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RANDOM COEFFICIENT MODELS FOR MULTILEVEL ANALYSIS

JAN DE LEEUW AND ITA KREFT

Abstract. We propose a possible statistical model for both

contextual analysis and slopes as outcomes analysis. These

techniques have been used in multilevel analysis for quite some

time, but a precise specification of the regression models has

not been given before. We formalize them by proposing a ran-

dom coefficient regression model, and we investigate its sta-

tistical properties in some detail. Various estimation methods

are reviewed and applied to a Dutch school-career example.

This paper was published previously in Journal of Educational Sta-

tistics, 11, 1986, 57–85. I corrected some typos, otherwise it’s a

faithful reproduction.

In recent years there has been an increasing awareness that many,

if not most, problems in educational research have multilevel char-

acteristics (Burstein, 1980b, Oosthoek & Van den Eeden, 1984). To

make this statement a bit more precise, we introduce some termi-

nology.

Date: August 26, 2006.

Key words and phrases. Multilevel analysis, contextual analysis, random co-

efficient models.
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A variable is a function, mapping a domain of units into a range

of values. In educational research, for instance, the units can be

pupils, classes, schools, school districts, national educational sys-

tems, and so on. Thus, we can also have variables of different

levels, describing pupils, classes, and so on. Observe that in this

example, and in many others, the units of the various domains are

nested. Schools consist of classes, classes of pupils, and so on.

In a multilevel problem we want to investigate the relations be-

tween variables with different domains. A currently popular exam-

ple is school effectiveness research (Averch, Carroll, Donaldson,

Kiesling, & Pincus, 1974; Brookover, Flood, Schweiser, & Wisen-

baker, 1979; Dreeben & Thomas, 1980; Purkey & Smith, 1983), in

which we study the relationship between school characteristics and

pupil achievements. A little reflection will show that teacher style

research, classroom climate research, and other types of research

also involve variables of different levels.

The multilevel character of many educational research problems

has implications of a general methodological nature. In sociology,

relating micro-variables and macro-variables and developing forms

of cross-level inference have always been acknowledged as a fun-

damental problem (Blalock, 1979; Lazarsfeld & Menzel, 1961; Van

den Eeden, 1985a). On the other hand, the multilevel character-

istics of the data also have implications for statistical modeling

and analysis. In this paper we will be mainly concerned with these

statistical aspects of the problem.
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Earlier statistical approaches have attempted to adapt uni-level

techniques to multilevel situations. This can often be done by us-

ing aggregation or disaggregation. A pupil variable, such as intel-

ligence, can be aggregated to school level by assigning to a school

the average intelligence of its pupils. A school variable, such as

whether it is public or private, can be disaggregated to pupil level

by assigning to each pupil the type of school. By giving all vari-

ables the same domain, we can simply use classical correlation or

regression techniques. Or so it seems. But the operations of ag-

gregation and disaggregation are highly nontrivial, both from the

methodological and from the statistical point of view. A change in

the meaning of the variables occurs. In addition, by aggregating,

we eliminate all within-school variation, we have to deal with the

Robinson effect 1, and we cannot make inferences on the pupil level

any more without committing the ecological fallacy (Alker, 1969;

Hannan, 1971; Robinson, 1950). If we disaggregate, then we have

to take into account the fact that pupils within the same school do

not vary independently on disaggregated school variables on which

they have, by definition, the same value.

The general outcome of the discussion (Langbein, 1977) seems to

be that the effect of aggregation or disaggregation, or of any other

statistical operation for that matter, can only be studied precisely

within the context of a plausible statistical model. Within such

a model cross-level inference becomes possible, precisely because

1The Robinson effect is the often dramatic increase of correlation between

variables after aggregation. The ecological fallacy is the tendency to interpret

correlations between aggregated variables as if they were correlations between

variables measured on individuals.
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some parts of the model refer to schools while other parts refer

to pupils. The natural model for generalization to multilevel situa-

tions is, of course, the linear model familiar from regression anal-

ysis and analysis of variance.

In this paper we will try to review these linear model extensions

and present them in a unified way. Similar attempts at integration

have been made by Mason, Wong, and Entwisle (1984) and by Aitkin

and Longford (in press). For simplicity of presentation, we restrict

ourselves to the case of just two levels, pupils and schools. Exten-

sions of our discussion to three or more levels are fairly straight-

forward (Goldstein, in press; Longford, in press).

1. Regressing Regression Coefficients

The basic idea of multilevel linear models is very simple. There is

a micro-model, defined separately for each macro-unit. This is a

linear model, with pupil-level regressors or predictors, and with a

pupil-level dependent variable. Each school has its own model. The

macro-model relates the parameters of the micro-models, which

are the regression coefficients and the error variances, to macro-

level regressors. Thus, within-school regression coefficients are

regressed on school variables in the macro-model.

This general approach is already quite old. According to Mason,

Wong, and Entwisle (1984), "Although its origins are uncertain, the

notion of a regression in which the dependent variable consists of

regression coefficients from other regressions has long been attrac-

tive to social scientists and statisticians" (p. 73). But even within

this general idea, a number of specific choices have to be made.
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The most important choice, for our purposes, is whether we want

to model the regression coefficients in the micro-models as ran-

dom variables or as fixed constants.

Tate and Wongbundhit (1983) argued that random coefficient re-

gression models are more appropriate than fixed coefficient mod-

els for multilevel analysis in educational research. We briefly sum-

marize their argument, which consists of four steps. First, within-

group regressions can reflect important aspects of the multilevel

mechanism. It is quite conceivable, for instance, that in some

schools the regression of success on intelligence is steeper than in

others, and that this degree of steepness reflects policies, strate-

gies, or ideologies that differentiate schools. This first step in the

argument is also the starting point of the "slopes as outcomes"

analysis used by Burstein and his associates, which will be re-

viewed later in this section.

The second step in the Tate-Wongbundhit argument is that we can

expect a great deal of variation in the within-group regressions,

not only because of the policies and strategies mentioned above,

but also because of a large number of other differences between

schools, which are more difficult to isolate. Third, it is common

practice to use random variability (disturbances or errors) to “ex-

plain” variations that are not modeled explicitly. Fourth, working

with incompletely specified models inevitably leads to a loss of ef-

ficiency in the estimates. To quote Tate and Wongbundhit

We agree with the argument that data from many edu-

cational settings are generated by random coefficient
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processes. Therefore, we also believe that statisti-

cal inference should be based on the same kind of

model" (p. 107).

It is possible to add more arguments to this list. Random coeffi-

cient models are more general, because fixed constants are special

random variables. Whether something is random or fixed should

be decided by considering what would happen if we replicated the

experiment. Would it be realistic to suppose that the regression

coefficients stayed the same under replication? If not, then ran-

dom coefficients are appropriate. It is also possible to think of

the distribution of the random coefficients as a prior distribution.

This line of reasoning shows that Bayesian or empirical-Bayesian

approaches lead naturally to random coefficient models.

We will illustrate the arguments of Tate and Wongbundhit (1983)

by analyzing a number of specific models and techniques that have

been proposed in the multilevel literature and that seem to re-

quire random coefficient regression techniques. The first instance

is the general contextual model discussed most completely by Boyd

and Iversen (1979, see especially chapter 111). Boyd and Iversen

systematically distinguish the single equation approach to contex-

tual analysis from the separate equations approach, which is the

more basic one. In the general contextual model there are two

types of equations, as in the micro-macro models mentioned pre-

viously. The first type specifies an individual level within-group

regression model, one for each separate group. The second set of

equations relates within-group regression coefficients to contex-

tual variables describing the groups. These contextual variables
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are often within-group averages of individual-level variables, but

this is by no means necessary. We are not concerned here with

general theoretical and methodological aspects of the contextual

model; these aspects are reviewed admirably by Boyd and Iversen

(1979) and by Blalock (1984). We concentrate on the statistical as-

pects of the model, a subject that is somewhat neglected. As Tate

and Wongbundhit point out, "Unfortunately, Boyd and Iversen did

not consider the question of statistical inference" (p. 107).

One basic problem with the separate equations approach is that

we must decide what exactly we are modeling in the second set of

equations. There are two possible answers, based on two different

assumptions. Either the regression coefficients in the within-group

models are fixed parameters, or they are random variables. If they

are fixed parameters, then they can be estimated (optimally) by

ordinary within-group regression analysis. The estimates of the

within-group regression coefficients, which must be distinguished

from the regression coefficients themselves, are again random vari-

ables. In the second modeling step, or in the second set of equa-

tions, we can model the distribution of the estimates. We must

remember, however, that this distribution is already determined to

a large extent by the assumptions and calculations in the first step.

If we assume directly that the regression coefficients are random

variables, then much of the above remains true. We must continue

to distinguish between regression coefficients and their estimates,

where the notion of "estimation" is now extended to cover esti-

mation of random variables. A basic problem with the contextual
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analysis literature is that the choice between fixed and random co-

efficient models is never made explicit. Boyd and Iversen (1979,

e.g., section 3.2) write their equations as if they are thinking of

random coefficient models. Their later discussion of the distur-

bance terms in the single equation approach (p. 55) also suggests

this. But their estimation procedure is ordinary unweighted least

squares for both sets of coefficients, which ignores the information

provided by the random coefficient model.

A similar incomplete specification is apparent in Van den Eeden

and Saris (1984) and Van den Eeden (1985b). Van den Eeden and

Saris analyze school-career data by a two-step approach. The ad-

jective two-step has two different meanings. First, the model is

specified by two sets of equations, the first one within-schools

at the individual level and the second one between-schools at the

school level. The approach is also called two-step because the es-

timation is done by ordinary least squares for both sets of equa-

tions separately. In fact, the most important data analytical conclu-

sion of Van den Eeden and Saris is that their two-step procedure is

preferable to a one-step procedure, which combines the equations

into a single equation and then estimates all parameters jointly by

ordinary least squares.

We will comment on this conclusion in a later section of the pa-

per; for now, we merely remark that Van den Eeden and Saris also

do not specify if their within-group regression coefficients are ran-

dom variables or fixed constants. To put it differently, they do

not make explicit assumptions about the behaviour of the distur-

bance terms in the between-schools equation, and they act as if the
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usual linear model assumptions are true at both stages. They even

use the standard errors associated with the usual linear model in

the second step. We agree with Tate and Wongbundhit (1983) that

incomplete specification usually leads to loss of efficiency. More-

over, in the case of Van den Eeden and Saris, use of ordinary least-

squares standard errors in the second stage is not only inefficient,

it is wrong. We illustrate this by analyzing the same school career

data in a different and theoretically more satisfactory way.

For completeness, we emphasize that Boyd and Iversen (1979) are

certainly aware of the problems associated with combining two

sets of equations into a single set. In their appendix B (pp. 232-

233) they discuss a weighted regression procedure for the second

stage, which incorporates weights for the variances of the within-

group regressions. Their discussion suggests a fixed coefficient

model in which the second stage provides a model for the esti-

mates of the within-group regressions. In their appendix C (pp.

234-236) they discuss conditions under which separate equations

and single equation ordinary least squares give the same estimates.

In practice, estimates will be quite different, and Boyd and Iversen

give no explicit criteria that can be used to choose between the two.

Another class of multilevel models in which random coefficients

seem necessary are the slopes as outcomes analyses of Burstein

and his associates: Burstein (1976, 1980a, 1980b, 1981), Burstein

and Linn (1976), Burstein, Linn, and Capell (1978), Burstein and

Miller (1981), and Burstein, Miller, and Linn (1979). These papers

concentrate on motivation and interpretation of the results when
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within-group slopes are used as dependent variables in between-

group regression analysis. Again, we are not concerned with the

theoretical and methodological reasons for adapting this approach,

or with its usefulness in educational contexts. For this we refer to

the cited literature. We restrict our attention to the statistical prob-

lems that are largely ignored by others. The fact that there are

some nonstandard problems is acknowledged by Burstein, Miller,

and Linn:

The mathematical properties of slopes as outcomes

are not well understood. We are essentially treating

the within-group slopes as a random variable with an

unknown underlying distribution function ... The crit-

icism that within-group slopes should not be treated

as random variables is troubling, but certainly not fa-

tal. There are too many instances in behavioural re-

search where sensible analytical work has been con-

ducted without mathematical confirmation of the ap-

propriateness of the distributional assumptions in the

measurement of a critical variable. (p. 19)

It seems to us that the last part of the quotation is unduly pes-

simistic (and a bit muddled). If we make a complete specification

of the model along the lines already indicated above, then the prob-

lems with random or fixed coefficients merely become questions of

correct or incorrect specification that can, at least in principle, be

investigated by standard statistical methods.

It is somewhat disappointing that Tate and Wongbundhit (1983),

who seem to have a clear understanding of the problems involved,
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merely contribute a Monte Carlo study to show that some multi-

level techniques can be quite misleading if a random coefficient

model is true. The same thing is true for Burstein, Linn, and Capell

(1978), who argue convincingly for the importance of assuming

heterogeneous within-group slopes, but then illustrate their point

by a very small-scale Monte Carlo study. The Monte Carlo results

serve well as illustrations, but they give the papers a more lim-

ited scope than is really necessary. In situations studied by these

authors it is possible to derive analytical results for expectations

and standard errors. We must emphasize, however, that the mod-

els studied by Tate and Wongbundhit and by Burstein, Linn, and

Capell are more general than the models we intend to discuss.

Our models have random coefficients but fixed regressors. The

more general models have both random coefficients and random

regressors. Of course, the additional variation in the regressors

introduces further complications that we do not want to go into in

this paper. We do not want to belittle the distinction, however. It

is quite important, because random regressor models seem more

natural in many situations in educational research. The more gen-

eral class of models also makes it possible to fit multilevel analysis

more smoothly into standard structural equation modeling prac-

tice. For a first version of more general models, we refer to De

Leeuw (1985).

In the next section, we will introduce a fairly general random co-

efficient regression model, with fixed regressors, that can be used

in multilevel analysis to unify and extend many results obtained
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by contextual analysis or slopes as outcomes approaches. Follow-

ing the next section, we will review the history of this model and

relate it to other models that have been proposed before, mainly

in econometrics. Topics discussed later in the paper include the

following: (a) ordinary least-squares estimation and a comparison

of one-step and two-step approaches; (b) a class of weighted least-

squares estimators; and (c) more complicated maximum likelihood

estimates. The Dutch school-career data, analyzed earlier by Van

den Eeden and Saris, are used to illustrate the various techniques

in the section on a school effects example.

2. Model

As indicated, the model is specified in two sets of equations, one

within-groups, and one between-groups. We suppose there are m

groups, nj observations in group j , and p within-group fixed re-

gressors. The measurements on the p regressors for group j are

collected in the nj × p matrix Xj ,the measurements on the depen-

dent variable in the nj-element vector yj . In this paper we use the

convention to underline random variables (Hemelrijk, 1966). In

this context, in which the question is whether to treat the within-

group regression coefficients as fixed or random, such a conven-

tion is especially convenient. The model for group (or school) j

is

(1) yj = Xjβj + εj.

Here, βj is the random p-vector of within-group regression coeffi-

cients and εj is the nj-vector of disturbances. We assume for the



RANDOM COEFFICIENT MODELS 13

disturbances

E(εj) = 0,(2a)

E(εjε
′
j) = σ 2

j I.(2b)

Thus, we have a standard linear model for each group, except that

the βj are supposed to be random vectors. Their properties are

specified in the next set of equations.

For each of the random variables βjs (j = 1, · · · ,m and s = 1, · · · , p),
we have a model of the form

(3) βjs = z
′
jsθs + δjs .

The vector zjs has qs elements. Equation (3) is clarified in matrix

notation. For micro-variable s we can write the m-vector βs in the

form

(4) βs = Zsθs + δs .

Thus, there is a separate regression model for the regression co-

efficients corresponding with each micro-variable. We allow for

the possibility that the regression coefficients for IQ in the various

schools are regressed on a different set of school variables than the

regression coefficients for sex. In this we follow Mason, Wong, and

Entwisle (1984). For the disturbances in Equation (3) we assume

E(δjs) = 0,(5a)

E(δjsδ`t) = 0 if j 6= `,(5b)

E(δjsδjt) =ωst,(5c)

E(δjsεij) = 0.(5d)
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Equation (5b) tells us that disturbances in different groups are un-

correlated, while Equation (5c) tells us that the dispersion of the

regression coefficients is the same in each group. We see from

Equation (5d) that disturbances of Equations (1) and (3) are uncor-

related. This will become clearer if we rewrite the model in matrix

notation.

A useful notation in this context is the direct sum of matrices (Mac-

Duffee, 1946, p. 81). If A1, · · · , As are matrices, with matrix Ar

having nr rows andmr columns, then the direct sum A1 u· · ·uAs
is an (n1+· · ·+nr )× (m1+· · ·+mr ) block diagonal matrix, with

the A1, · · · , As as the diagonal blocks. Thus X = X1 u · · ·u Xm is

a matrix with n =
∑
nj rows and with mp columns. If we stack

the m vectors yj on top of each other to form the n-vector y , and

in the same way form the mp-vector β and the n-vector ε, then we

can write Equation (1) as

(6) Y = Xβ+ ε,

with E(ε) = 0 and E(εε′) = σ 2
1 I u · · ·u σ 2

mI.

Translating Equation (3) into matrix notation requires a bit more

thought. We first define the p × q matrix Zj , with q =
∑
qj , by

Zj = z′j1 u · · ·u z′jp. Now Equation (3) can be written as

(7) βj = Zjθ + δj,

where E(δj) = 0, E(δjδ
′
j) = Ω and E(δjδ

′
`) = 0 for j 6= `. Stack the

m equations (7) on top of each other, and we obtain

(8) β = Zθ + δ,
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with E(δ) = 0 and E(δδ′) = Ωu · · · u Ω (m times). We have now

replaced Equations (1) and (3) by the much more compact Equa-

tions (6) and (8). The next logical step is to combine Equations (6)

and (8) into a single equation. Define the n × q matrix U = XZ .

Then

(9) Y = Uθ +Xδ+ ε.

Alternatively we can also set, by letting ν = Xδ + ε, y = Uθ + ν .

Now E(ν) = 0 and E(νν) = V , where V = V1 u · · · u Vm, and

Vj = XjΩX′j + σ 2
j I. Equation (9) shows clearly that our random

coefficient model is a special mixed linear model – special because

of the assumed structure for the error dispersion and because of

the relation between U and X.

It is useful to take a short look at the matrices X, Z , and U we have

constructed. Matrix X is n ×mp. If we assume, as we do in the

sequel, that each Xj has rank p, then X has rank mp. Matrix Z

looks a bit peculiar, but its algebraic properties become clear if we

define it in terms of the matrices Zs used in Equation (??). We can

obtain Z by suitably rearranging the rows of Z1u· · ·uZp. Here, the

matrices in the direct sum are the Zs , that is, they are m×qs . If we

assume, as we do, that Zs has rank qs , then it follows directly that

Z has rank q. Thus, both X and Z are of full column rank. Matrix

U = XZ has a rather interesting structure. It is of order n× q, and

it is build up out of mp matrices Ujs = xjsz′js of orders nj × qj
Observe that all Ujs are of rank one. U itself is of full column rank

q.
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It is also clear from these developments what a fixed coefficient

model is. This is the special case in which there are no second

stage disturbances – in which Ω = 0. In the slopes as outcomes

approach, and also in the usual contextual models, Xj has only

two columns, the first of which is identically equal to +1.The two

elements of βj are the random intercept and the random slope.

It is possible to include models in which intercepts are fixed and

slopes are random by requiring certain elements of the parameter

vectors to be zero. In simple covariance analysis, for instance, we

have another special case in which Ω = 0; the design matrix for the

intercepts Z1 is the identity and the design matrix for the slopes is

a vector Z2 with all elements equal to +1. Such restricted versions

of our general model can all be considered as additional specifi-

cations whose appropriateness can be tested within the general

model.

The interpretation of our model in the multilevel context is clear

because it is a straightforward generalization of the contextual

model of Boyd and Iversen (1979). In the same way, our model gen-

eralizes the slopes as outcomes approach, showing in what sense

regression coefficients are random variables. We will see that our

estimation procedures generalize the one-step and two-step proce-

dures of Boyd and Iversen and Van den Eeden and Saris (1984). In

fact, they generalize them, correct them where necessary, and put

them on a more solid statistical basis. But first we will indicate that

our model is far from new and has already been studied in great

detail in the econometric and statistical literature.
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3. The History of Variable Coefficient Models

Random coefficient models, or more generally, variable coefficient

models, have a long history in econometrics. Pioneering work of

Rubin, Klein, Wald, and Theil in the late 1940s and early 1950s had

little practical impact and was ignored for some time. More com-

prehensive papers, oriented toward practical applications, were

written in the late 1960s by Rao, Fisk, Hildreth and Houk, and

Swamy. The pre-1970 literature is reviewed almost completely in

the monograph by Swamy (1971). In the 1970s, a substantial body

of theory was developed, and a number of useful review papers ap-

peared. We mention Rosenberg (1973), Spjøtvoll(1977), and Mund-

lak (1978). Chapter 17 in Maddala (1977) and a recent chapter by

Chow (1984) are also very useful. Annotated bibliographies have

been published by Johnson (1977, 1980).

Most of these econometric papers discuss models that are less gen-

eral than our model in the previous section. In the second-stage

specification (Equation (3)), econometric models have qs = 1, and

zjs = 1. Thus q = p, and Equation (7) becomes simply βj = θ + δj ,
because Zj = I for all j. There is effectively no second-stage model

of independent interest, which makes these econometric models

not very useful for multilevel research, although there are some

exceptions. The first exception is Hanushek (1974). He only con-

siders the case p = 1, but for this case he presents a two-stage

model that is very similar to our model. Unfortunately, Hanushek

does not clearly distinguish between random and fixed variables,

and as a consequence the statistical analysis of his model is con-

fused.



18 JAN DE LEEUW AND ITA KREFT

Another two-stage model has been proposed by Amemiya (1978),

in the context of pooling cross-section and time-series data. The

model, which is discussed very briefly, is identical to our model

(Equations 6 and 8), but the assumptions on the disturbances and

the characteristics of the matrix Z are quite different. The differ-

ence arises, of course, because the models are designed for dif-

ferent types of applications. A two-stage model very similar to

Amemiya’s has been studied recently by Pfefferman (1984). Pfef-

ferman works in the Gauss-Markov framework and supposes that

the dispersions of the disturbances are essentially known.

The fact that random coefficient models in econometrics are ei-

ther not specific enough, or are just a little bit different, need not

bother us at all. The estimators that have been proposed in the lit-

erature can be adapted without too much trouble to our two-stage

multilevel model, and this is exactly what we will do in the sequel.

Moreover, many results in statistics deal with general mixed-linear

models. They can be used for our model, too. Finally, our two-

stage models are closely related to Bayesian and empirical Bayes

methods for the linear model. These results are discussed roost

completely in Lindley and Smith (1972) and in the contributions of

the discussants of that paper.

In discussing the history of our model we must also discuss some

recent history that has come to our attention while preparing the

final version of this paper. The current interest in school effective-

ness research has focused attention on multilevel modeling and

analysis. Basically, the same model as proposed in this paper is
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also studied by Ecob (1985), Goldstein (in press), Aitkin and Long-

ford (in press), and Longford (1985). The emphasis and the details

are often somewhat different, because these authors use variance

component models as their starting point and are sometimes only

interested in special cases of our general model. Nevertheless, the

similarities with our work are much more pronounced than the

differences, and virtually everything in these papers is relevant for

our discussion.

In the context of longitudinal studies, versions of our multilevel

model (in which measurement waves define the second level) have

been developed by Laird and Ware (1982) and Ware (1985). The

paper that is closest to ours, both in its starting point and its pro-

posed models, is Mason, Wong, and Entwisle’s (1984). They use the

hierarchical linear models of Lindley and Smith (1972) and Smith

(1973) as their starting point, also with the explicit purpose of pro-

viding a completely specified model for contextual analysis. Their

estimation methods are somewhat different from ours, and their

basic example is from comparative fertility research, but otherwise

both their approach and their results are very close to ours.

There are also two important developments in the random co-

efficient literature that we have not incorporated in our model,

although these developments could very well be useful in mul-

tilevel research. The first one, already discussed in connection

with Tate and Wongbundhit (1983) and Burstein, Linn, and Capell

(1978), is the use of random regressors. In a basic paper, Mundlak

(1978) discusses random regressor-random coefficient models in
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which there may be "transmitted errors," that is, correlations be-

tween coefficients and independent random variables. Our basic

approach in this paper, without transmitted errors, is applied to

random regressor models, and even to path analysis models in De

Leeuw (1985). A second omission, somewhat less serious perhaps,

is the modeling of the first-level error variances as random vari-

ables as well. This could be useful as a "residuals as outcomes7’

approach. Models that allow random variances are discussed by

Aragon (1984). Both extensions of our basic model lead to many

complications and into largely uncharted territory.

4. Least-Squares Estimation

In this section we discuss various aspects of ordinary (unweighted)

least-squares estimation in our model (Equation (9)). We first con-

sider Equations (6) and (8) separately and estimate the βj from

Equation (6). We must realize, of course, that we estimate random

variables here, and not fixed constants. Nevertheless, the notions

of bias and variance apply to the estimation of random variables as

well. Gauss-Markov theory for random coefficient models was de-

veloped by Rao (1965a); compare also section 4a.11 of Rao (1965b),

Swamy (1970, 1971), and Pfefferman (1984). The relevant result for

our model is that the minimum variance unbiased linear estimate

of βj , is b̂j = (X′jXj)−1X′jyj . Using matrix notation, we can also

write b̂ = (X′X)−1X′y , but the important thing to observe from a

practical point of view is that we compute regression coefficients

separately for each group.
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The expectation of b̂j is E(b̂j) = Zjθ, and its variance is Wj =Ω+σ 2
j (X

′
jXj)−1. Again, it is convenient to defineW = W1u· · ·uWm.

Thus, b̂ has expectation Zθ and dispersion W . Also define the

residual r j = yj −Xjb̂. The residual r j has expectation zero, and

(10) E(r jr
′
j) = σ 2

j [I −Xj(X′jXj)−1X′j].

It follows that E(r ′jr j) = σ 2
j (nj − p), and thus σ̂ 2

j = r ′jr j/(nj − p)
is unbiased for σ 2

j . Ordinary regressions within groups give us

unbiased estimates of the βj and the σ 2
j .

In the next step we compute an estimate of θ. This is simply

θ̂ = (Z′Z)′Zb̂. Again, from a practical point of view, this is most

easily understood by writing it as θs = (Z′sZs)−1Z′sb̂s , where b̂s con-

tains the m regression coefficients for variable s in the m groups.

Our second step ends by computing an estimate for Ω. This re-

quires some thinking, because the unbiased estimates developed

in Rao (1965a) and Swamy (1970) will not work for our more com-

plicated model. They are based on the econometric model in which

E(βj) = θ for all j. Their basic idea can be generalized quite eas-

ily, however. Define residuals ts = b̂s − Zsθs . We can also write

ts = Qsb̂s , where Qss = I − Zs(Z′sZs)−1Zs . The ts have expectation

zero, and

(11) E(tst
′
r ) = Qs(ωsr I + Σ∇sr )Qr .

In Equation (11) we have used Σ for the diagonal matrix with the

σ 2
j , and ∇sr for the diagonal matrix with all (s, r)-elements of the

m matrices (X′jXj)−1 on the diagonal. From Equation (11) we find

the unbiased estimate

(12) ω̂sr = (t′str − tr QsΣ̂∇srQr )/tr QsQr ,
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where Σ̂ contains the σ̂ 2
j on the diagonal. If all Zs are the same, as

in Van den Eeden and Saris (1984), then Equation (12) simplifies to

(13) Ω̂ = {T ′T − m∑
j=1

ξjσ̂ 2
j (X

′
jXj)

−1}/(m− q),

where them×p matrix T contains the ts , where ξj is the jth diago-

nal element ofQ, and where q is the number of columns of each of

the Zs . Thus, we can estimate the dispersion on both levels from

the ordinary least-squares residuals. It is somewhat unfortunate

that estimate in Equation (12) need not be positive semidefinite.

Compare the discussion in Swamy (1971, pp. 107-111).

After two ordinary least-squares steps, we have unbiased estimates

of all parameters. This is quite satisfactory, because most people

in educational research use simple least squares, and it is quite

likely that they will continue to do so. By using Equation (12),

the additional parameters of the random coefficient model can be

computed quite simply from the least-squares residuals. However,

another ordinary least-squares procedure can be applied to our

model. If the model is written in the two-equation form (Equa-

tions (6) and (8)), the two-step least-squares estimate is natural. If

it is written in the single-equation form (Equation (9)), we immedi-

ately think of the single-step estimate θ̂ = ((U ′U)−1U ′y (Boyd &

Iversen, 1979, pp. 53-55).

We can compare the two estimates by using generalized inverses.

The matrix U is the product of X and Z , which are both assumed

to be of full column rank. It follows that, using superscript + for

the Moore-Penrose inverse, Z+X+ is a generalized inverse of U , in

fact, a left inverse because Z+X+XZ = I. If we let U− = Z+X+,
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then θ̂ = U−y is nothing but the two-step estimate of θ computed

with a single-step formula. Clearly, θ̂ = U+y is the single-step

estimate. Although we use the same symbol for the two estimates,

they are in general different. Boyd and Iversen (1979, appendix

C) give sufficient conditions for their equality. Our development

suggests a simple formulation. We have equality for all y if, and

only if, U− is a Moore-Penrose inverse of U . This is the case if, and

only if, UU− = XZZ+X+ is symmetrical.

Additional insight can be obtained by using Cline’s (1964) formula.

Cline proves that (XZ)+ = Z+(XZZ+)+ if X has full column rank.

Other relevant generalizations of the “reverse order law” for Moore-

Penrose inverses are given by Greville (1966) and by Barwick and

Gilbert (1974). It is clear by now that the terminology single-step

and two-step is quite misleading. We have the formula θ̂ = U−y ,

which is a single-step formula for the separate-equations estimate.

We also have the formulas b̂ = (XZZ+)+y and θ̂ = Z+b, which are

two-step formulas for the single-equation estimate.

Because the disturbances have zero expectation, both the single-

equation and the separate-equations estimate are unbiased. Com-

parisons between them have been given by Van den Eeden and

Saris (1984). The separate-equations estimate is easier to com-

pute. We know that Z is of the form Z = P(Z1 u · · · u Zp),

with P a permutation matrix. Thus, Z+ = (Z+1 u · · · u Z+p )P ′, and

ZZ+ = P(Z1Z+1 u · · ·u ZpZ+p )P ′. But XZZ+ is generally a full ma-

trix, of order n ×mp, and thus computation of(XZZ+)+ is not a

trivial matter. It has been suggested by Van den Eeden and Saris

that as a consequence, single-equation estimates may be bothered
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more by multi-collinearity, and that the separate-equations esti-

mates are easier to understand and to interpret. We agree with this

evaluation. We do not agree with the other reasons suggested by

Van den Eeden and Saris for preferring the separate-equations esti-

mate. Both procedures lead to unbiased estimates and do not take

into account the structure of the disturbances. Tate and Wong-

bundhit (1983) also reach the conclusion that the procedures they

have compared (single equation, separate equations, and mixed) all

produce unbiased estimates. For the model they consider, this can

be proved directly; there is no need to use a Monte Carlo study to

confirm this.

5. Weighted Least Squares

In the previous section we discussed both separate-equations and

single-equation least-squares methods. In the first analysis, the

single-equation method has little to recommend it, and the separate-

equations method seems preferable from a computational and in-

terpretational point of view. In this section and in the next one, we

will develop procedures that are more satisfactory from a statisti-

cal point of view, and that maintain the interpretational advantages

of the separate-equations method.

From Equation (9) we know, using the Gauss-Markov theorem, that

the best linear unbiased estimate of θ is given by

(14) θ̂ = (U ′V−1U)−1U ′V−1y.

This result, as such, is quite useless, because V = V1 u · · · u Vm

with Vj = XjΩX′j + σ 2
j I is generally unknown. Swamy (1970, 1971)
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suggested substituting the estimates of σ 2
j and Ω computed in the

previous section in the definition of V . This gives an estimate V̂ ,

also unbiased. We then estimate θ by substituting V̂ for V in Equa-

tion (14). This is, of course, a natural idea. Because estimates

are no longer linear in the observations, the simple calculus of bias

does not apply any more and we have to resort to asymptotic meth-

ods to evaluate our estimates. Before we discuss this, we first point

out a remarkable simplification of the estimate.

In the monograph by Swamy (1971, p. 101), we find the formula

(15) V−1
j = σ−2

j [I −Xj(X′jXj)−1X′j]+Xj(X′jXj)−1W−1
j (X′jXj)

−1X′j,

whereWj = Ω+σ 2
j (X

′
jXj)−1, as before. This implies that X′jV

−1
j Xj =

W−1
j and that X′jV

−1
j yj = W

−1
j b̂j . Thus

(16) θ̂ = (U ′V−1U)−1U ′V−1y = (Z′W−1Z)−1Z′W−1b̂.

This formula is very convenient from the computational point of

view, because we have replaced inversion of matrices Vj , of order

nj , by inversion of matrices Wj , of order p. It is also clear from

Equation (16) that the Gauss-Markov estimate can be interpreted

as a two-step estimate.

On the other hand, a comparison of Equation (16) with the for-

mulas for the single-equation and the separate-equations estimate

seem to indicate that the single-equation estimate will generally be

closer to the Gauss-Markov estimate. The single-equation estimate

is optimal ifΩ = 0 and if all σ 2
j are equal, that is, ifW = σ 2(X′X)−1.

The separate-equations estimate is optimal if in addition X′X = I,
i.e. X′jXj = I for all j. Thus, for small Ω and for approximately
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equal σ 2
j the single-equation method will give a good approxima-

tion to W , while it is difficult to think of situations in which the

separate-equations approximation will be better. This advantage

of the single-equation method may offset its disadvantages in com-

putational and interpretational aspects.

Again, we emphasize that our development here generalizes that of

Rao, Swamy, and others, who only study the simple case in which

each Zs is a single column of ones. In this case, Equation (16)

simplifies to

(17) θ̂ =


m∑
j=1

W−1
j


−1 m∑

j=1

W−1
j b̂j,

which shows that in this case θ is a matrix-weighted average of

the b̂j . Swamy (1970) has studied the asymptotics of weighted

least squares for the restricted model. His results can be easily

extended to our more general case. We have to assume that both

m and nj tend to infinity. The matrices n−1
j X

′
jXj and m−1Z′sZr

must also tend to limits. Let Csr be the limit of m−1Z′sZr . Then

Swamy’s result, translated into our more general context, says that

m1/(θ̂ − θ) is asymptotically normal. Its asymptotic dispersion

matrix is the inverse of a matrix with submatrices ωsrCsr , where

ωsr is (Ω−1)sr . If all Csr are the same, which happens if all Zs

are the same, then the asymptotic dispersion is Ω ⊗ C−1, with ⊗
the Kronecker product. Under Swamy’s assumptions, the separate-

equations least-squares estimate has an asymptotic dispersion ma-

trix with submatrices ωsrC−1
sr . Thus, if all Zs are equal, the two es-

timates are asymptotically equivalent. It is far less simple to find
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the asymptotic dispersion of the single-equation least-squares es-

timate.

Johansen (1982,1984) improves the conditions under which Swamy’s

(1970) result holds, but also points out that the result may not be

satisfactory in some situations. The fact that the weighted least-

squares estimate has the same asymptotic distribution as the un-

weighted separate equations estimate already indicates that (asymp-

totically at least) there was no reason to weight in the first place.

This is also indicated by the fact that the limit distribution does

not depend on nj, Xj or σ 2
j . Johansen proves a much more compli-

cated result, which allows for an asymptotic effect of the weights.

The result depends critically, however, on assuming Gaussian dis-

turbances, and is not easy to apply. Thus, we do not discuss it

in detail, and we do not try to extend it to our multilevel model,

although this can in principle be done.

If we summarize the developments in this section, we think that

the weighted estimate will generally improve upon the unweighted

estimates, although this is by no means certain. The asymptotic

behaviour of weighted and unweighted estimates, for a large num-

ber of groups, depends on the relative speed with which m and

the nj converge to their limits. Clearly, what we really need are

expansions, not limit theorems, in order to make more definite

statements.

6. Maximum Likelihood

Maximum likelihood methods for mixed analysis of variance mod-

els (ANOVA) were first discussed systematically by Hartley and Rao
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(1967); recent state-of-the-art reviews include Harville (1977) and

Thomson (1980). Compare also Rao and Kleffe (1980). Recent

computational developments are often based on the EM-algorithm

of Dempster, Laird, and Rubin (1977). Applications of this algo-

rithm to various classes of mixed ANOVA problems are outlined

in Dempster, Rubin, and Tsutakawa (1981), Rubin and Szatrowski

(1982), Laird and Ware (1982), and Andrade and Helms (1984). Iter-

ative weighted least-squares algorithms for computing maximum

likelihood estimates were proposed by Goldstein (in press), and

scoring methods by Longford (1985, in press). Both Goldstein and

Longford have developed their methods in the context of nested

hierarchical models, and both have applied them to school effec-

tiveness research.

Alternative non-maximum likelihood estimates for the dispersion

of the residuals, at both stages, could be based on Rao’s MINQUE

theory, which is reviewed by Rao (1979), Kleffe (1980), and Rao and

Kleffe (1980). We merely note this; we do not apply MINQUE to our

random coefficient model in this paper. For the possibilities, we

refer to the dissertations of Streitberg (1977) and Infante (1978).

One of the most interesting results in our previous two sections is

that the simplest unweighted least-squares method and the weighted

least-squares method both worked in two computational steps. In

the first step, within-class regression coefficients were computed

by ordinary least squares, together with the within-class residuals.

In the second step, the within-class regression coefficients were

used as dependent variables for the between-class analysis. This is

an important property, because it implies that in the second step
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we did not work with the original yj and Xj any more, but with

a much smaller reduced set of variables. This makes computa-

tion in the second step relatively inexpensive. In this section, we

show that a similar result applies in the case of maximum likeli-

hood estimation. Although this method is computationally much

more complicated than the least-squares methods, it does share

this basic simplifying property with them.

As is well-known, the method of maximum likelihood has a some-

what peculiar position in statistics, especially in applied statistics.

Maximum-likelihood estimations are introduced as if they are by

definition good, or optimal, in all situations. Another peculiarity of

the literature is that maximum-likelihood methods are introduced

by assuming a specific probability model, which is often false in

the applications one has in mind. In our context, this means that

typically it is assumed that the disturbances, and thus the observed

y , are jointly normally distributed. Of course, such an assumption

is highly debatable in many educational research situations, and

quite absurd in others.

We take a somewhat different position. Least-squares estimates

are obtained by minimizing a given loss function, and this is how

they are defined. Afterwards, we derive their properties and we

discover that they behave nicely in some situations. We approach

multinormal maximum likelihood in a similar way. The estimates

are defined as those values of θ,Ω and Σ that minimize the loss

function

(18) log |V | + (y −Uθ)′V−1(y −Uθ).
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Again, at a later stage, we will say something about their prop-

erties. The important fact is that Equation (18) is quite a natu-

ral loss function. It measures closeness of y to Uθ by weighted

least squares, and it measures at the same time closeness of (y −
Uθ)(y − Uθ)′ to V . This last property may not be immediately

apparent from the form of Equation (18). It follows from the in-

equality log |A| + tr A−1B ≥ log |B| +m,which is true for all pairs

of positive definite matrices of order m. We have equality if and

only if A = B. Thus, in our context, log |V | + tr V−1R(θ), with

R(θ) = (y − Uθ)(y − Uθ)′ measures the distance between V and

the residuals R(θ). We want to make residuals small and we want

the dispersion to be maximally similar to the dispersion of the

residuals. Moreover, we want to combine these two objectives in a

single loss function.

We now simplify Equation (18), again by using the basic formula

Equation (15). This gives

(19) (yj −XjZjθ)
′V−1
j (yj −XjZjθ) =

(nj − p)σ̂ 2
j /σ

2
j + (b̂j − Zjθ)′W−1

j (b̂j − Zjθ)

Remember that the σ̂ 2
j are the first-stage estimates of the residual

variances, that is, σ̂ 2
j = r ′jr j/(nj − p). Another useful identity is

(20) log |Vj| = log |X′jXj| + (nj − p) logσ 2
j + log |Wj|.

Combining Equations (19) and (20) shows that minimizing Equa-

tion (18) is the same thing as minimizing

(21) log |W |+(b̂−Zθ)′W−1(b̂−Zθ)+
m∑
j=1

(nj−p)(logσ 2
j +σ̂ 2

j /σ
2
j ).
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To assess goodness-of-fit, it is useful to compare Equation (21) with

a lower bound. If we can find θ such that Zθ = b̂, then such a θ

is the maximum-likelihood estimate. In this case, the maximum-

likelihood estimate of Ω is the zero matrix, and the maximum-

likelihood estimate of σ 2
j is σ̂ 2

j = r ′jr j/nj . These values define a

lower bound of Equation (21) equal to

(22) n− log |X′X| +
m∑
j=1

nj log σ̂ 2
j .

For interpretation, it is consequently convenient to define a loss

function equal to the difference of Equations (21) and (22).

Actual minimization of this maximum likelihood loss function is

not simple. In closely related situations, Goldstein (in press) ap-

plies iterative generalized least squares, and Longford (1985, in

press) applies the method of scoring. The two are essentially equiv-

alent in this context. We have derived the necessary formulae

for our model, and we present them in Appendix A. The algo-

rithm based on the formulae seems to perform well. It would

be interesting to compare its performance with the EM-algorithm

used by Mason, Wong, and Entwisle (1984). It must be empha-

sized, however, that Mason, Wong, and Entwisle compute restricted

maximum-likelihood estimates (REML), whereas we use unrestricted

maximum likelihood (ML). Comparisons between REML and ML are

in Harville (1977). Comparisons with MINQUE are in Rao (1979)

and Rao and Kleffe (1980).

The asymptotic properties of maximum-likelihood estimates in mixed

analysis of variance models, which include our random coefficient

model as a special case, have been investigated most thoroughly
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by Miller (1977). Assuming normally distributed errors, he proves

consistency, asymptotic normality, and efficiency of the maximum-

likelihood estimates by using an increasing sequence of designs

(both the number of schools and the number of pupils converge to

infinity).

As we already mentioned in the discussion of weighted least-squares

estimation, it is not entirely clear which particular form of asymp-

totics we need in multilevel situations. Most of the results seem

a bit contrived, and it is probably safe to use Monte Carlo meth-

ods next to asymptotic results as long as satisfactory expansions

are not available. If the conditions used by Swamy in the case

of weighted least-squares estimation are true, then the maximum-

likelihood estimates are asymptotically equivalent to the weighted

least-squares estimates. In our special model, however, simplifica-

tions are possible because it follows from Equation (21) that the

maximum-likelihood estimates are a function of the b̂j and the

σ̂ 2
j , which are asymptotically normal. We follow Aitkin, Longford,

Goldstein, and others in using the information matrix as an esti-

mate of the dispersion of the maximum-likelihood estimates. The

necessary formulae are in the Appendix.

7. A School Effects Example

We illustrate some aspects of the techniques developed in this pa-

per by analyzing the GALO-data described by Peschar (1975) and

analyzed previously with multilevel analysis by Van den Eeden and
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Saris (1984) and Dronkers and Schijf (1984). The GALO-data con-

tain information about primary school leavers in the city of Gronin-

gen during 1959 and 1960. We only use the 1959 cohort, consisting

of 1,270 pupils in 37 schools. For each pupil, the individual-level

independent variables we used were sex, IQ, and occupational level

of the father. The dependent variable was teachers’ advice on the

form of secondary education. Thus, in our example p = 4 (constant

term, SEX, IQ, SES) and m = 37. IQ was coded as a continuous vari-

able; it has values between 58 and 148. Fathers’ occupation had

six possible values, and teachers’ advice had seven.

Optimal scaling techniques indicate that integer-scoring of the cat-

egories leads to regressions that do not deviate much from linear-

ity (Meester & De Leeuw, 1983). Thus, we treat occupation and

advice as numerical variables, although this remains debatable.

As the independent variables on the school-level, we use a con-

stant term and average school IQ, the aggregated individual-level

IQ. Thus q = 2 and all Z , are the same. We have chosen the same

school variables as Van den Eeden and Saris, but we have more

individual-level predictors because they only use IQ and the con-

stant term on the individual level as well. We have standardized all

four variables SEX, IQ, SES, and ADV in such a way that they have

mean zero and variance one over the 1,270 pupils.

Our first analysis step is to perform the 37 within-school regres-

sions. In Table I we have collected the most important information

relating to this stage of the analysis. The columns contain number

of pupils, average IQ, variance of IQ, regression coefficients for con-

stant, SEX, IQ, SES, and estimate of the residual variance. It follows
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from the results we have derived that these school-level statistics

are all that are needed to perform the second-stage analysis (except

for the single-equation ordinary least-squares estimation).

Table 1. Within-School Statistics: Number of Pupils, Mean
IQ, Variance IQ, Regression Coefficients, and Residual Variance

no np avIQ vrIQ rgCON rgSEX rgINT rgSES resi
1 29 -0.42 0.48 -0.38 0.08 0.34 0.09 0.11
2 33 0.60 0.52 -0.12 -0.13 0.99 0.14 0.30
3 31 0.18 1.08 0.26 0.01 0.61 0.12 0.28
4 66 0.47 1.04 0.14 -0.09 0.69 0.12 0.41
5 39 -0.70 0.58 -0.20 -0.07 0.59 -0.01 0.21
6 45 -0.43 0.70 0.18 0.04 0.55 0.18 0.57
7 39 -0.03 1.24 0.10 -0.09 0.65 0.13 0.40
8 31 -0.33 0.98 0.08 0.15 0.81 -0.04 0.17
9 53 0.59 0.70 -0.22 -0.05 0.82 0.16 0.34

10 31 -0.45 0.56 -0.01 -0.01 0.85 0.13 0.18
11 30 -0.50 0.66 -0.19 0.24 0.51 0.21 0.09
12 36 -0.26 0.94 0.03 0.02 0.70 0.04 0.28
13 52 -0.02 1.15 -0.10 0.01 0.58 0.22 0.25
14 29 0.10 1.17 0.16 -0.08 0.72 0.22 0.33
15 33 -0.24 1.27 -0.01 0.08 0.58 0.34 0.23
16 65 0.40 0.66 0.42 -0.05 0.79 0.16 0.38
17 57 0.43 1.40 -0.10 -0.32 0.76 0.29 0.41
18 31 -0.26 1.11 -0.06 -0.20 0.73 0.04 0.44
19 26 -0.49 0.75 0.00 0.10 0.56 0.14 0.20
20 27 -0.27 0.56 -0.09 -0.12 0.81 -0.14 0.26
21 25 -0.25 0.42 -0.54 0.03 0.22 0.11 0.20
22 27 -0.02 0.70 -0.16 -0.10 1.02 0.13 0.22
23 26 -0.15 0.80 -0.03 -0.11 0.77 -0.04 0.31
24 36 -0.68 0.75 -0.37 0.15 0.53 0.07 0.29
25 11 -0.92 0.49 -0.90 1.08 0.70 0.l51 0.25
26 27 0.00 0.74 -0.16 0.11 0.63 0.23 0.25
27 15 0.56 0.67 -0.21 -0.02 0.63 -0.03 0.35
28 27 -0.41 0.90 -0.14 0.10 0.69 0.20 0.25
29 20 0.14 0.86 -0.15 0.31 0.26 0.22 0.25
30 32 -0.44 0.66 -0.05 -0.11 0.55 0.19 0.28
31 49 0.43 1.03 -0.02 0.01 0.86 0.10 0.30
32 57 0.63 0.68 -0.11 -0.14 1,07 -0.01 1.02
33 37 0.32 0.63 -0.12 -0.10 1.02 0.09 0.23
34 30 0.50 0.52 0.04 0.03 1.02 0.07 0.31
35 35 -0.20 0.65 -0.02 -0.03 0.83 0.29 0.31
36 28 -0.39 0.44 -0.10 0.07 0.65 0.02 0.12
37 16 -0.42 1.03 -0.49 -0.19 0.81 -0.11 0.13
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It is clear from Table I that there is considerable variation both

in the regression coefficients and in the residual variances, and the

second step of the analysis seems necessary to model at least some

of this variation.

Before we proceed, we must make one thing clear about our analy-

sis of this example. We can use such an analysis for at least three

purposes. First, we can try to draw conclusions that are of value

in understanding the real-world situation. These can be of interest

either for school effect research in general or for describing the sit-

uation in Groningen in 1959 in particular. This is obviously not our

strategy in this paper. A second purpose of the analysis could be to

show that models make a difference. This is illustrated beautifully

in the paper by Aitkin and Longford (in press), and to some extent

also in Burstein, Linn, and Capell (1978), Tate and Wongbundhit

(1983), and Ecob (1985). But again this is not our purpose. We

merely want to investigate if choice of estimation method makes a

difference, and if this is the case how large these differences are.

It is clear that the other two questions are far more interesting,

but also far more difficult to answer. We hope to address them in

subsequent publications.

The first second-stage technique is ordinary least squares. We es-

timate the 2 × 4 = 8 elements of θ. They are given in the first

row of Table 2. The first four elements show the regression of

the individual-level regression coefficients on the school-level con-

stants. The next four elements show regression of the regression

coefficients on school-level aggregated intelligence. The single-

equation ordinary least-squares regression coefficients are given
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in the second row of Table 2. It is clear that differences between

the two sets of estimates are minor and mainly occur in the small

regression coefficients.

By using the separate-equations least-squares residuals we can es-

timate Ω by Equation (13). The estimate is given in Table 4. Al-

though it is not positive definite, we fortunately have that Ω̂ +
σ̂ 2
j (X

′
jXj)−1 is positive definite for all j. Thus, we can use the

Swamy estimate in Table 4 to compute weighted least-squares esti-

mates of θ. They are given in row three of Table 2. Again, they do

not differ substantially from the unweighted estimates. The Swamy

estimate of Ω can also be used in estimating standard errors of the

weighted least-squares estimate. These are given in row three of

Table 3. Because of the negative elements on the diagonal of Ω̂ we

cannot really be satisfied with the estimate.

Table 2. Regression Coefficients of Within-School Re-
gression Coefficients on School Variables for Separate-
Equations OLS, Single-Equation OLS, Weighted Least-
Squares with Swamy Weights, and Weighted Least-Squares
with Maximum Likelihood Weights

school AVE AVE AVE AVE INT INT INT INT

pupil AVE SEX INT SES AVE SEX INT SES

OLS (2S) -.081 -.002 .718 .121 .221 -.235 .210 -.029

OLS (1S) -.027 -.025 .712 .134 .157 -.121 .163 -.005

WLS (SW) -.057 -.017 .717 .119 .170 -.119 .182 .071

WLS (ML) -.050 -.014 .712 .127 .186 -.129 .184 .040

If we try to improve our estimates by maximum likelihood we run

into various troubles. If we do not constrain Ω then the method

tries to converge to an indefinite Ω̂, and this we cannot allow. The
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Table 3. Standard Errors of Regression Coefficients of
Within-School Regression Coefficients on School Vari-
ables for Separate-Equations OLS, Single-Equation OLS,
Weighted Least Squares with Swamy Weights, and
Weighted Least Squares with Maximum Likelihood
Weights

school AVE AVE AVE AVE INT INT INT INT

pupil AVE SEX INT SES AVE SEX INT SES

OLS (2S) .031 .024 .023 .022 .092 .131 .062 .094

OLS (1S) .030 .017 .022 .018 .073 .043 .057 .046

WLS (SW) .034 .024 .029 .010 .083 .057 .069 .025

WLS (ML) .029 .016 .021 .016 .069 .038 .050 .040

Table 4. Swamy Estimate Second-Stage Error Dispersion

AVE SEX INT SES

AVE .0309 -.0116 .0003 -.0003

SEX -.0116 .0106 .0004 .0007

INT .0003 .0004 .0172 -.0002

SES -.0003 .0007 -.0002 -.0033

same thing happens if we constrain Ω to be diagonal. If we re-

quire diagonality, and in addition set elements (2,2) and (4,4) equal

to zero, then the technique converges to the estimate given in Ta-

ble ??. This constrained model tells us that the regression coeffi-

cients for SEX on SES are fixed, while the intercept and the regres-

sion coefficient for intelligence are random with variances .0185

and .0035, respectively. Thus, Tables ??,2, and 3 tell us that, using
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z for a standard normal disturbance,

(intercept)j = −.05+ .19(average intelligence)j,+.14z

(regression coefficient IQ)j = .71+ .18(average intelligence)j,+.05z,

(regression coefficient SEX)j = −.01− .13(average intelligence)j,

(regression coefficient SES)j = .13+ .04(average intelligence)j.

If we take the standard errors in Table I11 into account, we see

significant effects of average intelligence on the intercept and the

regression coefficient for intelligence. This suggests that individu-

als with average IQ, SES, and SEX get higher advice in schools with

high average intelligence levels. It also suggests that the individu-

als’ intelligence is a better predictor of advice in high-intelligence

schools. There is also some indication, though not very strong,

that in schools with high average IQ, boys of average IQ and SES

get a higher advice than corresponding girls, while in schools with

low average IQ the situation is more the other way around.

Table 5. Maximum Likelihood Estimate Second-Stage
(Restricted) Error Dispersion

AVE SEX INT SES

AVE .0185 – – –

SEX – – – –

INT – – .00344 –

SES – – – –

Our most important conclusion, however, is that choice of estima-

tion method does not seem to have much influence on the size of

the regression coefficients. Estimates of the second-stage between-

school disturbances are quite different, however. These random
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effects on the first-stage regression coefficients are quite small in

this example. The standard errors in Table 3 show that the really

important regression coefficients are estimated with roughly equal

precision by all techniques, while the small regression coefficients

are estimated more precisely by maximum likelihood and weighted

least-squares methods.

The conclusions that are suggested by the analysis of this example,

as far as the size of the regression coefficients is concerned, are

similar to those of Van den Eeden and Saris (1984). Our method-

ological conclusions are a bit different. Although we agree that the

two-stage (or separate-equations) unweighted least-squares method

has definite advantages from the computational and interpreta-

tional point of view, we also find that the single-equation method

gives more precise estimates.

8. Conclusions and Recommendations

Our first and foremost recommendation is that if one uses con-

textual analysis, or slopes as outcomes analysis, then one should

try to specify the statistical model as completely as possible. This

does not necessarily mean that one must adopt the specification

we have investigated here. There are many other possibilities. In

fact, we believe that our model, although certainly a step ahead, is

not quite general enough. It must be generalized in such a way that

it can deal with recursive causal models, in which there are sev-

eral dependent variables and in which the regressors are random.

Moreover, for many school-career analysis situations it must have
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provisions for incorporating categorical variables. These seem to

be developments that are needed from the modeling point of view.

In a statistical sense our models are still far from complete. If

we assume multivariate normality we can derive the exact sam-

pling distribution of the unweighted least-squares estimates. But,

of course, there is hardly any situation in educational research in

which the assumption of multivariate normality applies. If we drop

it, we have to use asymptotic results. It is not clear yet what

the precise properties of weighted least-squares and maximum-

likelihood estimates are, even asymptotically. This must be inves-

tigated in the future.

Another possibility, that we have not mentioned at all so far, is

that tests of hypotheses can be carried out in various ways. In our

model we can be interested in the hypothesis that Ω = 0, for in-

stance, or that the σ 2
j are equal, that some elements of θ are zero,

and so on. Because we have concentrated on estimation, and not

on testing and interpretation, we have not developed these possi-

bilities, but they seem indispensable for a more satisfactory data

analysis.

Although a lot of work remains to be done, our most important

conclusion is that the fixed-regressor random-coefficient model we

have studied seems an interesting specification of contextual anal-

ysis models, and that the various estimation methods do not seem

to lead to large differences in results. The Rao-Swamy-Johansen

weighted least-squares method seems an excellent method to es-

timate the unknown parameters of the model, at least in cases in

which the estimate of Ω is not too negative.
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Appendix A. Computing Maximum Likelihood Estimates by
the Scoring Method

Define

(23) fj(θ,Ω,Σ) = (nj − p)(logσ 2
j + σ̂ 2

j /σ
2
j )+ log |Wj|+

+ (b̂j − Zjθ)′W−1
j (b̂j − Zjθ).

Then we must minimize the sum of the fj . If we want to apply

the scoring method, we need expressions of the first-order and

second-order partial derivatives. These expressions can also be

used to compute the information matrix, and they can be used,

in principle, to construct a Newton-Raphson algorithm. The par-

tials are given by approximating fj(θ+ζ,Ω+∆,Σ+T) by the first

two terms of its Taylor expansion around (Θ,Ω,Σ). The Newton-

Raphson method minimizes this quadratic approximation in each

step. The scoring method first replaces the second-order terms by

their expectations and then minimizes.

We use sj for b̂j − Zjθ and Dj for (X′jXj)−1. The first order terms

are

(24) tr W−1
j ∆− s′jW−1

j ∆W−1
j sj + τj[(nj − p)(σ−2

j − σ̂ 2
j σ

−4
j )+

+ tr W−1
j Dj − s′jW−1

j DjW
−1
j sj]+ 2ζ′Z′jW

−1
j sj.
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The six different types of second order terms are given next.

(25) s′jW
−1
j ∆W−1

j ∆W−1
j sj −

1
2

tr W−1
j ∆W−1

j ∆+
+τ2

j [(nj−p)(σ̂ 2
j σ

−6
j −1

2
σ−4
j )+s′jW−1

j DjW
−1
j DjW

−1
j sj−

1
2

trW−1
j DjW

−1
j Dj]+

+ ζ′Z′jW−1
j Zjζ + τj(2s′jW−1

j ∆W−1
j DjW

−1
j sj − tr ∆W−1

j DjW
−1
j )+

+ 2ζ′Z′jW
−1
j ∆W−1

j sj + 2τjζ′Z′jW
−1
j DjW

−1
j sj.

It is clear that the Newton-Raphson method will be difficult to ap-

ply. Matters simplify greatly if we take expectations of the six

terms of Equation (25). Because E(sj) = 0 the last two terms dis-

appear. Using E(sjs
′
j) = Wj and E(σ̂ 2

j ) = σ 2
j we obtain

(26)
1
2

tr ∆W−1
j ∆W−1

j + 1
2
τ2
j [(nj − p)σ−4

j + tr W−1
j DjW

−1
j Dj]+

+ ζ′Z′jW−1
j Zjζ + τjtr ∆W−1

j ∆W−1
j .

Iterations of the scoring method can now be described in a simple

way. We first update θ by θ = (Z′W−1Z)−1Z′W−1b̂. This leaves

us with a quadratic in ∆ and the τj . The optimum value of τj , in

terms of ∆, is computed next. This is

(27)

τ̂j =
(nj − p)(σ−2

j − σ̂ 2
j σ

−4
j )+ tr W−1

j Dj + tr ∆W−1
j DjW

−1
j − s′jW−1

j DjW
−1
j sj

(nj − p)σ−4
j + tr W−1

j DjW
−1
j Dj

If we substitute this we still have a quadratic in ∆ only, which is

then minimized. Then substitute the resulting ∆ in Equation (27).

This process is fairly efficient and can easily be adapted to cases

in which some parameters are constrained to be equal to zero or

constrained to be equal to each other. From Equation (26) we also

obtain the information matrix directly, and thus we can deduce
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the dispersion matrix of the asymptotic normal distribution of the

estimates.
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