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Abstract

How does globalization impact the interaction between percep-
tion and language? Building on Berlin and Kay’s foundational
study of color naming, we recruited 2,280 online participants
speaking 22 different languages. We show that color naming
maps differ structurally across languages, even among inter-
net users living in (mostly) industrial societies. We use Large
Language Models (LLMs) to simulate the limits of globaliza-
tion by reproducing the naming task with a highly multilin-
gual artificial agent with access to global digital information.
We show that while the LLM has access to all languages, it
has language-specific color representations and the number of
color terms is correlated across humans and LLMs. However,
LLMs use more color terms than humans, indicating differ-
ences in the representation. These results suggest that global-
ization has not removed cultural distinctions in color concepts,
as language continues to be a key factor in the diversity of per-
ception and meaning.

Keywords: Culture, Cross-linguistic analysis, Color naming,
Large language models, Language and Thought

Introduction
Characterizing the role of culture in shaping cognition is one
of the fundamental questions in cognitive science (Barrett,
2020; Henrich, Heine, & Norenzayan, 2010). Culture is influ-
enced by many factors, including language (Blasi, Henrich,
Adamou, Kemmerer, & Majid, 2022; Kramsch, 2014), val-
ues (Inglehart, Basanez, Diez-Medrano, Halman, & Luijkx,
2000; Triandis, 2018), and economy (Fine, 2016; Henrich et
al., 2001). More recently, globalization, as well as the spread
of information over the internet, have had an increasing im-
pact on societies around the world (Barrett, 2020; Pieterse,
2019). Here, we study the effect of globalization on cogni-
tion using the paradigmatic case of color terms.

Color concepts are a classic domain for studying the in-
teraction between language and perception across cultures
(Whorf, 2012). This is exemplified by the seminal works of
Berlin and Kay (1969) and the World Color Survey (WCS;
Kay and Cook 2016) on characterizing basic color concepts
in written and unwritten languages, respectively. Their key
findings are that a) speakers of different languages produce
different color maps when describing the same set of col-
ors using their respective basic color terms, and b) there is
a large overlap between color maps in languages that share
the same number of basic color terms. Surprisingly, there
is no large-scale, standardized, contemporary color-naming
data at a global scale investigating industrialized languages.

The largest color naming study, the World Color Survey (Kay
& Cook, 2016), had fairly standardized procedures for each
language but focused on collecting data for unwritten lan-
guages, mostly from small-scale societies. Majid et al. (2018)
collected data from 20 languages but did not focus on indus-
trialized (or written) languages. They used a different set
of stimuli than the WCS, and participants were allowed to
use broader vocabulary (not only color terms). Many other
contemporary studies that did collect some data from writ-
ten languages are either not publicly available or cover only
a few languages, each with different methodologies (for ex-
ample Lindsey & Brown, 2014; Al-rasheed, 2014; Davies &
Corbett, 1994; Kuriki et al., 2017; Ozgen & Davies, 1998;
Thierry, Athanasopoulos, Wiggett, Dering, & Kuipers, 2009;
Zollinger, 1984; Winawer et al., 2007; Berlin & Kay, 1969).
Furthermore, even if color-naming data were available for
written languages, it is still difficult to define a suitable con-
trol class that could reflect high levels of globalization and
multilingualism. As a result, the effect of globalization on
color naming has yet to be tested at scale.

To address this, we leverage Lucid1, a non-traditional di-
verse recruiter, to collect color-naming data for 22 languages
with a unified methodology. The Lucid recruiter provides ac-
cess to significantly larger participant pools from a diverse
range of countries and languages than most traditional re-
cruitment platforms such as Amazon Mechanical Turk or Pro-
lific. We also use multilingual state-of-the-art Large Lan-
guage Models (LLMs, here GPT-4; Achiam et al., 2023) and
Vision Language Models (VLMs, here GPT-4V) that have
been trained on virtually all digitally available text in many
languages (as well as a large number of images in the case of
the VLMs) as a control class to simulate the ultimately glob-
alized agent (highly multilingual, heavily exposed to the in-
ternet, with access to digital content from around the world).

We find that even among internet users, we still see struc-
tural variation in the number of basic color terms and maps
across languages. Even when using LLMs and VLMs to
simulate the limits of globalization, we see analogous dif-
ferences when the agents are queried in different languages.
Taken together, our findings demonstrate how online ex-
periments can be coupled with recent advances in machine
learning to better understand classical questions in cogni-

1A service provided by CINT https://www.cint.com/
2339

In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

https://www.cint.com/


Color Naming MapsA Global recruiting in 22 languagesB Free naming of 330 color chipsC

Пожалуйста, определите ц
вет выше, используя часто 
используемое имя цвета.上記の色は一般的に使われて
いる色名で識別してください。

일반적으로�사용되는�색상 
이름을�사용하여�위의�색상을 
식별하세요.Please identify the color above 

using a commonly-used color 
name. 
blue next

330 color chips

Ejagham (World Color Survey)

Mazahua (World Color Survey)

2,280 participants

1. Arabic � (n=77)
2. Danish � (n=65)
3. Dutch � (n=65)
4. English � (n=302)
5. Finnish � (n=65)
6. French � (n=90)
7. German � (n=229)
8. Greek � (n=213)
9. Hungarian 	 (n=73)
10. Indonesian 
 (n=68)
11. Italian � (n=205)

12. Japanese � (n=64)
13. Korean 
 (n=66)
14. Norwegian �  (n=40)
15. Polish �  (n=75)
16. Portuguese �  (n=86)
17. Russian (n=141)
18. Slovak �  (n=63)
19. Spanish � (n=79)
20. Swedish � (n=63)
21. Turkish � (n=76)
22. Vietnamese � (n=75)

Figure 1: A 330 Munsell color chips and color maps on different locations exhibiting different numbers of color categories. B
Worldwide recruitment in 22 different languages. C Participants were asked to name the color chip using a basic color term.

tive science. We provide an interactive visualization of
our data here: https://global-colors.s3-eu-central
-1.amazonaws.com/index.html.

Background
The World Color Survey

Berlin and Kay (1969) collected color naming data on 320
chromatic and nine non-chromatic Munsell chips (Lenneberg
& Roberts, 1956; see Figure 1A) from speakers of 20 lan-
guages in the Bay Area. The majority of these speakers were
bilingual. In a follow-up project, the “World Color Survey”
(WCS), linguists and anthropologists from around the world
studied color naming patterns in 110 unwritten languages,
many of them in small societies. Here, participants provided
color-naming responses for a set of 330 Munsell chips. This
study concluded that having “basic colors” – a small set of
commonly used color terms – is universal. The systems of
color terms themselves, however, varied greatly across lan-
guages. Nevertheless, they showed that languages with sim-
ilar numbers of basic color terms tend to have similar map-
pings of terms to colors. Based on this, Berlin and Kay sug-
gested that systems of color terms develop from the simplest
two color-term systems to more complex color systems with
up to eleven color terms (Berlin & Kay, 1969; Kay & Cook,
2016).

Subsequent theoretical work provided an alternative inter-
pretation of the WCS findings. According to Regier, Kay,
and Khetarpal (2007), the results of the WCS can be ex-
plained from two principles: a) a universally shared visual
system, and b) an “efficient” organization of the lexicon. This
idea was further developed by Zaslavsky, Kemp, Regier, and
Tishby (2018), proposing a unified formalization of “effi-
ciency” using information theory. According to Zaslavsky
et al., efficient communication between speakers is character-
ized by an optimal trade-off between the complexity of the
lexicon (as measured by the number of color terms) and the
accuracy of communication.

Despite the impact of the World Color Survey, the data
in the survey is limited to unwritten languages, mostly from
small-scale societies and non-industrial countries. Languages
with many speakers, such as English, Spanish, French, and
Portuguese, are missing from the survey. Part of the motiva-
tion for this omission was a concern that systems of color

terms in industrial societies may have converged to simi-
lar structures as a result of contact through globalization
(this probably was also the motivation for language selec-
tion in Majid et al. (2018)). Data for these languages do
exist in the literature but are scattered over different papers
with variations in methodology (for example Forbes, 1976;
Josserand, Caparos, Pellegrino, & Dediu, 2022; Lindsey &
Brown, 2014; M. Xu, Zhu, & Benı́tez-Burraco, 2023).

Several follow-up studies have further tested the findings of
the WCS in a number of other languages and complementary
paradigms. Most of these studies involved a small number
of languages (e.g., English: Lindsey & Brown, 2014; Ger-
man: Zollinger, 1984; Greek: Thierry et al., 2009; Turk-
ish: Ozgen & Davies, 1998). It is also well documented
that some languages have greater diversity in terms of their
shades of blue, in particular, Russian, Hebrew, and Italian
(Winawer et al., 2007; Cerqueglini, 2021; Paggetti, Menegaz,
& Paramei, 2016). Winawer et al. (2007) showed that Russian
and English speakers differ not only in their color terminol-
ogy, but also in the speed and accuracy of their discrimination
of shades of blue.

Interestingly, several studies showed evidence for changes
in the number of color terms within periods of just a few
decades. For Japanese, for example, Kuriki et al. (2017)
have reported that a large number of color categories have
significantly evolved in less than fifty years. It was also pro-
posed that the basic color term “pink” is being borrowed
from English. In another paper, Gibson et al. (2017) docu-
mented changes in the number of color terms produced by
Tsimane’ participants in the Bolivian Amazon and attributed
these changes to industrialization due to the increased use of
diversely-colored artificial objects and growing cultural ex-
change.

This leads us to hypothesize that increased cultural ex-
change through globalization might lead to an increase in the
number of color terms. For example, companies like “Or-
ange” might introduce global concepts of colors adding or
changing existing basic color terms. Subsequently, languages
might align their color vocabulary stepwise towards the most
influential language in a particular region or global languages
such as English and Spanish in a way that influences not only
niche color terms such as “navy” or “magenta”
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Large Language Models
Large language models (LLMs) are a class of deep learn-
ing models that have powered a lot of the recent progress
in natural language processing and machine learning more
broadly (Devlin, Chang, Lee, & Toutanova, 2018; Achiam et
al., 2023). Beyond their impact on machine learning, LLMs
have drawn considerable attention in the cognitive sciences
(Hardy, Sucholutsky, Thompson, & Griffiths, 2023) due to
their flexible prompt comprehension capabilities, which al-
low them to effectively simulate human participants (Marjieh,
Sucholutsky, Sumers, Jacoby, & Griffiths, 2022; Marjieh,
Rijn, et al., 2023; Acerbi & Stubbersfield, 2023; Dillion, Tan-
don, Gu, & Gray, 2023) and to serve as a control class against
which human behavior can be contrasted.

LLMs are particularly interesting from the perspective of
the study of the interaction between perception and language
(Chen, Sucholutsky, Russakovsky, & Griffiths, 2024). This
is because these models are trained on a substantial chunk
of human language and can be used to interrogate the lim-
its of perceptual information that can be extracted from lan-
guage. Marjieh, Sucholutsky, Rijn, Jacoby, and Griffiths
(2023) showed that GPT variants can deliver accurate psy-
chophysical judgments across six perceptual modalities. In
a subsequent experiment, the authors also showed that when
GPT-4 is subjected to a limited color naming task in English
and Russian analogous to the one discussed in the present
work, GPT-4 successfully replicated cross-cultural variation
in the blue color categories. Zooming out further, a new
line of research situates LLMs within a broader lens of “ma-
chine culture” (Brinkmann et al., 2023), namely, as interact-
ing agents that mediate cultural processes and innovation. As
such, the question of what kind of human cultures are ap-
proximated by such agents becomes imperative (Atari et al.,
2023). Indeed, by administering questions from the World
Values Survey (WVS) to GPT, Atari et al. (2023) showed that
GPT’s responses aligned best with those of Western, Edu-
cated, Industrialized, Rich, and Democratic (WEIRD) soci-
eties. The observed WEIRD bias of LLMs and their ability to
flexibly capture the implications of linguistic variation makes
them an ideal control class for studying the effect of global-
ization on color concept representations. However, LLMs can
behave quite differently from humans. For example, they are
exposed to a wealth of data from the web from many cultures
and might have a single representation for color, leading to
similar color maps across all languages. It might also be that
due to the rich training data, LLMs behave more like human
professionals such as painters or designers, resulting in color
maps containing highly specified color terms. This compari-
son will be the focus of the remainder of the paper.

Methods
Recruiting
We recruited participants from two different crowdsourc-
ing platforms: Prolific2 and Lucid. Lucid currently sup-

2https://www.prolific.co

ports the recruitment of participants speaking 73 different
languages and makes it possible to target speakers in their
native language (whereas Prolific has a limited number of
supported languages, and all communication on Prolific is
in English). We integrated Lucid recruiting with our open-
source framework for designing complex online experiments,
PsyNet (Harrison et al., 2020)3.

Participants
Participants interact with the study via a user interface in
their browser. Prior to participating, all participants gave in-
formed consent in accordance with the Max Planck Ethics
Council (application 2021-42) approved protocol. To partic-
ipate in our study, participants had to speak the language as
their mother tongue, be raised monolingually, hold nation-
ality, and be born in the target country. Before starting the
task, participants had to pass a vocabulary test (van Rijn et
al., 2023) to make sure they were indeed speakers of the des-
ignated language. Data of color-blind participants were ex-
cluded from the analysis based on the results of a color blind-
ness test (Clark, 1924; Harrison et al., 2020). We collected
data from 25 groups (21 in Lucid and 4 in Prolific, with 22
unique languages across both recruiters; see Figure 1B). We
recruited between 40 and 229 participants per group (mean:
91.2, sd: 41.7). Altogether, we collected data from 2,280 par-
ticipants (Lucid: 1,763, Prolific: 517). The mean age across
all participants was 42 (sd: 15) and 31% of the participants
have at least a Bachelor’s degree. The wage per hour was
adapted to the local minimal wage.

Procedure
In accordance with the literature, the participants were pre-
sented with 330 Munsell color chips (Cook, Kay, & Regier,
2005). To prevent fatigue, each participant was only pre-
sented with a random subset of 50 color chips.

The prompt had to match the following criteria: First, it
had to be general enough to be precisely translated into all
languages. Second, the prompt needed to convey the con-
cept of basic color terms to restrict the responses and facil-
itate comparison with the literature. Third, we applied the
same prompt for human and LLM agents. We tested vari-
ous wordings to get responses that elicited reasonably con-
strained results both from GPT and humans. Thus, we con-
verged on the following: “Please identify the color above us-
ing a commonly used color name. The color name should be
the one you would normally use in everyday life to describe
that color. Avoid using compound words. The color name
should be a single word” (see Figure 1C). Since we did not
have access to specialists for each language, and in order to
maintain translation quality, the prompt was then translated
by a professional translation service to all 22 languages4. To
guarantee high-quality translations, this service involves an
initial translation process and validation by a different trans-
lator from the same language. Overall, we collected 121,108

3PsyNet is available here: https://www.psynet.dev/.
4https://www.translated.com
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naming responses from the participants (Mean number of an-
swers per color chip: 13.2 ± 6.4).

Language Models
We conducted our LLM experiments with OpenAI’s GPT-4
(Achiam et al., 2023) using the Microsoft Azure OpenAI API
(version 0613 of the model). The majority of our GPT-4 ex-
periments were conducted using the default temperature pa-
rameter (0.7). We first presented GPT-4 with the following
system prompt in English to prepare the model for the exper-
iment: “Follow all instructions that users provide to you in
their own language. Respond to users in their own language
using only a single word and no other text. Do not use any
compound words.” For every language and every color, we
would then query GPT-4 with the corresponding translation
of the following user prompt: “COLOR: <hexcode> Please
identify the color above using a commonly-used color name.
The color name should be the one you would normally use in
everyday life to describe that color. Avoid using compound
words. The color name should be a single word.” Since GPT-
4 responses are stochastic at non-zero temperatures, we sam-
pled 50 responses for every color for each language.

For our corresponding experiments with a Vision Lan-
guage Model (VLM), we used OpenAI’s GPT-4V (version
gpt-4-vision-preview on Microsoft Azure’s OpenAI API).
We similarly first presented GPT-4V with the same system
prompt as GPT-4 (for all languages but English as the model
would otherwise get confused about which language to re-
spond in). We would then query GPT-4V with a Base64 en-
coded image containing only a square of the relevant color
and the relevant translation of the same user prompt as GPT-4
with the first line containing the hex code removed. Due to
low rate limits, we could only sample a single response per
color per language so we conducted these experiments with
temperature set to zero to elicit the most probable response.

Preprocessing
Since participants and LLMs provided free text, the responses
had to be processed. We excluded responses that contained
spaces, digits, or punctuation marks. Furthermore, the word
had to be written in the expected script (e.g., a Russian color
term in Cyrillic). We performed lemmatization to remove
word variants (Barbaresi, 2024) and replaced them with the
most common variant. In the next steps, we removed dia-
critics (e.g., “rosá” to “rosa”) and replaced characters with
smaller units in Korean (Hangul) and Japanese (Katakana)
to detect the same word written differently. For character-
based languages, we also removed the word “color” since
the word was often added to the color term. We replaced all
variants under the same simplified form with the most com-
mon variant. To detect compound words, we identify the top
color terms (occurring in > 1% of all responses) and check
all other color terms for whether they end with this term. If
they do and also co-occur, we replace the compound word
with the top color term. For example, in Dutch, we would
replace “donkerblauw” (dark blue) with “blauw” (blue). For

all words, we look up their word frequency in a large text cor-
pus (Speer, 2024). Words that do not occur in the corpus are
unlikely to be color terms “you would normally use in every-
day life” and are likely to be typos. For each of the typos,
we obtain a list of color terms it co-occurs with. For each of
those terms, we compute the Levenshtein Distance (Seatgeak,
2024) and merge if they match (score > 80%). We exclude all
color terms that are used less than five times in total. For all
minority colors (occurring less than 1% of all responses), we
merge them with the majority color it co-occurs most with.
Terms without co-occurrence are removed. Terms are only
removed if this would not lead to removing all color terms in
one chip (e.g., if a particular term is used only for one chip
and never for the remaining 329 chips). Since we only have a
single response per chip from GPT-4V, we did not apply the
pipeline to the VLM.

Results
Human Data
Figure 2A shows the English color maps obtained from Pro-
lific and Lucid and compares them to the maps by Lindsey
and Brown (2014). In these maps, each chip is colored by
the majority vote for this particular chip. We plot the color
of the region associated with a term to be the average color
(in RGB space) across all winning chips. As indicated by the
legends, participants mention similar color categories. The
Adjusted Rand Index (ARI) is a measure of how similar dif-
ferent clusterings are (Hubert & Arabie, 1985). We found
a high ARI between Lindsey and Brown (2014) and Prolific
and Lucid (.72 [.67, .77] and .67 [.62, .72], respectively, CIs
via bootstrapping). We further found that for languages that
were tested on both recruiters (English, Italian, and Greek),
the ARIs were also high (.70 [.65, .74], .61 [.56, .66], and
.63 [.57, .68], respectively). Overall, we found the split-half
ARI value for all languages to be high (range: .61-.80, mean:
.69 sd: .05), with some exceptions in Korean (.42), Japanese
(.43), and Norwegian (.56). These findings suggest that the
human maps were reliable, and our findings are consistent
with prior literature for English. As a sanity check, we also
validated the plausibility of the answers with native speakers
of 10 of the 20 languages.

Figure 2B provides a few examples of color maps for lan-
guages other than English. We showed that while Dutch still
resembles the English color maps (.70 [.65, .76]), Italian (.59
[.55, .63]), Russian (.55 [.49, .60]), and Japanese (.42 [.38,
.46]) show a more distinct pattern with more differentiation
between light blue colors (Winawer et al., 2007). In Ital-
ian, for example, we see a distinction between three shades
of blue: “blu”, “azzurro”, and “celeste”. Comparing the dis-
tance between maps within our dataset and WCS we observed
that the mean ARI of our online groups is higher (.64 [.43,
.85]) than within the color maps of the WCS (.43 [.18, .68]),
suggesting that our color maps were more uniform compared
with the WCS. The ARIs across both datasets were signifi-
cantly lower (.30 [.05, .55]) than within the newly collected

2342



Human vs GPT-4 color mapsC

Korean (Lucid)

Vietnamese (Lucid)

Korean (GPT-4)

Arabic (Lucid) Arabic (GPT-4)

Vietnamese (GPT-4)

German (GPT-4)German (Lucid)

,(84) اخضر ,(38) بنفسجي,(42) بني,(46) ازرق ,(29) وردي
,(18) احمر,(18) اصفر ,(12) برتقالي ,(7) اسود رمادي (7), زيتي (6),
ابيض (6), سماوي (4), موف (4), نبيتى (3), بيج (2), رصاصي (2),
بمبى (2)

أخضر (36), أزرق (32), ,(32)بنفسجي ,(27)تركواز
بني (26), ,(21)سماوي ,(21)أرجواني وردي (21), ,(17)برتقالي
,(16)زهري ذهبي (14), ,(11)بيج ,(10)فستقي ,(8)زيتوني
رمادي (8), فضي (7), أحمر (7), بحري (5), أسود (4),
زرقاء (4), أصفر (3)

English color mapsA

English (Lucid)

English (Linsey & Brown, constrained)

English (Prolific)

English (Linsey & Brown)

11 colors: green (93), blue (63), purple (46), pink (26), 
white (21),  brown (20), orange (18), yellow (15), red (14), 
black (8), gray (6)

14 colors: green (90), blue (66), purple (43), pink (26), 
white (21), brown (19), yellow (16), orange (15), red (13), 
black (8), gray (6), peach (4), maroon (2), lavender (1)

10 colors: blue (90), green (81), pink (44), purple (38), 
brown (24), orange (14), yellow (10), black (10), grey (10), 
red (9)

12 colors: green (87), blue (75), pink (48), purple (45), 
brown (23), orange (13), grey (11), yellow (10), black (7), 
red (6), lilac (4), teal (1)

non-English color mapsB
Dutch (Lucid)

Italian (Lucid)

Russian (Prolific)

Japanese (Lucid)

13 colors: groen (87), blauw (66), paars (42), roze (32), 
bruin (28), rood (20), geel (13), oranje (12), grijs (12), 
zwart (10), lila (5), wit (2), rose (1)

10 colors: xanh (148), tím (47), hồng (41), nâu (26), 
vàng (23), cam (15), xám (11), đỏ (10), đen (6), trắng (3)

16 colors: 녹색 (65), 보라색 (50), 분홍색 (42), 갈색 (39), 
파란색 (24), 하늘색 (17), 회색 (17), 노란색 (13), 청색 (12), 
주황색 (11), 검정 (8), 초록색 (8), 빨강 (7), 연두색 (6), 
민트색 (6), 남색 (5)

13 colors: grün (87), blau (71), lila (43), rosa (34), 
braun (28), rot (19), gelb (14), orange (11), grau (11), 
schwarz (7), beige (2), weiß (2), pink (1)

11 colors: xanh (140), tím (51), hồng (34), vàng (23), 
cam (22), đỏ (16), nâu (15), trắng (12), đen (9), lục (5), 
beige (3)

24 colors: 녹색 (40), 분홍색 (32), 갈색 (31), 하늘 (29), 자주 
(25), 청록 (24), 민트 (20), 보라 (14), 회색 (13), 남색 (13), 
베이지 (12), 파랑 (11), 노랑 (9), 황금 (7), 연두 (7), 라일락 (7), 
빨강 (7), 주황 (6), 살구 (5), 초콜릿 (5), 황토 (5), 와인 (5), 
초록 (2), 검정 (1)

18 colors: türkis (55), blau (42), grün (38), rosa (37), 
lila (30), braun (23), gold (21), oliv (14), pflaume (13), 
orange (11), burgunder (11), grau (9), pfirsich (8),
rot (5), mint (5), beige (4), schwarz (3), silber (1)

19 colors: むらさき (51), 青色 (48), みどり (47), 茶色 (44), ピ
ンク (36), 緑色 (29), 水色 (14), 黄色 (12), 赤色 (11), 黒色 (10), 
灰色 (10), オレンジ (7), 紺色 (3), みずいろ (2), 桃色 (2), 黄土
色 (1), 深緑 (1), グレー (1), 青緑 (1)

16 colors: зеленый (98), розовый (40), голубой (30), 
синий (30), коричневый (23), серый (15), оранжевый 
(13), желтый (13), бирюзовый (12), красный (8), 
сиреневый (7), черный (5), бежевый (4), бордовый (4), 
лиловый (1)

14 colors: verde (85), viola (50), rosa (42), marrone (28), 
azzurro (28), blu (26), giallo (14), grigio (14), arancione 
(11), nero (11), celeste (11), rosso (8), verdino (1), lilla (1)

18 colors: 21 colors:

Figure 2: Example color maps. The number after the color term indicates the number of chips. Human color maps: A Different
color maps were collected on Prolific and Lucid and by Lindsey and Brown (2014). Data reproduced with permission. B
Collected maps for Dutch, Italian, Russian and Japanese. C Comparison of languages in humans and GPT-4. All maps can be
viewed interactively on: https://global-colors.s3-eu-central-1.amazonaws.com/index.html.

data and the WCS (p < 0.001 for both cases via the Mann-
Whitney U test), highlighting the difference between the two
datasets.

Importantly, the number of color terms in our new data
was significantly larger on average (8.54 [5.94, 11.13]) com-
pared to the WCS (5.71 [2.57, 8.85], p < 0.001 via the Mann-
Whitney U test), where we computed the number of color
terms by computing the exponent of the entropy on all chips
(Figure 3A x-axis). This is in line with the proposal of Gibson
et al. (2017) that industrial societies exhibit a larger number
of color terms. However, a broader set of languages needs to
be examined to more clearly separate the effects of these and
other demographic factors. Furthermore, we found that the
variance in the number of color terms in the new data (1.32)
was smaller but still amounts to 83% of the variance in the
WCS (1.60). This suggests internet users still use varying
numbers of color terms to describe colors.

Human and Large Language Models Comparison
Figure 2C shows examples of human and LLM color maps
from the same language. While the maps look qualitatively
similar and have similar color terms for the same language,
GPT-4 maps exhibit a larger number of color terms.

To quantify this effect, we plotted in Figure 3A the num-
ber of color terms and the number of distinct responses per
chip. We found that the newly collected color maps (red) vary
in their number of color terms but are significantly higher
(mean: 8.5, SD: 1.3) than the WCS color maps (mean: 5.7,
SD: 1.6; p < 0.001). Furthermore, we see that both GPT-4
(dark blue) and GPT-4V (light blue) contain more color cate-
gories than humans. The vertical-axis of Figure 3A represents

the average consensus (number of distinct responses) within
each chip. The WCS data showed the most diverse consensus,
while GPT-4 provided far fewer distinct answers compared
with our new human data. Due to the way the experiment was
conducted (see Methods), GPT-4V always provided a single
answer.

In Figure 3B we compare the number of color terms per
language for GPT-4 and humans. We found that the number
of color categories is significantly smaller in humans com-
pared to GPT-4 and GPT-4V (Wilcoxon signed rank test:
t(24) = 5.0, p < 0.001, and t(24) = 3.0, p < 0.001). However,
we see that the number of color categories is correlated across
GPT-4 and humans (r = .39), indicating that languages with a
small number of categories in humans (such as Vietnamese)
also tend to have fewer categories in GPT-4. Also, on a sin-
gle language level, humans fairly overlap with the labels pro-
posed by GPT-4 (mean: 59%, SD: 16%), and the overlapping
colors occur at a similar frequency except for Arabic (r = .06)
and Dutch (r = .32) (.44-.90, mean: .65, SD: .13).

In a follow-up analysis, we computed the average word fre-
quency (Speer, 2024) of the colors chosen by humans and
those by GPT-4 and weighted them by the frequency of the
color category (Figure 3C). We found that the color categories
proposed by GPT-4, on average, are less frequent words in
that language compared to the color terms used by humans
(t(24) = 53.0, p = 0.002) but still highly correlated (r = .70).
To illustrate the effect in English, we measure the distance be-
tween the colors in RGB space for Lucid and GPT-4 (Figure
3D). While human participants restrict themselves to basic
color terms such as “yellow”, “red”, or “blue”, GPT-4 uses
colors such as “peach”, “bronze”, “gold”, “olive”, “mint”,

2343

https://global-colors.s3-eu-central-1.amazonaws.com/index.html


English (Lucid)

English (G
PT-4)

Color entropyA

0 2 4 6 8 10 12 14 16 18 20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

# 
re

sp
on

se
s 

pe
r c

hi
p

# color terms

World Color Survey

Human data

GPT-4

GPT-4V

Korean (Lucid)
Japanese (Lucid)

Arabic (Lucid)

Russian (Prolific)

Greek
Italian (Lucid)

Vietnamese (Lucid)

Similar number of terms in GPT-4 and humansB Example in EnglishD
r = .39

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Human

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
PT

-4
 n

um
be

r c
ol

or
 te

rm
s

ItalianEnglish

Greek

Russian

Indonesian
Hungarian

Korean

Japanese

Polish

Arabic

Vietnamese

Norwegian

GPT-4 uses less frequent color termsC

−15.0 −14.5 −14.0 −13.5 −13.0 −12.5 −12.0 −11.5 −11.0
Human weighted word frequency (log)

−15.0

−14.5

−14.0

−13.5

−13.0

−12.5

−12.0

−11.5

−11.0

G
PT

 w
ei

gh
te

d 
w

or
d 

fre
qu

en
cy

 (l
og

)
Arabic

Danish

German

Greek
English

Spanish

Hungarian
Indonesian

Japanese

Korean
Dutch

Polish
Russian

Slovak

Swedish

Italian

Turkish

Vietnamese

red
peach

orange
brown

bronze
beige
gold
olive

black
green

mint
teal

turquoise
navy
blue
grey
lilac

purple
burgundy

pink
maroon

red
orange
brow

n
yellow
black
green

blue
grey

purple
pink

RGB color distance 0 305
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weighted by the frequency of the color term. D Comparison of color terms in humans (Lucid) and GPT-4 for English.

“navy”, “burgundy”, and “maroon”. These results suggest
that because GPT-4 lacks common sense knowledge of what
should be conveyed in everyday conversation and is mainly
exposed to written text, it uses color terms that are uncom-
mon in everyday language (Zaslavsky et al., 2018; Regier &
Kay, 2009).

Discussion
Our recruiting technology allowed us to recruit participants
from 22 languages across the world. Even though we tested
online participants with considerable access to the internet
and global media, the results exhibited significant diversity in
color maps and the number of color terms. Shades of blue, for
instance, were differentiated in some languages (e.g., Italian,
Russian, and Japanese) but not in others (e.g., Dutch and En-
glish). Some languages showed a large number of color terms
(e.g., Korean) while others had a smaller number (e.g., Viet-
namese). We also found that participants recruited from our
internet pool had more color terms, on average, than WCS
participants who were recruited from small-scale societies.
This supports the idea that globalization and industrialization
contribute to an increase in the number of color terms (Gibson
et al., 2017). Similarly, we found that GPT agents exhibited
a diversity in vocabulary size. Across languages, we found
a correlation between the number of color terms in humans
and GPT. GPT, however, almost always produced maps that
contained more color terms than humans. Furthermore, GPT
tended to use less frequent words than humans such as ma-
roon and burgundy. These results suggest that globalization
has not homogenized cultural distinctions, as language con-
tinues to be a key factor in the diversity of perception, even
for online participants and machine learning agents with mul-
tilingual training.

Our work has limitations that point toward future research
directions. First, there are some inherent differences between
the online color naming task and its in-lab equivalent. Specif-
ically, there is no control or calibration of the color presenta-
tion, and the physical apparatus of color chips typically used
in WCS has no online equivalent. However, the fact that we
found consistency with the in-lab data in English suggests
that these approaches are compatible, and future work should
look into that more systematically. Second, while 22 lan-
guages is a substantial set, our sample does not have enough
representation of the global South, in particular, South Amer-
ica and Africa (Barrett, 2020; Blasi et al., 2022). We believe
that covering such locations should be possible with our re-
cruitment strategy, and we plan to follow up on that in the
near future. Third, our analysis was focused on data at the
population level, but it is reasonable to assume that there is
some degree of variation in color concepts across individuals
from within the same culture (Lindsey & Brown, 2014). Our
sample size was not sufficient to probe individual-level vari-
ation in color naming, however, this should be feasible with
larger online recruitment batches. Fourth, color naming is
only one out of multiple possible experimental paradigms for
studying color representations. It remains to be seen whether
other paradigms such as color discrimination (Winawer et
al., 2007), serial reproduction (J. Xu, Dowman, & Griffiths,
2013), and similarity judgments (Marjieh, Sucholutsky, et al.,
2023) would lead to similar conclusions. In particular, dis-
crimination experiments can identify the contribution of per-
ceptual sensitivity. We hope to engage with all of these di-
rections in future work. More broadly, our work showcases
how progress in online, diverse recruiting and advances in
machine learning can be harnessed to revisit classical cogni-
tive science questions.
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