average CRF used varies. The plot for DWVFS is always in 

between DVFS and DWS for both frequency and CRF. This means that DWVFS uses each 

control knob moderately to ensure that the drop in quality is minimized. Eventually, the 

different selection of CRF and frequency in the different DTM techniques leads into different 

stream quality, as shown in Figure 4.16. 
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Figure 4.16 Visual quality of the different video streams under different thermal managements. 
As depicted in Figure 4.16, the maximum quality drop due to the thermal management 

is about 10 dB. However, DWVFS helps to maintain a higher video quality and reduces the 

negative effects of thermal management. In addition, we should note that the high quality in 

the absence of DTM has been achieved with the price of increasing the processor’s 

temperature over 110oC. In practice, this will not happen if thermal protection is enabled, 

since a thermal management technique would be triggered when the platform reaches a 

maximum allowed temperature. 

4.6.3 Turbo Decoder 

The second application we used to verify the proposed thermal management scheme is 

a Turbo decoder used in a Turbo coding based hybrid automatic repeat request (HARQ) 

[YLD03] communication system. Figure 4.17 shows the block diagram of the HARQ Turbo 

coding system. HARQ is a hybrid method that uses both forward error-correcting (FEC) codes 

and ARQ error controlling mechanism. In ARQ, the data is sent with some error detecting 

(ED) code bits such as parity bits or cyclic redundancy check (CRC) bits [SPM06]. When the 

receiver detects an error in the data stream using ED codes, it requests a re-transmission.  On 

the other hand, FEC codes help to not only find errors in the bit stream but also help to correct 

the errors to some extent. In HARQ, the receiver first tries to detect and correct errors using 
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the FEC codes. If the bit stream is not successfully retrieved using FEC codes, then the 

receiver requests re-transmission. The receiver communicates with the sender through ACK or 

NACK messages (Figure 4.17). 𝑋! is the source information. The Turbo encoder produces 

two series of parity bits: 𝑃!! and 𝑃!!. The information and parity bit symbols go through the 

channel and the noisy information and parity symbols  𝑥′! , 𝑝′!! , 𝑝′!!  are received by the 

decoder. We considered an additive white Gaussian noise (AWGN) channel with a noise 

distribution of 𝑁 0,𝜎! , with 𝜎 = 0.95. The decoded bits are denoted by 𝑋!. 

 

 

Figure 4.17 Block diagram of the Turbo coding system. 
 

 

In our experiments, we focus on the Turbo decoder in the receiver side. Figure 4.18 

shows the block diagram of the Turbo decoder. In this figure, 𝐿(𝑋!) is the likelihood of 

finding the source information, 𝑋!. The Turbo decoder uses an iterative algorithm; every 

iteration of the loop increases the likelihood of finding the correct source information. 

Eventually, a decision will be made whether to request for a retransmission or the decoding is 

successfully completed. 

The number of decoder iterations is the application parameter that is used in the DWS 

and DWVFS. The functional quality of Turbo decoder application is its effective throughput. 

The effective throughput is the number of decoded bits, 𝑋!, per second. We have used the 

terms effective throughput and throughput interchangeably throughout this dissertation. When 

the platform gets too hot, by dropping the number of iterations, we reduce the work load and 

hence the platform temperature drops (Figure 4.19). However, by reducing the number of 
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iterations, the likelihood of correctly decoding source information decreases and we need 

more retransmissions. Higher number of retransmissions translates to a drop in the decoder’s 

throughput. Therefore, the objective is to maximize the decoder’s throughput while controlling 

the platform temperature. In this exercise, the frame size is 4701 bits and the interleaver is 

designed based on the UMTS standard [UMTS00]. 

 

Figure 4.18 Turbo decoder block diagram consisting of two MAP decoders. 
 

 

 

Figure 4.19 Effect of changing the number of iterations in the Turbo decoder on its throughput and 
temperature. 

 

 

Figure 4.20 shows the quality vs. temperature contour plots for the Turbo decoder. 

The contour plots for the video encoder were presented earlier in Figure 4.5. As shown in 

Figure 4.5 and Figure 4.20, the contour plots of the video encoder and Turbo decoder follow 

the general shape that we discussed in Figure 4.7 and Figure 4.8. 



 

 

127 

Figure 4.21 shows the results of running the Turbo decoder with different thermal 

management algorithms on the MacBook Air platform. As shown in Figure 4.21(a), the 

platform becomes very hot (over 100oC) without thermal management which can deteriorate 

the reliability of the platform, necessitating the use of thermal management. Figure 4.21(a) 

also shows that all the DTM methods control the temperature to the specified critical 

temperature of 75oC. However, as we see in Figure 4.21(b), different DTM methods affect the 

effective throughput of the decoder differently. Figure 4.21(c) and (d) show how the average 

values of frequency and application-level parameter (number of decoder iterations) vary 

across DTM algorithms. We see that in the case of DWVFS, the average frequency is higher 

than DVFS and average number of decoding iterations is higher than DWS. This suggests that 

DWVFS uses the best of both knobs to ensure that the functional quality, i.e., throughput, is 

maximized. 

 

 

Figure 4.20 Contour plots of (a) functional quality of turbo decoder measured as throughput in bps, (b) 
platform temperature while running turbo decoder. 
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(a) (b) 

  
(c) (d) 

Figure 4.21 Results of running the Turbo decoder using different thermal management algorithms. (a) 
Effect on temperature. (b) Effect of different DTM methods on the Turbo decoder throughput. (c) 
Average of frequency levels used by different thermal management algorithms. (d) Average number of 
decoder iterations by different thermal management algorithms. 

 

Figure 4.22 compares the throughput of different DTM methods. In this scenario, the 

throughput of DVFS is better than DWS. However, DWVFS again achieves the best results 

compared to other DTM methods. According to this figure, the throughput can drop by about 

33% by using DWS but with the help of DWVFS the drop is limited to 22% only. In fact 

DWVFS improves the throughput by 8% and 33% compared to DVFS and DWS based DTMs 

respectively. 
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Figure 4.22 Effects of different DTM methods on the throughput of the transmission. 
 

 

4.7 Conclusion 

In this research, we showed how joint dynamic work/complexity scaling of real time 

applications could be used as a new DTM method. We analyzed the effects of the platform’s 

computing capacity and the application’s computing requirements on both the platform’s 

temperature and the application’s functional quality. We showed how one can use these 

parameters to achieve a quality-optimized DTM. In addition, we formulated and analytically 

solved the optimization problem. We also proposed a fast algorithm to implement DWVFS. 

In this research we only considered DVFS as the mechanism to change the computing 

capacity. However, there are other parameters that can be used to vary computing capacity, for 

example, the number of active cores. Moreover, we only considered one parameter to scale the 

application’s complexity.  

In future work, the proposed approach can be extended to a) cover other mechanisms 

to vary computing capacity such as throttling number of CPU cores, b) have multiple 

parameters affecting the workload of the application at the same time, and c) scenarios when 

multiple real-time applications are running on the platform concurrently. 
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Appendix 

In this section we present the necessary background needed to conclude the Corollary 

I-IV in Section 4.4. 

Proposition 1. For a two-variable function such as 𝑓 𝑥, 𝑦 , a contour line that is 

extracted from 𝑓 𝑥, 𝑦 = 𝑐  can be represented parametrically by the following equation 

[HA84b]: 

𝑥 = 𝑥 𝑡
𝑦 = 𝑦 𝑡  (4.33) 

 

Proposition 2. For a differentiable parametric curve such as equation (4.33), the slope 

of the curve is equal to [HA84a]: 

𝑑𝑦
𝑑𝑥

=
𝑑𝑦 𝑑𝑡
𝑑𝑥 𝑑𝑡

 (4.34) 

 

Theorem A1. The slope of contour lines of a differentiable two-variable 

function𝑓(𝑥, 𝑦) can be extracted from the function’s partial derivatives and is equal to: 

𝑑𝑦
𝑑𝑥

= −
𝜕𝑓 𝜕𝑥
𝜕𝑓 𝜕𝑦

 (4.35) 

 

Proof. A contour line is extracted from the equation: 𝑓 𝑥, 𝑦 = 𝑐. 
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Considering Proposition 1 and getting the derivate of the above equation with respect 

to parameter of 𝑥 𝑡  and 𝑦 𝑡 , we have: 

𝑑
𝑑𝑡

𝑓 𝑥, 𝑦 = 𝑐   
Chain Rule

    
𝜕𝑓
𝜕𝑥

𝑑𝑥
𝑑𝑡

+
𝜕𝑓
𝜕𝑦

𝑑𝑦
𝑑𝑡

= 0   ⇒     
𝑑𝑦 𝑑𝑡
𝑑𝑥 𝑑𝑡

= −
𝜕𝑓 𝜕𝑥
𝜕𝑓 𝜕𝑦

 

Eq. (3.34)
    
𝑑𝑦
𝑑𝑥

= −
𝜕𝑓 𝜕𝑥
𝜕𝑓 𝜕𝑦

∎ 

 

Theorem A2. If the sign of partial derivatives of a two-variable function does not 

change in a region, and at least one of the partial derivatives is non-zero, then the contour lines 

of the function do not cross each other. 

Proof. Without loss of generality, we consider 𝜕𝑓 𝜕𝑥  is the non-zero partial 

derivative. We will prove this theorem by contradiction. Assume two contour lines 𝐶! and 𝐶! 

cross each other at point 𝑥!, 𝑦!   (Figure 4.23). Therefore, the value of the function is equal 

to 𝑓 𝑥!, 𝑦!  at any point on contour lines 𝐶! and 𝐶!. Assume a new point on 𝑦 axis 𝑦! > 𝑦!. 

Therefore the point (𝑥!! , 𝑦!) is on the contour line 𝐶! and point (𝑥!! , 𝑦!) is on the contour line 

𝐶!. Since these points are on the contour lines, then by definition we conclude: 𝑓 𝑥!! , 𝑦! =

𝑓 𝑥!! , 𝑦! = 𝑓 𝑥!, 𝑦! . 

From basic calculus we know if the value of a differentiable function is the same in 

two points, either the slope of the function is zero or the function has at least one extremum 

between the two points. If it is the former, it contradicts the initial assumption of non-zero 

partial derivative for 𝜕𝑓 𝜕𝑦. If it is the latter, the existence of an extremum means that the 

sign of the slope changes in this region which also contradicts the initial assumption of the 

proof.∎ 
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Figure 4.23 Two contour lines 𝐶! and 𝐶! crossing at the point 𝑥!, 𝑦! . 
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Chapter 5  

Conclusions and Future Directions  

This chapter summarizes the contributions made in this research in addition to some 

recommendations for future research.  

As process variations increase in significance and magnitude, the cost of hiding them 

through hardware over-design will become prohibitive. In chapter 2, we investigated 

application adaptation as a strategy to deal with hardware that is impacted by variations, and 

demonstrate it through real-time video encoding. Given that the net impact of variations is to 

reduce the computing capability (performance) of the underlying hardware, we adapt 

applications to proportionally reduce their computational requirements while preserving their 

run time, visual quality and bit rate as much as possible. We identified and characterized the 

effect of encoder parameters on run time, video quality, and bit rate of the encoded video. We 

described an adaptation algorithm that could select the best values of the parameters to 

maintain real-time performance under variation degraded frequency of hardware, while 

satisfying specified quality and bit rate constraints. We implemented the proposed approach 

for a very efficient implementation of H.264, x264, on two different hardware platforms – an 

embedded platform (Beagleboard) with the ARM Cortex A8 processor, and a server platform 

with the Intel Core i7 processor. Our measurements showed that the proposed adaptation 

approach can tolerate up to 30% in frequency degradation, while being able to sustain encoded 

video quality to near-identical levels and incurring tolerable overhead in bit rate. 
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Due to limitations of cooling methods such as using fan and heat sink, dynamic 

thermal management (DTM) is being widely adopted to manage the temperature of computing 

systems. However, application of DTM can reduce the system performance, and thereby affect 

the quality of real-time applications. Real-time video encoding, which has high computational 

need and hard deadlines, is a commonly used application that can be severely affected by the 

usage of DTM. In chapter 3, we studied the effect of DTM on a widely used H.264 video 

encoder, and formulated a multi-dimensional optimization problem to maximize video quality 

and minimize bit rate while ensuring that the video encoder can run in real-time in spite of 

DTM effects. We modeled the effects of adapting encoding parameters on video quality, bit 

rate, and encoder speed.  We proposed a dynamic application adaptation method to efficiently 

solve the optimization problem by optimally adapting the encoding parameters in response to 

DTM effects. In addition, we showed that the proposed dynamic application adaptation 

method would reduce the need for cooling methods such as forced convection cooling. We 

implemented the proposed approach on an Intel® CoreTM 2 Duo platform where dynamic 

voltage and frequency scaling (DVFS) is used for DTM. Our measurements with several 

videos reveal that when DTM is applied, the video quality is affected significantly. However, 

using the proposed adaptation algorithm, the encoder can run in real-time, and the quality loss 

is minimized with only a marginal increase in the bit rate. 

In chapter 4, we focused on real-time applications in which degradation in 

performance translates to a loss in application quality, and addressed the problem of quality-

optimized DTM, wherein the objective of DTM is to satisfy specified temperature constraints 

while optimizing application quality metrics. We first introduced a new DTM method called 

Dynamic Work Scaling (DWS), which is based on modulating an application’s computational 

requirements. Next, we observed that application quality and platform temperature are 
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effectively determined by two key parameters, viz. the application’s computational 

requirement and the platform’s computing capacity, and formulated the relationship between 

them. Finally, we proposed a quality-optimized DTM based on joint dynamic work and 

voltage/frequency scaling (DWVFS). We have implemented the proposed DTM technique and 

evaluated it for two applications: H.264 video encoding and Turbo decoding. Our results 

demonstrated that DWVFS can provide superior results in terms of application quality 

compared to both DVFS and DWS based DTM at identical temperature constraints. 

We studied a scenario where a single application is using most of the platform’s 

computing capacity in chapter 3. For future work, it would be very interesting to study a 

scenario where multiple compute-intensive applications are running on the platform 

simultaneously, each having significant influence on the thermal characteristics of the 

platform. When multiple applications are being considered, maximizing the quality of all the 

applications (or their aggregate quality) must also be considered, while ensuring the joint 

impact of each of the applications’ runtime is below their specified timing criteria. This would 

lead to a multi objective problem with a set of pareto opitmal solutions. 

Extending single application problem to multi applications problem can be applied to 

the proposed solution in chapter 4 as well. However, there is a big difference between the 

implementation of the solutions of these two problems. The solution provided in chapter 3 is a 

reactive technique and only affects the application it is dealing with. Therefore, it can be 

adapted easier for multiple applications since each application adaptation decision could be 

made independently. However, the solution provided in chapter 4 is a proactive technique 

meaning it changes the DVFS decisions while adaptation decisions are being made. Therefore 

a centralized solution is needed that can consider all applications and hardware DTM and 

make proper decisions for all of them concurrently.  
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Finally, we showed in chapter 3 that application adaptation could help to reduce the 

cooling efforts. One interesting problem would be to include the cooling efforts into the 

optimization problem and introduce a problem that maximizes application quality while 

minimizes the cooling cost using application adaptation. It is shown that application 

adaptation can work very well in a hybrid solution for thermal management; therefore, we 

expect it to be a good candidate to be used in a hybrid solution that minimizes the cooling cost 

as well. 
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