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Abstract

Scoliid wasps comprise a clade of aculeate insects whose larvae are parasitoids of scarabaeid 

beetle grubs. While scoliids have been studied and used as biological control agents, research 

into the group's evolution, as well as the stability of scoliid taxonomy, has been limited by a lack 

of reliable phylogenies. In Chapter 1, ultraconserved element (UCE) data are used under 

concatenation and the multispecies coalescent to infer a phylogeny of the Scoliidae. Data 

filtering experiments using posterior predictive checks and matched-pairs tests of symmetry are 

performed in order to mitigate potential issues arising from model misspecification. Analyses 

confirm the position of Proscolia as sister to all other extant scoliids. There is also strong support

for a sister group relationship between the campsomerine genus Colpa and the Scoliini, 

rendering the Campsomerini non-monophyletic. Campsomerini excluding Colpa (hereafter 

Campsomerini sensu stricto) is inferred to be monophyletic, with the Australasian genus 

Trisciloa recovered as sister to the remaining members of the group. Out of nine genera in which

more than one species was sampled, Campsomeriella, Dielis, Megascolia, and Scolia are inferred

to be non-monophyletic. Analyses incorporating fossil data indicate an Early Cretaceous origin 

of the crown Scoliidae, with the split between Scoliini + Colpa and Campsomerini s.s. most 

probably occurring in the Late Cretaceous. Posterior means of Scoliini + Colpa and 

Campsomerini s.s. crown ages are estimated to be in the Paleogene, though age 95% HPD 

intervals extend slightly back past the K-Pg boundary, and analyses including fossils of less 

certain placement result in more posterior mass on older ages. Estimates of the stem ages of 

Nearctic scoliid clades are consistent with dispersal across Beringia during the Oligocene or later

Eocene. This study provides a foundation for future research into scoliid wasp evolution and 

biogeography by being the first to leverage genome-scale data and model-based methods. 

However, the precision of dating analyses performed here is constrained by the paucity of well-
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preserved fossils reliably attributable to the scoliid crown group. Despite concluding that the 

higher-level taxonomy of the Scoliidae is in dire need of revision, the chapter ends with the 

recommendation that taxonomic changes be predicated on datasets that extend the geographic 

and taxonomic sampling of the current study.

When used for phylogenetic inference, exonic DNA sequences can be coded in multiple ways, 

including as nucleotides, amino acids, and codons. In empirical studies, the choice of data type 

and associated model is often predicated on which model is less expected to be violated in ways 

that lead to inaccurate inference. Posterior predictive checks are one method for assessing the 

adequacy of phylogenetic models and potentially providing an indication of inference reliability. 

In Chapter 2, a simulation-based approach is used to explore how the ability to detect model 

inadequacy using phylogenetic posterior prediction, as well as the associated inference errors, 

may vary with data coding. Specifically, data were simulated under multiple models, including 

codon models featuring process heterogeneity across lineages, selection heterogeneity across 

sites, and selection for codon usage. Inference and posterior predictive checks were then 

performed under nucleotide and amino acid models from the GTR family. Some simulation 

conditions resulted in large differences, between amino acid and nucleotide treatments, in the 

ability to detect model violation, even when the magnitude of error in an estimate of interest was 

similar. Moreover, the results of other studies indicating that error in tree length estimation is not

always correlated with error in topology reconstruction are corroborated. Although the use of 

amino acid models generally resulted in more accurate topologies, tree length errors were often 

greater than for nucleotide models when the data being analyzed were generated using branch-

heterogeneous codon models. The results demonstrate that the magnitude and direction of tree 

length estimation error can depend on both data coding and properties of the data-generating 

process. Chapter 2 ends with the conclusion that if posterior predictive checks are to be used for 
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purposes such as data filtering, practical effect size thresholds indicative of low inference 

reliability must be established separately for amino acid and nucleotide data. Caution and careful

selection of models and data coding are recommended when performing analyses where accurate

inference of tree length is important.

Existing resources for the identification of Nearctic scoliid wasps have multiple shortcomings 

including limited geographic and taxonomic coverage, the use of outdated taxon names, and 

factual errors. Chapter 3 seeks to remedy the situation by providing a new key the Nearctic 

species. Additionally, molecular phylogenetic analysis and examination of morphological 

characters are used to demonstrate that specimens identified as Scolia bicincta using existing 

keys and commonly labeled as such in collections belong to two different species. One of these 

groups is sister to Scolia dubia. The other is sister to or conspecific with Scolia mexicana. Until 

the identity of the Scolia bicincta type is definitively established, the specimens related to S. 

dubia are treated as S. bicincta, and the specimens related to S. mexicana are treated as a 

geographic variant of S. mexicana.
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Chapter 1: The evolutionary history of mammoth wasps 

(Hymenoptera: Scoliidae)

Khouri, Z.1, Gillung, J.P.2, Kimsey, L.S.1

1 Bohart Museum of Entomology, University of California, Davis, CA, U.S.A; 2 Lyman Entomological Museum, 

McGill University, Montreal, Quebec, Canada.

Introduction

Members of the family Scoliidae, sometimes referred to as mammoth wasps, are large fossorial 

aculeates that comprise one of the most visually striking and easily identifiable hymenopteran 

clades. The family has a cosmopolitan distribution and includes approximately 560 described 

species (Osten, 2005). Adult mammoth wasps feed primarily on nectar, with honeydew 

(Illingworth, 1921) and possibly pollen (Jervis, 1998) also reported as food sources. The larvae 

develop as ectoparasitoids on the larvae of scarabaeid beetles (Clausen, 1940). Some studies 

have highlighted interesting aspects of mammoth wasp natural history, such as parasitism of ant 

inquilines (Burmeister, 1854; Jonkman 1980), pseudocopulation with orchids (Jones & Gray, 

1974; Ciotek et al., 2006), fidelity of males to patrolling sites (Tani & Ueno, 2013), and efficient 

location of subterranean hosts (Inoue & Endo, 2008). Despite this, no study has attempted to 

reconstruct a phylogeny of the family, which precludes the examination of scoliid biology in an 

evolutionary context.

The lack of a solid phylogenetic hypothesis has also contributed to a lack of taxonomic clarity 

and stability. Day et al. (1981) referred to the group as "over-burdened nomenclatorially". 

Subsequently Argaman (1996), while describing the state of scoliid taxonomy as "disastrous", 

established a new subfamily, 21 new tribes, and 62 new genera without conducting a 
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phylogenetic analysis. In assembling a checklist of all scoliid species, Osten (2005) ignored the 

taxonomic changes implemented by Argaman and implicitly synonymized many of the new taxa 

by placing their type species in other groups (Elliott, 2011; Kimsey & Brothers, 2016). Currently,

the need for a thorough taxonomic revision is recognized (Elliott, 2011).

A robust phylogeny is a prerequisite for studies of character evolution, diversification patterns 

over time, and biogeography, as well as for a natural taxonomy. In turn, the lack of a stable 

natural taxonomy hampers research by making species determination difficult and by impeding 

the communication and indexing of scientific information. In the case of mammoth wasps, this is

especially apparent in the context of their use as agents for the biological control of scarabaeid 

pests (Illingworth, 1921; Wilson, 1960; DeBach, 1964). Misidentification of the control agent 

(for an example, see Elliott (2011) on research by the Queensland Bureau of Sugar Experiment 

Stations) precludes the repeatability of research and past biological control attempts and means 

that valuable information discovered in the process cannot easily be traced to the right organism 

(Rosen, 1986). This is particularly unfortunate, since a large portion of what is currently known 

about scoliid development, phenology, and host interaction was discovered while evaluating and 

using mammoth wasps for biological control (e.g. Illingworth, 1921; Miyagi, 1960). In the 

process of updating the BIOCAT database of introductions of biological control agents, Cock et 

al. (2016) listed Scoliidae among the groups requiring further taxonomic work.

In the present study, we aim to establish a solid foundation for research into mammoth wasp 

evolution and systematics. We use ultraconserved element (UCE) sequence data (Faircloth et al., 

2012; 2015) to infer scoliid phylogenetic trees using concatenation and under the multispecies 

coalescent (Rannala & Yang, 2003; Degnan & Rosenberg, 2009). Additionally, we leverage 

existing fossil data to estimate a timeline of scoliid evolution. To better understand potential 
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biases resulting from model misspecification, we perform data filtering experiments based on 

matched-pairs tests of symmetry (Bowker, 1948; Ababneh et al., 2006; Naser-Khdour et al., 

2019) and assessments of model adequacy using data-based posterior predictive checks 

(Bollback, 2002; Huelsenbeck et al., 2001; Doyle et al., 2015).

Methods

Taxon and locus selection

We successfully sequenced 85 specimens of Scoliidae for this study. Taxon selection was aimed 

at maximizing taxonomic and biogeographic diversity within the limits imposed by the 

availability of material from which DNA could be extracted. All biogeographic realms are 

represented, but with weaker sampling in Australasia and the Neotropical and Palearctic regions. 

We also included previously published data (Johnson et al., 2013; Faircloth et al., 2015; 

Branstetter et al., 2017a; Peters et al., 2018) from six additional scoliid specimens. See Table 

S1.1 for specimen collection data and resources used for taxonomic determination.

Based on an examination of morphology, we suspected that Scolia bicincta may constitute two 

separate species. We therefore sequenced multiple individuals from each putative species. 

However, given the focus of the current study on reconstructing the scoliid phylogeny and 

identifying major clades rather than on species delimitation, we retained only two specimens 

following a preliminary phylogenetic analysis (see below).

We used the bradynobaenid genus Apterogyna as the only outgroup, and mined UCE sequences 

(see "Sequence quality control, assembly, and UCE identification" section below) from the 

partial genome published by Johnson et al. (2013). No sequences from other bradynobaenid taxa 

were publicly available, and we were unsuccessful in sequencing the specimens of 
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Bradynobaenus chubutinus to which we had access. Bradynobaenidae is well-supported as the 

sister group to Scoliidae (Johnson et al., 2013; Branstetter et al., 2017a; Peters et al., 2018). It is 

a species-poor clade, making it easier to avoid highly disproportionate taxon sampling, which 

would be difficult if ants or apoids were used. Adding more distant outgroups also increases the 

chance that heterogeneity in the evolutionary process across lineages results in more severe 

violations of homogeneous phylogenetic models.

We used the hymenoptera-v2 ant-specific probe set (Branstetter et al., 2017b) targeting 2524 

UCEs and 12 nuclear genes ("legacy" markers).

Wet lab methods

We extracted DNA from pinned and ethanol-preserved specimens using QUIAGEN DNeasy 

Blood & Tissue Kits. Extractions were semi-nondestructive. In the case of pinned specimens, we 

first removed them from their pins. For most specimens, we made holes in the right side of the 

thorax using an insect pin, then soaked the specimen in lysis buffer overnight. We used the 

buffer, now containing DNA, for subsequent extraction steps. We then washed the specimens in 

95% ethanol and either dried and remounted them or returned them to ethanol. For especially 

large specimens (e.g. of Megascolia) we only used a sample of thoracic muscle for extraction. 

For some medium-to-large specimens that are part of longer collection series, we separated the 

metasoma and the head from the mesosoma, and soaked the mesosoma in lysis buffer overnight. 

In some cases, quantities of extraction reagents used had to be proportionally adjusted to 

accommodate specimen size. Finally, we either reassembled the specimen for remounting, or 

mounted the parts on separate points on the same pin.

We prepared, enriched, and pooled libraries using the hymenoptera-v2 ant-specific probe set 

following the protocols of Faircloth et al. (2015) as modified for use at the Ward Ant Lab (Ward 
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& Branstetter, 2017). This was done in two separate batches. High-throughput sequencing was 

performed at the Huntsman Cancer Institute, University of Utah on an Illumina HiSeq 2500 

platform (125 cycle paired-end) for the first batch and at the Novogene facility in Sacramento, 

CA on an Illumina HiSeq 4000 for the second batch.

Sequence quality control, assembly, and UCE identification

After receiving demultiplexed reads, we used three different bioinformatics pipelines for quality 

control and de novo assembly.

Pipeline A:

We performed quality-aware 3' adapter trimming with Scythe 

(https://github.com/vsbuffalo/scythe) version 0.991. This was followed with 5' adapter trimming 

with cutadapt (Martin, 2011) version 1.14 using a minimum overlap of 3 and an error tolerance 

of 0.16. We subsequently trimmed the reads with sickle (Joshi & Fass, 2011) version 1.33 using a

quality threshold of 34 and a length threshold of 50. Assembly was done with Trinity (Grabherr 

et al., 2011) version 2.6.6 using a kmer size of 31. We also generated alternative assemblies with 

Velvet (Zerbino & Birney, 2008) version 1.2.10 and VelvetOptimiser 

(https://github.com/tseemann/VelvetOptimiser) version 2.2.4. However, the Velvet assemblies 

yielded significantly fewer UCE-containing contigs (data not shown, available upon request) and

were not used for subsequent steps.

Pipeline B:

We used HTStream (https://github.com/s4hts/HTStream) version 1.1.0 for adapter and quality 

trimming. The HTStream pipeline consisted of the following steps: (1) calculating basic statistics

on the raw reads with hts_Stats (2) screening for phiX with hts_SeqScreener, (3) removing 
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polyA/T sequences with hts_PolyATTrim with minimum size set to 100, (4) screening for 

adapter contamination with hts_SeqScreener using the i5 and i7 adapter sequences corresponding

to each sample, with the kmer size set to 15, and with the percentage-hits argument set to 0.01, 

(5) a second round of adapter screening with hts_AdapterTrimmer, (6) quality-based 5' and 3' 

trimming with hts_QWindowTrim, (7) extracting the longest subsequences without "N"s using 

hts_NTrimmer with the minimum length set to 50, and finally (8) calculating statistics on the 

processed reads with hts_Stats. In order to speed up read processing, we wrote a python script 

that can run the pipeline in parallel on more than one sample if the number of available CPU 

cores is at least twice the number of steps in the pipeline.

We then assembled the reads with Spades (Bankevich et al., 2012) using a wrapper script from 

the phyluce package (Faircloth, 2016), version 1.6.8. Except for increasing allowed memory 

usage, settings were left at phyluce defaults.

Pipeline C:

We used Illumiprocessor (Faircloth, 2013), a wrapper around Trimmomatic (Bolger et al., 2014) 

and part of the phyluce package, for adapter and quality trimming. Spades was used for de novo 

assembly as in Pipeline B above.

For all pipelines, we used FastQC (Andrews, 2010) to evaluate reads before and after quality-

control procedures.

We put reads from the first sequencing batch through Pipeline A and subsequently Pipeline B, 

while reads from the second sequencing batch were processed with Pipeline B and (with the 

exception of two samples) Pipeline C. In the case of ingroup taxa with previously published data 

(Colpa sexmaculata, Colpa alcione, Proscolia sp. EX568, Scolia hirta, Scolia verticalis, and 
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Scoliinae sp. EX577), we used the available assemblies and did not redo quality control and 

assembly. In all cases, we used the phyluce_assembly_match_contigs_to_probes, 

phyluce_assembly_get_match_counts, phyluce_assembly_get_fastas_from_match_counts, and 

phyluce_assembly_explode_get_fastas_file scripts to identify UCE-containing contigs and write 

them to fasta files for downstream analyses.

Pipelines A and B recovered similar numbers of UCEs per sample, although Pipeline B resulted 

in assemblies with higher N50 as calculated in QUAST (Gurevich et al., 2013) version 5.0.2 on 

both whole assemblies and assemblies filtered to UCE-containing contigs only. Pipelines B and 

C were close in terms of both number of recovered UCEs and N50. See Tables S1.2-1.3 for 

details. However, each pipeline recovered some UCEs that the other pipelines did not. Therefore,

we combined the assemblies, choosing the longer contig in cases where a contig containing the 

same UCE was recovered in both assemblies. However, longer contigs may either represent 

genuine sequence or be the result of assembly errors. We visually inspected alignments prior to 

most downstream analyses to identify and remove misaligned sequences possibly originating 

from misassembly.

Due to low UCE yield from some samples in the second sequencing batch (likely due to failed 

enrichment) and concerns over contamination, we did the following to identify problematic 

samples: (1) selected loci that were represented by > 75% of taxa, (2) aligned sequences from 

those loci using MAFFT (Katoh & Standley, 2013), (3) edge-trimmed the alignments using the 

phyluce_align_get_trimmed_alignments_from_untrimmed script from phyluce, and (4) 

estimated a phylogeny (Fig. S1.1) using maximum likelihood (ML) with IQTREE (Minh et al., 

2020; Hoang et al., 2018; Chernomor et al., 2016; Nguyen et al. 2015) version 2.0-rc2 while 

partitioning by locus and filtering out loci using a matched-pairs test of symmetry (Bowker, 
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1948; Ababneh et al., 2006; Naser-Khdour et al., 2019) designed to detect sequences whose 

evolution violates assumptions of stationarity, reversibility, and homogeneity (Jermiin et al., 

2017). Thirteen taxa associated with suspected failed enrichments clustered together in two 

"clades" with very long branches, corroborating the spurious nature of the obtained sequences 

(Fig. S1.1). These taxa were not used in subsequent phylogenetic analyses and are not included 

in the counts under the taxon and locus selection section above.

In the case of Apterogyna, we mined UCE sequences from the partial genome of Johnson et al. 

(2013). We aligned UCE probes to the contigs using the 

phyluce_probe_run_multiple_lastzs_sqlite script from the phyluce package. We then extracted 

matching sequences in fasta format using the phyluce_probe_slice_sequence_from_genomes 

script, setting the flanking length to 700 bases.

Phylogenetic analysis

Unless otherwise indicated, we performed all multiple-sequence alignments using MAFFT 

version 7.407 with the E-INS-i algorithm (Altschul, 1998). Preliminary visual inspection of 

alignments confirmed that they often contain multiple conserved, well-aligned regions separated 

by ambiguously aligned regions. This better conforms to the assumptions behind the E-INS-i 

algorithm. L-INS-i (Gotoh, 1993), on the other hand, assumes a single, contiguous alignable 

region. All edge-trimming was done using the 

phyluce_align_get_trimmed_alignments_from_untrimmed script. All Bayesian phylogenetic 

analyses were performed using RevBayes (Höhna et al., 2014; 2016) version 1.0.12 unless 

otherwise indicated. Matched-pairs tests of symmetry in IQTREE refer specifically to 

MaxSymTest with a 0.05 p-value cutoff.
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Analysis 1a:

We performed a preliminary run combining all (non-spurious) data from both sequencing 

batches, including all Scolia bicincta samples. This helped inform which S. bicincta samples to 

retain, as discussed below. We selected loci that had no more that 20% missing data at the site 

level (after including taxa without data) and estimated a phylogeny using ML with IQTREE 

while partitioning by locus and filtering out loci using matched-pairs tests of symmetry.

Analysis 1b:

We performed a second ML analysis with the goal of leveraging data from as many loci and taxa 

as possible while maintaining acceptable total levels of missing data. Given that analysis 1a 

indicated that samples of S. bicincta fall into two distinct clades that are sister to S. dubia and S. 

mexicana respectively (Fig. 1.1), we removed all but two S. bicincta samples (one from each 

putative species). In addition to phylogenetic position, the decision on which samples to retain 

was based on the number of recovered UCEs and on assembly quality statistics calculated using 

QUAST. We also removed Scolia hirta and Scoliinae sp. EX577, both from previously published

studies, because they had very high fractions of missing data. After taxon removal, we redid 

alignment and edge-trimming. We then sorted loci by increasing fraction of missing data at the 

site level and progressively selected loci until the cumulative fraction of missing data reached 

25% (1235 loci were selected at this point). After filtering using matched-pairs tests of symmetry

in IQTREE, we retained 727 loci. We concatenated the alignments and selected a substitution 

and across-site rate variation (ASRV) model (from a pool of substitution models from the GTR 

(Tavaré, 1986) family and discretized gamma (Yang, 1994) and free-rates ASRV models) for 

each locus based on Bayesian Information Criterion (BIC) (Schwarz, 1978) scores. We then 
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estimated a phylogeny and performed 1000 ultrafast bootstrap replicates while leaving other 

IQTEE settings at default.

Analysis 1c:

In order to account for potential gene-tree-gene-tree conflict due to incomplete lineage sorting, 

we estimated species trees using the program ASTRAL-MP version 1.15.1 (Yin et al., 2019). 

Starting with the same set of taxa used in analysis 1b, we redid alignment and edge-trimming, 

discarding alignments shorter than 600 bases. Given that highly fragmentary sequences can 

negatively affect accuracy (Sayyari et al., 2017), we subsequently removed taxa with more than 

50% missing data and discarded alignments that retained fewer than 66 taxa. We then inferred 

gene trees using IQTREE with model selection settings similar to those in analysis 1b above 

while also performing matched-pairs tests of symmetry. We based subsequent species tree 

inference on three sets of gene trees: The first set contained trees corresponding to all loci, the 

second contained only trees from loci that failed the matched-pairs test of symmetry, and the last 

contained only trees from loci that passed.

Additionally, we estimated posterior distributions of gene trees in a Bayesian framework under 

the GTR+G model, followed by posterior predictive simulation (Bollback, 2002; Brown, 2014b; 

Doyle et al., 2015; Höhna et al., 2018) and calculation of posterior predictive p-values using two 

test statistics: multinomial likelihood (Goldman, 1993; Bollback, 2002) and chi-squared 

(Huelsenbeck et al., 2001; Foster 2004). Similarly to the ML-based analyses above, we then used

different sets of maximum clade credibility (MCC) gene trees and gene tree posterior distribution

samples (3000 trees per gene) for species tree inference with ASTRAL-MP. Using an alpha of 

0.05 and the Bonferroni correction to account for multiple testing, we treated loci for which the 

posterior predictive p-value with either test statistic was < 0.025 as loci for which the model was 
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likely inadequate. This set included 922 of the total 954 loci. For each test statistic, we also split 

the loci into two sets, each respectively representing loci with the lowest and highest effect sizes 

for that statistic. Finally, we created another similar pair of sets but based on the Pythagorean 

sum of the effect sizes for both statistics. When using gene tree posterior distribution samples 

with ASTRAL, we performed bootstrapping using the -b option and set the number of replicates 

to 1000. 

In datasets used for analyses 1a-c, Apterogyna and Proscolia have disproportionately high 

fractions of missing data (49% and 73% respectively) compared to other taxa. However, 

removing these taxa means the loss of the only outgroup. We therefore took a two-step approach:

First, we performed an analysis (2a) only using loci with data available from both Apterogyna 

and Proscolia to minimize the potential impact of missing data on the inferred position of the 

root as well as on the placement of Proscolia. However, significantly cutting down the base 

dataset could result in loss of resolution in some parts of the tree. To address this, we performed 

another set of analyses (analyses 3a and 3b; see below) excluding Apterogyna and Proscolia as 

well as loci used in analysis 2a but conditioning on the position of the root inferred in analysis 

2a. This allowed use of the remaining majority of the original data to resolve relationships within

Scoliidae.

Analysis 2a:

We started with the same taxon set as for analysis 1b and selected aligned, trimmed fasta files 

corresponding to the 647 loci that have sequences from both Apterogyna and Proscolia. We used 

the biclustering algorithm of Uitert et al. (2008) as implemented in the R (Core R Team, 2020) 

package BicBin (https://github.com/TylerBackman/BicBin) to find large, dense biclusters of taxa

and loci. We chose a set of 68 taxa and 484 loci with >99% completeness (presence or absence of
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sequence for a given taxon and locus pair treated as a binary value). We then retrieved unaligned,

untrimmed fasta files corresponding to the above loci and removed the taxa that are not part of 

the selected set. The sequences were then aligned and edge-trimmed. Given that the phylogenetic

models we planned to use do not directly model indels (gaps are treated as missing data) and that

unique indels are unlikely to contribute significant information, we removed all unique indels 

(i.e. columns where all taxa except one are represented by a gap) from the alignments. 

Calculating basic alignment statistics using AMAS (Borowiec, 2016) and visually inspecting the 

alignments in AliView (Larsson, 2014) revealed that Apterogyna sequences were (1) sometimes 

much shorter than those of other taxa for a given locus and (2) sometimes had poorly aligned 

sections. We therefore only retained alignments containing at least 500 non-ambiguous bases for 

both Apterogyna and Proscolia. We then manually trimmed alignment edges that contained no 

Apterogyna sequence and also trimmed any parts with suspected alignment uncertainty while 

discarding alignments that were poor throughout their length. Any alignments that became 

shorter than 300 bases were also discarded.

In order to assess model adequacy on the remaining 177 loci, we performed Bayesian 

phylogenetic analyses under the GTR+G model followed by posterior predictive simulation on 

each locus individually using the program RevBayes. We calculated the multinomial likelihood 

and chi-squared (as applied to nucleotide composition across taxa) test statistics and associated 

posterior predictive p-values and effect sizes on the empirical and simulated data using custom R

code. For the purpose of filtering data for which the available model is suspected of being 

inadequate, one must choose some threshold. In advance of looking at the output, we decided to 

use an overall alpha of 0.05 and use the Bonferroni correction to account for multiple testing. We

therefore discarded loci for which the posterior predictive p-value with either test statistic was < 

0.025. We concatenated the remaining 31 alignments and used them for phylogeny estimation. 
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Each locus was assigned a separate GTR+G substitution model and tree length parameter (i.e. 

branch length multiplier), while a single vector of branch lengths drawn from a flat Dirichlet 

prior was shared among partitions. See used Rev scripts for further details. We assessed 

convergence for numerical parameters through visualization of posterior samples in Tracer 

(Rambaut et al., 2018) version 1.7. For tree topologies, we made plots comparing posterior 

probabilities of splits across both runs using the bonsai (May & Moore, 2017) version 0.9 R 

package and calculated the Average Standard Deviation of Split Frequencies (ASDSF).

Analysis 2b:

Rasnitsyn (1993) identified only one fossil from Shangwang, Shandong, China as unequivocally 

belonging to the scoliid crown group. This fossil was attributed by Zhang (1989) to the extant 

species Scolia prismatica, currently in the genus Megacampsomeris. Yu et al. (2021) dated the 

Shanwang shale to approximately 18.5 Ma, in the early Miocene. Species described in later 

studies (Rasnitsyn & Martınez-Delclos, 1999; Nel et al., 2013; Zhang et al., 2015) are either 

connected to the crown Scoliidae by venation characters alone, or are of uncertain placement. 

This limits the information available to precisely estimate divergence times. Given this limitation

and our inability to examine the M. prismatica specimen, we chose a conservative approach and 

estimated a broad timeline of scoliid evolution by calibrating the node representing the most 

recent common ancestor of Scoliidae and Bradynobaenidae using the age of Protoscolia 

normalis, a putative stem scoliid dated to approximately 125.5 Ma (Haichun et al., 2002). We 

started with 177 processed alignments from analysis 2a (i.e. the state of the dataset after removal 

of short alignments but prior to filtering using posterior predictive checks). We then performed 

analyses on individual loci followed by posterior predictive simulation. We used a birth-death 

prior on tree topologies and node ages with a scaled beta prior on the root age (125.5 Ma 
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minimum age, 174.1 Ma maximum age, 132.5 Ma expected age, and a standard deviation of 5.5 

Ma) and an uncorrelated lognormal relaxed clock model. See used Rev scripts for further details. 

After filtering loci in a similar manner to what was done in analysis 2a, we concatenated and 

analyzed the remaining 63 loci, adding rate multiplier parameters to allow the overall 

substitution rates to vary among loci.

In addition to the conservative primary analysis, we tested the effect of calibrating additional 

nodes using fossils of less certain placement. Although it is doubtful that the fossil described by 

Zhang (1989) belongs to an extant species, for the first additional analysis, we used it to set an 

18.5 Ma minimum age (lognormal node age "prior" offset by 18.5, with a mean of 5.0 (mu ≈ 

1.44) relative to the offset and a sigma of 0.587405) for the Megacampsomeris clade. For the 

second analysis, we used both the Megacampsomeris calibration above as well as a calibration of

the scoliid crown group age based on Araripescolia magnifica (Nel et al., 2013) (lognormal node

age "prior" offset by 112.6 Ma, a mean of 10.0 relative to the offset and a sigma of 0.587405).

Analysis 2c:

In order to account for potential gene-tree-gene-tree conflict due to incomplete lineage sorting, 

we performed a species tree estimation analysis under the multispecies coalescent (e.g. Rannala 

& Yang, 2003; Degnan & Rosenberg, 2009) using the BEAST2 (Bouckaert et al., 2019) package 

STACEY (Jones, 2017). We used the same 63 loci from analysis 2b. Collapse weight was drawn 

from a beta prior with an alpha of 1.0 and a beta of 19.0 (mean 0.05, to reflect the belief that 

most samples are likely from distinct species). We used a lognormal prior on the popPriorScale 

parameter with a mean and standard deviation (in real space) of 1.0E-6 and 2.0 respectively. We 

enabled estimation of the relative death rate, which in this context corresponds to using a birth-

death (as opposed to Yule) tree prior, and used a strict clock model. The site model was set to 
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GTR+G, unlinked among loci. We ran four independent chains and combined and summarized 

the output using the logcombiner and treeannotator tools packaged with BEAST2.

Analysis 2d:

We additionally performed species tree estimation using ASTRAL-MP. We used the same 177 

starting loci from analysis 2a, but reran Bayesian gene tree estimation and posterior predictive 

simulation after removing taxa which had no data for a given locus. We then assembled sets of 

loci based on posterior predictive effect sizes in a manner similar to that in analysis 1c.

Analysis 3a:

In order to leverage more data to resolve relationships within Scoliidae, we set up an analysis 

that conditions on the position of the root inferred in analysis 1b while removing Proscolia and 

Apterogyna from the dataset. We followed a locus and taxon selection, alignment, and trimming 

procedure similar to that in analysis 2a. We chose a set of 72 taxa and 617 loci at 91% 

completeness from a pool of loci that excludes those used in analysis 1b. After discarding all 

alignments that, after trimming, were shorter than 300 bases or had more than 25% missing data 

at the site level, 469 alignments were retained. We did not trim alignments manually at this stage 

as the number of loci was large and the exclusion of Apterogyna and Proscolia improved 

alignment quality (assessed by visual inspection of a subset of alignments). We then ran 

Bayesian phylogenetic analyses followed by posterior predictive simulation on each individual 

alignment as in 2a. All alignments which passed filtering, as well as some that did not, were 

visually evaluated, and in a few cases problematic regions were manually trimmed. One locus 

was excluded due to very poor alignment. We reran posterior predictive tests on all alignments 

that have been altered. We then performed a concatenated analysis analogous to that in 2a, which

15



included all loci that passed filtering and were not subsequently edited and loci which were 

edited and subsequently passed filtering.

Analysis 3b:

The data processing and phylogenetic analysis procedures were analogous to those of analysis 

3a, except we used a birth-death prior on trees and node ages (with no node calibration and with 

the root age arbitrarily fixed to 100 units) and an uncorrelated lognormal clock model.

Results

Sequence quality control, assembly, and UCE identification

Using pipeline A (Scythe + cutadapt + sickle + Trinity), we recovered 1941.9 UCE-containing 

contigs on average across specimens from batch 1, which is almost identical to the 1943.7 UCE-

containing contigs recovered when using pipeline B (HTStream + Spades). However, the output 

of pipeline B had higher average N50 (2112.6 versus 1191.4, calculated from on-target contigs 

only) and a higher average number of UCE-containing contigs longer than 1000 bases (1429.0 

versus 968.3).

The differences between outputs from pipelines B and C applied to specimens from batch 2 were

in some ways less pronounced. The average number of UCE-containing contigs was 1726.3 and 

1785.6 for pipelines B and C respectively, while average values for N50 were 1477.8 and 1482.5 

respectively. The average number of on-target contigs longer than 1000 bases was 1036.0 for 

pipeline B and 1077.6 for pipeline C. When calculating these statistics, we excluded batch 2 

samples for which we suspected failed enrichment (see corresponding section under Methods for

details and Tables S1.1 and S1.2 for full QUAST statistics).
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Overall, we recovered a total of 2495 UCE loci and an average of 1883.6 UCE loci per taxon 

across 91 taxa (including 6 taxa from previously published studies).

Phylogenetic analysis

Analysis 1a:

A total of 176 loci were retained after all filtering steps and used to estimate a phylogeny by 

maximum likelihood (Fig. 1.1). We recovered Proscolia as the sister group to all remaining 

Scoliidae, which correspond to the subfamily Scoliinae sensu Day et al. (1981). The tribe 

Scoliini is monophyletic. However, in contrast to the assumptions behind the current scoliid 

taxonomy (Osten, 2005), the genus Colpa was recovered as sister to the Scoliini, rendering the 

Campsomerini paraphyletic.

A clade represented by the scoliine genera Megascolia, Pyrrhoscolia, and Carinoscolia is sister 

to all other Scoliini, which in turn form three distinct groups. All New World members of the 

genus Scolia form a clade. We recovered Scolia verticalis, an Australasian species, as sister to the

morphologically unusual Nearctic species Triscolia ardens. Given the unexpected nature of this 

pairing, we conducted an additional analysis (see Supporting Information for details) using (1) 

the "legacy" markers enriched from T. ardens as part of this study and from S. verticalis (from 

Faircloth et al. (2015), the source of S. verticalis UCE data used in this study), (2) corresponding

Sanger data from the same specimen of S. verticals (Brady et al., 2006; Ward & Fisher, 2016), 

and (3) corresponding Sanger data from different specimens of T. ardens (Pilgrim et al., 2008) 

and S. verticalis (Klopfstein & Ronquist, 2013). Sequences from the specimens used in this study

grouped with their corresponding sequences from independent samples (Fig. S1.2), which makes

contamination or data curation errors a less likely explanation for the relationship between T. 
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ardens and S. verticalis inferred here. All remaining sampled Scoliini form an Old World clade 

that is sister to the clade consisting of New World Scolia + (T. ardens + S. verticalis).

Samples of Scolia bicincta fall into two separate clades: one sister to Scolia mexicana and the 

other sister to Scolia dubia. This suggests the two groups belong to different species.

Campsomerini minus Colpa (provisionally referred to as Campsomerini sensu stricto from here 

on) is monophyletic. Trisciloa saussurei (not to be confused with members of the genus 

Triscolia) is inferred to be the sister taxon to the remaining Campsomerini sensu stricto. Within 

the latter group, all sampled New World taxa form a single clade. The closest relative of this 

New World clade is the Indomalayan taxon Colpacampsomeris indica, followed by a clade 

including the Afrotropical Megameris soleata, the Australiasian Laevicampsomeris formosa, and 

the Indomalayan genus Megacampsomeris. Megacampsomeris itself is recovered as 

monophyletic. Taxa occurring in Madagascar, such as Micromeriella pilosella and some 

Campsomeriella, have their closest affinities with Afrotropical taxa but do not form a 

monophyletic group.

Analysis 1b:

We used 727 loci from 76 taxa to reconstruct the tree in Fig. 1.2. The results are largely 

congruent with those from analysis 1a above, with the exception of the Triscolia ardens + Scolia 

verticalis group being recovered as sister to the Old World Scoliini (minus Megascolia + 

Pyrrhoscolia + Carinoscolia) as opposed to sister to the New World Scolia. Colpa is still 

recovered as sister to the Scoliini. The non-monophyly of Dielis, due to Dielis pilipes being more

closely related to Xanthocampsomeris than to other Dielis, is likewise corroborated.
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Analysis 1c:

For all analyses, the topology of the "main" ASTRAL tree (based only on ML or MCC gene 

trees) was effectively the same as the consensus topology estimated using gene tree posterior 

distributions and bootstrapping. Differences were limited to quadripartitions with very low 

support (e.g. 0.46 local posterior probability for most probable resolution, versus 0.35 for the 

next most probable alternative) or to relationships within species (e.g. Dielis plumipes).

The inferred topology based on ML trees from all loci (Fig. 1.3C) agrees with that from analysis 

1b above. The topology based only on loci not failing the matched-pairs test of symmetry (Fig. 

1.4, Fig. 1.3A) is identical, but with reduced support for the quadripartition involving Megameris

soleata, Laevicampsomeris formosa + Megacampsomeris, Colpacampsomeris indica + New 

World Campsomerini, and the remaining Campsomerini. The topology inferred from loci failing 

the symmetry test (Fig. 1.3B) maintained high support for this quadripartition. On the other hand,

the position of Triscolia ardens + Scolia verticalis became more uncertain, with 0.50 local 

posterior probability for the same placement as the other analyses above and 0.30 local posterior 

probability for Triscolia ardens + Scolia verticalis being sister to the New World Scolia.

Results of the analysis using MCC trees (as a way of summarizing tree posterior distributions) 

from all loci (Fig. 1.5D) agree with the ML-based results above with respect to the 

Campsomerini sensu stricto. However, the placement of Triscolia ardens + Scolia verticalis is 

not resolved, with 0.47 and 0.46 local posterior probability for a sister relationship with the 

sampled Old World Scolia and with the New World Scolia respectively. The ASTRAL tree based 

on loci with the lowest combined posterior predictive effect sizes (Fig. 1.5A) is similar to the tree

above, with 0.46 local posterior probably in favor of (Triscolia ardens + Scolia verticalis) + New

World Scolia, but a slightly lower probability (0.36) in favor Triscolia ardens + Scolia verticalis 
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being sister to the Old World Scolia. The analysis of loci with highest combined posterior 

predictive effect sizes (Fig. 1.5B) resulted in stronger (0.82 local posterior probability) support 

for the (Triscolia ardens + Scolia verticalis) + New World Scolia hypothesis. Unexpectedly, this 

relationship was likewise supported (0.87 local posterior probability) when using only the 32 loci

for which the model was not found to be inadequate (Fig. 1.5C) using posterior predictive 

checks, but resolution within the Campsomerini was significantly reduced. Crucially, all analyses

agree with respect to the placement of Colpa as sister to the Scoliini.

Analysis 2a:

The tree in Fig. 1.6 is the Maximum A Posteriori (MAP) tree summarized from two independent 

runs based on 31 loci for which the model was not found to be inadequate. The MCMC exhibited

good convergence with respect to topology (see Fig. 1.7A for a comparison of split frequencies 

between runs). The average standard deviation of split frequencies was approximately 0.001.

This analysis places emphasis on reducing missing data in the outgroup and in Proscolia, 

removing poorly aligned sites, and reducing potential model violation at the expense of dataset 

size. Despite this, the tree backbone is fully resolved, with only a few shallow nodes having 

lower posterior probabilities. With respect to the position of the root, the results corroborate 

those from analyses 1a, 1b, and 1c: Proscolia is sister to the Scoliinae, Colpa is sister to the 

Scoliini, and Campsomerini sensu stricto is sister to Scoliini + Colpa, with Campsomerini in the 

traditional sense being non-monophyletic. The position of Triscolia as sister to an Old World 

scoliine clade is congruent with that in analysis 1b but not analysis 1a. Scolia verticalis, which 

was recovered as sister to Tricolia ardens in previous analyses, was not represented here and in 

subsequent analyses due to a high proportion of missing data. While Colpacampsomeris indica 

was likewise excluded from this analysis for the same reason, Megameris soleata is placed as 
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sister to the New World Campsomerini instead of being sister to Laevicampsomeris + 

Megacampsomeris as in analyses 1a and 1b.

Analysis 2b:

A total of 63 loci were retained post-filtering and used to construct a chronogram (Fig. 1.8). See 

Fig. 1.7B for a plot of split frequencies from two independent runs. While most clade posterior 

probabilities are close to 1 and none are lower than 0.94, node age credible intervals are broad 

due to only one calibration point being available. The crown Scoliini are inferred to have likely 

originated after the Cretaceous-Paleogene (K-Pg) extinction event. The mean estimated crown 

ages of Campsomerini sensu stricto and of Scoliini + Colpa are 49 million years (Ma) and 58 Ma

respectively, although the associated 95% highest posterior density (HPD) intervals extend past 

the K-Pg boundary. The mean estimated age of crown Scoliinae is 84 Ma, with lower and upper 

bounds of the 95% HPD interval at 56 Ma and 107 Ma respectively. The crown Scoliidae as a 

whole (and thus the split between Proscoliinae and Scoliinae) has a 95% HPD age interval 

bounded by 96 Ma and 145 Ma, placing the likely origin of the group in the Early Cretaceous.

Results from the analyses including additional fossil calibrations (Fig. 1.9-1.10) were broadly 

congruent with the results above, but with greater ages estimated for most nodes after the 

Scoliinae/Proscoliinae split. When using both additional calibrations, the posterior distributions 

of ages for Campsomerini sensu stricto and of Scoliini + Colpa had means of 63 Ma and 69 Ma 

respectively, with more posterior mass on pre-K-Pg ages compared to the more conservative 

analysis above.

There are some topological differences between the results of these analyses and the tree from 

analysis 2a, mostly in the relationships of Old World Scolia and the position of Megameris 

soleata as sister to (Laevicampsomeris + Megacampsomeris) + New World Campsomerini sensu
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stricto. However, both sets of analyses agree on the placement of Colpa as sister to the Scoliini 

and of Triscolia ardens as sister to the Old World Scolia clade.

Analysis 2c:

The species or minimal clusters (SMC) tree inferred under the multispecies coalescent using 

STACEY (Fig. 1.11-1.12) recovered many of the same major clades as the other analyses. 

However, some relationships, particularly those that had conflicting resolutions among the 

previous analyses, were poorly resolved. Specifically, while Colpa is still sister to a 

monophyletic Scoliini and the Megascolia + Pyrrhoscolia + Carinoscolia clade is sister to all 

other Scoliini, the position of Triscolia ardens within the latter group is uncertain. Trisciloa is 

still sister to all other members of Campsomerini sensu stricto, the New World members of 

which form a monophyletic group. Megameris soleata, Laevicampsomeris + Megacampsomeris, 

and the New World Campsomerini sensu stricto form a clade, though the relationships among 

them is uncertain. Likewise, the relationships among this clade, the Cathimeris + Micromeriella 

clade, and the Campsomeriella + Tristimeris clade are not resolved.

Analysis 2d:

The "main" ASTRAL topology, estimated using MCC trees only, was mostly congruent with the 

consensus topology, estimated using posterior samples and bootstrapping, in the case of the 

dataset with all loci (Fig. 1.13D) and of the dataset with loci having the highest-third combined 

posterior predictive effect sizes (Fig. 1.13C), with a few differences in the resolution of shallow 

nodes with low support. The dataset with loci having the lowest posterior predictive effect sizes 

showed somewhat bigger differences between the "main" (Fig. 1.13A) and bootstrap consensus 

(Fig. 1.13B) topologies, the "main" topology notably placing Proscolia as sister to the 

Campsomerini sensus stricto, albeit with low support.
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The topology inferred using all loci mostly agrees with the results of analysis 2a, 2b, and 2c with 

the exception of Megameris soleata being inferred to be more closely related to 

Laevicampsomeris and Megacampsomeris than to the New World Campsomerini clade. 

Additionally, Triscolia ardens is placed as sister to the New World Scoliini, as opposed to being 

sister to the Old World Scolia clade as in analyses 2a and 2b and its position being unresolved as 

in analysis 2c. Analysis of the subset of loci with the highest combined posterior predictive effect

sizes produced results almost identical to those based on all loci. Conversely, as reported above, 

using loci with the lowest posterior predictive effect sizes resulted in the unexpected placement 

of Proscolia as sister to Campsomerini sensus stricto. Relationships were otherwise similar to 

those inferred using other locus sets, but with lower local posterior probabilities associated with 

many quadripartitions.

Analyses 3a and 3b:

Analyses 3a and 3b are based on data from 115 and 159 loci respectively. The results (Fig. 1.14-

1.15) agree with each other and mostly agree with those from analysis 1b. Differences include 

Triscolia ardens being sister to the Old World scoliine clade and Megameris soleata being sister 

to Laevicampsomeris formosa.

Discussion

Phylogenetic results and taxonomic implications

This is the first study to use molecular data to reconstruct the mammoth wasp phylogeny. Our 

results corroborate some long-standing phylogenetic hypotheses originally based on 

morphological data while contradicting others. Scoliid taxonomy has historically been unstable 

and confusing (see Elliott (2011) and Kimsey & Brothers (2016) for commentary). In the 
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following discussion, we use Osten (2005) as the reference for the current status of taxon names 

unless otherwise specified. We use Campsomerini sensu stricto to refer to Campsomerini 

excluding Colpa and taxa more closely related to Colpa than to the Scoliini.

The genus Proscolia was originally described by Rasnitsyn (1977), hypothesized to be sister to 

the remaining extant Scoliidae, and placed in a new subfamily Proscoliinae, with the other extant

Scoliidae relegated to the Scoliinae. Day et al. (1981) and Osten (2005) maintained this 

arrangement and treated the former subfamilies Scoliinae and Campsomerinae as the scoliine 

tribes Scoliini and Campsomerini respectively (Fig. 1.16C). Notable exceptions to this approach 

include earlier works by Osten (1988, 1993), where he argued against the inclusion of Proscolia 

in the Scoliidae, and Argaman (1996), who radically revised the higher-level scoliid taxonomy 

without conducting an explicit phylogenetic analysis. Argaman elevated the Campsomerini 

(minus Colpa and its presumed close relatives) back to subfamily rank (Fig. 1.16D) and placed it

as sister to the remaining extant Scoliidae (including the Proscoliinae). Pilgrim et al. (2008) 

included three scoliids in their study and placed Proscolia as either sister to the other two 

scoliids or as sister to Bradynobaenidae + other Scoliidae. Two more recent molecular 

phylogenetic studies of aculeates that included five and three scoliid species respectively 

(Debevec et al., 2012; Branstetter et al., 2017a) placed Proscolia as sister to all other scoliids. 

All analyses in the present study (Fig. 1.16E) strongly support this placement.

The taxonomic treatment of the species currently comprising the genus Colpa has historically 

varied significantly. To date, none of the taxonomic changes have been supported by 

phylogenetic analyses. However, the following authors generally presented informal 

phylogenetic arguments when making taxonomic decisions. Bradley (1950a), using the name 

Campsoscolia for the genus including what is now Colpa and Dasyscolia, argued for a "basal" 
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placement of these taxa, presumably meaning they fall outside the clade formed by the remaining

Scoliidae (Fig. 1.16A). Betrem (1965) erected the tribe Trielini (emended by Betrem & Bradley 

(1972) to Trielidini) within the Campsomerinae (Fig. 1.16B) to contain the genera Trielis 

(corresponding to Campsoscolia as used by Bradley (1950a) and currently understood (Day et 

al., 1981) to be a junior synonym of Colpa), Crioscolia (currently treated as a subgenus of 

Colpa), and Guigliana, which was formally described later by Bradley & Betrem (1967). 

Following the demotion of Campsomerinae to tribe rank by Day et al. (1981), Colpa and its 

allies were kept within the Campsomerini (Fig. 1.16C), with the implied relationships being 

Proscoliinae + (Campsomerini + Scoliini). Argaman (1996) on the other hand, created a new 

subfamily Colpinae (corresponding to the Trielidini of Betrem and Bradley (1972)) and placed it 

as sister to the Scoliini (which he elevated to subfamily rank), concluding that the Campsomerini

sensu stricto (also elevated to subfamily rank) is sister to Proscoliinae + (Colpinae + Scoliinae) 

(Fig. 1.16D).

Debevec et al. (2012) included five scoliid species in their analyses, one of them being Colpa 

sexmaculata, but the main text contains no discussion of Colpa and the relationships within the 

Scoliidae. If we assume the monophyly of Campsomerini sensu stricto and of Colpa (each only 

represented by one species), the phylogenies included with the supporting information place 

Proscoliinae as sister to Campsomerini sensu stricto + (Colpa + Scoliini). All analyses in the 

current study agree with the latter hypothesis (Fig. 1.16E) while using a significantly larger 

dataset and attempting to mitigate the effects of non-randomly-distributed missing data and 

phylogenetic model violation.

In light of these results, morphological similarities between Colpa and the Campsomerini, such 

as the presence of an articulation between the basal and apical parts of the volsella and the 

25



presence of the second recurrent vein, are likely plesiomorphies. We recommend the exclusion of

Colpa from Campsomerini when a formal taxonomic revision of Scoliidae is undertaken. 

However, a phylogenetic analysis establishing the positions of Guigliana and Dasyscolia (not 

represented in this study) should be considered a prerequisite of such a revision. Both genera 

lack the transverse impressed impunctate band on the frons, which serves as the defining feature 

of Colpa, but share with Colpa and the Scoliini some mesothoracic characters (Bradley, 1950a; 

Betrem & Bradley, 1972). If Guigliana and Dasyscolia form a monophyletic group with Colpa, 

the establishment of a tribe Colpini may be justified. Otherwise, if they are more closely related 

to or nested within the Scoliini, it may be reasonable to transfer Colpa, Guigliana, and 

Dasyscolia to that tribe. More complete sampling of this group would also allow the evaluation 

of its subgeneric classification. The subgenus Colpa (Crioscolia) has a strongly disjunct 

distribution in both the New and Old World (Bradley, 1950a). Our results (Fig. 1.2) indicate the 

paraphyly of Colpa (Colpa): the Nearctic Colpa (Colpa) octomaculata is more closely related to 

the Nearctic Colpa (Crioscolia) alcione than it is to the Palearctic Colpa (Colpa) sexmaculata. In

addition to allowing a critical evaluation of the phylogenetic validity of Colpa subgenera, a 

molecular phylogeny including more Colpa species would contribute significant biogeographic 

information, as this group appears to have undergone dispersal and/or vicariance events between 

the Old World and the Americas independently of the Scoliini and the Campsomerini sensu 

stricto.

Campsomerini sans Colpa is inferred to be monophyletic in all our analyses, with Trisciloa 

always sister to the remaining members of the group. Likewise, all sampled New World 

Campsomerini sensu stricto form a clade with high support in all analyses. Colpacampsomeris 

indica is consistently inferred to be the closest relative of this New World clade in all analyses in 

which the former was included. However, we have not sampled any species from South America,
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so it remains unknown whether those share a closer relationship with the New World taxa 

sampled here or with Old World scoliids. Dielis pilipes groups with Xanthocampsomeris as 

opposed to with other Dielis. This is consistent with D. pilipes lacking some prominent 

morphological characteristics shared by other Dielis, such as a medial longitudinal furrow on the 

clypeus and a deep transverse furrow on the anterior of abdominal sternum II. Bradley (1964) 

states the opinion that D. pilipes should be excluded from Dielis, but this change was never 

formalized.

Megacampsomeris is always monophyletic in these analyses. Other consistently monophyletic 

groups include (1) Micromeriella with Cathimeris as the sister taxon and (2) the group consisting

of Campsomeriella, Tristimeris, and some Malagasy species (undescribed or of uncertain 

taxonomic placement, provisionally labeled Campsomeriella sp. in the figures). Both Tristimeris 

and the Malagasy specimens are nested within Campsomeriella.

The positions of Megameris and Laevicampsomeris are uncertain, though they are likely more 

closely related to the New World Campsomerini, Megacampsomeris, and Colpacampsomeris 

than to other Campsomerini. In the current study, they are each represented by only one species. 

More thorough taxon sampling within these two genera will likely result in less uncertainty 

regarding their placement.

All analyses conducted here strongly support the monophyly of Scoliini. The first split within the

Scoliini gives rise to two clades: one consisting of Megascolia, Pyrrhoscolia, and Carinoscolia 

and the other consisting of Scolia and Triscolia. Megascolia is consistently non-monophyletic in 

our analyses. The situation warrants a taxonomic revision, though it should ideally be informed 

by future phylogenetic studies that are able to sample Megascolia, Pyrrhoscolia, and 
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Carinoscolia more completely. Sequencing of multiple Carinoscolia species is especially 

important, given that the genus is suggested to be polyphyletic by Golfetti (2019).

Our sampling of New World species was restricted to the Nearctic, and the affinities of 

Neotropical scoliines thus remain uncertain. However, all sampled Nearctic Scolia form a single 

clade. The phylogenetic position of Triscolia ardens was inconsistent across our analyses. The 

genus Triscolia has a complicated taxonomic history (see Betrem & Bradley, 1964) and currently

includes only two Nearctic species, T. badia and T. ardens. In all phylogenies where Scolia 

verticalis is included, T. ardens and S. verticalis are sisters. This is somewhat surprising given 

that S. verticalis is an Australasian species. We have mostly ruled out contamination and 

misidentification (see results section above) as potential explanations. More thorough sampling 

of scoliines from Australasia, Southeast Asia, and the eastern Palearctic might reveal species 

related to S. verticalis and fill in the gap in distributions, making a relationship with the Nearctic 

fauna more plausible. It is also possible that the two species of Triscolia are the only extant 

representatives of a previously more widespread lineage. The lack of close relatives of either 

species in the present study also means they are both subtended by long branches. A combination

of the potential for long branch attraction and the disproportionately high fraction of missing data

from S. verticalis raises the suspicion that the pairing might be artefactual. Regardless of its 

relationship to S. verticalis, T. ardens is recovered in our analyses either as closely related to the 

Nearctic Scolia clade or to the Old World Scolia clade, making it likely that the genus Scolia is 

paraphyletic irrespective of which placement of T. ardens is correct. One potential course of 

action is to synonymize Triscolia with Scolia. However, any taxonomic decisions involving 

Scolia should take into account the phylogenetic positions of two other large Scoliine genera, 

Liacos and Austroscolia, both of which are not represented in the current study.

28



Given the proliferation of scoliid generic names attached to groups defined mainly by superficial 

characters such as color and punctation, it seems likely that there are many examples of 

distinctive groups within larger genera being given their own generic names, thus rendering the 

larger genera paraphyletic. Further phylogenetic studies with more complete taxon sampling are 

needed before a taxonomic revision of scoliid genera is attempted. In the absence of such studies,

we recommend proceeding cautiously when describing new species (such as those belonging to 

the Malagasy scoliid fauna) and avoiding the establishment of new genera or groups of higher 

rank without first conducting thorough phylogenetic analyses.

Divergence times and biogeography

The precision of node age estimates in the current study is limited by the small number of fossils 

that can be reliably attributed to the scoliid crown. It might be possible to slightly increase 

precision by conducting analyses with a broader phylogenetic scope. Including taxa from the 

Apoidea and Formicoidea could allow fossil data from those clades to inform overall rates of 

molecular evolution. However, apoids and formicoids being much more diverse than scoliids 

makes it difficult to sample species evenly across clades, and care must be taken to accommodate

for this in any attempted analyses. The increased likelihood of heterogeneity in the evolutionary 

process becoming problematic as one expands the scope of the analysis should also be 

considered and addressed. Ultimately, the discovery and description of well-preserved crown 

fossils is likely to be a necessary prerequisite to achieving scoliid divergence time estimates with 

better precision and accuracy.

Due to weak sampling from some biogeographic regions, particularly Australasia and the 

Neotropics, we did not conduct a formal phylogeographic analysis. However, our phylogenetic 

29



results do indicate some biogeographic patterns that could be further investigated in future 

studies.

We estimated the stem age of the Nearctic Campsomerini sensu stricto clade to be between 19 

Ma and 46 Ma (95% HPD interval) when calibrating the root age only (Fig. 1.8). Among taxa 

sampled in this study, the closest relatives of this clade are taxa from Indomalaya, Australasia, 

and the eastern Palearctic. This suggests a possible exchange of fauna across Beringia during the 

Oligocene or later Eocene, which is broadly consistent with patterns observed in other animal 

groups (Jiang et al., 2019). The Nearctic Scolia clade has a very similar estimated stem age (19-

50 Ma). Analyses using additional (but less reliable, in terms of the phylogenetic placement of 

the associated fossil) calibrations extend the age 95% credible intervals into the early Eocene. 

Further refinement of node age estimates, in conjunction with more complete geographic 

sampling, is needed to evaluate the possibility of late (c. 65 Ma) exposures of the Thulean Route 

(Brikiatis, 2014) contributing to scoliid dispersal.

The phylogenetic position of Triscolia is uncertain, and has implications for the number and 

timing of biotic interchanges between North America and other regions. In addition to resolving 

the position of Triscolia, future phylogenetic studies need to prioritize sampling of the South 

American and Australasian scoliids. It is currently unclear whether South American Scoliini and 

Campsomerini sensu stricto each represent single lineages or multiple lineages with different 

biogeographic origins. It is possible that South America harbors relatively young lineages 

originating from Africa or the Nearctic and dispersing into South America during the Late-Early 

Eocene or later (Hoffmeister, 2020) and/or more ancient lineages with possible relationships to 

the Australian and African fauna. Understanding the phylogenetic and biogeographic affinities of

South American scoliids, while interesting in itself, is also essential to understanding patterns of 

30



scoliid diversification and answering questions such as why the Campsomerini sensu stricto are 

significantly more diverse than the Scoliini in the New World tropics while the opposite pattern 

holds in the Afrotropic and Indomalaya (Bradley, 1950b; 1959).

Madagascar is home to members of at least two campsomerine lineages, represented in the 

current study by one species of Micromeriella and several samples (probably from currently 

undescribed species) falling within the Campsomeriella clade. The presence of M. pilosella is 

probably due to a very recent dispersal from mainland Africa, while the Malagasy 

Campsomeriella lineage is older but also most closely related to African species. Given that the 

Malagasy scoliid fauna has received much less study than that of mainland Africa, it is certainly 

possible that among the species not sampled in this study there exist representatives of older 

endemic lineages that are not closely related to either Micromeriella or Campsomeriella. Our 

study additionally included two (probably undescribed) species belonging to Scolia. The scoliine

genera Liacos and Autroscolia both have representatives on the African mainland, Madagascar, 

Asia, and Australia (Bradley, 1950b; Osten, 2005; Elliott 2011), while the morphologically 

distinctive Mutilloscolia is confined to Madagascar (Bradley, 1959). None are included in this 

study and their phylogenetic relationships to other scoliines remain poorly understood. Although 

it is possible that these genera could be nested within Scolia (which is mostly identified by 

lacking the defining characters of other genera), the apparent lack of morphological characters 

uniting them specifically with the Scolia species sampled here suggests that the current Malagasy

scoliine diversity is likely a result of multiple dispersal (and possibly vicariance) events. This is 

tentatively supported by the morphology-based phylogenies of Golfetti (2019), which place 

Austroscolia and Liacos outside the clade formed by all scoliini sampled in this study.
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Methodological considerations

Doyle et al. (2015) demonstrated the potential utility of filtering data using posterior predictive 

methods. We made use of a similar approach, albeit limiting it to data-based (Huelsenbeck et al., 

2001) as opposed to inference-based (Brown, 2014a) tests. Molloy & Warnow (2018) used a 

simulation-based approach to explore the effect of data filtering using various criteria on species 

tree inference using ASTRAL (among other methods). They found that excluding loci with high 

gene tree estimation error can improve the accuracy of species tree inference when levels of 

incomplete lineage sorting (ILS) were moderate to low. The dependence on ILS levels was 

explained in terms of the number of gene trees required to accurately reconstruct the species tree 

increasing with higher levels of ILS. Thus, the negative effect of using fewer genes sometimes 

outweighed the positive effect of more accurate gene trees (Molloy & Warnow, 2018). In this 

context, we make the following observations based on our empirical analyses:

Using posterior predictive p-values with "conventional" cutoffs (e.g. 0.05) resulted in the 

exclusion of the majority of available loci. In some cases (e.g. Fig. 1.13A), this led to an 

unexpected and implausible species tree topology resulting from ASTRAL analyses (i.e. 

placement of Proscolia as sister to the Campsomerini). This could be a result of too few loci 

being used. Additionally, one would expect a correlation between the amount of data and the 

ability to detect model inadequacy, which might lead to the retention of less "informative" loci. 

This appears to be borne out in analysis 2d, where mean pairwise Robinson-Foulds distances 

among posterior topology samples were on average higher (73.3 versus 53.8) for the third of loci 

having the lowest posterior predictive effect sizes compared to the third having the highest. 

Under these circumstances, a fully-resolved point estimate of the topology might be a worse 

representation of the gene tree posterior distribution, and variance among gene tree point 
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estimates might be higher, even if there is no ILS and the underlying posterior distributions are 

unbiased. This could explain why we observed generally lower quadripartition support values 

resulting from analyses of loci with lower posterior predictive effect sizes even when the number

of loci per analysis was kept constant (Fig. 1.5A, B; Fig. 1.13A, C). In contrast to Fig. 1.13A, a 

bootstrap-based ASTRAL species tree (Fig. 1.13B) that used samples from the posterior 

distributions of gene trees (as opposed to point estimates) recovered Proscolia in a more 

plausible position that is also corroborated by our STACEY analysis. Mirarab (2019) observed 

that using samples from gene tree posteriors does not have the same negative effect on species 

tree accuracy as does using gene tree bootstrap replicates in a ML framework. We concur with 

Mirarab (2019) that further investigation is warranted. Potential use cases for this hybrid 

approach could be datasets with both (1) a limited number of genes available (e.g. from Sanger 

data) where the accuracy of estimates using ASTRAL with gene-tree point estimates may be 

lower and (2) with a very large number of terminal taxa where a fully Bayesian approach 

(model-based coestimation of gene trees and species tree) may be more computationally 

challenging.
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Figure 1.1 Maximum likelihood phylogeny including all samples (analysis 1a). Two distinct 
clades of Scolia bicincta are highlighted in yellow. Node support values are based on Ultrafast 
Bootstrapping in IQTREE; darker nodes reflect higher support.
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Figure 1.2. Maximum likelihood phylogeny based on 727 UCE loci (analysis 1b). Node support 
values based on Ultrafast Bootstrapping in IQTREE. All unlabeled internal nodes have 100% 
bootstrap support.
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Figure 1.3. ASTRAL species trees 
(analysis 1c) based on ML trees of (A) loci
not failing the maximum test of symmetry,
(B) loci failing the the maximum test of 
symmetry, and (C) all loci. Branch labels 
represent the local posterior probability of 
the associated quadripartition. All 
unlabeled quadripartitions have a local 
posterior probability of 1.0.
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Figure 1.4. ASTRAL species tree (analysis 1c) based on ML trees of loci not failing the 
maximum test of symmetry. Branch labels represent the local posterior probability of the 
associated quadripartition. All unlabeled quadripartitions have a local posterior probability of 
1.0.



46

Figure 1.5. ASTRAL species trees (analysis 1c) based on MCC trees of (A) loci having the 
lowest (1/3) combined posterior predictive effect sizes, (B) loci having the highest (1/3) 
combined posterior predictive effect sizes, (C) loci for which the model was not found to be 
inadequate (alpha = 0.05), and (D) all loci. Branch labels represent the local posterior 
probability of the associated quadripartition. All unlabeled quadripartitions have a local 
posterior probability of 1.0.
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Figure 1.6. Bayesian MAP tree based on 31 UCE loci after data filtering using posterior 
predictive checks (analysis 2a). All unlabeled internal nodes have posterior probabilities of 1.0.
Paraphyletic Campsomerini highlighted in blue; Scoliini highlighted in orange.
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Figure 1.7. Comparison of split posterior probabilities between two independent MCMC runs: 
(A) analysis 2a; (B) analysis 2b, root calibration only; (C) analysis 2b, root + 
Megacampsomeris calibration; (D) analysis 2b, root + Megacampsomeris + Scoliidae 
calibration. Numbers in the top left corners represent R2.
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Figure 1.8. Bayesian MAP chronogram based on 63 loci after data filtering using posterior 
predictive checks (analysis 2b). Node bars represent age 95% HPD intervals. All unlabeled 
internal nodes have posterior probability of 0.97 or greater. Taxonomic labels indicated 
with     .
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Figure 1.9. Bayesian MAP chronogram using additional calibration on crown Megacampsomeris 
(analysis 2b). All unlabeled internal nodes have posterior probability of 0.96 or greater. 
Taxonomic labels indicated with     .
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Figure 1.10. Bayesian MAP chronogram using additional calibrations on crown 
Megacampsomeris and crown Scoliidae (analysis 2b). All unlabeled internal nodes have 
posterior probability of 0.97 or greater. Taxonomic labels indicated with     .
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Figure 1.11. MCC species or minimal clusters tree based on 4 independent MCMC chains run 
using STACEY (analysis 2c). All unlabeled internal nodes have posterior probability of 1.0.
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Figure 1.12. Comparison of split posterior probabilities between four independent MCMC runs 
using STACEY (analysis 2c). Numbers in the top left corners represent R2.
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Figure 1.13. ASTRAL species trees (analysis 2d) based on MCC trees of (A) loci having the 
lowest (1/3) combined posterior predictive effect sizes, (C) loci having the highest (1/3) 
combined posterior predictive effect sizes, and (D) all loci. (B) is an ASTRAL bootstrap 
consensus tree using posterior samples of gene trees from loci having the lowest (1/3) 
combined posterior predictive effect sizes. Branch labels represent the local posterior 
probability or bootstrap support of/for the associated quadripartition.
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Figure 1.14. Bayesian MAP tree based on 115 UCE loci after data filtering using posterior 
predictive checks (analysis 3a). All unlabeled internal nodes have posterior probabilities of 1.0.
Comparison of split posterior probabilities between two independent MCMC runs on lower 
left.
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Figure 1.15. Bayesian MAP relative-time chronogram based on 159 UCE loci after data filtering 
using posterior predictive checks (analysis 3b). All unlabeled internal nodes have posterior 
probabilities of 1.0. Comparison of split posterior probabilities between two independent 
MCMC runs on lower left.
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Figure 1.16. Hypotheses regarding the 
relationships among major scoliid lineages: (A) 
Bradley (1950a); (B) Betrem (1965), Betrem & 
Bradley (1972); (C) Rasnitsyn (1977), Day et al.
(1981), Osten (2005); (D) Argaman (1996); (E) 
current study. Taxa containing species currently 
(Osten, 2005) in Colpa, Dasyscolia, and/or 
Guigliana marked with     .



Supporting Information

Validation of Scolia verticalis and Triscolia ardens data

We obtained Sanger data for T. ardens from Pilgrim et al. (2008) and for S. verticalis from 

Klopfstein & Ronquist (2013), Brady et al. (2006), and Ward & Fisher (2016). Sequences from 

Brady et al. (2006) and Ward & Fisher (2016) are from the same specimen used by Faircloth et 

al. (2015) and so not independent from the ones used in this study. See Table S1.4 for loci, 

accession numbers, and voucher information.

We extracted the corresponding loci from our Scoliini data and from Colpa (used as an outgroup)

following the same procedure we used to extract UCEs, but using a probe file only containing 

probes corresponding to exon sequences. We then aligned the sequences with MAFFT (E-INS-i 

algorithm) and and performed edge-trimming using the 

phyluce_align_get_trimmed_alignments_from_untrimmed script from the phyluce package. We 

then visually inspected the alignments, manually removed non-coding regions, and enforced the 

correct reading frame, validating the amino acid translations by using BLAST to align them 

against Hymenoptera protein sequences on GenBank.

We initially partitioned the data by locus and codon position, then used IQTREE ModelFinder 

(Kalyaanamoorthy et al., 2017) to select a partition scheme and substitution models using the 

greedy algorithm for exploring possible partition schemes and BIC. We used the "edge-linked-

proportional" model for branch lengths (i.e. a single vector of branch lengths with partition-

sepcific rate multipliers) and restricted the substitution model search space using the --mset 

mrbayes option. We then performed ML tree inference in IQTREE as well as Bayesian inference 

in RevBayes under the preferred model.
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The S. verticalis and T. ardens sequences grouped with their conspecifics, and S. verticalis and T.

ardens grouped with each other in both analyses (Fig. S1.2). However, support for the clade 

comprising target-enrichment-derived S. verticalis sequences + other S. verticalis sequences was 

weak, and the Sanger sequences from Klopfstein & Ronquist (2013) grouped with the Sanger 

sequences from Brady et al. (2006) and Ward & Fisher (2016) to the exclusion of the target 

enrichment sequences from Faircloth et al. (2015), despite the Faircloth et al. (2015), Brady et 

al. (2006), and Ward & Fisher (2016) sequences having been obtained from the same physical 

specimen. We hypothesize this is due to sequencing and/or data processing errors, likely in the 

target enrichment pipeline. Nonetheless, these analyses independently corroborate the relatedness

of T. ardens and S. verticalis. This grouping might still be artefactual (e.g. due to model 

misspecification), but it is unlikely to be due to specimen misidentification or incorrect 

association of sequences with specimens.

Notes on taxon names used in this study

Scolia affinis Guérin, 1845 

Specimens SPK6M (Thailand), SPK2D (Thailand), SKP5A (Sri Lanka), and SPK5L (Bhutan) 

key out to Scolia aureipennis Lepeletier 1845 (tome 3, page 525) using Betrem's (1928) key. 

SKP5A also keys out to S. affinis using Krombein's (1978) key. S. affinis was originally 

described from a specimen labeled as being from Senegal. Krombein (1978), citing "recent 

papers by Betrem and Bradley" states that S. aureipennis is a synonym of S. affinis and that the 

Senegal label on the type is erroneous. See also Bradley (1964, 1974) for further discussion of 

types and synonymy. Osten (2005) lists S. aureipennis as a possible synonym of Scolia affinis 

Guérin, 1845. We provisionally refer to the specimens in this study listed above as Scolia cf. 

affinis. They mostly match descriptions of that species (and its putative synonyms), but show 
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some differences in morphology and color. This could be attributed to geographic variation 

within a single widespread species. Specimen SPK6M appears to be genetically more closely 

related to specimen SPK5R (China) identified as Scolia superciliaris than to the other specimens 

attributed to S. affinis, including the other specimen from Thailand SPK2D, which raises the 

possibility of S. superciliaris being a color variant of S. affinis. On the other hand, is it is also 

possible that this group includes multiple species, some currently undescribed. Given the broad 

geographic range of S. affinis as currently understood, settling this matter definitively will likely 

require examination of material from across the entire Indomalayn region.

Scolia lebongensis Betrem, 1928

Specimen SPK5P (China) keys out to S. lebongensis in Betrem 1928, but is also similar to how 

S. oculata formosicola (as S. formosicola) is described. However, it does not fully match the 

description of either species and might represent a currently undescribed closely related species.

Scolia flaviceps Eversmann, 1846

For specimen SPK1R (Lebanon), compare also with Scolia orientalis.
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Introduction

Most modern approaches to phylogenetic reconstruction are model-based and thus potentially 

prone to error when the chosen model poorly describes the data at hand. The last two decades 

have seen the development of improved methods to evaluate relative model fit (Lartillot & 

Philippe, 2006; Fan et al., 2011; Xie et al., 2011; Baele et al., 2012a; 2012b) as well as model 

adequacy (Huelsenbeck et al., 2001; Bollback, 2002; Brown, 2014a; 2014b; Lewis et al., 2014; 

Doyle et al., 2015) in a Bayesian context. Despite this, assessment of model adequacy using 

posterior predictive simulation remains relatively uncommon in empirical phylogenetic studies 

(but see Williams et al. (2020) and May et al. (2021) for two recent exceptions).

Statistical power is the probability that a test correctly rejects a hypothesis when it is false. 

However, in the context of posterior predictive checks, maximizing statistical power may not 

always be desirable. Models are by necessity simplified representations of the biological 

processes generating the data and can thus always be rejected given enough data (Gelman, 2013).

The degree of correspondence between detectable model violation and error in phylogenetic 

parameter estimation is an important practical consideration. Inference-based test statistics 
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(Brown, 2014a) were primarily motivated by the need to develop tests of model adequacy that 

were more indicative of a model's propensity to lead to inaccurate inferences. On the other hand, 

assessments of the power of specific posterior predictive tests may be useful if performed using 

realistic amounts of data and when viewed in relation to inference (in)accuracy.

Such assessments have been performed, typically in studies introducing new tests and using 

nucleotide data (e.g. Bollback, 2002). Posterior predictive checks (without power analyses) have 

also been applied to complex amino acid (Blanquart & Lartillot, 2008) and codon models 

(Rodrigue et al., 2008; 2010) as well as to models of re-coded amino acids (Feuda et al., 2017). 

Duchêne et al. (2016) evaluated the power of various model adequacy tests, including posterior 

predictive tests of some codon models. However, no study has to our knowledge attempted to 

compare the power of posterior predictive tests of models describing nucleotide and amino acid 

coding of the same underlying data.

Coding and subsequently analyzing DNA sequence data in terms of amino acids is often 

preferred when tree lengths are expected to be high and/or when compositional heterogeneity is 

pronounced at the nucleotide but not at the amino acid level. However, doing so results in loss of

information. For datasets of intermediate tree length, the choice of which data type to use may 

not be obvious a priori, while phylogenetic inferences may differ significantly depending on this 

choice (e.g. Gillung et al., 2018). In such cases, tests of model adequacy may be helpful, and 

understanding the statistical power of these tests and how their results may correlate with errors 

in inference might aid interpretation.

In this study, we employed a Bayesian simulation-based approach to compare the power of data-

based posterior predictive tests of nucleotide and amino acid models. We sampled posterior 

distributions of parameter values under nucleotide and amino acid models applied to empirical 
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data from acrocerid flies (Gillung et al., 2018), amniotes (Chiari et al., 2012), birds (Jarvis et al., 

2015), brittle stars (O'Hara et al., 2017), seed plants (Ran et al., 2018), plastids (Ruhfel et al., 

2014), and Wolbachia (Comandatore et al., 2013), and codon models applied to data from 

Flavivirus (Moureau et al., 2015). We then used these parameter values to simulate sequence 

data, including under models featuring process heterogeneity across lineages, selection 

heterogeneity across sites, and selection for codon usage. We subsequently performed inference 

followed by posterior predictive simulation under simpler amino acid and nucleotide models. 

This allowed us to assess the ability of posterior predictive checks using the multinomial 

likelihood (Goldman, 1993; Bollback, 2002) and chi-squared test statistics (Huelsenbeck et al., 

2001; Foster 2004) to detect model violation and to determine the effect of model violation on 

inference accuracy.

Methods

Simulation parameters

For all non-Flavivirus datasets, our general approach was to use IQTREE (Nguyen et al., 2015; 

Chernomor et al., 2016) version 1.6.12 to get maximum likelihood estimates (MLEs) of the 

following parameters: stationary frequencies (Fig. 2.1C), exchangeability rates, shape parameter 

(Fig. 2.1A, 2.2A) of the discretized gamma across-site rate variation (ASRV) model (Yang, 

1994), and tree length (Fig. 2.1B, 2.2B). We used a GTR (Tavaré, 1986) substitution matrix for 

both amino acid and nucleotide data. In all cases, we partitioned the data by locus. For nucleotide

data, we additionally partitioned by codon position, estimating all the above parameters 

separately. Tree topology and relative branch lengths were linked across partitions, but a separate

tree length parameter was estimated for each partition (-spp option). For loci without data for 

some taxa, we rescaled the estimated tree length by dividing it by the number of branches in the 
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associated gene tree then multiplying the result by the number of branches in the tree containing 

all taxa (i.e. we preserved the average branch length). We used 6 independent runs for each 

dataset.

For some simulations (see below), we used parameter MLEs directly. However, in the case of 

nucleotide stationary frequencies and exchangeability rates, we also wanted the ability to obtain 

values that have similar distributions to the aggregated MLEs from empirical data. For each set 

of stationary frequencies and exchangeability rates of interest, we treated their MLEs as data 

drawn from a Dirichlet distribution with an unknown a parameter (with a uniform prior over the 

range 0 to 20 for each element of a) and sampled the posterior distribution of a using RevBayes 

(Höhna et al., 2014; 2016). We then used the means of the posterior distributions of a to specify 

distributions from which to draw stationary frequencies and exchangeability rates for simulation.

We sub-sampled the empirical datasets as follows (see Table 2.1 for a summary). For amniotes, 

we used a 300 character minimum alignment length cutoff per locus for amino acid data and an 

800 character cutoff for nucleotide data. For both data types, we only retained loci with at least 

50% taxon coverage, resulting in subsets of 54 and 85 nucleotide and amino acid alignments 

respectively. We used more stringent criteria for the larger bird dataset: minimum lengths of 700 

and 2100 characters for amino acid and nucleotide alignments respectively, 100% taxon 

coverage, and a maximum of 7% missing data at the site level. This resulted in reduced amino 

acid and nucleotide datasets of 104 loci. In the case of brittle stars we used cutoffs of 300 and 

900 characters for amino acid and nucleotide data respectively and 100% taxon coverage, 

resulting in the retention of 76 loci. Plants were treated similarly in terms of minimum taxon 

coverage, but we used lengths of 500 and 1500 characters as cutoffs, keeping 170 loci. We sub-

sampled the plastid dataset down to 284 taxa, and used cutoffs of 200 and 600 characters. 31 loci
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were retained. We used the same criteria for Wolbachia, but without taxon sub-sampling, and 

also retained 31 loci.

To obtain empirically grounded parameter values for simulation under codon models, we used a 

100 taxon Flavivirus dataset from Moureau et al. (2015). See Supporting Information for a list of

accession numbers. It was chosen as an example of a "difficult" dataset with high rates of 

evolution as well as because it was previously used by Duchêne et al. (2016).

We considered three approaches to estimating a codon tree length for the full dataset: (1) 

estimating the tree length directly using BAli-Phy (Redelings, 2021) on codon data while taking 

into account the uncertainty in alignment, tree topology, and model numerical parameters, (2) 

using BAli-Phy on amino acid data to get maximum a posteriori (MAP) estimates of alignment 

and topology, then using PAML (Yang, 2007) on the corresponding codon data and estimating a 

maximum likelihood (ML) tree length conditioning on the MAP topology and alignment, and (3)

using MAFFT (Katoh & Standley, 2013) to obtain an amino acid alignment, IQTREE with 

amino acid data to get a ML topology estimate conditioning on that alignment, and PAML to 

estimate the codon tree length. The first option is likely the most accurate but is also 

computationally expensive. Given that our goal was getting a ballpark estimate to use for 

simulation, we opted for the second option as a compromise between accuracy and 

computational burden.

In order to select a model of amino acid substitution for use in BAli-Phy, we first estimated a 

preliminary amino acid alignment with MAFFT version 7.471 using the E-INS-i algorithm 

(Altschul, 1998) and 10,000 cycles of iterative refinement. We then used IQTREE (Minh et al., 

2020) version 2.0.6 to compare amino acid substitution models using the Bayesian Information 

Criterion (BIC) (Schwarz, 1978). LG+F+R7 and LG+F+R6 accounted for close to 100% of the 
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BIC weight, with the closest runners up being other variants of the LG model (Le & Gascuel, 

2008).

In order to obtain MAP estimates of alignment and topology, we co-estimated the alignment, 

phylogeny, and other model parameters in a Bayesian framework using BAli-Phy version 3.5. 

We used the LG+F+R4 substitution model (reducing the number of rate categories from 7 to 4 to 

reduce computational cost) and the RS07 indel model (Redelings & Suchard, 2007). We ran 8 

independent chains for 1,000 hours. Since some runs exhibited poor mixing and/or appeared to 

be stuck in regions of lower posterior density, we combined samples from the three best-

behaving chains to generate MAP topology and alignment estimates. Mixing and convergence 

diagnostics were performed using BAli-Phy tools and the bonsai (May & Moore, 2017) version 

0.9 R (Core R Team, 2020) package. We subsequently used the alignment (converted to a codon 

alignment using a custom python script) and topology to estimate a codon tree length under the 

MutSel+M3 (Yang & Nielsen, 2008; Yang et al., 2000) model using PAML version 4.9j.

We performed kmeans clustering in R and used the fviz_cluster() function from the factoextra 

package (Kassambara & Mundt, 2020) to visualize differences in codon usage across taxa (Fig. 

S2.1). Finally, we extracted subsets of the full alignment corresponding to clades of interest: tick-

borne flavivirus (TBFV), dengue virus (DENV), West Nile virus (WNV), yellow fever virus 

(YFV), and Zika virus (ZIKV). This set of clades was selected such that each member of the set 

has distinct patterns of codon usage. We then sampled posterior distributions of clade parameters 

under the MutSel+M5+G (Yang & Nielsen, 2008; Yang et al., 2000) model using a custom 

implementation in RevBayes.
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Simulation and inference under a simple amino acid model

Our general approach involved two steps: (1) the creation of a stochastic variable trace with 

samples from the desired distributions of parameter values followed by (2) using the posterior 

predictive simulation functionality of RevBayes (Höhna et al., 2018) to simulate sequence data 

under a specific model and the set of parameter values taken from the trace.

Here, we used unrooted tree topologies with 20 terminals drawn from a uniform distribution and 

vectors of branch lengths drawn from a symmetrical Dirichlet distribution with a concentration 

parameter of 1.3. Values of the alpha (shape) parameter associated with the discretized gamma 

model of across-site rate variation (ASRV) as well as values of the tree length parameter were 

taken directly from those inferred from empirical data (see section above): each row of the trace, 

corresponding to one simulated alignment, was constructed to contain parameter estimates from 

one locus from one of the empirical datasets. We used the WAG (Whelan & Goldman, 2001) 

substitution matrix and simulated a set of 517 alignments of 400 amino acid sites and another set 

of 517 alignments of 1800 amino acid sites.

In order to evaluate the ability of posterior predictive checks to detect violation of the equal-

rates-across-sites assumption, we performed phylogenetic inference followed by posterior 

predictive simulation on each alignment first using the true model (WAG+G) then using WAG 

without a discretized gamma ASRV model.

Simulation and inference under a simple nucleotide model

We ran a similar set of simulations with nucleotide data. This allowed us to compare the ability 

to detect a fixed level of ASRV model violation when using amino acids to that when using 

nucleotides. We used the same values for tree topology, branch lengths, tree length, and 
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discretized gamma ASRV model shape parameter as above. Nucleotide exchangeability rates and

stationary frequencies were sampled from Dirichlet distributions with a parameters set to 

posterior mean estimates associated with second position sites from empirical data (see 

"Simulation parameters" section above). Similarly to the amino acid simulations, we generated a 

set of 517 alignments of 400 nucleotide sites and another set of 517 alignments of 1800 

nucleotide sites under a GTR+G substitution model. We then performed phylogenetic inference 

followed by posterior predictive simulation using the GTR+G and GTR models.

Simulation under a branch-heterogenous mutation-selection codon model

We used the HKY-like version of the mutation-selection (MutSel) codon model (Yang & Nielsen,

2008) following the parameterization of Rodrigue et al. (2008), i.e. using a vector of 61 codon 

preference parameters with the constraint that they sum to zero. We implemented this model in 

RevBayes by writing a python script that generates Rev code defining codon stationary 

frequencies and exchangeability rates in terms of nucleotide stationary frequencies and 

exchangeability rates, a transition/transversion ratio, a dN/dS ratio, and codon preference 

parameters. We validated our implementation by simulating data under this model with fixed 

parameter values and recovering these values by performing maximum likelihood inference 

under the MutSel model in PAML (Yang, 2007) version 4.9j.

We combined this MutSel matrix with the M5 model (Yang et al., 2000) allowing the dN/dS ratio 

to vary across sites following a discretized gamma distribution. We used the following approach 

to model shifts in the evolutionary process across the tree we: (1) treated each unrooted tree 

topology used for simulation as if it were rooted on the branch subtending "taxon01", (2) 

randomly selected two different internal branches on each of these tree topologies to serve as 

"breakpoints" (the "root" branch was always treated as the first breakpoint), (3) identified three 
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sets of branches, each including a breakpoint branch and all its descendants, (4) if a specific 

branch belonged to two or more sets, we reassigned it exclusively to the set associated with the 

younger breakpoint branch, and (5) assigned separated values of MutSel+M5 parameters to each 

of the three resulting sets of branches, with each set of parameters being drawn from the 

posterior associated with a different subset of the empirical Flavivirus dataset. Specifically, tick-

borne flavivirus (TBFV) was always used for the root set, and all combinations of dengue virus 

(DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV) were used 

for the other breakpoint sets. Additionally, we applied a branch-homogeneous discretized gamma

ASRV model acting at the codon level, with the alpha shape parameter drawn from the posterior 

associated with one of the empirical data subsets above. Root frequencies were set to the 

stationary frequencies associated with the set of branches including the branch on which the tree 

was rooted. See Fig. 2.3 for a schematic summary.

In order to generate a pseudo-empirical amino acid model to use for inference, we estimated 

amino acid stationary frequencies and exchangeability rates under a GTR+G model from 

simulated data. We ran an analysis using 10 alignments of 1800 amino acids each, simulated 

under 10 different sets of tree topologies, branch lengths, and breakpoints. We fixed the topology

associated with each alignment/partition to the "true" topology used for simulation while 

estimating a separate tree length and vector of branch lengths for each alignment. Conversely, 

stationary frequencies, exchangeability rates and the gamma ASRV shape parameter were linked 

across alignments. The resulting amino acid matrix served as an equivalent for empirical amino 

acid models such as JTT (Jones et al., 1992), WAG, and LG that is optimized for our simulated 

data.
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We then preformed inference and posterior predictive simulation under this pseudo-empirical 

amino acid model (EMP+G) and a GTR+G nucleotide model (partitioned by codon position) as 

outlined in the section above.

Branch-heterogenous codon ASRV and branch-homogeneous dN/dS

The simulation scheme above results in heterotachy at the amino acid and nucleotide levels due 

to dN/dS changing differently over the tree for different sets of sites, despite no heterotachy at the 

codon level since the pattern of codon ASRV is homogeneous. We performed two additional sets 

of simulations similar to the above, but with the following differences. For the first set, we 

allowed codon site rates (governed by a discretized gamma ASRV model) to vary across the tree.

We used the same breakpoints as those used for parameters of the MutSel+M5 model. Site rate 

values for each subset of branches were based on posterior samples of the discretized gamma 

ASRV shape parameter (a) associated with the same empirical data subset as that used for 

MutSel+M5 parameters (e.g. a subset of branches would have the shape parameter and 

substitution matrix parameter values all taken from analysis of DENV data). For the second set 

of simulations, we also used branch-heterogeneous ASRV but kept site dN/dS (w) values constant 

across the tree, always using the values associated with the "root" branch subset. In both cases, 

rate (and dN/dS, when applicable) categories were partially reordered. If a site belonged to one of 

the three slowest categories at the root of the tree, it was kept in that category throughout the tree

even though the rate itself was allowed to change at breakpoints. Conversely, sites in other 

categories (e.g. starting out in the second fastest bin) randomly switched categories at 

breakpoints.
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Calculation of test statistics and quantification of topology and tree length estimation 

accuracy

We calculated the multinomial likelihood test statistic following equation 7 in Bollback (2002). 

The chi-squared test statistic was calculated on a contingency table of character state counts per 

taxon, basing the expected frequency of a state on its average frequency across the entire 

alignment.

All models used for inference in this study are homogeneous across the phylogeny, while some 

models used for simulating data are not. We expect alignments simulated under models violating 

the homogeneity assumption to have larger values of chi-squared compared the expectation 

under a homogeneous model. We therefore calculated one-tailed posterior predictive p-values 

when using the chi-squared statistic. Conversely, we calculated 2-tailed posterior predictive p-

values when using multinomial likelihood by finding a Highest Density Interval (HDI) on the 

posterior predictive distribution such that one of its boundaries corresponds to the multinomial 

likelihood of the alignment on which inference was performed, then taking the mass lying 

outside that HDI. HDI calculations were made using the HDInterval (Meredith & Kruschke, 

2020) version 0.2.2 R package. Effect sizes for both statistics were calculated as the absolute 

value of the difference between the value of the statistic calculated on the alignment used for 

inference and the median of the posterior predictive distribution, divided by the standard 

deviation of the posterior predictive distribution.

We measured topology inference accuracy by determining whether the true topology is covered 

by the 95% highest posterior density set and by estimating the tree distance between the true 

topology and the MAP topology and the average distance between the true topology and every 

topology in the posterior sample. We used the following distance metrics: Robinson-Foulds (RF) 
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distance (Robinson & Foulds, 1981), approximate Subtree Prune-Regraft (SPR) distance (Hein, 

1990; de Oliveira Martins, 2008), and Clustering Information Distance (CID) (Smith, 2020a) 

calculated using the phangorn (Schliep, 2011) version 2.7.1 and TreeDist (Smith, 2020b) version 

2.0.3 R packages. Since SPR distances generally followed the same patterns as RF distances, we 

did not report them in the main text, figures, and tables, though they are included in Supporting 

Information tables.

To assess tree length inference accuracy, we calculated (1) the percent difference between the 

posterior mean tree length and the true tree length, (2) the difference between the posterior mean 

tree length and the true tree length divided by the standard deviation of the posterior distribution,

and (3,4) the absolute values of the previous two metrics. For inference on nucleotide data 

generated by codon models, the true nucleotide tree length was calculated as the codon tree 

length divided by 3. The amino acid tree length was calculated using the following procedure on 

the codon instantaneous rate matrix: (1) multiply each instantaneous rate by the stationary 

frequency of the originating codon to get a "weighted" rate, (2) calculate the ratio of the sum of 

weighted rates associated with non-synonymous substitutions to the sum of weighted rates 

associated with synonymous substitutions, and (3) multiply this ratio by the codon tree length.

We used the two-sample Cramer-Von Mises test (Cramér, 1928; Von Mises, 1928; Anderson, 

1962) as implemented in the twosample (Dowd, 2020) R package to determine whether sampled 

test statistics associated with different analyses could be considered to have different 

distributions. In the case of binary statistics (e.g. whether the true tree is covered), we used 

Fisher's exact test (Fisher, 1922). Since we performed multiple statistical tests comparing the 

results of nucleotide and amino acid analyses for each batch of simulations, we used the 

Benjamini-Yekutieli procedure (Benjamini & Yekutieli, 2001) as implemented in the stats (Core 
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R Team, 2020) version 4.1.2 R package to control false discovery rate. In order to reduce the 

number of redundant comparisons, we did not calculate p-values for RF distances and absolute 

error statistics. All p-values included in figures are uncorrected, while the p-values presented in 

tables are Benjamini-Yekutieli corrected.

MCMC diagnostics

We visually assessed within-run convergence and mixing of a subset of analyses using Tracer 

(Rambaut et al., 2018) version 1.7. Since running multiple MCMC chains per inference run was 

too computationally prohibitive given the total number of analyses performed, we only ran 

independent replicates of a small subset of analyses and used the bonsai R package to calculated 

convergence statistics for tree topology and numerical parameters.

Output visualization

We used the following R packages to visualize output and generate figures: RColorBrewer 

(Neuwirth, 2014) version 1.1.2, geometry (Habel et al., 2019) version 0.4.5, plot3D (Soetaert, 

2021) version 1.4, ggplot2 (Wickham, 2016) version 3.3.5, dplyr (Wickham et al., 2021) version 

1.0.5, forcats (Wickham, 2021) version 0.5.1, grid (Core R Team, 2021) version 4.1.2.

Results

Simulation and inference under a simple amino acid and nucleotide models

Table 2.2 and Fig. 2.4-2.15 summarize statistics associated with inference accuracy and posterior

predictive tests. See Table S2.1 for more statistics and raw values. Error in topology inference, as

measured by the mean clustering information distance (CID) between every topology in the 

posterior sample and the true topology (Fig. 2.6), the CID between the MAP tree and the true 

tree (Fig. 2.7), and how frequently the true topology is covered by the 95% credible set (Fig. 
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2.12A, B) indicate overall lower accuracy associated with inference under nucleotide models 

(versus amino acid models) when across-site rate variation (ASRV) is ignored. When using the 

true model, the fraction of times the true topology was covered was not significantly below 95% 

except in the case of the nucleotide GTR+G model (exact binomial test p-value = 0.00785) in 

combination with an alignment length corresponding to 1200 codons (400 second-position 

nucleotide sites). Using RF distance instead of CID led to qualitatively similar results (Fig. 2.4-

2.5).

Tree length estimation error was not significantly different between nucleotide and amino acid 

models when the simulation model was used for inference, but both nucleotide and amino acid 

models consistently underestimated the tree length when ASRV was ignored, with nucleotide 

models being associated with greater error (Fig. 2.8-2.11). In general, the true tree length was 

covered much less frequently than the true topology (11% at best in the case of tree length versus

72% at worst in the case of topology) when ASRV was ignored (Fig. 2.12).

For the degree of model violation explored here, posterior predictive tests using the multinomial 

likelihood statistic had high power: approximately 96% for alignment lengths of 1200 and >99% 

for alignment lengths of 5400 (Table 2.2, Fig. 2.15A, B). The difference in power when using 

amino acid versus nucleotide models was not significant. However, multinomial likelihood 

posterior predictive effect sizes were on average higher when using amino acid models both 

when using the true model and in the presence of model violation (Fig. 2.13). In contrast to the 

above, tests using the chi-squared statistic were not sensitive to model violation caused by 

ignoring ASRV, with power being lower than the type I error (Fig. 2.15C, D). Posterior 

predictive effect sizes were not significantly different for amino acids and nucleotides when the 
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true model was used, but effect sizes where larger in the case of amino acids when ASRV was 

ignored (Fig. 2.14), despite negligible power.

Simulation under a branch-heterogenous mutation-selection codon model

Table 2.3 and Fig. 2.16-2.27 summarize statistics associated with inference accuracy and 

posterior predictive tests. See Tabble S2.2 for more statistics and raw values. Topology inference 

under amino acid models was more accurate for all tree lengths when measured in terms of how 

frequently the true topology is covered by the 95% credible set (Fig. 2.24A). Comparisons of the 

mean CID between every topology in the posterior sample and the true topology (Fig. 2.18) and 

the CID between the MAP topology and the true topology (Fig. 2.19) point in the same direction,

but are only significant (adjusted p-value < 0.05) for runs with tree length equal to 50 expected 

substitutions per codon. Assessment using RF distance (Fig. 2.16-2.17) followed the same 

pattern.

When a tree length of 50 expected substitutions per codon was used for simulation, using amino 

acid models resulted in underestimating the tree length, while using nucleotide models resulted 

in tree length overestimation (Fig. 2.20, 2.22; top). When true tree length was increased to 100, 

estimates using nucleotide models became on average almost unbiased, while estimates using 

amino acid models underestimated the tree length more strongly (Fig. 2.20, 2.22; middle). At 150

expected substitutions per codon, estimates based on both nucleotide and amino acid models 

were on average lower than the true tree length (Fig. 2.20, 2.22; bottom). Absolute error (Fig. 

2.21, 2.23) was greater in the case of nucleotide models for a true tree length of 50, and greater 

in the case of amino acid models for true tree lengths of 100 and 150. Nucleotide models were in 

general associated with higher variance in magnitude of error. The true tree length was covered 

by the 95% credible interval 38% and 23% of the time when using amino acid and nucleotide 

76



models respectively when the simulation tree length was set to 50 substitutions per codon (Fig. 

2.24B; left). For true tree lengths of 100 and 150, the true length was covered 74% and 64% of 

the time respectively for nucleotide models, and was never covered for amino acid models (Fig. 

2.24B; middle and right).

Power of posterior predictive tests using the multinomial likelihood statistic was higher for 

nucleotide than for amino acid models (95% versus 8%) when the simulation tree length was 50 

expected substitutions per codon (Fig. 2.27A; left). At tree lengths of 100 and 150, the model 

was always rejected (Fig. 2.27A; middle and right). Multinomial likelihood posterior predictive 

effect sizes (Fig. 2.25) followed a similar pattern to tree length estimation error: at a true tree 

length of 50, nucleotide models were associated with higher effect sizes, while amino acid 

models were associated with higher effect sizes at true tree lengths of 100 and 150. Power of 

tests based on the chi-squared statistic was maximal (i.e. 100%) for nucleotide models at all 

evaluated tree lengths, while it increased from 26% to 46% with increasing tree length for amino 

acid models (Fig. 2.27B). Both the average and variance of chi-squared effect sizes was much 

greater with nucleotide models for all tree lengths (Fig. 2.26).

Branch-heterogenous codon ASRV and branch-homogeneous dN/dS

Table 2.4 and Fig. 2.28-2.41 summarize statistics associated with inference accuracy and 

posterior predictive tests. See Table S2.3 for more statistics and raw values. Topology inference 

accuracy as measured by the mean CID between every topology in the posterior sample and the 

true topology (Fig. 2.30), the CID between the MAP topology and the true topology (Fig. 2.31), 

and the fraction of times the true topology was covered (Fig. 2.36) appeared to indicate slightly 

more error associated with nucleotide analyses across all tree lengths and simulation models 

when looking at statistic means only. However, these apparent differences were generally not 
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significant (adjusted p-values > 0.05 in all cases but one; see Table 2.4). This reduction in power 

compared to the previous set of analyses is expected given the reduced number of simulations 

per model (100 versus 600).

In the case of data simulated under branch-heterogeneous ASRV, branch-homogeneous dN/dS, and

a codon tree length of 50, tree length estimates under amino acid analyses were on average more 

positively biased (i.e. tree length is overestimated) than the estimates under equivalent nucleotide

analyses (Fig. 2.32; top). This is in contrast to the case of homogeneous ASRV and 

heterogeneous dN/dS, where estimates based on amino acid models were negatively biased and 

nucleotide-based estimates were positively biased. When both ASRV and dN/dS were branch-

heterogeneous, both nucleotide and amino acid analyses overestimated the tree length. In this 

case, estimates based on amino acids were slightly less biased than estimates based on nucleotide

analyses. When data were simulated under tree lengths of 100 and 150 substitutions per codon 

(Fig. 2.32; middle, bottom), tree lengths were underestimated across all simulation and inference 

models, with the relative magnitude of error increasing with tree length.

For all tree lengths, tree length estimation error associated with nucleotide analyses was similar 

across simulation models. Error was on average positive at a true tree length of 50 but became 

negative at 100 and more negative at 150. Across all tree lengths, amino acid analyses of data 

simulated under branch-heterogeneous dN/dS and ASRV resulted in percent error that was on 

average in between that associated with simulation models where only dN/dS is heterogeneous 

and models where only ASRV is heterogeneous. For distributions of absolute percent error, see 

Fig. 2.33. Overall, while all inference models performed more poorly at a true tree length of 150,

the presence of dN/dS branch-heterogeneity appears to be correlated with greater error in amino 

acid analyses.
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The mean error in estimated tree length relative to the standard deviation of the posterior 

distribution (Fig. 2.34) was almost always greater in magnitude in the case of amino acid 

analyses. The only exception was analyses of data generated with branch-heterogeneous ASRV 

and homogeneous dN/dS at a codon tree length of 100, where the difference was not significant 

(Table 2.4). However, the mean of the absolute error relative to the standard deviation (Fig. 2.35)

was slightly higher for nucleotide analyses of data generated under branch-homogeneous ASRV 

and heterogeneous dN/dS at a codon tree length of 50 (Table S2.3). Following this general trend, 

the true tree length was covered by the 95% credible interval more often for nucleotide than for 

amino acid analyses in all cases where the difference was significant (Fig. 2.37). There are thus 

instances, such as with data generated with branch-heterogeneous ASRV and homogeneous dN/dS

at a codon tree length of 100, where the posterior mean tree length is on average proportionally 

closer to the true tree length for amino acid analyses (Fig. 2.32-2.33; middle) but at the same 

time falls outside the 95% credible interval more often.

Multinomial likelihood posterior predictive effect sizes (Fig. 2.38) for amino acid analyses 

across all tested tree lengths were larger in the case of branch-heterogeneous ASRV with or 

without heterogeneous dN/dS than in the case of homogeneous ASRV and heterogeneous dN/dS. 

Given that amino acid analyses of data generated with homogeneous ASRV and heterogeneous 

dN/dS resulted in higher error in tree length estimation at true codon tree lengths of 100 and 150, 

lower multinomial likelihood effect size was not always associated with lower error in these 

cases. Similarly, nucleotide analyses at the same tree lengths of data with dN/dS heterogeneity 

only, had on average greater tree length estimation error than analyses of data with ASRV 

heterogeneity only, but had lower multinomial likelihood effect sizes. Finally, pairwise 

comparisons of nucleotide and amino acid analyses of the same codon data displayed higher 

effect sizes for amino acid analyses, except in the case of data with dN/dS heterogeneity only and 
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a true tree length of 50. The power of posterior predictive tests using the multinomial likelihood 

statistic (Fig. 2.40) was maximal across all analyses at tree lengths of 100 and 150. At a tree 

length of 50, power was high (> 84%) for both amino acid and nucleotide analyses when data 

were simulated with heterogeneous ASRV. However, power was very low (3% on average) for 

amino acid analyses of data with dN/dS heterogeneity only, while it was high (93% on average) 

for the corresponding nucleotide analyses.

Chi-squared effect sizes (Fig. 2.39) for amino acid analyses were similar across simulation 

models, albeit increasing slightly with larger tree lengths. The same pattern held for nucleotide 

analyses. However, effect sizes were consistently much larger for nucleotide analyses compared 

to those associated with amino acid analyses of the same data. Power (Fig. 2.41) was maximal 

for all nucleotide runs. For amino acid runs, power increased slightly with tree length and was 

similar across simulation models for a given tree length, although analyses of data simulated 

with heterogeneous ASRV but homogeneous dN/dS were associated with slightly higher power.

Discussion

The ability to detect model violation, as well as the error in inferred topologies and tree lengths, 

varied across data types, true tree lengths, and properties of the simulation model. Our results 

partially corroborate and extend the findings of previous studies. Duchêne et al. (2017) focus on 

error in topology inference when using nucleotide data but note that error in tree length 

estimation was not always correlated with topology error. We observe this in our simulations 

where, for example, topology inference accuracy stayed roughly the same for the nucleotide 

GTR+G inference model and data simulated under a branch-heterogeneous codon model as the 

true tree length was increased, but the percent error in the estimated tree length changed 

dramatically (e.g. from +8.8% to -22.4%). Moreover, we found that although using amino acid 
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data generally resulted in more accurate reconstruction of tree topology, it was also associated 

with larger errors in estimated tree length under some simulation conditions. The former result is 

compatible with the conventional preference for using amino acid data to reconstruct 

phylogenies of highly divergent taxa. However, the tree length estimation error observed here 

has the potential to impact analyses focusing on molecular dating, biogeography, and ancestral 

state reconstruction, since inaccurately estimated branch lengths can bias estimates of divergence

times (Phillips, 2009; Schwartz & Mueller, 2010). As such, we recommend using both amino 

acid and nucleotide coding for dating analyses when possible, and investigating discrepancies in 

estimates without a priori assuming amino acid analyses to be more accurate, especially when 

using sequences that might be under different selective constraints in different lineages.

Phillips (2009) also demonstrated that the direction of age estimation bias can depend on data 

coding, with nucleotide coding resulting in overestimates of divergence times and RY coding 

resulting in underestimates. We demonstrated a similar effect on tree length estimation bias for 

nucleotide and amino acid coding respectively, although it was limited to a specific combination 

of true tree length and simulation model. Importantly, we find that the relative magnitude and 

direction of bias can also be dataset dependent. Our analyses of data simulated under discretized 

gamma ASRV nucleotide and amino acid models agree with the results of Duchêne et al. (2016), 

who found that amino acid analyses had less biased tree length estimates than nucleotide 

analyses when ASRV is not accommodated by the inference model. However, the opposite was 

true when we simulated data under codon models where the strength of selection, and thus amino

acid substitution rates, was allowed to vary across sites and branches.

When analyzing empirical data, the primary concern is usually with some aspect of model 

performance, not the ability to reject a false model per se, since all models are "wrong" and can 
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be rejected given enough data (Gelman, 2013). Posterior predictive p-values also cannot 

distinguish cases where the test statistic calculated from the empirical dataset falls just outside 

the distribution predicted by the model and cases where model predictions and empirical reality 

are very different. For these reasons, posterior predictive effect sizes are sometimes used (e.g. by 

Doyle et al., 2015) as measures of model (in)adequacy in lieu of p-values. Building on this 

approach, Duchêne et al. (2017) find chi-squared effect size thresholds that allow the 

identification of instances where topology inference is likely to be biased. Our results indicate 

that if such an approach is to be extended to comparisons of model adequacy in the context of 

different coding of the same data, different useful thresholds might need to be established for 

each case. For example, we found that in the case of data simulated with dN/dS branch-

heterogeneity, multinomial likelihood effect sizes for amino acid models at a true tree length of 

100 substitutions per codon were on average very similar to those for nucleotide models at a tree 

length of 150 (4.1 versus 4.3 standard deviations respectively). However, the associated 

respective error in estimated tree lengths was very different (a -18.9% difference between the 

posterior mean and the true tree length, with the true value never covered by the 95% credible 

interval for amino acid coding, versus a -13.8% difference and the true tree length covered 64% 

of the time for nucleotide coding). Additionally, a given test statistic might differ subtly in 

sensitivity to specific features of the data. Although we generally found multinomial likelihood 

to be sensitive to cases where the inference model does not sufficiently accommodate branch 

and/or site heterogeneity in rates, this was not always the case. At larger tree lengths, adding 

dN/dS branch-heterogeneity when codon-level ASRV was already present had a strong effect on 

tree length estimation error using amino acid data, but had a minimal effect on multinomial 

likelihood effect size.
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Figure 2.1. Plots of MLEs from analyses of empirical nucleotide data under the GTR+G model. 
(A) alpha, the shape parameter of the discretized-gamma ASRV model; (B) tree lengths in 
expected number of nucleotide substitutions per site; (C) nucleotide stationary frequencies.
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Figure 2.2. Histograms of MLEs from analyses of empirical amino acid data under the GTR+G 
model. (A) alpha, the shape parameter of the discretized-gamma ASRV model; (B) tree lengths 
in expected number of amino acid substitutions per site.
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Table 2.1. Datasets used to estimate parameters for downstream simulations.



92

Figure 2.3. Procedure for simulating data under a branch-heterogeneous MutSel model using 
empirically plausible parameter values. Alignment graphics generated using AliView.
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Table 2.2. Topology and tree length inference accuracy and posterior predictive test statistics 
using amino acid and nucleotide models. Simulation was done using WAG+G for amino acid 
data and GTR+G for nucleotide data. Displayed values are averages across all performed 
simulation/inference runs. Standard deviations are in parentheses. Benjamini-Yekutieli adjusted
p-values for amino acid versus nucleotide comparisons are listed below the standard deviation 
of each amino acid entry. Adjusted p-values smaller than 0.05 are italicized and in red.
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Figure 2.4A. Distributions, across 517 inference runs on different simulated datasets, of the mean
RF distance between every topology in the posterior sample and the true topology. Labels in the 
right corner of each histogram indicate the data type, inference model, and alignment length in 
equivalent number of codons. P-values comparing inference runs using amino acid versus 
nucleotide models on the same underlying data were not calculated for this statistic.
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Figure 2.4B. Distributions, across 517 inference runs on different simulated datasets, of the mean
RF distance between every topology in the posterior sample and the true topology. Labels in the 
right corner of each histogram indicate the data type, inference model, and alignment length in 
equivalent number of codons. P-values comparing inference runs using amino acid versus 
nucleotide models on the same underlying data were not calculated for this statistic.
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Figure 2.5A. Distributions, across 517 inference runs on different simulated datasets, of the RF 
distance between the MAP topology and the true topology. Labels in the right corner of each 
histogram indicate the data type, inference model, and alignment length in equivalent number 
of codons. P-values comparing inference runs using amino acid versus nucleotide models on 
the same underlying data were not calculated for this statistic.
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Figure 2.5B. Distributions, across 517 inference runs on different simulated datasets, of the RF 
distance between the MAP topology and the true topology. Labels in the right corner of each 
histogram indicate the data type, inference model, and alignment length in equivalent number 
of codons. P-values comparing inference runs using amino acid versus nucleotide models on 
the same underlying data were not calculated for this statistic.
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Figure 2.6A. Distributions, across 517 inference runs on different simulated datasets, of the mean
CID between every topology in the posterior sample and the true topology. Labels in the right 
corner of each histogram indicate the data type, inference model, and alignment length in 
equivalent number of codons. P-values are from two-sample Cramer-Von Mises tests comparing 
analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.6B. Distributions, across 517 inference runs on different simulated datasets, of the mean
CID between every topology in the posterior sample and the true topology. Labels in the right 
corner of each histogram indicate the data type, inference model, and alignment length in 
equivalent number of codons. P-values are from two-sample Cramer-Von Mises tests comparing 
analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.7A. Distributions, across 517 inference runs on different simulated datasets, of the CID 
between the MAP topology and the true topology. Labels in the right corner of each histogram 
indicate the data type, inference model, and alignment length in equivalent number of codons. 
P-values are from two-sample Cramer-Von Mises tests comparing analogous sets of inference 
runs on amino acid versus nucleotide data.
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Figure 2.7B. Distributions, across 517 inference runs on different simulated datasets, of the CID 
between the MAP topology and the true topology. Labels in the right corner of each histogram 
indicate the data type, inference model, and alignment length in equivalent number of codons. 
P-values are from two-sample Cramer-Von Mises tests comparing analogous sets of inference 
runs on amino acid versus nucleotide data.
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Figure 2.8A. Distributions, across 517 inference runs on different simulated datasets, of the 
percent difference between estimated and true tree lengths; i.e. (estimated - true) ÷ true. X-axis 
labels are in decimal (0.5 corresponds to 50%). P-values are from two-sample Cramer-Von 
Mises tests comparing analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.8B. Distributions, across 517 inference runs on different simulated datasets, of the 
percent difference between estimated and true tree lengths; i.e. (estimated - true) ÷ true. X-axis 
labels are in decimal (0.5 corresponds to 50%). P-values are from two-sample Cramer-Von 
Mises tests comparing analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.9A. Distributions, across 517 inference runs on different simulated datasets, of the 
absolute value of the percent difference between estimated and true tree lengths; 
i.e. |(estimated - true) ÷ true|. X-axis labels are in decimal (0.5 corresponds to 50%). P-values 
comparing inference runs using amino acid versus nucleotide models on the same underlying 
data were not calculated for this statistic.
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Figure 2.9B. Distributions, across 517 inference runs on different simulated datasets, of the 
absolute value of the percent difference between estimated and true tree lengths; 
i.e. |(estimated - true) ÷ true|. X-axis labels are in decimal (0.5 corresponds to 50%). P-values 
comparing inference runs using amino acid versus nucleotide models on the same underlying 
data were not calculated for this statistic.
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Figure 2.10A. Distributions, across 517 inference runs on different simulated datasets, of the 
difference between estimated and true tree lengths as a multiple of the standard deviation of the
posterior distribution. P-values are from two-sample Cramer-Von Mises tests comparing 
analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.10B. Distributions, across 517 inference runs on different simulated datasets, of the 
difference between estimated and true tree lengths as a multiple of the standard deviation of the
posterior distribution. P-values are from two-sample Cramer-Von Mises tests comparing 
analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.11A. Distributions, across 517 inference runs on different simulated datasets, of the 
absolute value of the difference between estimated and true tree lengths as a multiple of the 
standard deviation of the posterior distribution. P-values comparing inference runs using amino
acid versus nucleotide models on the same underlying data were not calculated for this statistic.
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Figure 2.11B. Distributions, across 517 inference runs on different simulated datasets, of the 
absolute value of the difference between estimated and true tree lengths as a multiple of the 
standard deviation of the posterior distribution. P-values comparing inference runs using amino
acid versus nucleotide models on the same underlying data were not calculated for this statistic.
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Figure 2.12. Fractions of instances when the true topology (A, B) and true tree length (C, D) are 
covered by the 95% credible set/interval. Labels beneath each bar indicate the data type, 
inference model, and alignment length in equivalent number of codons. P-values are from 
Fisher’s exact test comparing analogous sets of inference runs on amino acid versus nucleotide 
data.
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Figure 2.13A. Distributions, across 517 inference runs on different simulated datasets, of the 
multinomial likelihood posterior predictive effect size. P-values are from two-sample 
Cramer-Von Mises tests comparing analogous sets of inference runs on amino acid versus 
nucleotide data.
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Figure 2.13B. Distributions, across 517 inference runs on different simulated datasets, of the 
multinomial likelihood posterior predictive effect size. P-values are from two-sample 
Cramer-Von Mises tests comparing analogous sets of inference runs on amino acid versus 
nucleotide data.
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Figure 2.14A. Distributions, across 517 inference runs on different simulated datasets, of the 
chi-squared posterior predictive effect size. P-values are from two-sample Cramer-Von Mises 
tests comparing analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.14B. Distributions, across 517 inference runs on different simulated datasets, of the 
chi-squared posterior predictive effect size. P-values are from two-sample Cramer-Von Mises 
tests comparing analogous sets of inference runs on amino acid versus nucleotide data.
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Figure 2.15. Fractions of instances when the inference model is rejected when using the 
multinomial likelihood (A, B) and chi-squared (C, D) statistics. Labels beneath each bar 
indicate the data type, inference model, and alignment length in equivalent number of codons. 
P-values are from Fisher’s exact test comparing analogous sets of inference runs on amino acid
versus nucleotide data.
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Table 2.3. Topology and tree length inference accuracy and posterior predictive test statistics 
using amino acid and nucleotide models. Simulation was done using a branch-heterogeneous 
MutSel codon model. All alignments are 1800 codons in length. Displayed values are averages 
across 600 simulation/inference runs. Standard deviations are in parentheses. 
Benjamini-Yekutieli adjusted p-values for amino acid versus nucleotide comparisons are listed 
below the standard deviation of each amino acid entry. Adjusted p-values smaller than 0.05 are 
italicized and in red.
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Figure 2.16. Distributions of the mean RF distance between every topology in the posterior 
sample and the true topology. Labels in the right corner of each histogram indicate the data 
type, inference model, and tree length (in expected number of substitutions per codon). 
P-values comparing inference runs using amino acid versus nucleotide models on the same 
underlying data were not calculated for this statistic.
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Figure 2.17. Distributions of the RF distance between the MAP topology and the true topology. 
Labels in the right corner of each histogram indicate the data type, inference model, and tree 
length (in expected number of substitutions per codon). P-values comparing inference runs 
using amino acid versus nucleotide models on the same underlying data were not calculated for
this statistic.
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Figure 2.18. Distributions of the mean CID between every topology in the posterior sample and 
the true topology. Labels in the right corner of each histogram indicate the data type, inference 
model, and tree length (in expected number of substitutions per codon). P-values were 
calculated using two-sample Cramer-Von Mises tests comparing inference runs using amino 
acid versus nucleotide models on the same underlying data.
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Figure 2.19. Distributions of the CID between the MAP topology and the true topology. Labels 
in the right corner of each histogram indicate the data type, inference model, and tree length (in
expected number of substitutions per codon). P-values were calculated using two-sample 
Cramer-Von Mises tests comparing inference runs using amino acid versus nucleotide models 
on the same underlying data.
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Figure 2.20. Distributions of the percent difference between estimated and true tree lengths;
i.e. (estimated - true) ÷ true. X-axis labels are in decimal (1 corresponds to 100%). Labels in the 
right corner of each histogram indicate the data type, inference model, and tree length (in 
expected number of substitutions per codon). P-values were calculated using two-sample 
Cramer-Von Mises tests comparing inference runs using amino acid versus nucleotide models 
on the same underlying data.
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Figure 2.21. Distributions of the absolute value of the percent difference between estimated and 
true tree lengths; i.e. |(estimated - true) ÷ true|. X-axis labels are in decimal (1 corresponds to 
100%). Labels in the right corner of each histogram indicate the data type, inference model, and
tree length (in expected number of substitutions per codon). P-values comparing inference runs 
using amino acid versus nucleotide models on the same underlying data were not calculated for 
this statistic.
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Figure 2.22. Distributions of the difference between estimated and true tree lengths as a multiple 
of the standard deviation of the posterior distribution. Labels in the right corner of each 
histogram indicate the data type, inference model, and tree length (in expected number of 
substitutions per codon). P-values were calculated using two-sample Cramer-Von Mises tests 
comparing inference runs using amino acid versus nucleotide models on the same underlying 
data.
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Figure 2.23. Distributions of the absolute value of the difference between estimated and true tree 
lengths as a multiple of the standard deviation of the posterior distribution. Labels in the right 
corner of each histogram indicate the data type, inference model, and tree length (in expected 
number of substitutions per codon). P-values comparing inference runs using amino acid versus 
nucleotide models on the same underlying data were not calculated for this statistic.
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Figure 2.24. Fractions of instances when the true topology (A) and the true tree length (B) are 
covered by the 95% credible set/interval. Labels beneath each bar indicate the data type, 
inference model, and tree length (in expected number of substitutions per codon). P-values 
were calculated using Fisher’s exact test comparing inference runs using amino acid versus 
nucleotide models on the same underlying data.
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Figure 2.25. Distributions of the multinomial likelihood posterior predictive effect size. Labels in
the right corner of each histogram indicate the data type, inference model, and tree length (in 
expected number of substitutions per codon). P-values were calculated using two-sample 
Cramer-Von Mises tests comparing inference runs using amino acid versus nucleotide models on
the same underlying data.
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Figure 2.26. Distributions of the chi-squared posterior predictive effect size. Labels in the right 
corner of each histogram indicate the data type, inference model, and tree length (in expected 
number of substitutions per codon). P-values were calculated using two-sample 
Cramer-Von Mises tests comparing inference runs using amino acid versus nucleotide models 
on the same underlying data.
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Figure 2.27. Fractions of instances when the inference model is rejected when using the 
multinomial likelihood statistic (A) and the chi-squared statistic (B). Labels beneath each bar 
indicate the data type, inference model, and tree length. P-values were calculated using Fisher’s
exact test comparing inference runs using amino acid versus nucleotide models on the same 
underlying data.



129

Table 2.4. Topology and tree length inference accuracy and posterior predictive test statistics 
using amino acid and nucleotide models. Simulation was done using three variants of a MutSel 
codon model: branch-heterogeneous dN/dS (w), branch-heterogeneous ASRV (a), and branch-
heterogeneous dN/dS and ASRV (aw). Displayed values are averages across 100 
simulation/inference runs. Standard deviations are in parentheses. Benjamini-Yekutieli adjusted
p-values for amino acid versus nucleotide comparisons are listed below the standard deviation 
of each amino acid entry. Adjusted p-values smaller than 0.05 are italicized and in red.
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Figure 2.28. Distributions of the mean RF distance between every topology in the posterior 
sample and the true topology. Labels in the right corners indicate the data type, inference 
model, tree length (in expected number of substitutions per codon), and simulation model 
variant.
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Figure 2.29. Distributions of the RF distance between the MAP topology and the true topology. 
Labels in the right corners indicate the data type, inference model, tree length (in expected 
number of substitutions per codon), and simulation model variant.
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Figure 2.30. Distributions of the mean CID between every topology in the posterior sample and 
the true topology. Labels in the right corners indicate the data type, inference model, tree length
(in expected number of substitutions per codon), and simulation model variant.
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Figure 2.31. Distributions of the CID between the MAP topology and the true topology. Labels 
in the right corners indicate the data type, inference model, tree length (in expected number of 
substitutions per codon), and simulation model variant.
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Figure 2.32. Distributions of the percent difference between estimated and true tree lengths;
i.e. (estimated - true) ÷ true. X-axis labels are in decimal (1 corresponds to 100%). Labels in the 
right corners indicate the data type, inference model, tree length (in expected number of 
substitutions per codon), and simulation model variant.
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Figure 2.33. Distributions of the absolute value of the percent difference between estimated and 
true tree lengths; i.e. |(estimated - true) ÷ true|. X-axis labels are in decimal (1 corresponds to 
100%). Labels in the right corners indicate the data type, inference model, tree length (in 
expected number of substitutions per codon), and simulation model variant.
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Figure 2.34. Distributions of the difference between estimated and true tree lengths as a multiple 
of the standard deviation of the posterior distribution. Labels in the right corners indicate the 
data type, inference model, tree length (in expected number of substitutions per codon), and 
simulation model variant.
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Figure 2.35. Distributions of the absolute value of the difference between estimated and true tree 
lengths as a multiple of the standard deviation of the posterior distribution. Labels in the right 
corners indicate the data type, inference model, tree length (in expected number of substitutions 
per codon), and simulation model variant.
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Figure 2.36. Fractions of instances when the true topology is covered by the 95% credible set. 
Labels to the left of each bar indicate the data type, inference model, tree length (in expected 
number of substitutions per codon), and simulation model variant.



139

Figure 2.37. Fractions of instances when the true tree length is covered by the 95% credible 
interval. Labels to the left of each bar indicate the data type, inference model, tree length (in 
expected number of substitutions per codon), and simulation model variant.
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Figure 2.38. Distributions of the multinomial likelihood effect size. Labels in the right corners 
indicate the data type, inference model, tree length (in expected number of substitutions per 
codon), and simulation model variant.
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Figure 2.39. Distributions of the chi-squared effect size. Labels in the right corners indicate the 
data type, inference model, tree length (in expected number of substitutions per codon), and 
simulation model variant.
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Figure 2.40. Fractions of instances when the inference model is rejected when using the 
multinomial likelihood statistic. Labels to the left of each bar indicate the data type, inference 
model, tree length (in expected number of substitutions per codon), and simulation model 
variant.
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Figure 2.41. Fractions of instances when the inference model is rejected when using the 
chi-squared statistic. Labels to the left of each bar indicate the data type, inference model, tree 
length (in expected number of substitutions per codon), and simulation model variant.
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Introduction

Members of the family Scoliidae, sometimes referred to as mammoth wasps, are a clade of 

aculeate Hymenoptera related to bradynobaenids, ants, and apoids (Johnson et al., 2013; 

Branstetter et al., 2017; Peters et al., 2018). There are approximately 560 described species with 

a distribution covering all continents except Antarctica (Osten, 2005). Mammoth wasps are 

parasitoids of scarabaeid beetle larvae (Clausen, 1940) and have consequently been evaluated 

and used as biological control agents (Illingworth, 1921; Wilson, 1960; DeBach, 1964). Despite 

this, the family remains relatively poorly studied, with an unstable taxonomy and the difficulty of

specimen identification being obstacles to research (Day et al., 1981; Elliot, 2011).

This publication aims to provide a key to the Nearctic scoliid fauna. All existing identification 

resources covering the region are limited in geographic scope (e.g. Porter (1981) treating the 

fauna of the Lower Rio Grande Valley) or taxonomic coverage (e.g. Bradley (1928a) revising the

genus Colpa) or contain factual errors (e.g. MacKay (1987) incorrectly implying that the longer 

hind tibial spur in Xanthocampsomeris limosa is acute and black). Additionally, even the more 

recent literature on American mammoth wasps (e.g. Grissell, 2007) uses outdated taxonomic 

names, making it difficult for non-experts to make connections to other regional (e.g. Liu et al., 

2021) or global (Osten, 2005) taxonomic treatments of the group.

We cover all species present in the Nearctic region as well as in the Neotropical part of the 

continental United States (i.e. southern Florida). However, due to the authors having more 
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limited access to material from northern and central Mexico, we expect the key to be less reliable

there. Some covered species have very broad distributions and exhibit considerable 

geographically-correlated variation in color and sometimes other characters (e.g. Scolia guttata 

and Pygodasis ephippium). In such cases, character states used in the key may not accurately 

represent specimens collected outside the geographic scope of this study. We cover subspecies 

only in the cases of Dielis plumipes and Scolia dubia, where morphological differences between 

groups currently recognized as subspecies are comparable to those distinguishing species. Both 

subspecies of S. dubia are sympatric in the southern United States (MacKay, 1987), indicating 

they may be separate species.

This key was built using existing identification resources (Bartlett, 1912; Rohwer, 1927; 

Bradley, 1928a, b, 1957; Porter, 1981; MacKay, 1987; Grissell, 2007), the primary taxonomic 

literature, and specimens in the Bohart Museum of Entomology, the California Department of 

Food and Agriculture entomology collection, and the University of Florida entomology 

collection.

Note on taxonomic names

We use names compatible with the world checklist of Osten (2005). The existing keys cited 

above refer to all New World Campsomerini (excluding Colpa) as Campsomeris. The many 

subgenera of Campsomeris (see Bradley, 1957) have since been elevated to genus rank, and the 

genus Campsomeris, sensu Osten (2005), no longer contains any Nearctic species. Nearctic taxa 

previously in Campsomeris are now in Dielis, Pygodasis, and Xanthocampsomeris. Conversely, 

species formerly in Trielis and Crioscolia are now in Colpa, with Trielis being considered a 

junior synonym of Colpa (Day et al., 1981) and Crioscolia being treated as a subgenus. Some 
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species names included in the older keys (e.g. Scolia consors in MacKay, 1987) have since been 

synonymized and are not treated here. Refer to Osten (2005) for lists of synonyms.

Notes on problematic taxa

Scolia bicincta Fabricius, 1775:

Some specimens that match the description of Scolia bicincta and would be identified as such 

using existing resources such as Grissell (2007) differ from each other morphologically. 

Specifically, some individuals have a tubercle that comes to a central point on the second 

sternum of the metasoma (S2) and a deeply undercut, medially emarginate, transverse furrow 

near the base of the first metasomal sternum (S1), as seen in Scolia mexicana (Fig. 3.1A). We 

have not found any differences between these specimens and those of S. mexicana apart from 

color. Other individuals have a laterally extended tubercle on S2 that lacks a central point and a 

non-emarginate or weakly emarginate, shallow furrow on S1 (Fig. 3.1B). These latter specimens 

match the specimens in the Fabricius collection in the Natural History Museum of Denmark, 

University of Copenhagen (Fig. 3.2). Phylogenetic analysis of ultraconserved element data (Fig. 

3.3, see Supporting Information for methods) recovered these specimens as forming a 

monophyletic group sister to Scolia dubia. On the other hand, the "non-typical" specimens 

formed a monophyletic group sister to the only specimen of Scolia mexicana included in the 

analysis.

Fabricius (1775) referred to the Banks collection in the Natural History Museum, London, when 

he described S. bicincta. Turner (1909) subsequently stated that the type is in the Banks 

collection. Bradley (1964a) disagreed, noting that the specimen in the Banks collection labeled 

as S. bicincta did not match the description of Fabricius (1775) as it has three light-colored bands

on the abdomen, while the description refers to two bands. Bradley (1964a) further stated that he 
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had placed a neotype label on specimen number 71 from the Kiel Fabricius collection in the 

Natural History Museum of Denmark, University of Copenhagen, but did not formally 

designating a neotype. We have found that Bradley's neotype label is actually on a different 

specimen in the "Coll. Sehested & Tønder-Lund" tray. Specimen 71 in the "Coll. I. C. Fabricius" 

tray has since suffered pest damage, with the head mostly destroyed.

Given the morphological observations and phylogenetic results of the present study, the identity 

of the S. bicincta type is important. We have not been able to examine the specimen in the Banks

collection. If that specimen matches the specimens in the Copenhagen Fabricius collection, both 

S. bicincta and S. mexicana remain valid species. Either the Banks specimen would be 

recognized as the holotype, or a lectotype might be chosen if the Copenhagen specimens are 

demonstrated to be from the same type series. If the latter cannot be established and the Banks 

specimen corresponds morphologically to S. mexicana, S. mexicana would become a junior 

synonym of S. bicincta, and a new species would need to be described to represent the group that

is closely related to S. dubia and that includes the majority of specimens currently labelled as S. 

bicincta in collections. This would be undesirable, as it conflicts with the historical application of

these names and is likely to cause confusion. In this case, designating a neotype that preserves 

prevailing usage might be justified (article 75.6 of the International Code of Zoological 

Nomenclature).

Pending clarification of the identity of the S. bicincta type, we conservatively treat specimens 

with S. mexicana morphology but yellow bands on the metasoma as S. mexicana in this key, as 

we are unable to find differences apart from color, and as these specimens do not, to our 

knowledge, occur in sympatry with typical S. mexicana. This extends the known range of S. 

mexicana north to the state of Maryland.
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Scolia nobilitata Fabricius, 1805:

This is a very widespread species present on both sides of the 100th meridian (Bartlett, 1912; 

Grissell, 2007). Individuals vary greatly in color. Osten (2005) lists three subspecies and 

numerous synonyms. 

Dielis pilipes (Saussure, 1852):

Bradley (1964b) noted that Dielis pilipes should be excluded from Dielis but did not provide any 

argumentation. This change was never implemented. We observe that D. pilipes lacks some 

characters consistently present in other Dielis, such as a medial longitudinal depression on the 

clypeus of the female and a deep, straight transverse furrow on the base of S1. The molecular 

phylogenies inferred in Chapter 1 recover D. pilipes as sister to Xanthocampsomeris limosa (the 

only species of Xanthocampsomeris included in the study) and confirm that D. pilipes in not 

closely related to other Dielis. However, we refrain from making taxonomic changes, pending a 

revision of Dielis and Xanthocampsomeris.

Dielis and Xanthocampsomeris males:

Male Campsomerini tend to be more morphologically uniform than their respective females. 

While subspecies of Dielis plumipes are easily distinguished in the case of female specimens, 

there are no consistent characters distinguishing males. We therefore do not include D. plumipes 

subspecies in the male key. Males of all Dielis species are very similar morphologically, and 

locality information may be crucial for correct identification. Refer to Bradley (1928b) for 

distribution maps. This issue is even more severe in the case of Xanthocampsomeris. The males 

of Xanthocampsomeris hesterae and Xanthocampsomeris completa have not been described, and 

identification is unreliable in geographic areas where both occur as well as where distributions 
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overlap with that of Xanthocampsomeris limosa. The genus is in need of revision, and molecular 

data may be necessary to correctly associate the sexes.

Notes on terminology

We follow the terminology of Michener (1944) for wing venation (Fig. 3.4). Numbered terga and

sterna refer to terga and sterna of the metasoma; i.e. tergum 1 and sternum 1 (abbreviated as T1 

and S1 respectively) are the first tergum and sternum of the metasoma and the second tergum 

and sternum of the true abdomen.

Key to sexes

1 a. Antenna with 12 segments; 6 visible metasomal terga; metasomal S8 without apical 

spines .........................................................................................................................Female

b. Antenna with 13 segments; 7 visible metasomal terga; metasomal S8 with 3 apical 

spines ............................................................................................................................Male

Key to females

1 a. Forewing with second recurrent vein (2m-cu) absent .....................................................2

b. Forewing with second recurrent vein present .................................................................9

2(1) a. Forewing with three submarginal cells (vein 1r-m present), vein 2r-m usually

meets 1r-m ..........................................................................................................................3

b. Forewing with two submarginal cells (vein 1r-m absent) ..............................................4

3(2) a. Metasomal T3-6 uniformly orange-red with orange-red setae; northern Mexico, USA 

Texas to California .....................................................................................Triscolia ardens

b. Entire body orange; Baja California peninsula ........................................Triscolia badia
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4(2) a. Metasomal T4-6 uniformly orange-red with orange-red setae, color of integument 

sometimes darkened but always contrasting with that of metasomal T1-2, mesosoma, and 

head, which are entirely black or dark brown without pale markings; IF yellow or white 

markings are present, they are limited to metasomal T3 ....................................................5

b. Metasomal T4-6 NOT uniformly orange-red; markings variable or entirely absent ......6

5(4) a. Metasomal T3 with two lateral yellow-white spots; USA Atlantic coast west to 

Arizona and Colorado, south to Texas, north to Illinois .........................Scolia dubia dubia

b. Metasomal T3 without spots; Texas, New Mexico, and Arizona .....................................

.......................................................................................................Scolia dubia haematodes

6(4) a. Lateral margins of metasomal T6 and S6 conspicuously constricted when viewed 

dorsally or ventrally (Fig. 3.5A); head and mesosoma black; metasoma black, often with 

yellow-white lateral spots on any or all metasomal T1-5; most of Mexico, USA Texas 

and New Mexico .............................................................................................Scolia guttata

b. Lateral margins of T6 and S6 not constricted (Fig. 3.5B), tapering gradually; markings 

variable ................................................................................................................................7

7(6) a. Pronotum with yellow, orange, or red markings; northern Mexico, continental USA 

.....................................................................................................................Scolia nobilitata

b. Pronotum uniformly black, without pale markings ........................................................8
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8(7) a. Basal tubercle of metasomal S2 with single medial point (Fig. 3.1A.a); base of 

metasomal S1 with transverse furrow deeply undercut and strongly emarginate medially 

(Fig. 3.1A.b); usually entirely black, but some specimens with yellow lateral spots on 

metasomal terga and sometimes sterna, spots on metasomal T2 and T3 sometimes fused, 

forming medially emarginate bands; Mexico, USA Arizona, New Mexico, and Texas, 

north to Maryland1 ......................................................................................Scolia mexicana

b. Basal tubercle of metasomal S2 extended laterally, with two weak lateral points (Fig. 

3.1B.a); base of metasomal S1 with transverse furrow NOT clearly undercut (Fig. 

3.1B.b), medial emargination variable; metasomal T2 and T3 with yellow-white bands, 

bands without pronounced medial emarginations and covering almost the entire length of 

their respective tergum; USA east of 100th meridian ...................................Scolia bicincta

9(1) a. Forewing with three submarginal cells (vein 1r-m present); frons with smooth 

transverse furrow (Fig. 3.6A.a, B.a) .................................................................................10

b. Forewing with two submarginal cells (vein 1r-m absent); frons without transverse 

furrow (Fig. 3.6B) .............................................................................................................13

10(9) a. Area between antennal sockets and transverse furrow of frons forming a distinct 

elevated platform (Fig. 3.6B.b) .........................................................................................11

b. Area between antennal sockets and transverse furrow of frons not forming an elevated 

platform (Fig. 3.6A) ..........................................................................................................12

1 See "notes on problematic taxa" section above.
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11(10) a. Vertex, mesosoma, and dorsal surface of metasoma black, with yellow or reddish 

markings; west of the Rocky Mountains (upper Sonoran life zone) ..............Colpa alcione

b. Vertex, mesosoma, and metasoma rusty red, with yellow markings; Sonora, southern 

Arizona and California ...........................................................................Colpa flammicoma

12(10) a. Scutellum with conspicuous longitudinal furrow (Fig. 3.7A); Sonora and Arizona north

to Kansas ...................................................................................................Colpa pollenifera

b. Scutellum without longitudinal furrow; if trace of furrow present, it is evanescent 

posteriorly (Fig. 3.7B); Atlantic and gulf coast of USA, northern Mexico and southern 

USA Texas to southern California, Great Plains region north to North Dakota 

...............................................................................................................Colpa octomaculata

13(9) a. Metapleuron with conspicuous shelf-like area ventrad of metapleural flange, shelf with

sharp, sometimes carinate, ventral margin (Fig. 3.8A) .....................................................14

b. Metapleuron without shelf-like area ventrad of metapleural flange (Fig. 3.8B) ..........19

14(13) a. Medial area of metanotum mostly smooth, with few irregularly distributed setae-

bearing punctures; dorsal surface of propodeum with conspicuous medial triangular 

impunctate area, its apex extending to posterior apex of dorsal area of propodeum 

(Fig. 3.9A) .........................................................................................................................15

b. Medial area of metanotum uniformly covered with setae-bearing punctures; dorsal 

surface of propodeum without medial triangular impunctate area (Fig. 3.9B) OR, if 

impunctate area present, its apex not reaching posterior apex of dorsal area of propodeum

............................................................................................................................................17
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15(14) a. Metasomal T1 and T4 black, without markings; areas of metasomal T2-3 apicad of 

subapical transverse row of setae with orange color not or only slightly extending beyond

callosities (Fig. 3.10A); wings evenly infuscate; tropical and subtropical South and 

Central America to approximately 20°N, Lesser Antilles, eastern Greater Antilles, 

southern Florida .............................................................................................Dielis dorsata

b. At least metasomal T1 or T4 with yellow or orange markings; apical areas of 

metasomal T2-3 with yellow or orange color extending beyond callosities, callosities 

forming dark lateral notches in tergal bands (Fig. 3.10B); wings darker apically ............16

16(15) a. Colored band on metasomal T3 with black medial notch in dorsal view about 1/3 as 

wide and 1/2 as deep as band; markings yellow; Greater Antilles, southern Florida 

.....................................................................................................................Dielis trifasciata

b. Colored band on metasomal T3 with black medial notch much narrower and shallower 

than 1/3 and 1/2 the width and depth of the band respectively, colored band thus 

occupying almost entire dorsal surface of tergum; markings yellow-orange; Mexico, 

Hispaniola, USA central and southern California and southern Arizona ........Dielis tolteca

17(14) a. Medial posterior vertical surface of propodeum rugose (Fig. 3.11A, C); Great Plains 

.....................................................................................................Dielis plumipes confluenta

b. Medial posterior vertical surface of propodeum NOT rugose (Fig. 3.11B, D), mostly 

smooth but sometimes punctate close to dorsal margin ....................................................18
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18(17) a. Posterior margin of dorsomedial surface of propodeum forming a broadly rounded 

lamelliform shelf extending laterally to the transverse propodeal lines (Fig. 3.12A); 

metasomal T3 with apical yellow band with broad shallow medial notch (depth of notch 

much less than 1/2 the depth of yellow band) and narrower lateral notches mesad of 

callosities; USA eastern Texas to North Carolina .......................Dielis plumipes fossulana

b. Posterior margin of dorsomedial surface of propodeum forming medially tapering 

wedge-like projection that does not extend laterally to transverse propodeal lines (Fig. 

3.12B); metasomal T3 with deeper medial notch about 1/2 the depth of yellow band and 

no lateral notches visible in dorsal view, although band gradually narrows laterally and 

callosities may form small lateral notches visible in lateral view; Massachusetts south to 

northern Georgia, west to eastern Kentucky ................................Dielis plumipes plumipes

19(13) a. Yellow or orange markings limited to metasomal T2-3, integument black; apical setae 

of metasomal T4-5 black .................................................................................................20 

b. Yellow or orange markings present at least on metasomal T1-3, integument variable; 

apical setae of metasomal T4-5 yellow or orange ............................................................21

20(19) a. Metasomal T2-3 almost entirely orange; propodeum with lateral carina strongly 

curved, sometimes almost angular (Fig. 3.13); base of metasomal S1 with transverse 

furrow strongly emarginate medially; northwestern South America, Central America, 

north to southern Arizona and southern Texas ..................................Pygodasis ephippium 

b. Metasomal T2-3 each with pair of dorsolateral yellow spots; propodeum with lateral 

carina gently curved or almost straight (Fig. 3.8B.c); base of metasomal S1 with 

transverse furrow not emarginate medially; northern Texas to Massachusetts 

.....................................................................................................Pygodasis quadrimaculata
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21(19) a. Forewing cell 1R1 setose only along stigma; anterior transverse furrow of metasomal 

S1 medially absent or indistinct; USA west of 100th meridian .......................Dielis pilipes

b. At least anterior 1/2 of forewing cell 1R1 setose; anterior transverse furrow of 

metasomal S1 complete ....................................................................................................22

22(21) a. Posterior margin of dorsomedial surface of propodeum with curved carina (Fig. 

3.12C); Greater Antilles .........................................................Xanthocampsomeris tricincta

b. Posterior margin of dorsomedial surface of propodeum without curved carina (Fig. 

3.12D) ...............................................................................................................................23

23(22) a. Forewing cells R, 1M, and 1Rs setose; Central America, Arizona, New Mexico, Texas 

...............................................................................................Xanthocampsomeris completa

b. Forewing cells R, 1M, and 1Rs asetose ........................................................................24

24(23) a. Longer hind tibial spurs acute to bluntly rounded, NOT expanded apically (Fig. 

3.13C); metanotum with yellow spot; northern South America, Central America, Lesser 

Antilles, southern Texas ........................................................Xanthocampsomeris hesterae

b. Longer hind tibial spurs spatulate (rounded AND expanded apically) (Fig. 3.13A-B); 

metanotum without yellow spot ........................................................................................25

25(24) a. Forewing cells 1R1 and 2R1 with at most the anterior two thirds densely setose; 

posterior surface of propodeum coarsely punctate; Mexico, Arizona 

...................................................................................................Xanthocampsomeris limosa

b. Forewing cells 1R1 and 2R1 completely setose; posterior surface of propodeum 

impunctate; Greater Antilles, Florida ..................................Xanthocampsomeris fulvohirta
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Key to males

1 a. Forewing with second recurrent vein (2m-cu) absent .....................................................2

b. Forewing with second recurrent vein present .................................................................9

2(1) a. Forewing with 3 submarginal cells (vein 1r-m present); California to Texas, northern 

Mexico ................................................................................................................................3

b. Forewing with 2 submarginal cells (vein 1r-m absent) ..................................................4

3(2) a. Metasomal T3-6 uniformly orange-red with orange-red setae; northern Mexico, USA 

Texas to California .....................................................................................Triscolia ardens

b. Entire body orange; Baja California peninsula ........................................Triscolia badia

4(2) a. Integument of pronotum and metanotum always with yellow markings; yellow 

markings sometimes also present on head, scutellum, propodeum, and some or all terga 

of the metasoma; northern Mexico, continental USA ................................Scolia nobilitata

b. Integument of mesosoma black, without pale markings ................................................5

5(4) a. Metasomal T2-6 with orange-red posterior setal fringes ................................................6

b. Metasomal T2-6 with black fringes, no orange-red setae or markings anywhere on the 

body .....................................................................................................................................7

6(5) a. Metasomal T3 with 2 lateral yellow-white spots; USA Atlantic coast west to Arizona 

and Colorado, south to Texas, north to Illinois ......................................Scolia dubia dubia

b. Metasomal T3 without spots; Texas, New Mexico, and Arizona 

.......................................................................................................Scolia dubia haematodes
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7(5) a. Basal tubercle of metasomal S2 with single medial point (Fig. 3.1A.a); base of 

metasomal S1 with transverse furrow deeply undercut and strongly emarginate medially 

(Fig. 3.1A.b); Mexico, USA Arizona, New Mexico, and Texas, north to Maryland2 

.....................................................................................................................Scolia mexicana

b. Basal tubercle of metasomal S2 extended laterally, without medial point (Fig. 3.1B.a); 

base of metasomal S1 with transverse furrow NOT clearly undercut (Fig. 3.1B.b), medial 

emargination variable ..........................................................................................................8

8(7) a. Transverse tubercle of metasomal S2 with two distinct lateral points and central 

depression (Fig. 3.15); yellow markings on metasomal terga, if present, are non-

contiguous lateral spots; wings with cyan or blue iridescence; most of Mexico, USA 

Texas and New Mexico ..................................................................................Scolia guttata

b. Transverse tubercle of metasomal S2 at most with weak lateral points, without 

pronounced central depression (Fig. 3.1B.a); metasomal T2-3 with yellow-white bands, 

bands without pronounced medial emarginations and covering almost the entire length of 

their respective tergum; wings with bronze iridescence; USA east of 100th meridian 

........................................................................................................................Scolia bicincta

9(1) a. Forewing with 3 submarginal cells (vein 1r-m present); volsella with articulation 

between basal and apical parts; frons with smooth transverse furrow (Fig. 3.16A.a, 

3.16B.a) .............................................................................................................................10

b. Forewing with 2 submarginal cells (vein 1r-m absent); basal and apical parts of 

volsella fused; frons without transverse furrow (Fig. 3.16C-D) .......................................13

2 See "notes on problematic taxa" section above.
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10(9) a. Antennae not or only slightly clavate (Fig. 3.17C); base of metasomal S1 without 

transverse furrow; mesopleural setae erect .......................................................................11

b. Antennae clavate (Fig. 3.17D); base of metasomal S1 with transverse furrow; 

mesopleural setae appressed and shiny .............................................................................12

11(10) a. Scutellum with conspicuous longitudinal furrow (Fig. 3.17A); Sonora and Arizona 

north to Kansas .........................................................................................Colpa pollenifera

b. Scutellum without conspicuous longitudinal furrow (Fig. 3.17B); Atlantic and gulf 

coast of USA, northern Mexico and southern USA Texas to southern California, Great 

Plains region north to North Dakotas ...................................................Colpa octomaculata

12(10) a. Face with discrete, oval, punctate, setose yellow area mesad of each antennal base 

(Fig. 3.16A.b); scape orange or yellow; metasomal integument red, shading into black 

posteriorly; Sonora, southern Arizona and California ............................Colpa flammicoma

b. Face with oval, punctate, setose areas mesad of each antennal base fused and black 

(Fig. 3.16B.b); scape black, sometimes with yellow markings; metasomal integument 

black; west of the Rocky Mountains (upper Sonoran life zone) ....................Colpa alcione

13(9) a. Hind tibial spurs black ..................................................................................................14

b. Hind tibial spurs white or light-colored ........................................................................15
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14(13) a. Bands on metasomal terga yellow, deeply notched medially, sometimes separated into 

lateral spots; yellow markings always present on metasomal T2-3, sometimes present on 

T1-5; northern Texas to Massachusetts .....................................Pygodasis quadrimaculata

b. Bands on metasomal terga orange to orange-red, NOT notched medially, covering 

almost the entire surfaces of metasomal T2-3; metasomal T1 sometimes with small spot, 

no markings on T4-5; northwestern South America, Central America, north to southern 

Arizona and southern Texas ...............................................................Pygodasis ephippium

15(13) a. Forewing almost entirely setose .......................................................Xanthocampsomeris

b. Apical area of forewing (apicad of veins) mostly asetose ............................................16

16(15) a. Face with frontal line deeply impressed, frons with elevated impunctate area on either 

side of frontal line (Fig. 3.16C.c); yellow spots on lateral corners of pronotum in dorsal 

view; USA west of 100th meridian ................................................................ Dielis pilipes

b. Face with frontal line shallow, frons without elevated impunctate area on either side of

frontal line (Fig. 3.16D.c), or if an elevated area is present, it is punctate; pronotum in 

dorsal view without yellow markings ...............................................................................17

17(16) a. Clypeus entirely yellow except for a small central dark spot; Greater Antilles, southern 

Florida ........................................................................................................Dielis trifasciata

b. Clypeus NOT entirely yellow, with extensive black markings ....................................18

18(17) a. Pronotum entirely black or with thin medial posterior yellow band; New Mexico, 

Colorado, Wyoming east to the Atlantic coast ............................................Dielis plumipes

b. Pronotum with broad yellow band extending laterally .................................................19
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19(18) a. Parameres with dense basal brush of setae; Mexico, Hispaniola, USA central and 

southern California and southern Arizona .......................................................Dielis tolteca

b. Parameres without dense basal brush of setae; tropical and subtropical South and 

Central America to approximately 20°N, Lesser Antilles, eastern Greater Antilles, 

southern Florida .............................................................................................Dielis dorsata
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Figure 3.1. Anterior metasoma, ventral view. (A) Scolia mexicana ♀; (B) Scolia bicincta ♀. (a) 
Basal tubercle of metasomal S2; (b) basal transverse furrow of metasomal S1.
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Figure 3.2. Scolia bicincta specimen 70 ♂ from the Fabricius collection, Natural History 
Museum of Denmark, University of Copenhagen. Anterior metasoma, ventral view. (a) Basal 
tubercle of metasomal S2; (b) basal transverse furrow of metasomal S1. (photo credit: Mikkel 
Høegh Post, the Natural History Museum of Denmark, used with permission)
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Figure 3.3. Maximum likelihood phylogeny using IQTREE of Nearctic Scolia based on 211 UCE
loci with full taxon coverage. Specimens traditionally identified as Scolia bicincta fall into two 
clades: “typical” S. bicincta sister to Scolia dubia (purple) and a clade sister to Scolia mexicana 
(orange). Megascolia-Carinoscolia-Pyrrhoscolia clade used as outgroup. Branch lengths are in 
expected number of nucleotide substitutions per site. Support values based on 1000 Ultrafast 
Bootstrap replicates. Unlabeled nodes have maximal support. See Supporting Information for 
methods details.
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Figure 3.4. Wings of Colpa, representing “complete” scoliid wing venation. Veins 1r-m and/or 
2m-cu are absent in some taxa. Vein names in red, cell names in blue. (drawing credit: Nicole 
Tam, used with permission)



167

Figure 3.5. Apex of metasoma. (A) Scolia guttata ♀; (B) Scolia mexicana ♀.
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Figure 3.6. Head. (A) Colpa octomaculata ♀; (B) Colpa flammicoma ♀; Dielis dorsata ♀. 
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Figure 3.7. Scutellum and metanotum. (A) Colpa pollenifera ♀; (B) Colpa octomaculata ♀. 
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Figure 3.8. Mesosoma, lateral view. (A) Dielis dorsata ♀; (B) Pygodasis quadrimaculata ♀. 
(a) Superior longitudinal carina of metapleuron; (b) metapleural flange; (c) lateral carina of 
propodeum.
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Figure 3.9. Metanotum and propodeum. (A) Dielis trifasciata trifasciata ♀; (B) Dielis plumipes 
fossulana ♀. 
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Figure 3.10. Metasoma, lateral view. (A) Dielis dorsata ♀; (B) Dielis trifasciata ♀. 
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Figure 3.11. Posterior surface of propodeum. (A) Dielis plumipes confluenta ♀; (B) Dielis 
plumipes fossulana ♀; (C) Dielis plumipes confluenta ♀; (D) Dielis dorsata ♀.
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Figure 3.12. Posterior surface of propodeum. (A) Dielis plumipes fossulana ♀; (B) Dielis 
plumipes plumipes ♀; Xanthocampsomeris tricincta ♀; Xanthocampsomeris hesterae ♀.
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Figure 3.13. Pygodasis ephippium ♀ metapleuron and propodeum, lateral view.



176

Figure 3.14. Hind tibial spurs. (A) Xanthocampsomeris limosa ♀; (B) Xanthocampsomeris 
fulvohirta ♀; (C) Xanthocampsomeris hesterae ♀.
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Figure 3.15. Scolia guttata ♂. Anterior metasoma, ventral view.
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Figure 3.16. Head. (A) Colpa flammicoma ♂; (B) Colpa alcione ♂; (C) Dielis pilipes ♂; 
(D) Dielis plumipes ♂. (a) Transverse furrow of frons; (b) interantennal area; (c) frontal line.
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Figure 3.17. (A) Scutellum, Colpa pollenifera ♂; (B) scutellum, Colpa octomaculata ♂; 
(C) antenna, Colpa octomaculata ♂; (D) antenna, Colpa alcione ♂.



Supporting Information

Taxon and locus selection

We used 2404 ultraconserved element (UCE) loci (Faircloth et al., 2012; 2015) and 26 

specimens from the dataset used in Chapter 1. Our ingroup included one specimen each of Scolia

dubia dubia, Scolia mexicana, and Scolia nobilitata, as well as 15 specimens matching the 

description of Scolia bicincta. We used the Megascolia + Carinoscolia + Pyrrhoscolia clade (8 

specimens) as an outgroup.

Alignment and trimming

We used MAFFT (Katoh & Standley, 2013) version 7.407 with the E-INS-i algorithm (Altschul, 

1998) for multiple sequence alignment. We then performed edge-trimming using the 

phyluce_align_get_trimmed_alignments_from_untrimmed script from the phyluce package 

(Faircloth, 2016) version 1.6.8. Following trimming, we summarized alignment statistics using 

AMAS (Borowiec, 2016) and removed any alignments that had missing taxa or 15% or more 

missing data at the site level, retaining 223 loci. Preliminary phylogenetic analysis resulted in 

unexpectedly long terminal branches subtending some taxa, possibly due to sequencing and/or 

alignment error. We therefore used spruceup (Borowiec, 2019) version 2020.2.19 to mask parts 

of sequences that are potentially spurious.

Phylogenetic analysis

We estimated a maximum likelihood phylogeny using IQTREE (Minh et al., 2020; Chernomor 

et al., 2016) version 2.0.6. We first used matched-pairs tests of symmetry (Jermiin et al., 2017; 

Naser-Khdour et al., 2019) to remove alignments that likely violate SRH assumptions. We then 

partitioned by locus and chose the best-fitting model for each partition based on BIC (Schwarz, 
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1978) from among substitution models from the GTR (Tavaré, 1986) family and discretized 

gamma (Yang, 1994) and free-rates ASRV models. We used the edge-linked proportional 

partition model for branch lengths. We also performed 1000 ultrafast bootstrap replicates (Hoang

et al. 2018), and used the --bnni option.
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