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Abstract

Memory-Centric Accelerators for Genome Analysis

by

Wenqin Huangfu

Genome analysis benefits precise medical care, wildlife conservation, pandemic treat-

ment, e.g., COVID-19, and so on. Unfortunately, the speed of data processing in genome

analysis lags far behind the speed of data generation and hardware acceleration turns

out to be necessary. As many key applications in genome analysis are memory-bound,

the computation-centric accelerators, e.g., CPU, GPU, and FPGA, face the challenges

of limited memory bandwidth and frequent data movement, which leads to sub-optimal

performance and energy efficiency.

To address these challenges, this dissertation focuses on exploring efficient memory-

centric accelerators for genome analysis, including designs and optimizations in both

hardware and software. This dissertation proposes four memory-centric accelerators for

genome analysis, covering both the emerging memory technology, i.e., ReRAM, and the

conventional memory technology, i.e., DRAM. By performing in-situ computation inside

the emerging memory array to leverage massive parallelism and eliminate data movement,

the proposed emerging memory technology based design provides ultra-high performance

and energy efficiency. As a comparison, by integrating the processing elements near the

conventional memory array to utilize extra memory bandwidth and reduce data move-

ment, the proposed conventional memory technology based designs highlight practicality

and cost-effectiveness without making any modifications to the cost-sensitive DRAM dies.

Multiple key applications in genome analysis are covered in this dissertation, including

k-mer counting, DNA seeding, and DNA pre-alignment.
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Chapter 1

Introduction

Genome analysis is getting more and more attention, due to its important usage

in evolutionary studies [1], wildlife conservation [2], disease understanding [3], precise

medical care [4], and so on. In reality, genome analysis is closely related to people’s

health and daily lives. For example, genome analysis is useful in understanding and

designing optimal drug cocktail for cancer-causing mutations [5]. In addition, genome

analysis also helps a lot in dealing with the Coronavirus Disease 2019 (COVID-19) [6,7],

which infects and causes death to millions of people around the world after its outbreak

in 2019.

In the past 30 years, with the rapid development of the Next Generation Sequencing

(NGS) technology [8], the cost of genome sequencing reduces faster than the Moore’s

law. According to the National Human Genome Research Institute (NHGRI), as shown

in Figure 1.1, the cost of genome sequencing reduces 882065x over the past 20 years,

outpacing the Moore’s law [9]. Due to the reduced cost of genome sequencing and the

large amount of sequencing data required for precise medicine [10], the growth rate of

genome data also becomes faster than the Moore’s law [11]. According to the National

Center for Biotechnology Information (NCBI), as shown in Figure 1.2 (a), the amount

1
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Figure 1.1: Genome sequencing cost, i.e., dollars per mega bases, over the past 20 years.

of genome data in the GenBank database grows 1725589x over the past 30 years, which

is faster than the Moore’s law [12]. Similarly, as shown in Figure 1.2 (b), the amount of

genome data in the Whole Genome Shotgun (WGS) project grows 22286x over the past

20 years, which also outpaces the Moore’s law [12].
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Figure 1.2: (a) Genome amount in the GenBank database over the past 30 years. (b)
Genome amount in the WGS project over the past 20 years.

Illumina, i.e., a leading company for genome sequencing, expects the data produced

in genome analysis to double every 12 months [13]. As shown in Table. 1.1, projecting

2
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Table 1.1: Data Growth Projection for Four Big Data Domains in 2025 [13]

Astronomy Twitter YouTube Genome Analysis
1EB per year 1PB to 17PB per year 1EB to 2EB per year 2EB to 40EB per year

to the year of 2025, genome analysis are going to produce much more data, i.e., 2 EB to

40 EB per year, than the amount of data produced in three other big data domains, i.e.,

Astronomy, Twitter, and YouTube [13]. This massive amount of data put forward great

challenges for the data processing in genome analysis [4,13]. For example, in 2025, variant

calling is going to require 2 trillion CPU hours per year and all-pairs genome alignments

is going to require 10,000 trillion CPU hours per year [13]. Unfortunately, the speed of

data processing in genome analysis lags far behind the speed of data generation [13]. As a

result, hardware acceleration turns out to be necessary for genome analysis [4,11,14,15].

1.1 Motivations

Due to the importance and time-consuming fact of genome analysis, various computation-

centric hardware approaches, such as multi-core [16–18], GPU [19–24], and FPGA [19,25–

29] have been explored to accelerate applications in genome analysis, e.g., k-mer count-

ing [19], DNA seeding [26], DNA pre-alignment [30], seed extension [23], and variant

calling [24]. However, innovations that only focus on the computation have limited space

for improvement of performance and energy efficiency, since many key applications in

genome analysis are memory-bound [19, 26, 30–32]. For example, the profiling results in

Fig. 1.3 quantitatively demonstrate that the bottleneck of DNA seeding is the memory,

instead of the computation. As Fig. 1.3 (a) shows, the DRAM access accounts for 60%

of the CPI stack analysis. The Load/Store instructions take 43.4% among the total in-

structions in Fig. 1.3 (b). The energy breakdown in Fig. 1.3 (c) shows that 49.4% of the

total energy consumption is consumed by the DRAM.

3
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Figure 1.3: Profiling the DNA seeding in BWA-MEM [33] with Sniper [34] and config-
uration in Table 4.1: (a) CPI stack; (b) Instruction statistics; (c) Energy breakdown.
(© 2019 IEEE)

As a comparison, the memory-centric architecture, including the Processing-In-Memory

(PIM) architecture and the Near-Data-Processing (NDP) architecture, focuses on op-

timization of the memory. It integrates the computation and the memory closely to

embrace the larger internal memory bandwidth and reduce the overhead of data move-

ment [35–37].], leading to better performance and energy efficiency for memory-bound

applications. Thus, the memory-centric architecture is also a promising candidate for

these memory-bound applications in genome analysis [30,38,39].

1.2 Challenges

Although the memory-centric architecture is promising to accelerate the memory-

bound applications in genome analysis, there are four significant challenges in designing

memory-centric accelerators for genome analysis:

4



Introduction Chapter 1

Fine-Grained Random Memory Access: Many applications in genome analysis

involve fine-grained memory access [4,11,19,33,40], leading to memory bandwidth under-

utilization and performance degradation in the computation-centric architectures. For

example, for FM-index based DNA seeding and k-mer counting, only 32 Bytes data and

1 bit data is actually used for each 64 Bytes data from one memory access [19, 40, 41],

indicating that the actual memory bandwidth utilization is only about 50% and 0.2% for

these two applications. The memory bandwidth under-utilization leads to performance

degradation for these memory-bound applications [4, 11].

In addition, the memory access patterns are usually random for these applications.

For example, we profile the Last-Level Cache (LLC) miss rate for the FM-index based

DNA seeding, showing 32.5% on average and up to 93.24% peak miss rate. The high LLC

miss rate indicates that the memory access patterns are highly random and it’s difficult

to leverage data locality for these applications.

Inter-Task Divergence: The behaviors of different tasks in these applications highly

depends on the data and are divergent. For example, the profiling results for FM-index

based DNA seeding in Fig. 1.4 show that the majority of the elemental seeding task

(90%) spreads from 2.5µs to 42µs (16× difference) with a long tail effect that 3% of the

tasks run longer than 74µs and up to 7.6ms. The inter-task divergence makes the SIMD

accelerators inefficient and unsuitable for genome analysis [11,36].
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Requirement for Efficient Scalability: The requirements of memory capacity for

different applications in genome analysis vary significantly, depending on the specific

application to work on, the dataset to deal with, the algorithm to use, and the parameters

of the algorithm. For example, BWA-MEM uses 64GB memory for FM-index based

DNA seeding in [42] and SMUFIN needs near 2TB memory for k-mer counting in [19].

To ensure the memory-centric accelerators for genome analysis can be used for different

scenarios, it’s important to provide efficient scalability without harming the performance

and energy efficiency.

Emerging Memory Technology vs. Conventional Memory Technology: Memory-

centric architectures can leverage both the emerging memory technology, e.g., ReRAM [43],

STT-RAM [44], and PCRAM [45], and the conventional memory technology, e.g., DRAM [46]

and SRAM [47]. The emerging memory technology based designs often have the potential

to provide ultra-high performance and energy efficiency by enabling in-situ computation

inside the emerging memory array [43]. As a comparison, the conventional memory based

designs usually highlight practicality and cost-effectiveness by placing the processing el-

ements near the conventional memory array [36]. How to design efficient memory-centric

accelerators for genome analysis based on these two types of memory technologies and

maintain their key advantages is an important question.

1.3 Contributions

The goal of this dissertation is to explore the memory-centric architecture for genome

analysis, covering designs and optimizations in both hardware and software. Meanwhile,

we have addressed the related challenges, i.e., fine-grained random memory access, inter-

task divergence, requirement for scalability, and efficient designs for both the emerging

memory technology and the conventional memory technology.

6
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Specifically, we have one emerging memory technology, i.e., ReRAM, based PIM

accelerator design.

• RADAR (Chapter 3), which leverages the high memory bandwidth, high energy

efficiency, and the ability to perform in-situ parallel comparison operations within

the 3D ReRAM crossbar to accelerate DNA alignment.

In addition, we also have three conventional memory technology, i.e., DRAM, based

NDP accelerator designs.

• MEDAL (Chapter 4), a Dual-Inline-Memory-Module (DIMM) based NDP acceler-

ator, which utilizes the extra intra-DIMM memory bandwidth to efficiently accel-

erate DNA seeding by placing the processing elements within the DIMM. Without

making any modifications to the cost-sensitive DRAM dies, MEDAL is practical

and cost-effective.

• NEST (Chapter 5), which combines the proposed architecture-specific k-mer count-

ing algorithm, workflow, and optimizations with the DIMM based NDP architec-

ture, to efficiently accelerate k-mer counting.

• BEACON (Chapter 6), which migrates the DIMM based NDP architecture to the

dis-aggregated memory pool with the CXL support to provide efficient scalability

and communication for k-mer counting, DNA seeding, and DNA pre-alignment.

The memory-centric architectures proposed in this dissertation explore both the

emerging memory technology, i.e., ReRAM, and the conventional memory technology,

i.e., DRAM. Different applications in genome analysis, i.e., k-mer counting, DNA seed-

ing, DNA pre-alignment, and DNA alignment, are covered.

To conclude, we propose novel memory-centric architecture designs and optimizations

for genome analysis to leverage the high memory bandwidth and reduce data movement,

7
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leading to significant performance improvement and energy reduction. The proposed ar-

chitectures highlight the contributions to provide efficient accelerators for genome anal-

ysis, while maximizing the key advantages of the emerging memory technology, i.e.,

ultra-high performance and energy efficiency, and the conventional memory technology,

i.e., practicality and cost-effectiveness.

8



Chapter 2

Backgrounds and Related Work

In this chapter, we first introduce the backgrounds about genome analysis and memory-

centric architectures. Then, we present the related work of the hardware acceleration for

genome analysis.

2.1 Genome Analysis

Genome analysis is becoming more and more important, since it sets up the founda-

tion of disease understanding [3], precise medical care [37], wildlife conservation [2], and

so on [3]. As shown in Fig. 2.1, we notice that three key applications in genome analysis,

i.e., DNA seeding [11,26,31], k-mer counting [4,17,48], and DNA pre-alignment [30,39,49],

are good candidates for memory-centric architecture due to two reasons [11,31,48]: First,

they only involve very simple arithmetic operations, e.g., integer addition and 2 bit com-

parison. Second, they are memory-bound and require lots of fine-grained random memory

access, e.g., 1 bit useful data per memory access for k-mer counting. The following sub-

sections present the details of these three applications.

9



Backgrounds and Related Work Chapter 2

Seed ExtensionDNA Seeding Pre-alignment

TTGCGA...

CAGCTG...

GCGATT...
…...

An Example Pipeline of Genome Analysis

Memory-Centric Architectures

Genomic 

Variants
k-mer counting Variant Calling

Error Correction DNA Alignment Variant Calling

Simple Arithmetic Ops + Memory-Bound

Figure 2.1: An example pipeline of genome analysis.

2.1.1 k-mer Counting

In genome analysis, the frequency information of k-mers, i.e., DNA sub-sequences

with length of k, in the sequencing data is needed for many applications, including

de novo genome assembly, repeat identification, error correction, variant calling, and

so on [19, 32, 50]. For example, during DNA error correction, if a k-mer appears only

once in the sequencing reads, this k-mer is assumed to contain sequencing errors and

are converted to other k-mers with higher frequencies via error correction [48]. k-mer

counting occupies a significant portion of the runtime in many genome analysis workflows.

For instance, as shown in Fig 2.2, k-mer counting is the most time consuming step in the

de novo genome assembly, consuming nearly half of the total runtime in the pipeline [17].

47.84% 12.07% 12.5% 27.59%

k-mer counting Enumerating positive extensions

Constructing cFP Assembly

De Novo Assembly Pipeline 

Figure 2.2: Time breakdown of the de novo assembly. k-mer counting dominates the
runtime. (© 2020 IEEE)

Next, the data structures related to k-mer counting, i.e., Bloom filter and Counting

Bloom filter, are introduced. Then, the workflow of k-mer counting is presented.

Bloom Filter: Bloom filter is a space efficient data structure based on hash table and

it supports efficient membership checking [51, 52]. In k-mer counting, Bloom filter is

used to determine whether a k-mer is unique or not, i.e., if a k-mer appears more than

once in the dataset or not. Bloom filter consists of a bit array with the capacity of m
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and involves n independent hash functions. The bit array is initialized with zeros. To

insert an item into the Bloom filter, n independent hash values are computed and the

corresponding entries in the bit array are written to ones. To check the existence of an

item, n independent hash values are computed and the corresponding entries are checked

to see if they are all ones. If some of the Bloom filter entries are zeros, this item is not in

the Bloom filter for sure. On the other hand, if all entries in the Bloom filter are ones,

this item is supposed to be in the Bloom filter with a low rate of false positive.

Counting Bloom Filter: Instead of storing a bit array, a counting Bloom filter [53]

contains an array with small counters. For example, with an array of 4-bit counters, the

counting Bloom filter is able to handle counts from 0 to 15. Similar to the Bloom filter,

to insert an item into the counting Bloom filter, n independent hash values are computed

and the corresponding entries in the counter array are increased by one. To lookup

the counter of an item, n independent hash values are computed and the corresponding

entries are read out. The smallest hash value read out is assumed to be the counter of

the target item.

k-mer Counting: k-mer counting refers to the process of counting the occurrences of

DNA substrings with length of k in the sequencing data. An example of k-mer counting

is shown in Fig 2.3, the frequencies of different 3-mers are derived after k-mer counting.

ATC TCT CTC CTA TAG
1 2 1 1 1

k-mer counting

AGA
3

GAA
2

AAG
2

ATCTCTAGAAGAAGA

3-mer

Input 

Read

Counter

Figure 2.3: An example of k-mer counting. (© 2020 IEEE)

In the sequencing data, k-mers can be divided into two categories, i.e., unique k-

mers and non-unique k-mers. Unique k-mers refer to k-mers that appear only once in
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the sequencing data. Non-unique k-mers refer to k-mers that appear more than once

in the sequencing data. Because the unique k-mers are highly likely to be sequencing

errors [40,48] and, for some sequencing data, up to 75% of the k-mers can be unique [40],

k-mer counting often removes these unique k-mers and only counts the frequencies of non-

unique k-mers [19, 40]. The conventional k-mer counting usually includes the following

two steps [19,40]:

• Prune: With a chain of two Bloom filters, each time a k-mer comes in, check the

existence of this k-mer in the first Bloom filter. If this k-mer is in the first Bloom

filter, write this k-mer into the second Bloom filter. Otherwise, write this k-mer

into the first Bloom filter. After all k-mers have gone through this process, the

non-unique k-mers are stored in the second Bloom filter and the unique k-mers are

filtered out. The first Bloom filter can be discarded after this step.

• Count: For each input k-mer, check the existence of this k-mer in the second

Bloom filter constructed in the first step. If this k-mer is in the second Bloom

filter, increase the corresponding frequency counter in the hash table by one. After

all k-mers have gone through this process, the occurrences of the non-unique k-mers

are stored in the hash table.

2.1.2 DNA Seeding

DNA seeding refers to the process of matching seeds, i.e., small sequence fragments

chopped from a given read, back to the long reference genome. As one of the most

time-consuming step in DNA alignment, DNA seeding takes up to 48% of the runtime

for DNA alignment [11,26].

DNA seeding algorithms usually pre-build an index of the reference genome to speedup

the process of seed locating. FM-index [33, 54] and Hash-index [55] are the two main-
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stream seeding indexes used by modern DNA alignment tool. Both of the algorithms

can be preferable, depending on the combination of the seeding and the extension ap-

proach [55]. For example, FM-index based algorithm has good performance for BLAST-

like seed extension [55] and Hash-index has good performance for local alignment [55].

FM-index based DNA seeding and Hash-index based DNA seeding are introduced in

details below:

FM-index based DNA Seeding: The flow of the FM-index based seeding contains

the offline pre-processing, i.e, index building, and the online seed searching, i.e., seed

locating [33, 54]. During the pre-processing, the following data for the reference genome

R are calculated and prepared.

All Rotations

B :CT$AGACR

Reference Sequence:AGCTAC$

AGCTAC$

GCTAC$A

CTAC$AG

TAC$AGC

AC$AGCT

C$AGCTA

$AGCTAC

Sorted Rotations

$AGCTA C

AGCTAC $

C$AGCT A

CTAC$A G

GCTAC$ A

AC$AGC T

TAC$AG C

0

A
C
G
T

0 1 2 3 4C T $ A G

0
0
0 0

1
0
0 1

0
1
0

1
0
1
0

1
0
1
1

5A

1
1
1
1

6C

1
1
1
2

...

1
1
2
2S

R 6

4

0

1

2

3

5

B :CT$AGACR

RO

A C G T
1 3 5 6RC :

Sorted B : $AACCGTR

…...

Figure 2.4: An example of data structures in the FM-index based DNA seeding.
(© 2019 IEEE)

• BR[len]: the Burrows-Wheeler Transform [26] of R (BR);

• SR[len]: the Suffix Array (SA), i.e., record the original id of the sorted rotations

before sorting;

• CR[4]: the accumulative count array, i.e., the index of the first appearance of

A, T, C,G in the sorted BR;
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• OR[len+1][4]: the occurrence array, i.e., the occurrences of each nucleotide (A, T, C,G)

before the ith symbol of BR;

An example for the index building is shown in Fig. 2.4, the reference sequence is

AGCTAC. The algorithm first terminates the reference sequence with a unique character

$. Then, all rotations of the above character string are generated. Next, these rotations

are sorted in alphabet order. The last characters of all entries in the above sorted

rotations form the BR[len]. The SR[len] is also derived during this process. Finally, with

the BR[len] and the sorted BR[len], the OR[len+ 1][4] and the CR[4] can be generated.

Algorithm 1 FM-index based DNA Seeding (© 2019 IEEE)

Input: Query sequence SD[d], Reference genome R[len])
Output: Matching locations
Pre-process: Derive BR[len], SR[len], CR[4], and OR[len+ 1][4];
while I lower <= Iupper do

x← SD.getchar();
if x = EoF then

break
end if
I lower = CT [x] +OT [x][I

lower − 1];
Iupper = CT [x] +OT [x][I

upper];
end while
for I lower <= i <= Iupper do

Match location[i] = SR[i];
end for
Return Match location

During the online seed searching, the algorithm extends the current match by one

nucleotide each iteration, reading the CR and the OR to locate the range of matches until

no match can be found. Algorithm 1 shows the searching flow. I lower and Iupper represent

the first and the last index of the suffix sequence with the current prefix of SD in SR.

This range contains all occurrences of the current prefix of SD in R. I l(D) ≤ Iu(D) if

and only if there is at least one match in R.
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Hash-index based DNA Seeding: The Hash-index based DNA seeding enables fast

retrieval of fixed length seeds [55]. Similar to the FM-index based DNA seeding, the

Hash-index based DNA seeding also consists of the offline pre-processing and the online

seed searching. During the pre-processing, the starting positions of the k-mers in the

reference genome, where k is the length of the seed, are stored into the hash table.

During the seed searching, the k-mers are used as the inputs for the pre-built hash table

and the corresponding starting locations of these k-mers can be retrieved from the hash

table efficiently.

2.1.3 DNA Pre-alignment

As shown in Fig. 2.1, after the seed locating with DNA seeding, seed extension is

performed to check the similarity between the DNA segments extracted at these candidate

locations and the corresponding DNA sub-sequences in the reference genome [11,56].

Seed extension is computationally expensive and time-consuming. To reduce the

amount of candidate locations to be examined in seed extension, a filtering method called

DNA pre-alignment is adopted by DNA alignment tools [56]. DNA pre-alignment quickly

determines if a candidate location is valid or not by counting the number of matching

DNA bases between the query sequence and the reference genome near the candidate

location [49, 56]. Candidate locations with the nearby matching DNA bases below a

threshold are recognized as invalid candidate and thrown away to avoid performing the

expensive seed extension.

2.2 Memory-Centric Architectures

The memory-centric architectures can be classified as the Processing-In-Memory (PIM)

architectures and the Near-Data-Processing (NDP) architectures. The PIM architec-
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tures, the NDP architectures, examples for both of them, and their key features are

described in the following subsections.

2.2.1 Processing-In-Memory (PIM) Architectures

For the PIM architectures, in-situ computation can be performed within the memory

array to provide massive parallelism and eliminate data movement. For example, as a

PIM accelerator for neural networks based on the emerging ReRAM, PRIME enables

in-situ computation inside the ReRAM crossbars [43]. Similarly, as a multi-purpose

PIM accelerator based on the conventional DRAM, DRISA supports in-situ computation

inside the DRAM memory arrays [46].

The PIM architectures usually have ultra-high performance and energy efficiency be-

cause of the massive parallelism and eliminated data movement. On the other hand,

since the PIM architectures often leverages the emerging memory technologies, e.g.,

PRIME [43] and Pipelayer [57], or require invasive designs to the conventional memory

technologies, e.g., DRISA [46] and SCOPE [58], the PIM architectures usually require

relatively long time to be put into deployment.

2.2.2 Near-Data-Processing (NDP) Architectures

For the NDP architectures, the processing elements are integrated near the memory

array to leverage extra memory bandwidth and reduce data movement. For example, as

a NDP accelerator based on the Dual-Inline-Memory-Module (DIMM), Chameleon [36]

places the processing elements on the DIMM to perform computation near the memory,

i,e., the DRAM chips. Similarly, as a NDP accelerator for neural networks based on 3D-

stacked memory, i.e., Hybrid Memory Cube (HMC), TETRIS [59] places the processing

elements in the logic die of the HMC, which performs computation and communicates
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with the memory, i.e., the DRAM dies above, through the high-bandwidth Through-

Silicon Via (TSV).

Compared with the computation-centric architectures, the NDP architectures have

better performance and energy efficiency because of the extra memory bandwidth and

reduced data movement. Compared with the PIM architectures, the NDP architectures

usually don’t provide as good performance and energy efficiency, because the computa-

tion and memory are still separated as two parts. On the other hand, since the NDP

architectures often rely on and don’t require invasive designs to the conventional memory

technology, e.g., Chameleon [36] and AIM [37], the NDP architectures usually can be put

into deployment in a relatively short time.

2.3 Related Work

This subsection introduces the related work for the acceleration of genome analysis,

including the computation-centric accelerators and the memory-centric accelerators.

Computation-Centric Accelerators for Genome Analysis: Different computation-

centric accelerators, i.e., multi-core CPU [16–18], FPGA [19,25–28,60–64], GPU [19–24,

65, 66], and ASIC [14, 67], have been proposed to accelerate different applications in

genome analysis, including k-mer counting [16,17,19,19,20,25], DNA seeding [18,21,22,

26, 27, 60, 61], DNA pre-alignment [63, 66], seed extension [23, 28, 67], variant calling [24,

62, 65], read assembly [14, 64], and so on. For example, KMC2 is a multi-core CPU

based accelerator for k-mer counting, FHAST is a FPGA based accelerator for DNA

seeding [61], Gerbil is a GPU based accelerator for k-mer counting, and Darwin is an

ASIC design for read assembly [14].

Unfortunately, many key applications in genome analysis are memory-bound, e.g.,

k-mer counting, DNA seeding, and DNA pre-alignment, the computation-centric acceler-
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ators provide sub-optimal performance and energy efficiency due to the limited memory

bandwidth and the frequent data movement.

Memory-Centric Accelerators for Genome Analysis: For the emerging memory

technology, ReRAM has been explored to accelerate genome analysis. As an example,

ReCAM PRinS accelerate seed extension by performing in-situ associative computing in

the ReRAM crossbar [68]. Unfortunately, device endurance and storage efficiency are se-

rious issues in ReCAM PRinS, because associative computing in ReCAM PRinS requires

frequent write operations and uses 75% of the ReRAM cells to store the intermediate

data [69]. Hamdioui et al. proposes a ReRAM based PIM accelerator, which can be

used for DNA alignment [70]. However, this work isn’t specifically designed for genome

analysis, leading to its inefficiency in accelerating DNA alignment [70,71]. As a summary,

the previous emerging memory based accelerators for genome analysis have the issues of

limited device endurance, inefficient storage, and sub-optimal performance.

For the conventional memory technology, both the conventional DRAM and the 3D-

stacked DRAM have been explored to accelerate genome analysis. For the conventional

DRAM based work, AIM attaches FPGAs and dedicated buses to the DIMMs to accel-

erate DNA seeding [37]. However, AIM doesn’t leverage rank-level parallelism inside the

DIMMs, leading to limited performance improvement. Chameleon provides a general-

purpose, SIMD, and DIMM based NDP architecture that can be used for genome anal-

ysis [36]. Unfortunately, because Chameleon is a SIMD accelerator, it doesn’t address

the challenges of inter-task divergence in genome analysis efficiently. For the 3D-stacked

DRAM based designs, MPU-BWM leverages HMC to accelerate DNA seeding by placing

RISC-V cores in the logic die [35]. Joardar et al. and Mcvicar et al. also propose HMC

based accelerators for k-mer counting [32,50]. Although the 3D-stacked DRAM based de-

signs provide good performance and energy efficiency, they are not as cost-efficient as the

conventional DRAM based work [36]. On the other hand, they has limited capacity and
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scalability [72]. To summarize, the previous conventional memory based accelerators for

genome analysis have the issues of limited performance, high cost, and low scalability.
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Chapter 3

RADAR: A 3D-ReRAM based DNA

Alignment Accelerator

1 BLAST, the Basic Local Alignment Search Tool [73], is one of the most widely

used sequence alignment tool. To keep pace with booming genome data, acceleration of

BLASTN, the most heavily used DNA version of BLAST, is necessary.

Software approaches provide speedup for BLASTN by substantially sacrificing sen-

sitivity or by indexing the entire database with large overhead [74]. In response to the

shortcomings of the software approaches, many hardware approaches, such as multi-core

CPU [75], FPGA [76], and GPU [77] have been proposed to further accelerate BLASTN

by leveraging its inner parallelism. However, these approaches do not address the issues of

performance and energy overhead which are caused by moving the entire DNA database

from memory to CPU/FPGA/GPU. ReCAM PRinS [68] addresses the data movement

issue in the Smith-Waterman (SW) algorithm by performing associative computing in Re-

1© 2018 IEEE. Reprinted, with permission, from Wenqin Huangfu, Shuangchen Li, Xing Hu, Yuan
Xie. ”RADAR: A 3D-ReRAM based DNA Alignment Accelerator Architecture.” 55th ACM/IEEE
Design Automation Conference (DAC), 2018
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sistive Random Access Memory (ReRAM) based Content Addressable Memory (CAM),

i.e., ReCAM. Unfortunately, device endurance and storage efficiency are serious issues

in ReCAM PRinS, because associative processing requires frequent write operations and

uses 75% of the ReRAM cells to store the intermediate data [69]. In addition, the SW al-

gorithm is different from BLASTN: the SW algorithm is used in the last stage of BLASTN

and only consumes less than 1% of BLASTN’s runtime [76].

Observing that the execution of BLASTN is dominated by comparison operations

and introduces huge amount of data movement, we identify that 3D ReCAM [78] [79] is

suitable for the acceleration of BLASTN due to its high density, low power, and ability

to perform parallel in-situ comparison operations. We propose RADAR, a Processing-

In-Memory (PIM) architecture which utilizes ReCAM with the aid of ASIC units, to

accelerate BLASTN, eliminating data movement without encountering the issue of write

endurance. However, mapping DNA sequences into 3D ReCAM is non-trivial due to huge

variations in the lengths of DNA sequences, which may affect both storage efficiency and

computation efficiency. Hence, we propose efficient data mapping scheme to improve the

efficiencies of both storage and computation in RADAR.

The main contributions of this chapter are:

• We propose RADAR, a novel PIM architecture that utilizes 3D ReCAM to acceler-

ate BLASTN efficiently. RADAR enables in-situ computation to achieve ultra-high

performance and energy efficiency. In addition, RADAR greatly reduces write op-

erations to address the issue of device endurance in ReRAM.

• We design a dense data mapping scheme to map DNA sequences with various

lengths efficiently in RADAR. Furthermore, we propose a Tail Bits Duplication

(TBD) technique to eliminate the row-level, CAM-level, and unit-level data depen-

dencies and communication to boost the performance.
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• We conduct extensive design space exploration to study the trade-offs between

response time, energy consumption, energy efficiency, and area of RADAR.

3.1 Background and Motivation

This section introduces the basics of BLASTN, 3D ReCAM, and the motivation for

this work.

3.1.1 BLASTN

As a DNA alignment tool, BLASTN can be divided into three stages as shown in

Fig. 3.1. The inputs of BLASTN [73] are query sequences to be compared against the

reference genome, and the output of BLASTN are the gapped alignments generated after

the third stage.

Ungapped Extension Gapped ExtenstionWord Matching
w-mers HSPs

Stage 1 Stage 2 Stage 3
Database

Sequences
Final

Alignments

Figure 3.1: Three stages of BLASTN. The first two stages are the bottlenecks.
(© 2018 IEEE)

• Word Matching, i.e., DNA Seeding: Find exact matches with length of w between

the query sequences and the reference genome. These short matches are referred

as w-mers.

• Ungapped Extension, i.e., Seed Extension: w-mers are extended on both sides

to identify longer pairs of sequences around these w-mers, which should have more

matches and fewer mismatches. These longer pairs are called High-Scoring Segment

Pairs (HSPs).
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• Gapped Extension, i.e., Seed Extension: Dynamic programming algorithms, e.g.,

the SW algorithm [80], are used to extend the HSPs into gapped alignments, which

are sequence pairs that differ only by a few mismatches and gaps.

The bottlenecks of BLASTN are ‘Wording Matching’ and ‘Ungapped Extension’,

which consume 83.9% and 15.9% of the runtime [76], respectively. The dominant oper-

ations in these two stages are comparison operations. Consequently, the acceleration of

BLASTN should focus on these two stages and comparison operations.

3.1.2 3D ReCAM

Parallel match/mismatch operations provided by the Content Addressable Memory

(CAM) make it a good candidate for search based applications. With the small cell size,

non-volatility, zero standby power, and the potential to be stacked in 3D [78, 79], the

emerging ReCAM provides an alternative solution to SRAM-based CAM.

The structure of 3D ReCAM is shown in Fig. 3.2(b). The vertical pillar electrode

and the surrounding metal oxide forms the metal-oxide-metal structure of ReRAM cells,

where the metal oxide is in contact with the horizontal plane electrodes. Multiple bits

can be stored in one pillar, because 3D ReCAM has multiple horizontal layers. The

horizontal plane is used as the Source Line (SrL) and a row of pillars are connected

together to a Match Line (ML). The match/mismatch signal from a certain pillar will

be sent to the Sense Amplifier (SA) for reading. A comparison key can slide through the

input ports (SrL) to search the data stored in 3D ReCAM. Only one access transistor

is needed per pillar. This is an extremely high-density, multi-layer, and transistor-less

design of non-volatile CAM. It works in column-serial, row-parallel mode.

This chapter aims to leverage the potential of 3D ReCAM, i.e., the high density to

store the reference genome and the ability to perform in-situ comparison operations,
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to accelerate the ‘Word Matching’ and the ‘Ungapped Extension’ stages of BLASTN

without encountering the issue of device endurance in ReCAM [69,81].

3.2 RADAR Architecture

This section introduces the RADAR architecture, the workflow of RADAR, and the

proposed data mapping scheme.

3.2.1 Architecture

The high-level architecture of RADAR is shown in Fig. 3.2(a). RADAR consists of

multiple BLASTN Units, i.e., the computational units, connected by the shared bus.
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Figure 3.2: Architecture, data mapping scheme, and circuit design of RADAR. (a)
Architecture of RADAR. (b) BLASTN Unit. (c) BLASTN Mat. (d) 3D ReCAM. (e)
Circuit design of the HSPs Calculator. (f) Dense data mapping scheme and the TBD
technique. Multiple DNA bases can be stored in one pillar. Different colors represent
different DNA sequences. DNA bases in bold and with underscore stand for tail bits
duplicated in ReCAM. (h) Circuit design of the Matcher. (© 2018 IEEE)

BLASTNUnit: As the computational unit in RADAR, the architecture of the BLASTN

Unit is shown in Fig. 3.2(b). For the input, it receives the original query sequences and
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the de-duplicated seeds in this query sequence, i.e., candidate w-mers, from the host.

The de-duplicated seeds are used for ‘Word Matching’ and the original query sequences

is used for ‘Ungapped Extension’. For the output, it sends the HSPs to the host to

perform ‘Gapped Extension’. Different BLASTN Units perform computation in parallel,

providing unit-level parallelism.

As shown in Fig. 3.2(b), a BLASTN Unit contains buffers, a BLASTN Mat, a HSPs

Calculator, and the Controller (CtrL). The buffers in the BLASTN Unit store the in-

puts (the original query sequences and the de-duplicated seeds), the intermediate data

(the w-mers), and the outputs (the HSPs) of the BLASTN Unit. The BLAST Mat

stores the reference genome and performs in-situ comparison operations inside the 3D

ReCAMs. The HSPs Calculator calculates HSPs according to the matching information

provided by the BLAST Mat. The CtrL is connected to different modules to regulate

the computational process.

BLASTN Mat: The functionality of the BLASTN Mat is to perform in-situ comparison

operations inside the 3D ReCAMs for ‘Word Matching’ and ‘Ungapped Extension’. The

architecture of the BLASTN Mat is shown in Fig. 3.2(c). The BLASTN Mat contains

multiple 3D ReCAMs connected to each other with a H-tree. The 3D ReCAM stores

the reference genome and supports in-situ comparison operations with the target seeds

as the inputs and the matching results as the outputs. The comparison operations are

performed in different ReCAMs and different rows within the same ReCAM concurrently,

providing both row-level parallelism and CAM-level parallelism.

In each ReCAM, the comparison operations are performed in column-serial, row-

parallel order. An example of the comparison operation is shown in Fig. 3.2(d), in which

the comparison key is shifted by one position per cycle. If a match occurs, the output

of the corresponding row will be 1. Otherwise, the outputs of all rows will be 0. The

data flow of the example comparison operation is indicated by the purple arrow. If
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a comparison involves data stored in different vertical pillars, which happens when the

comparison window crosses multiple pillars, partial comparisons are performed each time.

TheMatcher in Fig. 3.2(g) is designed to merge the partial comparison results. The final

comparison result is available after all the partial comparisons have been performed. The

data mapping scheme has significant influence on the searching process and is discussed

in detail in Section 3.3.

HSPs Calculator: The circuit design of the HSPs Calculator is shown in Fig. 3.2(e).

The functionality of the HSPs Calculator is to calculate HSPs for ‘Ungapped Extension’

according to the matching information provided by the BLAST Mat. First, the HSPs

Calculator finds the maximal score for the matching scores within a fixed-size sliding

window containing the w-mer. Then, the HSPs Calculator compares the maximal score

with a threshold and determines if the current matching pair is a valid HSP. The scoring

rule is a bonus α for matches and a penalty β for mismatches. The maximal score finding

process is performed in the Maximal Score Finder. The HSPs are stored in the HSPs

buffer and forwarded to the host to perform ‘Gapped Extension’.

3.2.2 Workflow

This subsection describes the workflow of RADAR, including the workflow for ‘Word

Matching’ and ‘Ungapped Extension’.

Word Matching: The data flow of ‘Word Matching’ is indicated by the blue arrow

in Fig. 3.2(b). The original query sequences and the de-duplicated seeds are passed to

the buffers in different BLASTN Units from the host through the bus. Then, the de-

duplicated seeds with length w are transferred to different ReCAMs via the H-tree to

perform ‘Word Matching’.

RADAR uses the input seed with length of w as comparison key and shifts it through

the DNA sequences stored within each ReCAM to perform searching. If the final com-
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parison result of an input seed is a match, this seed is recognized as a w-mer and stored

in the w-mer buffers for ‘Ungapped Extension’.

Ungapped Extension: The data flow of ‘Ungapped Extension’ is indicated by the green

arrows in Fig. 3.2(b). The original query sequences in the buffers within the BLASTN

Units are the inputs to the BLASTN Mat.

First, the information of the w-mer is transferred to the CtrL to determine the location

for performing ‘Ungapped Extension’ in the original query sequence. Then, the characters

within a fixed-sized window with size Lw, centered on the target w-mer, are transferred

from the query buffer to ReCAMs to perform pair-wise DNA base comparison. These

pair-wise match/mismatch information is forwarded to the HSPs Calculator, as shown

in Fig. 3.2(e). Next, the HSPs Calculator finds the max score of the HSPs candidate,

i.e. character pairs. If the maximal score passes a threshold, this HSPs candidate is

recoginized as a HSP and is passed to the host to perform ‘Gapped Extension’.

3.3 Data Mapping Scheme

It is challenging to map DNA sequences with various lengths into RADAR due to the

following two challenges:

Challenge-1: Managing sequences in an aligned manner in 3D ReCAMs and leaving

the remaining bits unused bring significant storage overhead.

Challenge-2: Segmenting sequences into multiple rows and ReCAMs introduces data

dependency across multiple rows and ReCAMs, leading to performance degradation.

We propose the dense data mapping scheme and the Tail Bits Duplication (TBD)

technique to address these two challenge in RADAR.
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3.3.1 Dense Data Mapping Scheme

To address challenge-1, we propose a dense data mapping scheme to avoid storage

overhead. The proposed dense data mapping scheme sequentially allocates the DNA

sequences one after another in the 3D ReCAMs as shown in Fig. 3.2(d) and (f). Different

DNA sequences are represented with different colors.

Because there are 4 nucleic acids, i.e., ‘A/T/C/G’, ideally we can encode these 4

nucleic acids with 2 bits. Unfortunately, ReCAM cannot distinguish seeds with different

numbers (> 0) of matches, i.e., 1s, in one comparison. If there is any match within a

comparison, the corresponding comparison result is a match, i.e., high current. As a

result, with the 2-bit encoding, ReCAM cannot distinguish different nucleic acids in one

comparison. For example, the comparison results of ’01’ against ’01’ (1 match) and ’11’

(2 matches) are both matches. To distinguish 4 nucleic acids in one comparison, RADAR

uses 4 single-bit ReRAM cells to encode 1 nucleic acid.

3.3.2 Tail Bits Duplication (TBD)

To address challenge-2, we propose the TBD technique. As shown in Fig. 3.2(f), the

TBD technique duplicates the tail bits in each row. If the DNA sequences cross multiple

rows or multiple ReCAMs, the head bits in the following row or the following ReCAM

are set as the tail bits in the previous row or the previous ReCAM. The number of the

tail bits is at most w − 1.

The TBD technique eliminates data dependency across multiple rows, enabling row-

level, CAM-level, and unit-level parallelism. Assuming the length of the seeds is w and

each 3D ReCAM has M rows, N columns, and L layers. The storage overhead, i.e.

Redundancy Ratio, has an upper bound given by the equation:
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Redundancy Ratio ≤ w − 1

N ∗ (L/4)
× 100% (3.1)

Considering the fact that the typical value for w is 11 for BLASTN and N ∗ (L/4) is

in the order of a thousand, the Redundancy Ratio is typically far below 1%.

3.4 Discussion

Reduction in Data Movement: Unlike the computation-centric accelerators [74–76],

as a memory-centric accelerator, RADAR performs in-situ comparison operations within

the 3D ReCAMs. In this way, the amount of data movement is greatly reduced, leading

to performance improvement and energy reduction.

Design Configuration: RADAR provides row-level, CAM-level, and unit-level paral-

lelism. Adjustments can be made between these three levels of parallelism by changing

the size of 3D ReCAMs, the number of ReCAMs per BLASTN Mat, and the number of

BLASTN Units.

Device Endurance: RADAR doesn’t confront the issue of device endurance in Re-

CAM [69], because there are no write operations in RADAR other than initially writing

the reference genome into the ReCAMs.

Scalability: Due to the high density of the 3D ReCAM, RADAR is able to store the

reference genome in a single chip, as the experiments demonstrate. If the target genome

happens to be too large to be fitted into a single chip, distributed RADAR can be used.

Different RADAR nodes perform BLASTN locally and these local results are merged to

generate the final result after different RADAR nodes complete their own computation.

Migration to Other Technologies: Although RADAR utilizes 3D ReCAM, RADAR

can also be implemented with other CAMs, including other NVM-based CAMs [82] and
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conventional SRAM-based CAM. Minor modifications to the RADAR architecture are

needed for these CAM technologies.

Extension to Other Applications: Because searching is a commonly used operation

in various applications, RADAR can be extended to accelerate other applications such

as text searching and BLASTP [83], the protein version of BLAST.

3.5 Experiments

The experimental setup, results, and analysis are presented in this section.

3.5.1 Experimental Setup

Configuration of the Baseline: The baseline in the experiments is NCBI BLASTN

2.6.0+, running in a server with an Intel Xeon E5-2680 v3 CPU.

Configuration of RADAR: We build a simulator in C++ to simulate the performance

of RADAR. The parameters of 3D ReCAM are extracted from NVSim [84]. The ASIC

circuits are realized in Verilog and synthesized in Design Complier [85] to get the area,

latency, and power. We evaluate 5 configurations of RADAR with different numbers

of ReCAM Rows, ReCAM Columns, ReCAM Layers, and ReCAMs per BLASTN Mat.

As shown in Fig. 3.3 and Fig. 3.4, the configurations of RADAR are represented in the

following format:

(Row Number, Column Number, Layer Number, CAMs per Mat).

Datasets and Query Sequences: We evaluate 6 datasets with different sizes using

query sequences of length 100.

All the experimental are normalized to the corresponding data of the CPU baseline.
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3.5.2 Performance Improvement

Compared with the CPU baseline, the performance improvement of RADAR is shown

in Fig. 3.3. All RADAR configurations have very good performance improvement in

accelerating BLASTN, because RADAR provides massive parallelism, including the row-

level, the CAM-level, and the unit-level parallelism.

According to the experimental results, the performance improvement of RADAR

grows with the size of the datasets, e.g., the performance improvement of the first config-

uration grows from 299x up to 16,900x when the size of the dataset grows from 1.28GB

to 67.01GB, indicating that RADAR is very good at handling large datasets.
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Figure 3.3: Performance improvement of RADAR. (© 2018 IEEE)

3.5.3 Energy Reduction

Compared with the CPU baseline, the energy reduction of RADAR is shown in

Fig. 3.4. All RADAR configurations achieves very good energy reduction in accelerating

BLASTN, because RADAR greatly reduces the data movement by performing in-situ

comparison operations inside the 3D ReCAMs.
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3.5.4 Trade-Offs

The trade-offs between performance improvement, energy reduction, and chip area

can be achieved with different configurations, as shown in Fig. 3.3, Fig. 3.4, and Fig. 3.5.
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Figure 3.5: (a) Chip area for different RADAR configurations. (b) Working frequen-
cies for different RADAR configurations. (© 2018 IEEE)

According to the experimental results, the configurations with more ReCAMs per

BLASTN Unit, layers, columns, and rows reduce the chip area, but decrease the working

frequency. Larger ReCAMs and larger BLASTN Mats lead to longer read time within

the ReCAM, leading to degradation in performance improvement and energy reduction.
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3.5.5 Comparison to Other Accelerators

As shown in Table. 3.1, compared to the Multi-Core CPU/FPGA/GPU based accel-

erators of BLASTN, RADAR has the best performance and outperforms them between

53x and 1896x in performance.

Table 3.1: Performance Improvement of Different Accelerators for NCBI BLASTN
(© 2018 IEEE)

Design RADAR Paracel Mercury TUC CUDA-
BLAST [75] BLAST [86] BLAST [87] BLAST [77]

Hardware 3D ReCAM 32-CPU Cluster FPGA FPGA GPU
Speedup 5114x 96x 11x 37x 2.7x

3.5.6 Performance of Tail Bits Duplication (TBD)

The TBD eliminates data dependencies between different rows and ReCAMs, leading

to performance improvement and energy reduction. To evaluate the performance of TBD,

we conduct experiments on RADAR with and without TBD.

As shown in Fig. 3.6 (a) and (b), performance improvement and energy reduction be-

tween 1.63x and 3.52x can be achieved with TBD for different configurations of RADAR.

Because more rows introduce extra inter-row data dependencies and TBD can elimi-

nate these inter-row data dependencies, the performance gain of TBD increases with the

number of rows per ReCAM.

3.5.7 Energy and Area Breakdown

The energy and area breakdown for the first configuration of RADAR is shown in

Fig. 3.7. For the energy, according to the experimental results in Fig. 3.7(a), 99.95%

of the energy is consumed by the ReCAMs and the leakage energy of the ReCAMs is

only 5.18%. As for the area, as shown in Fig. 3.7(b), 74.13% of the area is occupied
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Figure 3.6: Performance of TBD. (a) Performance improvement. (b) Energy reduc-
tion. (© 2018 IEEE)

by the ReCAMs. The buffers and HSPs Calculators occupy 21.75% and 4.12% of the

area, respectively. This experimental results show that RADAR is a memory-centric

accelerator based 3D ReCAMs with low leakage power and small area overhead.
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Figure 3.7: (a) Energy breakdown. (b) Area breakdown. (© 2018 IEEE)

3.6 Conclusion

To address the issue of frequent data movement in BLASTN, we propose RADAR,

a high performance and energy efficient PIM architecture based on the 3D ReCAM,

to accelerate BLASTN. In addition, we propose a data mapping scheme, including the

dense data mapping scheme and the TBD technique, to enable efficient data storage and
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support parallel computation. RADAR distinguishes itself from the previous ReRAM

based PIM accelerator for DNA alignment with efficient data storage and no issue of

device endurance.

Experimental results show that, with less than 1% storage overhead, the proposed

TBD technique improves the performance and reduces the energy of RADAR from

1.63x to 3.52x. Compared with the CPU baseline, 5114x performance improvement

and 386x energy reduction can be achieved with RADAR. Compared with the Multi-

Core/FPGA/GPU based accelerators, RADAR outperforms them between 53x and 1896x

in performance.
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Chapter 4

MEDAL: Scalable DIMM based

Near-Data-Processing Accelerator

for DNA Seeding Algorithm

1 The goal of this chapter is to build a NDP accelerator for DNA seeding with fine-

grained memory accessibility, high bandwidth utilization, and scalability. We propose

an accelerator, i.e., MEDAL, on DIMM between the DRAM chips and the standard

data bus. MEDAL highlights practicability by using off-the-shelf DRAM chips and the

standard DDR protocol. MEDAL leverages both the rank-level and the fine-grained,

chip-level memory bandwidth.

Within a rank, we propose three techniques to address the challenge of fine-grained

random memory access, improving parallelism as well as bandwidth utilization. The

1© 2019 IEEE. Reprinted, with permission, from Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing
Hu, Peng Gu, Yuan Xie. ”MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA
Seeding Algorithm.” Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2019.
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proposed methods take advantages of our in-depth characterization of the target DNA

seeding algorithm. The first technique is the algorithm-specific address mapping, which

maps the continuous data together in a single DRAM chip to improve locality, provides

potential for chip-level parallelism and fine-grained memory access, and reduces commu-

nication, instead of näıvely interleaving data across multiple chips. The second technique

is the bandwidth-aware data mapping. It duplicates or remaps data across all the avail-

able DRAM chips to fully utilizes potential memory bandwidth. The third technique

is the Individual Chip Selection (ICS), which leverages the Chip Selection (CS) signal

to support chip-level parallelism and fine-grained memory access, further boosting the

bandwidth efficiency.

Across ranks, when the index data cannot be fitted into one rank, we then propose

three design options to support multi-rank scaling out. The proposed methods highlight

the practicability. The first, also the basic, design leverages CPU polling for inter-rank

communication. Compared with the first design option, our second design, i.e., interrupt-

based design, doesn’t need to occupy the host and memory bus for polling operations.

The Reserved for Future Use (RFU) pin in DDR is used for triggering interupts. The

third design alternatively leverages the NVDIMM-P, in which we store the large DNA

index within the dense Non-Volatile Memory (NVM) to reduce/eliminate inter-rank com-

munication. In addition, we propose an algorithm-specific data compression technique

to reduce the memory footprint, introduce more space for data mapping to utilize, and

reduce the communication overhead.

The main contributions of this chapter are listed as follows.

• We propose a high-performance, energy-efficient, scalable, practical, and cost-effective

NDP accelerator architecture, i.e., MEDAL, for DNA seeding with off-the-shelf

DRAM chips.
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• For the intra-rank design, we propose three application-specific techniques (algorithm-

specific address mapping, bandwidth-aware data mapping, and ICS) to address the

challenge of fine-grained random memory access and improve parallelism as well as

bandwidth utilization.

• For the inter-rank design, we propose three alternative approaches (polling-based

communication, interrupt-based communication, and NVDIMM-based solution) to

support efficient scaling out.

• In addition, we propose an algorithm-specific data compression technique to reduce

the memory footprint, introduce more space for data mapping to utilize, and reduce

communication overhead, leading to performance improvement.

• The experimental results show that MEDAL can provide 30.50x/8.37x/3.43x better

performance and 289.91x/6.47x/2.89x better energy efficiency than a 16-thread

CPU baseline and two state-of-the-art NDP accelerators, respectively.

4.1 Background

This section introduces the background of this chapter, including the supported al-

gorithm and the Buffered Dual-Inline Memory Module (DIMM).

Supported Algorithms: As described in Section 2.1, different from the Hash-index

based algorithm, FM-index based algorithm suffers from more irregular memory access

and longer data reuse distance, and hence is more challenging. Therefore, the main target

of this chapter is to accelerate FM-index based algorithm. For generality, we keep the

design compatible for the Hash-index based algorithm, and evaluate both of them.

Buffered Dual-Inline Memory Module (DIMM): Dual-Inline Memory Module

(DIMM) is a widely used memory package with 64 data (DQ) pins, excluding the ones
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for ECC. In a DIMM, multiple DRAM chips form a rank, and one or more ranks are

packaged together to form a DIMM.

Load-Reduced DIMM (LRDIMM), as shown in Fig. 4.1(b), is introduced to address

the signal integrity issue for high frequency memory interface. The key component in

LRDIMM is the Memory Buffer (MB) that enhances the C/A and DQ signals. The MB

is divided into two pieces:

• Registering Clock Driver (RCD): One per DIMM to buffer and repeat C/A signals.

• Data Buffer (DB): One for a set of (e.g., 2/4/8) DRAM chips to improve the

integrity of DQ signals.

4.2 MEDAL Architecture

In this section, we introduce the MEDAL architecture. After an overview of the

architecture, we describe the working flow and techniques for the intra-rank and the

inter-rank scenarios.

The goal of MEDAL is to leverage the NDP architecture for exploiting extra band-

width for DNA seeding, while remaining practical by using off-the-shelf host processors

and DRAM chips. To this end, MEDAL exploits extra bandwidth and parallelism inside

the DIMMs for DIMM-based memory systems, while it only conducts modifications to

the DIMM printed circuit board (PCB) design. Such design simultaneously activates

the DRAM in different ranks. Assuming a typical memory system in Table 4.1, com-

pared with the conventional case where only ranks in different channels can be accessed

in parallel, MEDAL exploits 12× more bandwidth. Compared with the previous NDP

work [37] that only exploits DIMM-level parallelism instead of rank-level parallelism,

MEDAL exploits 4× more bandwidth. Furthermore, MEDAL even leverages the chip-

level parallelism within the same rank via decoupling their CS signals.
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Specifically, MEDAL is built by modifying the commercial LRDIMM, as shown in

Fig. 4.1(a) and (b). Five components below are added into the commercial LRDIMM

and these components are described in details below:
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DB-Side Accelerator: We attach 4 DNA seeding specific hardware accelerators to

each DB in the LRDIMM, as shown in Fig. 4.1 (c) and (d). The DB-side accelerator

inputs/outputs data with the FIFO connected to the inter-chip hierarchical data bus, and

sends a pair of current accelerator ID and its read/write request to the FIFO, which is

connected with the inter-chip hierarchical ID/address bus. To perform the task described

in Algorithm 1, the accelerator contains:

• registers to store the query sequence q,

• a 4×64-bit register file to store CR[4],

• a data re-organization engine to calculate OR[x] from its stored data structure,

• two 64-bit unsigned adders to update Iuppper and I lower,

• an address translation engine to convert the virtual address to DRAM device address

(please refer to Section 4.2.1 for the details).

DB-Side Multiplexer: We add a multiplexer to the output of DB, so that in addition

to sending data to the DDR bus, DB can also send data to the inter-chip hierarchical

data bus through the DB-side FIFO. The multiplexer is controlled by a dedicated enable

signal from RCD-side Memory Controller (MC).
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RCD-Side Memory Controller (MC): The DB-side accelerator creates a new chal-

lenge about memory access coordination. Since both the host and the accelerators can

access the DRAM chips and the host is not aware of the requests issued by the accelera-

tors. Requests from the two sides, i.e., host and the accelerators, lead to conflict if they

are not well coordinated.

Our design philosophy is to enable the RCD to coordinate these memory requests,

since the RCD has the information of memory requests from both the host and the

accelerators. We modify the RCD in the LRDIMM, design the RCD-side MC, as shown in

Fig. 4.1 (c), and propose a host-prioritized request scheduling (please refer to Section 4.2.2

for the details), to address this issue. The original RCD only serves as an enhancement

module for the C/A signals. In MEDAL, the following modifications are performed:

• The C/A signal from the host is detoured to the RCD-side MC before going to the

DRAM chips.

• A MC, which merges and schedules the requests from both the host and the DB-side

accelerators, is added with a request queue and a scheduling engine. The scheduling

engine prioritizes the host-side requests. This is because the host-side MC is not aware

of the accelerator-side requests, so the host memory accesses must be served soon to

meet the expectation of the host (please refer to Section 4.2.2 for the details). For the

accelerator-side requests, the scheduling engine applies the first-come-first-serve rule. The

scheduling engine also makes sure the DRAM timing constraints are met, and helps the

following controllers to generate the C/S signal and the enable signal on the right time.

• A controller to generate the dedicated CS signals to each DB according to the timing

information from the MC scheduler, instead of a global CS bus. The details of the chip

selection optimization is introduced in Section 4.2.1.

• A controller to generate the enable signal for the FIFO in the DB-side multiplexer.

Since the data accessed by the accelerator is transferred to the data bus, the enable
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signal makes sure the FIFO catch and buffer the data when the bus is unavailable.

Inter-Chip Hierarchical Bus: Another design challenge is that, with the proposed

algorithm-specific data mapping discussed in Section 4.2.1, the OR[x][i] is spread over all

the DRAM chips across the rank. The distributed data mean the DB-side accelerator may

need the data from other DRAM chips within this rank. However, there is no connection

between different DRAM chips within a rank in the vanilla LRDIMM, forbidding inter-

chip communication.

To address this challenge, we design the inter-chip hierarchical bus. Specifically, we

have the ID/address bus and the data bus. The ID/address bus transfers the pair of

the accelerator ID and its memory requests from the accelerator to the RCD-side MC.

Accelerators are masters writing the data, i.e., the ID/addresses, to the only slave, i.e.,

the RCD-side MC. The data bus transfers the data from a DB belonging to a group of

DRAM chips to its destination accelerator. The FIFOs in the DB-side multiplexer are

the masters writing the data, i.e., the DRAM data, to the slaves, i.e., the accelerators.

Both of the ID/address bus and the data bus are multi-master single-channel buses. The

bus is simplified from standard bus like AMBA [88], and it has the following features:

• a shared clock signal and reset signal for both buses,

• a 1-bit dedicated master/slave selection signal for each master/slave,

• 8-bit write data signals for the ID/address bus, 64-bit bi-direction data signals for the

data bus,

• burst length 5 for the ID/address bus to transfer 8-bit accelerator ID and 32-bit address,

burst length 8 for the data bus.

The bus address signals are eliminated, since the RCD-side arbitrator, which is introduced

in details below, has already been aware for the source and destination module of every

transfer though the RCD-side MC, and can simply assign the bus using the master/slave

selection signals.
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Note that we make the such a design choice under the consideration of minimizing the

wiring complexity on the PCB. The simplified single-channel buses conduct (4 · n + 75)

extra wires, where n represents the number of DBs per DIMM.

RCD-Side Bus Arbitrator: The arbitrator assigns the bus to the masters sharing

the bus. For the C/A bus, the arbitrator applies first-come-first-server rule to grant

the bus for each accelerator, so that all the accelerators can send their memory request

to the RCD-side MC. For the data bus, the arbitrator sets a pair of the master/slave

selection signal so that the DRAM data can be transferred from a DB-side multiplexer

to an accelerator. The arbitrator works with the aid of the RCD-side MC. Since the

accelerators send their ID and read request to the MC, the MC can provide (1) when

the data will be ready from which DRAM and (2) which accelerator requests this data.

With the above information, the arbitrator then picks a pair of master and slave for data

transfer after the data is ready.

The rest of this section describes the detailed data flow of MEDAL. First, we show

the simpler case when the memory footprint is small enough to be fitted in one rank, fo-

cusing on intra-rank optimizations to address the challenges of Fine-Grained Random

Memory Access and Inter-Task Divergence we mentioned in Section 1.2. Then, we

describe the general case when the memory footprint is large and inter-rank communica-

tion is necessary, focusing on techniques to address the challenge of Requirement for

Efficient Scalability we mentioned in Section 1.2.

4.2.1 Intra-Rank Workflow and Optimizations

In this subsection, after a detailed description of the architecture and control flow,

we address the challenges of Fine-Grained Random Memory Access and Inter-

Task Divergence by proposing algorithm-specific data mapping, bandwidth-aware data

mapping, and the Individual Chip Selection (ICS). Note that we start with the simple
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case when the data can be fitted in a single rank to provide a better focus on addressing

this challenge. However, these techniques are applicable for larger databases as well.

Working Flow: We go through the working flow of MEDAL. Before execution, the

genome data are stored in DRAM with the address mapping and data mapping to be

introduced later. To get started, the host sends a DDR command of writing a reserved

DRAM mode register. The RCD-side MC catches this command and broadcasts it to

every DB-side accelerator by resetting the reset signal in the inter-chip data bus. To

reads OR and SR from the DRAM, each DB-side accelerator first sends the read request

to the RCD-side MC through the inter-chip ID/address bus. After scheduling, the MC

sends the C/A signals to the DRAM chips through the original C/A bus, and informs

the DB-side accelerator to get ready via the selection signal in the inter-chip data bus.

Finally the DB-side accelerator receives the data through the inter-chip data bus. The

accelerators keep iterating till the end of search.

We propose an algorithm-specific address mapping to improve data locality and

provide potential for chip-level parallelism as well as fine-grained memory access, a

bandwidth-aware data mapping to fully leverage memory bandwidth, and ICS to leverage

chip-level parallelism as well as support fine-grained memory access.

Algorithm-Specific Address Mapping: The key idea of the proposed address map-

ping is to aggregate the previous interleaved data during address mapping to reduce

communication and provide potential of chip-level parallelism as well as fine-grained

memory access, improving bandwidth utilization. Thus, we propose a logic-device ad-

dress mapping scheme to address the challenge of fine-grained random memory access.

The scheme includes two optimizations.

The original address mapping is shown in Fig. 4.2 (a) with an example of memory

configuration in Table 4.1. Channel, rank, and bank indexes are mapped to the lower

significant bits in the logic address, in order to improve memory-level parallelism and
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Figure 4.2: Algorithm-specific address mapping. (© 2019 IEEE)

effective bandwidth. However, interleaving data across channels/ranks destroys locality

for NDP and always requires remote data access to other DRAM chips. Instead of inter-

leaving data across channels/ranks, the optimization-1 as shown in Fig. 4.2(b), maps the

lower significant bits to column and row addresses to aggregate adjacent data within a

rank locally. Still, another problem remains that the data are still interleaved across 16

chips in each rank. This chip-level interleaving means only 64B coarse-grained memory

access is supported within a rank, which cannot be fully utilized in DNA seeding. More-

over, this prevents different chips from working in parallel. To solve above challenges,

the optimization-2 is proposed as shown in Fig. 4.2(c).

We consider the CS signals as a part of the device address, which is discussed in

detail in ‘Enabling Individual Chip Select’ below. Originally, as shown in Fig. 4.2(a) and

(b), such chip selection address space is embedded in the 9 least significant bits of the

logic address to access the 64B cacheline. We change this and map the chip index to

more significant bits in the address. In this manner, adjacent data are stored in chips

connected with the same DB and will not be stored in chips connected with the second

DB until chips connected with the first DB are full. The proposed change improves the
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task locality so that the inter-chip communication is minimized, leading to improvement

in the chip-level parallelism.

Bandwidth-Aware Data Mapping: The key idea of the proposed data mapping

scheme is to fully leverage the available memory bandwidth from all the available chips

through bandwidth-aware data placement. If there are enough free chips to hold dupli-

cated index data, bandwidth-aware data mapping duplicates the index and allow different

copies of the index data to be accessed in parallel. If the free chips are not enough to

hold another copy of index data, bandwidth-aware data mapping evenly maps the index

data into all the available chips to fully leverage the available memory bandwidth from

these chips.

Enabling Individual Chip Select (ICS): As mentioned in Section 1.2, inter-task

divergence prevents different DB-side accelerators working in SIMD style. Although the

algorithm-specific address mapping provides potential for chip-level parallelism and fine-

grained memory access, the lock-step working pattern in the conventional DIMM prevents

this from happening. We propose to enable the individual CS signal for each DRAM chip

to overcome this challenge. We first introduce the problem of the conventional DIMM,

followed by the description of the proposed technique. Convention DIMM uses a shared

CS signal for all DRAM chips in the same rank, causing the lock-step working pattern

and making DIMM suffer from divergence in DNA seeding. The upper part in the Fig. 4.3

shows the DB-side accelerators perform read operations on Chip-0 and Chip-1 in a lock-

step manner. Since the read address is random, there is a whole tRC cycle between two

reads. Even worse, only 50% of the output data, either from Chip-0 or Chip-1, is useful.

We propose the ICS technique, designing dedicated CS wires for each DRAM chip [89],

controlled by the RCD-side MC. A disabled CS signal blocks the input command and

the address, but the DRAM chip still receives the System Clock (CLK) signal, the Clock

Enable (CKE) signal, and keeps working on the previous memory commands.
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The lower part in Fig. 4.3 shows the latency and energy saving with the ICS technique.

We first enable Chip-0 and disable Chip-1 with the CS signals, and then strobe the first

activation commend and address. The first C/A are only taken by the enabled Chip-

0. Right after that, we switch the CS signal, enabling Chip-1 but disabling Chip-0.

The second C/A are then taken by the enabled Chip-1. The disabled Chip-0 locks out

the second activation command but keeps working on the previous command it took.

Similarly, we send read, precharge command to Chip-0 and Chip-1, respectively, and get

data from them one after another. By adopting the proposed ICS technique, the latency

is reduced due to the pipelined commands. Furthermore, all output data are useful, from

where the energy is saved.

4.2.2 Inter-Rank Design for Scaling Out

In this subsection, we look at application scenarios with larger memory footprint,

involving multiple ranks.
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Besides adopting the intra-rank optimizations described above, we further propose

four methods to reduce the inter-rank communication overhead, overcoming the big data

challenge. First, we describe two methods to support the inter-rank scaling out without

making modification to the current hardware. Then, we describe how to use the incoming

NVDIMM hardware to address the issue of scalability. Finally, we propose an algorithm-

specific data compression scheme, which can work with any of these three methods above,

to reduce memory footprint and the communication overhead.

Support Inter-Rank Comm. with CPU-polling: Our goal is to support the inter-

rank scaling out without making modifications on either the host or DIMM hardware.

To this end, we leverage the host CPU to poll all connected DIMMs periodically. If

an inter-rank data access is requested from a rank, the host will coordinate the data

transfer. Note that AIM [37] deals with the similar scaling out problem by designing an

additional bus across DIMMs. In addition to the design simplicity, the proposed method

can achieve 3.43x speedup and 2.89x energy reduction, compared with AIM (please refer

to Section 4.4 for details).

The CPU-polling based inter-rank communication works in the following steps, as

shown in Fig. 4.4. 1 The host issues a polling request to a DIMM. 2 Address router

redirects this polling request to the region of indicator bits in the Remote Data Buffer

(RDB). 3 If the bits fetched back to the host show remote data access is needed, the

host issues another request to bring back the information about the remote data access.

4 Address router redirects this request for remote data access information to the region

of remote data info in the RDB. The information about remote memory access is sent

back to the host. 5 After receiving the information about remote data access, the host

issues memory access request to the destination DIMM and fetches back the data. 6

The host sends the target data back to the DB that needs the data.
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Support Inter-Rank Comm. with Interruption: The polling-based method suffers

from occupying the host and the DDR bus even without data transfer. Due to the

occupancy of the memory bus during polling, the effective bandwidth for the memory

bus to transfer data is reduced. In addition, since the polling operation is read operation

in MEDAL and the proposed host-prioritized request scheduling is be applied, extra

latency is needed, leading to performance degradation. To address the above issues, we

propose to leverage the interrupt mechanism and the Reserved for Future Use (RFU) pin

in LRDIMM [90], so that requests from the DB-side accelerators notify CPU through the

RFU pin which we connect to the Advanced Programmable Interrupt Controller (APIC).
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(© 2019 IEEE)

Specifically, the interrupt based inter-rank communication works in following steps,

as shown in Fig. 4.4, A The DB that needs to access remote data issues interrupt signal
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to the host via the RFU pin. B The host issues request to the DB to bring back the

information about remote data access. C Address router redirects the request for remote

data access information to the region of remote data info in the RDB. The information

about remote memory access is sent back to the host. D After receiving the information

about remote data access, the host issues memory access request to the destination DIMM

and fetches the data back. E The host sends the target data back to the DB that needs

the data.

Host-prioritized Request Scheduling: As we’ve mentioned previously, since both

the host-side MC and RCD-side MC can send requests to the DRAM and the host-side

MC is not aware of requests from the RCD-side MC, timing issue may arise. Request

scheduling is needed to satisfy the DDR timing constraints for the host-side MC.
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We choose to implement close-page policy in the host-side MC and design a host-

prioritized request scheduling for the RCD-side MC. As shown in Fig. 4.5, with close-
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page policy, the host-side MC expects its memory requests to the DRAM to be back after

tRCD + tCAS. However, because the RCD-side MC also issues memory requests to the

DRAM, without specific scheduling, the latency for memory requests from the host-side

MC is unpredictable and there are issues with the DDR timing constraints. To address

this issue, RCD-side MC follows host-prioritized request scheduling to serve memory

requests from the host as soon as the DRAM finishes its current task. For the host-side

MC, we modify its DDR timing parameters, i.e., tRCD and tCAS, so the host-side MC

has a longer expectation of the data return time to allow the RCD-side MC to be able

to schedule these requests.

Reduce Inter-Rank Traffic with NVDIMM: Both the polling-based and the interruption-

based techniques serve the goal of supporting the inter-rank communication. Further,

we propose the NVDIMM-P approach to eliminate the inter-rank communication.

Different from NVDIMM-F/N, which either requires pairing a storage DIMM near

the memory DIMM or only leverages Non-Volatile Memory (NVM) on DIMM for backup

purpose. NVDIMM-P integrates both DRAM and NVM on the same DIMM and is close

to release [91,92]. Alongside the DRAM, the NVM on NVDIMM-P can also be memory-

mapped, e.g., Intel Optane Technology [93]. With much higher capacity, NVM can act

as a near-memory cache. Different from NVDIMM-F/N, in NVDIMM-P, the host and

the DB can have byte accessibility to both the DRAM and the NVM.

We leverage the NVMs, which can be up to 10× denser than DRAM [94], on NVDIMM-

P to eliminate the inter-rank traffic. Specifically, we place index data used to be stored

in remote ranks into the NVM locally. The work flow is described below, as shown in

Fig. 4.6 (a). 1 DRAM will be accessed if the target data is within DRAM. 2 Otherwise,

the memory request will go to the NVM. NVDIMM-P based MEDAL converts remote

memory accesses to remote ranks into local memory accesses to the on-DIMM NVM.
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Reduce Memory Footprint and Comm. with Data Compression: To reduce the

memory footprint and inter-rank communication, we propose an algorithm-specific data

compression. The key idea of the proposed data compression is to compress data and

increase locality. Note that the proposed data compression can work together with all

designs described above and provide additional benefits.
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(1) Counters as the key data structure: During DNA seeding, the occurrence array

OR(x, i) needs to be accessed frequently. The entry OR(x, i) is the occurrence of a

nucleotide x before the ith symbol of BR. An example is shown in Fig. 4.6 (b) and (c),

there are 2 A, 1 T , 1 C, and no G in the first 4 nucleotides in BR (AATC). OR(A, 3),

OR(T, 3), OR(C, 3), and OR(G, 3) are 2, 1, 1, and 0, respectively. To summarize, the

occurrence array OR(x, i) is an array of counters.
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(2) Bucket data structure in software: As shown in Fig. 4.6 (c), for human genome, each

entry in OR(x, i) is 32-bit, the size of OR(x, i) is 4 × 32/2 = 64× larger than the size

of BR. To reduce the memory footprint, the widely used software, i.e., BWA-MEM,

leverages a data structure called ‘Bucket’. A bucket consists of a bucket head and a

bucket body. The bucket head is a checkpoint, storing the up-to-date values of OR(x, i).

BR is stored within the bucket body. In this manner, when an entry in OR(x, i) is needed,

BWA-MEM first locates the target bucket. Then, the values of OR(x, i) in the bucket

head and the nucleotides in BR within the bucket body are read out. Finally, the values

of target OR(x, i) can be reconstructed with the up-to-date values in the checkpoint,

i.e., the bucket head, and BR, i.e., the bucket body, via counting. As shown in Fig. 4.6

(d), with this bucket structure, only values of OR(x, i) in the bucket head are 32-bit,

nucleotide in the bucket body is only 2-bit.

(3) Compressed fine-grained bucket: Observing that the precision of data within the

bucket head is much higher than that of data in the bucket body, the key idea of data

compression is to reduce the precision of data in the bucket head via fine-grained check-

point. Compared with BWA-MEM, instead of storing global checkpoints, fine-grained

checkpoints are used with the proposed data compression.

There are two types of buckets with the proposed data compression, i.e., row head

bucket and compressed bucket. As shown in Fig. 4.6 (e), with the data compression, each

DRAM row begins with a row head bucket, containing a global checkpoint with up-to-

data values for OR(x, i). The row head bucket is followed by many compressed buckets,

which contains a fine-grained, local checkpoint for only OR(x, i) in this row, meaning

much lower precision is enough for data in the bucket head of compressed bucket.

With the proposed data compression, MEDAL first accesses the bucket head in the

row head bucket. Then, it retrieves the target compressed bucket. Next, the target

OR(x, i) can be derived by adding the local counters from the compressed bucket with
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the global counters in the row head bucket. Furthermore, in the bucket head, we only

store 3 values, the last value can be derived by subtraction.

4.3 Discussion

Extension to Other Applications: MEDAL solves the problem of fine-grained random

memory access. Our future work will extend MEDAL to other applications by replacing

the logic in the DBs with general purpose processors or FPGAs. We expect applications

such as graph processing [95], database searching [96], and sparse matrix computing [97]

to also benefit from the proposed techniques.

Interface Choice: Similary to [36,98,99], we choose DDR as the interface for MEDAL

due to two reasons: First, with DDR as the interface, we can configure the DIMMs into

regular memory when no DNA seeding is performed, providing more flexibility; Second,

DIMM based approach can scale out easily. Note that the proposed optimizations/tech-

niques can be easily applied to build PCIe/IO based accelerator.

System Integration and User Interface: MEDAL does not require modification to

either the DRAM chips or the CPU chip. MEDAL connects to the system with standard

DDR bus, i.e, with DIMM slots. As described in Section 4.2.1, the host controls MEDAL

with memory instructions.

To this end, the software stack needs modifications. Similar to other NDP/PIM

solutions [95, 99, 100], we need the OS to reserve the memory space in the DIMMs to

MEDAL, and provide I/O mapping for these space, so that the user can access the space

with the sense of their physical address. Memory channels performing DNA seeding are

dedicated to this task. The host can work on other tasks with data mapped to other

memory channels. The programming model of MEDAL is similar to CUDA. We provide

an Application Programming Interface (API) for programmers to control the application
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Table 4.1: Configure of the Server and MEDAL (© 2019 IEEE)

Configuration of the Server
CPU Model Intel Xeon E5-2680 v3

CPU Clock Frequency (GHz) 2.50
Memory Capacity (GB) 400

L1 (KB)/L2 (KB)/L3 (MB) Cache 64 / 256 / 32

Configuration of MEDAL
Memory Capacity (GB) 384

Memory Channels 4
DIMMs per Memory Channels 3

Ranks per DIMM 4
DRAM Chips per Rank 16
DRAM Chips per DB 2

Parameters of DDR4 DRAM
Capacity 4Gb × 4

Bank Groups 2
Banks per BankGroup 2

Clock Frequency (1/tCK) 1,200MHz
tRCD-tCAS-tRP (ns) 16-16-16

memory space allocation for MEDAL and a memcpy function to copy data between the

user memory space and the application memory space of MEDAL. With the data ready in

the memory space of MEDAL, users can launch the accelerator to perform DNA seeding.

4.4 Experiments

The experimental setup, results, and analysis of the experimental results are presented

in this section.

4.4.1 Experimental Setup

Configuration of the Baseline: The baseline for the FM-index based DNA seeding and

the Hash-index based DNA seeding are BWA-MEM [33] and SMALT [101], respectively,

running in a server with an Intel Xeon E5-2680 v3 CPU. The detailed configuration

information of the server is shown in Table 4.1.
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Table 4.2: Design Parameters of Customized Logics in DB (© 2019 IEEE)

Module Latency (Cycles) Power (mW) Leakage (uW) Area (um2)

Addr Trans 20 4.05 18.39 4600.35

SMEM 1 6.00 13.46 3325.45

Suffix 5 0.52 4.31 1015.59

Configuration of MEDAL: Ramulator [102] is modified to build a cycle-accurate sim-

ulator for MEDAL. The configuration of MEDAL is shown in Table 4.1. The timing,

energy, and area parameters of the customized logics in the DB are estimated by pre-

layout Design Compiler [103] with 28 nm technology [104]. We set the timing constraint

as 1.2GHz using tt design corner. Since it is a very simple circuit with lots of design

slacks, we expect similar post-layout results.

These parameters of the customized logics in the DB are shown in Table 4.2. Since

the address router only involves a few comparators to decide which components the read

command should go to, it’s not included in Table 4.2. The timing parameters of the

DRAM chips used in the experiments are shown in Table 4.1. The energy consumption

of DRAM is derivated by feeding the command trace of DRAM from Ramulator to

DRAMPower [105]. We use the parameters of energy for datapath from CACTI-IO [106].

The timing and energy parameters for NVM in the NVDIMM are estimated with Intel’s

Optane memory [107, 108]. The correctness of our simulation is guaranteed, since the

hardware design follows the same (1) computing arithmetic, (2) execution order, and (3)

data access order as the software. Our simulator ensures correctness by using traces from

the software.

NDP Accelerators for Comparison: We modified Ramulator as well to build cycle-

accurate simulators for Chameleon [36] and AIM [37]. We use the same memory config-

uration for these two accelerators. For Chameleon, because it doesn’t support any kind

of communication, we add the polling-based communication mechanism to it.
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Databases: Ten different genomes with different sizes from 1.59 billion bases to 27.60

billion bases from NCBI [109] are used. The name of these ten databases are shown in

Fig. 4.7. We name them as DB1 to DB10 for short in other figures.

Query Sequences: Ten million query sequences with length of 101 were extracted from

corresponding genomes.

4.4.2 Intra-Rank Evaluation
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Figure 4.7: Intra-rank evaluation. (a). Performance improvement. (b). Energy
reduction. (© 2019 IEEE)

For small databases which can be fitted in a single DRAM rank, the performance and

energy efficiency comparisons between MEDAL and other DIMM based NDP accelerators

for DNA seeding are shown in Fig. 4.7 (a) and (b). All results are normalized to the that

of the 16-thread CPU.
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For intra-rank tasks, with only the proposed address and data mapping, MEDAL

outperforms the 16-thread CPU, Chameleon, and AIM by 19.62x, 3.91x, and 1.75x.

Then, the ICS improves the performance of MEDAL by 1.92x via enabling efficient fine-

grained memory access and chip-level parallelism. Further, the algorithm-specific data

compression improves the performance of MEDAL by 1.85x, because it effectively reduces

the memory footprint and leaves more space for data mapping to utilize. Combining all

proposed techniques together, MEDAL outperforms the 16-thread CPU, Chameleon, and

AIM by 69.69x, 13.90x, and 6.23x, respectively.

As a comparison, AIM performs coarse-grained memory access with low memory

bandwidth utilization for DNA seeding. Chameleon performs fine-grained memory access.

However, most data fetched out of memory in Chameleon is useless due to the inter-task

divergence of DNA seeding and the SIMD-style processing in Chameleon. Also, there is no

chip-level parallelism in Chameleon. The good performance of MEDAL, compared with

others, comes from its full parallelism, i.e., both rank-level and chip-level parallelism,

and its ability to perform fine-grained memory access, which provides higher memory

bandwidth utilization.

Energy-wise, MEDAL reduces energy consumption of the 16-thread CPU, Chameleon,

and AIM by 426.27x, 8.54x, and 3.95x, respectively. High bandwidth utilization and short

processing time contribute to its the high energy efficiency.

4.4.3 Inter-Rank Evaluation

For databases that cannot be fitted within a single rank and need inter-rank commu-

nication, similarly, the comparisons are shown in Fig. 4.8 (a) and (b).

For inter-rank tasks, on average, the polling-based design outperforms the 16-thread

CPU, Chameleon, and AIM by 9.97x, 3.57x, and 1.35x, respectively. The interrupt-based
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design outperforms the above platforms by 14.81x, 5.31x, and 2.01x, respectively. The

NVDIMM-based design outperforms them by 16.09x, 5.76x, and 2.19x, respectively.
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Figure 4.8: Inter-rank evaluation. (a). Performance improvement. (b). Energy
reduction. (© 2019 IEEE)

Compared with the polling-based design, the interrupt-based design has better per-

formance due to two reasons: First, the interrupt-based design doesn’t need to occupy

the memory channel to perform polling operation, meaning there is no negative effect on

memory bandwidth. Second, the polling operation is read operation and due to the pro-

posed host-prioritized request scheduling, extra latency is needed for read operation from

the host, which degrades the performance. The tolling-based design, on the other hand,

requires less modifications. For example, it doesn’t require to connect RFU to APIC
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in the host and add hardware interrupt vector. The superior strength of the NVDIMM

based approach is that we can use off-the-shelf NVDIMM to deal with the issue of inter-

rank communication without occupation of the memory channel and it provides very

good performance.

Energy-wise, the polling-based design reduces energy consumption of the 16-thread

CPU, Chameleon, and AIM by 185.95x, 4.54x, and 1.97x, respectively. The interrupt-

based design reduces energy consumption of the above platforms by 251.08x, 6.13x, and

2.66x, respectively. The NVDIMM-based design reduces energy consumption of the above

platforms by 164.18x, 4.01x, and 1.74x, respectively.

4.4.4 Energy Breakdown

The energy breakdown for MEDAL is in Fig. 4.9. For all designs, computation

consumes less than 1.0% energy. Because DNA seeding only involves simple integer

operations, the customized lightweight logic is more efficient. As for communication,

it consumes 10.0% energy at most, which means the proposed communication mecha-

nisms are energy-efficient. For the polling-based design, the interrupt-based design, and

the NVDIMM-based design, DRAM consumes 95.4%, 89.9%, and 48.9% energy, respec-

tively. DRAM’s domination on the energy consumption is due to the energy-efficient

lightweight logic and communication mechanisms. For the NVDIMM-based approach,

NVM consumes 48.2% energy on average. The portion of energy consumed by NVM

increases with the size of databases, because the larger the database, the higher the

possibility that memory requests go to NVM.
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Figure 4.9: Energy breakdown for MEDAL with different communication designs.
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4.4.5 Bandwidth Utilization

We define bandwidth utilization as the ratio between useful data and the actual

amount of data fetched out the memory. As shown in Fig. 4.10, on average, MEDAL

has the highest memory bandwidth utilization - 82.81%, while Chameleon has the lowest

bandwidth ratio - only 10.29%.
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Figure 4.10: Memory bandwidth utilization for different accelerators. (© 2019 IEEE)

The high memory bandwidth utilization of MEDAL comes from its fine-grained mem-

ory accessibility. The proposed address mapping provides potential for fine-grained mem-

ory access and ICS makes it reality. As a comparison, coarse-grained memory access lags

the memory bandwidth utilization of AIM. For Chameleon, since there is no optimiza-

tion for non-SIMD processing, data from most DRAM chips become useless, reducing its

memory bandwidth utilization.
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4.4.6 Performance of Data Compression

As shown in Fig. 4.11, the proposed data compression reduces the sizes of DNA

indexes for 48.9% on average, leading to reduction in memory footprint and providing

more space for data mapping to utilize. In addition, the amount of data needs to be

fetched each iteration is also reduced due to the smaller size of compressed bucket. Thus,

there is no extra memory accesses and performance degradation after data compression.

150

155

160

165

170

175

0

20

40

60

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

D
a

ta
 /
 I
te

a
rt

io
n

 (
b

it
s

)

In
d

e
x

 S
iz

e
 (

G
B

)

Index w/o Compression

Index w/ Compression

Data w/o Compression

Data w/ Compression

Figure 4.11: Evaluation of data compression. (© 2019 IEEE)

4.4.7 Sensitivity Study about Read Length

Reads with length of 101 are typical with the next generation sequencing technol-

ogy [110, 111], thus we choose 101 as the representative length. In fact, MEDAL can

support reads with different lengths. The experimental results on an intra-rank case and

an inter-rank case with reads with various length are in Fig. 4.12. For the intra-rank

design, MEDAL with the interrupt based design provides higher performance for longer

reads due to benefits from more memory traffic. For the inter-rank design, the perfor-

mance is stable with respect to the read length, because communication compensates the

benefits from more memory traffic. When the read length is even longer, in which cases

other algorithms are used, e.g., D-SOFT in Darwin [14], we can change the customized

logic inside the DBs to match the algorithms. We expect similar performance gain, since

the seeding of ultra-long read is also memory bound, which MEDAL is good at.
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4.4.8 Hash-index based DNA Seeding Algorithm

In addition to the FM-index based DNA seeding, MEDAL also has good performance

for the Hash-index based DNA seeding. The experimental results for the Hash-index

based DNA seeding are shown in Fig. 4.13 and Fig. 4.14. The experimental results show

that MEDAL outperforms the 16-thread CPU, Chameleon, and AIM by 28.60x, 4.33x,

and 2.90x, respectively. About the energy efficiency, MEDAL outperforms the above

platforms by 668.95x, 2.22x, and 2.27x, respectively.
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4.5 Conclusion

To accelerate DNA seeding efficiently, we propose MEDAL, a high-performance,

energy-efficient, scalable, practical, and cost-effective NDP accelerator architecture. For

small databases, we propose the intra-rank design, together with an algorithm-specific

address mapping, bandwidth-aware data mapping, and Individual Chip Select (ICS)

to address the challenges of fine-grained random memory access and inter-task diver-

gence, improving parallelism and bandwidth utilization. Furthermore, to address the

challenge of scalability, we propose three inter-rank designs (polling-based communica-

tion, interrupt-based communication, and NVDIMM-based solution). In addition, we

propose an algorithm-specific data compression technique to reduce memory footprint,

introduce more space for the data mapping, and reduce the communication overhead.

Experimental results show that for the three proposed designs, on average, MEDAL can

achieve 30.50x/8.37x/3.43x performance improvement and 289.91x/6.47x/2.89x energy

reduction when compared with a 16-thread CPU baseline and two state-of-the-art NDP

accelerators, respectively.
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NEST: DIMM based

Near-Data-Processing Accelerator

for K-mer Counting

1 Motivated by its importance, many computation-centric approaches, such as multi-

core [16, 17], GPU [19, 20], and FPGA [19, 25] have been explored to accelerate k-mer

counting. However, k-mer counting involves a large amount of fine-grained memory

access and is memory-bound [19, 32]. Conventional computation-centric architectures

cannot address the memory bottleneck in k-mer counting, because they provide limited

memory bandwidth and there is no optimization for fine-grained random memory access.

Because the Near-Data-Processing (NDP) architectures architectures can provide higher

memory bandwidth and reduce data movement by integrating computation and memory

closer, the NDP architectures also have been leveraged to accelerate k-mer counting.

For example, monolithic 3D integration is utilized to accelerate k-mer counting in [32]

1© 2020 IEEE. Reprinted, with permission, from Wenqin Huangfu, Krishna T. Malladi, Shuangchen
Li, Peng Gu, Yuan Xie. ”NEST: DIMM based Near-Data-Processing Accelerator for K-mer Counting.”
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020
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and MEDAL provides a more practical approach via leveraging the Dual-Inline Memory

Module (DIMM) to build accelerators with the commercially available DRAM chips [11].

However, the previous NDP accelerators have their own drawbacks, when they are

used for k-mer counting. To be specific, monolithic 3D integration is an emerging tech-

nology, which means it’s a long-term NDP architecture. Moreover, these 3D integration

based architectures have no optimizations for fine-grained memory access. MEDAL is

a near-term NDP architecture. Unfortunately, when MEDAL is used to perform k-mer

counting, communication becomes the bottleneck. According to the experiments, for

more than 60% percent of the time, the Processing Elements (PEs) in MEDAL are idle

due to the communication. Moreover, workload balance is a serious challenge in MEDAL

and there is no optimization to deal with redundant memory access for k-mer counting.

The goal of this chapter is to address the challenges of performing k-mer counting

with NDP architecture. Modified and optimized on the base of MEDAL, a practical, scal-

able, and energy-efficient NDP accelerator, i.e., NEST, is proposed. NEST has efficient

communication, balanced workload, high bandwidth/PE utilization, and fine-grained

memory accessibility.

The main contributions of this chapter are listed as follows.

• From the hardware perspective, we build a practical, scalable, high-performance,

and energy-efficient NDP accelerator for k-mer counting, i.e., NEST, with off-the-

shelf DRAM chips.

• From the software perspective, we propose an architecture-specific k-mer counting

algorithm and a dedicated workflow for NEST, enabling parallel processing and

reducing unnecessary inter-DIMM communication.

• About the optimizations, we enhance the support for intra-DIMM communication,

improve bandwidth/PE utilization, address the challenge of workload balance, and
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eliminate unnecessary memory accesses via architecture design, address mapping,

task scheduling, and memory access management.

• We perform extensive experiments for the NEST architecture and the proposed

techniques. The experimental results show that NEST provides 677.33x/27.24x/6.02x

performance improvement and 1076.14x/62.26x/4.30x energy reduction, compared

with a 48-thread CPU, a CPU/GPU hybrid approach, and a state-of-the-art NDP

accelerator, respectively.

5.1 Architecture

NEST is built by modifying the LRDIMM, as shown in Fig. 5.1 (a) and (b). NEST

is scalable and communication between different LRDIMMs in NEST is achieved via the

standard DDR channel with the help of the host. We add a Near-Memory Computing

(NMC) module to each rank within each LRDIMM to perform k-mer counting. The

NMC module is described below:
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Figure 5.1: (a) High-level architecture. (b) Architecture of LRDIMM. (c) Micro-ar-
chitecture within a DRAM rank. (d) PEs. (© 2020 IEEE)

NMC Module: Different from MEDAL, which modifies the DBs in LRDIMM and

inserts customized computing logic into them, we attach a NMC module to each rank

in the LRDIMM, as shown in Fig. 5.1 (b) and (c). The controllers and computing
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logic in NEST are centralized inside the NMC module. Compared with the approach of

distributing customized logic in MEDAL, centralization of the customized logic provides

better communication and synchronization. Further, centralization of the customized

logic enable task scheduling and improves the ability of memory access management,

which are introduced in Section 5.3.

To enhance intra-DIMM communication and reduce inter-DIMM communication, the

fully hierarchical buses are added.

Fully Hierarchical Buses: Communication becomes a serious challenge, if MEDAL is

used to perform k-mer counting. Details about the communication overhead in MEDAL

are described in Section 5.5.6. To address the issue of communication, we design the fully

hierarchical buses for NEST to better support intra-DIMM communication. Besides the

inter-chip buses in MEDAL, the following two types of inter-rank buses are added:

• rank-rank C/A bus: To transfer the C/A signals between different ranks within the

same DIMM.

• rank-rank data bus: To transfer data between different ranks within the same DIMM.

With the inter-rank buses, intra-DIMM communication can be achieved locally with-

out going through the memory channel, which is the communication bottleneck in the

previous work.

To support computation, communication, task schedule, memory access management,

and so on, the following six components are added into the NMC module:

Processing Elements (PEs): As shown in Fig. 5.1 (c) and (d), there are a few PEs

inside each NMC module. The number of PEs is configurable. The PEs read/write the

input/output data from/to the Input/Output Buffer in the NMC module. The major

function of the PE is to perform hash function. About the hash function, MurmurHash3

is used in NEST [112]. Each PE contains:

• Buffer to store the input k-mers,
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• Lightweight logic to perform hash function,

• An address translation engine to convert the virtual address to DRAM device address.

Details of the address mapping are described in Section 5.3.2.

Data Direct Multiplexer: As shown in Fig. 5.1 (c), NEST connects a multiplexer with

the Input Buffer and a multiplexer with the Output Buffer. With these two multiplexers,

in addition to receiving/sending data to the DDR bus, the buffers can receive/send data

to the fully hierarchical buses. The multiplexers are controlled by a dedicated enable

signals from the Memory Controller (MC) we add inside the NMC module.

Memory Controller (MC): In order to coordinate memory accesses from both the host

and the PEs, we add a MC into the NMC module, as shown in Fig. 5.1 (c). The coordi-

nation between the host-side MC and the MC within the NMC module is achieved with

the ‘Host-prioritized Request Scheduling’ proposed in MEDAL. Compare with MEDAL,

putting the MC and other logic together provides better communication/synchronization,

enables task scheduling, and improves the ability of memory access management.

Workload Monitor: To address the challenge of workload balance and improve PE

utilization, we add a Workload Monitor inside the NMC module. The Workload Monitor

monitors and cooperates with the Input Buffer and the PEs to tackle the challenge of

workload balance in performing k-mer counting. Details of addressing the challenge of

workload balance are described in Section 5.3.3.

Bus Arbiter: The bus arbiter regulates the data and C/A transfer. It takes charge of

the assignment of the fully hierarchical buses and assigns them to the PEs.

Input Buffer and Output Buffer: The Input Buffer stores the states and information

of the input tasks, i.e., k-mer and the corresponding task progress. The Output Buffer

stores the output of the PEs, i.e., information of the memory access.

From the hardware perspective, compared with MEDAL, NEST provides better com-

munication/synchronization, enables task scheduling, improves the ability of memory ac-
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cess management, enhances intra-DIMM communication, and has the potential to tackle

the challenge of workload balance.

5.2 Algorithm and Workflow

In NEST, to enable parallel processing of k-mer counting, the dataset is evenly parti-

tioned into different DIMMs. As we’ve described in Section 2.1, during k-mer counting,

the prune phase constructs a chain of two Bloom filters and the count phase accesses

the second Bloom filter constructed in the prune phase to perform k-mer counting. Un-

fortunately, there are two major drawbacks, if we naively implement the k-mer counting

algorithm in NEST architecture:

• Limited Bandwidth and Parallelism: PEs in different DIMMs need to access the same

data region of Bloom filters, which under-utilizes available memory bandwidth and hin-

ders the parallelism between different PEs.

• Frequent Inter-DIMM Communication: Frequent memory accesses to the same data

region of Bloom filters introduces frequent inter-DIMM memory accesses, bringing sig-

nificant performance overhead (please refer to Section 5.5.6 for details).

To address above issues, our key idea is to provide local Bloom filters for each DIMM

to access independently. With localized and independent Bloom filters, PEs in different

DIMMs access different memory region for Bloom filter entries, the available memory

bandwidth and PE parallelism is fully leveraged. Furthermore, the inter-DIMM commu-

nication is greatly reduced.

However, naively assign different copies of Bloom filters to different DIMMs and make

PEs in different DIMMs work in parallel independently do not work. In the original k-mer

counting algorithm, the Bloom filters contain global information about the entire dataset,

and there will be error if the local Bloom filters are constructed independently. For
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example, assume a 3-mer ATC appears four times in a dataset, these four ATC are evenly

partitioned into four DIMMs and the local Bloom filters are constructed independently.

After the prune step, if we check the uniqueness of ACT in the local Bloom filters, ACT

will be confirmed as a unique k-mer in all four local Bloom filters, because ATC only

appear once in each DIMM. However, ATC is a non-unique 3-mer globally, it appears

four times in the entire dataset.

To address the challenges above, we leverage the counting Bloom filter and propose

an architecture-specific k-mer counting algorithm for NEST:
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Figure 5.2: (a) Different DIMMs construct the counting Bloom filters in parallel.
Memory accesses are localized. (b) Reduction and scattering of the counting Bloom
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1. Construct the Counting Bloom Filters: During the construction of the Counting

Bloom filters, compared with the original k-mer counting algorithm, instead of using two

1-bit Bloom filters, we leverage one 2-bit counting Bloom filter. Each DIMM constructs

their local counting Bloom filter, recording how many times (0, 1 or 2) each k-mer appears

in their sub-dataset.

2. Merge the Counting Bloom Filters: After different DIMMs finish constructing

their local counting Bloom filters, NEST merges these local counting Bloom filters to
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a merged Bloom filter via reduction and scattering. Reduction of the counting Bloom

filter is performed by adding the corresponding entries in these counting Bloom filters.

In the end of reduction, if a counter entry is larger than 2 in the reduced counting Bloom

filter, the corresponding entry in the merged Bloom filter is set as one, otherwise it is set

to zero. Scattering of the merged Bloom filter is performed by distributing the merged

Bloom filter to all the DIMMs.

3. Count k-mers: After scattering of the merged Bloom filter, each DIMM contains

a copy of the merged Bloom filter. k-mer counting is performed in different DIMMs in

parallel. For each k-mer, NEST first checks the merged Bloom filter locally to see if this

k-mer is non-unique. If current k-mer is non-unique, Memory access to the distributed

hash table will be performed and NEST will increase the corresponding frequency counter

in the hash table by one.

The workflow of performing the proposed algorithm in NEST is shown in Fig. 5.2.

Construction of the counting Bloom filters doesn’t involve inter-DIMM communication,

which will greatly degrade performance of the system. Merge of the counting Bloom filter

only involves continuously sequential read and write operations, which have little impact

on performance. About the step of counting k-mer, unnecessary inter-DIMM memory

accesses are avoided via first checking the merged Bloom filter locally, which contributes

to the good performance of NEST.

5.3 Challenges and Optimizations

The challenges of performing k-mer counting in commercial DRAM chips based NDP

accelerator together with corresponding techniques proposed to address these challenges

are presented in this section.
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5.3.1 Bottleneck of Communication

Inter-DIMM communication becomes the bottleneck, if MEDAL is used for k-mer

counting (please refer to details in Section 5.5.6). In order to ensure no hardware modi-

fication is made to the host-side memory controller and maintain the DDR timing con-

straints, worse case timing scenario is considered for the inter-DIMM memory access,

which means there is an extra delay for each inter-DIMM memory access [11]. Due

to this reason, inter-DIMM memory access involves significant performance penalties in

DIMM based NDP architecture.

To address the above challenge, the following hardware and software optimizations

are used in NEST to reduce the number of inter-DIMM memory access and relieve the

bottleneck of communication:

NEST Workflow: The proposed workflow greatly reduces unnecessary inter-DIMM

memory access by dividing k-mer counting into multiple steps and localizing data in

each step as much as possible.

Fully Hierarchical Buses: We add inter-rank buses, including the rank-rank C/A

bus and rank-rank data bus, to enable efficient communication between different ranks

within a DIMM, minimizing the amount of inter-DIMM communication.

5.3.2 Bandwidth Utilization

For address mapping in commercial DRAM chips based NDP architecture, as shown

in Fig 5.3 (a), MEDAL coalesces data within a DRAM chip to better leverage data

locality. However, in the proposed k-mer counting, there are lots of memory accesses to

counting Bloom filter entries or Bloom filter entries, i.e., 1-bit or 2-bit random memory

access, which means there is no locality at all. Thus, as shown in Fig 5.3 (b), compared

with MEDAL, we re-order the address bits to prioritize distributing data in different

73



NEST: DIMM based Near-Data-Processing Accelerator for K-mer Counting Chapter 5

DRAM chips. With the proposed address mapping, instead of trying to coalesce data

within the same DRAM chip, we try to distribute data in different DRAM chips to

improve the memory bandwidth utilization.
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4 bits

Bank:
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Row:
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(a)
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(b)

Proposed Address Mapping - Distributed Data

Figure 5.3: (a) The previous address mapping scheme aggregates fine-grained data
to better leverage locality. (b) The proposed address mapping scheme distributes
fine-grained data for better memory bandwidth utilization. (© 2020 IEEE)

5.3.3 Workload Balance

The key idea of addressing the challenge of workload balance is to keep an eye on

the states of different PEs and perform task scheduling correspondingly. As mentioned

before, we add a Workload Monitor in the NMC module. The Workload Monitor tries

to keep all PEs busy and it’s in charge of the task scheduling. Tasks come from the

DRAM are put into the Input Buffer first. The Workload Monitor monitors the states

of different PEs and the Input Buffer. If a PE needs more tasks to process and there

are pending tasks in the Input Buffer, the Workload Monitor dispatches tasks to this PE

to keep it busy. The challenge of workload balance is addressed with the proposed task

scheduling via dispatching tasks to PEs in fine-granularity dynamically.
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5.3.4 Redundant Memory Access

During the ‘Count k-mer’ step, we need to verify if all Bloom filter entries related to

the current k-mer in the merged Bloom filter are ones. If all of these Bloom filter entries

are ones, we need to write to the hash table. Otherwise, no write operation is needed.

However, if memory accesses to the merged Bloom filter are issued sequentially, memory

bandwidth may be wasted. For example, assume for each k-mer, four Bloom filter entries

need to be checked. As shown in Fig 5.4 (a), four memory accesses belong to the same

k-mer are issued sequentially. However, value of the first Bloom filter entry returned is

zero, meaning that no write operation is needed and we don’t need to check other Bloom

filter entries at all. However, because the memory accesses are issued sequentially, useless

Bloom filter entries are fetched out from the DRAM and memory bandwidth is wasted.

To address this issue, we propose the following optimizations to eliminate the redundant

memory accesses:

BF-0 BF-1 BF-2 BF-3 BF-0 BF-1 BF-2 BF-3

0 1 0 1 0 1 1 1

Mem requests issued by a PE

Data returns 

to this PE

BF-0 BF-0 BF-0 BF-0 BF-0 BF-1 BF-1 BF-0

0 0 1 1 0 1 1 1

BF-2

BF-0

Mem requests issued by a PE

(a)

(b)

Bloom Filter requests from the same task

Bloom Filter requests from different tasks

Data returns 

to this PE

Useless data – Bandwidth wasted

No useless data - No bandwidth waste

Figure 5.4: (a) Memory bandwidth is wasted without the proposed optimizations. (b)
No memory bandwidth is wasted with the proposed optimizations. (© 2020 IEEE)

Scattered Memory Access: As shown in Fig 5.4 (b), instead of issuing memory

accesses belong to a k-mer sequentially, we scatter these memory accesses and issue them
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with time intervals. We issue another memory access, only if the previous memory access

related to the same k-mer has returned and the returned value is one. With this approach,

the redundant memory accesses are eliminated and the available memory bandwidth can

be utilized efficiently.

Task Switching: Although the redundant memory access is eliminated with the scat-

tered memory access, memory bandwidth is still being wasted due to the lack of enough

memory access to DRAM between the memory access intervals. To solve this issue, we

propose to switch tasks between memory accesses. PEs switch to another task and issue a

memory access belong to another k-mer after issuing the previous memory access belong

to a certain k-mer. With this approach, time intervals due to scattered memory accesses

are filled with memory accesses belong to different k-mers.

Combine the above two techniques, the redundant memory accesses are eliminated

and memory bandwidth can be utilized efficiently.

5.4 Discussion

Algorithm Equivalence: The proposed algorithm leverages counting Bloom filter to

perform k-mer counting. In counting Bloom filter, the counter returned may be higher

than the actual frequency of the k-mer in the dataset. This is not a problem for two

reasons. First, higher counter value in the counting Bloom filter is equivalent to the false

positive rate of the Bloom filter in the original k-mer counting algorithm and is generally

considered insignificant [50]. Second, in general, retaining k-mers with low occurrences

doesn’t degrade the final results of the following applications after k-mer counting [40].

Generality of NEST: From the hardware perspective, NEST provides a practical, scal-

able, high-performance, and energy efficient NDP accelerator with hierarchical communi-

cation schemes and support for fine-grained random memory access, it can be beneficial to
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Table 5.1: Configure of the CPU and CPU + GPU baselines (© 2020 IEEE)

Configuration of the CPU basline
CPU Model Intel Xeon E5-2680 v3

CPU Clock Frequency (GHz) 2.50
Memory Capacity (GB) 384

L1 (KB)/L2 (KB)/L3 (MB) Cache 64 / 256 / 32

Configuration of the CPU + GPU basline
GPU Model Nvidia Titan X
CPU Model Intel Xeon E5-2603 v3

CPU Clock Frequency (GHz) 1.60
Memory Capacity (GB) 24

L1 (KB)/L2 (KB)/L3 (MB) Cache 64 / 256 / 16

memory-bound applications require hierarchical communication and fine-grained mem-

ory access. For example, NEST can be easily configured to support the application of

‘DNA seeding’ which MEDAL is designed for simply by replacing the PEs inside NEST

with customized PEs for ‘DNA Seeding’. From the software perspective, the proposed

algorithm and workflow provides a solution to reduce memory access in distributed NDP

architectures with software/hardware co-design and the divide-and-conquer approach.

5.5 Experimental Results

The experimental setup, results, and analysis of the experimental results are presented

in this section.

5.5.1 Experimental Setup

Configuration of the Baselines: For CPU and CPU + GPU, we use two widely

used software tools, i.e., BFCounter [40] and Gerbil [20], as the baselines. The detailed

configuration of the two servers running these two baselines is shown in Table 5.1.
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Table 5.2: Configure of MEDAL and NEST (© 2020 IEEE)

Configuration of MEDAL and NEST
Memory Capacity (GB) 512

Memory Channels 4
DIMMs per Memory Channels 2

Ranks per DIMM 4
DRAM Chips per Rank 16

Rank-Rank C/A buses per DIMM (NEST) 4
Rank-Rank Data buses per DIMM (NEST) 1

Chip-Chip Data buses per Rank 1
PEs per Rank 6

Parameters of DDR4 DRAM
Capacity 8Gb × 4

Bank Groups 2
Banks per BankGroup 2

Clock Frequency (1/tCK) 1,200MHz
tRCD-tCAS-tRP (ns) 16-16-16

For MEDAL, as shown in Table 5.2, the configuration of memory and number of PEs

are the same as these in NEST. The differences between MEDAL and NEST are these

architecture modifications and communication optimizations we make. In addition, the

proposed k-mer counting algorithm is also used in MEDAL to improve its performance,

Configuration of NEST: We modify Ramulator [102] to build a cycle-accurate sim-

ulator for NEST. The configuration of NEST is shown in Table 5.2. We use pre-layout

Design Compiler [103] with 28 nm technology [104] to estimate the timing, energy, and

area parameters of the PEs. The timing constraint is set to be 1.2GHz. The parameters

of the PEs are shown in Table 5.3. The timing parameters of the DRAM components are

shown in Table 5.2. The energy consumption of DRAM is derived by feeding the memory

traces from Ramulator to DRAMPower [105]. The parameters of energy consumption

for the datapath used in this chapter are from CACTI-IO [106].

Datasets: The datasets used in the experiments are sequenced human genome [109]

with different coverage ratio.
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Table 5.3: Design Parameters of the Lightweight logics (© 2020 IEEE)

Module Latency (Cycles) Power (mW) Leakage (uW) Area (um2)
Hash Module 17 5.99 8.38 5297.58
Addr Trans 4 2.13 16.45 11423.54

5.5.2 Performance Improvement

The performance of different architectures/optimizations is in Fig. 5.5 (a) and (b).

All the data are normalized to the performance of the 48-thread CPU baseline.
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Figure 5.5: Performance improvement of the CPU/GPU hybrid approach, MEDAL,
and NEST with different architectures/optimizations. (a) Performance improvement
for different k. (b) Performance improvement for different genome coverage.
(© 2020 IEEE)

As shown in Fig. 5.5 (a), when the genome coverage is 20x, for different k, the naive

coarse-grained memory access in NEST architecture improves the performance of the

48-thread CPU, the CPU/GPU hybrid approach, and MEDAL by 171.78x, 6.88x, and
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1.51x, respectively. Compared with the naive coarse-grained memory access, the naive

fine-grained memory boosts the performance of NEST by 1.13x. About the optimiza-

tions, the proposed address mapping improves the performance of the naive fine-grained

memory access by 1.08x. Moreover, performance improvement of 1.17x is achieved with

the proposed task scheduling. Memory access management gains 2.79x performance im-

provement. Combine the above optimizations together, NEST outperforms the 48-thread

CPU, the CPU/GPU hybrid approach, and MEDAL by 687.48x, 27.53x, and 6.06x, re-

spectively. When k is 27, similar trend of speedup can be observed in Fig. 5.5 (b).

Compared with MEDAL, performance improvement from the configuration with naive

coarse-grained memory access in NEST comes from the enhanced support for intra-DIMM

communication. Compared with the naive coarse-grained memory access, performance

improvement of the naive fine-grained memory access comes from its ability to per-

form fine-grained memory access. Further, performance improvement of task scheduling

comes from the balanced workloads in different PEs. Finally, performance improvement

of memory access management comes from its reduction of redundant memory access

and task switching to efficiently utilize the available memory bandwidth. Overall, com-

pared with the CPU baseline, chip-level fine-grained memory access provides 16x more

bandwidth, rank-level parallelism provides 4x more bandwidth, and allowing different

copies of counting Bloom filters/Bloom filters in different DIMMs to be accessed in par-

allel provides 8x more bandwidth. Combine these benefits together, NEST provides 512x

more memory bandwidth than the CPU baseline. Further, the proposed k-mer counting

algorithm reduces the amount of memory access needed, i.e. one counting Bloom filter

vs. two Bloom filters. Moreover, NEST has efficient task scheduling and memory access

management. Combine all above advantages, NEST provides significant performance

improvement, compared with the CPU baseline.
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5.5.3 Energy Reduction

The energy reduction of different architectures/optimizations is in Fig. 5.6 (a) and

(b). All the data are normalized to that of the 48-thread CPU baseline.
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Figure 5.6: Energy reduction of the CPU/GPU hybrid approach, MEDAL, and NEST
with different architectures/optimizations. (a) Energy reduction for different k. (b)
Energy reduction for different genome coverage. (© 2020 IEEE)

As shown in Fig. 5.6 (b), when the genome coverage is 20x, for different k, the naive

coarse-grained memory access in NEST architecture reduces energy consumption of the

48-thread CPU and the CPU/GPU hybrid approach by 160.16x and 9.75x, respectively.

Compared with MEDAL, this approach consumes 50% more energy. Compared with the

naive coarse-grained memory access, energy consumption is reduced by 2.54x with the

naive fine-grained memory reduces. About the proposed optimizations, address map-

ping slightly reduces the energy consumption by 1.01x. Task scheduling reduces energy
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consumption by 1.15x. Energy reduction of 2.19x is achieved via memory access man-

agement. Combine the proposed optimizations together, compared with the 48-thread

CPU, the CPU/GPU hybrid approach, and MEDAL, NEST reduces the energy con-

sumption by 1091.91x, 62.90x, and 4.32x, respectively. When k is 27, similar trend of

energy reduction can be found in Fig. 5.6 (b).

5.5.4 Time and Energy Breakdown
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Figure 5.7: (a) Time breakdown with 20x genome coverage. (b) Time breakdown with
k = 20. (c) Energy breakdown with 20x genome coverage. (d) Energy breakdown with
k = 20. (© 2020 IEEE)

The time breakdown for NEST is shown in Fig. 5.7 (a) and (b). The results indicate

that the phases of ‘Merge the Counting Bloom Filters’ are negligible, because this phase
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only takes less than 5% of the total runtime. The dominant phases in the workflow

are ‘Construct Counting Bloom Filters’ and ‘Count k-mers’. By introducing the negligi-

ble phases of ‘Merge the Counting Bloom Filters’, the proposed workflow separates the

phases of ‘Construct Counting Bloom Filters’ and ‘Count k-mers’ to reduce inter-DIMM

communication, leading to performance improvement.

The energy breakdown of NEST is shown in Fig. 5.7 (c) and (d). More than 90%

energy is consumed by DRAM. Less than 10% energy is consumed by computation and

communication combined together. The observations indicate that computation and

communication in NEST is very energy efficient.

5.5.5 Remote Memory Access

The percent of remote memory access among all memory access with the naive imple-

mentation of the original k-mer counting algorithm in the MEDAL architecture and the

percent of remote memory access in NEST are shown in Fig. 5.8. The x-axis standards

for different inputs in the form of (Genome Coverage, k). Compared with the naive

implementation, NEST effectively reduces the percent of remote memory access from

96.90% to 19.20% on average.

0

20

40

60

80

100

(20, 13) (20, 17) (20, 21) (20, 24) (20, 27) (10, 27) (15, 27) (25, 27) (30, 27)

P
e
rc

e
n

ta
g

e
 (

%
)

Inputs

Percentage of Remote Memory Access
Naïve Implementation
NEST

Figure 5.8: Percentage of remote memory access in the naive implementation of the
original k-mer counting algorithm and in NEST. (© 2020 IEEE)
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5.5.6 PE Utilization

The breakdown of different PE states for the phases of ‘Construct Counting Bloom

filters’ and ‘Count k-mers’ are shown in Fig. 5.9 (a) and (b). The results indicate that, for

k-mer counting, communication becomes the bottleneck in MEDAL due to its frequent

inter-DIMM communication with extra performance penalty. The proposed step-by-step

optimizations tackle the challenge in communication and memory. For the phase of ‘Con-

struct Counting Bloom filters’, compared with MEDAL, NEST architecture increases the

PE utilization ratio from 12.39% to 20.13%. Combine the proposed techniques together,

PE utilization is improved to 56.62%. For the phase of ‘Count k-mers’, similar trend can

be observed. Compared with MEDAL, NEST has a much higher PE utilization ratio.

(a)
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Figure 5.9: Breakdown of the PEs states. (a) Constructing counting Bloom Filters.
(b) Counting k-mers. (© 2020 IEEE)

5.6 Conclusion

This chapter proposes NEST, a practical, scalable, high-performance, and energy-

efficient NDP accelerator for k-mer counting. To fully unleash the performance of NEST,

84



NEST: DIMM based Near-Data-Processing Accelerator for K-mer Counting Chapter 5

we propose an architecture-specific k-mer counting algorithm for NEST, together with

a dedicated workflow, to reduce unnecessary inter-DIMM communication and improve

parallelism. In addition, we propose a novel address mapping scheme to improve mem-

ory bandwidth utilization. The challenge of workload balance is addressed with the

proposed task scheduling. Scattered memory access and task-switching are proposed to

eliminate the redundant memory access. Experimental results demonstrate that NEST

provides 677.33x/27.24x/6.02x performance improvement and 1076.14x/62.26x/4.30x en-

ergy reduction, compared with a 48-thread CPU, a CPU/GPU hybrid approach, and a

state-of-the-art NDP accelerator, respectively.
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Chapter 6

BEACON: Scalable

Near-Data-Processing Accelerators

for Genome Analysis near Memory

Pool with the CXL Support

1 Due to the importance and the time-consuming fact of genome analysis, researchers

are paying more and more attention to its hardware acceleration. Because of the large

amount of data involved, the simple arithmetic operations, and the memory-bound fea-

ture, many applications in genome analysis are well-suited for the memory-centric archi-

tectures [56], i.e., Processing-In-Memory (PIM) and Near-Data-Processing (NDP). Dif-

ferent PIM and NDP approaches, including ReRAM [15, 113], HMC [35, 50], and Dual-

Inline-Memory-Module (DIMM) [4, 11], have been explored to accelerate the memory-

1© 2022 IEEE. Reprinted, with permission, from Wenqin Huangfu, Krishna T. Malladi, Andrew
Chang, Yuan Xie. ”BEACON: Scalable Near-Data-Processing Accelerators for Genome Analysis near
Memory Pool with the CXL Support.” Proceedings of the 55th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2022.
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bound applications in genome analysis. Among these different PIM and NDP work, the

DIMM based designs stand out to be highly promising, because they are more practical

and cost-effective.

Previous Work
Host

…

LM-1 (Communication) 

…DIMMLimited DDR Mem

LM-2 (Mem Expansion) 

High Mem BW

Low Comm BW Mem Pool with CXL Support High Comm BW and Abundant Mem

DIMM

Limitations and Why BEACON
DIMM DIMMDIMM

Figure 6.1: Architecture and limitations of the previous work, together with the mo-
tivations for designing BEACON. (© 2022 IEEE)

However, as shown in Fig. 6.1, the previous DIMM based accelerators are built upon

the DDR-DIMMs attached to the host and rely on the DDR memory channel for the

inter-DIMM communication. These DDR-DIMM based designs have two critical lim-

itations: First, communication has become the performance bottleneck. As shown in

Fig. 6.1, the large gap, e.g., 12x in MEDAL [11], between the intra-DIMM memory

bandwidth and the inter-DIMM communication bandwidth seriously degrades the per-

formance [4, 11]. Second, the potential for memory expansion is limited. The memory

capacity requirements for different applications in genome analysis vary significantly,

depending on the specific application, the dataset, the algorithm to use, and the parame-

ters of the algorithm. For example, BWA-MEM uses 64GB memory for FM-index based

DNA seeding [42] and SMUFIN uses near 2TB memory for k-mer counting [19]. Ideally,

it’s desired to be able to conveniently adjust the memory capacity of the DIMM based

accelerators with unmodified DIMMs on-demand to deal with different usage scenarios

for genome analysis [4, 11]. Unfortunately, as shown in Fig. 6.1, the constraints of the

DDR-DIMMs, e.g., the limited number of memory channels and slots [114,115], and the

trend of memory dis-aggregation, i.e., migrating local DDR memory to a memory pool,

greatly reduces the potential of memory expansion in the previous work. For example,

NEST provides 512GB memory in the DDR memory channel [4], which cannot meet the
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2TB memory requirement for SMUFIN [19]. As a comparison, the memory pool easily

provides 4.5TB memory and can scale-out far beyond this [116]. In addition, memory

expansion with unmodified DIMMs totally contradicts with the design philosophy of the

previous DDR-DIMM based accelerators, i.e., modifying the DIMM to reduce the expen-

sive inter-DIMM communication and leverage the high intra-DIMM memory bandwidth

with intra-DIMM data manipulation enabled by DIMM-customization.

The goal of this chapter is to build DIMM based accelerators for genome analysis

under the scenario of memory dis-aggregation, supporting efficient on-demand memory

expansion with unmodified DIMMs and eliminating the performance bottleneck of commu-

nication. To this end, we propose BEACON, i.e., CXL-DIMM based NDP accelerators

for genome analysis located near the dis-aggregated memory pool with the CXL support.

BEACON enables four key features: First, it embraces the emerging trend-of memory dis-

aggregation [117–119] with CXL as one of the most promising enabler [114,120,121]. Sec-

ond, BEACON leverages the abundant memory in the memory pool to enable on-demand

memory expansion with unmodified CXL-DIMMs. Third, BEACON fully leverages the

high communication bandwidth provided by CXL to address the challenge of commu-

nication. Fourth, BEACON maintains the promising and non-invasive feature, i.e., no

modifications to the cost-sensitive DRAM dies, of the previous DIMM based designs.

BEACON provides two design choices, i.e., BEACON-D and BEACON-S. BEACON-D

and BEACON-S perform the computation within the enhanced CXL-DIMMs and en-

hanced CXL-Switches, respectively.

The architecture of BEACON is designed to set the foundation for efficient mem-

ory expansion and communication by reducing data movement and leveraging the high

bandwidth provided by CXL. Based on the BEACON architecture, the memory manage-

ment framework is proposed to enable memory expansion with unmodified CXL-DIMMs

and optimize communication by improving data locality. In addition, algorithm-specific

88



BEACON: Scalable Near-Data-Processing Accelerators for Genome Analysis near Memory Pool
with the CXL Support Chapter 6

optimizations are proposed to further boost the performance of BEACON. Combining

the architecture design, the memory management framework, and the algorithm-specific

optimizations together, BEACON enables efficient on-demand memory expansion with

unmodified CXL-DIMMs and eliminates the performance bottleneck of communication.

The main contributions of this chapter are listed as follows:

• We propose BEACON, including BEACON-D and BEACON-S, under the scenario

of memory dis-aggregation. Located near the memory pool and focusing on genome

analysis, BEACON leverages the abundant memory within the memory pool and

the high communication bandwidth provided by CXL without making any modifi-

cation to the cost-sensitive DRAM dies.

• With the proposed architecture design (e.g., processing in the memory pool and in-

switch data routing) and memory management framework (e.g., memory allocation

and address mapping), BEACON enables efficient on-demand memory expansion

with unmodified CXL-DIMMs and eliminates the performance bottleneck of com-

munication of the previous work.

• We adopt algorithm-specific optimizations (multi-chip coalescing for FM-index based

DNA seeding and single-pass k-mer counting) to improve the performance. In ad-

dition, BEACON can be used for multiple applications in genome analysis.

• Experiments are performed to demonstrate the performance benefits of BEACON

and different optimizations. Overall, compared with state-of-the-art DIMM based

NDP accelerators, BEACON-D and BEACON-S improves the performance by 4.70x

and 4.13 on average
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6.1 Background

This section introduces the background of this work, including memory dis-aggregation

and the CXL.

Memory Dis-aggregation Memory dis-aggregation include memory expansion and

memory pooling [115,122,123]. Memory expansion refers to the process of enlarging the

memory capacity to improve the memory bandwidth per core [114,123]. Memory pooling

addresses the issue of resource fragmentation, i.e., resource under-utilization due to the

mismatched requirements of different workloads [119], by providing a shared memory

pool that can be accessed on-demand for different servers. Memory dis-aggregation is

becoming a trend [117–119], because it can improve system performance and resource

utilization as well as reduce cost. Many different types of interconnect technologies have

been proposed for memory dis-aggregation, including OpenCAPI [124], GenZ [125], FMC

Cable [118], Optical memory channel [126], CXL [120,121], and so on.

Compute Express Link (CXL) As an open industry standard interconnect, CXL

offers high-bandwidth and low-latency connectivity between the host processor and de-

vices such as smart I/O devices, accelerators, and memory buffers [127]. CXL enables

cache coherence and memory semantics for heterogeneous processing and memory sys-

tems based on the PCI Express (PCIe) 5.0 I/O semantics for optimized performance in

evolving usage models [120,121]. CXL supports memory dis-aggregation, including mem-

ory expansion and memory pooling [114, 122, 123, 128]. In fact, CXL is one of the most

promising technology in enabling memory dis-aggregation. For example, the full-stack

memory dis-aggregation design based on CXL has been proposed [128] and the Intel CPU

Memory Management Unit (MMU) are going to integrate the CXL Memory Expander

in the future [114].
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The architecture of the näıve memory pool with the CXL support is: The host is con-

nected to multiple CXL-Switches via the CXL buses and each CXL-Switch is connected

with multiple CXL-DIMMs via the CXL buses.

6.2 Motivations

This section introduces the limitations of the previous work and the reasons for our

design choice.

Limitation-1 (Communication): The large gap between the intra-DIMM memory

bandwidth and the inter-DIMM communication bandwidth makes inter-DIMM commu-

nication the performance bottleneck for the previous DDR-DIMM based accelerators.

For example, by leveraging the rank-level memory bandwidth within the DDR-DIMMs,

the intra-DIMM memory bandwidth is 12x higher than the inter-DIMM communication

bandwidth in MEDAL [11].

Energy Efficiency Improvement

Performance Improvement

0 2 4 6 8

FM index

Hash index

k-mer Counting

Figure 6.2: Improvement of performance and energy efficiency for the previous
DDR-DIMM based accelerators with imaginary idealized communication, i.e., infi-
nite bandwidth and zero latency. The experimental configuration is in Section 6.5.1.
(© 2022 IEEE)

According to the experiments, as shown in Fig. 6.2, with imaginary idealized com-

munication (infinite bandwidth and zero latency, i.e., instant data delivery), on average,

performance improvement of 4.36x and energy efficiency improvement of 2.32x can be

achieved for the the previous DDR-DIMM based accelerators. The data indicate that

the bottleneck of communication greatly degrades the performance and energy efficiency.
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Limitation-2 (Memory Expansion): As we’ve mentioned in Section 6, the ability of

memory expansion with unmodified DIMMs is desired for accelerators of genome analysis

to deal with different usage scenarios. Unfortunately, the potential of memory expansion

in the previous DIMM based accelerators is greatly limited due to three reasons: First, the

previous work are based on the DDR-DIMMs, which have poor scalability due to many

constraints, e.g., the limited number of memory channels and slots [114, 115]. Second,

memory dis-aggregation, which further reduces the amount of local DDR memory, is be-

coming a trend [118,119]. Third, since the inter-DIMM communication is the performance

bottleneck, the design philosophy of the previous work is to reduce the expensive inter-

DIMM communication and leverage the high intra-DIMM bandwidth by intra-DIMM

data manipulation enabled with DIMM-customization. Leveraging unmodified DIMMs

(i.e., no intra-DIMM data manipulation) as memory expansion means frequently access-

ing data from the remote unmodified DIMMs (i.e., no intra-DIMM bandwidth) and bring

the data back (i.e., frequent inter-DIMM communication), which totally contradicts with

the design philosophy of the previous work.

To tackle these two limitations and maintain the non-invasive feature of the previous

DIMM based designs, we embrace the trend of memory dis-aggregation to design novel

DIMM based accelerators for genome analysis. Located near the memory pool with the

CXL support, BEACON fully leverages the abundant memory in the memory pool and

the high communication bandwidth of CXL to address the challenges related to memory

expansion and communication.

6.3 BEACON Design

This section presents the BEACON architecture. After an overview of the architec-

ture, we describe the components design, the memory management framework, and the

algorithm-specific optimizations in order.

92



BEACON: Scalable Near-Data-Processing Accelerators for Genome Analysis near Memory Pool
with the CXL Support Chapter 6

6.3.1 Architecture Overview

The goal of BEACON is to build DIMM based accelerators for genome analysis un-

der the scenario of memory dis-aggregation, supporting efficient on-demand memory

expansion with unmodified DIMMs and eliminating the performance bottleneck of com-

munication. To this end, BEACON resides in the memory pool with the CXL support

to leverage the abundant memory within the memory pool and the high communication

bandwidth provided by CXL.

As shown in Fig. 6.3, BEACON provides two different design choices, i.e., BEACON-

D and and BEACON-S. The key difference between BEACON-D and BEACON-S is:

BEACON-D is a Processing-In-DIMM accelerator and performs the computation within

the enhanced CXL-DIMMs. As a comparison, BEACON-S is a Processing-In-Switch

accelerator and performs the computation within the enhanced CXL-Switches. Both

BEACON-D and BEACON-S maintain the non-invasive feature and practicality of the

previous DIMM based accelerators for genome analysis without making any modification

to the cost-sensitive DRAM dies.
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Figure 6.3: High-level architecture of BEACON. (a) BEACON-D. (b) BEACON-S.
(© 2022 IEEE)

BEACON-D have better performance than BEACON-S in some applications with

its customized CXL-Genome-DIMM (CXLG-DIMM). The CXLG-DIMMs are compu-

tation and fine-grained memory access enabled CXL-DIMMs. CXLG-DIMMs have the
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ability to provide fine-grained memory access, which is useful in genome analysis [4, 11].

On the other hand, BEACON-S provides overall comparable performance, i.e., 87.87%

performance of BEACON-D, with less hardware modifications.

BEACON-D: For BEACON-D, as shown in Fig. 6.3 (a), three components are modified

in the näıve memory pool with the CXL support, i.e., the CXL-Switch ( 1 ), the CXL-

Interface ( 2 ), and the CXLG-DIMM ( 3 ). Modifications to the CXLG-DIMM are done

to the Printed Circuit Board (PCB) board of the CXL-DIMM, leaving the cost-sensitive

DRAM dies untouched.

From the architecture perspective, besides performing computation within the CXLG-

DIMM, keep our design goal in mind, as shown in Fig. 6.3 (a), the components labeled

with the blue and red circles aim to achieve the goal of supporting efficient communica-

tion and providing efficient memory access, respectively. BEACON-D achieves efficient

communication by transferring data via the high-bandwidth CXL buses with the archi-

tecture support from the CXL-Switch and the CXL-Interface. For memory expansion,

as shown in Fig. 6.3 (a), different CXLG-DIMMs can access data within each other and

can also access data in the unmodified CXL-DIMMs. The CXL-Switch helps with the

memory management.

BEACON-S: For BEACON-S, as shown in Fig. 6.3 (b), the CXL-Switch ( 1 ) and the

CXL-Interface ( 2 ) are modified in the näıve memory pool with the CXL support.

In addition to performing computation within the CXL-Switch, similar to BEACON-

D, as shown in Fig. 6.3 (b), the components labeled with the blue and red circles aim to

achieve the goal of supporting efficient communication and providing efficient memory

access, respectively. To achieve our design goal, the CXL-Switch and the CXL-Interface

work together to fully leverage the potential from the high-bandwidth CXL bus to elimi-

nate the performance bottleneck of communication. For memory expansion, the unmod-

ified CXL-DIMMs are regulated and can be accessed by the CXL-Switch efficiently.
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6.3.2 Components Design

The architectures of the modified components in the CXL based memory pool, i.e.,

the CXLG-DIMM, the CXL-Interface, and the CXL-Switch, are shown in Fig. 6.4 (a).

Similarly, the components labeled with the blue and red circles aim to achieve the goal of

supporting efficient communication and providing efficient memory access. As mentioned

before and shown in Fig. 6.3 (a), the functionality of the CXLG-DIMM is to perform

computation and the access memory efficiently. The CXL-Interface helps to fully lever-

age the potential of the high-bandwidth communication. As for the CXL-Switch, it’s

responsible for communication regulation and memory management. In BEACON-S, as

shown in Fig. 6.3 (b), the CXL-Switch is also responsible for performing computation.
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6.3.2.1 CXLG-DIMM

As shown in Fig. 6.4 (a), the NDP module ( A ) is added to the CXL-DIMM to

build the CXLG-DIMM. In addition, similar to MEDAL [11], in order to improve utiliza-

tion of memory bandwidth for genome analysis, fine-grained memory access is enabled
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in CXLG-DIMM by providing individual Chip Select (CS) signals to different DRAM

chips within the CXLG-DIMM. To summarize, CXLG-DIMMs are computation and

fine-grained memory access enabled CXL-DIMMs. CXLG-DIMMs are the customized

accelerator modules in BEACON-D.

NDP Module Design: The design goal of the NDP module are to enable compu-

tation for multiple applications in genome analysis and provide efficient memory accessi-

bility to the other CXLG-DIMMs and CXL-DIMMs. Five different components, i.e., the

PE, the Memory Controller (MC), the Address Translator, the Task Scheduler, and the

I/O Buffer, are added to the NDP module for the design goal.

•To Enable Computation: To enable computation for multiple applications in genome

analysis, multiple PEs are added into the NDP module:

1 PEs: The PEs, as shown in Fig. 6.4 (b), are designed to be multi-purpose. They can

be programmed to perform computation of four algorithms for three different applications

in genome analysis, including DNA seeding, k-mer counting, and DNA pre-alignment. As

for the inputs, tasks, i.e., DNA sequences to be processed with related information, are

received from the Task Scheduler. As for the outputs, memory requests are sent to the

Address Translator to derive the physical memory addresses. If operands from memory

requests are needed for an active task to continue computation, the PE puts that task

into the Task Scheduler and switches to process another task in its task queue.

• To Provide Efficient Memory Access: The Memory Controller (MC) and the

Address Translator are added into the NDP module to support the proposed memory

management and eliminate the need for help from the host-side memory MC during

memory access:

2 Memory Controller (MC): The MC in the NDP module, as shown in Fig. 6.4 (b),

is responsible for the purpose of memory management in BEACON, including memory

allocation/de-allocation, data placement, address mapping, memory requests scheduling,
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and so on. In addition, the MCs in BEACON also enable localized memory access. For

example, in BEACON-D, the MC in the NDP on the CXLG-DIMM enables localized

memory access inside the CXLG-DIMM. Similary, in BEACON-S, the MC in the NDP

module on the CXL-Switch enables localized memory without asking for help from the

host-side MC.

3 Address Translator: The Address Translator, as shown in Fig. 6.4 (b), receives

memory requests from the PEs and translates the memory requests into their physi-

cal memory addresses according to the proposed data placement and address mapping

schemes. Then, the Address Translator forwards the memory requests to the Data Packer

within the Switch-Logic to transfer these memory requests towards their destinations.

• Other Components: Besides the components related to computation and memory

access, the Task Scheduler and the I/O Buffer are added into the NDP module to support

its functionalities and improve the efficiency:

4 Task Scheduler: We define a task as a DNA sequence to be processed with related

information, e.g, algorithm and current processing status. The Task Scheduler, as shown

in Fig. 6.4 (b), maintains two queues for the inactive tasks, i.e., the incoming task queue

and the out-going task queue.

The inputs to the incoming task queue are tasks waiting for operands from memory

requests and are sent from the PEs. When all the operands needed for a task within

the incoming task queue are ready, this task is pushed to the out-going task queue. The

Task Scheduler monitors the statuses of different PEs and the tasks in the out-going task

queue are assigned to the PEs that need more tasks to process.

5 I/O Buffer: The Input Buffer, as shown in Fig. 6.4 (b), receives inputs to the NDP

module, including the remote memory requests and the data back with remote/local

destinations. Both the remote memory requests and the data back with remote/local

destinations are first forwarded to the MC. The remote memory requests wait at the MC
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to be issued out. The data back with remote destinations are forwarded to the Data

Packer (introduced below within the CXL-Switch) to be packed together and transferred

towards the remote destinations. The data back with local destinations are forwarded

to the Task Scheduler, which means the needed operands for the tasks within the Task

Scheduler have been back.

For BEACON-D, the Output Buffer in the CXLG-DIMM, as shown in Fig. 6.4 (b),

forwards memory requests to the Data Packer within the CXL-Interface. For BEACON-

S, the Output Buffer in the CXL-Switch forwards memory requests to the Data Packer

within the CXL-Switch. These memory requests are forwarded towards their destination

from the Data Packer.

6.3.2.2 CXL-Switch

To support the functionalities of the CXL-Switch, as shown in Fig. 6.4 (a), the Switch-

Bus and the Switch-Logic ( B ) are added to the CXL-Switch.

6 Switch-Bus: To achieve our design goal of supporting efficient communication, as

shown in Fig. 6.4 (a), the Switch-Bus is added to the CXL-Switch to support efficient in-

switch data routing between different components within the same CXL-Switch, e.g, the

Virtual CXL Switch (VCS) and the Switch-Logic, eliminating unnecessary data move-

ment between the CXL-Switch and the host.

Switch-Logic Design: For BEACON-D, the design goal of the Switch-Logic is to

support efficient communication and provide efficient memory accessibility to the CXL-

DIMMs. To achieve this design goal, four components, i.e., the Bus Controller (Bus

CtrL), the Data Packer, the MC, and the Atomic Engine, are added into the Switch-

Logic for BEACON-D.

For BEACON-S, since the computation is performed within the CXL-Switch, besides

the design goal above, we also need to enable computation within the Switch-Logic.
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Overall, three components, i.e., the NDP module, the Bus CtrL, and the Data Packer,

are added into the Switch-Logic.

• To Enable Computation: BEACON-S needs the computation capability in its

Switch-Logic, we add the same NDPmodule placed within the CXLG-DIMM in BEACON-

D into its Switch-Logic to achieve this goal.

• To Support Efficient Communication: The Bus CtrL and the Data Packer are

added into the Switch-Logic to efficiently coordination in-switch data routing and improve

the utilization of communication bandwidth for fine-grained data:

7 Bus CtrL: As shown in Fig. 6.4 (c), the Bus CtrL is responsible for the coordination

of communication and in-switch data routing within the CXL-Switch on the Switch-Bus.

8 Data Packer: Applications in genome analysis involve frequent fine-grained random

memory access, e.g., 32 Bytes for DNA seeding and 1 bit for k-mer counting [4,11]. How-

ever, the default data transfer granularity in the CXL is 64 Bytes, leading to movement of

the useless data. The key idea to address this issue in BEACON is to discard the useless

data and pack the useful data together before the data transfer. After receiving the data,

the packed fine-grained data are unpacked and separated. This approach eliminates the

movement of the useless data, leading to reduction in communication bandwidth and

energy consumption. In Fig. 6.5 (a) and (b), an example with 16 Bytes data chunk is

used to demonstrate the idea of data packing. Before data packing, the data chunk only

contains 2 Bytes useful data, i.e, data 0. After data packing, useful data are packed

together to eliminate the movement of useless data.

The Data Packer is added into the Switch-Logic to enable data packing. The Data

Packer, as shown in Fig. 6.4 (c), packs fine-grained data together according to the format

defined by the CXL protocol before the data transfer. It also unpacks and separates the

packed fine-grained data coming in.
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To Provide Efficient Memory Access: To provide efficient memory access to

the unmodified CXL-DIMMs connected with the CXL-Switch, a MC is needed in the

CXL-Switch. The MC is responsible for the customized memory management, including

memory allocation/de-allocation, data placement, address mapping, DRAM states main-

taining, memory requests scheduling, and so on. For BEACON-D, as shown in Fig. 6.4

(c), the MC ( 2 ) is added into the Switch-Logic. For BEACON-S, as shown in Fig. 6.4

(c), because its NDP module in the CXL-Switch contains a MC, we reuse the MC within

its NDP module and no extra components are needed.

To address the issue of Read-Modify-Write (RMW) data race during memory access,

the Atomic Engine is added into the Switch-Logic in BEACON-D. For BEACON-S,

because its Switch-Logic contains many PEs, we reuse the PEs as the Atomic Engines

and no extra components are needed.

9 Atomic Engine: With parallel processing, Read-Modify-Write (RMW) data race,

i.e., simultaneously reading and updating the same memory location, is a challenge. For

example, during k-mer counting, multiple tasks may try to read, increase, then write back

the same k-mer counter at the same time. Undetermined order of these operations may

lead to incorrect final results. Atomic memory operations can solve the issue of RMW
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data race as well as reduce bandwidth consumption [129]. In addition, atomic memory

operations are useful for many applications [129]. Due to these reasons, we enable atomic

memory operations in BEACON to address the issue of RMW data race.

In BEACON-D and BEACON-S, the arithmetic part of the atomic memory operations

are performed in the Atomic Engine, shown in Fig. 6.4 (c), and the PEs within the Switch-

Logic, respectively. The workflows of performing atomic memory operations in BEACON

are described below:

For BEACON-D, as shown in Fig. 6.6 (a), 1 The MC in the Switch-Logic issues

memory request to the target CXL-DIMM. 2 The data is brought back to the MC. 3

The data is forwarded to the Atomic Engine. 4 The arithmetic operations are performed

within the Atomic Engine. 5 The arithmetic result is sent back to the MC. 6 The MC

issues memory request to write back the result.

Similar workflow for BEACON-S is shown in Fig. 6.6 (b). The difference between the

workflows of BEACON-S and BEACON-D is: For BEACON-D, the arithmetic operations
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are performed in the Atomic Engine. For BEACON-S, the arithmetic operations are

performed in the PEs within the Switch-Logic.

6.3.2.3 CXL-Interface

To reduce the movement of the useless data and improve utilization of the communi-

cation bandwidth, as shown in Fig. 6.4 (c), the Data Packer ( 8 ) described above is also

added into the CXL-Interface to perform data packing before the data transfer towards

the CXL-Switch.

6.3.3 Memory Management Framework

The workflow of the proposed memory management framework is shown in Fig. 6.7. The

host coordinates with the CXL-Switch, the unmodified CXL-DIMM, and the CXLG-

DIMM (if BEACON-D) to perform memory management.

DIMM Chosen

Mem Clean

DIMM 

Preparation

Mem Space Mapping

Device Mod Config

Mem Access 

Optimization

Data Placement

Addr Mapping

Data Migration

Memory Management Framework

Allocation

Req Resp

Memory Space 

Mapping

DIMM

Req

De-allocation

De-allocation

Resp

Figure 6.7: The workflow of the memory management framework in BEACON.
(© 2022 IEEE)

Memory Allocation: First, the host sends the memory allocation request with the

detailed information, e.g, application, algorithm, dataset, parameters, to the CXL-Switch

via the framework interface. Second, as shown Fig. 6.7, the the CXL-Switch works with

the host, the unmodified CXL-DIMMs, and the CXLG-DIMMs (if BEACON-D) to do

memory allocation, including DIMM allocation, memory access optimization, and data

migration. Third, the CXL-Switch sends the response, i.e., successful or failed, back to

the host via the framework interface. The details in the second step are described below:
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• DIMM Allocation: The proposed memory management framework manages mem-

ory in the granularity of CXL-DIMM. According to the memory allocation request, the

memory framework tries to allocate the unmodified CXL-DIMMs in proximity to the

NDP module, e.g., within the same CXL-Switch. After deciding which CXL-DIMMs to

allocate, memory clean is performed to migrate the active data for other applications

within these CXL-DIMMs to the other CXL-DIMMs. The host and the CXL-Switch

work together to update the related page tables during memory clean. After the memory

clean, these chosen CXL-DIMMs are used dedicated for BEACON. The memory address

within these CXL-DIMMs are marked as non-cacheable for the host.

CXL Switch

Host Switch 

Logic

BEACON-D

CXL 

DIMM

CXL 

DIMM

VCS 0

CXL Switch

…

...VCS 1

…

...

…

...

CXL Switch

Host Switch 

Logic

Request Data

Switch-Logic

BEACON-S

Mem CtrL

(c) (d)

CXL 

DIMM

CXLG 

DIMM

CXL 

DIMM

CXLG 

DIMM

Request Data

CXL 

DIMM

CXLG 

DIMM

Request Data

VCS 0

CXL Switch

…

...VCS 1

…

...

…

...

Mem CtrL

CXL 

DIMM

CXL 

DIMM

Request Data

CXL 

DIMM

CXL 

DIMM

(a) (b)

NDP 

Module

Switch-Logic

Figure 6.8: (a), (b) Memory access flows before/after the proposed optimizations for
BEACON-D. (c), (d) Memory access flows before/after the proposed optimizations
for BEACON-S. (© 2022 IEEE)
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• Memory Access Optimization: Because CXL enables cache coherence, with the

näıve implementation, as shown in Fig. 6.8 (a) and (c), the memory requests and data

from/to the unmodified CXL-DIMMs need to go through the host for coherence purpose,

leading to redundant data movement.

Leveraging the protocol of CXL [120], the memory space in the unmodified CXL-

DIMMs is mapped to the device memory space in BEACON and BEACON is set to the

device-biased mod. With the software configuration and the architecture support from

the MC and the Switch-Bus inside the Switch-Logic, the memory access flows to the

unmodified CXL-DIMMs in BEACON-D and BEACON-S are show in Fig. 6.8 (b) and

(d), respectively. The redundant data movement is eliminated.
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• Data Migration: To reduce data movement, the key idea of the proposed data

placement scheme is to make full utilization of the data locality. BEACON always tries

to put the more frequently accessed data to memory locations in proximity to the NDP

module within BEACON.

Different from the previous work [4,11,130], which provides a fixed address mapping

scheme, we propose the architecture and data aware address mapping scheme to better

leverage features of both the architecture and the specific data. The two architecture

and data related principles in the proposed address mapping scheme are:

1. Memory address interleaving is performed according to the architecture of the DIMMs

to fully leverage the available memory bandwidth. For the CXLG-DIMMs, the memory

address interleaving can be done at the chip-level to leverage its ability to perform fine-

grained memory access, while the memory address interleaving can only be done at the

rank-level for the unmodified CXL-DIMMs.

2. For data with spacial locality [11], we prioritize to map these data in the DRAM row-

by-row. As an example, in Hash-index based DNA seeding, multiple matching locations

for a seed are stored continuously within the same DRAM row to fully leverage locality.

Following the above two principles, the detailed address mapping schemes in BEA-

CON are shown in Fig. 6.9. The related information, e.g., application, algorithm, data

access granularity, are included in the memory requests to the customized MC in BEA-

CON and the customized MC schedules the memory accesses based on these information.

Memory De-alocation: For memory de-allocation, first, host send the memory de-

allocation request with detailed information, e.g, how much memory to de-allocate, to

the CXL-Switch via the framework interface. Second, the CXL-Switch works with the

the CXLG-DIMMs (if BEACON-D) to map the corresponding allocated memory to the

host memory space. Third, the CXL-Switch sends the response, i.e., successful or failed,

back to the host via the framework interface.
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6.3.4 Algorithm-Specific Optimizations

FM-index - Multi-Chip Coalescing: FM-index based DNA seeding requires fine-

grained memory access [11]. As shown in Fig. 6.10 (a), fine-grained memory access

leads to low memory bandwidth utilization in the conventional DIMM, because only a

portion of the data read out from the memory are useful. As shown in Fig. 6.10 (b),

the previous work supports fine-grained memory access, i.e., read a single DRAM chip

multiple times to get the fine-grained data, to improve the memory bandwidth utilization

[11]. Unfortunately, with this method, the amount of memory access to some DRAM

chips are greatly increased, while some DRAM chips stay idle. In a word, although

better than the conventional approach, the method adopted in the previous work leads

to memory bandwidth under-utilization as well.
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32 bits x 16 chips = 512 bits

Target: 128 bits dataConventional DIMM

Low BW Utilization

16 DRAM Chips

32 bits x 4 times = 128 bits

Target: 128 bits dataPrevious Accelerators

Low BW Utilization

16 DRAM Chips
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Target: 128 bits dataMulti-Chip Coalescing

No Useless Data

(a)

(b)

(c)
Better Balanced Mem Access

Read Useless Data

Imbalanced Mem Access

Figure 6.10: Examples of different approaches for fine-grained memory access. (a)
Conventional DIMM. (b) The previous accelerators. (c) Multi-chip coalescing.
(© 2022 IEEE)
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To address this issue, we propose multi-chip coalescing for data placement and mem-

ory access in the CXLG-DIMMs within BEACON. As shown in Fig. 6.10 (c), the data

is placed and accessed in multi-chip granularity to achieve a sweet point, i.e., no useless

data read out and better balanced memory access. The amount of DRAM chips to be

coalesced is fine-tuned to achieve the best performance.

k-mer Counting - Single-Pass k-mer Counting: In the previous DIMM based ac-

celerator for k-mer counting, i.e., NEST [4], a multi-pass method is adopted. Specifically,

first, each DIMM constructs its own counting Bloom filter locally (processing the entire

input for the first time). Next, the counting Bloom filters from different DIMMs are

merged to derive the global Bloom filter and the global Bloom filter is distributed to all

the DIMMs. Finally, each DIMM performs k-mer counting independently and access its

own copy of the global Bloom filter (processing the entire input for the second time).

This method eliminates the expensive random remote memory access in the first and the

last steps at the cost of processing the entire input twice.

However, BEACON-S performs the computation in the CXL-Switch and the data

are distributed in different CXL-DIMMs. With the previous approach, we cannot get

the benefits of data localization, while we still suffer from its overhead of processing the

entire input twice. For this reason, the method of single-pass k-mer counting is adopted

in BEACON-S. To be specific, BEACON-S directly deals with the global Bloom filter

distributed to different CXL-DIMMs, eliminating the first step and the last step above.

6.4 Discussion

Extension to Other Applications: BEACON can be easily extended as a practical,

cost-effective, and scalable accelerator for other memory-bound applications, such as

image processing [131], graph processing [95], and database searching [96], by replacing
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the PEs within the NDP module. BEACON can also be extended as general purpose

NDP accelerator by replacing the PEs with light-weight, low-power, general-purpose

processing units [132].

Extension to Other Architectures: Besides CXL, there are other emerging commu-

nication specifications [119], such as Gen-Z [125], OpenCAPI [124], and CCIX [133], the

designs and optimizations in BEACON could also be migrated to and be used in the

NDP architectures with these emerging communication specifications.

6.5 Experimental Results

The experimental setup, experimental results, and analysis of the experimental results

are presented in this section.

6.5.1 Experimental Setup

Configuration of the Baselines: For FM-index and Hash-index based DNA seed-

ing, the software we use for the CPU baselines are BWA-MEM [33] and SMALT [101],

respectively. The hardware baseline is the previous DIMM based accelerator for DNA

seeding, i.e., MEDAL [11]. For k-mer counting, the software we use for the CPU baseline

is BFCounter [40]. The hardware baseline is the previous DIMM based accelerator for

k-mer counting, i.e., NEST [4]. For DNA pre-alignment, the software we use for the

CPU baseline is Shouji [49]. The detailed configurations of these baselines are shown in

Table 6.1. The DIMMs used in the experiments have the same parameters. The same

PEs, which are described below, are used in the NDP baselines and BEACON. We’ve

ensured that BEACON and the NDP baselines have the same area overhead.

We need to mention that the experiments are in favor of the NDP baselines. As

mentioned in Section 6.2, the baselines cannot use unmodified DIMMs for memory ex-
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Table 6.1: Experimental Configuration (© 2022 IEEE)

Configuration of the CPU basline
CPU Model/CPU Frequency(GHz) Intel Xeon E5-2680 v3/2.50
Memory(GB)/L1(KB)/L2(KB)/L3(MB) Cache 384/64/256/32

Configuration of MEDAL and NEST
Memory(GB)/DDR Channels 512/4
Customized DIMM per Channel 2

Configuration of BEACON
Memory(GB)/Switch/VCS per Switch 512/2/2
CXLG/CXL-DIMM per VCS (BEACON-D) 1/1
CXL-DIMM per VCS (BEACON-S) 2

Configurations of DIMM
DIMM Capacity(GB)/DRAM Chip 64/8Gb ×4
Ranks per DIMM/Chips per Rank 4/16
BankGroups per Chip/Banks per BankGroup 4/4
Clock Frequency(MHz)/tRCD-tCAS-tRP 1,600/22-22-22

pansion. In the experiments, as shown in Table 6.1, all the DIMMs in the NDP baselines

are customized DIMMs according to their designs. These customized DIMMs provide

better performance and higher energy efficiency for genome analysis. In BEACON-D,

only a portion of the DIMMs are customized. In BEACON-S, none of the DIMMs are

customized. Due to the hardware configuration in favor of the baselines, the previous

DIMM based accelerators have slightly higher energy efficiency than BEACON. BEA-

CON can also achieve higher energy efficiency with more customized CXLG-DIMMs,

but this is not our design goal. Because it’s obviously more convenient, scalable, and

cost-effective to scale-out by leveraging existing unmodified CXL-DIMMs in the memory

pool, instead of keep inserting customized DIMMs into the system.

Configuration of BEACON: Ramulator [102] is modified to build a cycle-accurate

simulator for BEACON. The configuration of BEACON is shown in Table 6.1. We use

pre-layout Design Compiler [103] with 28 nm technology [104] to synthesize the timing,

energy, and area of the PEs. The area of each PE is 14090.23 um2. The dynamic power
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and leakage power of each PE is 9.48 mW and 18.97 uW. The computational latencies

for FM-index based DNA seeding, Hash-index based DNA seeding, k-mer counting, and

DNA pre-alignment are equal to 16, 10, 59, and 82 DRAM cycles. For BEACON-D,

there are 128 PEs within each CXLG-DIMM. For BEACON-S, there are 256 PEs within

each CXL-Switch. The configuration of the DIMM is shown in Table 6.1. The energy

consumption of DRAM is calculated with DRAMPower [105]. The energy consumption

for the communication come from [106,134].

Datasets: For FM-index based DNA seeding, Hash-index based DNA seeding, and DNA

pre-alignment, five different genomes, i.e., Pinus taeda (Pt), Picea glauca (Pg), Sequoia

sempervirens (Ss), Ambystoma mexicanum (Am), and Neoceratodus forsteri (Nf), from

NCBI [109] are used in the experiments. For k-mer counting, human genome with a

coverage ratio of 50x is used in the experiments.

Next, for different applications, the performance improvement and energy reduction

of BEACON are presented. All the data are normalized to the corresponding data of the

48-thread CPU baselines.
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Figure 6.11: FM-index based DNA seeding for BEACON-D. (a) Performance improve-
ment. (b) Energy reduction. (© 2022 IEEE)
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6.5.2 FM-index based DNA Seeding

BEACON-D: For BEACON-D, the performance improvement of designs with step-

by-step optimizations on FM-index based DNA seeding is shown in Fig. 6.11 (a). On

average, CXL-vanilla, i.e., the näıve NDP accelerator near the memory pool with the

CXL support, improves the performance of the 48-thread CPU baseline and MEDAL

by 144.18x and 1.20x. As for the optimizations, data packing improves the performance

by 1.08x. Performance improvement of 1.29x is achieved with memory access optimiza-

tion. Moreover, the proposed data placement and address mapping gain performance

improvement of 1.96x. In addition, multi-chip coalescing brings performance improve-

ment of 1.34x. Overall, BEACON-D outperforms the 48-thread CPU and MEDAL by

525.73x and 4.36x in performance, respectively. BEACON-D achieves 96.52% perfor-

mance of the corresponding design with idealized communication (infinite bandwidth

and zero latency), indicating that communication is no longer an issue.
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Figure 6.12: Normalized memory access to different DRAM chips for FM-index based
DNA seeding. (a), (b) Without and with multi-chip coalescing. (© 2022 IEEE)
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The performance benefits of multi-chip coalescing comes from balanced memory ac-

cess to different DRAM chips and better utilization of memory bandwidth. As shown in

Fig. 6.12 (a), without multi-chip coalescing, the memory access to different DRAM chips

are unevenly distributed, leading to memory bandwidth under-utilization. As shown in

Fig. 6.12 (b), with multi-chip coalescing, the memory access to different DRAM chips

are well-balanced, i.e., with less variations, and memory bandwidth is better utilized.

For energy efficiency, as shown in Fig. 6.11 (b), BEACON-D reduces energy consump-

tion of the CPU baseline by 210.59x and achieves 91.26% energy efficiency of MEDAL.

Compared with the design with idealized communication, BEACON-D achieves 92.09%

of its energy efficiency.

BEACON-S: For BEACON-S, the performance improvement of designs with step-by-

step optimizations on FM-index based DNA seeding is shown in Fig. 6.13 (a). On average,

CXL-vanilla improves the performance of the 48-thread CPU baseline and MEDAL by

146.64x and 1.22x. As for the optimizations, data packing improves the performance by

1.08x. Performance improvement of 1.57x is achieved with memory access optimization.

Moreover, the proposed data placement and address mapping gain performance improve-

ment of 1.18x for BEACON. Overall, BEACON-S outperforms the 48-thread CPU and

MEDAL by 291.62x and 2.42x in performance, respectively. BEACON-S achieves 98.48%

performance of the corresponding design with idealized communication, eliminated the

issue of communication.

Energy wise, as shown in Fig. 6.13 (b), BEACON-S reduces energy consumption of

the CPU baseline by 100.60x and achieves 43.59% energy efficiency of MEDAL. Com-

pared with the corresponding design with idealized communication, BEACON-S achieves

82.57% of its energy efficiency.
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Figure 6.13: FM-index based DNA seeding for BEACON-S. (a) Performance improve-
ment. (b) Energy reduction. (© 2022 IEEE)

6.5.3 Hash-index based DNA Seeding

BEACON-D: For BEACON-D, the performance improvement of designs with step-

by-step optimizations on Hash-index based DNA seeding are shown in Fig. 6.14 (a).

On average, CXL-vanilla improves the performance of the 48-thread CPU baseline and

MEDAL by 309.13x and 2.54x. As for the optimizations, performance improvement of

1.81x is achieved with memory access optimization. Data packing, data placement, and

address mapping don’t bring much performance benefits, because of two reasons: First,

Hash-index based DNA seeding doesn’t require many fine-grained memory access. Sec-

ond, the communication is not a bottleneck in BEACON-D for this application even only

with the proposed architecture support. Overall, BEACON-D outperforms the 48-thread

CPU and MEDAL by 572.17x and 4.70x, respectively. BEACON-D achieves 98.59%

performance of the corresponding design with idealized communication, indicating that

communication is no longer an issue.
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Figure 6.14: Hash-index based DNA seeding for BEACON-D. (a) Performance im-
provement. (b) Energy reduction. (© 2022 IEEE)

For energy efficiency, as shown in Fig. 6.14 (b), BEACON-D reduces energy consump-

tion of the CPU baseline by 960.72x and achieves 85.58% energy efficiency of MEDAL.

Compared with the design with idealized communication, BEACON-D achieves 84.05%

of its energy efficiency.

BEACON-S: For BEACON-S, the performance improvement of designs with step-by-

step optimizations on Hash-index based DNA seeding are shown in Fig. 6.15 (a). On aver-

age, CXL-vanilla improves the performance of the 48-thread CPU baseline and MEDAL

by 302.48x and 2.48x. As for the optimizations, performance improvement of 1.50x is

achieved with memory access optimization. Moreover, the proposed data placement and

address mapping gain performance improvement of 1.21x. Data packing doesn’t bring

much benefits, because of the limited amount of fine-grained memory access in Hash-index

based DNA seeding. Overall, BEACON-S outperforms the 48-thread CPU and MEDAL

by 556.66x and 4.57x. BEACON-S achieves 98.64% performance of the corresponding

design with idealized communication, eliminated the issue of communication.
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Figure 6.15: Hash-index based DNA seeding for BEACON-S. (a) Performance im-
provement. (b) Energy reduction. (© 2022 IEEE)

Energy wise, as shown in Fig. 6.15 (b), BEACON-S reduces energy consumption of the

CPU baseline by 832.32x and achieves 76.11% energy efficiency of MEDAL. Compared

with the design with the corresponding design with idealized communication, BEACON-S

achieves 86.27% of its energy efficiency.

6.5.4 k-mer Counting

BEACON-D: For BEACON-D, the performance improvement of designs with step-by-

step optimizations on k-mer counting are shown in Fig. 6.16 (a). On average, CXL-

vanilla improves the performance of the 48-thread CPU baseline and NEST by 124.88x

and 1.46x. As for the optimizations, data packing improves the performance by 1.07x.

Performance improvement of 2.75x is achieved with memory access optimization. More-

over, the proposed data placement and address mapping gain performance improvement

of 1.21x. With all proposed optimizations, BEACON-D outperforms the 48-thread CPU

and NEST by 443.08x and 5.19x, respectively. BEACON-D achieves 92.98% performance

of the corresponding design with idealized communication, indicating that communica-
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tion is no longer an issue.
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Figure 6.16: k-mer counting for BEACON-D. (a) Performance improvement. (b)
Energy reduction. (© 2022 IEEE)

For energy efficiency, as shown in Fig. 6.16 (b), BEACON-D reduces energy consump-

tion of the CPU baseline by 190.23x and achieves 91.57% energy efficiency of NEST.

Compared with the corresponding design with idealized communication, BEACON-D

achieves 76.71% of its energy efficiency.

BEACON-S: For BEACON-S, the performance improvement of designs with step-by-

step optimizations on k-mer counting are shown in Fig. 6.17 (a). On average, CXL-

vanilla improves the performance of the 48-thread CPU baseline and NEST by 125.57x

and 1.47x. As for the optimizations, data packing improves the performance by 1.09x.

Performance improvement of 2.83x is achieved with memory access optimization. The

proposed data placement and address mapping achieves 92.16% performance of the pre-

vious case, because communication is not a issue for k-mer counting in BEACON-S and

data localization undermines utilization of the available memory bandwidth. The pro-

posed data placement and address mapping scheme reduce data movement and lead to
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1.12x improvement in energy efficiency. In addition, single-pass k-mer counting brings

performance improvement of 1.48x. Overall, BEACON-S outperforms the 48-thread CPU

and NEST by 527.99x and 6.19x, respectively. BEACON-S achieves 99.48% performance

of the corresponding design with idealized communication, eliminated the performance

bottleneck of communication.
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Figure 6.17: k-mer counting for BEACON-S. (a) Performance improvement. (b)
Energy reduction. (© 2022 IEEE)

Energy wise, as shown in Fig. 6.17 (b), BEACON-S reduces energy consumption of the

CPU baseline by 102.05x and achieves 49.12% energy efficiency of NEST. Compared with

the corresponding design with idealized communication, BEACON-S achieves 71.82% of

its energy efficiency.

6.5.5 DNA Pre-alignment

For DNA pre-alignment, as shown in Fig. 6.18, BEACON-D and BEACON-S im-

prove performance of the 48-thread CPU baseline by 362.04x and 359.36x, respectively.
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They also reduce the energy consumption of the 48-thread CPU baseline by 387.05x and

382.80x, respectively.
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Figure 6.18: DNA pre-alignment. (a) Performance improvement. (b) Energy reduc-
tion. (© 2022 IEEE)

6.6 Conclusion

To address the limitations of the previous DIMM based accelerators for genome anal-

ysis, i.e., performance bottle-necked by communication and limited potential for memory

expansion under the scenario of memory dis-aggregation, this chapter proposes BEA-

CON, including BEACON-D and BEACON-S. As DIMM based NDP accelerator lo-

cated near the dis-aggregated memory pool with the CXL support, BEACON enables

efficient on-demand memory expansion with unmodified CXL-DIMMs and eliminates

the performance bottleneck of communication without making any modification to the

cost-sensitive DRAM dies. In addition, BEACON adopts algorithm-specific optimiza-

tions to further improve its performance and can be used for multiple applications in

genome analysis. Experimental results demonstrate that BEACON-D and BEACON-S

improve performance of state-of-the-art DIMM based NDP accelerators by 4.70x and

4.13x, respectively.
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Chapter 7

Summary

The booming genome data brings great challenges to the data processing in genome anal-

ysis, especially for the memory-bound applications in genome analysis. Memory-centric

architecture is a promising solution to tackle this problem. This dissertation focuses

on exploring the memory-centric architecture for genome analysis, covering designs and

optimizations in both hardware and software.

We first explore to build memory-centric accelerators for genome analysis based on

the emerging memory technology, i.e., ReRAM. Our emerging memory technology based

PIM design for genome analysis provides ultra-high performance and energy efficiency by

performing in-situ computation inside the emerging memory array to leverage massive

parallelism and eliminate data movement.

RADAR, a high performance and energy efficient PIM architecture based on the 3D

ReCAM, to accelerate BLASTN, i.e., a widely used DNA alignment tool, is proposed.

RADAR merges memory and computation together to support in-situ computation with

massive parallelism and minimal data movement, leading to its ultra-high performance

and energy efficiency. In addition, we propose a data mapping scheme, including the dense

data mapping scheme and the Tail Bits Duplication (TBD) technique, to further optimize

computation and storage. RADAR distinguishes itself from the previous ReRAM based
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Summary Chapter 7

PIM accelerator for DNA alignment with efficient data storage and no issue of device

endurance. Compared with the CPU baseline, we demonstrate that RADAR provides

ultra-high performance and energy efficiency.

We then explore to leverage the conventional memory technology, i.e., DRAM, to de-

sign memory-centric accelerators for genome analysis. Our emerging memory technologies

based NDP designs for genome analysis highlight practicality and cost-effectiveness by

integrating the processing elements near the conventional memory array to utilize extra

memory bandwidth and reduce data movement.

First, we propose MEDAL, a high-performance, energy-efficient, practical, cost-effective,

and DIMM based NDP accelerator to accelerate DNA seeding efficiently. For small

databases, we propose the intra-rank design, together with an algorithm-specific address

mapping, bandwidth-aware data mapping, and Individual Chip Select (ICS) to address

the challenge of fine-grained random memory access and inter-task divergence, improving

parallelism and bandwidth utilization. Furthermore, to address the challenge of scalabil-

ity, we propose three inter-rank designs (polling-based communication, interrupt-based

communication, and NVDIMM-based solution). In addition, we propose an algorithm-

specific data compression technique to reduce memory footprint, introduce more space

for the data mapping, and reduce the communication overhead. Experimental results

show that MEDAL outperforms the 16-thread CPU baseline and two state-of-the-art

NDP accelerators.

Then, based on MEDAL, we propose NEST, a high-performance, energy-efficient,

practical, cost-effective, and DIMM based NDP accelerator for k-mer counting. To fully

unleash the performance of NEST, we propose an architecture-specific k-mer counting

algorithm, together with a dedicated workflow, to reduce unnecessary inter-DIMM com-

munication and improve parallelism. In addition, we propose a novel address mapping

scheme to improve memory bandwidth utilization. The challenge of workload balance
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is addressed with the proposed task scheduling. Scattered memory access and task-

switching are proposed to eliminate the redundant memory access. Evaluation results

demonstrate that NEST achieves good performance improvement and energy reduction,

compared with a 48-thread CPU, a CPU/GPU hybrid approach, and a state-of-the-art

NDP accelerator.

Finally, we propose BEACON, including BEACON-D and BEACON-S, to address

the limitations of the previous DIMM based accelerators for genome analysis, i.e., per-

formance bottle-necked by communication and limited potential for memory expansion

under the scenario of memory dis-aggregation. As DIMM based NDP accelerator lo-

cated near the dis-aggregated memory pool with the CXL support, BEACON enables

efficient on-demand memory expansion with unmodified CXL-DIMMs and eliminates

the performance bottleneck of communication without making any modification to the

cost-sensitive DRAM dies. In addition, BEACON adopts algorithm-specific optimiza-

tions to further improve its performance and can be used for multiple applications in

genome analysis. We compare BEACON with the 48-thread CPU baseline and state-of-

the-art DIMM based NDP accelerators for multiple applications with different datasets,

demonstrating that BEACON provides good performance and energy efficiency.

We hope the work in this thesis would be helpful and inspirational for software-

hardware co-design, memory-centric accelerator design, genome analysis accelerator de-

sign, and design of memory-centric accelerator for genome analysis.
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