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ABSTRACT OF THE DISSERTATION 
 

Understanding the global architecture of gene regulation in human cells 

through analysis of chromatin signatures 

 

by 

 

Gary Chung Hon 

 

Doctor of Philosophy in Bioinformatics 

 

University of California, San Diego, 2009 

 

Professor Bing Ren, Chair 

Professor Wei Wang, Co-Chair 

 

 

There are over 200 cell types in the human body, each with a unique gene expression program 

precisely controlled by regulatory elements encoded in the genome such as promoters, enhancers, and 

insulators. Methods to identify functional genomic elements have widely focused on sequence. While 

these methods have been successful in finding promoters and insulators, identifying other regulatory 

elements, namely enhancers, is still an open problem. Our understanding of human transcription is 

incomplete because we do not have a complete catalog of enhancers. Recently, it has become 

increasingly clear that an epigenetic layer of information, especially in the form of post-translational 

histone modifications, marks different functional regions of the genome. 
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In Chapter 1, I use high-resolution maps of histone modifications in 1% of the human genome 

to show that active enhancers are marked by a chromatin signature distinct from promoters, and that this 

signature can be used to predict other active enhancers. In Chapter 2, I extend this method to predict 

active enhancers genome-wide in HeLa cells, showing that enhancers are epigenetically more dynamic 

than promoters or insulators. Marked enhancers are highly enriched near cell-type specifically 

expressed genes. This key positioning of active enhancers suggests they likely drive cell-type specific 

gene expression. In Chapter 3, to study a biological system more relevant to human development, I then 

apply this technique to embryonic stem cells before and after differentiation. Most enhancers display 

marked changes in chromatin states in a manner that correlates with differential expression of their 

predicted target genes. In addition, a set of poised enhancers are marked by a distinct chromatin 

signature near genes important for cell fate determination, underscoring the importance of these 

regulatory elements in regulating differentiation. Finally, in Chapters 4 and 5, I address the problem of 

what other chromatin signatures exist besides those at promoters and enhancers. I develop an unbiased 

de novo pattern-finding method called ChromaSig to find commonly occurring chromatin signatures. 

Applying ChromaSig to genome-wide maps of histone modifications, I find a novel chromatin signature 

marking exons and other marking distinct classes of repeat elements associated with distinct modes of 

gene repression. 
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Chapter 1 : The language of chromatin signatures 
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Abstract 

 

Proper control of eukaryotic gene expression involves integration of various regulatory signals 

including sequences encoded in the genome as well as the chromatin that encapsulates them. 

Accumulating evidence suggests that epigenetic modifications of chromatin plays key roles in this 

process. Here, I review how the epigenomics field is rapidly progressing from descriptive observations 

of chromatin modifications at regulatory elements to powerful predictive models enabling use of 

chromatin signatures to enumerate novel functional elements that have escaped previous detection. 

 

Introduction 

 

Each of the over 200 cell types in the human body contains a nearly identical copy of the 

genome sequence. Yet the gene expression pattern for each distinct cell type is unique [1,2]. While it is 

obvious that this uniqueness arises from differences in how transcription is controlled, it is unclear what 

the mechanisms of this control are, and especially how this control is orchestrated on a global scale. 

This knowledge will be critical if we are to understand how a cell rewires its transcriptome upon 

stimulus, especially during early development, as well as how improper control of transcription causes 

diseases such as cancer. 

  

At the simplest level, gene regulation requires precise control of gene activation and 

repression. While gene activity is easily assessed by profiling RNA, RNA abundance alone does not 

specify how transcription is controlled. In eukaryotes, this process involves a host of regulatory 

elements including non-coding RNAs, enhancers, and silencers [3], most of which have remained 

undiscovered. However, recently it has become increasingly clear that the epigenetic modifications of 

the genome, especially of histone tails, are an information-rich upstream indicator of the transcriptional 
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status of every genomic locus in a cell. With recent technological advances making it routine to survey 

the epigenome on a large scale, the epigenetics field is rapidly moving from examining individual genes 

to all genes in the human genome. With this extension comes the recent shift from descriptive to 

predictive models relating chromatin signatures and the regulatory elements they mark, giving new 

global insights into gene regulation and development by allowing dissection of these processes in 

unprecedented detail. 

 

Chromatin signatures at gene structures 

 

First through ChIP studies focusing on individual promoters, then through ChIP-chip spanning 

subsets of the genome [4,5,6,7], and most recently through genome-wide techniques using ChIP-chip or 

ChIP-Seq [8,9,10], it is now abundantly clear that one of the hallmarks of actively transcribed protein-

coding promoters is H3K4me3 (Figure 1-1). Newer technologies have offered higher resolution views, 

showing clearly that this modification is found on the nucleosomes flanking nucleosome-free regions 

that coincide with the transcription start sites (TSSs) of actively transcribed genes [4,11,12]. 

 

Unlike most epigenetic marks, it is known precisely how the H3K4me3 chromatin signature is 

deposited at active promoters. Examining a panel of histone methyl-transferases in yeast, Briggs et al 

observed that only knock-out of the Set1 methyltransferase results in complete loss of H3K4me3 [13]. 

Then, using ChIP-chip, Ng et al observed that Set1 occupied actively transcribed regions, and 

specifically is recruited to the active form of RNA polymerase II (RNAPII) bearing a serine-5 

phosphorylated tail [14]. This is consistent with observations that both RNAPII and H3K4me3 

simultaneously mark most promoters in the human genome and that the genes belonging to these 

promoters undergo at least transcription initiation [15]. 
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Another canonical histone modification found in genic regions is H3K36me3, which has long 

been associated with the gene bodies of actively transcribed genes. Owing to the low resolution of 

traditional ChIP, ChIP-qPCR, and non-overlapping tiled microarrays used in ChIP-chip, this 

modification was long thought to be just a signal of elongation that is enriched non-specifically 

throughout the entire transcribed region [15]. Recent observations using higher resolution techniques 

have instead found that enrichment of H3K36me3 is much higher at exons than introns [16] (Figure 

1-1). The profound observation that a chromatin signature marks exons has leant further support to the 

view that transcription and splicing are coupled events, implying that the complex processes regulating 

splicing may be controlled at the chromatin level. 

 

Like H3K4me3, the H3K36me3 chromatin signature is intimately tied to RNAPII. During 

initiation, the carboxy terminal domain (CTD) of RNAPII is phosphorylated at serine-5, which recruits 

the Set1 protein to catalyze trimethylation of H3K4 [14]. During elongation, serine-5 phosphorylation 

of the CTD is replaced by serine-2 phosphorylation [17] and, as a result, Set1 is dissociated and 

H3K4me3 is not deposited in the gene body [14]. Instead, serine-5 phosphorylation recruits Set2 which 

results in trimethylation of H3K36me3 in the gene body [18]. 

 

Thus, it is clear that RNAPII-transcribed elements are generally marked by consistent 

chromatin signatures. An open question is whether the same chromatin signatures also exist for genes 

transcribed by the other polymerases. There are several polymerases known to exist in eukaryotes, each 

of which transcribe a distinct class of functional elements. It is possible that these distinct polymerases 

deposit distinct epigenetic modifications during transcription. However, the chromatin signatures 

observed for RNAPII-transcribed genes may arise because of the highly regulated nature of RNAPII 

transcription. Given that RNAPI and RNAPIII generally transcribe ubiquitously expressed elements 

such as rRNAs and tRNAs, less regulation of this process is required, which may require fewer 

epigenetic modifications. 
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Towards predictive chromatin signatures 

 

A central barrier to our understanding of the human genome is an incomplete annotation of the 

elements encoded in it. Many human functional elements have been assigned on the basis of sequence 

homology with other species under the assumption that sequence conservation equates functional 

conservation [19,20]. These techniques by definition miss human or lineage-specific elements, which 

are arguably the most important in defining the human genome. Desperately needed are general, cost-

efficient methods to identify functional elements in the human genome using only measurements from 

human cells. The observations that chromatin signatures are found at well-annotated places of the 

genome and that their presence correlates with activity suggests that examination of the human 

epigenome can reveal the functional elements contained within it. 

 

The vast majority of epigenomic studies have focused on the descriptive view that functional 

loci contain chromatin signatures. For example, active promoters are marked by H3K4me3. A much 

stronger statement would be that H3K4me3 only marks active promoters. This predictive view suggests 

that the presence of the chromatin signature alone can predict the presence of a specific class of 

functional element. This second view is much more rigorous, offers a computational strategy to identify 

functional elements, and outlines specifically how to test hypotheses of function. 

 

Several studies have shown that novel promoters can be identified on the basis of the 

H3K4me3 chromatin signature. Work from our lab, as well as by other groups, have shown that this 

mark can be used in conjunction with others to efficiently identify promoters for known and novel 

protein-coding genes [4,21,22]. Focusing on the 1% of the human genome studied by the ENCODE 

pilot project [23], we identified 198 places bearing the promoter chromatin signature [4]. While the vast 

majority of these are recovered by known annotations including CAGE tags, 6 were novel. Finally, 

using luciferase reporter assays we verified that several of these novel chromatin signature-based 
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promoter predictions showed promoter activity in vivo. Similarly, taking advantage of the observations 

that miRNAs are transcribed by the same machinery as protein-coding genes and have promoters 

marked by nucleosome-depleted TSSs flanked by H3K4me3, Ozsolak et al were able to precisely map 

the locations of miRNA TSSs [24]. 

 

The most exciting applications of predictive chromatin signatures is in the identification of 

previously elusive regulatory elements. For example, isolated examples of non-protein-coding RNAs 

(ncRNAs) such as HOTAIR, which regulates expression of HOX cluster genes [25], have suggested a 

crucial role of ncRNAs in development. However, studies of ncRNAs are hindered by small catalogs of 

known ncRNA genes. To address this problem, Guttman et al took advantage of the observation that 

many non-protein-coding genes are also transcribed by the same machinery as coding genes, with 

RNAPII as the central component. Since RNAPII deposits H3K4me3 at promoters during initiation and 

H3K36me3 during elongation to mark the direction of transcription, Guttman et al searched for this 

chromatin signature in several mouse strains [26]. This approach successfully identified over 1000 

ncRNAs including well-known members such as HOTAIR. Subsequent analysis revealed that these 

ncRNAs show complex expression and regulatory patterns similar to those previously observed for 

protein-coding genes, suggesting they are functional during mouse development. 

 

Predictive chromatin signatures at enhancers 

 

The epigenetic events associated with genes and gene-proximal elements has been thoroughly 

investigated, either through using cost-effective closed experimental systems that exclusively survey 

genic regions [15,27,28] or through analysis of only these regions even when using open experimental 

systems that survey the entire genome [8,9,29]. But the epigenome outside of genic regions has 

remained largely unexplored, even though epigenetic events outside of genes likely contribute to 

controlling gene expression. 
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In eukaryotes, transcription is tightly regulated by the activity of transcription factors, the vast 

majority of which bind to enhancers far from the genes they activate. As such, identifying active 

enhancers on a genome-wide scale has been an open problem. Our lab had previously shown that active 

transcriptional enhancers are marked by a distinct and predictive chromatin signature, central to which 

is strong enrichment of H3K4me1 [4] (Figure 1-1). Recently, we have used this well-defined chromatin 

signature to map 55,000 enhancers genome-wide in several human cell lines [22]. Unlike promoters and 

insulators, the epigenetic modifications marking enhancers are highly cell-type specific in a manner that 

correlates strongly with cell-type specific gene expression. These results tie the global architecture of 

chromatin signatures outside genes to regulation of gene expression. 

 

But unlike H3K4me3 and H3K36me3 which mark genic regions, H3K4me1 is relatively 

understudied. It is unknown what enzyme is responsible for depositing the H3K4me1, or even if this 

mark arises from de novo addition of a methyl group to an unmodified H3K4 residue or demethylation 

from di or tri-methylated states. The latter would require an intermediate state containing either 

H3K4me2 or H3K4me3 but not the mono-methylated form that also shows no promoter activity. It is 

possible that these intermediate states are short-lived and are averaged out over the large population of 

cells used in high-throughput studies. While we have observed a handful of promoter-distal 

hypersensitive loci marked with stronger enrichment of H3K4me2 than H3K4me1 that may be places 

being demethylated to the mono-methylated form, this evidence is anecdotal at best and does not 

convincingly demonstrate the phenomenon on a large scale. 

 

It will be intriguing to learn what large complex, if any, is physically associated with the 

molecule responsible for depositing H3K4me1. This complex will likely be the key regulator 

determining enhancer activity. While H3K4me3 and H3K36me3 are linked to RNAPII, it is unlikely 

that RNAPII plays a similar role with maintenance of H3K4me1 given that the vast majority of 

enhancers are not enriched for RNAPII. This factor or set of factors must satisfy several conditions. 
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First, given that enhancers are typically found far from gene regions, the factor cannot be limited to 

gene regions. Second, being a general factor required for enhancer activity, it must be ubiquitously 

expressed in all cell types. Third, the factor must be capable of binding inactive, unmarked enhancers. 

Pioneer factors such as FoxA1, which can bind repressed enhancers enveloped by heterochromatin and 

open them for activity, or proteins associated with pioneer factors, would satisfy these constraints 

[30,31]. 

 

Thus far, the only epigenetic modification predictive of active enhancers is H3K4me1. Finding 

other predictive modifications or modifiers of enhancer activity has been an active area of research. 

Using a technique called GMAT that involves ChIP followed by SAGE-like sequencing, Roh et al 

identified thousands of acetylation islands marked by H3K9ac or H3K14ac [32]. But since that H3K9ac 

is known to mark the activity of promoters more than enhancers [22], the majority of these acetylation 

islands were close to transcription start sites. Although promoter-specific acetylations have been 

discovered [33], thus far there have been no reports of acetylations specific to enhancers. Instead, 

acetylation of histones have generally been associated with active chromatin regions that marking both 

promoters and enhancers [22,33]. 

 

Using ChIP-Seq to map a panel of histone modifications [9], and Barski et al observed that 

enhancers were marked by H3K4me3. This apparent enrichment of H3K4me3 at enhancers could be 

caused by secondary physical interactions between H3K4me3-marked promoters and H3K4me1-

marked enhancers as predicted by the looping mechanism of enhancer activity [34]. Indeed, analysis of 

this data reveals that H3K4me1 enrichment is stronger at enhancers than H3K4me3. H3K4me3 

enrichment at enhancers could also be an artifact of ChIP-Seq, which is biased to hypersensitive regions 

that would mark enhancers [35]. In ChIP-chip studies where the ChIP sample is hybridized together 

with a genomic control sample, H3K4me3 is rarely observed above background levels at enhancers. 

Normalization procedures that take into account input control may relieve the observed H3K4me3 

enrichment. 
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Systematic discovery of chromatin signatures 

Increasingly, we are coming to appreciate the epigenome as a cell-type specific interpretation 

of the genetic code, specifying the activity of every part of the genome. The observations that chromatin 

signatures are predictive of a variety of transcribed elements including promoters, exons, miRNAs, and 

ncRNAs as well as untranscribed regulatory elements such as enhancers leads one to suspect that novel 

chromatin signatures may also mark other elements of unique function. 

 

Nucleosome depletion is common among many active regulatory elements including genic 

promoters and miRNA promoters. We have also observed that enhancers marked by H3K4me1 are also 

depleted for core histone H3 [4,22]. Like the distribution of nucleosomes around an active TSS, 

nucleosomes may be well-positioned flanking a region of nucleosome depletion around other active 

genomic regions. Indeed, we observe a bimodal distribution of H3K4me1 enrichment at predicted 

enhancers, and most interestingly enrichment of transcription factors is strongest inside the nucleosome 

free region. Similar observations have been observed at CTCF-bound insulators [36]. Recently 

developed technologies such as DNase-Seq are enabling the efficient enumeration of all nucleosome 

free regions in the human genome [37], and systematically examination of the histone modifications 

around these regions will likely yield novel chromatin signatures of enhancers and other regulatory 

elements. 

 

Not all functional regions of the genome are expected to be marked by DNase I 

hypersensitivity, in particular places of the genome that are repressed. One way to find consistent 

chromatin signatures marking regulatory elements outside of known regulatory regions or annotations is 

to apply an unbiased search on multiple dimensions of the epigenome simultaneously. We have recently 

developed a computational technique called ChromaSig to identify chromatin signatures that are 

commonly found in the epigenome. Consistent with observations in yeast [38], we find that many 
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histone modifications are highly redundant, resulting in only a handful of distinct chromatin signatures 

in the human genome [39]. In particular, we find that many inactive regions of the genome not marked 

by DNase I hypersensitivity are simultaneously marked by multiple repressive chromatin modifications, 

and in particular we also observe distinct classes of repressed regions marked by H3K9me3 or 

H3K27me3 (unpublished). 

 

The epigenome is constantly changing in response to the cell’s many stimuli. In addition to 

defining how gene expression is presently controlled, the epigenome also details how the cell is ready to 

respond to environmental or developmental cues to alter its transcriptional output. This poised 

phenomenon has been well-documented at promoters where a bivalent epigenetic state ensures a poised 

transcriptional state critical for development [40], and likely also applies to enhancers [4,22,30] and, by 

extension, to other regulatory elements. Using unbiased approaches to identify which parts of the 

epigenome change during cellular response will reveal key regulatory elements involved in the process. 

Most interesting will be identifying which parts of the epigenome are marked both before and after 

stimulation, but where the marks have significantly changed either in terms of modification types or 

spatial distribution. These poised elements may be those most critical in defining the cellular response. 

 

Conclusions 

To dissect the human genome, we must first enumerate all the regulatory elements encoded by 

it. Although we know that many classes of functional elements exist, current approaches to map these 

elements are not general, efficient, accurate, genome-scale, and cell-type specific. A major obstacle in 

finding these elements from the genome sequence alone is that there are no natural breaks in the 

sequence that delimit phrases or functional elements. The epigenome is an interpretation of the genome. 

But while the alphabet of the epigenome is larger that of the genome, analysis of the epigenome is a 

much more tractable endeavor as the words of histone modification peaks are well-spaced throughout 

the genome. Furthermore, as the fundamental unit of this chromatin epigenome is the nucleosome, the 
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epigenome is effectively orders of magnitude shorter than the genome, telling the story of the genome 

in a more compact way without skipping the important features. Well-defined, predictive chromatin 

signatures offer an elegant framework to comprehensive map all the functional elements in the human 

genome. 

 

References 
 

1. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, 
Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of 
the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465-4470. 

2. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, 
Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human 
protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 6062-6067. 

3. Maston GA, Evans SK, Green MR (2006) Transcriptional Regulatory Elements in the Human 
Genome. Annu Rev Genomics Hum Genet 7: 29-59. 

4. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, 
Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive 
chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 
311-318. 

5. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, Wilcox S, Beare DM, Fowler 
JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, 
Weng Z, Birney E, Carter NP, Vetrie D, Dunham I (2007) The landscape of histone modifications 
across 1% of the human genome in five human cell lines. Genome Res 17: 691-707. 

6. Kim TH, Barrera LO, Qu C, Van Calcar S, Trinklein ND, Cooper SJ, Luna RM, Glass CK, Rosenfeld 
MG, Myers RM, Ren B (2005) Direct isolation and identification of promoters in the human genome. 
Genome Res 15: 830-839. 

7. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) 
A high-resolution map of active promoters in the human genome. Nature 436: 876-880. 

8. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim 
TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig 
M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in 
pluripotent and lineage-committed cells. Nature 448: 553-560. 

9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) 
High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837. 



12 

 

10. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) 
Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem 
cells. Cell Stem Cell 1: 299-312. 

11. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure 
of human promoters. Nat Biotechnol 25: 244-248. 

12. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic 
regulation of nucleosome positioning in the human genome. Cell 132: 887-898. 

13. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD (2001) 
Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing 
in Saccharomyces cerevisiae. Genes Dev 15: 3286-3295. 

14. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by 
elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 
709-719. 

15. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and 
transcription initiation at most promoters in human cells. Cell 130: 77-88. 

16. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin 
marking of introns and expressed exons by H3K36me3. Nat Genet. 

17. Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase 
II and associated mRNA processing factors during transcription. Genes Dev 14: 2452-2460. 

18. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili 
A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in 
Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 
23: 4207-4218. 

19. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins 
database for the investigation of sequences and structures. J Mol Biol 247: 536-540. 

20. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, 
FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, 
McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti 
M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, 
Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman 
R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, 
Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, 
Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, 
McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, 
Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, 
Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, 
Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, 
Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, 
Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, 
Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave 
F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, 
Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, 
Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola 



13 

 

AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, 
Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, 
Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer 
K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown 
DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, 
Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, 
Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf 
I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting 
CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg 
J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, 
Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, 
Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. 
Nature 409: 860-921. 

21. Won KJ, Chepelev I, Ren B, Wang W (2008) Prediction of regulatory elements in mammalian 
genomes using chromatin signatures. BMC Bioinformatics 9: 547. 

22. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, 
Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart 
R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers 
reflect global cell-type-specific gene expression. Nature. 

23. ENCODE_Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 
306: 636-640. 

24. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) 
Chromatin structure analyses identify miRNA promoters. Genes Dev 22: 3172-3183. 

25. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, 
Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains 
in human HOX loci by noncoding RNAs. Cell 129: 1311-1323. 

26. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, 
Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, 
Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved 
large non-coding RNAs in mammals. Nature 458: 223-227. 

27. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, 
Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional 
regulatory circuitry in human embryonic stem cells. Cell 122: 947-956. 

28. Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of 
human genes. Mol Cell Biol 25: 4650-4661. 

29. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K (2009) Chromatin signatures in 
multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. 
Cell Stem Cell 4: 80-93. 

30. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) 
FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132: 
958-970. 



14 

 

31. Eeckhoute J, Lupien M, Meyer CA, Verzi MP, Shivdasani RA, Liu XS, Brown M (2009) Cell-type 
selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res 19: 
372-380. 

32. Roh TY, Cuddapah S, Cui K, Zhao K (2006) The genomic landscape of histone modifications in 
human T cells. Proc Natl Acad Sci U S A 103: 15782-15787. 

33. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, 
Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the 
human genome. Nat Genet 40: 897-903. 

34. Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene 
activation. Genes Dev 13: 2465-2477. 

35. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder 
M, Gerstein MB (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to 
controls. Nat Biotechnol 27: 66-75. 

36. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 
nucleosomes around its binding sites across the human genome. PLoS Genet 4: e1000138. 

37. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) 
High-resolution mapping and characterization of open chromatin across the genome. Cell 132: 311-322. 

38. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-
nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3: e328. 

39. Hon G, Ren B, Wang W (2008) ChromaSig: a probabilistic approach to finding common chromatin 
signatures in the human genome. PLoS Comput Biol 4: e1000201. 

40. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, 
Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A Bivalent Chromatin 
Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell 125: 12. 

 

 



15 

 

Figures 

 

 

Figure 1-1: Chromatin signatures in the human genome. 
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Chapter 2 : Distinct and predictive chromatin signatures 

mark active promoters and enhancers in 1% of the human 
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Abstract 

 

Gene regulation in eukaryotes is implemented by at least two distinct classes of activating 

elements: gene-proximal promoters and distal enhancers. While promoters have been extensively 

studied, enhancers have not, largely owing to our inability to identify them on a large scale.  Both of 

these elements are defined by sequences encoded in the genome, but their activities vary in a cell-type 

dependent manner. While many recent studies have linked activation and repression of promoters with 

chromatin structure through histone modifications, an open question is whether other regulatory 

elements such as enhancers are similarly affected. Here, I report that promoters and enhancers are 

associated with distinct chromatin signatures that can be employed to predict these classes of regulatory 

elements in the human genome. Using a combination of chromatin immunoprecipitation and microarray 

experiments (ChIP-chip), my lab generated high-resolution maps of histone modifications in 1% of the 

human genome. Examining the histone modification features at known promoters and enhancers, I find 

that active promoters are marked by a peak of H3K4me3 at the TSS with flanking enrichment of 

H3K4me1. In contrast, enhancers are marked by H3K4me1 but not H3K4me3. I then developed a 

computational prediction algorithm employing the distinct chromatin signatures to identify new 

promoters and enhancers. This allowed accurate prediction of over 200 promoters and 400 enhancers in 

1% of the human genome. This approach correctly predicted 84% of the regulatory elements bound by 

the transcription factor STAT1 as well as a novel enhancer for the carnitine transporter SLC22A5 gene. 

These results reveal chromatin patterns for distinct classes of transcriptional regulatory elements, 

offering insights into the functional relationships between chromatin modifications and regulatory 

activity in human cells and providing a new resource for the functional annotation of the human 

genome. 
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Introduction 

 

Control of gene expression requires precise regulation of gene activation and repression. In 

eukaryotes, several distinct classes of regulatory elements encoded within the genome control 

transcription [1]. Promoters, which are found at the 5’ ends of genes immediately surrounding the 

transcription start sites (TSS), serve as the point of assembly of the transcriptional machinery and 

initiate transcription [2,3]. Enhancers, which are often located far from promoters and can also be 

hundreds of kilobases away from the genes they regulate, are bound by transcription factors and 

coactivators to activate gene expression at promoters through what is thought to be a looping 

mechanism [4,5,6,7]. Insulators, which are bound by the CTCF protein, serve as insulators to block 

enhancer activation [8,9]. Importantly, all of these elements are defined by static sequence elements 

encoded directly within the genome [1]. For example, promoters often contain well-defined sequence 

elements such as TATA boxes, initiator elements, and downstream promoter elements that are 

recognized by the co-factors of RNA polymerase II [10]. In contrast, enhancers often contain motifs 

recognized by one of the thousands of transcription factors encoded by a eukaryotic genome , while 

insulators are marked by the well-defined CTCF motif [9]. 

 

Since the sequencing of the human genome, many groups have searched for these regulatory 

elements using sequence alone [11,12,13]. While these efforts have been largely successful for 

promoters and insulators, it has been much more difficult to find enhancers. There are several reasons 

for this difficulty: enhancers are often defined by short motifs that are often highly degenerate [14,15], 

these elements are usually far from the well-studied parts of the genome [5], and because the lack of 

large-scale maps of enhancers has made construction of adequate training sets difficult. But, even if all 

of these elements could be enumerated using sequence information alone, lacking cellular context it 

would still be unclear how these elements contribute to controlling gene expression in a cell-type 

dependent manner. 
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Increasingly, it has become clear that the epigenetic features of the chromatin around 

regulatory sequences are a barometer of their activity [16,17,18]. This is especially true of histone 

modifications [3,19,20]. For example, recent epigenetic work largely focusing on promoters has 

revealed that tri-methylation of lysine 4 of histone H3 (H3K4me3) marks active promoters, while other 

promoters marked by H3K27me3 are generally repressed. Interestingly, in stem cells, promoters 

marked by both these modifications are poised to become either activated or repressed upon 

differentiation [21]. These modifications are also highly conserved across species including human [3], 

mouse [21], and yeast [19]. Thus, it is clear that deciphering the regulatory information encoded in the 

genome will require a thorough understanding of the relationships between the transcriptional activities 

of these different types of cis-regulatory sequence elements and the epigenetic features of the chromatin 

surrounding them. 

 

Significant progress in the fields of epigenetics and chromatin biology suggests a histone code 

of ever-increasing complexity with profound implications of chromatin in a variety of biological 

processes [22]. While some studies suggest that distal regulatory elements such as enhancers may be 

marked by similar histone modification patterns [23,24,25,26], the distinguishing chromatin features of 

promoters and enhancers have yet to be determined, hindering our understanding of a predictive histone 

code for different classes of regulatory elements. Here, I present high-resolution maps of multiple 

histone modifications and transcriptional regulators in 1% of the human genome, revealing that active 

promoters and enhancers are associated with distinct chromatin signatures that can be used to predict 

these regulatory elements in the human genome. 

 

Results 

 



20 

 

Genome-scale maps of histone modifications 

 

To generate large-scale maps of histone modifications, my lab performed ChIP-chip analysis 

[27] in 1% of the human genome (totaling 30 megabase pairs) selected by the ENCODE Consortium 

[28]. They mapped the patterns of core histone H3 and five histone modifications: pan-acetylation of 

histone H3 lysine 9/14 (H3ac), pan-acetylation of histone H4 lysine 5/8/12/16 (H4ac), and mono-, di-, 

and tri-methylated histone H3 lysine 4 (H3K4me1, H3K4me2, H3K4me3). They also examined binding 

of two components of the basal transcriptional machinery (RNAPII and TAF1) and the transcriptional 

coactivator p300 to identify active promoters and enhancers, respectively. Three biological replicate 

ChIP-chip experiments were carried out for each marker in HeLa cells before and after treatment with 

interferon-gamma (IFNg), as p300 is known to be involved in the cellular response to this cytokine 

[29]. ChIP samples were amplified, labeled, and hybridized to tiling oligonucleotide microarrays 

covering the non-repetitive sequences of the ENCODE regions at 38-bp resolution. 

 

I performed both within-array and between-array normalization of the ChIP-chip data using 

existing methods (normalizeWithinArrays, normalizeBetweenArrays, lmFit) from the R package limma 

from Bioconductor [30]. After scanning and image extraction, Cy5 (ChIP DNA) and Cy3 (input) signal 

values were normalized within each array by applying either intensity-dependent Loess correction 

based on control probes or median-scaling normalization. To combine replicates, I used quantile-

normalization between arrays and a linear model-fitting strategy to estimate an average log ratio for 

each probe. The results from this normalization are average enrichments for each marker at every probe, 

giving a high-resolution map of histone modifications and transcriptional regulator binding for 1% of 

the human genome. 

 

To validate the ChIP-chip results, my lab performed conventional ChIP against RNAPII and 

tested for enrichment at 121 sites in the ENCODE regions using quantitative real-time PCR, indicating 

an accuracy of 97%, a specificity of near 100%, and a sensitivity of 82% for the method. These values 
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are comparable to other ChIP-chip studies [3,9,20,25] and confirm that the ChIP-chip data is very 

reliable. 

 

Descriptive chromatin signatures at promoters 

 

Looking at individual genes, there is clear enrichment of various chromatin features at 

promoters. For example, the promoter of the actively transcribed RFX5 gene contains strong 

enrichment for several activating histone modifications including H3K4me2, H3K4me3, H3ac, and 

H4ac (Figure 2-1). Consistent with this, the RFX5 promoter is also enriched for transcriptional 

machinery including RNAPII and TAF1. These data recapitulate results from previous studies [19,20]. 

 

To explore chromatin features shared among many human promoters, I then examined ChIP-

chip profiles along 10 kb regions centered at well-annotated promoters in the ENCODE regions and 

performed computational clustering to classify each promoter on the basis of histone modification 

patterns. I examined only those TSSs corresponding to well-annotated RefSeq [31] transcripts for which 

my lab had collected expression data. Furthermore, to prevent interference from neighboring genes, I 

excluded TSSs within 10 kb of each other from the analysis, resulting in a pool of 208 TSSs for 

clustering. From gene expression profiling experiments and analysis with the MAS5 method, 104 TSSs 

were defined as active promoters and 104 as inactive promoters. 

 

I divided each of the 10 kb regions around these TSSs into 100 bins of 100 bp in size, and 

assigned an enrichment value to each bin by averaging the log ratios for the microarray probes within 

that bin, i.e. the furthest upstream bin contains the averaged log-ratio for all probes -5000 to -4900 bp 

from the target. As highly repetitive genomic regions are not represented on the microarrays, I used 

linear interpolation to give values to empty bins, and boundaries were interpolated to zero if necessary. 

This process was repeated for each marker within each window. I then used K-means clustering with a 
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Euclidean distance metric over 10000 iterations [32], clustering multiple windows simultaneously by 

concatenating windows for all markers and weighting all windows equally. Clusters were visualized 

with Treeview [32]. 

 

I observed four distinct classes of promoters in untreated HeLa cells (Figure 2-2a). On a coarse 

scale, there are essentially two classes of promoters: P2-4 which are highly expressed and marked by a 

variety of active histone modifications as well as RNAPII and TAF1; and P1 which contain lowly 

expressed promoters that are generally not enriched for these active epigenetic marks. On a finer scale, 

expression levels of transcripts within each class generally increase from class P1 to P4, and 

interestingly this correlates with increased enrichment of all five histone modifications, RNAPII, and 

TAF1. The patterns observed in HeLa cells treated with IFNg are almost identical (not shown). The 

transition from H3K4me3 to H3K4me2 to H3K4me1 moving downstream from active promoters into 

coding regions echoes the pattern seen in small scale studies in human cells [33] and globally in yeast 

[19,20]. These results confirm previous observations in other organisms that histone modifications are 

linked to promoter activity. 

 

Interestingly, this analysis revealed a bimodal distribution of all histone modifications centered 

around peak binding of RNAPII and TAF1 at the TSS, implying depletion of nucleosomes at this 

position. ChIP-chip data for histone H3 support this conclusion (Figure 2-2a-b). These findings indicate 

that the nucleosome free region (NFR) observed at promoters in yeast and fly is indeed characteristic of 

active human promoters, supporting an evolutionarily constrained role for this phenomenon in 

transcriptional regulation. The degree of nucleosome depletion appears to be related to the level of gene 

expression, as depletion is not observed in class P1, suggesting that the formation and maintenance of 

NFRs at active promoters is a regulated process. 
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Descriptive chromatin signatures at enhancers 

 

Next, I investigated the chromatin features marking transcriptional enhancers. As previous 

studies have demonstrated that p300 and related acetyltransferases are present at enhancers [23,24], my 

lab mapped p300 binding in HeLa cells in triplicate ChIP-chip experiments. To identify genomic loci 

bound by p300, I used the Mpeak tool [3] to find p300-enriched peaks for each normalized replicate 

array as well as the averaged array. I then defined a putative p300 target to be a peak on the averaged 

array that 1) has FDR < 0.10 and 2) is within 1 kb of at least one peak with FDR < 0.10 from every 

normalized replicate array. Using these stringent criteria, I identified 124 binding sites in untreated cells 

and 182 sites in treated cells. 

 

The p300 binding sites exhibit several known and expected features of enhancers. First, over 

75% of p300 binding occurs more than 2.5 kb from Gencode known gene 5’-ends [34], consistent with 

previous observations that enhancers can act from a distance to activate genes [5]. Second, 

transcriptional regulatory elements such as enhancers have long been known to exhibit increased 

nuclease sensitivity [35], so our collaborator Greg Crawford mapped the DNaseI hypersensitive sites 

(DHSs) in triplicate in HeLa cells along the ENCODE regions using a recently developed DNase-chip 

method [35]. A significant number of distal p300 sites (69.7%, p < 1e-16) overlap with DHSs, 

representing ~12% of the distal DHSs identified. Third, over 60% (p < 1e-16) of the distal p300 sites 

are within 1 kb of a sequence strongly conserved across seven other vertebrates, as defined by a 

phastCons score > 0.8 [36]. Fourth, a significant number of the distal p300 sites (44.4%, p = 4.6e-15) 

contain independently predicted regulatory modules (PReMods) identified based on clustering of 

conserved transcription factor binding motifs [37]. These lines of evidence provide strong support that 

the distal p300 binding sites represent a subset of enhancers. 

 

Using the distal p300 binding sites to anchor 10 kb regions surrounding each putative 

enhancer, I performed computational clustering as described above to generate three classes of 
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enhancers (Figure 2-2c-d; classes are arbitrarily named E1-E3 to simplify discussion). Several striking 

patterns emerge that distinguish enhancers from promoters. Interestingly, H3K4me1 is strongly 

enriched in a broad pattern at nearly all enhancers at the peak of p300 binding. In contrast, active 

promoters display a marked depletion of H3K4me1 at the TSS and enrichment more than 1 kb 

downstream and upstream. Furthermore, enhancers lack enrichment of H3K4me3, which is strongly 

enriched at promoters. H4ac, H3ac, and H3K4me2 are present in varying degrees at both promoters and 

enhancers, though the bimodal distribution of these modifications observed at active promoters is less 

pronounced at enhancers. TAF1 and RNAPII are also present at some enhancers, though more weakly 

than at promoters, suggesting docking of the transcriptional machinery at enhancers or physical 

interaction between enhancers and active promoters as proposed in various models of enhancer action 

[5,38]. This analysis also reveals depletion of histone H3 at enhancers, suggesting that nucleosome 

depletion is a general feature of both promoters and enhancers, consistent with their DNaseI 

hypersensitivity. But in spite of some similarities between the histone modification profiles of active 

promoters and enhancers, the sharp contrasts of their H3K4me1 and H3K4me3 profiles represent 

distinct chromatin signatures for these different classes of regulatory elements. 

 

From descriptive to predictive models 

 

Thus far, I have shown that active promoters and enhancers each have distinct chromatin 

signatures. Next, I investigated the possibility that these signatures alone are predictive of these 

functional elements. If this is true, then searching for these chromatin signatures would be one way of 

finding enhancers and promoters active in a given cell type. 

 

Training sets were constructed with histone modification profiles surrounding known TSSs 

and p300 binding sites in untreated HeLa cells and were used to develop a computational prediction 
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algorithm to locate promoters and enhancers in the ENCODE regions based on similarity to the training 

set chromatin profiles (Figure 2-3a). 

 

In summary, the computational prediction model I developed consists of two stages: 1) use 

descriptive histone modification profiles of established transcriptional regulatory elements to identify 

novel elements and 2) apply discriminative filters to classify the predictions as either promoters or 

enhancers based on their correlation to the distinct chromatin signatures of these elements. An 

advantage of this two-stage descriptive-discriminative model is that the initial large set of predicted 

regulatory elements is filtered to remove predictions that do not sufficiently resemble the specific 

chromatin signatures, resulting in an approach that balances sensitivity and specificity to generate a set 

of high-confidence putative regulatory elements. Below I explain the development and implementation 

of the model. 

 

First, I will define some of the elements used in designing the prediction algorithm. The 

training sets consisted of subsets of the concatenated windows in the TSS cluster (Figure 2-2a) and 

p300 binding site cluster (Figure 2-2c). Class P1 was excluded due to its uninformative histone 

modification profiles, resulting in three training sets each for TSSs and p300 binding sites. Training sets 

were developed using only the data from untreated HeLa cells, leaving the IFNγ-treated cell data as an 

independent data set for validation of the method. The test set consisted of all 10 kb windows in the 

ENCODE regions tiled into 100 bp bins, where each window is a concatenation of the histone 

modification patterns in that 10 kb region (100 average log-ratio bins of 100 bp, as described above for 

clustering). The data generated in treated cells served as an additional independent test set. I generated 

prediction sets by scanning the test sets with the 6 training set patterns, scoring the average correlation 

of each test set window with the training sets (shape parameter) and the sum of the absolute value of all 

bins in the central 2 kb of each test set window (intensity parameter). The statistical distributions of the 

shape and intensity parameters were approximated by the normal distribution. A test set window was 

retained in a prediction set if: 1) it was in the top 1% of the shape distribution, 2) it was in the top 10% 
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of the intensity distribution, and 3) its average correlation with the training set was higher than all 

neighboring windows within 1 kb. 

 

Following this enumeration of potential regulatory elements by scanning genomic regions with 

chromatin signatures, predictions within each functional class (promoter and enhancer) were pooled, 

and if multiple predictions occurred within 1.5 kb, only the prediction with the highest average 

correlation was retained. To reduce false positives and ambiguous predictions, I implemented two filters 

to generate descriptive and discriminative sets of predictions. First, to be retained in the descriptive set, 

a prediction must have a correlation of at least 0.4 with the average profile of one of the training sets 

(this threshold was determined by examining the sensitivity and specificity of recovery for active 

Refseq promoters or known p300 binding sites over a range of correlation values). Additionally, to be 

retained in the descriptive set, the prediction must correlate more strongly to the average profile of one 

class of training set than any other training set as computed over H3K4me1 and H3K4me3, as these 

markers are the operative elements of the distinct chromatin signatures for promoters and enhancers. 

Based on the maximum correlation determined in this stage, the predictions are unambiguously 

classified as promoters or enhancers, generating high-confidence prediction lists for both classes of 

regulatory elements. 

 

Since the experimental data spanned six different histone modifications, it was not 

immediately clear which modifications were of greatest utility for computational prediction of different 

functional elements. To address this issue, I performed cross-validation to assess the predictive power 

of each combination of histone modifications. Each training set was divided into ten groups, each group 

having a different 10% of the full training set withheld. I then used the average profiles of a given 

combination of histone modifications within each training set group to scan the test set in both strand 

orientations, tallying how many withheld members of the training set were recovered in the prediction 

set, how many withheld members were missed, and how many total predictions were made (Figure 

2-4). This procedure was performed for each individual histone modification and all possible 
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combinations to determine which combination recovers the greatest percentage of withheld training set 

members with the fewest relative predictions. While combining several histone modifications generally 

improved performance, increasing the number of modifications did not necessarily increase the 

algorithm’s predictive power, as adding a histone modification with no information content can actually 

decrease performance by introducing noise. It should be noted that, owing to the degree of redundancy 

that exists among certain histone modifications, more than one combination may perform well, so the 

selection of an optimal combination is somewhat arbitrary. For example, using all 6 histone 

modifications, 96% of the training set promoters and 78% of the training set p300 sites are recovered, 

while using the optimal combinations for each training set recovers 95% active promoters and 85% of 

the p300 binding sites in the training sets. The combination of H3K4me1 and H3K4me3 alone offered a 

good balance of sensitivity and specificity, and were often present in the optimal combinations. As 

such, the combination of these two marks was used in subsequent analysis. 

 

Chromatin signatures are predictive of promoters 

 

Using the above approach, a total of 198 active promoters were predicted in the ENCODE 

regions in untreated HeLa cells, clustered as described previously into four classes (named PI-PIV to 

distinguish them from the known promoters presented in Figure 2-2) (Figure 2-3b). In HeLa cells 

treated with IFNg, I predicted 208 promoters, with greater than 90% overlap between the untreated and 

treated prediction sets (Figure 2-3c), supporting the accuracy of the method in identifying promoters in 

an independent data set. The untreated prediction set contains 140 (79%) of the 177 active RefSeq 

promoters within the ENCODE regions and 32 (21%) of 155 inactive RefSeq promoters, and 180 

predictions (91%) map to known Gencode gene 5’-ends (Figure 2-3d), indicating a high degree of 

sensitivity and accuracy of promoter prediction. Promoter predictions in treated cells are distributed 

very similarly (Figure 2-3e). Comparison with the recent RIKEN human CAGE data set [39] reveal that 

the vast majority of the predicted promoters are supported by multiple CAGE tags. Even predicted 
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promoters that do not map to a known Gencode 5’-end are largely supported by multiple CAGE tags 

(50% in untreated cells, 27% in treated cells) or DHSs (83% in untreated cells, 73% in treated cells). It 

is possible that the inactive promoters identified in this analysis correspond to transcripts expressed at 

levels below the detection threshold, or these promoters may be poised for activation. Six promoter 

predictions in untreated HeLa cells (nine predictions in treated cells) do not correspond to any known or 

putative 5’-ends, but all overlap with DHSs, suggesting that they may represent novel promoters. 

 

Chromatin signatures are predictive of enhancers 

 

From the above results, it is clear that chromatin signatures are predictive of active promoters 

in human cells. However, the true test of the utility of this predictive method is whether it can also 

predict enhancers. Using the same method, I predicted 389 enhancers in untreated HeLa cells (Figure 

2-5a; enhancer predictions are classified EI-EIV to distinguish them from the p300 binding sites 

presented in Figure 2-2). As an independent test, I also predicted 324 enhancers in treated cells, with an 

overlap of 89% between prediction sets. Although the prediction algorithm was trained on histone 

modification patterns from untreated cells, predictions in treated cells accurately identified 77% of the 

distal p300 binding sites in treated cells, suggesting that the method is not over-fitting the training data. 

 

Several lines of evidence support the function of these predictions as enhancers. First, over 

85% of the predictions are located more than 2.5 kb from known gene 5’-ends (Figure 2-5c), consistent 

with their predicted function. Second, they are evolutionarily conserved, with 53.3% (p < 1e-16) 

containing a strongly conserved sequence. Third, many predicted enhancers overlap with predicted 

transcriptional regulatory modules (PReMods) (36.3%, p = 1.7e-4). Fourth, a significant proportion of 

the enhancer predictions (55.3%, p < 1e-16) overlap with DHSs, including the well-known HS2 

enhancer in the b-globin locus26 (Figure 2-6). Of the 587 TSS-distal DHSs in HeLa cells, 175 (29.8%) 

are predicted enhancers; the other distal DHSs likely represent additional regulatory elements such as 
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repressors or insulators, or sequences that contribute to chromatin organization. Finally, 86 enhancer 

predictions in the untreated set (and 116 in the treated set) map to distal p300 binding sites (Figure 

2-5d-e) and many others appear to be enriched in p300 binding, but below the threshold of the stringent 

target selection (Figure 2-5a). 

 

Many predicted enhancers lack p300 binding. Since p300 is only one member of a class of 200 

transcriptional co-activators [40], one possibility is that some p300-independent enhancers are bound by 

another co-activator. To address this possibility, my lab performed additional ChIP-chip experiments to 

examine binding of TRAP220 (MED1), a component of the Mediator complex that has been shown to 

occupy enhancers as well as promoters [23,24]. Of 162 TRAP220 binding sites identified in the 

ENCODE regions, 78 (48.1%) are located far from known 5’-ends of transcripts and may represent 

potential enhancers. Almost 63% of these distal TRAP220 sites are recovered by the enhancer 

predictions (Figure 2-5d), and 18 of them are bound by TRAP220 but not p300, confirming the identity 

of these predicted enhancers. This result suggests that the chromatin-based prediction model is not 

limited only to enhancers marked by p300. Overall, the majority of predicted enhancers (63.5%) are 

supported by DNaseI hypersensitivity, binding of p300, binding of TRAP220, or a combination of these 

features (Figure 2-5f). 

 

Predicted enhancers show in vivo enhancer activity 

 

The computational and high-throughput validations described, while suggestive, do not 

provide conclusive evidence that the predicted enhancers truly function in vivo as enhancers. To 

confirm the potential of this chromatin-based approach to identify enhancers that regulate the activity of 

target human promoters, my lab examined a novel predicted enhancer located 6 kb upstream of the 

SLC22A5 (OCTN2) gene (Figure 2-7a). SLC22A5 is a widely expressed gene that codes for a carnitine 

transporter [41]. While substantial research has been devoted to the role of SLC22A5 in carnitine 
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transport, fatty acid metabolism and related human diseases, very little is known about the 

transcriptional regulation of this gene. To test if the predicted enhancer regulates SLC22A5, my lab 

cloned a region of the SLC22A5 locus (L) containing the promoter and predicted enhancer (E) into a 

luciferase reporter construct and compared its activity to that of the locus without the predicted 

enhancer (LDE) in transiently transfected untreated HeLa cells. The deletion of the predicted enhancer 

caused a 2.5-fold reduction in reporter activity (Figure 2-7b), supporting the necessity of this site for 

full activity of the SLC22A5 promoter. To test whether that the predicted enhancer is sufficient to 

enhance the SLC22A5 promoter activity, my lab then cloned the predicted enhancer downstream of the 

luciferase gene in a construct containing the proximal SLC22A5 promoter (PS). The construct from the 

promoter-enhancer construct (PSE) showed 4.2-fold greater reporter activity than the construct 

containing only the promoter (Figure 2-7b), confirming that the predicted enhancer is sufficient to 

increase the activity of this promoter in a position-independent manner. These results suggest that the 

putative SLC22A5 enhancer identified by a chromatin signature is indeed critical for optimal 

transcriptional activation of this gene. 

 

To further assess the accuracy of the enhancer and promoter predictions, I compared the 

predictions to a list of in vivo STAT1 binding sites independently mapped in the ENCODE regions, 

hypothesizing that STAT1 sites are likely to occupy both promoters and enhancers. My lab performed 

ChIP-chip for STAT1 in HeLa cells before and after IFNg treatment, and validated the results using 

quantitative real-time PCR. As expected, no STAT1 binding was detected in cells prior to treatment. 

However, there were 13 high-confidence STAT1 sites in IFNg-treated cells. Seven STAT1 sites map to 

promoter predictions, four of which map to known TSSs: IRF1 (a known STAT1 target), RPS9, 

c21orf59, and IFNAR2. All of these genes are expressed in HeLa cells, supporting the accuracy of the 

active promoter predictions. Four STAT1 sites map to enhancer predictions, while the remaining two 

are not recovered by any prediction. In all, the prediction model is capable of detecting the majority 

(>84%) of this independently generated collection of putative regulatory elements. 
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To validate the novel promoter and enhancer predictions at STAT1 sites, my lab performed 

reporter assays to examine their functional properties. In all, they examined 2 predicted novel promoters 

(one of which corresponded to two STAT1 binding sites) (Figure 2-8a), four STAT1 enhancer 

predictions (Figure 2-8b), and the two non-predicted STAT1 sites (Figure 2-8c). To test for promoter 

activity, regions containing the STAT1 sites were amplified from genomic DNA and cloned upstream 

of the luciferase gene in vectors lacking a promoter (Figure 2-8d); to test for enhancer activity, the same 

fragments were cloned downstream of the luciferase gene into vectors containing the SV40 minimal 

promoter (Figure 2-8e). Clones were transiently transfected into HeLa cells and assayed for reporter 

activity before and after treatment with IFNg. 

 

Both STAT1 promoter predictions stimulated reporter activity in the absence of the SV40 

promoter when cloned in the upstream position (Figure 2-8d), validating their function as promoters. 

Three STAT1 enhancer predictions (STAT1.08-.10) stimulated strong reporter activity when cloned in 

the downstream position (Figure 2-8e) but required the presence of the SV40 promoter, consistent with 

the positional-independence and promoter-dependence of enhancer activity. The fourth enhancer 

prediction (STAT1.11) exhibited only weak enhancer activity, though the STAT1 site in this region is 

further away from the prediction (710 bp) than any of the other STAT1 sites that examined (average 

~240 bp). The effect of IFNg is variable among the different sites in both ChIP-chip binding profiles 

and reporter activity, though there seems to be a relationship between inducibility of p300 binding and 

reporter activity. The non-predicted sites (STAT1.12, -.13) displayed no functional activity and were 

not marked by either of the distinctive histone modification patterns (Figure 2-8c), supporting the 

specificity of the model. It is still possible that these sites are actually regulatory elements that cannot 

be tested in this system due to their function or a requirement for native chromatin context, but it is 

worth noting that these are the only two STAT1 sites that did not exhibit DNaseI hypersensitivity. 

 

Since STAT1 only binds after treatment with IFNg, it is surprising that enhancer and promoter 

chromatin signatures exist at STAT1 binding sites prior to treatment. In fact, all four STAT1-bound 
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enhancers were predicted in both untreated and treated HeLa cells. This implies pre-formation of 

enhancer chromatin structure to facilitate subsequent transcription factor binding, and suggests that 

chromatin signatures can identify enhancers in a “poised” state prior to their activation. 

 

Discussion 

 

In summary, analyzing maps of five histone modifications, four general transcriptional factors, 

and nucleosome density at high resolution in 30 Mbp of the human genome, I identify chromatin 

features that distinguish promoters from enhancers. While both kinds of regulatory elements share some 

features such as nucleosome depletion and enrichment of histone acetylation and H3K4me2, the distinct 

patterns of H3K4me1 and H3K4me3 enrichment at active promoters and enhancers define chromatin 

signatures that can be used to locate novel regulatory elements in the human genome. The H3K4me1 

enhancer signature is present in HeLa cell chromatin at multiple loci whose enhancer activity was 

functionally validated, including a putative novel enhancer for the SLC22A5 gene. 

 

In recent years, the genome sequences of a growing number of organisms have been obtained, 

but extracting functional information from these nucleotide sequences remains a challenge, as our 

knowledge of transcription factor binding motifs is incomplete and current sequence-based 

computational tools are limited in their ability to predict the regulatory function of genomic sequences. 

Here, I present a strategy to identify transcriptional regulatory elements on the basis of their epigenetic 

characteristics, independent of motifs or other sequence features. These chromatin signatures can be 

used to effectively identify enhancers on a large scale. Notably, even though the prediction model was 

trained only on data from untreated HeLa cells, the sensitivity of the model in data from IFNg-treated 

cells supports the utility of this approach in analyzing independent data sets. The results of the 

functional assays confirm the ability of the prediction model to identify the location and function of 

novel promoters and enhancers. 
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In the future, genome-wide maps of chromatin state in conjunction with approaches such as 

this will allow rapid identification of enhancers, and possibly other regulatory elements, in large 

eukaryotic genomes such as human. Furthermore, such approaches will be able to identify function 

genomic elements on a cell-type specific basis, which cannot be determined by approaches relying on 

genome sequence alone, but which is essential to understanding how these elements function in vivo. 

Extension of this model to additional cell types and other components of chromatin architecture will be 

useful in determining the mechanisms of enhancer maintenance and function in regulating tissue-

specific gene expression, findings which will be particularly important to our knowledge of how 

epigenetic factors and distal transcriptional regulatory elements contribute to human development and 

disease. 

 

This approach will also be valuable to the functional annotation of the human genome, as it 

provides a novel and effective means to locate active transcriptional enhancers that have thus far eluded 

identification on a large scale. Given the degree of structural and functional conservation of chromatin 

and histone modifications from yeast to humans, these predictive chromatin signatures may be useful in 

annotating promoters and enhancers in the genomes of a variety of organisms. 
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Figure 2-1: A snapshot of ChIP-chip data at the highly expressed RFX5 gene. 

ChIP-chip profiles for six chromatin marks, along with RNAPII, TAF1, and p300 are shown as log-
ratio of ChIP over input.  
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Figure 2-2: Distinct chromatin signatures at promoters and enhancers. 

(a) Heat-map representing ChIP-chip enrichment of six chromatin modifications, along with RNAPII, 
TAF1, and p300 across 10 kb regions centered at 208 promoters in the ENCODE regions. The fraction 
of promoters belonging to actively expressed genes is shown on the right. (b) Average profile of ChIP-
chip enrichment for each mark at promoters. (c) Heatp-map of ChIP-chip enrichment centered at 74 
promoter-distal enhancers defined by p300 binding sites. (d) Average profile of ChIP-chip enrichment 
for each mark at enhancers. 
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Figure 2-3: Chromatin signatures predict active human promoters. 

(a) Schematic of the prediction method whereby training sets of chromatin signatures are used to scan 
contiguous genomic regions, in conjunction with a series of filtering steps, to predict possible promoters 
and enhancers. (b) Heat-map representing the ChIP-chip enrichment for 198 high-confidence active 
promoter predictions in HeLa cells. (c) Overlap between promoters predicted in untreated and IFNγ-
stimulated HeLa cells. (d-e) The genic distribution of predicted promoters in (d) untreated and (e) 
treated HeLa cells as compared to known genes, putative genes, and pseudogenes.
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Figure 2-4: Example cross-validation results for promoter prediction. 

To determine which set of histone modifications best describes each promoter and enhancer training set, 
all possible combinations of modifications (depicted as black squares in the middle panel) were used to 
scan the test set, and the recovery of training set elements was tallied for each combination. This 
example shows the process for training set class P3 (see Figure 2-2A). The top panel shows the number 
of training set predictions recovered by each combination (green) and those not recovered (yellow); the 
total number of elements varies slightly because outliers removed from each group change depending 
on each combination. The bottom panel shows the total number of predictions made for each 
combination. The optimal combination, in this case H3K4me1 and H3K4me3, is chosen because it uses 
the fewest modifications to recover the greatest relative number of training set members with the fewest 
relative predictions (red box and asterisks). Other combinations may also perform well but are not 
chosen because of the inclusion of a redundant or non-informative modification or slight loss of 
sensitivity; the final selection is somewhat arbitrary.
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Figure 2-5: Chromatin signatures predict active human enhancers. 

(a) Heat-map representing the ChIP-chip enrichment of 389 high-confidence enhancer predictions in 
untreated HeLa cells. (b) Overlap between enhancers predicted in untreated and IFNγ-stimulated HeLa 
cells. (c) The genic distribution of predicted enhancers in  untreated HeLa cells as compared to known 
genes, putative genes, and pseudogenes. (d) Overlap of predicted enhancers in untreated HeLa cells 
with binding of the co-activators p300 and TRAP220 (MED1). (e) Overlap of predicted enhancers in 
treated HeLa cells with binding of p300. (f) Overlap of predicted enhancers with enhancer hallmarks 
including DNase I hypersensitivity (DHS), p300 binding, and TRAP220 binding. 
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Figure 2-6: Recovery of the known β–globin HS2 enhancer. 

The well-known β-globin HS2 enhancer displays DNase I hypersensitivity (DHS) in HeLa cells, and is 
also marked by H3K4me1. This enhancer is also predicted using the chromatin-signature based method. 
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Figure 2-7: Functional validation of an enhancer to the SLC22A5 gene 

(a) Schematic of the SLC22A5 promoter and upstream region. An enhancer predicted by chromatin 
signatures (E) is 6 kb upstream of the TSS. Shown below are various reporter constructs to assess the 
activity of the enhancer. (b) On the left is relative luciferase activity for the construct containing the 
entire locus including E compared to the same construct lacking E. On the right is relative luciferase 
activity of the SV40 core promoter with and without E cloned downstream. 
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Figure 2-8: Validation of predicted novel promoters and enhancers. 

ChIP-chip enrichment of (a) two predicted novel promoters bound by STAT1, (b) four predicted novel 
enhancers bound by STAT1, and (c) two unrecovered STAT1 binding sites. (d) On the left is the 
reporter construct to test promoter activity, whereby each locus is cloned directly upstream of the 
luciferase gene. On the right is relative luciferase activity for each locus. (e) On the left is the reporter 
construct to test enhancer activity, whereby each locus is cloned downstream of the luciferase gene. On 
the right is the relative luciferase activity for each locus. 
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Chapter 3 : Histone modifications at human enhancers 

reflect global cell-type-specific gene expression 
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Abstract 

The human body is composed of diverse cell types with distinct functions. While it is known 

that lineage specification depends on cell specific gene expression, which in turn is driven by 

promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene [1,2,3], the 

relative roles of these regulatory elements in this process is not clear. My lab and I have previously 

developed a chromatin immunoprecipitation-based microarray method (ChIP-chip) to identify 

promoters, enhancers and insulator elements in the human genome [4,5,6]. Here, I use the same 

approach to identify promoters, enhancers and insulator elements in multiple cell types and investigate 

their roles in cell type-specific gene expression. I observed that chromatin state at promoters and CTCF-

binding at insulators are largely invariant across diverse cell types. By contrast, enhancers are marked 

with highly cell type-specific histone modification patterns, strongly correlate to cell type-specific gene 

expression programs on a global scale, and are functionally active in a cell type-specific manner. These 

results defined over 55,000 potential transcriptional enhancers in the human genome, significantly 

expanding the current catalog of human enhancers, and highlight the role of these elements in cell type-

specific gene expression. 

 

Introduction 

 

The human body consists of more than 200 different cell types.  While the genomes of all cells 

are virtually identical, each cell performs distinct functions due to the unique set of genes it expresses, 

which ultimately is specified by how each cell precisely regulates its transcriptional output. 

Transcriptional regulation of eukaryotic gene expression is a complex process that requires precise 

spatial and temporal coordination of a host of regulatory inputs, including DNA sequence elements, 

transcription factor and coactivator binding, and chromatin structural features, all of which cooperate to 

activate transcription from promoter sequences located at the 5’-end of each gene [1,2,3,7]. 
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Complicating our understanding of this process, however, is our incomplete knowledge of the distal cis-

regulatory elements responsible for appropriate modification and maintenance of gene expression 

patterns, including enhancers that recruit a complex array of transcription factors and chromatin-

modifying enzymes to activate gene transcription, and insulators that regulate enhancer-promoter 

interactions [2]. The relative roles and contributions of each class of regulatory element in cell type-

specific gene expression remain to be resolved. 

 

As regulatory elements are fairly static at the DNA sequence level, their activity is critically 

dependent on the dynamic chromatin state at the epigenetic level. Recently, chromatin 

immunoprecipitation-based approaches have revealed that specific histone acetylation and methylation 

events are localized to functional sequences in the genome, though most studies have focused on 

promoters [1,8]. For example, trimethylation of histone H3 lysine 4 (H3K4me3) and acetylation of 

histones H3 and H4 are generally associated with active promoters, while H3K9me3 and H3K27me3 

are found at silenced promoters [5,9,10,11,12]. It is generally understood that chromatin modifications 

play an important role in dynamic transcriptional regulation at promoters, but many questions remain as 

to how chromatin state affects the activity of other cis-regulatory elements like enhancers. 

 

My lab and I have previously reported that transcriptional enhancers throughout 1% of the 

human genome (the ENCODE regions [13]) are distinctly marked by monomethylation of histone H3 

lysine 4 (H3K4me1), enabling prediction of novel enhancers on a large scale in the human genome 

based on this chromatin signature [4]. Here, I examine promoters, enhancers, and insulators in five 

diverse human cell types, discovering that the localization patterns of the insulator-binding protein 

CTCF and the chromatin signatures at promoters remain largely invariant across cell types, while the 

chromatin modifications at enhancers are cell type-specific. I extended an enhancer prediction strategy 

to the entire human genome in two cell types, generating the first genome-wide maps of transcriptional 

enhancers based on chromatin signatures. These maps reveal global properties of enhancers and support 

the involvement of many enhancers in cell type-specific gene expression. 
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Results 

Expanded maps of histone modifications 

 

Previously, I demonstrated enhancers could be determined by distinct chromatin signatures of 

H3K4me1 and H3K4me3 at these functional elements [4]. Focusing on HeLa cells, my lab performed 

ChIP-chip in the ENCODE regions for various acetylated forms of histone H3. I found that three 

additional histone modification marks, namely H3K9Ac, H3K18Ac and H3K27Ac are also part of the 

chromatin patterns at promoters and enhancers. All three acetylation marks localize to active 

transcription start sites (TSSs), and remain absent, as do other chromatin modifications, at inactive 

promoters (Figure 3-1a). These results agree with individual promoter studies observing acetylation or 

hyper-acetylation at active promoters [14,15], as well as with large-scale histone modification studies in 

yeast [16,17]. TSS-distal p300 binding sites show clear enrichment of H3K18Ac and H3K27Ac, while 

H3K9Ac is much reduced (Figure 3-1b).  These results suggest that H3K9Ac is preferentially 

associated with active promoters, while H3K18Ac and H3K27Ac are associated with both promoters 

and enhancers. 

 

Enhancers are marked by cell type-specific chromatin modification profiles across diverse cell 

types 

 

My lab performed ChIP-chip analysis as previously described [4] to determine binding of 

CTCF (insulator-binding protein), the coactivator p300, and patterns of specific histone modifications 

in 5 diverse human cell lines: cervical carcinoma HeLa, immortalized lymphoblast GM06690 (GM), 

leukemia K562, embryonic stem cells (ES), and BMP4-induced ES cells (dES), focusing on 1% of the 

human genome selected by the ENCODE Consortium as common targets for genomic analysis [13]. 
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Modulation of chromatin state is a key component of tissue-specific gene expression programs 

[16,18]. Given the diversity of these five cell lines and the critical role of promoters in regulating gene 

expression, I hypothesized that the chromatin modifications at promoters would uniquely define each 

cell type, but I actually observed the opposite. At promoters of 414 genes in the ENCODE regions, I 

found that the chromatin signatures at promoters are remarkably similar across all cell types (Figure 

3-2a). To quantify this, I defined a cell type’s enrichment profile as the sum of the log ratio enrichment 

values of H3K4Me1, H3K4Me3, and H3K27Ac for each promoter. I then calculated the Pearson 

correlation coefficient between enrichment profiles from different cell types. The enrichment profiles 

are highly correlated between all pairs of cell types, with an average correlation coefficient of 0.71. This 

observation also holds at the larger set of Gencode promoters (not shown). Additionally, it has been 

well-documented that CpG promoters are associated with house-keeping genes, which are ubiquitously 

expressed and therefore more likely to retain a constant chromatin state. Analyzing each of these 

different types of promoters, I observe that the correlation of histone modifications at CpG promoters is 

0.62 while that at non-CpG promoters is still 0.48, both of which are significantly more correlated than 

expected at random. The generally invariant nature of the chromatin marks at promoters suggests that 

epigenetic features at this class of regulatory element are not the dominant drivers of cell type-specific 

gene expression patterns. 

 

Insulator elements play key roles in restricting enhancers from activating inappropriate 

promoters, thereby defining the boundaries of gene regulatory domains [19]. Nearly all insulators that 

have been experimentally defined in the mammalian genome require the insulator binding protein 

CTCF to function [20]. A previous genome-wide location analysis of the insulator binding protein 

CTCF in human fibroblasts indicated that predicted insulators (those sites in the genome bound by 

CTCF) are closely correlated with the distribution of genes, and are highly conserved throughout 

evolution, consistent with their key role in transcription regulation [6]. Intriguingly, the overlap of 

predicted insulators in two cell lines in that study (IMR90 lung fibroblast and U937 hematopoietic 
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progenitor cells) was a remarkable 67%, suggesting cell-type invariance. To further investigate this 

possibility, I investigated CTCF binding sites in the ENCODE regions in each of the five cell types. On 

average, 517 predicted insulators were recovered in each cell type, with a remarkable average of 82.8% 

shared between pairs of cell types. Indeed, the CTCF enrichment profiles at 729 non-redundant CTCF 

binding sites are nearly identical across all five cell types studied here and IMR90 cells (Figure 3-3a), 

and the average Pearson correlation coefficient between all pairs of profiles is 0.72, comparable to the 

value observed at promoters. The consistency of CTCF binding appears to extend to the entire genome 

(Figure 3-4). These results support insulators as being largely cell-type invariant, to a greater degree 

than previously appreciated. Additionally, none of the histone modifications that I examined were 

consistently present at predicted insulators. 

 

I then investigated transcriptional enhancers in the ENCODE regions, using two methods. 

First, my lab performed ChIP-chip in HeLa, K562, and GM cells to identify 411 binding sites for the 

transcriptional coactivator protein p300, a co-activator known to localize at some enhancers [14,21]. I 

observed that chromatin modification patterns at distal p300 binding patterns are highly cell type-

specific (Figure 3-3b), with an average pair wise Pearson correlation coefficient of -0.07, in sharp 

contrast to the similarities across cell types at promoters. Consistent with previous findings, these 

putative enhancers are highly enriched in H3K4me1 but not H3K4me3, and most are also marked by 

H3K27ac (Figure 3-3b). As p300 marks only a subset of enhancers, I then used a chromatin signature-

based prediction algorithm to identify additional enhancers in all five cell types as previously described 

[4], predicting a total of 1423 enhancers in the ENCODE regions (Figure 3-2b). In addition to the 

characteristic H3K4me1 enrichment, predicted enhancers are frequently marked by acetylation of 

H3K27, DNaseI hypersensitivity and/or binding of transcription factors and coactivators, and many 

contain evolutionarily conserved sequences (Figure 3-5). Unlike promoters and predicted insulators, but 

similar to p300 binding sites, the chromatin modification patterns at predicted enhancers are largely cell 

type-specific (Figure 3-2b), with an average Pearson correlation coefficient between all pairs of cell 
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types of just 0.14 . These results agree with previous findings that H3K4me1 is distributed in a cell 

type-specific manner relative to other histone modifications [18]. 

 

Genome-wide prediction of enhancers based on chromatin signatures 

 

The results above indicate that enhancers are the most variable class of transcriptional 

regulatory element between these five cell types, suggesting that enhancers are of primary importance 

in driving cell type-specific patterns of gene expression. To identify enhancers on a global scale, my lab 

performed ChIP-chip throughout the entire human genome as previously described [5,6] to map 

enrichment patterns of H3K4me1 and H3K4me3 in HeLa cells. I predicted 38716 enhancers on the 

basis of chromatin signatures in the HeLa genome, of which 36589 (94.5%) were verified by replicate 

experiments on a condensed enhancer microarray (Figure 3-6). Based solely on their chromatin 

signatures, these predictions correctly recovered several previously characterized enhancers, including 

the b-globin HS2 enhancer [22], a distal downstream enhancer for the PAX6 gene [23], and a distal 

upstream enhancer for the PLAT (t-PA) gene [24] (Figure 3-7a). 

 

The features of enhancers in the HeLa genome are consistent with what I observed previously 

in the ENCODE regions [4]. Most predicted enhancers (23686, 64.7%, p = 6.6e-208) exhibit strong 

evolutionary conservation with a PhastCons score > 0.8 [25]. The genomic distribution of the predicted 

enhancers are distinct from those of promoters: except for a small fraction that overlap with Known 

Gene 5’-ends, CAGE tags, or CpG islands, the predicted enhancers are distal to promoters, with 

predominantly intronic (37.9%) or intergenic (56.3%) localization (Figure 3-7b). Most predicted 

enhancers (61.4%) are marked by moderate or high levels of acetylation of H3K27 (Figure 3-6). The 

co-activator p300 and Mediator component MED1, known to bind enhancers, are found at 10741 

(29.4%) and 5764 (15.8%) enhancer predictions, respectively (see Methods). Additionally, 19776 

(54.1%) of the predicted enhancers exhibit significant DNaseI hypersensitivity. Collectively, I found 
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that 23722 (64.8%) predicted enhancers are supported by some combination of DHS and/or binding of 

p300 and/or MED1 (Figure 3-7c). Further, the predicted enhancers seem to be distinct from other distal 

regulatory elements. Only 2666 (8.0%) enhancers are found near a collection of  23267 TSS-distal 

CTCF sites called in HeLa, IMR90, and CD4 T cells [6,12,26] (1.53-fold enrichment, p = 7.81e-120). 

Comparison to a genome-wide binding profile of the repressor NRSF/REST27 (which binds mainly 

transcriptional silencer elements) revealed that only 39 (0.11%) predicted enhancers overlap with distal 

NRSF/REST binding sites, significantly lower than that expected at random (3.23-fold depletion, p 

=3.21e-12). These findings indicate that the map of predicted enhancers is strongly enriched for true 

enhancer elements. 

 

To show that predicted enhancers truly function as enhancers in vivo, my lab then verified the 

functional potential of numerous predicted enhancers in HeLa cells using luciferase reporter assays as 

previously described [4]. Of nine predicted enhancers that evaluated, seven (78%) were active in 

reporter assays while none of the random fragments tested were active (Figure 3-7e). The median 

activity of the enhancers was significantly different from random (p = 3.25e-4). These results offer 

experimental evidence for the potential function of the predicted enhancers and support the suitability 

of using chromatin signatures to identify genomic regions with enhancer function. 

 

Histone modification-based prediction of promoters on a genome-scale 

 

Using the genome-wide ChIP-chip enrichment profiles of H3K4me1 and H3K4me3, I used the 

histone modification-based prediction method to make 13116 promoter predictions (Figure 3-8a). I 

found that 9835 (75%) predicted promoters overlap with 5’-ends of UCSC Known Genes [27] (Figure 

3-8b). I also compared the promoter predictions to the RIKEN human CAGE data set [28] and observed 

that 11001 (83.9%) overlap with multiple CAGE tags. Further, the prediction model correctly located 

76% of active RefSeq transcription start sites [29] (Figure 3-8c) and even 31.5% of inactive TSS, 
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consistent with recent studies demonstrating the presence of similar chromatin landmarks at most 

promoters in the human genome [11]. I also examined the overlap of predicted promoters with CpG 

islands (as annotated at the UCSC Genome Browser [30]), sequence elements conventionally 

understood to be associated with many promoters. The vast majority of promoter predictions (11186, 

85.1%) overlap CpG islands, representing almost half (43.3%) of the genome’s CpG islands (Figure 

3-8d). These findings agree with a previous genome-wide promoter analysis [5] and are comparable to 

the specificity and sensitivity of the same prediction model in the ENCODE regions [4]. 

 

Predicted enhancer activity is confined within CTCF-defined domains 

 

Most of the predicted enhancers (92%) are located greater than 10 kb from the nearest 

transcription start site (TSS), posing a challenge in assigned enhancers to their appropriate target genes. 

I partly resolved the enhancer/target gene relationship by using genome-wide location data for the 

insulator binding protein CTCF [6,12,26]. To determine if CTCF binding sites can be used to define the 

boundaries of regulatory domains within which enhancers and gene promoters may interact, I examined 

the effects of the loss of CTCF on global gene expression. A recent study showed that siRNA-mediated 

CTCF depletion in HeLa cells resulted in upregulation and downregulation of expression of numerous 

genes [26]. I hypothesized that upregulation of some genes was caused by increased interactions of their 

promoters with nearby enhancers that had been blocked by CTCF prior to its depletion (Figure 3-9, 

upper panel), in line with the current understanding of CTCF function. If so, the expectation is finding 

more predicted enhancers in the vicinity of upregulated genes and fewer enhancers near genes with 

unchanged or downregulated expression. To test this hypothesis, first I identified insulator-delineated 

domains in the genome, defining the set of insulators as the union of published CTCF binding sites 

from IMR90, HeLa, and CD4+ T cells [6,12,26], since I observed consistent CTCF enrichment at 

nearly all putative insulators across cell types in the ENCODE regions (Figure 3-3a) and genome-wide 

(Figure 3-4). Then I counted predicted enhancers within insulator-delineated domains adjacent to 
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subsets of genes that were upregulated, downregulated, or unchanged by depletion of CTCF in HeLa 

cells. Indeed, I observed on average a 2.2-fold enrichment of enhancers within domains adjacent to 

upregulated genes compared to downregulated genes (Figure 3-9, bottom panel), and a 1.4-fold 

depletion of enhancers in domains adjacent to downregulated genes relative to genes whose expression 

is unchanged by CTCF depletion. These results support the putative function of the predicted enhancers 

and the phenomenon of CTCF-dependent blocking of enhancers by insulators on a global scale. 

 

Identification of conserved and novel sequence motifs in predicted enhancers 

 

Collaborators from Manolis Kellis’ laboratory evaluated the predicted enhancers for conserved 

motif-like sequence patterns using several hundred shuffled TRANSFAC motifs across 10 mammals in 

a phylogenetic framework that tolerates motif movement, partial motif loss, and sequencing or 

alignment discrepancies (see Methods). Predicted enhancers showed conservation for 4.3% of instances 

(at Branch-Length-Score > 50%, see Methods), substantially greater than for the remaining intergenic 

regions (2.9%, p < 1e-100) and even promoter regions (3.9%, p = 1e-57). Additionally, testing a list of 

123 unique TRANSFAC motifs as reported previously20 (see Supplemental Materials), they found that 

67 (54%) are over-conserved and 39 (32%) are enriched in predicted enhancers. They also performed de 

novo motif discovery in enhancer regions using multiple alignments of 10 mammalian genomes [31,32], 

revealing 41 enhancer motifs, of which 19 match known transcription factor motifs while 22 are novel 

(Table 3-1). These motifs show conservation rates between 7% and 22% in enhancers (median 9.3%), 

compared to only 1.1% for control shuffled motifs of identical composition. Furthermore, over 90% of 

these motifs appear to be unique to enhancers, as only 4 motifs are enriched in promoter regions and 12 

are in fact depleted in promoters (Table 3-1). These findings indicate that predicted enhancers contain 

unique regulatory sequences that may be specific to enhancer function. 
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Chromatin modifications at predicted enhancers are globally correlated with cell type-specific 

gene expression 

 

I found that predicted enhancers in HeLa cells are much more highly clustered in the genome 

than expected at random (Wilcoxon p < 1e-300) (Figure 3-7d), consistent with observations in 

Drosophila [33] and similar analysis from multiple cell types in the ENCODE regions (Wilcoxon p = 

1.1e-27). To investigate the association of predicted enhancers with HeLa-specific gene expression, I 

used Shannon entropy [34] to rank genes by the specificity of their expression levels in HeLa as 

compared to three other cell lines (K562, GM06990, IMR90) (Figure 3-10), then plotted the distribution 

of enhancers around genes within insulator-delineated domains (Figure 3-11a). I observed a striking 

enrichment of predicted enhancers in the domains of HeLa-specific expressed genes relative to non-

specific expressed genes and HeLa-specific repressed genes (Figure 3-11a), supporting the role of these 

predicted enhancers in regulating HeLa-specific gene expression. Noting that most predicted enhancer 

enrichment occurred within 200 kb of promoters, I counted predicted enhancers within this window 

(within the same insulator-defined domain) around each promoter and compared counts around the 

different classes of expressed genes. I observed a 1.83-fold enrichment (p = 4.71e-279) of predicted 

enhancers around HeLa-specific expressed genes relative to random, while predicted enhancers are 

actually depleted around non-specific (p = 5.43e-15) and repressed (p = 4.63e-2) genes.  

 

If chromatin modifications at predicted enhancers in HeLa are playing an important role in 

regulation of HeLa-specific gene expression, then the patterns in another distinct cell type should be 

markedly different. To test this hypothesis, my lab performed genome-wide ChIP-chip for H3K4me1 

and H3K4me3 in K562 cells. Using the chromatin-signature based method, I predicted 24566 putative 

enhancers in this cell type. Indeed, the vast majority of enhancers predicted in K562 and HeLa cells are 

unique to either cell type (Figure 3-11b) even though most expressed genes are common between the 

cell types (Figure 3-11c). Quantitative comparison of chromatin modifications at 55454 marked 

enhancers in HeLa and K562 cells shows a Pearson correlation coefficient of -0.32, and the cell type-
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specificity of the chromatin modification profiles throughout the genome is visually striking (Figure 

3-11d). Furthermore, these differences seem to have regulatory implications, as domains with HeLa-

specific expressed genes are enriched in HeLa enhancers but depleted in K562 enhancers, and vice-

versa (Figure 3-11e), strongly supporting the relationship between cell type-specific gene expression 

patterns and chromatin modifications at predicted enhancers. For example, the MET proto-oncogene 

has been implicated in a variety of carcinomas (including cervical) [35,36] and is 84-fold more highly 

expressed in HeLa cells than in K562. Ten enhancers are marked with the enhancer chromatin signature 

near MET in HeLa cells versus just one enhancer in this region in K562. Conversely, the adjacent 

CAPZA2 gene is 7-fold more highly expressed in K562 cells, and three enhancers are marked near this 

gene in K562 versus just one enhancer in HeLa. 

 

To assess the cell type-specificity of functional activity of predicted enhancers, my lab cloned 

several regions predicted to be enhancers specifically in K562 cells (and not in HeLa cells) and 

subjected them to reporter assays in HeLa cells as described above and previously [4]. Of nine K562-

specific enhancers, only two (22%) were active in HeLa cells as compared to 78% of the HeLa-specific 

enhancers (Figure 3-7e, Figure 3-12), and the median activity of the K-562 specific enhancers was not 

significantly different from random (p = 0.11). These findings suggest that the enhancer chromatin 

signature is a reliable marker of cell type-specific enhancer function. 

 

To expand my investigation across additional cell lines, I also focused on differentially 

expressed genes between pairs of cell lines in the ENCODE regions. I counted the number of enhancers 

near the differentially expressed genes in the neighboring domains defined by CTCF sites. I found that 

enhancers are enriched near differentially expressed genes as compared to the same genes that are 

differentially repressed in another cell type, and this enrichment is largely confined within CTCF 

binding sites that directly flank the gene’s TSS (Figure 3-13b). On average within this block, there are 

0.82 enhancers per differentially down-regulated gene, while there are 1.83 enhancers per differentially 

up-regulated gene (Figure 3-13c). This 2.2-fold difference suggests that cell-type specific expression is 
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influenced by enhancers and that the action of enhancers is distance-dependent and favoring proximal 

promoters. When I focused only on the enhancer closest to the differentially expressed gene rather than 

all enhancers within a CTCF block, I find a smaller difference between the distributions of enhancers in 

up- and down-regulated genes (Figure 3-13d). The smaller 1.76-fold difference observed here further 

emphasizes that multiple enhancers, and not just the single closest enhancer, are likely required to 

regulate differential gene expression of a single promoter. 

 

Subsets of predicted enhancers are bound by transcription factors in other cell types 

 

The overlap of a small but significant fraction of enhancer predictions shared by HeLa and 

K562 (Figure 3-11b) suggests that some enhancers may be active in multiple cell types or conditions. I 

compared the HeLa enhancer predictions with the results of several genome-wide studies of binding 

sites for sequence-specific transcription factors in different cell types, namely estrogen receptor (ER) 

[37], p53 [38], and p63 [39] in MCF7, HCT116, and ME180 cells, respectively. Interestingly, 

significant percentages of binding sites for each transcription factor (from 21.4% to 32.6%) overlap 

with predicted enhancers in HeLa cells (Figure 3-14a). This is in sharp contrast to a significant 

depletion of the repressor NRSF/REST [40] at the predicted enhancers and a minimal overlap with 

CTCF-binding sites. 

 

The enhancer chromatin signature correlates with rapid gene induction in response to interferon 

gamma 

 

To examine the potential role of enhancers in regulating inducible gene expression, my lab 

treated HeLa cells with the cytokine interferon-gamma (IFNγ) and identified binding sites for the 

transcription factor STAT1 throughout the genome using ChIP-chip. As a signal-dependent, latent 
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cytoplasmic transcription factor, STAT1 is generally understood to bind its target DNA sequences only 

after IFNγ induction [41] although recent work has suggested that some STAT1 binding may occur 

prior to induction [42]. In IFNγ-treated HeLa cells, I identified 1969 STAT1 binding sites, with 85.8% 

of STAT1 binding sites occurring distal to UCSC Known Gene 5’-ends [27]. Comparison of these distal 

STAT1 binding sites with recent ChIP-seq analysis of STAT1 binding in uninduced HeLa cells [42] 

indicate that only 6.5% of induced STAT1 binding sites may be occupied by STAT1 prior to induction. 

Thus, most STAT1 binding sites identified here are very unlikely to be bound by STAT1 prior to 

induction. 

 

I observed that 429 distal STAT1 binding sites overlapped enhancers that were predicted in 

HeLa cells prior to induction (Figure 3-14a). The H3K4me1 enhancer chromatin signature is clearly 

present at these STAT1 binding sites, which I designated as STAT1 group I, while no evidence of this 

signature is visible at the remaining 1260 distal STAT1 binding sites, designated STAT1 group II 

(Figure 3-14b). Intriguingly, I observed significant relative induction of expression of genes in the 

domains of STAT1 group I binding sites after just 30 minutes of IFNγ-induction, while induction levels 

remained relatively unchanged for genes in the domains of other distal STAT1 group II binding sites 

during this time (Figure 3-14c). These findings suggest that an enhancer chromatin signature confers 

increased regulatory responsiveness to a STAT1 binding site, in agreement with my previous discovery 

of functional enhancers in HeLa cells that were marked by the enhancer chromatin signature but were 

not active until they were bound by STAT1 [4]. 

 

Discussion 

 

Recent experiments have confirmed the H3K4me1 signature at distal enhancers on a large 

scale and supported the role of cell type-specific chromatin states in directing the recruitment of 

transcription factors [18,43,44,45,46], underscoring the importance of genome-wide enhancer 
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identification in deciphering the mechanisms of global gene regulatory networks. Toward that end, I 

generated the first genome-wide maps of chromatin signatures at enhancers in two human cell types, 

HeLa and K562, revealing that enhancers are epigenetically distinct between these cell types, and 

discovering a global correlation between cell type-specific chromatin modification profiles at enhancers 

and cell type-specific gene expression programs. 

 

The cell type-specificity of enhancer activity in reporter assays is intriguing. While the 

majority (78%) of HeLa-specific enhancers that my lab evaluated for function were active in reporter 

assays, enhancers identified on the basis of their chromatin signatures in K562 cells showed minimal or 

no activity in HeLa cells. Additional experiments may reveal the epigenetic and DNA sequence-based 

mechanisms for this specificity, in particular the role of H3K4me1 in enhancer function and 

maintenance in regulating target gene expression. Also intriguing was the presence of the enhancer 

chromatin signature at hundreds of distal STAT1 binding sites prior to induction with IFNγ, and the 

observation that genes near these enhancer-marked STAT1 binding sites were rapidly and significantly 

upregulated upon IFNγ-treatment while genes near other distal STAT1 binding sites were not. The basis 

of this apparent increased regulatory response conferred by the enhancer signature remains to be fully 

investigated. 

 

Many novel DNA sequence motifs appear to be enhancer-specific, though further experiments 

are needed to establish the function of these novel motifs. As several of the identified motifs correspond 

to factors that have been demonstrated to bind the predicted enhancers in various cell types, the motif 

data offer a very useful resource for additional experiments investigating patterns of activator-mediated 

gene expression in diverse cellular contexts. The predicted enhancer maps will also be of great utility in 

annotating the function of potential regulatory elements identified in other experiments, as 

demonstrated by the significant overlap of enhancer predictions with experimentally determined TFBS 

in diverse cell types. 

 



61 

 

These findings offer the first genome-wide evaluation of the relationship between chromatin 

modifications at transcriptional enhancers and global programs of cell type-specific gene expression. 

Subsequent experiments in diverse cell types and additional physiological contexts will provide further 

insight into the relationships between specific enhancers and their target genes, leading to increased 

understanding of transcriptional regulatory mechanisms and revealing novel therapeutic and diagnostic 

targets in human disease. 

 

Methods 

Microarrays 

 

ChIP-chip spanning the ENCODE regions was performed as described previously [4]. 

Genome-wide, ChIP samples were hybridized to the NimbleGen genome-wide tiling microarray set 

(NimbleGen Systems, Inc.) as previously described [5,6] and to custom condensed enhancer 

microarrays (NimbleGen Systems, Inc.) using standard methods. The condensed enhancer microarrays 

consisted of tiled 10 kb windows around each of 38716 primary predicted enhancers and standard 

controls. DNase-chip was performed and the data analyzed as previously described [47]. Gene 

expression data for HeLa, K562, and GM cells were obtained using HU133 Plus 2.0 microarrays 

(Affymetrix), as described previously [5]. 

 

ChIP-chip data analysis  

 

For ENCODE arrays, ChIP-chip data were normalized and analyzed as before [4]. On genome-

wide arrays, several platforms were used. For ChIP-chip of histone modifications H3K4Me1 and 

H3K4Me3 in HeLa cells on Nimblegen genome-wide tiling arrays (38 array set, hg17), I normalized the 

raw data from each array using both the median and loess algorithms from the Bioconductor R package 
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(treating each probe equally). For each array, I chose the normalization method that gave the most 

balanced distribution of random probes about a log ratio of 0. For ChIP-chip of histone modifications 

H3K4Me1, H3K4Me3, and H3K27Ac in K562 cells on Nimblegen HD2 Economy genome-wide tiling 

arrays (12 array set, hg18), I normalized the raw data from each array using MA2C [48], and mapped 

the normalized data to hg17 coordinates using the UCSC Genome Browser liftOver tool. 

 

On all arrays, ChIP-chip targets for CTCF, p300, MED1, and STAT1 were selected with the 

Mpeak program [5]. 

 

Expression array analysis 

 

I used the GCRMA package [49] to normalize Affymetrix mRNA expression arrays for HeLa, 

GM, and K562 cell types. For every pair of these cell types, I also use GCRMA to find differentially 

expressed and repressed genes using a p-value cutoff of 0.01 in conjunction with a fold change cutoff of 

2.0. 

 

The expression data for ES and dES cell types was done using the two-channel Nimblegen 

platform. Gene expression raw data were extracted using NimbleScan software v2.1.  Considering that 

the signal distribution of the RNA sample is distinct from that of the genomic DNA (gDNA) sample, 

the signal intensities from RNA channels in all eight arrays were normalized with the Robust Multiple-

chip Analysis (RMA) algorithm [49].  Separately, the same normalization procedure was performed on 

those from the gDNA samples.  For a given gene, the median-adjusted ratio between its normalized 

intensity from the RNA channel and that from the gDNA channel was then calculated as follows: Ratio 

= intensity from RNA channel/(intensity from gDNA channel + median intensity of all genes from the 

gDNA channel). Collaborators from James Thomson’s laboratory have found that this median-adjusted 

ratio gives the most consistent results when compared to other published human ES cell expression 
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data, such as SAGE library information available from the Cancer Genome Anatomy Project (CGAP).  

Consequently, this median-adjusted ratio as the measurement for the gene expression level is used. Due 

to differences in platform, it is only possible to use this expression data to compare ES and dES cell 

types. As a conservative measure of differential expression, I use a fold-change cutoff of 2. 

 

Enhancer prediction method 

 

The procedure used to predict enhancers follows closely to the method outlined in Chapter 2. I 

first bin the tiling ChIP-chip data into 100 bp bins, averaging multiple probes that fall into the same bin. 

Using a sliding window on H3K4Me1 and H3K4Me3, I scan for chromatin signatures resembling a 

training set of enhancer patterns defined previously by the p300 binding sites in HeLa cells, keeping 

only those windows that correlate most with the training sets and that have significant enrichment of 

chromatin modifications. I then use a discriminative filter to keep only those predictions that correlate 

with an averaged enhancer training set more than the promoter training set. Finally, I apply a 

descriptive filter, keeping only those remaining predictions having a correlation of at least 0.5 with an 

averaged training set. 

 

In both ENCODE and genome-wide predictions of this study, I made predictions of active 

promoters and enhancers as previously, with the following modifications:  

• Repetitive regions of the genome are not covered by the probes on tiling arrays, contributing to 

gaps in coverage. Previously, I interpolated through all gaps. But this can lead to false positive 

predictions or biasing of the underlying background distributions when there are many gaps. 

To remove these concerns, here I interpolate only through gaps smaller than 1000 bp. 

• In the prediction algorithm, I slide a 10 kb window across the tiled regions and compute 2 

statistics for each window: the correlation with a training set and the sum of the absolute 

values of intensities of the middle 2 kb region of the window. The correlation part has 
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remained unchanged in this study. Previously, the intensity statistic appeared normally 

distributed, and as such I approximated it with a Gaussian distribution. In light of the larger 

datasets in this study, this normal assumption did not appear entirely correct. Here, I changed 

the intensity statistic to the sum of squares of the normalized intensities in the 2 kb region. A 

normalized intensity is an intensity subtracted from the mean array intensity and divided by the 

standard deviation of the array intensity. Since each array is properly normalized to follow a 

Gaussian distribution, by definition, this statistic follows a Chi-squared distribution with 42 

degrees of freedom (for each window, each of the 2 modifications has 21 normalized 

intensities squared: 10 in each direction and one at 0). 

 

The training set used here contained the same six groups of training sets used in Chapter 2, 

with the exception that the HeLa enhancer predictions used data derived from the genome-wide 

H3K4Me1 and H3K4Me3 arrays. 

 

In the ENCODE regions, as in Heintzman et al, I keep predictions in the top 10% of the 

intensity distribution and top 1% of the correlation distribution. For the genome-wide enhancer 

predictions in HeLa, a ROC analysis (data not shown) indicates that a correlation cutoff of 1% and an 

intensity cutoff of 1% yields the best overlap with previously published predictions in the ENCODE 

regions. Similarly, for the genome-wide predictions for the MA2C-normalized K562 data, ROC 

analysis suggests using a correlation cutoff of 10% and an intensity cutoff of 1e-12. 

 

CTCF knockdown analysis 

 

I created three sets of genes: the 1000 most up-regulated upon siCTCF treatment, the 1000 

most down-regulated, and the median 1000 unchanged genes. Then I counted predicted enhancers 

within five insulator-delineated domains (between CTCF binding sites) adjacent to subsets of genes that 
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were upregulated, downregulated, or unchanged by depletion of CTCF in HeLa cells. To generate a 

random distribution, I also repeated this analysis for 100 sets of 1000 random genes. To obtain enhancer 

enrichment, I divided the observed counts with the averaged random counts. Finally, to assess 

significance, I assumed the random counts followed a normal distribution. 

 

Overlap analysis 

 

To assess the overlap of predicted enhancers with genome-wide transcription factor binding 

site (TFBS) data sets, I counted the number of experimentally determined TFBS within 2.5 kb of the 

enhancers. To determine the significance of this overlap, I compared this statistic to the distribution of 

statistics for 100 random sets of putative enhancers, which was approximated by a normal. Each 

random set had the same number of elements as the putative enhancer set. The enhancer predictions 

were limited to regions on the ChIP-chip array. Similarly, each random enhancer was placed uniformly 

at random in a sample space consisting of well-represented regions on the ChIP-chip microarray. The 

chromosomal distribution of each of the sets was kept constant. This careful placement of random sites 

ensures against artificial inflation of the overlap significance. 

 

P-values  

The p-values for correlations were obtained from using the Matlab corr function. This p-value 

measures the probability that there is no correlation between the two variables, against the alternative 

that the correlation is non-zero. The p-values for Wilcoxon rank sum tests were obtained from the 

Matlab ranksum function. 

 

Gene expression and entropy analysis 
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Gene expression in the various cell lines was analyzed using HGU133 Plus 2.0 microarrays 

(Affymetrix) as described [5]. Specificity of expression was determined using a function of Shannon 

entropy as described [34] and the top, middle, and bottom 1000 genes from this analysis were 

designated as HeLa-specific expressed, non-specific expressed, and HeLa-specific repressed genes, 

respectively (Figure 3-10). This specificity was used for evaluation of enhancer enrichment in insulator-

defined domains containing the promoters for these classes of genes (as in Figure 3-11a), where 

insulators were defined by CTCF binding sites. When counting enhancers around these promoters, I 

included all enhancers within 200 kb of a promoter as long as they were still within the same insulator-

defined domain. Random distributions were generated by averaging the enrichment profiles around 

promoters of 100 iterations of randomly selected enhancer sets of 36589 elements. To assess enhancer 

and gene expression specificity between HeLa and K562 cells (as in Figure 3-11b-c), I use the MAS5 

algorithm from the Bioconductor R package to generate gene expression Present/Absent calls from each 

cell type. Since there are two biological replicates of K562 expression, to merge calls for these 

replicates, probes called differently in the two replicates are labeled as Marginal. To eliminate biases 

from genes not expressed in either HeLa or K562, I only consider a probe if it is called Present in either 

HeLa or K562. I mapped Affymetrix probes to gene identifiers using the knownToU133Plus2 table 

from the UCSC Genome Browser, and then map the identifiers to genomic coordinates (hg17, NCBI 

build 35) using the knownGene table from the UCSC Genome Browser [30]. To reduce redundancy, I 

keep only the first gene when multiple Affymetrix probes map to the same annotated gene. The result 

from this filtering and mapping is a set of 11783 genes. For each such gene, I counted the number of 

enhancers predicted in each cell type within that gene’s CTCF-domain. I sorted the genes by differential 

(HeLa – K562) gene expression (as defined by the RMA algorithm from the Bioconductor R package) 

and use a sliding window of 1000 genes to generate a profile of the average number of enhancers for 

each cell type as a function of average differential gene expression. This gives two profiles: one using 

HeLa enhancers and one using K562 enhancers. To normalize, I repeat this analysis for each cell type 

using 100 sets of random enhancers (placed uniformly at random on the tiling microarrays), giving 100 

random enhancer-expression profiles. I then define the enhancer enrichment profile as the ratio between 
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the number of enhancers in the observed profile and the expected number of enhancers in the averaged 

random profile. 

 

Motif analysis 

 

Enhancer regions were defined as 2 kb windows centered on each prediction, and promoter 

regions were defined as 1 kb windows upstream from annotated TSS. Promoters regions were excluded 

from enhancer regions; repeats, exons and transposons were excluded from both. Motif conservation in 

each region was evaluated relative to the genomes of opossum, tenrec, elephant, armadillo, cow, dog, 

rabbit, rat and mouse, extracted from UCSC Genome Browser and used with permission. The 

mammalian tree, along with branch lengths, was computed using DNAML (PHYLIP package) [50] 

with the F84 nucleotide model of evolution in ~500kb of randomly selected exon sequence. Known and 

novel motifs were discovered as previously described10, with the primary difference that instances 

were not required to have perfect conservation and were considered conserved if they were found across 

a number of species spanning at least 50% of the total branch length of the mammalian tree (Branch-

Length-Score > 50%) [31,51]. Motifs were ranked based on their over-conservation, measured as the 

probability of observing a substantially increased number of conserved motif instances compared to that 

expected for motifs of identical composition, and selected all motifs with P < 1 X 10-3. A motif’s 

enrichment was evalulated as its over-abundance, or the hypergeometric probability of observing a 

substantially increased number of occurrences in the intergenic and intronic regions of the human 

genome (regardless of evolutionary conservation) compared to motifs of identical composition, with a 

cutoff of P < 1E-3. 

 

Reporter assays 
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Cloning and reporter assays were performed as previously described [4] and a fragment was 

designated as active if its relative luciferase value was greater than 2.33 standard deviations (p = 0.01) 

above the median random activity. 
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Figure 3-1: Chromatin acetylation features at promoters and enhancers in the ENCODE regions.  

ChIP-chip was performed on the acetylated histones H3K9Ac, H3K18Ac, and H3K27Ac, and the 
enrichment was compared to the (A) promoter and (B) p300 clusters from Chapter 2 in HeLa cells [4]. 
Each horizontal line details the ChIP-chip enrichment of various chromatin modifications and 
transcription factors in 10 kb windows. For consistency in comparison, I clustered the data in the same 
order as Heintzman et al. [4], which used k-means clustering. All three active promoter clusters P2, P3, 
and P4 are highly enriched in all three acetylated histones, whereas the enhancer clusters are mostly 
enriched in H3K18Ac and H3K27Ac, but have only weak H3K9Ac enrichment. Average profiles of log 
enrichment ratios for promoters or p300 binding sites in each cluster are shown at the bottom of each 
panel.



75 

 

 
 

 

 

 

Figure 3-2: Chromatin modifications at promoters are cell type-invariant while those at 
enhancers are cell type-specific 

My lab employed ChIP-chip to map histone modifications (H3K4me1, H3K4me3, and H3K27ac) in the 
ENCODE regions in five cell types (HeLa, GM, K562, ES, dES). (A) I performed k-means clustering 
on the chromatin modifications found +/- 5 kb from 414 promoters, and observe them to be generally 
invariant across cell types. (B) As in (A), but clustering on 1423 non-redundant enhancers predicted on 
the basis of chromatin signatures.
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Figure 3-3: Comparison of regulatory elements in the ENCODE regions 

I performed k-means clustering on CTCF enrichment at 729 non-redundant CTCF binding sites found 
by Mpeak [5]. For comparison I have also shown the enrichment patterns from a genome-wide study in 
IMR90 cells [6], which supports the cell type-invariant nature of CTCF binding. (F) I clustered the 
chromatin modifications at 411 non-redundant p300 binding sites in HeLa, GM, and K562 cells. 
Enrichment of p300 binding, which was not a criteria in the clustering, confirms the cell type-specificity 
of the chromatin marks at enhancers.
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Figure 3-4: CTCF enrichment at genome-wide putative insulators in IMR90 cells 

Experimentally-determined binding sites published for CTCF in IMR90, HeLa, and CD4+ T cells 
[6,12,26] were combined into one set of binding sites, and the ChIP-chip enrichment data at all of these 
sites from IMR90 cells are visualized as 10 kb windows centered at the CTCF binding sites as described 
above, organized by genomic position. These data support the consistency of CTCF binding across cell 
types.
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Figure 3-5: Verification of histone modification-based prediction of enhancers in the ENCODE 
regions 

(a-d) The percentage of predicted enhancers within 2.5 kb of hypersensitive sites in HeLa, GM, K562, 
and ES cells as previously defined [52]. (e-g) The percentage of p300 sites mapped in HeLa, GM, and 
K562 cell lines within 2.5 kb of predicted enhancers. 
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Figure 3-6: Genome-wide enhancer predictions in human cells 

I predict 36589 enhancers in HeLa cells based on chromatin signatures for H3K4me1 and H3K4me3. 
Enhancer predictions are located at the center of 10 kb windows as indicated by black triangles, and 
ordered by genomic position. Enrichment data are shown for histone modifications (H3K4me1, 
H3K4me3, and H3K27ac), DNaseI hypersensitivity (DHS), and binding of p300 and MED1. 
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Figure 3-7: Validation of genome-wide enhancer predictions in human cells 

(a) ChIP-chip enrichment profiles at several known enhancers (indicated in red) recovered by 
prediction: β-globin HS2, PAX6, and PLAT (5 kb windows centered on enhancer predictions. (b) Most 
enhancers have intergenic (56.3%) or intronic (37.9%) localization relative to UCSC Known Gene 5’-
ends. (c) Most enhancers (64.8%) are significantly marked by DNaseI hypersensitivity, binding of 
p300, binding of MED1, or some combination thereof. (d) Distances between predicted enhancers are 
significantly smaller than expected by chance, suggesting that functional enhancers cluster in the 
genome. (e) 7 of 9 enhancers predicted in HeLa cells were active in reporter assays (red bars) as 
compared to none of the random fragments selected as controls (gray), where activity is defined as 
relative luciferase value greater than 2.33 standard deviations (p = 0.01) above the median random 
activity (gray dashed line). 
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Figure 3-8: Active promoter predictions in the human genome. 

(A) I predicted 13116 active promoters in HeLa cells based on chromatin signatures for H3K4me1 and 
H3K4me3. (B) 75% of promoter predictions map to 5’ ends of UCSC Known Genes, indicating a high 
degree of specificity. (C) 76% of active promoters (defined as RefSeq TSS for expressed transcripts) 
are correctly predicted, indicating a high degree of sensitivity. (D) 85.1% of promoter predictions 
overlap with CpG islands (defined by UCSC Genome Browser), accounting for close to half of the CpG 
islands in the genome. 
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Figure 3-9: CTCF sites may serve as domain boundaries for promoter-enhancer interactions 

Insulators bound by CTCF are thought to block promoter-enhancer interactions that would otherwise 
occur in the absence of CTCF (upper panel), a model supported by the enrichment of predicted 
enhancers in domains adjacent to genes that are upregulated in response to CTCF-depletion by siRNA 
(lower panel, red bars). Enhancers are depleted in domains adjacent to downregulated genes (green 
bars) relative to unchanged genes (black bars) and a random distribution (gray lines). Gene expression 
data are from a recently published study25. Domains are defined as the regions between CTCF sites as 
recently reported [6,12,26]; enhancers were counted in the five domains adjacent to each gene, 
upstream and downstream, and summed across respective domains to calculate enrichment relative to a 
random distribution. 
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Figure 3-10: Comparison of cell type-specific gene expression in four cell types 

I used Shannon entropy to rank genes by the specificity of their expression levels in HeLa as compared 
to three other cell lines (K562, GM06990, and IMR90 cells, representing leukemia, lymphoblast, and 
fibroblast lineages, respectively). The most HeLa-specific expressed genes are found at the top of the 
cluster, while genes that are specifically repressed in HeLa cells are found at the bottom. Genes in the 
middle portion of the cluster have expression levels that are similar in all four cell lines.
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Figure 3-11: Chromatin modifications at enhancers are globally related to cell type-specific gene 
expression 

(a) Enhancer localization relative to genes that are HeLa-specific expressed compared to K562, 
GM06990, and IMR90 cells (red), non-specific expressed (green), HeLa-specific repressed (black), and 
a random distribution (dashed grey). Predicted enhancers are enriched around HeLa-specific expressed 
genes within insulator-defined domains and depleted in domains of ubiquitous or non-expressed genes 
(p-value reflects significance of enhancer enrichment in domains of HeLa-specific expressed genes). (b) 
Most enhancers predicted in HeLa and K562 cells are cell-type specific while (c) most genes in HeLa 
and K562 cells are not specifically expressed. (d) Chromatin modification patterns are cell type-specific 
at the majority of 55454 enhancers predicted in HeLa and K562 cells. (e) Comparison of enhancer 
enrichment and differential gene expression between HeLa cells and K562 cells revealed that HeLa 
enhancers are enriched near HeLa-specific expressed genes (blue line) while K562 enhancers are 
enriched near K562-specific expressed genes (orange line).
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Figure 3-12: Cell type-specificity of predicted enhancer activity in reporter assays 

In addition to the HeLa-specific enhancers and random regions assayed in Figure 3-7e, additional 
K562-specific enhancers were cloned and assayed for reporter activity in HeLa cells. Enhancers 
predicted specifically in K562 cells (blue bars) were much less likely to be active in HeLa cells than the 
HeLa-specific enhancers (red), and the median activity is not significantly different from random 
regions (gray). The dashed line represents a significance threshold of  p = 0.01 as in Figure 3-7e. 
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Figure 3-13: ENCODE Enhancers are clustered at differentially expressed genes. 

(a) The distribution of adjacent enhancer-enhancer distances (red), as compared to 1000 sets of 
randomly placed sites (blue), indicates that enhancers are highly clustered. (b) A CTCF block is defined 
by flanking CTCF binding sites. Using the 729 consensus CTCF binding sites to define CTCF blocks, I 
count the average number of enhancers found in blocks relative to the TSSs of differentially expressed 
and repressed genes. Differentially expressed genes are enriched in enhancers when compared to 
differentially repressed genes, with the strongest enrichment found in CTCF block 0.The dotted line 
indicates the expected average number of enhancers in a CTCF block. For HeLa, GM, and K562, 
differential expression is defined by an RMA p-value cutoff of 0.01 and a fold change cutoff of 2.0. (c) 
A detailed view of the distribution of enhancers in CTCF block 0. Here, I show the distribution of 
enhancer-TSS distances all enhancers within this CTCF block. Negative distances indicate upstream 
enhancers, while positive distances indicate downstream enhancers. Enhancers are more concentrated to 
differentially expressed genes relative to differentially repressed genes. (d) Rather than examining the 
distribution of all enhancer-TSS distances in a differentially expressed/repressed gene’s CTCF block, I 
examine only the closest one here. While I do observe enrichment in differentially expressed genes, the 
effect is smaller than that observed when I consider all enhancer-TSS distances. 
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Figure 3-14: Chromatin modifications are associated with increased regulatory response of 
transcription factor binding sites at enhancers 

(a) Predicted enhancers in steady-state HeLa cells overlap with significant fractions of transcription 
factor binding sites (ER, p53, p63) in diverse cell types (MCF7, HCT116, ME180), as well as with 
STAT1 binding sites in HeLa cells treated with the cytokine interferon-gamma (HeLa-IFNγ). (b) 
Hundreds of STAT1 binding sites after treatment (+IFNγ) are marked by the enhancer chromatin 
signature in HeLa cells even prior to treatment (-IFNγ). (c) In HeLa cells treated with IFNγ (upper 
panel), gene expression is significantly (p = 5.8 X 10-8) more likely to be induced by STAT1 binding at 
sites with the enhancer chromatin signature (red, STAT1 group I) than by STAT1 binding at other distal 
sites (red, STAT1 group II) relative to a random distribution (gray).
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Table 3-1: De novo motifs enriched in predicted enhancer regions 

Known Match score represents the shared information content between novel and known motif [32]. 
Over-conservation is calculated as the excess conservation of a motif in enhancers or promoters relative 
to that expected for a random motif of identical composition. Enrichment is calculated as the over-
abundance of a motif in enhancers or promoters relative to that expected for a random motif of identical 
composition. Enhancer-specific motifs are those lacking significant promoter enrichment. All 
significance values are expressed as Z-scores, corresponding to the number of standard deviations away 
from the mean of a normal distribution. 
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Chapter 4 : Chromatin states in human ES cells reveal key 

regulatory sequences and genes involved in pluripotency and 

self-renewal 
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Abstract 

 

Human embryonic stem cells (hESCs) are offering a new therapeutic approach because of their 

unique ability to proliferate indefinitely in vitro and differentiate into multiple cell types. However, the 

molecular mechanisms of pluripotency and self-renewal remain incompletely understood. To elucidate 

the key regulatory sequences and genes responsible for these cellular properties, I have determined 

potential enhancers and insulators in the genome of human ES cells and examined the dynamics of four 

key chromatin modifications (H3K4me1, H3K4me3, H3K27ac and H3K27me3) at both promoters and 

enhancers during the differentiation of these cells. I observe that most enhancers gain or lose H3K4me1 

and H3K27ac during differentiation in a manner that correlates with expression of their potential target 

genes.  By contrast, chromatin modifications at promoters remain stable and largely invariant during 

hESC differentiation, with the exception of a small number of promoters where a dynamic switch 

between acetylation and methylation at H3K27 marks the transition between activation and silencing of 

gene expression.  These results reveal more than 50,000 potential enhancers for early human 

development, and identify key genes that are involved in differentiation and maintenance of 

pluripotency in human ES cells. 

 

Introduction 

 

Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst 

[1].  Due to their ability to self-renew while retaining the potential to differentiate into most other cell 

types in the body, there has been growing interest to explore hESCs in regenerative medicine, and as a 

model system to study early human development. 
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Transcriptional regulation is a fundamental aspect of the molecular mechanisms controlling 

self-renewal, pluripotency and lineage specification. A core transcriptional regulatory network 

consisting of transcription factors OCT4, SOX2, NANOG, TCF3 and their regulatory target genes is 

believed to control the gene expression program to maintain self-renewal and pluripotency in hESC 

[2,3]. In addition, chromatin state throughout the human genome also appears to play important roles in 

this process [4]. For example, trimethylation of both histone H3 lysine 4 and lysine 27 at gene 

promoters (termed bivalent domains) has been proposed as a mechanism for regulating development 

and proliferation [5,6,7,8,9,10].  

 

To understand how the core transcriptional network regulates gene expression, chromatin 

immunoprecipitation based analysis has been used to identify the promoters bound by OCT4, SOX2, 

and NANOG in hESCs [2], and the results identified an extensive auto-regulatory and feed forward 

loop. Recently, more extensive transcription factor networks were established in mESCs using similar 

approaches and promoter microarrays [11]. The surprising finding is that a large number of promoters 

appear to be regulated by multiple transcription factors.  While these studies focusing on transcriptional 

promoters have suggested critical roles that some genes and their promoters play in regulating self-

renewal and pluripotency, other genes and genomic sequences that play important roles in this process 

remain to be identified.  Consistent with this notion, recent studies using ChIP-Seq [12] to investigate 

the binding sites of 13 site-specific transcription factors in mESC provided evidence that pluripotent 

factors frequently act from promoter-distal genomic sequences to regulate pluripotency genes.  

Furthermore, we and others recently demonstrated that transcriptional enhancers, a class of promoter-

distal regulatory sequences, generally play important roles in driving tissue- and cell-type specific gene 

expression [13,14]. Analysis of the enhancers in the ES cell genome should therefore provide insight 

into key genes and regulatory sequences for self-renewal and pluripotency. 

 

To identify key genes and regulatory sequences involved in self-renewal and pluripotency, I 

have determined potential enhancers in the genome of human ES cells and examined the dynamics of 
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chromatin state at both promoters and enhancers during the differentiation of these cells. I identify over 

50,000 potential enhancers in the undifferentiated ES cell (hESC) and differentiated ES cell (dESC) 

genomes. There are remarkable differences of chromatin dynamics at human promoters and enhancers. 

The chromatin state at promoters is generally stable during differentiation, with a small fraction 

undergoing changes that primarily involve a switch between active acetylation and repressive 

methylation at H3K27 which define a set of genes that appear to be important for maintenance of ES 

cell pluripotency, and another set that are involved in differentiation. By contrast, a majority of the 

enhancers display striking changes in chromatin states in a manner that correlates with differential 

expression of their predicted target genes. In addition, I also identify a set of poised enhancers marked 

by a distinct chromatin signature near genes important for cell fate determination, underscoring the 

importance of these regulatory elements in regulating differentiation. 

 

Results and Discussion 

 

Genome-wide maps of chromatin state in hESC before and after differentiation 

 

Low passage (20-50) hESCs (H1) were grown in feeder cell free medium TeSR1 by my 

laboratory’s collaborator James Thomson, as described [15]. To differentiate the hESCs, the cells were 

treated with BMP4 for 4 to 6 days, giving a heterogeneous cell population which is a mixture of 

endoderm (lineage markers: GATA4, GATA6, SOX17), mesoderm (FOXF1, GATA5, CXCR4), and 

trophectoderm (CDX2, GATA2, GATA3). 

 

 My lab utilized chromatin immunoprecipitation coupled with genome-wide tiling microarrays 

(ChIP-chip) [16] (Figure 4-1) to map chromatin modifications in the genomes of both hESCs and 

dESCs  at high resolution. The focus was on four modifications – H3K4me1, H3K4me3, H3K27ac and 
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H3K27me3.  Previous chapters have demonstrated that the patterns of H3K4me1 and H3K4me3 

profiles along the genome allows for identification of potential enhancers in particular cells.  

Additionally, the methylation at H3K27 has been demonstrated to play a critical role in silencing of 

gene expression in ES cells [17]. I have also recently suggested that H3K27 may also be acetylated at 

active gene promoters [13]. By comparing the genome-wide maps of these four chromatin 

modifications from hESCs to those in dESCs, I hypothesized that I would be able to identify key 

promoters and enhancers that contribute to maintenance of pluripotency and self-renewal. 

 

Dynamic switch between acetylation and methylation at H3K27 during hESC differentiation 

 

Promoters are key transcriptional regulatory sequences that integrate extracellular and 

intracellular inputs to control transcriptional initiation of genes.  Previous studies have identified 

methylation of H3K4 and H3K27 at promoters to be important for the poised state of some key 

developmental regulator genes.  These promoters are not transcribed in ES cells, but could either 

become activated during differentiation when the methylation mark on H3K27 is lost, or permanently 

silenced when the H3K4me3 modification is erased [6,17]. To determine whether additional promoters 

display dynamic changes in chromatin modification during ES cell differentiation, I examined 

modifications on H3K4 and H3K27 in both hESCs and dESC.  I found that the presence of H3K4me3 

reveals little information in terms of gene activation, as enrichment of this mark appears invariant 

during differentiation (Figure 4-2, Figure 4-4). This observation is in agreement with several recent 

studies finding this modification to be present at 70-80% of known TSS [7,8,13,18,19]. Interestingly, 

when I examined modifications to H3K27, I found a number of promoters displaying a switch between 

acetylation and methylation (Figure 4-4). Trimethylation of this residue (H3K27me3) is a known 

marker of repressed promoters [17,20], in contrast to acetylation (H3K27ac), which is generally a 

hallmark of active chromatin [21,22]. My results indicate that these two modifications, residing on the 
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same residue, are mutually exclusive: H3K27me3-marked promoters show no enrichment for H3K27ac, 

while those marked by H3K27ac are not enriched for H3K27me3. 

 

To quantify how these modifications switch upon differentiation, I ranked TSSs by the change 

in levels of active H3K27ac and repressive H3K27me3: Cg = (H3K27acdESC – H3K27achESC) – 

(H3K27me3dESC – H3K27me3hESC) (Figure 4-2). Genes with low Cg exhibit a combination of H3K27ac 

loss and H3K27me3 gain after differentiation. Examination of gene expression reveals that in general 

these genes are actively transcribed in hESC and repressed in dESC. This class of genes is of particular 

interest as it contains the key stem cell transcription factors OCT4 (POU5F1), SOX2, and NANOG. For 

example, SOX2 shows hyper-acetylation at H3K27 in hESCs that is lost following differentiation and 

becomes repressed by H3K27me3 (Figure 4-3). Additional genes showing the same active to repressive 

switch include notable transcription factors and signaling molecules likely important in the regulation of 

ESC pluripotency and self-renewal (Table 4-1).  For example, of just the few gene promoters included, 

a number of WNT signaling factors are revealed, including TCF7L1, FZD7, FZD8 and SFRP2. Based 

on the Cg metric of change in chromatin structure, OCT4, SOX2, and NANOG ranked 30, 1, and 155, 

respectively, among the top 1% of 22047 genes. However, based on changes in gene expression, these 

genes ranked 2591, 13, and 637, respectively, only among the top 12% of all genes. Thus, the 

specificity of a chromatin-based list in predicting key stem cell genes is likely much higher than that of 

an expression-based list. 

 

By contrast, genes with high Cg show gain of H3K27ac and loss of H3K27me3 upon 

differentiation.  These genes show the opposite expression pattern to that of low Cg genes, illustrating 

the close correlation between epigenetic modifications and gene expression. For example, the 

transcription factor gene HAND1 shows no H3K27ac in the hESC epigenome but is enveloped by 

H3K27me3 marked chromatin. Following differentiation, HAND1 undergoes a complete switch: losing 

H3K27me3, gaining H3K27ac, and becoming actively expressed (Figure 4-3). These results agree with 

recent findings examining H3K27me3 loss at developmentally important gene promoters [6,8,17,19]. 
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Overall, only 5.7% of all promoters exhibit at least a 2-fold change in H3K27 chromatin state during 

hESC differentiation, defining a set of genes likely integral in each cell type. 

 

Genome-wide identification of enhancers in hESCs and early development 

 

Recent studies have suggested that enhancers play important roles in cell type- and tissue- 

specific gene expression [13]. To identify enhancers that regulate stem cell gene expression during 

differentiation, I employ a computational algorithm that identifies potentially active enhancers based on 

chromatin modification patterns of H3K4me1 and H3K4me3 [13,23].  This method predicts 28,809 

enhancers in hESCs and 33,369 in dESCs. The distribution of the chromatin-predicted enhancers is 

primarily distal to the TSSs, with approximately 50% lying in intergenic regions for each cell type and 

just over 40% falling in intragenic regions, above what is expected at random (Figure 4-5a). 

Additionally, these enhancers tend to be clustered, indicating that multiple enhancers may act together 

to drive gene expression (Figure 4-5b). To validate the function of the predicted enhancers, my lab 

cloned 17 enhancers downstream of the Luciferase gene in a reporter construct and tested luciferase 

expression in human ES cells after transient transfection.  Of the 17 putative enhancer constructs tested 

in this assay, 14 (82%) showed higher level of enhancer activity (p = 0.01) compared to random 

genomic regions that showed no significant reporter activities (Figure 4-5c). These results support the 

accuracy of the enhancer predictions. 

 

Motif analysis of hESC enhancers identifies key transcription factors  

 

To identify the common themes of enhancer sequences and further elucidate the transcriptional 

regulatory mechanisms guiding embryonic stem cells and differentiation, our collaborator Ron Stewart 

investigated if known transcription factor binding sites (TFBS) from the JASPAR and TRANSFAC 
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databases were enriched at enhancers in a cell type-specific manner.  They identified both hESC-

specific motifs and dESC-specific motifs (Table 4-2). The high confidence hESC-specific motifs 

include those that are recognized by KLF4 and c-MYC, two transcription factors that are capable of 

reprogramming human fibroblasts to become iPS cells when transduced with OCT4 and SOX2 [24,25]. 

Also included in this list is a motif for FOXD3, which is known to be involved in maintaining mouse 

ESCs and in the hESC pluripotency gene regulatory network [8,26]. Only the TRANSFAC database 

contains motifs for OCT4 and SOX2, and 940 hESC enhancers contain a joint OCT4:SOX2 motif, 

consistent with the role of these two factors in regulating ES cell gene expression [2]. Additionally, a 

number of motifs are consistently found from both databases. In contrast to the hESC-specific motifs, 

the high confidence dESC-specific enhancer motifs represent several transcription factors known to be 

involved in early development or differentiation, including Brachyury (mesoderm gene expression), 

FOXC1 (heart field specification), the Myf family (myogenesis), and ZEB1 (epithelial-mesenchymal 

transitions) [27,28,29,30] (Table 4-2) .  Of the transcription factor motifs classified at dESC-specific 

enhancers, none of the corresponding factors are known to play a role in human ESC maintenance or in 

reprogramming to an induced pluripotent state. 

 

If the predicted enhancers function in vivo, one expectation is significant binding of 

transcription factors. In order to test this hypothesis, my lab employed high-throughput sequencing 

coupled with chromatin immunoprecipitation (ChIP-Seq) to determine the binding sites for SOX2 and 

NANOG. I identified 4,818 SOX2 and 20,973 NANOG binding sites (FDR = 1%) using the MACS 

peak finding software [31] against a background of input hESC DNA. Comparing to putative hESC 

enhancers, 39.1% and 35.5% of the SOX2 and NANOG binding sites were recovered, respectively, 

compared with 4.5% and 4.3% at putative dESC enhancers  (Figure 4-5d). Additionally, a number of 

binding sites not recovered by hESC enhancer predictions show a weak enrichment of H3K4me1 in 

hESCs but not dESCs, which may reflect enhancers missed by the prediction algorithm (Figure 4-6). 

The presence of these key stem cell regulators at enhancers strongly suggests a central role of enhancers 

in defining the ES cell gene expression program. These results indicate that other transcription factors 
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with motifs enriched in hESC enhancers such as KLF4, MYC, and FOXD3 likely bind to the predicted 

hESC enhancers, and play important roles in self-renewal or maintenance of pluripotency. 

 

Dynamics of chromatin state at enhancers reveal cell type-specific usage 

 

Since promoters that undergo dynamic changes in chromatin structure generally belong to key 

stem cell and developmental genes, I wondered if chromatin dynamics at enhancers would identify key 

sequences regulating the same processes. To assess the dynamics of chromatin modifications at human 

enhancers, I clustered H3K4me1, H3K4me3, H3K27me3, and H3K27ac at the predicted enhancers. 

Most predicted enhancers exhibit dramatic gains or losses of H3K4me1 and H3K27ac during 

differentiation (Figure 4-7). Of particular note is the general absence of H3K27me3 at these sequences, 

suggesting that this repressive modification is mainly acting on promoters. In contrast, a significant 

number of enhancers are associated with H3K27ac. I ranked the predicted enhancers by the change in 

levels of acetylation between hESCs and dESCs: Ce = (H3K27acdESC – H3K27achESC) (Figure 4-8). Just 

as individual enhancers studies have shown the presence of hyper-acetylation [21,22,32,33,34,35,36], I 

find that hyper-acetylated enhancers tend to be cell-type specific.  In addition, hyper-acetylated 

enhancers are nearer to up-regulated genes than enhancers lacking acetylation (Figure 4-8), suggesting a 

role of H3K27ac in modulating enhancer activity. 

 

CTCF-organized regulatory domains predict enhancer targets 

 

Genes regulated by enhancers marked in a cell type-specific manner likely contribute to 

defining the unique abilities of stem cells. However, to find these target genes, it is first necessary to 

link enhancers to the genes they regulate. To do this, I focused on the vertebrate insulator binding 

protein CTCF [37,38], which is known for its enhancer-blocking activity when bound between 
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enhancers and promoters [39,40]. Therefore, to complete the cis-regulatory map, my lab performed 

ChIP-chip to map 33,302 CTCF binding sites (FDR = 1%) in the hESC genome. CTCF sites show 

minimal variation across multiple cell types, allowing use of the hESC genome-wide CTCF binding 

map in dESCs as well [13,41,42] (Figure 4-10). I then partitioned the genome into CTCF-Organized 

Regulatory Domains (CORDs), cis-regulatory blocks flanked by CTCF binding sites (Figure 4-9a). If 

the model of CTCF function is true, then I expect hESC-specific enhancers to be highly enriched in 

CORDs containing hESC-specific genes compared to dESC-specific genes, and vice-versa. Using the 

Ce ranking from Figure 4-8, I divided the predicted enhancers into three equal-sized groups that are 

hESC-specific, non-specific, and dESC-specific. I observed that hESC-specific enhancers are highly 

enriched within the CORDs containing the 1000 most hESC-specific genes. Similarly, dESC-specific 

enhancers are enriched within CORDs containing the 1000 most dESC up-regulated genes (Figure 

4-9b). In contrast, neighboring CORDs do not show enrichment of cell type-specific enhancers (Figure 

4-9c). In agreement with results from Chapter 3, these results also suggest enhancers may play a key 

role in regulating gene expression from promoters in the same CORD. 

 

Through the examination of enhancer enrichment relative to all genes within their respective 

CORD, I observe that CORDs containing differentially expressed genes are enriched with cell type-

specific enhancers, while non-differentially expressed genes remain static for enhancer enrichment 

(Figure 4-9d). The dynamics of chromatin reorganization upon differentiation also reveals that 

enhancers are generally weak, act synergistically and as the number of enhancers increases within 

CORDs,  and differential expression increases linearly on a log scale (Pearson correlation = 0.82) 

(Figure 4-11). 

 

Finally, to identify additional genes important in self-renewal, pluripotency, and 

differentiation, I extended this analysis to predict promoter targets within the CORDs of the top 1% of 

hESC-specific enhancers and dESC-specific enhancers based on Ce.  These lists provide additional 

candidates for genes important in defining each cellular state. As confirmation, I discovered several 
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putative enhancers in CORDs containing genes important for hESC regulation. A view of the SOX2 

locus reveals a number of predicted enhancers downstream of the gene. To date, only a single enhancer 

has been identified in mouse ESCs, approximately 4-kb downsteam of the TSS [43]. I predicted a 

human enhancer in this region that is epigenetically marked only in hESCs, one of several predicted 

enhancer elements downstream of the gene (Figure 4-9e). Additionally, I predicted three hESC-specific 

enhancers upstream of FOXD3, a gene that is important for pluripotency and known to activate Nanog 

and Oct4 expression in mouse ESCs [26] (Figure 4-12). I also predicted several hESC-specifically 

marked enhancers in the CORDs containing OCT4 and NANOG, as well as a number of other genes 

required for ES cell pluripotency. The functional validation of these enhancers is illustrated in Figure 

4-5c.  

 

Genes regulated by cell type-specific enhancers likely contribute to defining each cellular 

state. Further examination of enhancer gene targets include JMJD2C, JARID2, LEFTY1, as well as 

other transcription factors, and MAP kinase signaling molecules in hESCs, while dESC enhancer 

targets reveal genes such as several HOX and GATA factors.  By linking enhancers to target promoters, 

these results allow for the expansion of regulatory networks and provide a more precise depiction of 

regulatory pathways in ES cells. 

 

Chromatin dynamics at poised enhancers correlate with cell fate commitment 

 

One of the most intriguing aspects of embryonic stem cells is their ability to differentiate into a 

variety of other cell types in the body in response different environmental cues. My analysis shows that 

there are three classes of epigenetically-marked enhancers: those marked specifically in hESCs, those 

marked specifically in dESCs, and those marked in both. While the first and second groups are enriched 

near genes specifically expressed in hESCs and dESCs, respectively, enhancers marked in both cell 

types are enriched near both hESC- and dESC-specific genes (Figure 4-13a, Figure 4-14). To 
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investigate the mechanisms that lead to the reprogramming of the hESC transcriptome, I examined this 

class of 8863 shared enhancers that are marked before and after differentiation, reasoning that 

extracellular signaling may act through some of these sequences to activate a group of key regulators 

for cell fate determination. 

 

Particularly interesting within the class of 8863 enhancers marked in both cells types are those 

that are enriched in CORDs containing dESC-specific genes (Figure 4-13a). Many of these shared 

enhancers are only marked by H3K4me1 in ES cells, but upon differentiation they gain H3K27ac 

(Figure 4-14a). Since H3K27ac is a mark of activity, I hypothesized that these enhancers may be 

inactive in ES cells but poised and awaiting a regulatory signal to activate them, therefore giving rise to 

acetylation and differentiation. If true, then I expect these enhancers to be enriched near genes induced 

early during differentiation. When I examined the enrichment of shared enhancers near genes 

differentially up-regulated at various time points during BMP4 treatment (3, 6, 12, 24, 48, and 120 hrs), 

I indeed observed that this set of poised enhancers is significantly enriched in CORDs containing early 

response genes (Figure 4-13c). This is in contrast to the most dESC-specific acetylated enhancers from 

Figure 4-8 (Figure 4-14b) or the shared enhancers that lose acetylation which show no enrichment near 

the same genes (Figure 4-13d). 

 

Interestingly, the enhancers in this category can be found near genes coding for the 

developmental transcription factors MSX1 and MEIS1, which are up-regulated at 3hrs and 48hrs 

respectively. Each of these genes is highly expressed in dESCs and their CORDs contain numerous 

shared enhancers, but H3K27ac only marks the enhancers in dESCs (Figure 4-13b). In addition, BMP4 

itself as well as downstream factors SMAD3, SMAD6, SMAD7 and ID2 are also found in this category 

at 3hrs. This set of genes contains a number of additional transcription factors, including HAND1, 

GATA3, CDX2, FOXO4, LEF, JUN, and SOX9. These 7 factors along with SMAD3 all have TFBS 

motifs enriched in dESC-specific enhancers, suggesting these factors go on to establish the cell fate 

through transcriptional regulation at enhancers. Thus, these results suggest that poised enhancers 
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contribute to ES cell pluripotency by pre-marking enhancers for genes likely responsible for early steps 

in cell fate commitment. 

 

Conclusions 

 

I have analyzed chromatin modification dynamics to identify key genes and regulatory 

sequences contributing to human embryonic stem cell functions. I provide a global view of chromatin 

dynamics upon differentiation of hESCs, a crucial step in understanding how differential gene 

expression is controlled. By assessing how the chromatin state changes during differentiation of hESC, 

I reveal a chromatin switch at a subset of H3K27 gene promoter histones, assessing how repression by 

H3K27me3 during differentiation is important for hESCs. This subset of specifically regulated genes 

includes several stem cell-specific factors. 

 

 Additionally, I describe the first genome-wide maps of enhancers in hESCs and dESCs, 

showing that many enhancers are functionally active, are occupied by transcription factors, and are 

enriched for motifs. Furthermore, the vast number of enhancers implies that most genes are highly 

regulated through the use of enhancers. This is supported by the majority of mapped transcription factor 

binding sites observed outside of promoter regions. Additional evidence of this was recently 

demonstrated in mouse ESCs, showing that of the transcription factors studied, the majority of binding 

sites are also distal to promoters, especially pertaining to ES-specific factors [12]. I find that cell type-

specific enhancer chromatin modifications correlate with cell type-specific gene expression within 

CTCF-organized regulatory domains (CORDs). The cell type-specific enhancer regulation of genes 

within CORDs expands the potential of an ESC regulatory network. 

 

 I also identify a set of poised enhancers marked by H3K4me1 in hESCs and dESCs that 

become acetylated upon differentiation. The poised enhancer state likely allows for activation of early 
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response genes important for the initial steps in cell fate commitment, thereby contributing to stem cell 

pluripotency (Figure 4-15). 

 

Methods 

 

CTCF binding site location 

 

My lab used the Mpeak program to determine binding sites of CTCF peaks as previously 

described [41] with the following modifications: peaks consisted of at least 3 consecutive probes having 

a signal threshold above 1.5 standard deviations at a false discovery rate of 1%. 

 

Quantitative assessment of chromatin change 

 

Below I describe the procedure for calculating Cg. The procedure for computing Ce is similar. 

The NimbleGen gene expression data span 22047 genes. For each gene and cell type, I calculate the 

sum of the log2 enrichment of H3K27ac and H3K27me3 in a 10-kb window centered at the TSS, and 

take the difference H3K27ac – H3K27me3 representing the enrichment of H3K27ac over H3K27me3 in 

a single cell type. I then compute the difference of this value over the 2 different cell types (dESC – 

hESC), and rank all genes using this difference. Negative differences indicate ES-specific H3K27ac and 

dES-specific H3K27me3. Positive differences indicate ES-specific H3K27me3 and dES-specific 

H3K27ac. 

Enhancer predictions 
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The procedure used to predict enhancers follows closely to that in Chapters 2 and 3. 

Specifically, I first bin the tiling ChIP-chip data into 100 bp bins, averaging multiple probes that fall 

into the same bin. Empty bins are interpolated if the distance between flanking non-empty bins is less 

than 1-kb, and set to 0 otherwise. I scan this binned data, keeping only those windows 1) in the top 10% 

of the intensity distribution and 2) having H3K4me1 and H3K4me3 profiles in the top 1% of all 

windows using the same training set of sites as in Chapter 2. I use a discriminative filter on H3K4me1 

and H3K4me3 to keep only those sites that correlate with the averaged enhancer training set more than 

the promoter training set. Finally, I apply a descriptive filter on H3K4me1 and H3K4me3, keeping only 

those remaining predictions having a correlation of at least 0.5 with an averaged training set. 

 

Motif Discovery 

 

Data:  637 genes down-regulated during the first 48 hours of differentiation induced by BMP4 

treatment were defined as human embryonic stem cell (hESC) specific genes while 1214 genes up-

regulated 48 or more hours after BMP4 treatment were defined as differentiation specific genes. 1028 

enhancers identified in hESCs were mapped to the hESC specific genes bounded by insulators, and 

3221 enhancers identified in BMP4 with FGF (have to specify slightly different conditions here) 

differentiated cells were mapped to the differentiation specific genes bounded by insulators. Genomic 

sequences of these hESC and differentiation specific enhancers of 5000 kbs were extracted from the 

UCSC GoldenPath database of the hg17 assembly [44]. Two data sets with 1028 and 3221 random 

genomic sequences of 5000 kbs were also extracted from the same database as controls. 

 

Procedure: 566 TRANSFAC [45] and 96 vertebrate transcription factors (TFs) motif matrices 

were downloaded from the JASPAR database [46]. MotifLocator, software based on a classical 

position-weight matrix scoring scheme, was downloaded from the INCLUSive database [47] and was 

used to search the hESC and differentiation specific enhancers for potential binding sites of the 96 TFs. 
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The motifs’ ability to classify foreground sequences from background sequences was measured by the 

balanced misclassification error rate (1).  The error was defined as: 

 

ErrorRate =1− (Sensitivity + Specificity ) /2[ ] 

 

Sensitivity was defined as the proportion of sequences in the foreground set containing a motif, 

and specificity was defined as the proportion of sequences in the background set without the motif  

[48]. The threshold for motif matching was optimized for each matrix to minimize the error rate. To 

identify hESC specific TFs, hESC specific enhancers were used as foreground sequences while 

differentiation specific enhancers were used as background sequences. Correspondingly, to identify 

differentiation specific TFs, the foreground and the background data sets were flipped. 

The significance of the balanced misclassification error rate for a motif (p-value) for a given 

comparison was determined by the distribution of the error rate.  This distribution was estimated by a 

permutation method (1). To further verify a motif’s ability to classify foreground sequences from 

background sequences, a 95% confidence interval (95% CI)  (2) of the difference between the 

proportion of the sequences with the motif in the foreground set and the proportion of the sequences 

with the motif in the background set was calculated for each of the 96 TFs. If zero is not in the 95% CI, 

the difference between the two sets is significant at the 5% level. Otherwise, it is not significant. The 

results were filtered to include motifs with p-value <0.05, specificity >2/3 and zero being outside the 

95% CI. To prove the abilities of this algorithm to identify the difference between hESC specific 

enhancers and differentiation specific enhancers, two random genomic data sets with 1028 and 3221 

sequences were compared with each other. The difference between these two data sets was much less 

significant than the one between hESC and differentiation enhancers, indicating the great power of the 

algorithm to distinguish two data sets. 

 



105 

 

Acknowledgements 

 

Chapter 4, in full, has been submitted for review in Cell. Hawkins, R David ; Hon, Gary C ; 

Yang, Chuhu ; Antosiewicz-Bourget, Jessica E ; Lee, Leonard K ; Ngo, Que-Minh ; Ching, Keith A ; 

Edsall, Lee E ; Ye, Zhen ; Kuan, Samantha ; Yu, Pengzhi ; Liu, Hui ; Zhang, Xinming ; Green, Roland 

D ; Lobanenkov, Victor V ; Stewart, Ron ; Thomson, James A ; and Ren, Bing. “Chromatin States in 

Human ES Cells Reveal Key Regulatory Sequences and Genes Involved in Pluripotency and Self-

renewal”. The dissertation author was a primary investigator and author of this paper. Specifically, the 

dissertation author performed the computational analysis of histone modifications including work on 

the cell-type specificity of different function elements, predicting enhancers genome-wide, and 

analyzing the influence of enhancers on gene expression. 

 

References 

 

1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM 
(1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147. 

2. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, 
Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional 
regulatory circuitry in human embryonic stem cells. Cell 122: 947-956. 

3. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston 
WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp 
PA, Bartel DP, Jaenisch R, Young RA (2008) Connecting microRNA genes to the core transcriptional 
regulatory circuitry of embryonic stem cells. Cell 134: 521-533. 

4. Chi AS, Bernstein BE (2009) Developmental biology. Pluripotent chromatin state. Science 323: 220-
221. 

5. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes 
G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8: 
532-538. 

6. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, 
Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A Bivalent Chromatin 
Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell 125: 12. 



106 

 

7. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim 
TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig 
M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in 
pluripotent and lineage-committed cells. Nature 448: 553-560. 

8. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) 
Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem 
cells. Cell Stem Cell 1: 299-312. 

9. Roh TY, Cuddapah S, Cui K, Zhao K (2006) The genomic landscape of histone modifications in 
human T cells. Proc Natl Acad Sci U S A 103: 15782-15787. 

10. Roh TY, Wei G, Farrell CM, Zhao K (2007) Genome-wide prediction of conserved and 
nonconserved enhancers by histone acetylation patterns. Genome Res 17: 74-81. 

11. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for 
pluripotency of embryonic stem cells. Cell 132: 1049-1061. 

12. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, 
Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, 
Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core 
transcriptional network in embryonic stem cells. Cell 133: 1106-1117. 

13. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, 
Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart 
R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers 
reflect global cell-type-specific gene expression. Nature. 

14. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, 
Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific 
activity of enhancers. Nature 457: 854-858. 

15. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-
independent culture of human embryonic stem cells. Nat Methods 3: 637-646. 

16. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett 
N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of 
DNA binding proteins. Science 290: 2306-2309. 

17. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, 
Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, 
Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, 
Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human 
embryonic stem cells. Cell 125: 301-313. 

18. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and 
transcription initiation at most promoters in human cells. Cell 130: 77-88. 

19. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung WK, Shahab A, Kuznetsov 
VA, Bourque G, Oh S, Ruan Y, Ng HH, Wei CL (2007) Whole-genome mapping of histone H3 Lys4 
and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell 
Stem Cell 1: 286-298. 



107 

 

20. Squazzo SL, O'Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, 
Green R, Farnham PJ (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific 
manner. Genome Res 16: 890-900. 

21. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of 
chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103: 667-678. 

22. Lomvardas S, Thanos D (2002) Modifying gene expression programs by altering core promoter 
chromatin architecture. Cell 110: 261-271. 

23. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu 
C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive 
chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 
311-318. 

24. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ 
(2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141-
146. 

25. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) 
Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872. 

26. Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell 
pluripotency. Cell Res 17: 42-49. 

27. Beddington RS, Rashbass P, Wilson V (1992) Brachyury--a gene affecting mouse gastrulation and 
early organogenesis. Dev Suppl: 157-165. 

28. Braun T, Bober E, Winter B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human 
gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO 
J 9: 821-831. 

29. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of 
myocardial cells. Nat Rev Genet 6: 826-835. 

30. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB 
represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary 
epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26: 711-724. 

31. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, 
Brown M, Li W, Liu XS (2008) Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9: R137. 

32. Hatzis P, Talianidis I (2002) Dynamics of enhancer-promoter communication during differentiation-
induced gene activation. Mol Cell 10: 1467-1477. 

33. Palmer MB, Majumder P, Green MR, Wade PA, Boss JM (2007) A 3' enhancer controls snail 
expression in melanoma cells. Cancer Res 67: 6113-6120. 

34. Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M (2000) Nuclear 
localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of 
the human beta-globin locus. Genes Dev 14: 940-950. 



108 

 

35. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. 
Mol Cell 9: 601-610. 

36. Zhao B, Ricciardi RP (2006) E1A is the component of the MHC class I enhancer complex that 
mediates HDAC chromatin repression in adenovirus-12 tumorigenic cells. Virology 352: 338-344. 

37. Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking 
activity of vertebrate insulators. Cell 98: 387-396. 

38. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear 
sites, suggesting shared insulator mechanisms across species. Mol Cell 13: 291-298. 

39. Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. 
Nat Rev Genet 7: 703-713. 

40. Valenzuela L, Kamakaka RT (2006) Chromatin insulators. Annu Rev Genet 40: 107-138. 

41. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov 
VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human 
genome. Cell 128: 1231-1245. 

42. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator 
binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive 
domains. Genome Res 19: 24-32. 

43. Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A 
(2002) Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. 
Nucleic Acids Res 30: 3202-3213. 

44. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The 
human genome browser at UCSC. Genome Res 12: 996-1006. 

45. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, 
Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids 
Res 28: 316-319. 

46. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access 
database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32: D91-94. 

47. Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M, Rombauts S, Rouze P, De Moor B, Marchal K 
(2002) INCLUSive: integrated clustering, upstream sequence retrieval and motif sampling. 
Bioinformatics 18: 331-332. 

48. Barrera LO, Li Z, Smith AD, Arden KC, Cavenee WK, Zhang MQ, Green RD, Ren B (2008) 
Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult 
organs. Genome Res 18: 46-59. 

49. Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RD, Chenoweth JG, Tesar PJ, 
Furey TS, Ren B, Weng Z, Crawford GE (2007) Identification and characterization of cell type-specific 
and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3: e136. 



109 

 

50. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, 
Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, 
Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451: 
796-801. 

51. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) 
High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837. 

 

 



110 

 

Figures and Tables 
 

 

 

 

Figure 4-1: Validation of enhancers and platform comparisons. 

(a) Comparison of enhancer predictions from Affymetrix genome-wide arrays to Nimblegen ENCODE 
arrays using the enhancer predictions from Nimblegen ENCODE arrays as a gold standard. (b) As in 
(a), but for differentiated ES cells. (c) As in (a) but using ENCODE hESC DNase I hypersensitivity data 
[49] as a gold standard. Each symbol represents a different set of parameters. The black box indicates 
the set of enhancers used here. 
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Figure 4-2: Dynamic switch of H3K27 modifications at promoters 

(left) Heat-map of histone modifications within 5-kb of 22,047 TSSs, before and after differentiation. 
(middle) For each gene and cell type, I calculate the difference (H3K27ac – H3K27me3), and rank 
genes by comparing the difference of this value between the cell types (dESC – hESC). A negative 
value represents hESC enrichment of H3K27ac and dESC enrichment of H3K27me3 (blue Cg). A 
positive value represents dESC enrichment of H3K27ac and hESC enrichment of H3K27me3 (red Cg). 
(right) Difference in gene expression (dESC/hESC); blue is hESC-specific expression while red is 
dESC-specific expression. Representative genes are noted on the far right. 
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Figure 4-3: Snapshots of histone modifications around HAND1 and SOX2 

UCSC Genome Browser snapshots showing the log2 ratio enrichment for H3K27ac (red), H3K27me3 
(green) and H3K4me3 (orange) compared to input. Gene names are listed at the 5’ end of the gene 
structure. (left) A 10 kb window around the HAND1 gene illustrating the presence of H3K27me3 in 
hESCs that switches to H3K27ac following differentiation. (right) A 14 kb window around the SOX2 
gene illustrating the presence of H3K27ac in hESCs that switches to H3K27me3 following 
differentiation. 
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Figure 4-4: k-means cluster of modifications at 22,047 gene TSS with expression data. 

The figure is organized as in Figure 4-2.  k-means = 4. 
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Figure 4-5: Enhancer features and functional validation 

(a) Distribution of enhancers in each cell type relative to 5’ and 3’ ends of genes as well as intragenic 
and intergenic regions.(b) Distribution of distances between adjacent enhancers. (c) Reporter assays of 
enhancer function at 17 predicted hESC enhancers and 7 randomly chosen genomic regions, cloned 
downstream of a luciferase gene. The dashed red line indicates a p-value cutoff of 1%.(d) Overlap of 
ChIP-Seq binding sites for transcription factors Sox2 and NANOG, compared to promoters, predicted 
hESC enhancers, and predicted dESC enhancers. 
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Figure 4-6: Clustering of histone modifications at distal SOX2 and NANOG binding sites not 
predicted as enhancers. 

Binding sites are ranked by acetylation levels.  The clusters illustrate that most sites present some 
H3K4me1 and H3K27ac, suggesting they are enhancer sites not called by the prediction algorithm.  
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Figure 4-7: k-means cluster of predicted enhancers in hESCs and dESCs. 

The figure is organized as in Figure 1.2.  k-means = 4. 
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Figure 4-8: Dynamic switch of H3K27ac at enhancers 

(left) A heat-map of histone modifications within 5-kb of predicted enhancers, ranked based on 
differences in H3K27ac (dESC – hESC). (middle) The cell-type specificity of chromatin modifications 
at enhancers, Ce = (H3K27acdESC – H3K27achESC). (right) Changes in gene expression of neighboring 
genes. 
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Figure 4-9: Enhancer cell-type specificity and predicted gene targets 

(a) CORDs – Diagram of CTCF-organized regulatory domains.  Regions bounded by CTCF containing 
promoters and enhancers. (b) Distribution of hESC-specific, dESC-specific, and non-specific enhancers 
within CTCF-defined domains containing promoters of hESC-specific, dESC-specific, and non-specific 
genes. (c) As in (b), but expanded to neighboring CTCF-defined domains. (d) The average number of 
enhancers for each cell type were counted as a function of average differential gene expression by using 
a sliding window of 1000 genes for all 22,047 genes from Figure 4-2, and then normalized over 100 
random distributions of enhancers to obtain enhancer enrichment. (e) UCSC Genome Browser 
snapshots around a key ESC gene SOX2 showing the localization of hESC-specific enhancers marked 
by H3K4me1 (blue) and H3K27ac (red) within CTCF-defined domains (purple).  The purple, dashed 
vertical line indicates the position of CTCF sites close to the genic region.  Gene names are located at 
the 5’ end of the gene structure. 
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Figure 4-10: CTCF binding site analysis 

(a) Clustergram at 29,880 combined CTCF binding sites recovered from IMR90 [41], HeLa [50], and 
CD4+ T cells [51], as represented in genome-wide CTCF binding sites found in IMR90 and hES cells. 
(b) k-means clustergram of CTCF binding sites in the ENCODE region from HeLa, GM06990 (GM), 
K562 leukemic cells, hESCs, and dESCs from Chapter 3. These are compared to ENCODE regions 
extracted from genome-wide data in IMR90 cells [41] and hESCs presented here (blue). (c)  The 
increased number of CTCF binding sites provides a slightly modified motif. 
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Figure 4-11: Changes in chromatin modification at enhancers correspond to changes in gene 
expression 

(a) For each of the 1000 hESC-specific (red), dESC-specific (green), and non-specific (black) genes, I 
counted the number of enhancers found before and after differentiation within the CTCF-defined 
domain. I then plotted the distribution of this difference normalized over the distribution of all genes. 
(b) As in (a), except directly comparing enhancer numbers within CTCF-defined domains for hESC-
specific genes (right) and dESC-specific genes (left).  The enrichment ratio, as above, is shown as a 
heat-map (red = enrichment; green lack of enrichment). (c) Plot of differential enhancer number as a 
function of differential expression for all 22,047 genes, averaged into 100 gene bins. 
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Figure 4-12: UCSC Genome browser shots of histone modifications and enhancer predictions in 
CTCF-defined blocks containing FOXD3, OCT4(POU5F1) and NANOG. 

Figure is displayed as in Figure 4-3. 
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Figure 4-13: Subset of shared enhancers are poised for early response 

(a) As in Figure 4-9d, but for three subsets of enhancers: those uniquely marked in hESCs (red), those 
uniquely marked in dESCs (green), and the remaining 8863 that are marked in both (blue). (b) UCSC 
Genome Browser snapshots of MSX1 and MEIS1 gene loci. (c, d) Gene expression was measured at 3, 
6, 12, 24, 48, 72, and 120 hours after BMP4/bFGF treatment of hESCs. For differentially expressed 
genes at each time point, I counted the average number of acetylated enhancers with cell type 
specificity, defined as the 2000 shared enhancers with the most H3K27ac in (c) dESCs and (d) hESCs. 
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Figure 4-14: Poised Enhancers  

(a)Heatmap of 8863 predicted enhancers that are shared between hES and dES cells, ranked on 
H3K27ac intensity.  Each end of the spectrum shows that some enhancers exhibit cell type-specific 
acetylation, although mono-methylated in both cell types. (b)  Assessment of enhancer enrichment 
during a time course of gene expression during BMP4 treatment.  Early response genes are more 
enriched in shared enhancers acetylated in dESCs (yellow) compared to dESC-specific (red), hESC-
specific (dark blue), or shared enhancers with hESC acetylation (light blue). 
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Figure 4-15: Model of cell type-specific enhancers and poised enhancers in cell fate.  

This model illustrates the role of poised enhancers in hESC pluripotency and cell fate commitment.  ES 
cells grown in the presence of BMP4 and bFGF give rise to 3 of 4 possible lineages (ectoderm 
excluded).  Poised enhancers contribute to initiation of lineage determination by activating early 
response genes which go on to establish the cell fate.
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Table 4-1: Representative transcription factors and signaling molecules repressed by H3K27me3 
following differentiation. 
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Table 4-2: Transcription factor binding site motifs enriched in hESC or dESC enhancers. 
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Chapter 5 : ChromaSig – A probabilistic approach to finding 

common chromatin signatures in the human genome 

 



128 

 

Abstract 

 

Computational methods to identify functional genomic elements using genetic information 

have been very successful in determining gene structure and in identifying a handful of cis-regulatory 

elements. But the vast majority of regulatory elements have yet to be discovered, and it has become 

increasingly apparent that their discovery will not come from using genetic information alone. Recently, 

high-throughput technologies have enabled the creation of information-rich epigenetic maps, most 

notably for histone modifications. However, tools that search for functional elements using this 

epigenetic information have been lacking. Here, I describe an unsupervised learning method called 

ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling 

microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% 

sampling of the human genome in HeLa cells, I recover eight clusters of distinct chromatin signatures, 

five of which correspond to known patterns associated with transcriptional promoters and enhancers. 

Interestingly, I observe that the distinct chromatin signatures found at enhancers mark distinct 

functional classes of enhancers in terms of transcription factor and co-activator binding. In addition, I 

identify three clusters of novel chromatin signatures, which contain evolutionarily conserved sequences 

and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped 

genome-wide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin 

signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear 

to be locally heterochromatic sites and are enriched in quickly-evolving regions of the genome. The 

utility of this approach in uncovering novel, functionally significant genomic elements will aid future 

efforts of genome annotation via chromatin modifications. 

 

Introduction 
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In eukaryotes, DNA is packaged into nucleosomes, each consisting of an octamer of histone 

proteins [1,2,3]. Histones are subject to an assortment of post-translational modifications including 

phosphorylation, acetylation, and methylation [4,5,6]. Many of these modifications have been linked to 

transcriptional activation, silencing, heterochromatin formation [1,3,7,8,9], DNA damage sensing and 

repair [10], and chromosomal segregation [11]. Evidence is accumulating to support the hypothesis that 

different combinations of histone modifications confer different functional specificities [12]. For 

example, in Saccharomyces cerevisiae, the nucleosomes near active promoters are marked by H3K9ac 

and H3K4me3, while inactive promoters generally lack these marks [1,13,14]. In human, active 

promoters are associated with H3K4me3, and enhancers are associated with H3K4me1 but lack 

H3K4me3 [15]. With dozens of covalent modifications already detected on histones, it is conceivable 

that additional patterns of chromatin modifications exist, and may reveal novel functional elements of 

the genome. 

 

High-throughput experimental techniques, such as chromatin immunoprecipitation on a 

microarray (ChIP-chip) [16,17] and its sequencing-based variant ChIP-Seq [18], have been used to map 

the enrichment of modified histones on a large scale [15]. This data has revealed that the profiles of 

chromatin modifications over large genomic regions define functional domains. In principle, analysis of 

the chromatin modification patterns should allow identification of different classes of functional 

elements associated with the different histone modifications.  However, tools for finding chromatin 

modification patterns have been lacking [1,13,14]. 

 

Previously, supervised classification methods have been used to identify chromatin 

modification patterns at known functional sites [13,15,19,20,21]. For example, many studies focus 

entirely on well-defined transcriptional promoters [3,8,9,13,15]. But this supervised approach of 

focusing only on annotated loci trivializes the problem of finding commonly occurring histone 

modification patterns on a global scale. One of the main motivations for developing an unsupervised 
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learning method is that it is not known a priori what functional elements are associated with specific 

histone modification patterns. 

 

Here, I develop a novel, unbiased method for identification of histone modification patterns 

occurring repeatedly in the genome. I assume that a consistent repertoire of chromatin modification 

patterns exists, and that a pattern search algorithm should identify such patterns in an unbiased fashion 

without using any annotations. I treat this problem as a variant of the standard motif finding problem: 

given a sequence over an alphabet, find subsequences that are repeated more often than would be 

expected by chance. Here, rather than working with a sequence over a discrete alphabet such as 

nucleotides or amino acids, I analyze a sequence of real-valued enrichment of chromatin modifications 

over a genomic region. To perform motif finding over chromatin modifications, I develop a 

probabilistic method called ChromaSig. Applying ChromaSig to a panel of chromatin maps from ChIP-

chip experiments performed in HeLa cells on ENCODE arrays, I recover eight distinct clusters of 

chromatin signatures. I recover known patterns observed at putative active promoters and enhancers 

[15], as well as several previously uncharacterized patterns. Furthermore, the distinct chromatin 

signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription 

factor and co-activator binding. Finally, I also apply ChromaSig genome-wide to 21 chromatin marks 

mapped using ChIP-Seq in CD4+ T cells, recovering 16 distinct and frequently occurring chromatin 

signatures. ChromaSig reveals frequent and redundant cross-talk between different histone 

modifications at a previously unappreciated level, and reveals a unique class of quickly-evolving 

genome elements consistently marked by repressive histone modifications. These results support the 

utility of ChromaSig in discovering of novel chromatin signatures. 

 

Methods 
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Overview of ChromaSig 

 

I represent large-scale chromatin modifications maps as enrichment over consecutively tiled 

100-bp bins. To find frequently-occurring chromatin signatures, ChromaSig is divided into two parts. In 

the first part, I find all loci of width 2-kb that are highly enriched in chromatin modifications, and 

therefore likely to contain chromatin signatures. But as known chromatin signatures at promoters and 

enhancers are typically larger than 2-kb [15], these enriched loci are likely part of a larger chromatin 

signature, which may be found in the vicinity of the enriched locus and oriented on either strand of 

DNA. Thus, I define a search region of 7-kb around each enriched locus where I search for a chromatin 

signature motif of size 4-kb. This choice of search region and motif sizes ensures that at least 75% of 

the enriched locus is covered by the motif. In the second part, ChromaSig clusters, aligns, and orients 

these enriched loci on the basis of chromatin modifications, using a Euclidean distance measure. A 

given locus i can either align to the motif M, the background B, or some other motif M′. For a given 

histone mark h, the likelihood of accepting locus i at location offset l and orientation p into M is given 

by: 

( )
( ) ( )p l,at  i locus Prp l,at  i locus Pr

p l,at  i locus Pr
,,, MB

M
L plhi ′+

=  

I then employ a greedy algorithm to align and orient each locus i to M by choosing the l and p that 

maximize the following objective function over all members of the motif:∑∑
∈Mi h

plhiL
 all

,,, . 

 

Algorithmically, I first define the seed motif by finding a small group of loci sharing a 

common chromatin signature. I then expand this seed to include other loci, simultaneously refining the 

motif being searched. Let D represent the set of loci already assigned to a motif, initially empty. I 

sequentially visit each locus not in D a total of 5 times. All aligned loci having the motif are output and 

added to D, to be excluded for future rounds of pattern searching. This procedure is repeated with a new 
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seed until no more seeds are found. An overview of the algorithm is given in Scheme 5-1 and Figure 

5-1. 

 

 

 

Chromatin modification data for ChIP-chip 

 

I use published histone profiles for H4ac, H3ac, H3K4me1, H3K4me2, H3K4me3, and core 

histone H3 [15] (GEO accession GSE6273), as well as H3K9ac, H3K18ac, and H3K27ac [22] (GEO 

accession GSE7118). These data were obtained from ChIP-chip experiments performed in HeLa cells 

using oligonucleotide tiling arrays spanning the ENCODE regions, a set of 44 genomic regions with a 

total length of 30 Mbp. I bin the data into 100-bp bins, averaging the probes falling into each bin. 

 

Finding loci near chromatin signatures 

 

To reduce the search space for finding chromatin signatures, I first focus on enriched loci of 

width of w = 2-kb containing ChIP-chip signals significantly deviating from background. For each 

histone modification h ∈ 1…H, let xh,i be the average log-ratio of bin i. After array normalization, xh,i 

approximately follows a Gaussian distribution N(µh, σh). To find both histone modification rich and 

poor loci, I assign a χ2 statistic to each locus of size w starting at the jth bin: 

2

1

2
,, ~ w

w

k
kjhjh zy χ∑

=
+=  

where zh,j+k = (xh,j+k -µh)/σh is a standard normal variate. I perform the above separately for each histone 

modification and use a p-value cutoff of 1.0E-5 to assess significant loci. To create a non-redundant list 

of significant loci over all histone modifications, I represent the score of a locus j as the sum of all 
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significant yh,j. Also, as it is likely that loci adjacent to significant loci will also be significant, I keep a 

statistically significant high-scoring locus only if all other loci ≤ 2.5-kb away have a lower score. 

Finally, I remove all loci poorly represented on the tiling microarray, here defined as containing fewer 

than 75% of the total number of possible probes in the locus. 

 

Finding distinct chromatin signatures 

 

The enriched loci above are not grouped by chromatin signature, may not be aligned, and, in 

the case of asymmetric patterns, may not be in the same orientation. The goal is to reverse these 

statements. But first, I begin with some notation. We are given a set of enriched loci from above and a 

seed motif of width wM = 4-kb from initialization (described below). For a given locus, I want to 

determine if it contains the seed motif. But since the loci is not aligned a priori, I expand the search to 

all width wM windows containing at least 75% of the locus, in both forward and reverse orientations. 

Thus, I am searching for a 4-kb motif in a 7-kb search region. For simplicity, I allow each locus to 

contain at most one motif. 

 

ChromaSig refines one motif at a time. The chromatin signature of each motif is defined by the 

elements belonging to the motif. More specifically, it is defined as: a set of loci },...,...{ 1 nj iii  that 

contain the motif, a set of relative locations }......{ 1 nj lll  where lj indicates the location offset of the 

motif in locus ij, and a set of polarities }......{ 1 nj ppp  where pj indicates the orientation of the motif in 

locus ij. Here, n is the total number of loci containing the motif, which can range from 1 to N  (N is the 

number of loci, which is 1558 here), and pj can be either “+” indicating the forward orientation or “-” 

indicating the reverse orientation. Let 
jjj plihs ,,, (denoted by sh,j) be the real-valued sequence of the 

length wM window corresponding to locus ij at location lj and orientation pj for histone modification h. 
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Let ( )ks
jjj plih ,,,  (denoted by sh,j(k)) be the value of the kth bin in this sequence. Given a seed pattern 

and a locus ij, I search over all possible jhs , around ij for an optimal match to the motif. 

 

Define a seed motif as m = },...,{ 1 Hmm , where H is the number of histone modifications, h 

ranges from 1 to H, mh = },...,{ ,1, Mwhh µµ , ∑
=

=
n

j
jhkh ks

n 1
,, )(1µ , and n is the number of aligned 

windows. In words, each histone modification h has its own length wM pattern, which is the average of 

all aligned windows. Define the motif standard deviation similarly: 

( )∑
=

−
−

=
n

j
khjhkh ks

n 1

2
,,, )(

1
1 µσ  

 

During the sampling step, I choose a locus i and attempt to align every length wM window, at 

all possible locations l and orientations p, to the current seed motif. I compute the probability of 

observing a window’s sequence under the motif model as 

( )( )∏
=

=
Mw

k
khkhplihplh ksPM

1
,,,,,,, ;; σµ  

where ( )σµ;;xP  is a probability defined by dividing the Gaussian probability density function by its 

maximum value: ( ) ( ) ( )( )22 2/exp;; σµσµ −−= xxP . 

 

Given a locus to be aligned to the seed, I consider two possibilities: 1) the locus aligns well to 

the seed and is accepted into the seed, or 2) the locus does not align well and is rejected. In the latter 

case, the locus may not align well because 2A) the locus matches better to a null background or 2B) the 

locus matches better to another motif. 
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To decide between these possibilities, I consider two background models. To consider 2A, I 

define the null background model by the mean of all bins in the entire ENCODE regions for each 

histone modification h (µh) and the mean of the motif standard deviations ∑
=

=
Mw

k
kh

M
h w 1

,
1 σσ . The 

probability of observing a window under the null background model is then:  

( )( )∏
=

=
Mw

k
hhplihplh ksPB

1
,,,,, ;; σµ  

 

Ideally, I would consider 2B by aligning a locus to all other possible motifs. But since it is not 

known a priori what motifs exist, I model the probability that a window belongs to another motif by: 

( )∏
=

=
Mw

k
anotherplh PA

1
,, 1;0;σ  

where σanother is a user-specified parameter (here set to an empirical value of 1.75) that represents the 

expected quality of the match with another motif, represented as the number of standard deviations 

from the mean. Larger values of σanother indicate a looser background model and smaller values indicate 

a more stringent background model. 

 

The Mh,l,p represent the probabilities to add the locus to the seed at a specific location and 

orientation for a given histone modification, while the Bh,l,p and Ah,l,p represent the probabilities to 

exclude the locus. To determine which window aligns best to the motif model, I form the likelihood: 

( )
( ) ( )Data |2Bby reject PrData |2Aby reject Pr

Data |acceptPr
,, +
=plhL

 

Applying Bayes rule,  
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where pa, p2A, and p2B are priors that sum to 1. Here, let pa = p2B and p2A = 0.01. When 1,, <plhL , the 

chance of rejecting a window is greater than accepting it into the motif. If this is true for all l and p for a 

given h, then there can be no favorable alignment of any window from the given locus to the motif that 

involves the histone modification h. In such a case, I unilaterally reject the locus, regardless of how well 

other histone modifications align. Otherwise, I find the l and p that maximizes ∑
=

H

h
plhL

1
,,log , and add 

this aligned locus into the seed motif. 

 

A cycle is defined to be the process of aligning each locus to the seed motif. At the end of a 

cycle, I construct a new seed motif containing all accepted windows in their aligned locations and 

orientations. At the end of 5 cycles, I output the motif and aligned loci belonging to it. To ensure 

generality of the chromatin signatures, I reject clusters with fewer than 20 elements or clusters having a 

maximum absolute log-ratio signal less than 0.5 . 

 

Initialization 

 

While most of the loci input to ChromaSig will not be aligned, I do expect that a small number 

of them will be nearly aligned. To determine the seed motif, I attempt to create seeds starting from 100 

randomly chosen enriched loci. For each such locus i, I compute the Euclidean distance to all other loci 

and then use a fast approximate sorting method to find the closest ~20 loci to i, which forms a potential 

seed. Specifically, I define the leaves of a tree as the loci distances in random order and then construct a 

tournament tree until there are ≤ 20 parent nodes. A good seed contains both regions of high signal and 
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low signal, with the members of the seed sharing a very similar chromatin signature. Notably, a seed 

saturated with signal is uninformative, as it will be difficult to align. I distinguish good seeds by using 

the following score: 

∑
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where kh,µ′ is hµ  in descending order. A high seed score indicates a motif with balanced amounts of 

high and low signal, together with a small standard deviation. I use the seed with the highest score to 

initialize ChromaSig. 

 

Application of ChromaSig to genome-wide ChIP-Seq data 

 

To ensure that ChromaSig is sufficiently general, I also apply it to genome-wide distributions of 21 

histone marks mapped by ChIP-Seq in CD4+ T cells [18].  

 

• Data normalization: I consider only those reads that map uniquely to the genome (hg18) with a 

maximum of 2 mismatches, and count polyclonal reads once to reduce sequencing bias. I partition 

the genome into 100-bp bins and count the number of reads in each bin. The number of unique 

monoclonal reads may be highly variable between different histone marks. For example, there are 

15.4 million reads spanning H3K4me3 but only 1.9 million spanning H3K79me2. This vast 

difference in coverage makes it difficult to compare ChIP enrichment for different histone marks 

by comparing tag counts. Even for a single mark, sites of true ChIP enrichment can have a large 

difference in ChIP-Seq tag density [23]. To address these concerns, I normalize the number of 

reads in each bin xh,i with a sigmoid function: 
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Where median(xh) and std(xh) are the median and standard deviation of the number of tags in the 

100-bp bins for histone mark h, excluding spurious bins containing exactly 0 and 1 reads. By 

definition, x′h,i will be 0.5 for bins containing the median number of tags, falls to 0 as tag counts 

decrease, and saturates to 1 as tag counts increase. 

 

• Finding ChIP-Seq signal-rich loci: As I cannot assume a Gaussian distribution of normalized 

enrichment, I model the background empirically using all 2-kb windows in the ENCODE regions. 

Furthermore, there are twice as many chromatin marks in the ChIP-Seq dataset compared to the 

ChIP-chip dataset, and being genome-wide the coverage is 100 times higher. To focus on the 

highest quality loci, I keep a statistically significant high-scoring locus only if all other loci less 

than 5.0-kb away have a lower score, rather than the 2.5 kb used for ChIP-chip. Furthermore, 

several chromatin marks including H3K9me3 and H3K36me3 are known to be enriched over large 

domains. To focus on chromatin signatures smaller than 10-kb, when creating a non-redundant list 

of significant loci, I only consider those loci yh,j with p-value smaller than 1E-5 and that are more 

than 2.5-kb away from any other significant locus in h. 

 

• Motif with pseudocounts: As ChIP-Seq provides a digital readout of ChIP enrichment, many bins 

are empty, and it is possible that the motif mean µh,k = 0 for some h and k, which results in σh,k = 0. 

To relieve this prohibitive constraint, I add a pseudocount of 0.5 to each position of the motif: 
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As the number of elements in the motif increases, the contribution of the pseudocount decreases. 

 

• Parameters: I run ChromaSig on ChIP-Seq data with the same parameters as for ChIP-chip data. 

But to focus only on the most frequently-occurring chromatin signatures, I consider only those 

clusters with an average normalized enrichment greater than 0.25 and with at least 500 loci. 

 

Results 

 

ChromaSig identifies distinct chromatin signatures 

 

Starting with ChIP-chip data for H4ac, H3ac, H3K9ac, H3K18ac, H3K27ac, H3K4me1, 

H3K4me2, H3K4me3, and core histone H3 spanning the ENCODE regions, I first use a sliding window 

approach to identify signal-rich loci likely to contain histone modification patterns (see Methods, Figure 

5-1). The goal is to find commonly-occurring patterns in this set of loci. But because this sliding-

window approach is quite crude, it is unlikely that the loci will be aligned. Furthermore, a chromatin 

profile can be observed in two possible orientations corresponding to the two DNA strands running in 

opposite directions, and the sliding window approach does not account for these orientations. As such, 

it is unlikely that the collection of signal-rich loci is oriented optimally to preserve asymmetric 

chromatin signatures, such as those found at promoters [15]. I employ ChromaSig to align and orient 

these loci into clusters with similar chromatin signatures. Different chromatin signatures can be 

distinguished by different enrichment of one or more histone modifications, or they may share similar 

enrichment for all modifications but contain a different enrichment profile for one or more 

modifications. I find eight clusters spanning 1118 loci (Figure 5-2). 
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Loci in the same cluster share the same chromatin signature, and each cluster has a distinct 

chromatin signature (Figure 5-2), indicating that the method is functioning as designed. To highlight the 

similarities and differences of each cluster, I perform hierarchical clustering on the average profiles of 

each cluster (Figure 5-2). This reveals that, while some clusters are strikingly distinct from one another, 

others are only subtly different. On the more distinct side, CS1 is the only cluster to have strong 

enrichment of H3K4me3, while cluster CS8 is the only cluster to be enriched solely in H3K4me1. More 

subtly, the chromatin marks present at CS2 and CS3 are the same, but are consistently weaker in CS3 

than CS2. Along the same lines, CS6 has narrower and weaker enrichment of H3K4me1 that 

distinguishes it from the other clusters bearing the H3K4me1 mark. The smallest cluster CS6 contains 

44 aligned loci, suggesting that the patterns occur frequently, and may likely be found outside of the 

ENCODE regions. At the same time, loci in the same cluster also share similar profiles for functional 

marks (RNAPII, TAF250, p300), which were not the criteria used by ChromaSig. This enrichment of 

functional marks implies that the clusters group together functionally related genomic loci. 

 

Comparing ChromaSig clusters to clusters from a supervised learning method 

 

To assess the performance of ChromaSig in finding distinct chromatin signatures, I compare 

ChromaSig signatures to those recovered by a supervised learning approach. Using a training set of 

chromatin signatures at promoters and enhancers, I previously predicted 198 promoters and 389 

enhancers [15]. Because this method relied on a sliding window approach that considers aligning 

chromatin signatures from both strands, each set of predictions should be aligned and oriented. To find 

distinct clusters of histone modifications on the basis of the nine chromatin marks studied here, I 

perform k-means clustering on the chromatin modifications near each of these two sets of predictions, 

giving promoter clusters SP1-4 and enhancer clusters SE1-4 (Figure 5-3A-B). 
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To assess the quality of ChromaSig clustering and alignment, I compare the clusters of 

predicted enhancers and promoters that recover at least 25% of the loci from each ChromaSig cluster 

(Figure 5-4, Figure 5-5). The two ChromaSig clusters CS2 and CS7 show striking similarity with 

clusters SE3 and SE4, respectively (Figure 5-4B, Figure 5-5B). Remarkably, even without a training 

set, ChromaSig employing an unsupervised learning method recovers chromatin signatures found by a 

supervised learning technique. 

 

This picture changes with ChromaSig cluster CS1, which is recovered by SP3 and SP4. All 

three of these clusters are enriched with the same chromatin modifications, indicating that the two 

methods perform similarly, at least at a coarse scale. But interestingly, while the asymmetric patterns 

SP3 and SP4 are distinct, they appear to be mirror images of each other, and are likely the same pattern 

observed in opposite directions. Since ChromaSig considers strand orientation in its alignment, cluster 

CS1 is essentially a merge of these two mirrored clusters, forming a single distinct, consistent, and 

asymmetric pattern (Figure 5-4A). Thus, patterns recovered by ChromaSig are less redundant. Also, 

cluster CS8 contains only H3K4me1 enrichment, and the only cluster that recovers it also contains 

numerous loci enriched in H3K18ac and H3K27ac (Figure 5-4C). This, together with the fact that 

clusters CS4-6 are not recovered by any of clusters SP1-4 and SE1-4, indicate that ChromaSig can find 

distinct patterns not found by this supervised learning method. 

 

ChromaSig clusters preserve pattern asymmetry, are better aligned, are less redundant, contain 

loci with more consistent patterns, and contain unique patterns that are not found by the supervised 

learning method. Most importantly, ChromaSig does not require the construction of training sets, nor 

does it require the specification of arbitrary parameters such as the number of clusters to find. Instead, 

ChromaSig finds the natural groupings of the data, creating new clusters as necessary. 
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ChromaSig identifies known patterns at promoters and enhancers 

 

To date only a handful of distinct histone modification patterns have been broadly associated 

with specific functions. These include active promoters that are generally marked by the presence of 

H3K4me3 but absence of H3K4me1, and enhancers marked by the presence of H3K4me1 but absence 

of H3K4me3 [3,13,15]. To assess whether ChromaSig clusters of chromatin signatures correspond to 

specific biological functions, I first compare them to existing genome annotation.  

 

Transcription start sites (TSS): Catalogs of transcription start sites (TSSs) are one of the 

most abundant and nearly complete annotations for human genomic elements. Of the 559 unique Refseq 

TSSs [24] in the ENCODE regions, 208 (37.2%) are proximal (hereafter defined as within 2.5-kb) to 

cluster CS1, far more than any other cluster (Figure 5-6A). To assess the significance of this overlap, I 

compare with 100 random sets of clusters of the same size, sampled from regions on the ChIP-chip 

array to avoid biases from probe-poor regions, giving a p-value of 3.2E-141 assuming a Gaussian 

distribution. The majority of Refseq TSSs are not recovered, as roughly half of them do not contain 

enrichment of these histone modifications [15]. 

  

Promoter and enhancer predictions: In Chapter 2, I use the same dataset but with a 

supervised learning approach to predict active promoters and enhancers [15]. A majority (62.6%, p < 

1.0E-300) of the predicted active promoters are proximal to cluster CS1 (Figure 5-6B). In addition, the 

enhancer predictions generally fall into clusters CS2-3 and CS6-8 (Figure 5-6C). These results indicate 

that cluster CS1 is highly enriched in promoters containing the active chromatin marks, while clusters 

CS2-3 and CS6-8 are enriched in HeLa-marked enhancers. 

 

DNase I hypersensitivity (HS) sites: DNase I hypersensitivity is a hallmark for many types of 

cis-regulatory elements. Using a list of putative HS sites found from high-throughput, high resolution 

DNase-chip experiments [25], I find significant enrichment of HS sites at clusters CS1 (p = 6.7E-165), 
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CS2-3 (pCS2 = 8.4E-36, pCS3 = 7.3E-16), and CS6-7 (pCS6 = 7.1E-6, pCS7 = 2.5E-7) (Figure 5-6D), 

consistent with their proposed function as promoters and enhancers. On the other hand, clusters CS4-5 

shows marked depletion of HS sites (pCS4 = 9.7E-9, pCS5 = 3.7E-4). 

 

Distinct chromatin signatures associated with distinct functions 

 

I recover several distinct chromatin signatures associated with predicted HeLa enhancers. CS8 

is only enriched in H3K4me1, while CS7 also contains H3K18ac and H3K27ac enrichment. In addition 

to these marks, clusters CS2-3 also have H3K4me2 enrichment, with CS2 being more acetylated than 

CS3. As the remaining cluster CS6 is the only one to have less than 25% of its loci recovered by 

predicted enhancers and also has the weakest enrichment of the enhancer hallmark H3K4me1, it may 

contain loci other than enhancers and I exclude CS6 from this analysis.   

 

If the histone code hypothesis is true, I would expect functional differences between enhancers 

marked by different signatures. To assess if the different enhancer-like clusters also have distinct 

functional roles, I examine enrichment in binding sites for a variety of transcription factors and co-

activators mapped in HeLa. I notice that binding sites for the transcription factor c-Myc is significantly 

enriched at clusters CS2 and CS3 (pCS2 = 4.6E-50, pCS3 = 3.6E-7) (Figure 5-7A). Visually comparing the 

chromatin modifications at these clusters which have c-Myc enrichment to clusters CS7-8 that lack c-

Myc enrichment, I observe that CS2-3 have enrichment of H3ac, H4ac, and H3K4me2, while these 

chromatin marks are absent in E3-4. Thus, one of these marks may be important to c-Myc function. In 

contrast, the co-activator p300 is highly enriched at clusters CS2, CS3, and CS7 (pCS2 = 1.5E-75, pCS3 = 

4.1E-8, pCS7 = 3.3E-8) (Figure 5-7B). Strikingly, the only cluster lacking p300 enrichment, CS8, is also 

the only cluster to lack enrichment of H3K18ac and H3K27ac, suggesting a connection between these 

chromatin marks and p300 activity. Finally, binding sites for a different co-activator MED1 are only 

enriched at clusters CS2 and CS7 (pCS2 = 5.4E-50, pCS7 = 4.9E-4) (Figure 5-7C), distinct from binding 
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of p300 and c-Myc. These results suggest that enhancers marked by different chromatin signatures have 

unique functional roles dictated by distinct protein complexes. 

 

ChromaSig identifies other potential regulatory sequences  

 

Outside of promoters and enhancers, current knowledge on common histone modification 

patterns is sparse. ChromaSig identifies two novel signatures CS4-5 marking sites of unknown function, 

as well as CS6 which is only slightly recovered by enhancer predictions. To assess the possible 

functional significance of these genomic sites, I first analyze sequence conservation. Here, I use 

PhastCons scores from multiple alignments of 7 vertebrate genomes (chimp, mouse, rat, dog, chicken, 

fugu, and zebrafish) and human [26] to determine the amount of between-species conservation of each 

cluster (Figure 5-8). Conservation scores for clusters CS4-6 are generally significantly greater than that 

expected at random (pCS4 = 9.6E-5, pCS5 = 7.8E-2, pCS6 = 1.6E-3, as assessed by the Wilcoxon signed 

rank test compared to 10000 random sites). Turning to RegPot, which scores the regulatory potential of 

regions in the human genome, I find that these clusters also have greater regulatory potential than that 

expected at random (pCS4 = 3.5E-11, pCS5 = 2.1E-2, pCS6 = 1.6E-7). Together, these results suggest 

clusters CS4-6 contain biologically functional loci. 

 

Clusters CS4-5 are generally depleted of all histone modifications, as well as the functional 

marks RNAP II, TAF1, and p300 (Figure 5-2). The overlap of cluster CS4 at Refseq TSSs (Figure 

5-6A) and the lack of overlap at active promoters (Figure 5-6B) suggest that some CS4 sites may 

contain inactive TSSs. To assess this, I examine enrichment of clusters at promoters of expressed and 

unexpressed genes (Figure 5-9A-B). I observe depletion of clusters CS4-5 at the 5’ ends of expressed 

genes (pCS4 = 7.5E-4, pCS4 = 1.6E-2), and CS4 is actually enriched at promoters of unexpressed genes 

(pCS4 = 2.4E-2). Thus, some members of CS4 may be inactive promoters. I also observe significant 

enrichment of cluster CS6 at promoters of unexpressed genes (p = 1.7E-3) (Figure 5-9B). This suggests 
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that, in addition to containing enhancers, this cluster of evolutionarily conserved sequences that are 

marked by HS in HeLa cells may also contain inactive promoters. 

 

As the majority of clusters CS4-5 are not explained by promoters, I next ask if these clusters 

recover other distal regulatory elements. The depletion of HeLa HS sites in CS4-5 (Figure 5-6D) 

suggests that these clusters should also be depleted of transcription factor binding sites (TFBSs). But 

when I examine the overlap with STAT1 binding sites in HeLa cells treated with IFN-γ (Chapter 4) 

[22], I observe striking enrichment with cluster CS4 (p = 5.4E-5) (Figure 5-9C). Interestingly, while 

ChromaSig clusters are derived from HeLa chromatin profiles, the STAT1 overlap occurs in a different 

cellular context, suggesting that cluster CS4 may harbor TFBSs not bound in HeLa cells. 

 

The PreMod database [27] contains 1655 putative conserved TF modules in the ENCODE 

regions. As PreMod is determined by static sequence data, its sites represent TFBSs under various 

cellular conditions. To test the hypothesis that clusters CS4-5 mark TFBSs not bound in HeLa cells, I 

test the enrichment of these clusters at PreMod sites distal to HeLa HS sites. Interestingly, I find that 

CS4 members are enriched in these sites (pCS4 = 7.6E-5), suggesting that this cluster contains sites that 

potentially bind TFs, but not in HeLa cells (Figure 5-9D). As an independent method to support this 

result, I combine HS sites previously mapped in six non-HeLa cell lines [25,28]. Removing those sites 

near HeLa HS sites, I find significant enrichment with clusters CS4 and CS5 (pCS4 = 1.4E-4, pCS4 = 

3.0E-2) (Figure 5-9E). Finally, I compare clusters CS4-5 with enhancers predicted in four cell types 

[22], using a previously published chromatin signature-based method [15]. Of those enhancers not 

marked by HS in HeLa cells, I observe significant enrichment at clusters CS4-5 (pCS4= 3.7E-2, pCS5 = 

7.7E-3) (Figure 5-9F). Together, these results suggest that ChromaSig clusters having novel chromatin 

signatures also contain regulatory sequences. 
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ChromaSig identifies distinct chromatin signatures in genome-wide ChIP-Seq data 

  

So far, I have shown that ChromaSig can find distinct chromatin signatures using ChIP-chip 

data spanning the ENCODE regions. But the question remains as to whether ChromaSig is applicable 

on a genome-wide level or on ChIP-Seq data from next-generation sequencing. To address this, I focus 

on a recently published study by Barski et al. which used ChIP-Seq to map the genome-wide 

distributions of 21 chromatin marks in CD4+ T cells [18]. I identify 16 clusters containing distinct 

chromatin signatures spanning 49340 genomic loci (Figure 5-10). Using hierarchical clustering with a 

Euclidean distance measure to categorize the average profiles of each cluster reveals that there are 

essentially two main categories of genomic elements. One class, GW1-10, contains combination of the 

activating marks H3K4me1/2/3 and H2BK5me1. Another class, GW11-16, are more prevalently 

marked by the repressive marks H3K9me3, H3K27me3, and H3K36me3, and H3K79me3. 

 

There are 5 clusters significantly enriched for promoters (Figure 5-11A), each with a distinct 

combination of chromatin marks. To assess significance, I compare with 100 random sets of clusters of 

the same size, sampled from non-repeat masked regions of the genome. In addition to being the only 

promoter cluster enriched in H4K20me1, GW1 contains the strongest enrichment of H3K4me3 with a 

corresponding wide valley of H3K4me1 enrichment, in contrast to GW7 which has weaker H3K4me3 

enrichment followed by a narrower H3K4me1 enrichment profile and GW5 which contains even 

weaker enrichment of these marks. Of the remaining promoter-associated clusters, GW8 contains 

"bivalent" promoters enriched in active H3K4me3 and repressive H3K27me3 marks [29], while GW16 

is mainly enriched in the repressive marks H3K9me3, H3K27me3, and H3K79me3. 

 

Enrichment of H3K36me3 has been associated with the 3' ends of highly expressed genes [18]. 

Consistent with this, I observe that GW11-12, which contain the strongest enrichment of H3K36me3, 

are also enriched at Refseq 3'-ends (Figure 5-11B). While the vast majority of histone modifications at 
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these two clusters are similar, it is also clear that GW11 is more enriched in H3K9me1 and H4K20me1 

than GW12. 

 

Recently, Boyle et al. mapped DNase I hypersensitive sites genome-wide in CD4+ T cells 

[30]. Here, I observe that clusters GW1-10, which generally contain active marks, are all enriched in 

DHS sites. In contrast, the remaining clusters GW11-16 marked by repressive marks all lack DHS 

enrichment (Figure 5-11C). Thus, GW1-10 likely contain regulatory elements functioning in CD4+ T 

cells. Mirroring this observation, clusters GW1-10 are also generally enriched in known regulatory 

elements as annotated by ORegAnno [31] (Figure 5-11D). 

 

This analysis reveals possible functional roles for GW1-12 and GW16. Like these clusters, 

each remaining cluster contains loci that share a consistent chromatin signature, suggesting that each 

cluster contains loci that may function similarly. Interestingly, GW13-16 are all consistently marked by 

repressive chromatin marks, and in particular the heterochromatin mark H3K9me3. But unlike large 

domains of heterochromatin, GW13-16 appear to be localized to small heterochromatic loci spanning 

less than 5 kb. To assess possible functionality for GW13-15, I next turn to sequence conservation. 

Surprisingly, these clusters and GW16 are actually less conserved than expected at random (p < 1e-15) 

(Figure 5-11E). Thus, GW13-16 contain quickly evolving but consistently marked, locally 

heterochromatic regions of the genome, though their specific functions remain unknown. 

 

Discussion 

 

Large-scale maps of histone modifications provide a global view of epigenetic status and allow 

investigation of the influence of epigenetics in development and disease. Thanks to the development of 

large scale experimental approaches including ChIP-chip and ChIP-seq [16,32], datasets of histone 

modification profiles are rapidly accumulating. However, while numerous methods have been 
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developed to identify the binding locations of transcription factors (TFs) from these data [19,20,21,33], 

methods for analysis of histone modification profiles are still lacking due to unique challenges that have 

not been encountered with TF data. Binding sites for TFs are generally discrete peaks and are sparsely 

scattered throughout the genome [19], whereas histone modifications are often repeated over many 

consecutive nucleosomes [1,3]. As such, finding regions of interest in a histone modification landscape 

is quite different from finding TF hits. While using standard peak-finding on histone modifications is 

possible, this approach suffers from several drawbacks. First, peak-finding ignores loci depleted of 

binding signal, which can be important in mapping nucleosome-depleted regions [15]. Second, analysis 

of histone modification data is focused on identifying a specific pattern in regions often spanning 

thousands of base pairs (bps) while peak finding for TFs is generally focused on much smaller regions. 

Third, peak finding ignores the binding profile’s orientation, but the orientation of asymmetric histone 

patterns can be quite functionally revealing [13,15]. Finally, peak-finding treats different proteins 

independently, ignoring the correlation of different histone modifications, and thereby reducing the 

likelihood of discovering novel biological insights from the combinatorial presence of multiple histone 

modifications [13,15]. 

 

In this study, I introduce a strategy called ChromaSig to find commonly occurring chromatin 

signatures given a landscape of histone modification profiles. Using an unsupervised learning approach, 

ChromaSig simultaneously clusters, aligns, and orients chromatin signatures without using any training 

sets or external annotations. Using histone modification data alone, ChromaSig is able to distinguish 

subtle differences in chromatin signatures, allowing it to find natural groupings of the data without 

relying explicitly on heavily constraining parameters such as the number of expected clusters, which 

can severely hamper pattern discovery. Interestingly, even with this limited input, ChromaSig recovers 

chromatin signatures similar to a previously published supervised learning method that used high-

quality curated training sets. In addition to discovering new chromatin signatures, the ChromaSig 

clusters preserve pattern asymmetry, are better aligned, and are less redundant. 
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ChromaSig is sensitive enough to recover known histone modification patterns for active 

promoters and enhancers. This recovery of known patterns further suggests that the novel patterns are 

real. This method is also able to clearly distinguish between different classes of enhancers based on 

chromatin modifications. Interestingly, I find that different functional activities of associated with 

enhancers, such as binding of specific co-activators and transcription factors, are linked to specific 

histone modifications present at the enhancers. While the mechanism for this phenomenon is unclear 

and will require further study, it is tempting to speculate that additional maps of chromatin marks and 

transcription factors in HeLa cells may uncover more specific classes of enhancer chromatin signatures 

associated with more specific functions, lending further support to the histone code hypothesis. This 

phenomenon may also occur at other genomic elements such as promoters and insulators.  

 

ChromaSig also recovers several novel clusters CS4-5, which are simultaneously depleted of 9 

chromatin modification marks and 3 general transcription factors. Such depletion may correspond to 

special chromatin structures that are generally resistant to immunoprecipitation.  Indeed, depletion of 

ChIP/Input signals at these loci is also observed in independent ChIP-chip experiments against STAT1, 

c-Myc and other transcription factors using HeLa S3 cells [15,34]. However, I find that these sites 

contain evolutionarily conserved sequences and are enriched in inactive promoters and TFBSs. These 

observations suggest that clusters CS4-5 contain potential regulatory elements. 

 

Application of ChromaSig genome-wide recovers only 16 distinct chromatin signatures. With 

the 21 different histone modifications studied here, the number of different possible combinations is 

2^21. Strikingly, ChromaSig reveals that the number of frequently-occurring histone modifications is 

actually quite small in humans, a result mirrored in yeast [13], and some chromatin signatures occur 

much more frequently than others. Notably, GW1-10 are all enriched in DNase I hypersensitive sites, 

indicating they are likely to mark function genomic elements in CD4+ T cells. Of these, GW1/5/7/8 are 

highly enriched in H3K4me3, and consistent with this, are also enriched in promoters. The remaining 

hypersensitive clusters are enriched in known regulatory elements, some of which may be enhancers. 
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Consistent with this, many of these clusters contain stronger enrichment of H3K4me1 than H3K4me3. 

Extending from results focused on the ENCODE regions, I hypothesize that these different clusters are 

bound by a different combination of transcription factors and co-activators. 

 

In recent years, numerous studies have used the genome sequence, along with high-throughput 

expression and transcription factor ChIP data, to characterize regulatory elements [21,35]. As the 

epigenetic code offers an abstraction over the genetic code, using it alone may be viable in the study of 

some functional genomic elements – including genes, enhancers, repressors, insulators, and other 

regulatory elements. As the availability of large-scale data for chromatin marks increases, the ability of 

methods such as the one presented here to concisely describe the underlying chromatin signatures, 

thereby abstracting away irrelevant or redundant data, will become increasingly more critical. Future 

efforts to unify both epigenetic and genetic content will be quite powerful in further identifying and 

characterizing regulatory elements that have eluded current methods. 
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Figures and Tables 

 

 

 

Scheme 5-1: Overview of ChromaSig 

 N = number of loci 
 D = the set of all assigned loci, initially empty 
 Repeat while (N ≠ |D|) 
  Find a seed motif M of loci ∉ D sharing a chromatin signature 
  Repeat 5 times 
   For each locus i ∉ D 
    Compute the likelihood of adding i into M 
    Choose to exclude i from M, or add i to M in a  
                                     Specific location and orientation 
   Update M 
  D = D ∪ M 
  Print M 
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Figure 5-1: Schematic overview of ChromaSig. 

In Step 1, I scan genome-scale histone modification maps to find signal-rich loci that potentially contain 
chromatin signatures. In Step 2, I generate a seed pattern to initialize ChromaSig. In Steps 3 through 5, I 
visit each enriched locus in turn, enumerate all possible 4-kb windows spanning at least 75% of the 
locus, and align each window to the seed. This is repeated until each locus has been visited 5 times. 
Loci that align well to the seed are added to the seed. 
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Figure 5-2: ChromaSig clusters recovered from 9 chromatin marks mapped by ChIP-chip in 
HeLa cells on ENCODE arrays. 

Heatmaps (top) and average histone modification profiles (bottom) for each cluster output by 
ChromaSig. Each horizontal line in the heatmap represents chromatin marks for a single locus. The 
window size for each mark is 10-kb. Nine histone marks used by ChromaSig and three independent 
functional marks (RNAPII, TAF250, p300) are presented. To organize these clusters visually, I use 
hierarchical clustering with a Euclidean distance metric (left). 
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Figure 5-3: Heatmaps of promoter and enhancer predictions from Chapter 2. 

Heatmaps of chromatin modifications and functional marks found at (A) promoter and (B) enhancer 
predictions, after performing k-means clustering on the nine chromatin marks (k=4). 
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Figure 5-4: Comparison of ChromaSig to the supervised clustering method from Chapter 2. 

(A) Heatmaps (top) and average histone modification profiles (bottom) for cluster CS1, together with 
those for SP3 and SP4, which recover CS1 (33.3% recovery by SP3 and 31.1% recovery by SP4). (B) 
Heatmaps (top) and average histone modification profiles (bottom) for cluster CS2, together with those 
for SE3, which recovers CS2 (61.2% recovery by SE3). (C) Heatmaps (top) and average histone 
modification profiles (bottom) for cluster CS8, together with those for SE4, which recovers CS8 (26.5% 
recovery by SE4).  The color of each curve is indicated by the color of the cluster label. 
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Figure 5-5: Comparison of ChromaSig clusters to clusters from Chapter 2, continued. 

Heatmaps (top) and average histone modification profiles (bottom) for ChromaSig clusters (A) CS3 and 
(B) CS7, together with those clusters in Heintzman et al which recover the ChromaSig clusters. 
Comparisons for CS1-2 and CS8 can be found in Figure 3. Clusters CS4-6 are not recovered by clusters 
in Chapter 2. The color of each curve is indicated by the color of the cluster label. 
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Figure 5-6: Overlap of ChromaSig clusters with known functional sites in the human ENCODE 
regions. 

Percentage of (A) 559 unique Refseq TSSs [24], (B) 198 putative active promoters [15], (C) 389 
putative enhancers [15], and (D) 1042 hypersensitive sites [25] that are found within 2.5-kb to the 
aligned loci, as compared to 100 sets of random sites. 
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Figure 5-7: Overlap of ChromaSig clusters with transcription factors and coactivators mapped in 
HeLa cells in the ENCODE regions. 

Percentage of (A) 499 c-Myc [36], (B) 125 p300 [15], and (C) 78 MED1 [15] binding sites found 
within 2.5-kb to aligned clusters, as compared to 100 sets of random sites.
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Figure 5-8: ChromaSig clusters are evolutionarily conserved. 

Distribution of maximum PhastCons conservation scores [26] over a 1-kb window centered at the 
aligned loci, as compared to 10000 random sites.
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Figure 5-9: Clusters CS4-5 contain regulatory elements. 

Percentage of the (A) promoters from expressed genes, (B) promoters from unexpressed genes, and (C) 
STAT1 binding sites in IFN-γ treated HeLa cells that are within 2.5-kb of the aligned loci. Percentage 
of (D) PReMod sites [27], (E) combined 6-cell type HS sites [25,28], and (F) combined 5-cell type 
enhancer predictions distal to HeLa HS sites that are within 2.5-kb of aligned loci. All overlaps are 
compared to 100 sets of random sites. 
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Figure 5-10: ChromaSig clusters recovered from 21 histone marks mapped by ChIP-Seq in CD4+ 
T cells genome-wide. 

ChromaSig recovers 16 clusters spanning 49340 genomic loci. Each cluster is represented by a heatmap 
summarizing ChIP-Seq enrichment for all loci in the cluster. The window size for each mark is 10-kb. 
To organize these clusters visually, I use hierarchical clustering with a Euclidean distance metric (left). 
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Figure 5-11: Overlap of genome-wide clusters with known annotations. 

Percentage of each cluster within 2.5-kb of (A) 21211 Refseq 5΄ ends [24], (B) 20754 Refseq 3΄ ends 
[24], 95709 DNase I hypersensitive sites mapped in CD4+ T cells [30], and (D) 21959 regulatory sites 
from the ORegAnno database [31], as compared to 100 sets of random sites. (E) Distribution of 
maximum PhastCons scores [26] over a 1-kb window centered at ChromaSig aligned sites, as compared 
to 10000 random sites.
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Chapter 6 : Discovery and annotation of functional 

chromatin signatures in the human genome 
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Abstract 

 

Transcriptional regulation in human cells is a complex process involving a multitude of 

regulatory elements encoded by the genome [1]. Recent studies have shown that distinct chromatin 

signatures mark a variety of functional genomic elements, and that subtle variations of these signatures 

mark elements with different functional specificities [2,3,4]. To identify novel chromatin signatures 

spanning lesser-studied loci, I apply a de novo pattern finding algorithm [4] to genome-wide maps of 

histone modifications [5]. I recover previously known chromatin signatures associated with promoters 

and enhancers [6]. I also observe several distinct chromatin signatures with strong enrichment of 

H3K36me3 marking exons. Closer examination reveals that H3K36me3 is found on well-positioned 

nucleosomes specifically at exon 5’ ends, and that this modification is a global mark of exon expression 

that also correlates with alternative splicing. Additionally, I observe strong enrichment of H2BK5me1 

and H4K20me1 at highly expressed early exons but weaker enrichment at late exons, in contrast to the 

opposite distribution of H3K36me3-marked exons. Finally, I also recover frequently occurring 

chromatin signatures displaying strong local enrichment of repressive (H3K27me3) and 

heterochromatic (H3K9me2 and H3K9me3) histone modifications that mark repeat-rich regions of the 

genome for distinct modes repression. Together, these results highlight the rich amount of information 

encoded in the human epigenome and underscore its value in studying gene regulation. 

 

Introduction 

 

The genome sequence is a static entity defining the possible output of every cell type in the 

human body. In contrast, chromatin structure dynamically dictates which genomic regions are 

functional in a particular cell, how they function, and when. Over 100 different histone modifications 

are known to exist, and a single nucleosome can contain many modifications. While the number of 
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possible combinations of histone modifications exceeds the number of nucleosomes in the human body, 

to date only a small number of histone modification patterns have been discovered. 

 

Several classes of regulatory elements are marked by different chromatin signatures. Notably, I 

recently observed distinct chromatin signatures at active promoters and enhancers [6]. Importantly, not 

only are these signatures descriptive of both elements, but they are also predictive. Numerous studies 

have also observed that slight variations in chromatin signatures can distinguish different specificities of 

the same regulatory element [2,4]. For example, active promoters are generally marked by H3K4me3, 

repressed promoters by H3K27me3, and poised promoters by both marks [2]. Similarly, different 

chromatin signatures mark enhancers bound by different classes of transcription factors and co-

activators [4]. In a more recent study, several chromatin signatures were also found at promoters and 

enhancers using genome-wide chromatin maps [3]. 

 

These observations prompted me to systematically examine the chromatin signatures that exist 

in known and putative regulatory elements in the human genome. The goal is to explore whether other 

frequently occurring chromatin signatures exist, and whether there are functional consequences of these 

signatures. Focusing on 21 histone modifications mapped in CD4+ T cells [5], I find only a handful of 

distinct chromatin signatures at promoters, and that they correlate with gene activity. I then examine 

signatures spanning almost 50,000 regions in the human genome that are distal to known regulatory 

sites. I recover 7 distinct chromatin signatures, several containing enrichment of H3K36me3 that has 

been recently linked to marking exons [7]. Upon further inspection, I observe that H3K36me3 is most 

strongly enriched at a well-positioned nucleosomes located at the 5’ ends of exons. Examination of 

exonic expression data reveals that stronger enrichment of H3K36me3 correlates with increasing exon 

activity, in a manner consistent with alternative splicing of exons. I also recover two distinct chromatin 

signatures rich in heterochromatic and repressive histone modifications marking distinct regions of the 

genome that are likely associated with different modes of repressing the genome. 
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Results 

 

Chromatin signatures distinguish different classes of expressed promoters 

 

Loci sharing common regulatory functions may share similar chromatin signatures. To 

systematically identify chromatin signatures genome-wide, I examine different classes of regulatory 

loci in turn. These loci may contain chromatin signatures, but they may not be aligned or even oriented 

in the same direction. I apply an unbiased clustering and alignment method called ChromaSig [4] to 

find consistent chromatin signatures spanning these loci while simultaneously aligning and orienting 

their enrichment profiles, focusing on histone modification maps profiled recently in CD4+ T cells [5]. 

As a proof of principle that this approach yields biologically significant results, I first studied 

promoters. 

 

While chromatin signatures at promoters have been studied extensively, we still do not have a 

complete picture of all the distinct, commonly occurring chromatin signatures spanning all promoters. 

As such, our understanding of how different signatures relate to gene expression is incomplete. To 

address this, I apply ChromaSig to the chromatin modifications near Refseq promoters [8]. I recover 14 

clusters spanning 18,533 promoters (Figure 6-1). Promoters in the same cluster share a consistent 

chromatin signature, and the chromatin signatures of different clusters are distinct. Some chromatin 

signatures at promoters are strikingly different. For example, P4 contains strong enrichment for various 

H3K4 methylations while P2 lacks these modifications. Other chromatin signatures are only subtly 

different. For example, P9 and P12 contain enrichment for the same chromatin modifications, but the 

pattern of enrichment is different, with P12 containing enrichment over a noticeably wider region. It is 

also evident that there is a high level of redundancy of histone modifications at promoters. Notably, 

H2AZ, H3K4me1, H3K4me2, H3K4me3, and H3K9me1 are either all found together or all absent 

together at promoters. 
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Previous studies have shown that there are at least three different classes of chromatin 

signatures at promoters: actively transcribed promoters marked by H3K4me3 but not H3K27me3, 

repressed promoters with H3K27me3 but not H3K4me3, and bivalent promoters having both these 

marks [2]. ChromaSig recovers all three of these previously known chromatin signatures: P8-14 have 

the active chromatin signature, P2 contains the repressed chromatin signature, and P4 has the bivalent 

signature. 

 

Next, I wondered if different signatures correspond to different gene expression activities. On 

the basis of gene expression [9], I observe essentially three super-classes of promoters: P1-7 are 

generally repressed in CD4+ T cells, P9,11,13,14 show intermediate expression, and P8,10,12 are most 

highly expressed (Figure 6-1). Promoters with repressed and bivalent chromatin signatures are generally 

lowly expressed, while promoters with active chromatin signatures have intermediate to high levels of 

gene expression. Consistent with the high expression levels, P8,10,12 also contain the most enrichment 

of the elongation chromatin mark H3K36me3 and H4K20me1 (Figure 6-1) [5,10]. Together, these 

results show that ChromaSig can reliably detect distinct chromatin signatures at promoters with likely 

distinct functional specificities. 

 

Distinct chromatin signatures at known regulatory elements 

 

While transcriptional regulation occurs at the level of promoters, it is also clear that the action 

of promoter-distal regulatory elements is essential to controlling gene expression [1]. Like promoters, 

the activity of these regulatory elements is likely dependent on chromatin structure. To determine what 

chromatin signatures exist at distal regulatory elements, I apply ChromaSig to several classes of 

regulatory elements in turn: enhancers, insulators, Refseq 3’ ends, and DNase I hypersensitive sites. 
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Enhancers: When active, enhancers are bound by transcription factors and co-activators to 

increase gene expression at promoters [11,12]. Previously, I observed that enhancers are marked by 

strong enrichment of H3K4me1 and weak if any enrichment of H3K4me3, allowing development of a 

computational strategy to identify enhancers using this chromatin signature [6]. Applying this method 

to the genome-wide profiles of H3K4me1 and H3K4me3 in CD4+ T cells [5], I predict 32,237 

promoter-distal enhancers. To validate these enhancer predictions, I compare to two hallmarks of 

enhancers: DNase I hypersensitivity and sequence conservation. Almost half (44.5%) of the enhancer 

predictions are within 1-kb of a DNase I hypersensitive site [13], and about three-fourths of the 

predictions are recovered by some combination of hypersensitivity and conserved DNA sequence 

elements from the PhastCons database [14]. 

 

I have previously observed in the ENCODE regions that different variations of chromatin 

modifications exist at enhancers [15]. To assess if this is true on a global scale, I apply ChromaSig to 

align and cluster these predicted enhancers over the entire panel of chromatin modifications. This 

reveals 11 distinct chromatin signatures, all of which contain stronger enrichment for H3K4me1 than 

H3K4me3 (Figure 6-10). Like promoters, there also appears to be much redundancy of chromatin 

modifications at enhancers. For example, all chromatin signatures generally share enrichment for 

H2BK5me1, H3K4me2, H3K9me1, H3K27me1, and H3K36me1. Interestingly, the chromatin marks 

H2A.Z and H4K20me1 appear to be inversely correlated: E1-5 are enriched in H2A.Z but not 

H4K20me1, E6 has enrichment of both marks, and E7-11 are enriched in H4K20me1 but not H2A.Z. 

 

Insulators: CTCF is an insulator binding protein in mammals, and when bound prevents 

enhancers from interacting with promoters, thereby preventing activation [16]. Barski et al mapped 

CTCF binding in CD4+ T cells [5], and application of the Model-based Analysis of ChIP-Seq (MACS) 

peak finder reveals 27,110 CTCF binding sites genome-wide [17]. To focus on novel chromatin 

signatures, I apply ChromaSig to the 17,328 CTCF sites distal to Refseq TSSs and predicted enhancers, 

revealing seven distinct signatures (Figure 6-11). The only consistent feature of CTCF binding sites is 
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enrichment of H2A.Z, consistent with previous observations [18]. However, unlike the patterns 

observed at promoters and enhancers, enrichment for other chromatin marks at CTCF binding sites is 

generally weak, suggesting that the remaining panel of chromatin marks do not functionally 

compliment CTCF. The exceptions are C4 and C5, which contain enrichment of H3K4me3 and RNA 

Pol II, and may be promoters not in the Refseq database. 

 

Refseq 3’ ends: Transcription of pre-mRNA stops at the 3’ end of the gene. To find chromatin 

signatures at this genomic feature, I apply ChromaSig to 16,703 Refseq gene 3’ ends distal to Refseq 5’ 

ends [8]. I recover 12 distinct chromatin signatures. Like CTCF binding sites, enrichment of chromatin 

marks at Refseq 3’ ends is generally weak. In agreement with Barski et al [5], the most consistent 

feature found at the majority of 3’ ends is enrichment of H3K36me3, found in T1-7 (Figure 6-12). 

However, chromatin signatures at 3’ ends are not as well aligned as those at promoters, suggesting that 

these chromatin signatures may occur at some other genomic feature near 3’ ends, or alternatively that 

the 3’ ends are not as well annotated as promoters. 

 

DNase I hypersensitive sites: Recently, Boyle et al mapped nearly 100,000 DNase I 

hypersensitive sites genome-wide in CD4+ T cells using DNase-Seq [13]. Since DNase I 

hypersensitivity is a hallmark for active regulatory loci, I expected to find chromatin signatures at these 

sites. Applying ChromaSig to the 31,824 DNase I hypersensitive sites distal to Refseq TSSs, predicted 

enhancers, and CTCF binding sites, I recover 13 clusters (Figure 6-13). D1-D2 are only enriched in 

H3K27me1 and H3K36me3, resembling gene 3’ ends. Several signatures D3-10 display characteristic 

enrichment of H3K4me1/2/3 which I have observed at promoters and enhancers. These may be novel 

promoters or enhancers missed by the enhancer prediction method. For example, D3,6,9,10 are clusters 

with the strongest enrichment of H3K4me3, and 31.2% of these loci are recovered by multiply-

occurring CAGE tags [19], an almost 4-fold enrichment as compared to an expected 7.9% over random 

loci. The majority of DNase I sites D11-13 contain no noticeably strong enrichment of any chromatin 
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mark, indicating that either these genomic elements are enriched in other chromatin modifications not 

profiled by Barski et al [5], or that they are not enriched in any chromatin modifications. 

 

Distinct chromatin signatures distal to known regulatory elements 

 

Having observed chromatin signatures at important regulatory elements including promoters 

and enhancers, I next asked if other chromatin signatures exist that mark loci distal to known regulatory 

elements. By definition, places in the genome with chromatin signatures contain strong enrichment of 

various histone modifications. I identify 85,318 loci with strong ChIP enrichment of histone 

modifications, 50,183 of which are distal to promoters [8], gene 3’ ends [8], DNase I hypersensitive 

sites [13], CTCF binding sites [5], and sites containing an enhancer chromatin signature [6]. Applying 

ChromaSig to these sites, I recover 7 frequently-occurring chromatin signatures N1-7 spanning 47,874 

loci (Figure 6-2). Loci in the same cluster share the same consistent chromatin signature, and each 

cluster is defined by a distinct chromatin signature. The recovered signatures are also distinct from the 

previously defined H3K4me3-rich promoter and H3K4me1-rich enhancer signatures [2,6]. Compared to 

chromatin signatures from randomly aligned and oriented loci, the chromatin signatures observed are 

significantly better aligned than expected by chance, with p-values ranging from 10-18 to <10-300 (Table 

6-1). 

 

The strongest chromatin feature of these clusters is H3K36me3, known to mark the 3’ ends of 

genes [5] and more recently exons [7], and is enriched at N1, N2, and N4. The largest clusters 

recovered, N5 and N6, both contain enrichment of known repressive chromatin marks [5] including 

H3K27me2, H3K27me3, and H3K79me3. However, N5 is also enriched in H3K9me2 and H3K9me3, 

which are known to mark heterochromatic regions of the genome [5]. 
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Chromatin signatures mark exon 5’ ends 

 

I have found loci sharing frequently-occurring chromatin signatures, but it is unclear what 

function, if any, ties loci sharing the same chromatin signature together. To get clues to the possible 

function of these sites, I compare to known annotations. 

 

H3K36me3, which has been associated with elongating RNA polymerase II, is known to be 

enriched within the body of transcriptionally active genes [20,21], notably at the 3’ ends [5]. But since 

all the clustered loci are distal to gene 3’ ends, the H3K36me3-rich clusters must be marking another 

genomic feature. Noticing that the vast majority of loci in N1-4 are intragenic (Figure 6-14), I ask if 

these sites are biased towards exons or introns. I observe that 57.9% of N1 sites and 63.8% of N2 sites 

are either inside exons or within 1-kb of exon ends, while at random only 26% of the genic regions of 

the genome match these criteria. To see if H3K36me3 marks exons, I examine the enrichment of this 

chromatin mark at exons (Figure 6-8a-d). To examine only those exons unambiguously marked by a 

chromatin signature, I only consider an exon if it is the only exon within 1-kb of a cluster locus. I 

observe a striking enrichment of H3K36me3 at the 5’ ends of exons unambiguously marked by N1, N2, 

and N4. This enrichment decreases sharply upstream of the 5’ end, but more gradually into the exon 

body. This observation also holds for exons larger than 1-kb (Figure 6-9), indicating that the result is 

not biased by the relatively small exon sizes in the human genome [22]. These results suggest that the 

clusters with strong H3K36me3 enrichment mark exon 5’ ends, consistent with observations made by 

others [7]. 

 

H3K36me3 is a global marker of exon activity 

 

Having observed H3K36me3 at a handful of exons, I next ask if this chromatin mark is a 

global indicator of exon activity. Profiling H3K36me3 at a catalog of more than 250,000 distinct exons 
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[23], I observe peaks of enrichment at the majority of human exons in CD4+ T cells (Figure 6-3a). In 

the direction of transcription, H3K36me3 enrichment increases sharply at the 5’ end of the exon, and 

decreases more gradually in the body of the exon, in agreement with my previous observations. In 

contrast, neighboring introns show no such chromatin signature (Figure 6-3, Figure 6-15). The presence 

of this chromatin mark also correlates strongly with exonic expression (Figure 6-3), with highly 

expressed exons having more H3K36me3 enrichment than lowly or moderately expressed exons. 

Altogether, these results suggest that H3K36me3 is a global marker of exon activity. 

 

Stable nucleosome structure at exon 5’ ends 

 

In ChIP-Seq experiments, short directional reads are sequenced directly upstream and 

downstream of the genomic DNA bound by the protein of interest, allowing clear distinction between 

sense and antisense reads. This information can be used to offer unprecedented resolution of in vivo 

binding locations of the protein [17,24]. I will use this information to more finely resolve nucleosome 

structure at exons. Looking at the distribution of H3K36me3 tags at all human exons, I see that reads on 

the sense strand are highly enriched at the 5’ ends of exons, decreasing gradually towards the 3’ exon 

end (Figure 6-3b). In contrast, antisense reads are distributed in the opposite way, being sharply 

enriched near the 3’ ends of exons. 

 

From this information alone, it is difficult to conclude if the nucleosomes harboring 

H3K36me3 at exons are more fixed towards the exon 5’ or 3’ ends. Further confounding this issue is 

the fact that a typical nucleosome wraps between 145 and 147 bp of DNA [25], which is roughly the 

same size as the average human exon at 145 bp [22]. To resolve this issue, I next examine the same 

distribution of reads, but focusing on exons larger than 1-kb (Figure 6-3b). Again, I observe a clear 

enrichment of sense strand reads at 5’ exon ends. However, I also find that the highest enrichment of 

antisense reads is clearly inside the exon, slightly downstream of the 5’ end, while there is no 



176 

 

enrichment at exon 3’ ends. Thus, I conclude that the nucleosomes harboring H3K36me3 are more 

fixed towards the exon 5’ end. 

 

H3K36me3 correlates with alternative splicing  

 

As H3K36me3 at the 5’ ends of exons is a global mark of exon activity, I next wondered if the 

presence of this mark correlates with alternative splicing. To examine alternative splicing on a global 

scale, I focused on a list of 13,434 exons known to be alternatively spliced as cassette exons (UCSC 

Genome Browser “knownAlt” track) [26]. I examined two sets of transcripts. The “spliced in” set 

consists of cassette exons expressed at levels similar to neighboring upstream and downstream exons 

(|∆expr| = 0.5), and thus are likely to be included in a mature transcript. In contrast, the “spliced out” set 

consists of cassette exons expressed at lower levels than both upstream and downstream exons, and are 

likely excluded from the mature transcript (exprup,down - expralt > 1). For spliced in exons, I observe that 

the enrichment of H3K36me3 increases gradually from upstream to alternatively spliced to downstream 

exons (Figure 6-4a), consistent with previous results showing a 3’ bias in this chromatin mark [5]. 

However, H3K36me3 is noticeably depleted at spliced out exons as compared to both upstream and 

downstream exons (Figure 6-4b). These results suggest that, on a global scale, the presence of 

H3K36me3 at alternatively spliced exons correlates with inclusion of the exon in transcripts. 

 

H2BK5me1 and H4K20me1 mark highly expressed, early exons 

 

The initial scan revealed several classes of chromatin signatures marking exons, the largest of 

which are N1 and N2. Both of these contain enrichment for H3K36me3, but N1 contains stronger 

enrichment for H2BK5me1 and H4K20me1. This latter modification is known to be localized both at 

promoters and intragenic regions downstream of the promoters, with enrichment fading in the gene 
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body [5]. These observations raise the possibility that exons marked by N1 are early exons closer to 

promoters while N2 are late exons closer to the 3’ ends of genes. To test this hypothesis, I sorted the 

highly expressed exons above by distance to the transcription start site, and visualized the enrichment of 

histone modifications (Figure 6-5). As expected, the exons closest to the transcription start site (TSS) 

are all highly enriched in promoter modifications including H3K4me1, H3K4me2, and H3K4me3. In 

addition to H3K36me3, early exons not having these promoter marks are also enriched with 

H2BK5me1 and H4K20me1. This enrichment fades with increasing distance from the TSS. In contrast, 

H3K36me3 enrichment increases with increasing distance from the TSS, consistent with the above 

results (Figure 6-4a) and previous observations [5]. These results provide additional evidence for 

various chromatin modifications marking distinct exons in the human genome. 

 

Distinct classes of repressive chromatin signatures 

  

In addition to chromatin signatures N1-4, ChromaSig also identifies two chromatin signatures 

N5-6 having strong enrichment of repressive histone modifications (Figure 6-2). These two chromatin 

signatures are distinct, with N5 having stronger enrichment of heterochromatic marks H3K9me2 and 

H3K9me3. This subtle difference prompted me to ask if these signatures mark distinct regions of the 

genome. Indeed, I find that only 23.3% of N5 loci are intragenic, a notable depletion over the expected 

value of about 40% (Figure 6-14). In contrast, N6 loci are closer to the expected value at 36.3% 

intragenic. 

 

Sequence analysis suggests that the sequences underlying N5 and N6 are distinct. First, I 

compare to the PhastCons database containing over 2 million conserved elements in the human genome 

conserved over 28 mammalian genome s[14]. I find that N5 loci are significantly depleted of conserved 

elements (p = 7.12E-182) while N6 is significantly enriched (p = 2.09E-26) (Figure 6-6a). Given that 

heterochromatic histone modifications have been known to mark repetitive regions of the genome [27] 
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which are highly lineage-specific [22], the low conservation of N5 loci may be explained by enrichment 

for repetitive sequences. To test this hypothesis, I use RepeatMasker [28] to define repetitive bases 

within ±1-kb from each locus in N5-6. Indeed, 49.1% of N5 bases are repetitive, as compared to 32.1% 

of N6 bases (Figure 6-6b), suggesting that these two clusters may harbor different classes of sequences. 

To pursue this further, I next ask if the classes of repeats found in N5 are different from those found in 

N6. Counting the repetitive elements found within ±1-kb of each locus (Figure 6-6c-d), I find that N5 is 

significantly enriched for long terminal repeats (LTR) (p < 1E-300, Z-score = 39.7), while N6 is neither 

enriched nor depleted. For the SINE family of repeats, while both clusters are significantly depleted in 

Alu repeats (pN5 < 1E-300, ZN5 = 81.5 ;  pN6 = 4.76E-245, ZN6 = 33.4), only N6 is notably enriched in 

MIR repeats (p = 2.31E-177). Similarly, L2 LINE repeats and simple repeats are notably more enriched 

in N6 loci than N5 loci. These results suggest that N5 and N6 have different genic distributions and 

mark distinct sequences of the genome. 

 

N5 and N6 mark different domains of gene repression 

 

I next examine whether the different genic distributions and sequence preferences of N5 and 

N6 relate to gene expression. It is thought that the genome is organized into different domains of 

transcriptional activity, with the insulator binding protein CTCF defining the boundaries of these 

domains [16,29]. Therefore, I partition the genome into CTCF-defined domains and determine the 

enrichment of N5 or N6 loci in these domains as a function promoter activity. The distributions of N5 

and N6 enrichment are significantly different (p = 5.95E-26) (Figure 6-7a): N5 is more enriched than 

N6 in domains containing the most repressed genes (log expression <4), while domains containing 

repressed by slightly more expressed genes (log expression between 5 and 6) have higher enrichment of 

N6 loci than N5 loci. For moderately and highly expressed genes (log expression >6), the enrichment of 

both N5 and N6 loci are depleted relative to random. While it is not surprising that N5 and N6 are 

enriched near genes with low expression since they are both enriched in repressive histone 



179 

 

modifications, it is remarkable that these two chromatin signatures mark distinctly different populations 

of lowly expressed genes. One possibility is that N5 and N6 are present in different compartments of 

the nucleus. To test this, I examine the localization of these loci in lamina-associated domains (LADs), 

previously mapped in fibroblast cells and known to contain repressed genes and gene deserts. Indeed, 

more than 60% of N5 loci are in LADs, compared to only 37.4% for N6 loci (Figure 6-7b). This 62% 

difference in enrichment is all the more surprising given that the LADs were mapped in a different cell 

type. Taken together, these results suggest that N5 and N6 mark distinct domains of gene expression 

that may be explained by their enrichment in different nuclear compartments. 

 

Discussion 

 

In this study, I survey the global landscape of commonly occurring chromatin signatures in the 

human genome. I recover known signatures at well-studied elements such as promoters and lesser-

studied elements including enhancers. In addition, I find 7 distinct signatures spanning 47,874 genomic 

loci distal to known regulatory elements. In agreement with a previous study [7], I observe chromatin 

signatures marking exons, but show at a higher resolution that the 5’ ends of exons are specifically 

modified by H3K36me3. Furthermore, I show that the enrichment level of this mark directly correlates 

with exonic expression, a result that had only been implied before. In addition, I recover two distinct 

chromatin modifications N1 and N2 marking exons in the genome-wide scan. While both are enriched 

in H3K36me3, N1 is uniquely enriched in H2BK5me1 and H4K20me1, which directly coincides with 

N1 marking early exons and N2 marking late exons. 

  

Chromatin modifications have long been implicated in marking different transcriptional 

domains of the genome. For example, H3K4me3 is canonically known to mark actively transcribed 

promoters[2,20,30,31], while H3K27me3 is present at repressed promoters[2]. In contrast, H3K36me3 

is enriched throughout the coding regions of actively transcribed genes[30,32]. These results 
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additionally implicate chromatin modifications in regulating splicing, a process until recently thought to 

be decoupled from transcription both physically and temporally. In yeast, H3K36me3 is deposited by 

Set2, which is associated with the elongation form of RNA polymerase [33,34]. The observation that 

H3K36me3 marks exons, a part of gene structure in the realm of splicing rather than transcription, 

implies that chromatin structure play important roles in regulating splicing as well as transcription. 

 

A large body of work on splicing regulation has been focused on how sequence-specific 

proteins binding directly to pre-mRNAs affect splicing [35,36]. But the static and highly degenerate 

natures of sequence elements associated with splicing leave unanswered the question of how cell-type 

specific splicing is achieved. However, recent discoveries physically linking RNA polymerase to the 

splicing machinery has shifted attention to the roles of the transcription machinery in regulating splicing 

[35,37]. This has led to two models describing co-transcriptional splicing: a kinetic model and a 

recruitment model[35]. While both models emphasize spliceosome activity during transcription, neither 

one fully explains how cell-type specific splicing is achieved. The observations that distinct chromatin 

signatures are present at exons, and that different signatures are associated with either inclusion or 

exclusion from mature mRNAs, suggest a role of chromatin state in splicing regulation. One possibility 

is that the writing and reading of dynamic chromatin signatures may direct splicing events. While this 

model is attractive, further studies will be necessary to verify this hypothesis. 

 

I also recover several chromatin signatures enriched in repressive and heterochromatic histone 

modifications marking distinct populations of repetitive elements. Surprisingly, these signatures are 

associated with different modes of gene repression. One possible explanation for this phenomenon is 

that N5 loci, which contain heterochromatic chromatin modifications, are more highly enriched in 

nuclear lamina-associated domains than N6 loci. Thus the N5 chromatin signature may specifically 

repress LADs, while N6 signature represses other domains. It is possible that these two different levels 

of domain repression offer a way to control gene induction, with heterochromatin-rich N5 domains 

being more permanently repressed than heterochromatin-free N6 domains. 
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These results show that studying the human genome on the basis of chromatin signatures is a 

viable method to cataloging regulatory elements in the genome in a global, unbiased, and systematic 

way. Future efforts to map chromatin modifications in the human genome may allow us to define more 

chromatin signatures marking novel regulatory elements or different functional specificities of known 

regulatory elements. 

 

Methods 

 

Data normalization 

 

Genome-wide distributions of histone modifications were obtained from Barski et al [5]. As in 

Chapter 5, I filtered reads for uniqueness and redundancy, partitioned the genome into 100-bp bins, and 

binned these reads. As the number of reads for each mark was highly variable, normalization was 

necessary to facilitate comparison. For each bin i and mark h, I normalized the number of reads in this 

bin xh,i by: 
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Finding ChIP-enriched loci distal to known regulatory elements. 

 

I identified regions of width 2-kb containing enrichment for histone modifications strongly 

deviating (p = 0.0001) from the background distribution of ENCODE regions. I removed any enriched 

locus closer than 2.5 kb to another enriched locus to remove redundancy. I then removed loci within 2.5 
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kb to regulatory loci at promoters [8], gene 3’ ends [8], CTCF binding sites [5], DNase I hypersensitive 

sites [13], and sites having an enhancer chromatin signature [6]. 

 

Finding chromatin signatures 

 

I searched for chromatin signatures of size 4-kb within a region ±1-kb around the ChIP-

enriched loci, using ChromaSig [4] with a background prior p2A = 0.01 and a standard deviation factor 

σanother = 1.75. To focus only on the most frequently-occurring chromatin signatures, I analyzed only 

those output clusters with at least 500 loci and an average normalized enrichment greater than 0.25 . 

 

Chromatin signature significance 

 

For a given cluster of size N, I defined the motif mh,i to be the mean normalized enrichment of 

the aligned loci at a specified position i for mark h. Well-aligned motifs have higher values of 

enrichment. For each motif, I computed the score: 
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Higher values of S indicate more significant motifs. To assess significance of observing a motif 

spanning N loci with score S or greater, I randomly sampled 100 sets of clusters with random alignment 

offsets (within ±1 kb of the aligned sites) and orientations, computed the S for each random set, and 

modeled the random distribution of S scores as a normal. I performed this randomization either within 

loci in the same cluster as the original motif or over loci from all clusters. 
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Genome annotations 

 

Genome annotations were downloaded from the UCSC Genome Browser [26], human genome 

Build 36.1 (hg18 assembly). Gene definitions were given by the Refseq Genes [8] track. Alternatively 

spliced exons were defined by entries in the “Alt Events” track labeled as “Cassette Exons”. The list of 

human loci conserved in a 28-way alignment with placental mammals was defined by the 

phastConsElements28wayPlacMammal table[14]. Repeat definitions were given by the RepeatMasker 

track [28], and lamina-associated domains mapped in Tig3 human lung fibroblasts [38] were defined by 

the “NKI LADs” track. 

 

Catalogs of regulatory elements 

 

I obtained a list of 27,110 CTCF sites by running the Model-based Analysis of ChIP-Seq [17] 

software with the default p-value cutoff of 1E-5. I used normalized H3K4me1 and H3K4me3 profiles to 

predict enhancers as in Chapter 3. ROC analysis indicated that using a p-value cutoff of 0.1 gives 

optimal recovery of DNase I hypersensitive sites [13], corresponding to 32,237 predicted enhancers at 

least 2.5-kb from Refseq TSSs. 

 

Expression data 

 

Transcript and exon expression data were measured in CD4+ T cells by Crawford et al [9] 

(GEO accession GSE4406) and Oberdoerffer et al [39] (GEO accession GSE11834), respectively. 

 

Randomization. 
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To determine enrichment for a given cluster, I compared to 100 random clusters. Each random 

cluster contains the same number of loci as the original cluster and follows the same chromosomal 

distribution. Random sampling is limited to bins containing ChIP-Seq reads. 

 

Statistical tests 

 

To assess significance of overlap with known genome annotations, I assume that the overlap 

statistics for 100 random clusters follows a normal distribution. To assess significance of exon inclusion 

for marked versus unmarked exons, I use a two-sided Wilcoxon rank sum test to compare the median 

exon expression of the two sets. To assess that N5 and N6 are enriched near different classes of 

expressed genes, I use the paired two-sided Wilcoxon signed rank test to compare the enrichment 

profiles. 
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Figure 6-1: Distinct chromatin signatures spanning Refseq promoters. 

(left) Applying ChromaSig to the histone modifications near 20,389 Refseq promoters recovers 14 
frequently-occurring chromatin signatures spanning 18,533 promoters. The heat map represents the 
enrichment of H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-kb region 
surrounding each promoter. To organize these clusters visually, I performed hierarchical clustering on 
the average profiles using a Pearson correlation distance metric. (right) Gene expression data for CD4+ 
T cells measured from a previous study [9], and re-visualized here for the different classes of 
promoters. Shown are the distributions of gene expression level over promoters with different 
chromatin signatures. Red horizontal lines indicate the median, the box extends to the lower and upper 
quartiles, the whiskers extend to 1.5 times the inter-quartile range, and red “+” symbols are outliers. 
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Figure 6-2: Distinct chromatin signatures spanning genomic loci distal to known regulatory 
elements. 

I identified 50,183 genomic loci with strong ChIP enrichment of histone modifications but distal to 
promoters, gene 3’ ends, DNase I hypersensitive sites, CTCF binding sites, and predicted enhancers. 
Applying ChromaSig to these loci reveals seven clusters N1-7 spanning 47,874 loci. The heat map 
represents the enrichment of H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-
kb region surrounding each locus. To organize these clusters visually, I performed hierarchical 
clustering on the average profiles of each ChromaSig cluster, using a Pearson correlation distance 
metric (left). 
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Figure 6-3: H3K36me3 marks exon 5’ ends and is a global mark of activity. 

(a) The top panel is a heat map of H3K36me3 enrichment at all human exons, sorted by exonic 
expression (right). The bottom panel is the average H3K36me3 enrichment profile of the lowest, 
middle, and highest third of expressed exons from the top panel. (b) The top panel shows the 
distribution of H3K36me3 reads within and around all exons in the human genome. In red are reads on 
the sense strand in the direction of transcription, and in blue are antisense reads. A schematic of a 
positioned nucleosome is shown. The bottom panel is restricted to exons larger than 1-kb. 
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Figure 6-4: H3K36me3 enrichment correlates with alternative splicing. 

The number of H3K36me3 reads per kilobase for exons near alternatively spliced cassette exons that 
are (a) spliced in or (b) spliced out. A cassette exon is defined to be spliced in if the difference in 
expression between it and its immediate upstream and downstream exons is less than 0.5 on a log2 
scale. A cassette exon is defined to be spliced out if both upstream and downstream exons are at least 2-
fold more expressed (1.0 on a log2 scale). 
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Figure 6-5: H2BK5me1 and H4K20me1 mark early exons. 

Shown is a heat-map representing the enrichment of various modifications and factors in a 5-kb region 
surrounding the top third expressed exons. The exons are sorted by distance from the transcription start 
site. 



194 

 

 
Figure 6-6: N5 and N6 mark distinct sequences of the genome. 

(a) The percentage of loci in N5 and N6 within 1-kb to an evolutionarily conserved PhastCons element. 
(b) The average percentage of bases ±1 kb around each locus that are masked by RepeatMasker. (c-d) 
The number of repeat elements within ±1 kb of each locus in (c) N5 and (d) N6. Black indicates the 
observed value while grey indicates the expected value over random sites. The error bars indicate ±1 
standard deviation. LTR, long terminal repeat; simple, simple repeat. 
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Figure 6-7: N5 and N6 mark distinct expression domains of the genome. 

(a) Enrichment of N5 and N6 loci as a function of expression for genes in the same domain. I counted 
the number of N5 and N6 loci within the CTCF-defined domains containing human promoters, assessed 
enrichment as compared to that expected over random sites, and averaged over a 1000-promoter sliding 
window to create each profile. The signed rank p-value is indicated. (b) The percentage of each cluster 
within lamina-associated domains, previously mapped in Tig3 human lung fibroblasts (black), as 
compared to random sites (grey). The error bars indicate ±1 standard deviation. 
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Figure 6-8: N1, N2, and N4 mark exon 5’ ends. 

An exon is unambiguously marked if it is the only exon within 1-kb of a genomic locus. I profiled 
chromatin enrichment relative to the 5’ ends of unambiguously marked exons for clusters (a) N1, (b) 
N2, (c), N3, and (d) N4. The top panels are heat maps representing the H3K36me3 enrichment in a 10-
kb region surrounding the 5’ ends of unambiguously marked exons. The bottom panels represent the 
average profiles of the heat maps. N3 is the negative control. 
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Figure 6-9: N1 and N2 mark the 5’ ends of exons greater than 1-kb in length. 

An exon is unambiguously marked if it is the only exon within 1-kb of a genomic locus. I profiled 
chromatin enrichment relative to the 5’ ends of unambiguously marked exons of length >1-kb for 
clusters N1 and N2. The top panels are heat maps representing the H3K36me3 enrichment in a 10-kb 
region surrounding the 5’ ends of unambiguously marked exons. The bottom panels represent the 
average profiles of the heat maps. Only a small number of N3- and N4-marked unambiguous exons are 
larger than 1-kb, and so are not shown here. 
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Figure 6-10: Distinct chromatin signatures spanning predicted enhancers. 

On the basis of a previously published enhancer chromatin signature having strong H3K4me1 
enrichment but weak H3K4me3 enrichment [6], I predicted 32,237 promoter-distal enhancers. Applying 
ChromaSig to these loci using the full panel of chromatin modifications mapped by Barski et al. [5], I 
recovered 11 clusters. The heat map represents the enrichment of H2AZ, 20 histone modifications, 
CTCF, and RNA polymerase II in the 10-kb region surrounding each enhancer prediction. To organize 
these clusters visually, I performed hierarchical clustering on the average profiles using a Pearson 
correlation distance metric (left). 
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Figure 6-11: Distinct chromatin signatures spanning promoter-distal and enhancer-distal CTCF 
binding sites. 

I used MACS [17] to identify 27,110 CTCF binding sites from the Barski et al maps [5], 17,328 of 
which are distal to promoters and predicted enhancers. Applying ChromaSig to the chromatin 
modifications around these loci, I recovered 7 clusters. The heat map represents the enrichment of 
H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-kb region surrounding each 
distal CTCF binding site. To organize these clusters visually, I performed hierarchical clustering on the 
average profiles using a Pearson correlation distance metric (left). 
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Figure 6-12: Distinct chromatin signatures spanning Refseq 3’ ends distal to Refseq promoters. 

Applying ChromaSig to the histone modifications near 16,703 Refseq gene 3’ ends that are distal to 
Refseq TSSs, I recover 12 clusters. The heat map represents the enrichment of H2AZ, 20 histone 
modifications, CTCF, and RNA polymerase II in the 10-kb region surrounding each Refseq gene 3’ 
end. To organize these clusters visually, I performed hierarchical clustering on the average profiles 
using a Pearson correlation distance metric (left). 
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Figure 6-13: Distinct chromatin signatures spanning DNase I hypersensitive sites. 

Previously, Boyle et al mapped 95,709 DNase I hypersensitive sites in CD4+ T cells, 31,824 of which 
are distal to Refseq TSSs, CTCF binding sites, and enhancer predictions. I applied ChromaSig to the 
chromatin modifications around these loci, recovering 13 clusters. The heat map represents the 
enrichment of H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-kb region 
surrounding each distal DNase I hypersensitive site. To organize these clusters visually, I performed 
hierarchical clustering on the average profiles using a Pearson correlation distance metric (left). 
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Figure 6-14: Distinct genomic distributions of chromatin signatures. 

The percentage each cluster within the 5’ and 3’ ends of genes (black), as compared to random sites 
(grey). The error bars indicate ±1 standard deviation. 
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Figure 6-15: The distribution of H3K36me3 reads within exon and introns. 

The number of reads found within introns and exons, normalized by the total size of each. 
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Table 6-1: Statistical significance of observed chromatin signatures. 

Significance for each cluster is calculated by comparing to random sets of clusters sampled from within 
the cluster or over all clusters. 
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Chapter 7 : Conclusions 
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Large-scale, systematic studies of the epigenome are only in their infancy. Just as the genomics 

era was launched nearly a decade ago with the sequencing of the human genome, recent developments 

in mapping and characterizing the entirety of the human epigenome has launched the epigenomics era. 

These extra dimensions of the human genome will undoubtedly expand our current understanding of 

how a cell functions and develops, but may also give insights into how these processes have evolved 

over time. Below are several future directions likely to develop from epigenomics. 

 

To date, chromatin signatures for a variety of functional genomic elements have been 

discovered. For example, promoters are marked by H3K4me3 and H3K27me3 [1,2] while exons are 

marked by H3K36me3 [3]. In this thesis, I have shown that H3K4me1 is a mark for enhancers. 

However, other functional elements in the genome including insulators, repressors, and locus control 

regions [4] have no well-defined chromatin signatures. While it is possible that no such signatures exist 

for these elements, it is tempting to speculate that one does exist. On a large scale, this could be 

assessed by mapping these elements and then assessing whether there is or is not a chromatin signature. 

For example, Johnson et al recently mapped the repressor NRSF to 1946 sites in Jurkat cells [5]. 

Examining the chromatin state in the same cell line could answer the question of whether a chromatin 

signature exists at repressors. This could be accomplished by ChIP approaches. However, as ChIP 

heavily relies on antibodies, and as antibodies are only available for a small subset of histone 

modifications, de novo approaches such as mass spectrometry may need to be used.  

 

While the transcriptome specifies what genes are currently being expressed in a cell, the 

epigenome details the cell’s more complex past history, present state, and future trajectory. Not only 

does the epigenome describe how gene expression is presently controlled, but it also contains 

information on how the cell reached its current state, as well as how the cell is ready to respond to 

environmental and developmental cues to alter its transcriptional output. This poised phenomenon has 
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been well-documented at promoters where a bivalent epigenetic state ensures a poised transcriptional 

state [2], and likely also applies to enhancers [6,7,8]. As current research focuses towards comparing 

multiple lineage-related cell types, deciphering the complex epigenetic past history and future paths of 

the cell will yield deeper insights into gene regulation and development. 

 

By detailing how the epigenome changes during differentiation, we can understand how 

control of transcription is rewired as an organism develops. In addition to answering questions about 

transcriptional regulation within an organism, the epigenome can also offer insight on how 

transcriptional regulation has evolved across species. Just as the explosion of genome sequences 

spurred comparative genomics, a similar explosion in epigenetic maps will motivate studies in 

comparative epigenomics. In recent years, comparative genomics has offered critical insights on how 

genome sequences, especially in terms of their transcriptional regulatory elements, have evolved. But 

conservation at the sequence level does not necessarily equate to functional conservation in the same 

cellular context. By adding a cell-type specific view of the activities of these regulatory elements, 

comparative epigenomics will bridge this gap. Comparison of epigenomes of the same cell types from 

different organisms will add a dynamic cell-type specific view to comparative genomics. Furthermore, 

the ability to profile the epigenomes of multiple cell types during development in several species will 

add yet another dimension to our understanding genome function and conservation. 

 

The precise control of transcription is essential for proper cellular function, and dysregulation 

can result in disease, notably cancer. For example, distinct types of prostate cancers each have a unique 

gene expression profile shared only by prostate cancers of the same type, all of which are distinct from 

normal cells [9]. Given these differences in transcriptional output, it will be interesting to see to what 

extent epigenomic differences underlie transcriptional differences in cancer cells. 
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Extending these techniques, recently-funded consortium projects such as the NIH Epigenome 

Roadmap Project and the ENCODE Project will undoubtedly come close to mapping all functional 

elements of the human genome. In the near future, mapping of the epigenome will help us to understand 

how transcription is controlled in a cell, will detail the regulatory events that happen during 

development, and establish how these developmental events have been conserved across species. 
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