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RESEARCH Open Access

Principles of RNA processing from analysis
of enhanced CLIP maps for 150 RNA
binding proteins
Eric L. Van Nostrand1,2, Gabriel A. Pratt1,2, Brian A. Yee1,2, Emily C. Wheeler1,2, Steven M. Blue1,2, Jasmine Mueller1,2,
Samuel S. Park1,2, Keri E. Garcia1,2, Chelsea Gelboin-Burkhart1,2, Thai B. Nguyen1,2, Ines Rabano1,2,
Rebecca Stanton1,2, Balaji Sundararaman1,2, Ruth Wang1,2, Xiang-Dong Fu1,2, Brenton R. Graveley3* and
Gene W. Yeo1,2*

Abstract

Background: A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of
RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets
transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The
development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a
unique resource of RBP interactomes profiled with a standardized methodology in the same cell types.

Results: Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved
positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions.
Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment
for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and
suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of
spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling
identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch
point-based scanning model for 3′ splice site recognition. Finally, we show that eCLIP peak co-occurrences across
RBPs enable the discovery of novel co-interacting RBPs.

Conclusions: This work reveals novel insights into RNA biology by integrated analysis of eCLIP profiling of 150 RBPs
with distinct functions. Further, our quantification of both mRNA and other element association will enable further
research to identify novel roles of RBPs in regulating RNA processing.
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Background
RNA can act as a carrier of information from the nu-
cleus to the cytoplasm in the processing of protein-
coding genes, as a regulatory molecule that can control
gene expression, and even as an extracellular signal to
coordinate trans-generational inheritance [1–3]. RNA
binding proteins (RBPs) interact with RNA through a
wide variety of primary sequence motifs and RNA struc-
tural elements to control all processing steps [3]. Fur-
thermore, with the increase in the number of RBPs that
are becoming associated with human diseases, identify-
ing their RNA targets and how they are regulated has
become an unmet, urgent need.
To identify direct RNA targets of RBPs, RNA immu-

noprecipitation (RIP) and crosslinking and immunopre-
cipitation (CLIP) methods are frequently used. CLIP-
based methods utilize UV crosslinking to covalently link
an RBP with its bound RNA in live cells, enabling both
stringent immunoprecipitation washes and denaturing
SDS-PAGE protein gel electrophoresis and nitrocellulose
membrane transfer which serves to remove background
unbound RNA [4]. Analyses of single RBP binding pro-
files by CLIP have provided unique insights into basic
mechanisms of RNA processing, as well as identified
downstream effectors that drive human diseases [5–7].
Further efforts to profile multiple human RBPs in the
same family or regulatory function by CLIP illustrated co-
ordinated and complex auto- and cross-regulatory interac-
tions among RBPs and their targets [8–10]. Rising interest
in organizing public deeply sequenced CLIP datasets to
enable the community to extract novel RNA biology is ap-
parent from newly available computational databases and
integrative methods [11, 12]. However, methodological
differences between CLIP approaches, combined with
simple experimental variability between labs and variation
in acceptable quality control metrics, add significant chal-
lenges to interpretation of differences observed.
The field of transcription regulation observed similar

challenges and opportunities in integrating transcription
factor target profiles [13]. To address this challenge, the
ENCODE consortium piloted large-scale profiling of
transcription factor targets using a single standardized
chromatin immunoprecipitation (ChIP-seq) protocol
[14]. The initial effort to profile 119 factors generated a
unified dataset for creating and assaying robust quality
assessment standards [15], and led to insights into mod-
eling transcription factor complexes, binding modalities,
and regulatory networks [16]. More critically, however,
this has served as an invaluable resource for researchers
to annotate potential functional variants [17] and gener-
ate hypotheses across a variety of fields of interest. This
success suggested that a similar effort to profile RBP tar-
gets using a standardized methodology could similarly
drive significant insights in RNA biology.

To this end, we introduced the enhanced CLIP (eCLIP)
methodology featuring a size-matched input control [18]
and characterized hundreds of immunoprecipitation-grade
antibodies with a standardized workflow [19] to generate
223 eCLIP datasets profiling targets for 150 RBPs in K562
and HepG2 cell lines [20]. Along with orthogonal data
types, this study provided insights into localized RNA pro-
cessing, studied the interplay between in vitro binding mo-
tifs and RBP association (and factor-responsive targets) in
live cells, and identified novel effectors of RNA stability and
alternative splicing [20].
In this companion work, we provide further insight

into how integrative analysis of RBP target profiles by
eCLIP can reveal both general principles of RNA pro-
cessing as well as specific mechanistic insights for indi-
vidual RBPs. Although most CLIP analysis typically
focuses on binding to mRNAs (both intronic and ex-
onic), we find that for 70% of RBPs, the dominant en-
richment signature is instead a variety of multicopy and
non-coding elements (including structural RNAs such as
ribosomal RNAs and spliceosomal snRNAs, retrotran-
sposable and other repeat elements, and mitochondrial
RNAs). These analyses can be then used to generate hy-
potheses about RBP function, as enrichment for the
ribosomal RNA precursor corresponds with RBPs regu-
lating ribosomal RNA maturation whereas enrichment
for retrotransposable elements corresponds to both
regulation of retrotransposition itself as well as suppres-
sion of improper RNA processing due to cryptic ele-
ments contained within these elements. Binding maps
across meta-profiles of mRNAs and exon-intron junc-
tions similarly show that RBP binding patterns correlate
with RBP functional roles, and analysis of spliceosomal
components indicates that eCLIP can be used to identify
branch points and provides evidence for a 3′ splice site
scanning model. In summary, these results provide fur-
ther validation of the power of integrated analyses of
RBP target maps generated by eCLIP in identifying novel
principles of RNA biology, as well as generating RBP-
specific hypothesis for further functional validation.

Results
Large-scale profiling of RNA binding protein binding sites
with eCLIP
The eCLIP methodology enabled highly efficient identifi-
cation of RBP binding sites [18], leading to the gener-
ation of the first large-scale database of RNA binding
protein targets profiled in the same cell types using a
standardized workflow [20]. This dataset contains 223
eCLIP profiles of RNA binding sites for 150 RNA
binding proteins (120 in K562 and 103 in HepG2 cells),
covering a wide range of RBP functions, subcellular lo-
calizations, and predicted RNA binding domains (Fig. 1a;
Additional files 1 and 2) [20]. Each experiment contains
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biological duplicate immunoprecipitation libraries along
with a paired size-matched input from one of the two
experimental biosamples (Fig. 1b). For each experiment,
raw sequencing data, processed data (including read
mapping and identified binding sites), and experimental
meta-data (including antibody and immunoprecipitation
validation documentation, biosample information, and
additional related ENCODE datasets) were deposited at
the ENCODE data coordination center (https://www.
encodeproject.org) [20].
Many CLIP methods included radioactive labeling of

the 5′ end of RNA fragments with 32P to visualize
protein-RNA complexes after SDS-PAGE electrophor-
esis and membrane transfer in order to query whether
RNA bound to co-purified RBPs of different size is
present [4]. However, the eCLIP protocol we utilized
above did not include this direct visualization of protein-
associated RNA due to the complexity of incorporating
radioactive labeling at this scale, preferring validation of
eCLIP signal with orthogonal approaches (such as com-
parison with in vitro-derived motifs or overlap with
knockdown/RNA-seq changes). To address this question
for future large-scale eCLIP profiling, we pursued alter-
native labeling approaches. We found that ligation of bi-
otinylated cytidine (instead of the normal RNA adapter)
enabled visualization similar to that observed with 32P
while using commercially available chemiluminescent
detection reagents for biotin-labeled nucleic acids (Add-
itional file 3: Fig. S1a-c) [21]. We note that unlike 32P

labeling (which is done as a 5′ phosphorylation reaction
with T4 Polynucleotide Kinase), this labeling uses the
standard eCLIP RNA adapter ligation reaction and thus
may more accurately reflect true protein-coupled RNA
positioning.
Surprisingly, when expanding this approach across

RBPs, we observed detectable transfer of RNA from
non-crosslinked cells to nitrocellulose membranes in a
supplier-dependent manner (Additional file 3: Fig. S1d-
f). We had previously noted that certain sourced nitro-
cellulose membranes contained greater amounts of
RNA, which would then be recovered during library
preparation (particularly in input libraries, which lack
adapter addition prior to membrane transfer) [22]. How-
ever, we now observed that the recommended (lower
contaminant, membrane I) membrane from that effort
showed increased transfer of RNA than our previous
supplier (membrane G) (Additional file 3: Fig. S1d-f). Al-
though the signal observed in crosslinked samples was
typically significantly higher (median 12.5-fold across 17
RBPs tested), with 88% (15 out of 17) RBPs greater than
5-fold (Additional file 3: Fig. S1d), for 2 out of 17, we
observed within 5-fold RNA transfer in non-crosslinked
samples (Additional file 3: Fig. S1d,f).
To directly query whether this led to artifactual eCLIP

peak identification, we chose seven eCLIP experiments
performed with membrane I and performed replicate ex-
periments with membrane G. Using MATR3 as an ex-
ample, we observed that peak fold-enrichment compared

Fig. 1 Two hundred twenty-three eCLIP datasets profile targets for 150 RNA binding proteins. a Colors indicate RBPs profiled by eCLIP, with
manually annotated RBP functions, subcellular localization patterns from immunofluorescence imaging, and predicted RNA binding domains
indicated (Additional file 1). b Schematic overview of eCLIP as performed in the datasets described here. Two biological replicates (defined as
biosamples from separate cell thaws and crosslinked more than a week apart) were performed for each RBP, along with one size-matched input
taken from one of the two biosamples prior to immunoprecipitation
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across membranes was similar to that observed for
within-membrane replicates (Additional file 3: Fig. S1g).
Extending this to all seven RBPs, only one (FXR2) out of
seven showed notably lower replication of peak signifi-
cance using membrane G (Additional file 3: Fig. S1h),
and even in that case, we observed high overall correlation
in peak fold-enrichment (Additional file 3: Fig. S1i). Con-
servation of signal was not limited to peak calls, as we ob-
served similar enrichments for retrotransposable and
other RNA elements as well (Additional file 3: Fig. S1j).
Thus, although our data indicates that whether RNA that
is not crosslinked to protein will transfer to nitrocellulose
membranes is supplier- and product-dependent, but that
it does not generally appear to add significant background
to the eCLIP profiles studied here.

Recovering RNA binding protein association to
retrotransposons and other multicopy RNAs
Standard peak analysis revealed a wide variety of binding
modes to mRNAs, with RBPs enriched for coding se-
quences, 3′ and 5′ untranslated regions, proximal and
distal intronic regions, and non-coding RNAs (Add-
itional file 3: Fig. S2a) [20]. Notably, we observed that
RNA binding protein mRNAs were 1.4-fold enriched
(p = 2.1 × 10−22 by one-sample t test) among all peak-
containing genes (median 13.5% per dataset, relative to
9.4% of all genes with at least one peak). In particular,
well-studied splicing regulators (e.g., SRSF7 and TRA2A)
were more than 3-fold enriched for binding to RBPs
(Additional file 3: Fig. S2b-c). In contrast, transcription
factors were unchanged (1.0-fold depleted), suggesting
that RNA processing regulators are particularly likely to
themselves be the target of RNA processing regulation.
In total, RBPs profiled in this study bound a median of
107 RBPs and 34 transcription factors, confirming the
presence of a highly complex regulatory network of
RNA and DNA processing (Additional file 3: Fig. S2c).
In addition to single-copy RNA transcripts, the human

genome contains many high-copy regions that are
expressed as functional RNAs but present a substantial
challenge to standard short read mapping strategies.
These include RNAs such as the large and small riboso-
mal RNA (rRNA), 7SK snRNA, and others that have one
or few expressed primary transcripts but dozens to hun-
dreds of pseudogenes throughout the genome, as well as
retrotransposable elements including LINE and Alu ele-
ments with thousands of moderately divergent sense and
antisense copies throughout transcribed genes [23]. We
found that simply including non-uniquely mapped reads
in standard analysis created thousands of peaks in in-
trons, in intergenic regions, and at pseudogenes that
typically lacked standard peak shapes (likely reflecting
sequencing errors relative to the main expressed

transcript), indicating the need for improved methods to
properly quantify RBP binding to such loci.
In order to include these RNA types in eCLIP analysis,

we developed a “family-aware mapping” approach in
which adapter-trimmed reads are first mapped against a
database of sequences for primary transcripts and pseu-
dogenes for 82 families (Fig. 2a) (Additional file 4).
Reads mapping to reference transcripts contained within
a family (e.g., LINE, YRNA, or 18S rRNA) are used for
quantitation, but reads that map to multiple families are
masked (discarding an average of 1.1% of reads). These
results are then integrated with standard unique gen-
omic mapping in order to incorporate reads that
uniquely map to regions annotated as repetitive ele-
ments by RepeatMasker [24] into the final family quanti-
tation (Fig. 2a). Confirming the success of this approach,
we observed that in eCLIP replicates of YRNA-
associating factor TROVE2/RO60 in K562, only 3.7 and
6.8% (replicate 1 and 2, respectively) of usable reads
uniquely mapped to YRNA transcripts with standard
processing (2.9 and 5.1% to RNY1/2/4/5, with another
0.7% and 1.8% to YRNA pseudogenes) (Fig. 2b). In con-
trast, for these same datasets, 14.2% and 21.7% of reads
mapped uniquely to the YRNA family using the family-
aware mapping approach, making use of hundreds of
thousands of additional reads that did not uniquely map
to individual transcripts (Fig. 2b). Performing this ana-
lysis for all RBPs, we observed a wide range of read re-
covery and enrichment for particular elements (Fig. 2c,
Additional file 5). For some RBPs such as RPS11 (K562),
an average of 95.2% of reads were only recovered using
family mapping (68.1% mapping to RNA18S with an
additional 24.1% to RNA28S). In contrast, only 10.4% of
reads in KHSRP (K562) eCLIP mapped to multicopy
family elements, with 58.9% uniquely mapping to the
genome (including 41.1% uniquely mapping to introns
outside of RepeatMasker elements) (Fig. 2c).
At the element level, our family-aware mapping strat-

egy recovers many known processing or interacting fac-
tors, including RBPs enriched for the mature 18S (RPS3,
RPS11) and 28S rRNA (DDX21, NOL12) as well as the
45S rRNA precursor (UTP18, WDR43), tRNAs
(NSUN2), RN7SK (LARP7), YRNA (TROVE2), and
others (Fig. 2d). To validate this approach, we consid-
ered 17 RNA elements with well-studied direct links to
either RBP function (such as snoRNA binding with
rRNA processing and snRNA binding with snRNA pro-
cessing and the spliceosome) or specific RBP regulators
(e.g., snRNA RN7SK with LARP7 [25] and YRNAs with
TROVE2/Ro60 [26]) (Additional file 3: Fig. S2d). We ob-
served that 140 eCLIP datasets had one of these 17 ele-
ments as the most highly enriched (by relative
information, which we observed to better enable com-
parison across elements versus fold-enrichment), and in
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Fig. 2 Quantification of repetitive elements and other non-uniquely mapped reads. a Graphical representation of repetitive element
mapping. Reads are mapped to human genome (requiring unique mapping) and a database of repetitive element families. Reads are
then associated with RNA element families based on mismatch score, with (red) reads discarded if mapping equally well to more than
one family. b Stacked bars indicate the number of reads from TROVE2 eCLIP in K562 that map either uniquely to one of four primary Y
RNA transcripts, map uniquely to Y RNA pseudogenes (identified by RepeatMasker), or (for family-aware mapping) map to multiple Y RNA
transcripts but not uniquely to the genome or to other repetitive element families. c Stacked bars indicate the fraction of reads
(averaged between replicates) of all 223 eCLIP experiments, separated by whether they map (red) uniquely to the genome, (purple)
uniquely to the genome but within a repetitive element identified by RepeatMasker, or (gray) to repetitive element families. Datasets are
sorted by the fraction of unique genomic reads. d Heatmap indicates the relative information for 26 elements and 168 eCLIP datasets,
requiring elements and datasets to have at least one entry meeting a 0.2 relative information cutoff (based on Additional file 3: Fig. S2d).
See Table 1 for RBP:element enrichments meeting this criteria and Additional file 5 for all enrichments
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84 (60%) of these cases, the RBP was previously charac-
terized as having the element-paired RBP function, indi-
cating that this approach is highly successful at
recovering targets that reflect annotated functions of
profiled RBPs. To set a cutoff for analysis, we found that
an information cutoff of 0.2 maximized predictive accur-
acy, at which 70% (74 out of 105 RBPs with the most
enriched RNA element meeting this cutoff) had anno-
tated functions matching the known role for this elem-
ent (Additional file 3: Fig. S2e). Using this cutoff, 235
RBP-element pairings were identified with large num-
bers of RBPs associated with mRNA regions (42 with
CDS, 24 with 3′UTR, 40 with distal intronic, and 23
with proximal intronic regions) and rRNA (24 with
RNA28S and 15 with RNA18s, as well as 12 with precur-
sor 45S rRNA), and smaller numbers associated with
other specific RNA classes (Fig. 2d, Table 1).

Characterization of ribosomal RNA interactors and
processing factors
Ribosomal RNA (rRNA) is the most abundant RNA
found in eukaryotic cells and plays essential roles in de-
fining the structure and activity of the ribosome. In
humans, the 5S rRNA is separately transcribed, whereas
the 18S, 28S, and 5.8S rRNAs are transcribed as one 45S
precursor transcript that then undergoes a complex
series of cleavage and RNA modification steps to process
the mature rRNAs, which then form complex structures
that scaffold the assembly of ~ 80 proteins to create the
functional ribosome [27]. Unbiased approaches have
characterized over 250 additional factors as playing crit-
ical roles in processing pre-rRNA, indicating that rRNA
processing and function represent a major function of
RBPs in humans [28].
Considering the 150 RBPs profiled, we observed that

different subsets of RBPs showed enrichment to specific
rRNAs (Fig. 3a), suggesting that the incorporation of
normalization against paired input was successful in re-
moving general background at abundant transcripts. Al-
though we are unable to distinguish between mapping to
mature 18S, 28S, and 5.8S transcripts versus those re-
gions in the precursor, the ~ 10-fold lower read density
we observe for 45S (median 281 reads per million
(RPM)) versus 18S (2715 RPM) or 28S (1983 RPM) in
eCLIP input samples (Additional file 3: Fig. S3a-c) sug-
gests that the majority of 18S and 28S reads reflect ma-
ture rRNA transcripts. Considering 30 RBPs previously
shown to effect pre-rRNA processing [28], we found that
16 had enrichment for one of the three (18S, 28S, or
45S) rRNAs (42.1% of RBPs meeting a 0.101 position-
wise information cutoff) relative to 12.5% of others (3.4-
fold enriched, p = 0.00025 by Fisher’s exact test) (Add-
itional file 3: Fig. S3d). Despite high and relatively even
read density overall on the abundant rRNA transcripts

(Additional file 3: Fig. S3a-c), we observed that these
rRNA-enriched RBPs showed a number of specific en-
richment patterns: two on the 45S precursor (one situ-
ated around the 01 and A0 early processing sites, and a
second located ~ 2000 nt further downstream that is dis-
cussed below), a cluster at position ~ 4200 of the 28S,
and a cluster at ~ 1150 of the 18S, along with other pro-
files unique to individual RBPs (Fig. 3a). Distinct riboso-
mal components RPS3 and RPS11 had different
positional enrichments, as expected given their different
positioning within the 18S ribosome (Additional file 3:
Fig. S3e).
Our data on rRNA precursor position-specific enrich-

ment confirms and provides further resolution to pro-
teins previously characterized to play roles in ribosomal
RNA processing. Some factors had specific positioning,
including DDX51 which had specific enrichment at the
3′ end of 28S as well as the 3′-ETS precursor region,
consistent with previous characterization of the role of
DDX51 in 3′ end maturation of 28S [29], and UTP18
which had specific enrichment at the 5′ end, matching
its roles in early cleavages at the 01, A0, and 1 sites sug-
gested from large-scale screening data [28] (Fig. 3b, c,
Additional file 3: Fig. S3f-g). Others, such as WDR3, had
broader enrichment patterns that suggest participation
in multiple maturation steps (Fig. 3d, Additional file 3:
Fig. S3h).
Surprisingly, we observe a cluster of RBP association

in the 45S precursor around position 2100, a region lo-
cated between the A0 and 1 processing sites which lacks
a well-defined processing role (Fig. 3a) [27]. Two of
these factors have previous links to nucleolar activity, as
ILF3 (also known as NF90) was previously shown to as-
sociate with pre-60S ribosomal particles in the nucleolus
and knockdown of ILF3 gives defects in rRNA biogen-
esis [28, 30], and LIN28B has been shown to repress let-
7 processing by sequestering pri-let-7 in the nucleolus
[31]. In this region, multiple sites of ILF3 and SSB en-
richment flank a more specific region enriched in
LIN28B eCLIP (Fig. 3e, Additional file 3: Fig. S3i) which
has previously been described to contain a potential
rRNA-encoded microRNA, rmiR-663a [32]. As rmiR-
663a shares similar sequence to genomic-encoded miR-
663a on chromosome 20 (and would have the same ma-
ture miRNA sequence), it has been challenging to isolate
expression of the ribosomal-encoded transcript in isola-
tion [33], and indeed, the majority of LIN28B eCLIP
reads mapping to pri-miRNA map equally to both vari-
ants (Sup Fig. 3j). However, when we used sequence var-
iants in the pri-miR sequence as well as the more
variable flanking sequence to estimate their separate ex-
pression (Fig. 3f), we observed that reads unique to the
rmiR outnumbered those unique to genomic homologs
by more than 400-fold (Fig. 3g and Additional file 3: Fig.
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S3j-k), indicating that the observed signal is likely de-
rived from 45S rather than other genomic homologs.
Finally, we considered binding to snoRNAs, a class of

highly structured small RNAs that play essential roles in
guiding modification of ribosomal RNAs. We found that
enrichment for C/D-box snoRNAs, which canonically
guide methylation of RNA, was highly correlated to

enrichment for the 45S precursor (R2 = 0.67, p = 1.6 ×
10−54) (Fig. 3h), providing further confirmation that
these 45S-enriched RBPs are likely playing key roles in
rRNA processing. Surprisingly, however, we observed
that enrichment for H/ACA-box snoRNAs showed far
lower correlation with enrichment for either C/D-box
snoRNAs (R2 = 0.42) or the 45S precursor (R2 = 0.17)

Table 1 Predominant RNA element for each eCLIP dataset

RNA element
class

Number
of RBPs

RBPs (eCLIP cell type)

Uniquely mapped to
genome (exonic)

5′UTR 1 DDX3X(K)

CDS 42 AQR(H) BCLAF1(H) BUD13(K) EIF3H(H) FMR1(K) FXR1(K) FXR2(K) G3BP1(H) GRWD1(H,K)
HLTF(H,K) IGF2BP1(H,K) IGF2BP2(K) IGF2BP3(H) LARP4(H) LIN28B(H,K) LSM11(H) METAP2(K)
PABPC4(K) PABPN1(H) PPIG(H) PRPF4(H) PRPF8(H) PUM1(K) RBM15(H,K) SND1(H) SRSF1(H,K)
SRSF7(H,K) SRSF9(H) SUB1(H) UCHL5(H,K) YBX3(H,K) ZNF622(K) ZNF800(H)

3′UTR 24 AGGF1(H) AKAP1(H) FAM120A(H,K) FUBP3(H) IGF2BP1(H,K) IGF2BP2(K) IGF2BP3(H) LARP4(H)
LIN28B(K) LSM11(H) PABPC4(K) PCBP2(H) PUM2(K) SUB1(H) TIA1(H,K) TIAL1(H) UPF1(H,K)
YBX3(H,K) ZC3H11A(K)

Uniquely mapped to
genome (intronic)

Distal intronic 40 BCCIP(H) CSTF2(H) CSTF2T(H,K) EWSR1(K) FAM120A(H) FUBP3(H) FUS(H,K) HNRNPA1(H,K)
HNRNPC(K) HNRNPK(H) HNRNPL(H,K) HNRNPM(H,K) HNRNPU(H,K) HNRNPUL1(H,K)
KHDRBS1(K) KHSRP(H,K) MATR3(H) NCBP2(H) NONO(K) PCBP2(H) QKI(H) RBFOX2(H) SAFB(H,K)
SAFB2(K) SFPQ(H) SUGP2(H) TAF15(H,K) TIA1(H,K) TIAL1(H)

Proximal intronic 23 AQR(H,K) BUD13(K) CSTF2T(K) EFTUD2(H,K) EWSR1(K) FAM120A(H) KHSRP(K) PRPF4(H)
PRPF8(H,K) RBFOX2(H) RBM22(H,K) SF3B4(H,K) TIA1(H,K) TIAL1(H) U2AF1(H) U2AF2(H,K)

Spliceosomal small
nuclear RNAs

RNU1 1 GEMIN5(K)

RNU2 6 SF3A3(H) SF3B1(K) SF3B4(H,K) SMNDC1(H,K)

RNU6 1 QKI(K)

Ribosomal RNA function
and processing

RNA28S 24 AATF(K) ABCF1(K) BUD13(H) DDX24(K) DDX51(K) DKC1(H) EXOSC5(H) FTO(H) GEMIN5(K)
NIP7(H) NIPBL(K) NKRF(H) NOL12(H) NOLC1(H) PCBP1(H) PHF6(K) SDAD1(H,K) SERBP1(K)
TROVE2(H) WRN(K) XRCC6(K) ZNF800(H,K)

RNA18S 15 APOBEC3C(K) DDX21(K) DDX52(H,K) DKC1(H) EIF3G(K) METAP2(K) NOLC1(H) RPS11(K) RPS3(H,
K) SBDS(K) WDR43(K) XRCC6(K) ZC3H8(K)

rRNA_extra 12 AATF(K) LIN28B(H) NIPBL(K) NPM1(K) SSB(H,K) UTP18(H,K) WDR3(K) WDR43(H,K) XRN2(H)

SNORD 3 UTP18(H,K) WDR3(K)

Retrotransposable
elements

L1 3 HLTF(K) KHDRBS1(K) SAFB2(K)

antisense_L1 9 EXOSC5(K) HNRNPC(K) HNRNPM(H,K) KHSRP(K) MATR3(H,K) SUGP2(H) TIA1(H)

Alu 1 ILF3(H)

antisense_Alu 2 HNRNPC(H,K)

Mitochondrial RNAs H (+) strand 7 BCLAF1(H) DHX30(H) FASTKD2(H,K) QKI(H,K) TBRG4(H)

L (−) strand 7 DHX30(H,K) FASTKD2(H,K) GRSF1(H) SUPV3L1(H,K)

Other unique regulatory
RNA classes

tRNA 2 NSUN2(K) WRN(K)

RN7SK 2 LARP7(H,K)

RNU7 1 LSM11(K)

H1RNA 1 SSB(K)

SNORA 1 DKC1(H)

YRNA 1 TROVE2(K)

miRNA 1 DGCR8(K)

Other Simple_repeat 5 AGGF1(H,K) AQR(H) HNRNPL(H) TARDBP(K)
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Fig. 3 eCLIP enrichment for rRNA links RBPs with ribosomal RNA processing. a Heatmap indicates relative information at each position along
(top) the ribosomal RNA precursor 45S polycistronic transcript and (bottom) within the mature 18S and 28S transcripts. Reads mapping equally to
the 45S and mature 18S or 28S are assigned to the mature for quantitation. Purple asterisk indicates RBPs for which knockdown showed rRNA
processing defects in Tafforeau et al. [28]. b Lines indicate fold-enrichment in DDX51 eCLIP in K562 cells at the 3′ end of the 28S and 45S
transcript. For this and further plots, black line indicates mean and gray region indicates 10th to 90th percentile across all 223 eCLIP datasets. c, d
Lines indicate relative information for c UTP18 in K562 and d WDR3 in K562 across the 45S precursor. e Lines indicate fold-enrichment for
indicated RBPs within a region flanking putative ribosomal-encoded microRNA rmiR-663. f Red indicates mismatch positions relative to ribosomal
rmiR-663 (and 100 nt flanking regions) for genomic-encoded miR-663a, miR-663b, and two additional homologous regions containing putative
microRNAs. g Pie chart indicates the fraction of reads in ILF3 HepG2 eCLIP mapping (green) with fewer mismatches to rmiR-663, or (gray)
mapping equally well to rmiR-663 and other miR-663 family members as indicated. See Additional file 3: Fig. S3j-k for LIN28B (HepG2) and SSB
(HepG2). h, i Points indicate fold-enrichment in each eCLIP dataset for h C/D-box snoRNAs versus 45S precursor RNA, and i H/ACA-box snoRNAs
versus C/D-box snoRNAs. Pearson’s correlation and significance were calculated in MATLAB
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(Fig. 3i, Additional file 3: Fig. S3l). Thus, this data con-
firms the ability of eCLIP with input normalization to
specifically isolate enrichment between abundant
snoRNA classes, and suggests that (at least for the RBPs
profiled to date here) we see stronger overlap between
rRNA precursor and C/D-box versus H/ACA-box
snoRNAs.

Repetitive elements define a significant fraction of the
RBP target landscape
Repetitive elements constitute a large fraction of the
non-coding genome [34], and elements annotated by
RepBase constitute an average of 12.2% of reads ob-
served in eCLIP input experiments (Additional file 3:
Fig. S4a). In particular, as retrotransposable L1/LINE
and Alu elements constitute 10.8% and 0.4% of intronic
sequences, respectively (Additional file 3: Fig. S4b), they
represent a significant fraction of the pool of nuclear
transcribed pre-mRNAs available for RBP interactions.
Although some RBPs have been shown to play roles in
regulation of active retrotransposition [35], the majority
of intronic elements have accumulated mutations or de-
letions and are no longer capable of active retrotranspo-
sition, leaving the question of their function relatively
poorly understood. However, recent analyses of RBP tar-
gets identified by CLIP (including early releases of the
eCLIP data considered here) have shown that both anti-
sense Alu and antisense LINE elements contain cryptic
splice sites that can lead to improper splicing and polya-
denylation, suggesting that a major yet unappreciated
role for many RBPs may be to suppress the emergence
of inappropriate cryptic RNA processing sites introduced
upon retrotransposition [36, 37].
Querying for RBPs with enriched eCLIP signal at ret-

rotransposable and other repetitive elements, we surpris-
ingly observed that only a small subset of elements
(notably including L1 and Alu elements both in sense
and antisense orientation) showed high RBP specificity,
whereas most elements showed extremely highly corre-
lated enrichments across RBPs (Fig. 4a, Additional file 3:
Fig. S4c). This group of elements showed enrichment in
a small subset of eCLIP experiments, notably including
multiple members of the highly abundant HNRNP fam-
ily (HNRNPA1, HNRNPU, HNRNPC, and HNNRPL),
indicating that they may be coordinately regulated to
prevent inappropriate RNA processing.
Analysis of Alu elements recapitulated a previously de-

scribed interaction of HNRNPC with antisense Alu ele-
ments [36], but additionally revealed two RBPs with
more than 5-fold enrichment: ILF3 (enriched for both
sense and antisense Alu elements) and RNA Polymerase
II component POLR2G (antisense) (Fig. 4b, Add-
itional file 3: Fig. S4d). Both of these factors have previ-
ous links to RNA processing through Alu elements, as

ILF3 association was suggested to repress RNA editing
in Alu elements [39] and Alu elements have been shown
to effect RNA Polymerase II elongation rates [40]. In
total, 19 datasets showed more than 2-fold enrichment
for either Alu or antisense Alu elements (Fig. 4b).
Considering L1/LINE elements, we observed enrich-

ment with far more RBPs, with 26 datasets showing 5-
fold enrichment (Fig. 4c). Interestingly, we observed gen-
erally distinct sets for sense versus antisense L1 enrich-
ment, with only HNRNPC (in K562, but not HepG2)
and ZC3H8 showing enrichment for both (Fig. 4c, Add-
itional file 3: Fig. S4e). The RBPs identified here align
well with those identified in an independent analysis of
L1-associated RBPs which used a subset of these datasets
along with independent iCLIP and other datasets, con-
firming robustness of this analysis across different ap-
proaches to quantify enrichment to L1 elements [37]. To
query the role of L1 association, we first considered
whether binding could specifically act to repress L1 ret-
rotransposition itself. Of the 15 RBPs with more than 5-
fold enrichment at sense L1 elements, SAFB (p = 0.002),
PPIL4 (0.06), and TRA2A (p = 0.05) were all identified as
candidate suppressors of L1 retrotransposition in a re-
cent genome-wide CRISPR screening assay [38], suggest-
ing that this eCLIP enrichment approach identifies
functional regulators of retrotransposition (Fig. 4d).
However, we observed that while enriched signal was

centered at L1 sense and antisense elements, the signal
often extended for multiple kilobases on either side
(Additional file 3: Fig. S4f), indicating that despite the
overlap with functional regulators of active lines, the ma-
jority of eCLIP signal is likely coming from inactive L1
elements contained within pre-mRNAs rather than inde-
pendently transcribed active L1 elements in the cell lines
studied here. Thus, we next assayed whether these RBPs
showed evidence for silencing cryptic RNA processing
sites created upon retrotransposition, as previously de-
scribed [36, 37]. To do this, we hypothesized that knock-
down of such RBPs would lead to inclusion of
premature stop codons that signal nonsense-mediated
decay, ultimately decreasing abundance of target mRNA
transcripts. For MATR3, we indeed observed that genes
containing one or more antisense L1 elements over-
lapped by peaks showed significantly decreased expres-
sion upon RBP knockdown (Fig. 4e), consistent with
recent findings that MATR3 binding blocks both cryptic
poly(A)-sites and splice sites within LINEs [37]. Interest-
ingly, we observed a similar pattern for 3 other RBPs
with antisense L1 enrichment, HNRNPM (which has
been identified in complexes with MATR3 [41]), SUGP2,
and EXOSC5 (Fig. 4e). These four RBPs also showed
particular enrichment for reference L1 sequences as op-
posed to unique genomic mapping to more degenerate
elements, suggesting that this specifically segregates
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Fig. 4 (See legend on next page.)
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expression-altering antisense L1-enriched RBPs (Fig. 4f,
Additional file 3: Fig. S4g).

Meta-gene binding profiles reveal RBP functions
Next, we turned to the question of whether eCLIP peak
distributions could reveal RBP roles in mRNA process-
ing. To better separate RBP association patterns, we con-
sidered the distribution peaks across a meta-gene
generated by size-normalizing binding across all protein-
coding transcripts relative to transcription start and stop
sites and start and stop codons, and then averaging
across all expressed genes (Fig. 5a). Considering binding
relative to the coding region (CDS) and 5′ and 3′ un-
translated regions of spliced mRNA, we observed an
overall average of approximately one peak per gene
across the entire mRNA (Additional file 3: Fig. S5a), with
a variety of patterns of individual RBP association
(Fig. 5b).
At a global level, the most striking observation was

clear delineation points at the start and stop codon posi-
tions (Fig. 5b, c), likely reflecting the fact that translation
initiation is unique to the 5′UTR whereas the 3′UTR is
the only region where bound RBPs will not be removed
by translating ribosomes. However, more subtle cluster-
ing revealed distinct subgroups within the broader 5′
UTR-, CDS-, and 3′UTR-enriched classes (Fig. 5b, d).
For example, we observed two distinct classes of 5′UTR
binding that appear to correlate with distinct RBP func-
tions. The first (5UTR.TSS) showed greater enrichment
closer to the transcription start site and included nuclear
5′ end processing factors such as cap-binding protein
NCBP2 (Fig. 5b, d). In addition to 5′ end enrichment,
this class also contained RBPs with substantial 3′UTR
signal, such as 3′ end processing factor CSTF2T (which
also showed significant signal extending past annotated
transcription termination sites (Additional file 3: Fig.
S5b), consistent with previous CLIP studies [42]). A sec-
ond set (5UTR.SC) showed biased peak presence closer
to the start codon and included both canonical

translational initiation factors (such as EIF3G, EIF3D,
and EIF3H) as well as RBPs previously shown to play
translational regulatory roles (including DDX3X, SRSF1,
and FMR1) (Fig. 5b).
Similarly, we also observed distinctions within CDS

binding, with either uniform (CDS.UN) density or biased
towards the 5′ (CDS.5P) or 3′ (CDS.3P) end. We ob-
served that 13 out of 15 spliceosomal RBPs showed CDS
enrichment (10 of which fell into the CDS.UN category),
likely reflecting the general lack of introns in 5′UTRs
(due to their small size) and 3′UTRs (as they would cre-
ate targets for nonsense-mediated decay) (Fig. 5b, d).
Finally, we observed multiple modalities of 3′UTR

peak distribution. The 3UTR.Un class showed relatively
uniform density and contained many well-characterized
3′UTR binding proteins, including NMD factor UPF1
and stress granule factor TIA1. In contrast, RBPs in the
3UTR.5P class had peak density enriched closer to (and
continuing 5′ of) the stop codon, including the well-
studied IGF2BP family of RBPs (Additional file 3: Fig.
S5c). Finally, we observed a number of RBPs with in-
creased enrichment towards the transcription termin-
ation site (3UTR.TTS).
Next, we considered whether these patterns corre-

sponded to different RNA processing functions. Al-
though the number of RBPs is limited for some
functions, we observed that many clusters had signifi-
cant overlaps with distinct RBP functional annotations
(Fig. 5e, Additional file 3: Fig. S5d). In particular,
RBPs associated with nuclear RNA processing steps
showed little change (median 1.2-fold decrease in
peak density around the stop codon), whereas RBPs
with cytoplasmic roles showed a significant 1.6-fold
increase (Additional file 3: Fig. S5e), consistent with a
stronger role for the stop codon as a delineation
point for cytoplasmic RBP association. In all, our re-
sults suggest that the pattern of relative enrichment
in different gene regions is predictive of the regula-
tory role that the RBPs play.

(See figure on previous page.)
Fig. 4 RBP association at retrotransposable and other repetitive elements. a (left) Heatmap indicates fold-enrichment in eCLIP versus paired input,
averaged across two biological replicates. Shown are 30 RepBase elements which had average RPM > 100 in input experiments and at least one
RBP with greater than 5-fold enrichment and 65 eCLIP experiments with greater than 5-fold enrichment for at least one element. (right) Color
indicates correlation in fold-enrichment between elements across the 65 experiments. b, c Points indicate fold-enrichment for b Alu elements
and c L1 LINE elements in individual biological replicates. Shown are all RBPs with average enrichment of at least 2 (for Alu elements) or 5 (for L1
elements). d Bars indicate L1 retrotransposition casTLE effect score (positive score indicates increased retrotransposition upon RBP knockout), with
error bars indicating 95% minimum and maximum credible interval estimates (data from Liu et al. [38]). e (left) Each point indicates significance
(from two-sided Kolmogorov-Smirnov test) between fold changes observed in RNA-seq of RBP knockdown for the set of genes with one or more
RBP-bound L1 (or antisense L1) elements versus the set of genes containing one or more L1 (or antisense L1) elements but lacking RBP binding
(defined as overlap with an IDR peak). RBPs were separated based on requiring 5-fold enrichment for L1 elements as in c. (right) Cumulative
distribution plots for (top) MATR3 in HepG2 and (bottom) SUGP2 in HepG2. Significance shown is versus the set of genes containing one or more
L1 (or antisense L1) elements but lacking RBP binding (red line). f Points indicate the fraction of antisense L1-assigned reads that map to
canonical (RepBase) elements for six expression-altering antisense L1-enriched eCLIP datasets (from e), five other antisense-L1 enriched eCLIP
datasets, and 11 paired input samples. Significance is from the two-sided non-parametric Kolmogorov-Smirnov test. See Additional file 3: Fig. S4g
for the full distribution of read assignments

Van Nostrand et al. Genome Biology           (2020) 21:90 Page 11 of 26



Fig. 5 mRNA meta-gene profiles from eCLIP correspond to RBP regulatory roles. a (left) Each line indicates the presence (orange) of a
reproducible DDX3X K562 eCLIP peak for 9162 mRNAs that are expressed (TPM > 1) in K562. Each gene was normalized to 13 5′UTR, 100 CDS,
and 49 3′UTR bins (based on average lengths among expressed transcripts in K562 cells). (right) A meta-mRNA plot is generated by averaging
across all expressed genes, with shaded region indicating 5th to 95th percentile observed in 100 bootstrap samplings. b Heatmap indicates peak
coverage for 104 datasets (requiring at least 100 reproducible peaks and at least one meta-mRNA position with 5th percentile greater than 0.002).
Color indicates the average occupancy, normalized by setting (blue) minimum value to zero and (yellow) maximum to one. Meta-mRNA profiles
were hierarchically clustered and manually labeled. c Heatmap indicates pairwise correlation (Pearson’s R) between each pair of positions along
the meta-mRNA in b. d Lines indicate average normalized peaks per bin for all RBPs in the indicated class. Shaded region indicates one standard
deviation. e Heatmap indicates odds ratio of overlap between eCLIP datasets in (x-axis) indicated meta-mRNA cluster versus (y-axis) annotated
RBP functions. See Additional file 3: Fig. S5d for significance
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Splicing regulatory roles revealed by intronic meta-gene
profiles
Next, we performed regional analysis to query binding
to exons (specifically 50 nt bordering the splice sites)
and 500 nt of proximal introns flanking both the 3′ and
5′ splice sites. As an example, we observed that out of
89,265 introns present in highly expressed transcripts
(TPM > 1), 2699 had a significant IDR peak from eCLIP
of U2AF2 in K562 cells (Additional file 3: Fig. S6a).
These peaks had a stereotypical positioning at the 3′
splice site (extending into the downstream exon due to
the use of full reads rather than just read 5′ ends for
analysis), matching the well-characterized role of U2AF2
in 3′ splice site recognition (Fig. 6a). These matrices
were then summed across all introns to calculate a

meta-intron plot representing the average peak coverage
at each position, with confidence intervals estimated by
bootstrapping (Fig. 6b).
Performing this analysis for 130 RBPs with sufficient

peaks (see the “Methods” section), we observed that the
profiles recapitulated many known binding patterns, in-
cluding U2AF1 and U2AF2 at the 3′ splice site, SF3B4
and SF3A3 at the branch point, PRPF8 at the 5′ splice
site, and RBFOX2 and PTBP1 at proximal introns
(Fig. 6c). Clustering analysis indicated a number of dis-
tinct RBP association patterns. In addition to a large
group of exclusively exonic datasets, we observed clus-
ters for the canonical splicing features (5′ splice site, 3′
splice site, and branch point), and two additional clus-
ters: one where RBPs showed enrichment for peaks at

Fig. 6 Meta-exon plots reveal intronic regulatory roles. a Each line indicates the presence (in blue) of a reproducible U2AF2 K562 eCLIP peak for
2699 introns that contain at least one peak within the displayed region (500 nt of proximal intron and 50 nt of exon flanking the 5′ and 3′ splice
sites). See Additional file 3: Fig. S6a for all 89,265 introns. b Meta-exon plot for data shown in a, with line indicating average and shaded region
indicating 5th to 95th percent confidence interval (derived by 100 bootstrap samplings). c (left) Heatmap indicates average peak coverage across
all introns for 130 RBPs with at least 100 peaks and 5th percentile confidence interval at least 0.0005 (for heatmap visualization, the maximum
value for each dataset was set to one to calculate normalized coverage). (right) Lines show individual RBP examples for five clusters identified
based on similar meta-exon profiles. Y-axis indicates fraction of introns with peak
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proximal introns flanking both the 5′ and 3′ splice sites,
and one with dominant enrichment in the 5′ splice site
proximal intron only (Fig. 6c, right). We also observed a
wide range of peak frequency; canonical splicing ma-
chinery components such as U2AF2, SF3B4, and PRPF8
had significantly enriched peaks at many introns (with a
position maximum of 3.6%, 7.8%, and 5.3% of queried
abundant introns respectively in K562), whereas factors
such as PTBP1 and RBFOX2 were less commonly
enriched at specific positions (0.1% and 0.5%, respect-
ively) (Fig. 6c).

Insights into spliceosomal association and core splicing
regulation
The breadth of RBPs profiled provided a unique oppor-
tunity to explore their interactions with the spliceosome
and their impacts on splicing regulation. In addition to
contacting the intron, many spliceosomal and splicing
regulatory proteins also interact with the spliceosomal
small nuclear RNAs (snRNAs). The overall snRNA fam-
ily includes five specific RNA families (U1, U2, U4, U5,
and U6, which also have variant isoforms that differ
slightly in sequence) that play essential roles in canonical
GT-AG RNA splicing, as well as four (U11, U12, U4atac,
U5atac) specific to the minor AT-AC spliceosome, each
of which plays specific mechanistic roles during splicing
[43]. Thus, RBP association with a particular snRNA can
help to map its function to a particular step in splicing.
Quantitating snRNA enrichment using the family-aware
mapping described above, we recapitulated many known
associations between RBPs and the spliceosome, includ-
ing interactions of SF3B4 with U2 snRNA (47- and 32-
fold enriched in HepG2 and K562, respectively) [44] and
GEMIN5 with U1 (11.2-fold enriched in K562) [45]
(Fig. 7a). In some cases, these dominated overall RNA
recovery; for example, an average of 41% of reads from
SF3A3 eCLIP and 17% and 20% of SF3B4 eCLIP reads in
HepG2 and K562 respectively mapped to the U2 snRNA,
whereas U2 reads averaged only 0.7% in input samples.
Interestingly, while many factors showed similar asso-

ciation between analogous snRNAs in the major and
minor spliceosomes (such as PRPF8 and SMNDC1 with
U6 and U6atac, and SF3B1 and SF3B4 with U2 and
U12), some RBPs were specifically associated with either
the major (SF3A3, which was 29.5-fold enriched for U2
but 1.2-fold depleted for U12 in HepG2, and QKI,
118.6-fold enriched for U6 but 2.4-fold depleted for
U6ATAC) or minor spliceosome (HNRNPM, which was
8.1-fold enriched in K562 and 7.6-fold in HepG2 for
U11 but 5.3- and 4.2-fold depleted for U1) (Fig. 7a, Sup-
plemental Fig. 7a-d). Although preliminary analysis did
not show altered splicing upon HNRNPM knockdown
specifically at U11/U12 introns, previous studies have

suggested that HNRNPM may contribute to minor in-
tron splicing through interactions with FUS [46].
In the first catalytic step of intron splicing, a transes-

terification step joins the 5′ splice site with the branch
point to create an intron lariat structure (Additional file 3:
Fig. S7e). This is an essential step in splicing and helps
to define 3′ splice site choice, but identification of
branch points has remained challenging due to variable
positioning (ranging from 20 to 40 nucleotides upstream
of the 3′ splice site) and a degenerate sequence motif
[47]. Recent efforts to use either specialized library prep-
aration protocols or focused analysis of deep sequencing
to identify branch points via lariat junction-spanning
reads have enabled the identification of tens of thou-
sands of branch points, but the regulation of branch
point recognition and its role in splicing regulation re-
mains poorly understood. Considering the RBPs profiled
here, we observe multiple RBPs showing specific enrich-
ment at branch points, including both known regulators
(such as SF3 complex components SF3B4 and SF3A3),
as well as novel factors (including RBM5). Indeed, ana-
lysis of these datasets coupled with focused iCLIP profil-
ing of purified spliceosomes recently indicated distinct
patterns of RBP association at branch points and 5′ and
3′ splice sites, which yielded unique insights into how
branch point strength defines RBP association and spli-
cesomal assembly dynamics [48].
However, we were particularly intrigued by the obser-

vation of a striking pattern of both 5′ splice site and
branch point enrichment for the RBP AQR (Fig. 7b).
Knockdown of AQR yielded over 30,000 altered alterna-
tive splicing events, by far the most of any knockdown
performed by the ENCODE consortium to date (includ-
ing canonical splicing components including U2AF1/2
and SF3B4) [20], consistent with previous studies that
indicate a role for AQR in pre-mRNA splicing [49].
However, closer inspection revealed that unlike the ca-
nonical peak shape in the branch point region observed
for SF3B4 and SF3A3, the 5′ end of AQR eCLIP reads
often piled up at specific positions (Fig. 7b). Using sim-
ple criteria to identify candidate branch points as posi-
tions with more than 50% of read 5′ ends within the
overall − 15 to − 50 region, out of 2475 introns with at
least 20 reads mapping to the entire branch point region,
we identified 1018 candidate branch points in K562
(Fig. 7c). Motif analysis of these positions yielded the ca-
nonical branch point motif signal (with 92% containing
an A at the base prior to read starts) (Fig. 7c). Thus,
these results suggest that AQR eCLIP signal is derived
from introns after lariat formation, where reverse tran-
scription is incapable of reading through the branch
point adenosine (Additional file 3: Fig. S7e), and that
deeper sequencing of AQR eCLIP (potentially with im-
proved methodology to enrich reads at the 3′ rather
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than 5′ splice site) will provide direct identification of
branch points in human.
Next, we considered eCLIP signal at alternatively

spliced cassette exons. Considering “native” cassette
exons in wild-type K562 and HepG2 cells, we observed
that branch point factors SF3B4 and SF3A3 showed de-
creased signal at alternative exons relative to constitutive
exons, consistent with U2AF2 and other spliceosomal
components and potentially reflecting overall lower spli-
ceosomal occupancy (Additional file 3: Fig. S7f). How-
ever, at alternative 3′ splice sites with the proximal site
increased upon knockdown of branch point components
SF3B4 and SF3A3, we observed that average eCLIP en-
richment for SF3B4 and SF3A3 was decreased at the typ-
ical branch point location but increased towards the 3′
splice site (compared to eCLIP signal at native A3SS
events which utilize both distal (upstream) and proximal
3′ splice sites in control shRNA datasets) (Fig. 7d, Add-
itional file 3: Fig. S7g). Consistent with previous mini-
gene studies showing that 3′ splice site scanning and
recognition originates from the branch point and can be
blocked if the branch point is moved too close to the 3′
splice site AG [50], these results provide further evi-
dence that use of branch point complex association to
restrict recognition by the 3′ splice site machinery may
be a common regulatory mechanism [51] (Add-
itional file 3: Fig. S7h).

Clustering of RBP binding identifies known and novel co-
associating factors
Large-scale RBP target profiling using a consistent meth-
odology enables cross-comparison between datasets.
Considering simple overlap between peak sets for all
profiled RBPs, we observed significant overlap for many
pairs of RBPs, which often formed co-associating groups
(Fig. 8a, left). These groups of RBPs with highly overlap-
ping peaks generally segregated into four major categor-
ies. First, we observe high similarity between the same
RBP profiled in HepG2 and K562 (including QKI,
PTBP1, and LIN28B) (Fig. 8a, green). Indeed, we observe
an average peak overlap of 30.0% between the same RBP
in K562 and HepG2 versus 4.9% for random RBP pair-
ings (6.1-fold increased), confirming the broad reprodu-
cibility of binding across cell types (Fig. 8b). Second, we

observe many cases of high overlap between eCLIP for
homologous RBPs within the same family, including
TIA1 and TIAL1, IGF2BP1/2/3, and fragile X-related
FMRP, FXR1, and FXR2 (Fig. 8a, yellow). Third, we ob-
serve clusters containing known co-regulating RBPs, in-
cluding recognition and processing machinery for the 3′
splice site (U2AF1 and U2AF2), branch point (SF3B4
and SF3A3), and 5′ splice site (EFTUD2, RBM22,
PRPF8, and others), as well as a group of RBPs that play
general roles in binding the 5′UTR of nearly all genes to
regulate translation (DDX3X, EIF3G, and NCBP2)
(Fig. 8a, red).
Interestingly, we observe unexpected clusters that sug-

gested potential novel complexes or co-interacting
partners (Fig. 8a, blue). Some clusters likely reflect over-
lapping targeting to specific types of RNAs: for example,
one cluster contains three RBPs we described above to
show specific enrichment at antisense L1/LINE elements
(HNRNPM, BCCIP, and EXOSC5). The patterns of
other clusters are often less clear, with some containing
both well-studied RBPs as well as those with no known
RNA processing roles (for example, high overlap be-
tween HNRNPL and AGGF1 across both cell types). To
consider whether these likely reflected true instances of
RBP co-interaction, we asked whether RBPs that had
higher peak overlap were more likely to have interac-
tions from large-scale IP-mass spectrometry experi-
ments. Using the BioPlex 2.0 database of ~ 56,000
interactions [52], we observed that RBPs with IP-MS in-
teractions showed an average 2.3-fold increase in eCLIP
peak overlap (11.4% versus 4.9% for RBPs without inter-
actions), suggesting that there is a general correlation
between peak overlap and RBP interactions (Fig. 8c).
Finally, we performed co-immunoprecipitation (co-IP)

studies focusing on one predicted novel interaction
group involving HNRNPL and AGGF1. We observed
that AGGF1 co-immunoprecipitated HNRNPL, unlike
unrelated factors RBFOX2 or FMR1 (Additional file 3:
Fig. S8a). We note that this co-IP was observed using
less stringent co-IP wash buffers, but was not observed
using the high-salt wash buffers present in eCLIP (Add-
itional file 3: Fig. S8b), indicating that the overlap in
eCLIP binding likely reflects independent crosslinking
events to the distinct RBPs. Thus, these results indicate

(See figure on previous page.)
Fig. 7 Insights from eCLIP of spliceosome-associated RBPs. a Heatmap indicates fold-enrichment for individual snRNAs within eCLIP datasets.
Shown are all RBPs with greater than 5-fold enrichment for at least one snRNA. b Browser shows read density for eCLIP of AQR (K562), SF3B4
(K562), and SF3A3 (HepG2) for the NARF exon 11 3′ splice site region. Dotted line indicates position of enriched reverse transcription termination
at crosslink sites. c (left) Pie chart shows all (n = 2475) introns with > 20 reads in the − 50 to − 15 (branch point) region in AQR K562 eCLIP. Blue
indicates putative branch points (the subset with more than 50% of read 5′ ends at one position). (right) Motif information content for 11-mers
centered on the putative branch points. Image generated with seqLogo package in R. d Lines indicate mean normalized eCLIP enrichment in IP
versus input for SF3B4 and SF3A3 at (red/purple/green) alternative 3′ splice site extensions in RBP knockdown or (black) alternative 3′ splice site
events in control HepG2 or K562 cells. The region shown extends 50 nt into exons and 300 nt into introns
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Fig. 8 RBP co-association predicts known and novel RNP complexes. a Heatmap indicates the pairwise fraction of eCLIP peaks overlapping
between datasets. Callout examples are shown for known complexes, RBP families, same RBP profiled across cell types, and putative novel
complexes. b GSEA analysis comparing the fraction overlap observed profiling the same RBP in both K562 and HepG2, compared against random
pairings of RBPs (with one profiled in K562 and the other in HepG2). c As in b, but using the set of RBPs with interactions reported in the BioPlex
IP-mass spectrometry database [52]
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that the eCLIP data resource reveals many novel RBP in-
teractions that are likely to reflect previously unidenti-
fied regulatory complexes.

Discussion
The ENCODE RNA binding protein resource contains
1223 replicated datasets for 356 RBPs, including in vivo
targets by eCLIP, in vitro binding motifs by RNA Bind-
N-Seq, subcellular localization by immunofluorescence,
factor-responsive expression and splicing changes by
knockdown/RNA-seq, and DNA associations by ChIP-
seq [20]. This unique resource has already proven useful
in characterizing allele-specific RBP interactions [53, 54],
identifying candidate regulators of miRNA processing
[55], predicting whether RNAs are protein-coding or
non-coding [56], and identifying novel factors which act
to suppress improper RNA processing caused by retro-
transposable elements [37], and will continue to enable
researchers to ask broad questions about basic RNA pro-
cessing mechanisms, deeply consider the functional roles
of an individual RBP, or even query an RNA of interest
in order to gain insight into potential regulators. Here,
we describe examples how integrated analyses of binding
profiles obtained from eCLIP can yield novel insights
into both processing of standard mRNAs as well as other
RNA families, including identifying new characteristics
of ribosomal RNA processing and the role of RBP inter-
actions with retrotransposable elements.

Inference of RBP function based on eCLIP enrichment
patterns
Deep profiling of RBPs associated with a specific RNA
processing pathway can yield unique insights into the
specialization of RBPs. For example, profiling of 30 RBPs
associated with RNA degradation gave insights into spe-
cific RNP complex variants with roles targeting specific
subtypes of RNAs, providing a comprehensive view of
how the wide array of RNAs in the cell are turned over
[8]. In contrast, the relatively unbiased selection of 150
RBPs profiled here enabled us to query across a wide
variety of RBP functions and binding modalities and, at
a broad level, address the basic question of whether
RNA targets identified by CLIP can generally predict the
likely function of the RBP of interest. This analysis con-
firmed overlap at both the RNA transcript class level,
where eCLIP enrichment for ribosomal RNA or retro-
transposable elements correlated with specific RBP func-
tions focused around these element types, and the
regulatory region level, where enrichment at 5′UTRs or
branch point regions corresponded to specific RBP func-
tional roles.
Although these overall patterns match well with our

existing understanding of RBP functions, the validation
of distinctive profiles for different functions enables

deeper interpretation of RBPs based solely on eCLIP.
For example, we observed specific enrichment for
GEMIN5 beginning in the 5′UTR and peaking at the start
codon, providing further genome-wide validation for the
role of GEMIN5 in translation regulation [57] (Fig. 2b).
Similarly, the association of ZC3H11A at the 3′ end is
consistent with iCLIP signal observed for TREX complex
component ALYREF [58] and provides further
transcriptome-wide evidence to support the observation
that ZC3H11A plays an essential role in export of polya-
denylated mRNA through interaction with the TREX
complex [59]. As we continue to profile additional RBPs,
these results suggest it should become possible to predict
RBP function with increasing resolution based on associ-
ation patterns.
Considering meta-exon plots focused on exon/intron

boundaries, we observe expected patterns of eCLIP en-
richment at canonical splicing elements (5′ and 3′ splice
sites and branch points). We also observe classes of
RBPs with broader patterns of enrichment, with a par-
ticularly interesting group showing a stereotypical pat-
tern of high enrichment at the 5′ end of introns
(extending hundreds of bases into the intron). Notably,
this cluster contains multiple factors with links to co-
transcriptional RNA processing, including CSTF2T [60],
XRN2 [61], and Nono [62], suggesting that this group
may reflect interactions that mark the time period be-
tween 5′ splice site transcription and splicing. Interest-
ingly, this cluster also contains FET family proteins FUS
and EWSR1, consistent with previous CLIP-seq studies
which identified a similar “sawtooth” pattern for FUS
[63] and suggesting that co-transcriptional deposition
may be a general regulatory principle for this family of
neurodegenerative disease-associated RBPs.

Enrichment patterns reveal insights into ribosomal RNA
processing
The enrichment for previously identified rRNA process-
ing factors suggests that many additional factors here
may represent unexplored regulators. Indeed, building
upon rRNA enrichments observed from the analyses de-
scribed here, further research has led to validation of
NOL12 [64] and AATF [65] as novel regulators of ribo-
somal RNA processing, indicating that there remain
more RBPs with unexplored roles in ribosomal RNA
processing.
Another benefit of the unbiased approach presented

here is that it enables identification of novel potential
sites of regulatory activity, as our analysis of the 45S
ribosomal RNA precursor indicates a surprising cluster
of substantial RBP eCLIP enrichment at an uncharacter-
ized region located between the A0 and 1 processing
sites. This region (particularly the sharp peak observed
in LIN28B eCLIP) is centered on a putative ribosomal-
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encoded microRNA (rmiR-663) [32], and our analysis in-
dicates that the reads do appear to be derived from ribo-
somal RNA rather than paralogous genomic-encoded
microRNAs. However, we do not observe enrichment in
DROSHA or DGCR8 eCLIP in this region (Fig. 3e), sug-
gesting that rmiR-663 does not progress through the
normal miRNA maturation pathway. Thus, it remains
unclear whether this represents a bona fide microRNA,
or more complex regulation of either ribosomal RNA
processing or maturation of other microRNAs. Indeed,
LIN28B has previously been shown to inhibit let-7 bio-
genesis by sequestering primary let-7 transcripts in the
nucleolus away from DROSHA processing [31]. Al-
though one model could be that LIN28B association to
this region simply is an artifact of nucleolar localization,
the high abundance of 45S rRNA overall (and nearly
500-fold enrichment for LIN28B at this site) suggests
that the rmiR-663 region might instead act to sequester
LIN28B, thereby coupling LIN28B inhibition of let-7
microRNA biogenesis to ribosomal RNA transcription
and abundance. Similarly, although SSB has previously
been associated with microRNA processing through in-
teractions with pre- and pri-miRNAs [66], SSB tradition-
ally interacts with RNA Polymerase III transcripts [67],
potentially suggesting distinct Polymerase III transcrip-
tion of this region in addition to Polymerase I transcrip-
tion of the entire 45S transcript. Further work will be
required to fully confirm whether rmiR-663 is actually
processed from the 45S to maturity as a functional
miRNA incorporated into the RISC complex for mRNA
targeting, or whether these other potential regulatory
modalities act to control other aspects of rRNA or
microRNA processing.

Retrotransposable element suppression: a major function
for many RBPs
Analysis of Alu elements identified 3 RBPs with at least
4-fold enrichment, each of which appears to reflect a dif-
ferent underlying mechanism. The most enriched RBP,
HNRNPC, has previously been shown to suppress cryp-
tic 3′ splice site signals in antisense Alu elements [36].
In contrast, ILF3 (enriched for both sense and antisense
Alu elements) has previously been shown to interact
with RNA editing mediator ADAR1 [68], and the major-
ity of ADAR1 targets and edited sites throughout the
genome occur at Alu elements [69]. Further research
has now revealed that ILF3 knockdown induces RNA
editing, and suggested that ILF3 binding to Alu elements
generally acts to repress RNA editing at these sites [39].
The third RBP, RNA Polymerase II subunit POLR2G,
may reflect previous observations of antisense L1 and
(particularly inverted tandem) Alu elements repressing
PolII progression [40, 70]. Indeed, we observe that
POLR2G eCLIP shows enrichment for sense Alu (2.3-

fold), sense L1 (1.8-fold), and antisense L1 (4.0-fold) ele-
ments as well as antisense Alu (5.0-fold), providing fur-
ther evidence that the high propensity for such regions
to form structural elements may generally inhibit poly-
merase progression through these regions, leading to in-
creased dwell time for POLR2G.
Similarly, analysis of L1 element enrichment revealed

multiple modalities of regulatory activity. One function
of RBP association to L1 is to suppress retrotransposi-
tion activity, and indeed, we observed that three RBPs
(PPIL4, SAFB, and TRA2A) showed both eCLIP enrich-
ment for sense L1 elements and act to suppress L1 ret-
rotransposition activity in genome-wide screening data.
For RBPs enriched for antisense L1 elements, we instead
see signatures of RBPs acting to increase RNA expres-
sion, extending a similar analysis recently published (that
included an earlier release of the ENCODE eCLIP re-
source along with other iCLIP datasets) that revealed
widespread association with L1 elements by RBPs [37].
From these and other works, it is now becoming clear
that suppression of aberrant RNA processing due to ret-
rotransposable elements is a major responsibility of
many RNA binding proteins, suggesting that the genome
has evolved to devote substantial resources to this effort.

Large-scale RBP target maps provide unique
opportunities for further specialized insights
It is notable that the above enriched RNA element clas-
ses often reflected a substantial fraction of eCLIP reads,
suggesting that they may represent dominant functions
of the RBP. For example, antisense L1 elements consti-
tuted 19–27% of eCLIP reads for HNRNPM and
MATR3 and antisense Alu elements were 13–18% of
reads in HNRNPC eCLIP. Similarly, 42–56% of UTP18,
27–31% of WDR43, and 16% of HepG2 LIN28B eCLIP
reads mapped to the 45S ribosomal RNA precursor.
Thus, these results strongly argue that analysis of CLIP
data should include proper quantitative analysis of reads
mapping to non-mRNA regions, as they can in some cases
represent the dominant binding modality of the RBP and
should be considered in interpreting potential functional
roles of the RBP in regulating RNA processing.
Intriguingly, we even observed significant differences

even between RBP components of the same RNP com-
plex. For example, 41.0% of SF3A3 HepG2 eCLIP reads
mapped to RNU2 snRNA versus only 8.5% mapping to
proximal intronic regions; in contrast, SF3B4 was far
more even (23.1% proximal intronic in HepG2 and
17.8% in K562, versus 17.0% and 19.7% RNU2 in HepG2
and K562, respectively). Although we cannot rule out
that this difference in crosslinking to snRNA versus in-
tron reflects underlying amino acid biases in UV cross-
linking efficiency, it does confirm that CLIP profiling of
multiple RBP members of an RNP complex can yield
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distinct insights into interaction patterns and regulatory
roles of the complex, suggesting that it is critical to assay
multiple independent proteins to gain a full understand-
ing of the target repertoire of an RNP complex.
In addition to specific insights into the RBPs them-

selves, we anticipate that the broad diversity of RBPs
profiled and RNA elements and features bound will
spur further development of methods targeted to-
wards specific RNA processing steps. For example,
the peak distribution pattern of the CDS.5P class (and
RPS3 in particular) resembles the average profile ob-
served using ribosome profiling [71], suggesting that
RPS3 eCLIP may capture ribosome association on
translating mRNAs and could be used as a general
approach to assay translation. Similarly, our meta-
exon analysis of AQR (followed by further analysis of
crosslink-induced termination sites) showed that AQR
eCLIP could identify branch points for a set of highly
abundant introns, suggesting that further development
of profiling of AQR binding targeted to 3′ splice site
regions could yield a highly specific approach to iden-
tification of branch points transcriptome-wide. Recent
work using iCLIP to specifically purify spliceosome-
associated RNAs further showed that other eCLIP
datasets analyzed here also showed highly stereotyp-
ical crosslinking patterns around branch points, which
could also broadly map branch point locations and
reveal unique insights into the combinatorial effect of
branch point and splice site strength on spliceosomal
assembly and dynamics [48].
The diversity of distinct RBP association patterns

can also be flipped to predict features of a queried
RNA. For example, recent work used the ENCODE
eCLIP resource to identify UPF1 as one of many
RBPs with specific enrichment at 3′UTRs [56]. This
finding enabled improved prediction of whether a
queried transcript was a protein coding versus long
non-coding RNA by incorporating presence (or ab-
sence) of UPF1 eCLIP signal as a biomarker for trans-
lation [56]. Similarly, our unbiased analysis of foci of
enrichment on the 45S rRNA precursor suggested
two regions as notably highly enriched across multiple
RBPs, one of which matches a well-characterized re-
gion (between the canonical 01 and A0 processing
sites) with another suggesting interesting regulatory
mechanisms linking ribosomal RNA and microRNA
processing. Similar analysis identifying eCLIP datasets
with enrichment on regulatory non-coding RNAs Xist
and Malat1 also suggested that the patterns of RBP
enrichment often correlate with specific structural
and functional domains on these non-coding RNAs
[18]. With the continuing release of profiles for add-
itional RBPs, we expect that identification of these
distinct RBP “states” may serve as a useful method

for independent prediction of key regulatory domains
within these non-coding RNAs.

Conclusions
The maturation of methods to profile the in vivo targets
of regulatory proteins at both the DNA and RNA level
has enabled unparalleled large-scale efforts to map the
human gene expression regulatory network [16, 20]. In
this work, we describe how integrated analysis of targets
for 150 RBPs identified by eCLIP, coupled with analysis
tools to quantify enrichment to multicopy and other
RNA elements beyond standard pre-mRNAs, provides a
unique perspective into RNA processing regulation.
Through analysis of rRNA processing, linkages between
RBP target modalities and mechanistic functions, and
RBP complexes, we show that analysis of such large-
scale, unbiased views of the RNA processing landscape
can yield unique insights into RNA regulation, suggest-
ing that there remains much to learn about how RBPs
control gene expression in humans.

Methods
eCLIP datasets used
Enhanced CLIP (eCLIP) datasets used were obtained from
the ENCODE data coordination center (https://www.
encodeproject.org) with accession identifiers listed in
Additional file 1. Unless otherwise indicated, standard
peak analysis used the set of peaks identified as irreprodu-
cible discovery rate (IDR) reproducible and meeting fold-
enrichment (≥ 8-fold) and significance (p value ≤10−3) in
immunoprecipitation versus paired size-matched input.
RNA binding protein function annotations and localiza-
tions were obtained from [20] (Additional file 2). The list
of RNA binding proteins was obtained from [3]. The list
of transcription factors was obtained from [72], using the
“a,” “b,” and “other” classes.

Biotin-based visualization of RBP-coupled RNA
A step-by-step version of the biotin-based labeling protocol
is available at https://www.protocols.io/view/biotin-label-
ling-of-immunoprecipitated-na-v1pre-7z4hp8w. In brief,
for visualization experiments, HepG2 or K562 cells were
prepared identically to eCLIP experiments up until the
first RNA adapter ligation: 20 million cells were lysed in 1
mL 4 °C eCLIP lysis buffer, fragmented for 5min at 37 °C
with 40U RNase I (Ambion), centrifuged at 15k RPM for
3min at 4 °C (with supernatant kept) to clear lysate, and
incubated with rotation overnight with antibody coupled
to species-specific secondary beads (10 μg primary anti-
body as indicated coupled to 125 μL of Sheep anti-Rabbit
or anti-Mouse Dynabeads; ThermoFisher). After incuba-
tion, samples were washed once with eCLIP wash buffer,
washed twice with high-salt wash buffer, and washed three
times with wash buffer. FastAP and T4PNK reactions
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were performed on-bead as previously described for
eCLIP, followed by one wash with high-salt wash buffer
and 3 washes with wash buffer. At this point, a modified
RNA linker ligation was performed with standard eCLIP
ligation conditions (buffer and High ?A3B2 show
$132#?>Concentration T4 RNA Ligase) but with 500 pmol
pCp-Biotin (Jena Bioscience) in place of the RNA adapter,
and samples were incubated at 16 °C. For some experi-
ments, immunoprecipitations were performed on 4 mil-
lion cells; for these experiments, half reactions were used
for the pCp-biotin ligation step. After ligation, samples
were washed once with high-salt wash buffer and three
times with wash buffer, followed by standard SDS-PAGE
electrophoresis and transfer to nitrocellulose membranes.
Visualization was performed using the Chemiluminescent
Nucleic Acid Detection Module Kit (ThermoFisher), fol-
lowing the manufacturer’s instructions for blocking,
washes, and labeling. Imaging was performed on the
Azure C600 platform. For 32P experiments, radiolabeling
was performed as previously described [73].

Family-aware mapping to multicopy elements
The software pipeline used to quantify enrichment for
retrotransposable and other multicopy elements is avail-
able at https://github.com/YeoLab/repetitive-element-
mapping, and was initially described in [20] but is de-
scribed in more complete detail below. This release in-
cludes scripts, detailed documentation, and database
files necessary to perform the described analyses.
A database of multicopy elements was generated based

on 5606 transcripts obtained from GENCODE v19 cover-
ing 34 families of abundant non-coding, multicopy, and
other types of RNA refractory to standard peak analysis,
including families within the broader rRNA (RNA18S,
RNA28S, RNA5S, RNA5-8S), snoRNA (SNORD, SNORA,
RNU105, RNU3, RNU7, snoU13, snoU109, U8), snRNA
(RNU1, RNU2, RNU4, RNU4ATAC, RNU5A, RNU5B,
RNU5D, RNU5E, RNU5F, RNU6, RNU6ATAC, RNU11,
RNU12), vault RNA (VTRNA1, VTRNA2, VTRNA3),
non-coding RNA (H1RNA, RN7SK, RN7SL, MRP,
YRNA), and small Cajal body-specific RNA (SCARNA)
broader classes (Additional file 4). Each family contained
GENCODE v19 annotated transcripts as well as their
pseudogenes. To this set were added a family for tRNAs
(606 tRNA transcripts were obtained from GtRNAdb [74],
and each tRNA was included in two versions: one variant
including 50 nt of genome flanking sequences, and one
mature variant that included the canonical CCA tail),
mitochondrial transcripts (which were initially added as
one class of 37 annotated genes, but ultimately counted as
two families based on H- or L-strand position that in-
cluded not only gene-mapping reads, but also intergenic
reads mapping uniquely to the mitochondrial genome),
the rRNA RNA45S precursor transcript (NR_046235.1,

obtained from GenBank), a “simple repeat” class contain-
ing 501 60-mer sequences containing simple repeats of all
1- to 6-nt k-mers, and 49 families comprising 705 total
human repetitive elements obtained from the RepBase
database (v. 18.05) [75]. Within each family, transcripts
were given a priority value, with primary transcripts prior-
itized over pseudogenes. Mapping to the reverse strand of
a transcript was counted separately from forward strand
mapping, creating a second “antisense” family for each
RNA family above (which utilized the same element prior-
ity order), with the exception of simple repeats (which
were all combined into one family).
To quantify eCLIP signal, paired-end sequencing reads

were first adapter trimmed as previously described [18].
Next, reads were mapped against the repetitive element
database using bowtie2 (v. 2.2.6) with options “-q --sen-
sitive -a -p 3 --no-mixed –reorder” to output all map-
pings. Read mappings were then processed as follows.
First, for each paired-end read pair, only mappings with
the lowest alignment scores summing both mismatch
penalties (defined as MN + floor((MX −MN)(MIN(Q,
40.0)/40.0)) where Q is the Phred quality value, and de-
fault values MX = 6, MN = 2, as described in bowtie2 ref-
erence material) and gap penalties (defined as GO + N ×
GE, where GO = gap open = 5, GE = gap extend = 3, N =
gap length) were kept. Next, the mapping to the tran-
script with the highest priority within a RNA family (as
listed above) was identified as the “primary” match map-
ping. At this stage, read pairs which had equal best
alignments to multiple repeat families were discarded,
with only reads mapping to a single repeat family con-
sidered for further quantification.
Next, these RNA family mappings were integrated with

unique genomic mapping from the standard eCLIP pro-
cessing pipeline (using read mapping prior to PCR dupli-
cate removal). For read pairs that mapped both to an
RNA family above as well as uniquely to the genome, the
mapping scores (as defined above) were compared. If the
unique genome mapping was more than 2 mismatches
per read (24 alignment score for the read pair) better than
to the repeat element, the unique genomic mapping was
used; otherwise, it was discarded and only the repeat map-
ping was kept. Next, PCR duplicates were removed by
comparing all read pairs based on their mapping start and
stop position (either within the genome or within the
mapped primary repeat) and unique molecular identifier
sequence, and all but one read pair for read pairs sharing
these three values were defined as PCR duplicates and re-
moved. At this stage, RepeatMasker-predicted repetitive
elements in the hg19 genome were additionally obtained
from the UCSC Genome Browser [24]. Element counts
for RepBase elements were therefore determined as the
sum of repeat family-mapped read pairs (described above)
plus the number of reads that mapped uniquely to the
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genome at positions which overlapped (by at least one
base) RepeatMasked RepBase elements. Reads uniquely
mapping to non-RepBase genomic regions were then an-
notated into one of 11 additional classes in the following
priority order (based on GENCODE v19 annotations):
CDS, 5′UTR and 3′UTR, 3′UTR, 5′UTR, proximal in-
tronic (within 500 nt of splice sites), distal intronic
(remaining intronic regions), non-coding exonic, non-
coding proximal intronic, non-coding distal intronic, anti-
sense to GENCODE transcripts, and intergenic.
Finally, the number of post-PCR duplicate removal

read pairs mapping to each class was counted in both
IP and paired input sample and normalized for se-
quencing depth (using the total number of post-PCR
duplicate read pairs from both unique genomic map-
ping as well as repeat mapping as the denominator to
calculate fraction of reads). Significance was deter-
mined by Fisher’s exact test or Pearson’s chi-square
test if all expected and observed values were five or
more. Relative information content of each element in
each replicate was calculated as pi � log2ðpiqiÞ , where

pi and qi are the fraction of total reads in IP and in-
put respectively that map to element i. To combine
two biological replicates, the average reads per million
(RPM) was calculated across two IP samples and
compared against the paired input experiment to cal-
culate one overall fold-enrichment and relative infor-
mation value per dataset.

Validation of RNA element links with RBP functional
annotations
To quantify whether RNA element enrichment matched
with RBP functions, a set of positive control pairings
were generated between RNA elements with known
links to either RBP function or known RBPs contained
within a well-characterized ribonucleoprotein complex
(Additional file 3: Fig. S2a). One hundred forty datasets
for which the RBP had at least one of these annotated
functions were selected, and datasets were sorted by
relative information of the most-enriched class. Accur-
acy (defined as (TP + TN)/(TP + TN + FP + FN)) was
then calculated, where true positives (TP) were RBPs for
which the most-enriched RNA element was greater than
the cutoff value and the RBP has published evidence for
the function associated with the most-enriched RNA
element, false positives (FP) were RBPs that had an RNA
element meeting the relative information cutoff but the
RBP lacked publication evidence for the linked function,
false negatives (FN) were RBPs lacking an RNA element
meeting the relative information cutoff but the RBP had
published evidence for functions associated with at least
one RNA element class, and true negatives (TN) were
RBPs lacking annotated functions or RNA elements

meeting the relative information cutoff. Accuracy was
calculated for each possible relative information cutoff,
and the maximum point (0.2) was chosen.

Ribosomal RNA analysis
RBPs with roles in ribosomal RNA processing were ob-
tained from [28]. Position-wise relative information was
calculated as above, using the number of reads overlap-
ping the position in IP versus input for each dataset
(using paired-end read 2 only, as was done for genomic
mapping). To obtain a cutoff for further analysis, RBPs
were sorted by the maximum position-wise relative in-
formation on the 45S rRNA precursor, and at each
value, the F1 score was calculated (defined as (2 × TP)/
(2 × TP + FP + FN)) using the definitions described above.
The maximum point at 0.101 was used for further analysis.
To quantify enrichment at the rmiR-663 ribosomal

versus genomic paralog loci, sequences of rmiR-663 and
four genomic-encoded paralogs (miR-663a, miR-663b,
AC010970.1, and AC136932.1) were obtained from the
UCSC Genome Browser, along with 100 nt of flanking
sequence. Only reads that perfectly aligned (with zero
mismatches or gaps) to these sequences were counted
for further analysis.

Retrotransposable element analysis
L1 retrotransposition genome-wide CRISPR screening
data was obtained from Liu et al. [38], using Combo cas-
TLE Effect scores from K562 cells. Bonferroni correction
was performed on uncorrected casTLE p values using
n = 15 (the number of L1 (sense)-enriched RBPs
queried).
To calculate change in expression of L1-containing

bound genes, DESeq-calculated gene expression fold
changes for RBP knockdown/RNA-seq data were ob-
tained from the ENCODE DCC (http://www.encodepro-
ject.org) for all RBPs with both eCLIP and RNA-seq
performed in the same cell type. L1 sense and anti-sense
elements were taken from RepeatMasker-predicted
repetitive elements in the hg19 genome obtained from
the UCSC Genome Browser [24]. For each gene in
GENCODE v19, the transcript with the highest abun-
dance in rRNA-depleted total RNA-seq in HepG2 (EN-
CODE accession ENCFF533XPJ, ENCFF321JIT) and
K562 (ENCFF286GLL, ENCFF986DBN) was chosen as
the representative transcript, and the set of expressed
genes (10,247 in HepG2 and 9162 in K562 with TPM ≥
1) were considered. Next, genes were separated into
three classes: “≥ 1 bound L1(as)” genes with at least one
antisense L1 element that overlapped a significant peak
identified in eCLIP, “bgd with ≥ 1 L1(as)” genes with at
least 1 antisense L1 element but did not have an elem-
ent that overlapped with an eCLIP peak, or “Bgd” which
contained all expressed genes. Significance was
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determined by the Kolmogorov-Smirnov test with no
multiple hypothesis testing correction.
To compare reference versus divergent L1 elements,

we defined “canonical” reads as those which mapped
best (and were assigned) to sequences present in
RepBase, whereas “divergent” reads mapped better to
unique genomic loci than to the reference sequence.
Calculation of overall element coverage (Add-

itional file 3: Fig. S4b) was based on the above set of
9162 reference transcripts in K562 expressed with
TPM ≥ 1.

Meta-gene and meta-exon peak density maps
To generate meta-gene and meta-exon maps, for each
gene in GENCODE v19, the transcript with the highest
abundance in rRNA-depleted total RNA-seq in HepG2
(ENCODE accession ENCFF533XPJ, ENCFF321JIT) and
K562 (ENCFF286GLL, ENCFF986DBN) was chosen as
the representative transcript, and the set of expressed
genes (10,247 in HepG2 and 9162 in K562 with TPM ≥
1) were considered. Datasets with fewer than 100
mRNA-overlapping peaks were discarded, leaving 205
datasets. Next, each gene was split into 162 bins (13 for
5′UTR, 100 for CDS, 49 for 3′UTR), based on the me-
dian 5′UTR, CDS, and 3′UTR lengths of highly
expressed (TPM ≥ 10) GENCODE v19 transcripts in
K562 cells. For each eCLIP dataset, the average peak
coverage for each bin was calculated for each gene and
then averaged over all genes to generate final meta-gene
plot. To generate confidence intervals, bootstrapping
was performed by randomly selecting (with replacement)
the same number of transcripts and calculating the aver-
age position-level peak coverage as above, with the 5th
and 95th percentiles (out of 100 permutations) shown.
For further visualization and analysis, only 104 RBPs
where the 5th percentile was at least 0.002 peaks per
gene (~ 20 peaks in at least one bin) were considered.
Normalized coverage was then calculated by setting the
maximum position to one and minimum position to
zero for each eCLIP dataset. Cross-position correlations
were calculated using normalized coverage for across
all 104 RBPs at each position. Odds ratios and signifi-
cance (determined by Fisher’s exact test or Yates’ chi-
square test if observed and expected values were greater
than five) utilized RBP annotations (Additional file 3)
from [20].
To generate meta-exon plots for each eCLIP dataset,

for all internal exons (excluding the first and last exons),
the region from 500 nt upstream to 500 nt downstream
(for introns less than 1000 nt, the region was split with
half assigned to the upstream exon and half to the
downstream exon) was queried for the presence of sig-
nificant (IDR) peaks. Finally, the number of peaks at
each position was averaged over all events to obtain the

final meta-exon value. To generate confidence intervals,
bootstrapping was performed by randomly selecting
(with replacement) the same number of transcripts and
calculating the average position-level peak coverage as
above, with the 5th and 95th percentiles (out of 100 per-
mutations) shown. For further analysis, only datasets
with at least 100 IDR peaks were considered. Next, after
calculating meta-exon profiles and confidence intervals
as above, datasets that did not have at least one position
with the 5th percentile bootstrap value above a minimal
cutoff of 0.0005 (~ 5 peaks observed at that position)
were discarded to leave 133 datasets for further consid-
eration. Finally, for visualization of comparison across
RBPs (Fig. 6), an additional normalization was per-
formed by dividing each position by the maximum
meta-exon value for that dataset, in order to scale the
meta-exon profiles between 0 and 1.

Analysis of AQR enrichment at branch points
To identify points of enriched read termination in AQR
eCLIP, regions from − 50 nt to − 15 nt from annotated 3′
splice sites were obtained from GENCODE v19, and the
subset of regions with at least 20 overlapping reads in
AQR eCLIP in K562 cells were taken for further analysis.
Points of enrichment were identified as those where more
than half of reads overlapping the overall region termi-
nated at the same position. Motif analysis was performed
by counting the frequency of 11-mers centered on the
read start position with 5 nt flanking on either side. Motif
logos were generated with seqLogo (R).

Enrichment of branch point factors at alternative 3′ splice
site events
Splicing maps profiling normalized enrichment for
SF3B4 and SF3A3 at RBP knockdown-responsive alter-
native 3′ splice site events were generated as previously
described [20, 76]. In brief, the set of differential 3′
splice site events for RBP-knockdown/RNA-seq was
identified from rMATS analysis between RBP knock-
down and paired non-target control. Normalized read
density in eCLIP was then calculated for each differential
event by subtracting input read density from IP read
density (each normalized per million mapped reads). To
weigh each event equally, position-wise subtracted read
density was then normalized to sum to one across the
entire event region (composed of 50 nt of exonic and
300 nt of flanking intron), including a pseudocount of
one read (normalized by total mapped read density) at
each position. The highest 2.5% and lowest 2.5% values
at each position across all events were then removed,
and the mean was then calculated across all other events
to define the final splicing map. As a control, a set of
“native” alternative 3′ splice site events was defined as those
which showed alternative usage (0.05 < inclusion < 0.95) in
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control K562 or HepG2 cells, respectively. Confidence in-
tervals were generated by randomly sampling the number
of events in the RBP-responsive class from the native alter-
native 3′ splice site set 1000 times, processing this sampled
set as described above, and plotting the 0.5th to 99.5th
percentiles.

Co-occurrence of RBP eCLIP peaks and validation of
subcomplexes of RBPs
Overlap between eCLIP datasets A and B was deter-
mined by calculating the fraction of significant and re-
producible peaks in dataset A that overlapped (by at
least one base) a peak in dataset B, and vice versa the
fraction of peaks in B that overlapped a peak in A, and
taking the maximum of those fractions as the overall
pairwise fraction overlap. Only datasets with at least 100
reproducible and significant peaks were used for this
analysis. Gene Set Enrichment Analysis was performed
using the GSEA software package [77]. RBP interaction
data was obtained from the BioPlex 2.0 dataset [52].
IP-western validation was performed using HNNRPL

(ab6106, Abcam), RBFOX2 (A300-864A, Bethyl), FMR1
(RN016P, Bethyl), AGGF1 (A303-634A, Bethyl), and
TNRC6A (RN033P, MBLI) antibodies in UV crosslinked
K562 cells. Immunoprecipitation in high-salt wash con-
ditions was performed using standard eCLIP wash
buffers, beads, and other reagents [18]. Low-salt co-
immunoprecipitation conditions used identical condi-
tions, except for lysis buffer (50 mM Tris-HCl pH 7.5,
150 mM NaCl, 1% Triton X-100, 0.1% Sodium deoxy-
cholate, and Protease Inhibitor cocktail (Promega)) and
wash buffer (5 washes total in TBS + 0.05% NP-40).
Westerns were probed with HNNRPL (ab6106, Abcam)
primary antibody and TrueBlot secondary (Rockland).
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