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Abstract

Small Polaron Conduction in Transition Metal Oxides and Excited State

Recombination in Two-Dimensional Materials from First-Principles

by

Tyler J. Smart

State-of-the-art first-principles calculations are implemented and utilized in order

to optimize or give insight into material properties for various technologies and

applications. These applications, and therefore the research, have two primary

focuses. The first is energy conversion and storage using transition metal oxides

and the second is quantum defects in two-dimensional materials as qubits and

single photon emitters.

Regarding the first, the limitation of transition metal oxides is in their poor car-

rier conduction due to the formation of small polarons. Here I have developed our

understanding of how to compute small polaron properties such as optical absorp-

tion, polaron transport, and carrier concentrations, especially in the presence of

dopants and defects. Polaron transport has been investigated under both macro-

scopic (dielectric continuum) and microscopic (explicit hopping) models within

small polaron theory. Primary focus has been given to the Fe2O3 system, where

I have extensively researched polaron formation in the presence of many intrin-

sic defects and external dopants. Furthermore, I have discovered a novel form

of dopant clustering mediated by small polaron and dopant interactions which

has been experimentally validated. Outside of Fe2O3, I have demonstrated the

origin of the optical gap in Co3O4 is due to small hole polaron formation, and

in CuO I have detailed the formation and transport of spin polarons. Lastly, in

various other systems (e.g. BiFeO3 and LaFeO3) we have provided insight on how

xxv



dopants impact polaron properties which are relevant to experimentally observed

enhancements.

For the second research focus, the design of single photon emitters and spin-

based qubits in hexagonal boron nitride is presented. Here, both static and dy-

namic properties are computed for the first time for defects in two-dimensional

materials. For static properties, we have developed methods to deal with more

accurate electron correlation beyond standard density functional theory (e.g. GW

approximation and hybrid functional) and charged defect interaction for systems

with highly anisotropic and weak dielectric screening. I have also implemented

computing the zero-field splitting of S ≥ 1 systems, an essential quantity in de-

fect based-qubit systems like NV center in diamond. For dynamical properties,

we included exciton-defect coupling for radiative lifetime from solving the Bethe-

Salpeter equation and electron-phonon interactions for nonradiative lifetime. In

addition, I have implemented computing intersystem crossing (necessary for spin

initialization and readout) with spin-orbit coupling and electron-phonon interac-

tion. With these computed static and dynamical properties, we are able to predict

spin qubits read-out efficiency and new quantum spin defect systems in hexagonal

boron nitride which can be potential candidates for spin-based quantum technolo-

gies.
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Chapter 1

Introduction

Understanding and developing material properties is essential to solving some

of societies greatest concerns. One such concern of particular interest is the desper-

ate need for renewable energy resources. Advancing novel technologies for energy

harvesting, conversion, and storage is critical to ensure the economic viability

of U.S. energy and chemical industries. [1, 2] For many of these technologies, a

detailed understanding of chemical processes at electrochemical interfaces is essen-

tial. For instance, optimizing water splitting reactions at the semiconductor-water

interface in photoelectrochemical cells is key for improving the device efficiency

and stability for generating hydrogen fuel from water and sunlight. [3] Alterna-

tively, the causes of oxidation and corrosion at the interface can be illuminated

via chemical degradation processes. [4] Last but not least, understanding the rela-

tionship between reactivity and electronic properties of liquid electrolytes at the

interface with electrode materials is also one of the prerequisites for manipulating

the electrochemical stability of electrode-electrolyte interfaces in ion batteries and

supercapacitors. [5]

However, the development of renewable energy resources is only a single ex-

ample of the type of problem in which material design is crucial. As another
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example, material science is unsurprisingly at the very heart of developing brand

new technologies, particularly those in the realm of quantum information science.

The development of innovative quantum technologies is immanent and will make

broad impacts on our national technology sector. [6] For example, point defects

in two-dimensional materials are hosts for emerging quantum phenomena such as

single-photon emitters and defect-based spin qubits. Both of these technologies

necessitate the development of material design.

With the intention to expand these fields, the role of computational material

science has grown immensely alongside ever-growing supercomputing facilities.

These facilities enable calculations of large-scale simulations which provide im-

proved theoretical understanding of these aforementioned fields. In particular,

first-principles simulations allow us to better understand the quantum mechanical

nature of materials, which is an essential part of their application. These simula-

tions have proven to be pivotal in the evolution of many fields all the way from

renewable energy to quantum technology.

As such, my research in modeling materials from first-principles calculations is

bifurcated into two branches of motivation: 1. renewable energy and energy con-

version with transition metal oxides (TMOs) and 2. quantum information sciences

in two-dimensional (2D) materials. In this dissertation I will discuss my research

within both of these fields by covering the motivation behind my research, dis-

cussing progress achieved thus far and finally how these efforts have culminated

or are being extended.
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1.1 Density Functional Theory

1.1.1 Background

In the interrelated field of physics, chemistry, and material science, there is

no greater problem than that of the electron. The electron can determine so

many of the properties of a material, from its ability to absorb light, conduct

electrical currents, thermally or electrically insulate, and so much more. Hence,

in order to have a grasp on fundamental material properties we must understand

the electron and the quantum mechanical nature by which it lives by solving the

multi-electron Schrödinger equation (SE). The multi-electron problem essentially

refers to any problem involving interactions between more than one electron, often

in an external field. In principle, the problem is well understood in the formalism

of Schrödinger quantum mechanics, where the Hamiltonian of the multi-electron

system within the Born-Oppenheimer approximation (rigid ion approximation) is

given by:

− ~2

2m
∑
i

∇2
i +

∑
i

Vext(ri) + 1
2
∑
i 6=j

e2

|ri − rj|

Ψ(r1, r2, . . . rN) = E Ψ(r1, r2, . . . rN)

(1.1)

However, this has its immediate challenges. Namely, even the classical (non-

quantum) three body problem has no general solution! Clearly a non-analytical

approach is needed. Such a non-analytical approach is discussed below and is the

foundation of all density functional theory (DFT) calculations.
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Figure 1.1: Density functional theory is a mean field approach which replaces the
many-electron problem with one of a single electron interacting with a mean-field
electron density at a significantly reduced complexity while maintaining remark-
able predictive power.

1.1.2 Hohenberg Kohn and Sham

Typically, one may envision that given an external potential Vext(r), one may

solve the multi-electron SE as in Eq. 1.1, determining all of the eigenstates of the

SE, Ψi(r). This would include a ground state Ψ0(r) wavefunction and correspond-

ing ground-state density n0(r). This process logically demonstrates that given an

external potential, a unique ground state density can be found (Vext(r)⇒ n0(r)).

Hohenberg and Kohn’s first theorem, [7] demonstrates that the reverse is also

true, namely that given a ground state density, one can find (up to a constant),

a unique external potential, e.g. n0(r) ⇒ Vext(r). In other words, all properties

of the system are completely determined by the ground state density. Secondly,

Hohenberg and Kohn defined that a universal functional of the energy E[n] can be

constructed for any external potential. And the ground state density is a global

minimum of this functional, E[n] ≥ E[n0].

Following these theorems by Hohenberg and Kohn, Kohn and Sham were able
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Figure 1.2: Top left, the true multi-particle potential and wavefunctions are
replaced by an auxiliary single-particle system, as in the top right. At the end the
Kohn-Sham method involves solving the Schrödinger equation for the auxiliary
Hamiltonian (HKS) as defined in the bottom panel. Adapted from Ref. [8].

to demonstrate the very basis of density functional theory. [9] Namely, they proved

that there exists an auxiliary single-particle Hamiltonian (HKS) with the exact

same electron density (n0(r)) as would be obtained by solving the multi-particle

system. Schematically the theorems of Hohenberg and Kohn (HK) as well as Kohn

and Sham (KS) are shown in Figure 1.2.

1.1.3 Self-Consistent Approach

Today, there are many density functional theory (DFT) codes which are built

upon the theory presented by Hohenberg, Kohn, and Sham. The exact procedure

is shown in Figure 1.3. Specifically, an initial guess of the electron density is con-

structed. Here a basis set of gaussians (for molecular systems) or plane waves (for

crystal systems) is constructed to represent the density and make the computation

efficient and cheap. The typical guess of the electron density may involve a com-
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pletely random guess or one utilizing a linear combination of atomic orbitals (or

both). From this initial guess, the effective potential can be constructed, which is

then solved by typical diagonalization methods such as Davidson or conjugate gra-

dient. This will yield eigenfunctions ψi(r) and a new electron density n(r). This

electron density can be checked for self consistency (for example do they produce

a similar total energy) and if not then they are mixed to create a new guess. Once

self-consistency is reached we can obtain energy, forces, stress, eigenvalues, and

so much more from the DFT approach.

Figure 1.3: The procedure of the self-consistent loop implemented in various
density functional theory codes existing today.
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1.1.4 Electron-Electron interactions

In the auxiliary approach, there is a single functional component which is ex-

pected to capture the full many-body interacting electron problem, the exchange-

correlation energy Exc[n]. And much of the success of density functional theory

must be paid to the success in finding an approximate exchange-correlation func-

tional which yields reliable results. To cover all the many methods of exchange

and correlation would be an unbearably difficult task. In practice, a very popular

method is that of the local density approximation (LDA) which uses the approxi-

mate form of exchange-correlation one can obtain for a homogeneous electron gas.

Alternatively, the PBE functional is an immensely popular GGA (generalized gra-

dient approximation) which is widely used today. [10]

The shortcoming of LDA and GGA, comes for systems where the electrons

in the system deviate significantly from that of an electron gas. For example,

transition metal oxides, which possess 3d orbitals exhibit strong correlation, and

have been more successfully treated by including a Hubbard correction. [11]

EDFT+U = EDFT + Ueff

2
∑
I,σ

∑
i

λIσi (1− λIσi ) (1.2)

Here, EDFT is the energy obtained from standard DFT methods which is corrected

by the following term which includes the occupation matrix λIσi (I ranges over all

ions, i ranges over 3d orbitals and σ is for spin up or down). For example, we

have shown that applying a U of 4.3 eV on Fe 3d orbitals in Fe2O3 yields bandgap,

electron localization, hopping barrier, and ionization energies which agree with

experiment. [12]

An alternative method, is built upon a mixture of the semi-local PBE exchange-
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correlation functional and that of the non-local exact Hartree-Fock exchange:

EHF
x = −1

2
∑
i,j

∫ ∫
ψ∗i (r1)ψ∗j (r2) 1

r12
ψj(r1)ψi(r2)dr1dr2 (1.3)

A popular and most simple hybrid functional method (PBE0(α)) mixes EHF
x with

that obtained from PBE:

EPBE0
x (α) = (1− α)EPBE

x + αEHF
x , (1.4)

where most commonly α = 0.25 (denoted simply PBE0). Other variations of hy-

brid functionals, including HSE, B3LYP, and B3PW, will be discussed in necessary

detail as they pertain to the research in later sections.

More exact methods of including many-body interactions include the GW ap-

proximation. In the one-shot G0W0 (here all cases will be one-shot, so I will simply

write GW instead of explicitly G0W0) approach the self energy Σ perturbatively

replaces the XC functional obtained in DFT. First the single particle Green’s

function is constructed:

G0 =
∑
i

ϕi(r)ϕ∗i (r′)
ω − εi ± iη

, (1.5)

where ϕi and εi are eigenfunctions and eigenvalues obtained from DFT. Then

the screened Coulomb interaction can be obtained where the vertex Γ = 1, W =

v/(1 + χ0v) = ε−1v. Here the polarizability is obtained directly from the Green’s

function P0 = G0G0. The new self energy is then obtained as Σ = iG0W0, and

quasi-particle corrections are obtained from 1st order perturbation theory with

Vp = Σ− Vxc.
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1.2 Formalism of Charged Defect Formation

The below research takes special interest into the formation of impurities into

crystal lattices. These impurities could include native vacancies, interstitials, and

antisites but also extrinsic dopants and localized carriers (small polarons will be

discussed later). The most fundamental properties of these impurities are their

formation energy (how easily the impurity can form in the lattice) and their ion-

ization energy (how easily the impurity changes charge state and contributes elec-

trons or holes). Below an overview is provided on computing formation energies

from First-Principles.

1.2.1 Elemental Chemical Potentials

In order to evaluate the formation of atomic impurities the source of the im-

purities need to be evaluated in the form of a chemical potential. Rather than

introduce this notion abstractly, below I present the procedure for obtaining chem-

ical potential energies for the CsPbBr3 compound. The discussion can easily be

extended to other cases. For, CsPbBr3 the chemical potential of atomic Cs, Pb,

and Br can be evaluated by determining the stability of the parent compound

CsPbBr3 against its byproducts. Namely in thermodynamic equilibrium growth

conditions, the chemical potentials µCs, µPb and µBr must satisfy Eq. 1.6−1.7:

∆µCs + ∆µPb + 3∆µBr = ∆HCsPbBr3 (1.6)

i∆µCs + j∆µPb + k∆µBr ≤ ∆HCsiPbjBrk
, (i, j, k) ∈ N. (1.7)

Here ∆µX is the chemical potential of species X referenced to its most stable

phase. In Eq. 1.7, CsiPbjBrk refers to possible byproducts of CsPbBr3, e.g. Cs,

Pb, Br2, CsBr, CsBr3, PbBr2, Cs4Pb9, and Cs4PbBr6. From Eq. 1.6−1.7 and
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considering each of these byproducts we obtained a phase diagram as shown in

the main text Figure 2a. The results are in good agreement with previous reported

diagrams for CsPbBr3. [13, 14] More details can be found at https://github.

com/Ping-Group-UCSC/PhaseDiagram and in particular see the CsPbBr3 tutorial

(NOTE: at the time of this writing, this link is only available internally within

the Ping Group).

Figure 1.4: Phase diagram of CsPbBr3.

1.2.2 Defect Formation Energy and Ionization Energy

The charge defect formation energy (Ef
q ) provides insight into the charge states

of dopants providing some insight into the influence on carrier concentration and

is given by:

Ef
q (X; εF ) = Eq(X)− Eprist +

∑
i

µi∆Ni + qεF + ∆q, (1.8)
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where Eq(X) is the total energy of the defect system (X) with charge q, Eprist

is the total energy of the pristine system, µi and ∆Ni are the chemical potential

and change in the number of atomic species i, and εF is the electron chemical

potential. A charged defect correction ∆q must be computed for charged cell

calculations. This correction is computed with the JDFTx code [15] by employing

the techniques developed in Ref. [16, 17]. Meanwhile, chemical potentials can

be carefully evaluated against the stability of byproduct compounds as detailed

above. Finally, the corresponding charge transition levels of the defects can be

obtained from the value of εF where the stable charge state transitions from q to

q′.

εq|q′ =
Ef
q − E

f
q′

q′ − q
(1.9)

Typically, for a semiconductor or insulator the ionization energy of a p-type/n-

type dopant is given by the value(s) of its charge transition level(s) referenced

to the valence/conduction band edge of the host materials. However, in systems

which form small polarons the ionization energy should be referenced to the free

polaron state. [12, 18] For example, the free electron small electron polaron level

is defined as the ε0|−1 transition level in the pristine system.

1.2.3 Defect Concentration

In order to simultaneously consider defect, dopant, and carrier formation, I

implemented the procedure of defect concentrations via a self-consistent approach

based on charge neutrality. Following the formalism presented in Ref. [19], the
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charged defect concentration (cq) is computed as:

cq(X; εF ) = g exp
[
−Ef

q (X; εF )/kBT
]
, (1.10)

where g is the degeneracy factor accounting for the internal degrees of freedom

of the point defect, kB is the Boltzmann factor, and T is temperature. In order

to maintain neutrality, the introduction of defect X with charge q into the lattice

must be compensated by defects of opposing charge or through the generation of

free carriers. Specifically charge neutrality must be held:

∑
X,q

cq(X; εF ) + nh − ne = 0, (1.11)

where the concentration of free delocalized holes (nh) and free delocalized electrons

(ne) can be evaluated via:

ne − nh =
∫ ∞
−∞

dE
D(E)

1 + exp[(E − εF )/kBT ] . (1.12)

Here D(E) is the electronic density of states of the pristine system. Eq. 1.11

can be evaluated by standard root-finding algorithms to obtain εF where charge

neutrality is held. Note, for systems where free carriers will localize into small

polarons, the formation of free electron small polarons is entered in a similar way

to a defect, i.e. with a formation energy. Finally, in order to relate to experimental

measurements, concentrations are first computed at a synthesis temperature (TS)

and then charge neutrality is recomputed at room temperature (TO = 300 K)

while fixing the total defect concentration to that obtained at synthesis condition

as employed by Ref. [20]. The software computing defect concentrations can be

found (for Ping Group members) at https://github.com/Ping-Group-UCSC/
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DefectConcentration.

1.3 Defect Mediated Carrier Recombination

In many fields, properties of carrier dynamics are essential to understand. For

example, single-photon emitters (discussed in more detail later) require efficient

radiative recombination which must occur at a faster time-scale than those of

nonradiative processes. As another example, spin qubits (again will be discussed

more later) require intricate arrangements of intersystem crossing in order to

ascertain efficient spin polarization for initialization, as well as, photoluminescent

contrast for readout. Methods for computing such properties from first-principles

are summarized here.

1.3.1 Radiative Recombination

In order to quantitatively study radiative processes, we computed the radiative

rate ΓR from Fermi’s Golden Rule and considered the excitonic effects by solving

BSE [21]:

ΓR(Qex) = 2π
~
∑
qL,λ

∣∣∣ 〈G, 1qL,λ|HR|S(Qex), 0〉
∣∣∣2 δ(E(Qex)− ~cqL). (1.13)

Here, the radiative recombination rate is computed between the ground state G

and the two-particle excited state S(Qex), 1qL,λ and 0 denote the presence and

absence of a photon, HR is the electron-photon coupling (electromagnetic) Hamil-

tonian, E(Qex) is the exciton energy, and c is the speed of light. The summation

indices in Eq. 1.13 run over all possible wavevector (qL) and polarization (λ) of

the photon. Following the approach described in Ref. [21], the radiative rate (in-

verse of radiative lifetime τR) in SI units at zero temperature can be computed
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for isolated defect-defect transitions as:

ΓR = nDe
2

3πε0~4c3E
3
0µ

2
e−h, (1.14)

where e is the charge of an electron, ε0 is vacuum permittivity, E0 is the exciton

energy at Qex = 0, nD is the refractive index of the host material and µ2
e−h is the

modulus square of exciton dipole moment with length2 unit. Note that Eq. 1.14

considers defect-defect transitions in the dilute limit; therefore the lifetime formula

for zero-dimensional systems embedded in a host material is used [22, 23] (also

considering nD is unity in isolated 2D systems at the long-wavelength limit).

1.3.2 Nonradiative Recombination

Phonon-assisted nonradiative recombination rates are computed via a Fermi’s

golden rule approach:

ΓNR = 2π
~
g
∑
n,m

pin
∣∣∣ 〈fm|He−ph|in〉

∣∣∣2 δ(Ein − Efm) (1.15)

Here, ΓNR is the nonradiative recombination rate between electron state i in

phonon state n and electron state f in phonon state m, pin is the thermal proba-

bility distribution of the initial state |in〉, He−ph is the electron-phonon coupling

Hamiltonian, g is the degeneracy factor and Ein is the energy of vibronic state

|in〉. Within the static coupling and one-dimensional (1D) effective phonon ap-
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proximations, the nonradiative recombination can be reduced to:

ΓNR = 2π
~
g|Wif |2Xif (T ), (1.16)

Xif (T ) =
∑
n,m

pin | 〈φfm(R)|Q−Qa|φin(R)〉|2 δ(m~ωf − n~ωi + ∆Eif ), (1.17)

Wif = 〈ψi(r,R)|∂H
∂Q
|ψf (r,R)〉

∣∣∣∣∣
R=Ra

. (1.18)

Here, the static coupling approximation naturally separates the nonradiative re-

combination rate into phonon and electronic terms, Xif and Wif , respectively.

The 1D phonon approximation introduces a generalized coordinate Q, with ef-

fective frequency ωi and ωf . The phonon overlap in Eq. 1.17 can be computed

using the quantum harmonic oscillator wavefunctions with Q−Qa from the con-

figuration diagram. Meanwhile the electronic overlap in Eq. 1.18 is computed by

finite difference using the Kohn-Sham orbitals from DFT at the Γ point. The

nonradiative lifetime τNR is given by taking the inverse of the rate ΓNR. Addi-

tional details of nonradiative recombination are provided in the appendix. Im-

plementation of nonradiative recombination can be found here (for Ping Group):

https://github.com/Ping-Group-UCSC/NonRad.

1.3.3 Intersystem Crossing

In a very similar way to the above formalism, the intersystem crossing (ISC)

rate is computed as:

ΓISC = 4π~λ2
⊥X̃if (T ) (1.19)

X̃if (T ) =
∑
n,m

pin |〈φfm(R)〉φin(R)|2 δ(m~ωf − n~ωi + ∆Eif ) (1.20)
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Implementation of intersystem crossing can be found here (for Ping Group):

https://github.com/Ping-Group-UCSC/NonRad. Compared with previous for-

malism [24], this method allows for different values of the initial state vibrational

frequency (ωi) and final state one (ωf ) through explicit calculations of phonon

wavefunction overlap. Here spin-orbit coupling (SOC) can entangle triplet and

singlet states yielding the possibility for a spin-flip transition. The SOC operator

is given to zero-order by [25]:

Hso = 1
2

1
c2m2

e

∑
i

(∇iV × pi)Si (1.21)

where c is the speed of light, me is the mass of an electron, p and S are the

momentum and spin of electron i and V is the nuclear potential energy. The

spin-orbit interaction can be rewritten in terms of the angular momentum L and

the SOC strength λ as [25],

Hso =
∑
i

λ⊥(Lx,iSx,i + Ly,iSy,i) + λzLz,iSz,i. (1.22)

where λ⊥ and λz denote the non-axial and axial SOC strength, respectively. In

practice, SOC strengths were computed using the ORCA code by TD-DFT [26,

27].
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Chapter 2

Designing Efficient Transition

Metal Oxides

2.1 Overview

Solar water splitting, the process of utilizing the Sun’s energy by converting

water to hydrogen fuel represents the most promising and sustainable means of

harvesting renewable energies [28, 29, 30]. In particular, many transition metal ox-

ide (TMO) based photoelectrochemcial (PEC) devices (such as Fe2O3 and BiVO4)

are capable of achieving the highest solar-to-hydrogen efficiencies and offer the

greatest avenue of developing this field, while simultaneously utilizing cheap and

abundant sources [31, 32, 33]. Unfortunately, progress within this field has been

stunted by the formation of small polarons (hereinafter referred to simply as po-

larons) which conduct via a thermally activated hopping mechanism and yield

very poor conduction when compared to typical band conduction [34]. Hence,

polarons are the chief bottleneck in the development of TMO-based PEC devices,

as poor conduction leads to low efficiency.
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Therefore, my research focuses on the development of our understanding of po-

larons in TMOs and the discovery of methods for facilitating polaron conduction

in TMOs for improved solar-to-hydrogen efficiency. In particular, atomic doping

in TMOs has been highly successful for improving the solar-to-hydrogen efficiency

of TMOs. For example, in my first publication we studied how several defects in

Fe2O3 influence carrier conduction [12]. This work formulated methods for study-

ing polaron transport in doped systems and showed how Sn doping in Fe2O3 can

improve carrier concentration. Following this, we developed mechanistic insights

into how Li doping facilitates novel spin polaron conduction in CuO, which was

validated by experimental measurement of enhanced photocathode performance

by Li-doped CuO [35]. Our work demonstrating how the intrinsic band gap of

Co3O4 had been misidentified due to the formation of optically active hole polarons

caught a lot of attention [36]. In particular, this work received a Lawrence Liver-

more National Laboratory (LLNL) summer student poster symposium award, was

highlighted in LLNL notable news, and was pivotal in my reception of the Grad-

uate Student Scholar Program fellowship from LLNL. Recently, I have done two

in-depth studies on the Fe2O3 system, the first extensively details polaron forma-

tion in the presence of many intrinsic defects and external dopants by computing

defect, carrier, and dopant concentrations and reveals best doping practices. Fur-

thermore, I have discovered a novel form of dopant clustering mediated by small

polaron and dopant interactions which has been experimentally validated. Finally,

I have collaborated in many experimental works where our abilities to simulate

polarons [37, 38] and chemical reactions [39, 40, 41, 42] have proven vital in our

understanding of how atomic doping enhances the performance of these materials.
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2.2 Polaron Formation and Transport in Fe2O3

In our 2017 work published in Journal of Physics: Condensed Matter [12], we

investigated polaron formation and transport in Fe2O3, demonstrating the nota-

tion of a ‘free polaron’ level and detailing polaron hopping in pristine and doped

Fe2O3. Several transition metal oxides, such as TiO2, BiVO4, WO3 and hematite

Fe2O3, have exemplified some of the desirable characteristics of an efficient pho-

toanode for solar-driven photoelectrochemical (PEC) water splitting [43, 44]. In

particular, hematite (Fe2O3) is a low cost, earth abundant, n-type semiconduc-

tor with a relatively smaller band gap in the visible range (∼ 2 eV) compared

with other oxides; thus it has been established as a promising candidate for pho-

toanodes. However, application of hematite as a photoanode has been hindered

from low carrier denstiy, low carrier mobility and high electron-hole recombina-

tion rate. Collectively, this results in the solar to fuel efficiency being substantially

lower than the theoretical value, i.e. hematite typically yields a solar to hydrogen

efficiency of 1-2% despite having a theoretical efficiency for water splitting of 13%

[45].

Extensive research has been conducted on the introduction of certain defects

or dopants into hematite which could enhance PEC performance. In particular

it has been shown that the introduction of defects such as VO, Sn and Ti can

improve the photocurrents of Fe3O3. [46, 47, 48] Despite this, the underlying

mechanism is not well understood. Specifically, whether the dopants improved

the bulk properties or the interface charge separation, and how they affected

light absorption, carrier concentration and carrier mobility of the bulk hematite,

etc. Answering these questions is crucial for further optimization of chemical

composition and morphology of hematite for higher PEC efficiency.

Recently, the joint experimental and theory work by Ref. [49] provided a de-
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Figure 2.1: The crystal structure of Fe2O3 with lattice coordinates a, b and c.
The blue arrows are to indicate the anti-ferromagnetic ordering of the iron ab
layers.

tailed explanation for how nitrogen doping and oxygen vacancies in bismuth vana-

date have led to improved photo-to-current efficiency by a simultaneous improve-

ment of carrier density, carrier mobility and visible light absorption. In Ref. [49],

it has been found that the enhanced mobility is tightly connected to the small

polaron transport properties in BiVO4, i.e. the N doping lowered the small po-

laron hopping barrier and improved the hopping mobility. Similarly, small polaron

transport is the main carrier conduction mechanism in hematite, which causes its

carrier mobility and conductivity to be extremely low. In the past, certain defects

such as oxygen vacancies in bulk hematite have been discussed by computing their

defect formation energies [20, 50] but have not provided insights related to small

polaron formation and conduction, which is the key to understand experimental

observations (throughout this paper we will simply write polarons when referring

to electron small polarons).

Therefore we plan to illuminate the mechanism responsible for the enhance-

ment of efficiency in doped hematite and provide a quantitative depiction of the
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roles of these dopants in terms of the small polaron formation and transport mo-

bility in bulk hematite. We will discuss the electronic structure, defect charge

transition levels and ionization energies for these individual defects as well as de-

fect complex. Although several studies have been carried out on the formation

energies of doped hematite [20, 50], their dependence on the choice of U parame-

ters has not been examined in details. As we will show below, we have computed

defect formation energies and ionization energies for different U parameters to

investigate how the results vary as a function of U. Besides the defect ionization

energies which are closely related to the carrier concentration, it is crucial to un-

derstand the effect of defects or dopants on the small polaron transport mobility in

hematite which is another factor determining the carrier conductivity. To our best

knowledge, discussion of small polaron transport in hematite from first principles

is limited to pristine systems and there are few studies of small polaron transport

in defective hematite [51].In this work, we will examine how defects effect the

small polaron hopping barriers for carrier conduction in doped hematite. By this

means we can answer important experimental questions related to the effects of

defects on hematite and also provide extending insights for other doped transition

metal oxides, supplying guidance for future experimental design of improved small

polaron transport properties in metal oxides.

2.2.1 Methods

We obtained the electronic structure of pristine and doped hematite with Den-

sity Functional Theory (DFT) calculations including Hubbard U corrections in

order to take into account of strong on-site d electron interactions. Total en-

ergy, geometry relaxation and electronic structure calculations were performed

with open source, plane wave codes Quantum ESPRESSO [52]. We used ultrasoft
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pseudopotentials [53] including Fe 3s and 3d semicore electrons, which in our case

yielded identical results to norm-conserving alternatives [54, 55]. For the plane

wave basis we individually used cutoff energies of 40 Ry for wave functions and

240 Ry for charge density. The Brillouin zone was sampled with a 4 × 4 × 2

Monkhorst-Pack k-point mesh for geometry optimization of the 30 atom unit cell

and the k-point mesh was doubled in density of states calculations. Methfessel-

Paxton first-order spreading was used to expedite Brillouin zone integration with

a smearing width of 0.001 Ry [56]. Total energy was calculated self consistently

until a convergence of 10−8 Ry was achieved and geometry was optimized until

the net force per atom reached less than 10−3 Ry/au. For the hopping activation

barrier calculations, a linear extrapolation scheme of atomic structure between

initial and final hopping centers was employed for pristine and defective systems.

Fe2O3 is arranged in the hexagonal corundum structure with a space group of

R3c [57] (Figure 2.1). The unit cell consists of 30 atoms where iron, Fe3+, is six co-

ordinated and oxygen, O2−, is four coordinated. The system is anti-ferromagnetic

where the Fe3+ ions have a high spin configuration of partially occupied 3d or-

bitals with aligned spin between ions within ab-planes and anti-aligned along the c

direction. We first optimized the initial geometry of pristine hematite with a vari-

able cell relaxation which obtained cell parameters of a = 5.13Å and c = 13.99Å

with bond lengths and angles of Fe-O = 1.99, 2.14Å, O-Fe-O = 90.7, 86.0, 78.6 ◦,

which agree well with other work in both experiment [58] and theory [59]. The

pristine structure and fundamental values that we obtained are collected in Table

2.1.
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Pristine Hematite Fundamental Values

Value Present Work Experiment [58]

a (Å) 5.13 5.04

c (Å) 13.99 13.75

Fe-O (Å) 1.99, 2.14 1.94, 2.11

O-Fe-O (◦) 90.7, 86.0, 78.6 90.5, 85.0, 78.2

µF e (µB) 4.0 4.6 [60]

Egap (eV) 2.21 2.2 [61]

Table 2.1: Computed and experimental lattice constants a and c (b = a), nearest
neighbor bond lengths Fe-O, bond angles O-Fe-O and the band gap energy Egap.

Hematite is a charge transfer insulator [62, 63] and in accordance with the

strong correlation of electrons in 3d orbitals we apply the Hubbard correction

[11] to the Fe 3d orbitals. The Ueff parameter, which sets the strength of this

correction, was determined empirically to be 4.3 eV, in order to best fit the band

gap of hematite to be 2.2 eV as measured by soft x-ray spectroscopy [61]. It is

notable that Hubbard parameters used in previous calculations of this material

vary, although most used a Ueff between 4 eV to 4.3 eV. [20, 59, 64, 50, 65, 66,

51] In particular, one study also used a non-empirical method, on the basis of

unrestricted Hartree Fock theory, to determine a converged value of Ueff = 4.3

eV for Fe2O3, which they also showed to provide results in good agreement with

experiment. [65]

The introduction of any extra electrons into Fe2O3 will form strongly local-

ized small polarons due to large electron phonon couplings (the electrons are

self-trapped by local lattice distortions) and the small polaron radius is typically

no farther than the next-nearest neighbors. [67] The formation of small polarons

have been found in several metal oxides, such as Fe2O3, BiVO4, [49] and ABO3

perovskites [68], where the small polarons must be thermally activated and then
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Figure 2.2: (Left) The band structure of Vo:Fe2O3 with unperturbed band edges
and the creation of three isolated defect states α, β and γ (red curves: spin up;
black curves: spin down; blue dashed lines mark VBM and CBM). Defect states
are states which are away from the band edges and correspond to localized states
as in this case. (Right) Isosurface plot of the two highest occupied orbitals present
in Vo:Fe2O3 with an isosurface of ∼ 2% the maximum value. These two degenerate
small polarons form at nearest neighbor Fe of VO (grey box) and are referred to
as β polarons throughout this paper (green isosurface spin up and blue isosurface
spin down).
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hop between metal sites in order to conduct currents. In this work we plan to

study the relative stability and hopping barriers between different polaron config-

urations, where controlling the position of small polaron formation with/without

defects is the key. We controlled the placement of the small polaron through lo-

cal geometry adjustments that break the symmetry of the ground state system,

such as moving the oxygen atoms surrounding an Fe ion away from it to ensure

localization of polarons at that site and then relaxing the geometry to energy min-

imum. This bias initiates the localization of polarons which will expand the local

metal-oxygen bonds slightly (∼0.1 Å). The small polarons form both in pristine

systems (without explicit defects) and defective systems. For the latter, the small

polaron and defect center often interact and possibly form a complex as we will

discuss later.

For calculations with defects and excess charge, a 2 × 2 × 1 supercell with a

2× 2× 2 k-point mesh was adopted and internal geometries were relaxed keeping

cell parameters fixed to simulate an isolated defect within the periodic system. We

found the 2×2×1 supercell is large enough to avoid periodic interactions between

neutral defects. The charged defect formation energies have a slow convergence

with supercell size (scale as 1/L) due to image charge interactions. We corrected

the charge defect formation energies using the charge correction scheme similar

to Ref. [19] and our recent development in Ref. [69] where the proper treatment

for electrostatic potential alignment at presence of strong geometry relaxation by

defects is included, which has been a general issue for charged defect calculations

[70].
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2.2.2 Electronic Structure of Defective Hematite

Oxygen vacancy is an important intrinsic defect in Fe2O3, whose concentra-

tion can be controlled through experimental conditions. Recently, it has been

found that the introduction of oxygen vacancies in Fe2O3 can improve the overall

photocurrents of hematite based photoanodes in solar water splitting cells. [46]

Yet, the role of oxygen vacancies is unclear, and two possible explanations are

present: (1) oxygen vacancies improve the bulk carrier conductivity properties or

(2) oxygen vacancies improve the electron hole separation at electrode/electrolyte

interfaces. In this work we focus on (1), i.e. the effect of oxygen vacancies on the

bulk properties of Fe2O3.

The role of oxygen vacancies is simulated through the removal of one oxygen

atom within our supercell (120 atoms) and allowing the internal geometry to

relax. Since the oxygen within Fe2O3 has an oxidation state of O2−, oxygen

vacancy is an n-type dopant, which donates two electrons to the system. The

band structure of hematite with one neutral oxygen vacancy (Figure 2.2) displays

the creation of three defect states within the band gap α, β, γ in agreement with

previous theoretical work [20]. The corresponding projected density of states is

included in SI figure 2. Defect states are considered to be lozalized states (over

a few nearest neighbor atoms – see SI figure 7) and have no dispersion as seen

by the band structure and density of states. We found the two electrons are

spontaneously ionized from oxygen vacancy site and form localized small polarons

at nearby Fe ion (no charge density appears at the center of the vacancy, unlike

the case of SrTiO3 [71]). The β state in the band structure corresponds to the

two polaron states (one spin up and one spin down) in which the extra electrons

from VO occupy (the wave functions are shown in Figure 2.2). They are dx2−y2

type orbitals of the two nearest neighbors of the four-coordinated VO. The α
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Figure 2.3: (Top) The band structure of N+Vo:Fe2O3 with a perturbed valence
band edge (right below the lower dashed blue line), creating a reduced gap and
an indirect to direct gap transition (red curves: spin up and black curves: spin
down; blue dashed lines mark VBM and CBM). There are several defect states
introduced in the gap (between two blue dashed lines), including occupied defect
states which are primarily hybridized Fe 3d and N 2p states. (Bottom) Isosurface
plot (blue) of the highest occupied orbital present in N+Vo:Fe2O3, a combination
of a β polaron from the presence of VO (grey box) and N 2p orbital (pink atom
with arrow).
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state is a perturbed valence state of O 2p orbitals surrounding the site at which

the extra electrons go, while the γ state is a perturbed conduction state which is

unoccupied and corresponds to eg orbitals of the next nearest Fe neighbors of VO.

Overall, the oxygen vacancy did not modify the band edge positions and band

dispersion of the pristine systems, except introducing isolated defect levels in the

band gap. Therefore, we do not expect it will affect the main optical absorption

spectra (as the defect states have low density of states) but it may affect the

transport properties of the system, i.e. the carrier concentration or mobility as

we will discuss later.

Atomic nitrogen has been found to be a promising dopant to improve visible

light absorption properties of metal oxides, such as in TiO2 [72] and BiVO4. [49]

Recently, we found N doping in the presence of oxygen vacancies can also im-

prove the carrier mobility of BiVO4, where the small polaron hopping barrier was

lowered. Yet, N doping in Fe2O3 with/without oxygen vacancies has not been

studied both theoretically and experimentally to our best knowledge. We will

firstly discuss the effects of N doping and then discuss the combination effect of

N doping with oxygen vacancies.

For N-doped hematite we replaced one O in our system with N, a p-type dopant

since N has one fewer valence electron than O. This substitution results in a deep

defect state created corresponding to an unoccupied N 2p orbital and results in

slightly perturbed valence band states (See SI Figure 3 for band structure and

projected density of states.) The deep defect state introduced by N doping has

minimal overlap with the O 2p states, which may introduce defect state involved

transitions in the optical spectra but will not affect the main absorption edge.

In the meanwhile, the VBM in N-doped hematite is raised by 0.1 eV due to the

hybridization between N and O 2p states, and interestingly, the indirect band gap
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2N:1VO Hematite configurations
β polarons N-N (Å) N-Fe-N (◦) ∆Etot (eV)
2 2.4025 74.578 0.44
1 2.7482 86.841 0.23
0 3.8606 151.269 0

Table 2.2: Summary of 2N:1VO configurations, displaying the relation between
number of β polarons from VO formed, distance between N (N-N (Å)), atomic
angle (N-Fe-N (◦)) and the total energy difference (∆Etot) with the most stable
system (the configuration with 0 β polarons formed).

for the pristine Fe2O3 becomes a direct band gap after N doping. This could both

shift the absorption edge to lower energy slightly and also enhance the absorption

coefficient at the same energy range compared to the pristine case.

Next, we considered nitrogen doping coupled with oxygen vacancy in both a

(1N:1VO) ratio and a (2N:1VO) charge-balanced ratio. In the (1:1) doping regime

the overall effect is still n-type yet one of the polaron states is absorbed by the

nitrogen into the previously unoccupied N 2p state (Figure 2.3). We found that

the defects prefer to be close-by, rather than far away, with Enear −Efar ≈ −0.67

eV, with only small variations in the Enear based on N and VO orientation and

distance. Tested configurations had the distance between VO and N in the ‘near’

case as about ∼ 2.5-3.0 Å and ∼ 7-10 Å in the ‘far’ case. The resulting electronic

structure of N+VO:Fe2O3 is shown in Figure 2.3 and displays a slightly reduced

band gap of 2.1 eV (see SI Figure 4 for details). Again, as in N-doped hematite, we

see a shift at the VBM of N+VO:Fe2O3, resulting in a direct band gap introduced

from N-doping.

We also tested nitrogen doping coupled with oxygen vacancy in a (2:1) ratio

and we found three possible electronic configurations based on the orientation of

the defects within the lattice (in each case they are attached to the same Fe ion).

These configurations are nicely characterized by the number of β type states (β
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Figure 2.4: (Top) The band structure of Sn:Fe2O3 with a perturbed conduction
band edge of Fe 3d states creating a reduced gap of 2.0 eV (see SI figure 6 for
details). There is a single isolated defect introduced in the gap which corresponds
to a small polaron formed at Fe site near Sn. (Bottom) Isosurface plot (blue) of
the highest occupied orbital present in Sn:Fe2O3, a small polaron formed directly
below Sn (grey atom).
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polarons) created by VO. A summary of these configurations is collected in Table

2.2. We found that if all three defects are as close as possible (with N-N distance

2.40Å) then both small polarons are formed (the number of β polarons is 2 as

shown in Table 2.2). If all three are still close yet the nitrogen atoms are on oppo-

site sides of VO (with N-N distance 3.86Å)then both small polarons are absorbed

by the nitrogen (the number of β polarons is 0 as shown in Table 2.2; see detailed

structures in SI figure 8). Lastly, it is possible to form a configuration somewhere

in between these two states and have only one small polaron state formed (the

number of β polarons is 1 as shown in Table 2.2). Ultimately, the most stable

configuration for the (2:1) ratio is to have the nitrogen on opposite sides of VO so

that they may absorb the two electrons of VO with minimal interaction between

nitrogen sites. This configuration is minimal in energy because the absorption

of these extra electrons allows the nitrogen to achieve filled valence bands while

keeping their repulsive electrostatic interaction at a minimum. In any of these

configurations, several defect states are still present within the band gap (see the

corresponding band structure and projected density of states in SI figure 5). Al-

though both electrons donated from VO are absorbed by the nitrogen atoms in the

most stable configuration of 2N:1VO, these dopants still introduced extra defect

states inside the gap. This is unlike the case of BiVO4, where the charge balanced

N doping with oxygen vacancy results in the shift of valance band edges but no

isolated defect states formed in the band gap [49]. Meanwhile, the valence band

edge shifts up by 0.2 eV in this case resulting in a reduced band gap size of 2.0

eV, and is also accompanied by an indirect to direct gap transition.

Sn substitution has been shown experimentally to be a promising dopant for

improving photocurrents in Fe2O3 photoanodes [47]. However, similar to the

case of oxygen vacancies, it is unclear whether this is because the bulk carrier
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conductivity has been improved. Sn is a n-type dopant since the substitution

Fe3+ → Sn4+ donates an electron into the system. The atomic number of tin

is nearly double that of iron (50:26) yet the atomic radius of Sn4+ (83.0 pm) is

only slightly larger than that of Fe3+ (78.5 pm). Since the Fe ions in hematite

have a high spin configuration of half-filled 3d orbitals, the main modification

of the electronic structure upon the introduction of Sn substitution is that Sn

has no unpaired spin which creates a hole in the magnetic ordering of the anti-

ferromagnetic arrangement of Fe2O3. Additionally, Sn valence orbitals are less

localized than Fe 3d orbitals, which results in the excess electron easily moving

away from Sn and localizing on a nearby Fe ion. Therefore, the excess electron

contributed from Sn substitution forms a small polaron at the Fe site located

either directly below or directly above Sn (depending on the location of Sn in the

lattice, Figure 2.4). Alignment of Fe 3s semi-core states between the pristine and

doped systems reveals the conduction band edge down-shift of unoccupied Fe 3d

orbitals in Sn-doped hematite resulting in a slightly smaller band gap (2.0 eV)

than pristine Fe2O3 (see Figure 2.4 for the band structure and SI Figure 6 for the

projected density of states). Overall, Sn doping causes one small polaron defect

state in the gap and perturbs the states close to the band edges, unlike the case

of oxygen vacancies which only results in several isolated defect states in the gap

with no perturbation of band edges.

2.2.3 Formation Energy of Charged Defects

To understand whether the defects can be ionized easily at the room tem-

perature (and therefore contribute to the carrier concentrations), we calculated

thermodynamical charge transition levels ε0/+1 and ε+1/+2 of the doped systems

considered. The chemical potentials of elements Fe, Sn, O and N were estimated
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Figure 2.5: Formation energy displaying the most stable charge states of the
different doped systems considered with respect to the Fermi level. The zero
Fermi level is the VBM of the pristine system.

Ionization Energies in Doped Hematite
Doping (+1/+2) eV (0/+1) eV
VO 1.31 1.09
N+VO 1.82 1.14
Sn – 0.74

Table 2.3: Corresponding ionization energies obtained from the energy difference
between the charge transition level to the conduction band for different doping
cases.

as the total energy per atom of the natural occurrence of the element. In this pa-

per we focus on the charge transition levels of the defects which will not depend

on the chemical potential of elements (e.g. oxygen poor or rich conditions).

We obtained the charged defect formation energies and charge transition levels

for the doped systems as displayed in Figure 2.5. Typically, one obtains the ion-

ization energies of these states by the difference of the conduction band minimum

2.21 eV (of the pristine system) to the Fermi level at which the charge transitions

occur, summarized in Table 2.3. We see that VO introduces deep defects into
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the system with large ionization energies 1.31 eV (+1/+2) and 1.09 eV (0/+1),

consistent with previous theoretical work which reported 1.08 eV for (0/+1) [20].

Meanwhile we see that N+VO deepens the (+1/+2) transition by 0.51 eV yet does

not significantly change the (0/+1) ionization energy. Sn has the lowest ionization

energy of 0.74 eV (0/+1), which is larger than previously reported values by 0.22

eV [50]; yet, they also reported a smaller band gap (2.15 eV) than ours (2.21 eV)

due to a lower U value (4 eV). It is important to note that these ionization energies

indirectly depend on the Hubbard U parameter. Specifically, a lower U parameter

will lower the conduction band minimum position and hence result in lower defect

ionization energies. We find that the charge transition levels are not expected to

change much with respect to the valence band maximum, yet the band gap can

have a range from 1.8 eV to 2.2 eV for a Hubbard U of 3.0 eV to 4.3 eV (see Fig-

ure 2.6). Nonetheless, the overall defect property does not change qualitatively,

i.e. the oxygen vacancy has an ionization energy ranging from 1.09 eV (at U=4.3

eV) to 0.79 eV (at U=3.0 eV), which is still a deep impurity compared with the

ionization energy of a small polaron in the pristine hematite (0.49 eV at U=4.3

eV and 0.09 eV at U=3.0 eV.)

We note that although the absolute Sn-doping ionization energy is still large

(0.74 eV), if we compare its ionization energy with the ionization energy of one

small polaron in a pristine system (0.49 eV; black line in Figure 2.5), the difference

is only 0.25 eV. This implies that it takes 0.25 eV to excite the small polaron from

a defect-bound polaron to an unbound polaron (or ‘free’ polaron), which can be

considered as a shallow impurity. And because electrons naturally form small po-

larons even in the pristine Fe2O3 and it takes 0.49 eV to ionize the electrons from

self-trapped to free electrons in the conduction bands, absolute ‘shallow’ n-type

defects (where the ionization energy relative to the CBM is at the order of kT )
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Figure 2.6: Formation energy plot for pristine hematite and hematite with VO
with different U parameters, 3.0 and 4.3 eV. The reference zero of the Fermi level
is the VBM of the pristine system. The charge transitions still occur at the similar
Fermi level with respect to the VBM in the respective systems, however, a smaller
U parameter results in a smaller band gap. In particular Egap = 1.81 eV in the
U = 3.0 eV system, 0.4 eV smaller than Egap = 2.21 eV in the U = 4.3 eV
system. As a result, the defect ionization energy is lowered by 0.4 eV at U= 3.0
eV compared with U=4.3 eV.

can hardly form in Fe2O3. In particular,this is evident for the ionization energies

of VO and N+VO which are still ∼ 0.6-0.7 eV away from the ionization energy of

one small polaron in the pristine system. Therefore, even when considering the

ionization energy of a small polaron in the pristine system, the polarons formed in

these systems (VO and N+VO) are still difficult to ionize and contribute to carrier

concentrations at room temperature, unlike the case of Sn doping.
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2.2.4 Small Polaron Transport in Pristine and Defective

Hematite

From the ionization energy calculations above, we have found Sn is a promis-

ing dopant for carrier concentration improvement. As the carrier conductivity

depends on both the carrier concentration and mobility, in this section we will

discuss whether Sn doping improves the carrier mobility as well. Previous work

[73] found that in pristine Fe2O3 the coupling of small polaron hopping sites (VAB)

is large relative to the reorganization energy ∆G* (VAB > ∆G*/4), implying the

small polaron hopping conduction of Fe2O3 is in the adiabatic regime. We then

computed the small polaron hopping activation energy of pristine and Sn-doped

hematite using a linear extrapolation technique, which includes the coupling VAB

implicitly. We start from the initial configuration qa where the small polaron is

located on a Fe ion and then using geometrical techniques described in the method

section determine a configuration qb in which the small polaron is located on a

nearest neighbor Fe ion in the same ab-plane. Then, in accordance with Eq. 2.1

we linearly extrapolated from qa to qb, allowing the electron density of the system

to equilibrate at each step but keeping the geometry qx fixed.

qx = qa(1− x) + x qb (2.1)

The computed total energies (referenced to the starting configuration) as a func-

tion of reaction coordination are shown in Figure 2.7. The peak of the barrier is

the saddle point between the two hopping sites and the true activation energy EA

is obtained from relaxing the geometry from this point. In the pristine system

the saddle sits at the q0.5 reaction coordinate due to the symmetry of two hopping

centers and in Sn:Fe2O3 it sits at the q0.56 reaction coordinate. The latter relates
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Figure 2.7: (Top) Small polaron hopping barrier in the pristine and Sn-doped
systems where the solid square and dot indicate the activation energy. (Bottom)
Schematic of polaron hopping in the Sn-doped system (left is the initial a config-
uration and b is the final configuration).

to the different distances from the small polaron center to the Sn defect center.

For the pristine system we obtain an activation energy of EA,Fe = 0.11 eV,

consistent with previously calculated results of 0.11 eV [73] and 0.13 eV [59].

In the Sn-doped system we computed an activation energy of EA,Sn = 0.16 eV.

This higher activation energy is quite significant when compared with kT at room

temperature (k is the Boltzmann constant and T is temperature). In particular the

electron transfer rate is proportional to the exponential of the activation energy

over kT as shown in Eq.2.2.

τ = Ae−EA/kT (2.2)
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where τ is the electron transfer rate and A is the prefactor which depends on the

number of nearest neighbors and the attempt frequency. Considering that both

systems have 3 nearest neighbors and Sn disrupts the geometry only slightly, the

prefactor A of these two systems should be on the same order of magnitude. The

hopping mobility is related to the electron transfer rates through the Einstein

relation and one dimensional random walk i.e. µ = eR2τ/(2kT ), where R is the

electron transfer distance and τ is the electron transfer rate[59, 74]. Therefore we

can determine the ratio of the mobility in these two systems to be solely dependent

on the difference of their activation energies.

µSn
µFe
' e−(EA,Sn−EA,F e)/kT (2.3)

Eq.2.3 gives a ratio µSn/µFe = 0.14, which implies a decrease in carrier mobility

in Sn:Fe2O3. We note that the effect of defects on the carrier mobility depends on

the distance to the defect center, i.e. the hopping barriers between the pristine

and Sn-doped systems will be similar when the hopping centers are far away from

the defects (Sn). Therefore what we estimate here is the lower bound of carrier

mobility at presence of Sn.

We also investigated the hopping barriers at presence of VO and N+VO by

using similar procedures; yet we found the small polaron centers are unstable

away from the defects (the electrons tend to localize closest to the defect centers,

despite any applied local distortion at the positions far away from the defects.)

This again indicates these defects in bulk Fe2O3 are deep and extra electrons

from VO and N+VO tend to form small polarons tightly bounded to the positive

charged defect centers.
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2.2.5 Conclusions

In summary, this work discussed the effects of defects on the small polaron

formation, ionization and hopping transport properties in bulk Fe2O3 through

first-principles calculations, where the choice of dopants is inspired by recent ex-

perimental and theoretical work[46, 47, 48, 49]. Our calculations of the electronic

structure of pristine and doped Fe2O3 show that the small polarons will naturally

form at Fe ions if there are any excess electrons (unless there are dopants with

stronger correlated electrons available than the 3d electrons of Fe). These small

polarons can be tightly bounded to the defect centers (strongly preferred to locate

at Fe closest to the defects) or possibly conduct through thermally activated small

polaron hopping, depending on the corresponding ionization energies.

Electronic structure calculations show the defects we investigated here have

different effects on the band structures: for VO, only deep defect levels are intro-

duced in the band gap and the bulk band structure did not change compared with

the pristine hematite. For the cases of N, (1N:1VO) and (2N:1VO) doping, we ob-

serve 1. defect levels appear in the band structure; 2. the valence band maximum

shifts up by 0.1 − 0.2 eV, accompanied by an indirect to direct gap transition,

which could improve the visible light absorption at the same energy range as be-

fore, but also lower the absorption spectra edge than the pristine hematite. The

enhancement of visible light absorption may be further confirmed by computing

absorption spectra for these doped systems in the future work. For Sn doping, we

found related defect states in the gap and also a band gap reduction by 0.2 eV by

lowering of the conduction band position.

Formation energy as a function of Fermi level reveals most stable charge con-

figurations of the several doped systems of hematite considered: VO, N+VO and

Sn. From our defect formation energy calculations, we see that VO and N+VO
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bind the small polarons strongly with relatively large ionization energies. In the

Sn-doped system we see a much lower ionization energy (it takes 0.25 eV from a

defect-bound polaron to a “free” polaron) compared to the pristine system. This

shows Sn doping could contribute to the carrier concentrations at room temper-

ature. We note that due to the spontaneous formation of small polarons even in

pristine systems (with an ionization energy of 0.49 eV to become free electrons in

CBM), an absolute shallow n-type impurity can hardly form in Fe2O3 since this

would require an ionization energy relative to CBM more comparable to kT at

room temperature (∼ 0.026 eV).

Calculations of the small polaron hopping activation energy were conducted

in pristine and Sn-doped hematite and we found that the introduction of Sn may

lower the hopping mobility due to a higher hopping activation barrier. However,

the improved carrier concentration and possibly improved light absorption by Sn

doping can improve the overall photocurrents as observed experimentally. We note

that although experimentally they also found VO improved the photocurrents of

Fe2O3 [46, 47] (which is not supported by our theoretical results that VO is a deep

impurity and does not modify the band structure of the pristine system except

introducing defect bands), the measurements are based on an average of bulk and

surface defects, at the presence of electrode/electrolyte interfaces. In order to

further elucidate the roles of VO, N+VO and Sn doping in Fe2O3 for solar water

splitting applications, the ionization energies of charged defects at surfaces as well

as the interaction between small polarons, defects and water at the Fe2O3/water

interface needs to be investigated in the future work.
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2.3 Carrier Concentrations in Fe2O3

Outstanding questions remain in the pursuit of highly-efficient Fe2O3-based de-

vices with atomic doping. For example, the identity of intrinsic free carrier donor

remains under debate. Specifically, various experimental works have claimed

that oxygen vacancies (VO) are the source of extra carriers in n-type Fe2O3, [75]

whereas theoretical works have shown that VO have an unreasonably large ion-

ization energy,[12] which suggests that they cannot be the primary contributor of

free carriers. Meanwhile, some theoretical works have supported that iron inter-

stitials (Fei) are the major carrier donors due to a significantly smaller ionization

energy than that of VO. [20] Another important question, which is more general

to oxides than particularly Fe2O3, is how to determine dopants which will yield

the best performances of oxide based devices? Insights into the design of efficient

oxide based devices by simple yet practical prediction of atomic doping are highly

desired. [76]

There have been some theoretical works on intrinsic defects and atomic doping

in Fe2O3, for example, defect formation energy and charge transition levels have

been computed for Fe2O3, which can help determine dopants with low ionization

energy such as Sn, Ge, and Ti. [12, 50] However, these works cannot yet ad-

dress the above questions since directly obtaining carrier concentrations requires

understanding the combined effects of dopant solubility and dopant ionization en-

ergy. Furthermore, intrinsic defects should be considered simultaneously as they

may compensate n-type dopants, and yet, the effects of intrinsic defects with or

without external doping are not well-established in Fe2O3, as mentioned above.

In this work, we provide answers to these questions by investigating carrier con-

centrations in Fe2O3 from first-principles. By careful evaluation of defect concen-

trations including the presence of small electron polarons we can reliably predict
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the concentrations of free carriers in Fe2O3, in excellent agreement with exper-

iments. Further detailed computational analysis of dopant solubility, ionization

energy, chemical condition, and synthesis temperature are provided in order to

answer outstanding questions such as: What are the intrinsic carrier donors in

pristine Fe2O3? Which dopants are the best at raising carrier concentrations?

What makes a dopant effective in raising carrier concentrations (e.g. solubility

or ionization energy)? The work is organized as follows, first we briefly present

our computational methodology. Second we discuss intrinsic defects in undoped

Fe2O3. Third we systematically study several tetravalent and pentavalent dopants

idenitifying the best dopants for this system. Finally we analyze the importance of

solubility against ionization energy in determining which dopants will be the best

at enhancing carrier concentrations. The contribution of entropy to the formation

energy is rigorously studied and the general trends of formation energy (ioniza-

tion energy) within each group with respect to ionic radius is also presented. This

work provides detailed understanding of the interactions between intrinsic defects,

extrinsic dopants, and small polarons in polaronic oxides.

Density functional theory calculations were performed in the open-source plane-

wave code QuantumESPRESSO [52] using ultrasoft GBRV pseudopotentials [53]

and an effective Hubbard U [11] value of 4.3 eV for Fe 3d orbitals [12, 59]. Plane-

wave cutoff energies of 40 Ry and 240 Ry were used for wavefunctions and charge

density, respectively. All calculations employed a 2× 2× 1 supercell (120 atoms)

of the hexagonal unit cell with a 2 × 2 × 2 k-point mesh for integration over

the Brillouin zone. Charged defect formation energies and defect concentrations,

including free carrier concentrations were evaluated from first-principles.
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2.3.1 Intrinsic Defect Contributions to Polaron Concen-

tration

Figure 2.8: Identification of the source of free carriers in undoped Fe2O3. (a)
Local structure and electron wavefunctions (yellow cloud) of VO with two EP s.
(b) Local structure and electron wavefunctions of Fei with three EP s (one of which
forms at the interstitial site). (c) Intrinsic defect concentrations as a function of
O2 partial pressure in undoped hematite computed at room temperature with
synthesis at TS = 873, 1073, 1373 K. (d) V+

O, Fe+
i and EP concentration at room

temperature and pO2 = 1 atm, as a function of synthesis temperature. (e) Polaron
concentration and (f) difference between Fe+

i and V+
O at room temperature as a

function of synthesis temperature (TS) and oxygen partial pressure (pO2). In the
atomic plots, gold=Fe, red=O, and blue=Fei. The yellow cloud is an isosurface
of the polaron wavefunction with an isosurface level of 5% its maximum.

In undoped hematite, intrinsic defects such as vacancies (VO, VFe), and inter-

stitials (Oi, Fei) may form within the lattice along with the generation of carriers

such as free small electron polarons (EP ). Since VO and Fei are n-type defects,

they introduce small electron polarons into the lattice as shown in Figure 2.8a-b.

In Figure 2.8c, intrinsic defect concentrations are provided at room temperature

(300 K) as a function of oxygen partial pressure (pO2) in pristine hematite for
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three synthesis temperatures (TS = 873, 1073, and 1373 K). First we note that

the largest presence of any defect is VO (lowest formation energy in Table 2.4),

which grows monotonically with decreasing pO2 , and should be chiefly responsible

for the non-stoichiometry observed in Fe2O3. [77] Second, we find that intrinsi-

cally excess electrons can form into free electron polarons (dashed red line labeled

as EP ) whereas the concentrations of free delocalized band electrons and holes

are negligible (less than 108 cm−3), consistent with experimental measurements of

photoexcited electrons in Fe2O3.[78] Also, the intrinsic n-type nature of Fe2O3 is

consistent with the lower formation energy of VO and Fei compared with p-type

defects in Table 2.4.

In terms of identifying the primary donor of these EP , the conclusions are

dependent on the synthesis conditions and cannot be determined from formation

energy or ionization energies alone. At TS = 873 K, it is the case that ionized

oxygen vacancies (V+
O, solid purple line) are the primary donor to free electron

polaron concentrations (overlaps with the dashed red line labeled EP ). Interest-

ingly, as the synthesis temperature is elevated, for example to TS = 1373 K, free

electron polaron concentrations are not just more abundant, they are also origi-

nating from a different source, namely, Fe interstitials (Fe+
i , solid light blue line)

in Figure 2.8c. The change in electron polaron concentration versus synthesis tem-

perature is directly shown in Figure 2.8d at atmospheric pressure (pO2 = 1 atm).

We find that for synthesis temperatures below a critical temperature of ∼1104 K,

V+
O is the primary donor, whereas above this threshold Fe+

i will become the pri-

mary donor. To simultaneously show the effect of oxygen partial pressure we plot

a heat map of electron polaron concentration and the difference between Fe+
i and

V+
O concentration in Figure 2.8e-f. The correspondence between the two figures

reveals the importance of forming Fei in achieving higher carrier concentrations

44



in Fe2O3.

Defect Ef (eV) IE (eV)

VO 2.06 0.70

Fei 3.46 -0.01

VFe 4.14 –

Oi 3.15 –

Table 2.4: The formation energy and first ionization energy of intrinsic defects
at pO2 = 1 atm in undoped Fe2O3.

The observation above is important in resolving the long-standing confusion

about which defect acts as the major carrier donor in pristine hematite. Our re-

sults here suggest that previous debate over the primary donor can be explained by

the transition from V+
O to Fe+

i which has not been previously identified. Further-

more, this transition highlights the varying importance of defect solubility versus

ionization energy. While the ionization energy of VO is 0.7 eV, it has the highest

solubility amongst intrinsic defects, with a formation energy 1.4 eV lower than

that of Fei. At lower synthesis temperatures (e.g. below 1100 K), the formation

of Fei is sparse (less than 1010 cm−3 when TS = 873 K as shown in Figure 2.8c)

and by consequence VO is the primary source of carriers. In this situation the

carrier concentrations are extremely low, ∼1012 cm−3 because the Fermi level is

pinned at the first charge transition level of VO at ∼0.94 eV. This observation

is in good agreement with recent measurements of undoped Fe2O3 which exhibit

Fermi level positions between 0.8 and 1.2 eV. [79] When the synthesis temper-

ature is increased or the oxygen partial pressure is decreased, the formation of

Fei is more achievable and eventually it can act as the major donor in Fe2O3. In

this situation, Fei is always ionized Fe+
i due to a negative ionization energy, -0.01

eV, and so the carrier concentrations of hematite can be dramatically increased
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(red regions in Figure 2.8d-f where Fe+
i is the primary donor, EP concentrations

can reach ∼1018 cm−3). In this situation the Fermi level will approach the free

polaron limit as experimentally observed. [79] It has to be noted that there is

some difference between our computed polaron concentration and expeimentally

measured polaron concentration for pristine hematite, which could be related to

two perspectives0.[48, 80] First, experimentally, hematite are often grown and

measured on substrate such as fluorine doped hematite (FTO). The interface be-

tween hematite film and substrate could actually play an important role in shifting

Fermi level (carrier concentration), i.e. low and high work function contact mate-

rials could raise and lower the Fermi level at the interface, respectively.[79] Second,

the carrier concentration (or Fermi level) of pristine system is very sensitive to

temperature and pressure. The experimental vacuum synthesis condition is not

easy to be correctly defined in simulation.
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2.3.2 Tetravalent and Pentavalent Dopant Raise Carrier

Concentrations

Figure 2.9: Atomic structures and defect concentrations of extrinsic dopants
which are best at raising carrier concentrations in Fe2O3. (a) Atomic structures
of Fe2O3 with neutral dopants Ti, Ge, Nb, and Sb. In the case of tetravalent
and pentavalent the yellow cloud(s) represent the one or two nearby electron po-
laron(s), respectively. (b) Room temperature defect, dopant, and carrier concen-
trations of Ti, Ge, Nb and Sb doped hematite at pO2 = 1 atm and as a function of
synthesis temperature. In the atomic plots, gold=Fe, red=O, and the remaining
colored atom is the dopant as labeled within each figure. The yellow cloud is an
isosurface of the polaron wavefunction with an isosurface level of 5% its maximum.

In order to achieve higher carrier concentrations and optimize the efficiency

of Fe2O3-based devices, extrinsic doping will be necessary. In order to broadly

survey potential dopants and identify optimal doping strategies we studied all

group IV, V, XIV, and XV elements. Intuitively substituting trivalent Fe ions by
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Dopant Ef (eV) IE (eV) ρEP (cm−3) ρexp
EP (cm−3)

Ti 0.884 0.157 7.4×1019 1.4×1019-3.3×1020 [48, 81, 82, 83, 84, 45]
Ge 0.810 0.197 4.7×1019 3.0×1019 [85]
Sb 0.546 0.247 4.1×1019 1.1×1020 [86]
Nb 1.461 0.153 2.2×1019 5.0×1019 [87]
Bi 1.155 0.198 1.4×1019 N/A
As 0.808 0.268 1.3×1019 N/A
Sn 0.883 0.255 1.2×1019 6.5×1018-1.1×1020 [88, 89, 47, 90]
Pb 1.061 0.241 9.0×1018 N/A
Ta 1.224 0.260 6.1×1018 N/A
Hf 1.143 0.267 4.2×1018 N/A
Zr 1.230 0.259 3.7×1018 N/A
V 1.137 0.344 1.0×1018 N/A
P 1.926 0.348 1.8×1017 N/A
Si 1.949 0.165 1.4×1017 N/A

Table 2.5: Summary of representative dopants considered in this work with
their formation energy (Ef ), first ionization energy (IE), and induced polaron
concentration (ρEP ) computed at room temperature with synthesis at TS = 1073
K and pO2 = 1 atm.

tetravalent or pentavalent ions will donate electrons due to the increased valence

count. In Figure 2.9 we show the results of four dopants (Ti, Ge, Nb, Sb) that we

found enhance carrier concentration of Fe2O3 the most, at room temperature and

under typical synthesis conditions, pO2 = 1 atm and TS = 1073 K. [89] We find

dramatic enhancement in electron polaron concentration of Fe2O3 after atomic

doping (dashed red line in Figure 2.9b). Specifically, whereas in undoped Fe2O3

free electron polaron concentrations are maximally ∼1018 cm−3, many dopants can

raise electron polaron concentrations higher. When comparing all of the studied

dopants together (see Table 2.5) we find that Ti-doped Fe2O3 has the highest yield

for enhancing polaron concentration which exhibits concentrations of 1020 cm−3,

in great agreement with experimental measurement. [83, 45, 81, 91, 82] Meanwhile

our predictions of Ge and Sb as effective dopants in raising carrier concentrations

to 1019−1020 cm−3 are consistent with experimental measurements as well.[86, 85]

The excellent agreement with experiments on various dopants highlight the ro-

bustness of our first-principles prediction of defect properties and the depiction of
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carriers as small electron polarons. Based on our carrier concentration calculation

results, we predict that Ti, Ge, Nb and Sb are excellent candidates for further

investigation as potentially promising dopants for enhancing PEC performance in

hematite.

In Table 2.5, some correlation between the dopant formation energy and the

carrier concentration (ρEP ) is apparent, while the ionization energy seems less

important. The best example of this is the case of P and Si which have nearly

identical formation energies (1.926 and 1.949 eV), and despite a remarkable dif-

ference in their ionization energy (0.35 and 0.17 eV), P doping is predicted to

have only slightly larger electron polaron concentrations than Si (1.8× 1017 and

1.4× 1017 cm−3). Meanwhile, in Figure 2.10a we show there is a dramatic change

in carrier concentrations for Si doping as a function of synthesis temperature,

which underperforms P doping at low temperatures but then outperforms at

higher temperatures. This result is reminiscent of Figure 2.8d, and touches on

the outstanding question of what is most important in determining the ability for

a dopant or defect to raise carrier concentrations, e.g. low formation energy or

low ionization energy?

2.3.3 Critical Role of Synthesis Temperature

In order to directly address this question, we performed linear regression on

the larger data sets obtained from dopant calculations to analyze the importance

of dopant formation energy or solubility against that of ionization energy. Fig-

ure 2.10b shows the predictive score (e.g. the coefficient of determination R2) of

modeling the data sets such as those shown in Figure 2.10c-e by three cases. First

(red line in Figure 2.10b) the polaron concentration is predicted by a single expo-

nential term from the dopants ionization energy (eIE). Second (in blue) a single
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exponential from the dopants formation energy (eFE) was used to predict the po-

laron concentration. Finally (in black) the polaron concentration is predicted by

both terms (eIE + eFE). When using both terms (black), the predictive score is

typically exceeding 0.85 which signifies that these two dopant properties uniquely

determine the induced electron polaron concentrations. Formation energy deter-

mines how much dopants can be incorporated into the crystal lattice of hematite

while ionization energy determins how much dopants can be ionized.
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Figure 2.10: Resolving the importance of dopant formation energy and ioniza-
tion energy in determining carrier concentrations of Fe2O3. (a) Electron polaron
concentration change of Si (red) and P (blue) doped hematite at room temperature
and pO2 = 1 atm as a function of synthesis temperature (TS). (b) Predictive score
of linear regression models on the induced carrier concentrations using dopants
formation energy (blue), dopants ionization energy (red), or both (black). Elec-
tron polaron concentrations at room temperature and pO2 = 1 atm for various
synthesis temperatures: (c) 873, (d) 1073, and (e) 1373 K, plotted against dopant
formation energies and with dopant ionization energies distinguished in colors. (f)
The correlation between formation energy and ionic radius of different dopants.
(g) The correlation between ionization energy and ionic radius of different dopants.

More importantly, the decomposition into dopant formation energy (blue) or

dopant ionization energy (red) reveals the relative importance of these two fac-

tors in determining the induced carrier concentrations. For lower temperatures

the solubility of the dopant (formation energy, R2 ∼ 0.8) almost uniquely deter-
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mines how well the dopant is able to raise carrier concentrations, while ionization

energy is significantly less important (R2 ∼ 0.1). This explains the above obser-

vation that P and Si, which have similar formation energy (1.926 and 1.949 eV),

have nearly identical polaron concentrations (∼1017 cm−3) at low synthesis tem-

perature, despite significant difference in their ionization energy (0.348 and 0.165

eV). It can also explain how VO, despite a significantly larger ionization energy

(0.7 eV) than Fei (-0.01 eV), is still the major donor in Fe2O3 at lower synthesis

temperatures due to its lower formation energy (2.06 vs. 3.46 eV). Meanwhile, as

the synthesis temperature is elevated poor solubility can be overcome and dopants

ability to ionize is weighted equally with its formation energy (blue and red lines

approach R2 ∼ 0.5 as synthesis temperature is increased in Figure 2.10b). This

helps to explain the dramatic increase in polaron concentration under Si doping

shown in Figure 2.10a, as well as the transition from VO to Fei as the source of car-

riers in undoped Fe2O3 shown in Figure 2.8c-f. Beyond this we conclude that less

soluble dopants such as Si, require higher synthesis temperatures to reach carrier

concentrations seen for more soluble dopants such as Ti, Ge, and Sb (Figure 2.9b).

We also explicitly consider the effect of entropy to the total formation energy.

Entropy contributes formation energy from two aspects: configurational entropy

and vibrational entropy. Configurational entropy is depending on the number of

different possible configurations for the defect to be placed in hematite lattice,

which always stabilizes the dopant formation. It can be separated into two parts,

entropy from ideal solution and excess entropy of mixing. Since the second term is

small compared to the first term,[92, 93] in this work, the configurational entropy

of ideal solution is used to approximate the total configurational entropy. On

the other hand, the vibrational entropy is computed by taking the difference of

vibrational entropy between doped species and undoped species. We chose Sn and
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Nb as two representatives for group IV and V elements and computed the entropy

correction of them to the formation energy and found that their contribution to the

total formation energy is 0.1-0.2 eV, which does not affect the defect concentration

significantly. Based on that, formation energy without entropy correction is used

across the whole paper.

Some general trends between formation energy/ionization energy and ionic

radius of dopants within each group are also observed. The formation energies of

dopants in each group have a parabolic shape with respect to their ionic radius

(Figure 2.10f). Some dopants such as Ti and Sb have small formation energies,

while some others such as P and Pb have much lower solubility. A radius around 60

pm seems to be a sweet spot, which is slightly smaller than that of the ionic radius

of Fe3+ (64.5 pm) due to the repulsion caused by polaron formation. A dashed

line at 60 pm is drawn to guide the eyes. On the other hand, in Figure 2.10g,

it can be noted that the trends for group IV and group V elements are different.

For group V elements, ionization energy is generally getting smaller with ionic

radius. However, the trend is opposite for group IV elements, ionization energy

is generally increasing with ionic radius, which could be related to the electronic

configurations of the dopants after ionization. For instance, group IV dopants have

inert gas electronic configurations after ionization energy, which are very stable

and lower the ionization energy compared to group V dopants overall. In addition,

with the increase of ionic radius, the electronic configurations of ionized group IV

dopants are getting less stable, which explains the upside trend of them. These

trends could help experimentalists make reasonable choices about what dopants

to choose when there is only very limited information such as ionic radius.
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2.3.4 Conclusions

In summary, this work demonstrates the role of defects, dopants, and small po-

larons in determining carrier concentrations in a prototypical oxide, Fe2O3. This

work identifies from first-principles calculations that the critical role of synthesis

temperature on small polaron carrier concentration in hematite, both pristine and

doped. For pristine hematite, the major electron polaron donor switches from VO

to Fei with the ramp up of synthesis temperature because the high formation en-

ergy of Fei can be overcome at higher temperature and its low ionization energy

makes it easier to be ionized compared to VO. From our survey of all group IV

and V dopants, we find that Ti, Ge, Sb, and Nb, are able to achieve the highest

free carrier concentration in Fe2O3. The linear regression on our data set of these

dopants under different chemical conditions and synthesis temperatures reveals

that dopant solubility is more important in determining the improvement on car-

rier concentration in Fe2O3. Our study suggests that lower solubility dopants such

as Si will require elevated synthesis temperatures for them to be incorporated into

the lattice. This work addresses several outstanding questions for hematite but

will also be applicable to other polaronic oxides, therefore, our study has broader

interests to fundamentally designing more efficient oxide-based energy conversion

and storage devices.
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2.4 Dopant Clustering in Fe2O3

In our 2021 work published in Chemistry of Materials [94], we investigated

the doping bottleneck in Fe2O3 and demonstrated it is caused by a novel form

of dopant clustering which is mediated by dopant and small polaron interactions

which give rise to dopant pairs which resemble electric quadrupoles and can form

at very low concentrations. As we have discussed above, applications of hematite

and other transition metal oxides are limited by small polaron formation. To over-

come these limitations, several efforts have been made to dope hematite by tetrava-

lent ions that yield improved photoelectrochemical performance of hematite pho-

toelectrodes [79, 95, 47, 88, 96, 91, 82, 97, 89, 98]. While the performance can be

moderately improved via group IV and XIV dopants, the optimal doping concen-

tration strongly varies with each individual dopant,[96, 91, 82, 97, 89, 98] thereby

requiring extensive experimental testing each time [99].

For example, researchers[91, 82] have found that Ti-doped hematite photoan-

odes had the highest carrier density and photocurrent at a doping concentration

of around 0.1%. Meanwhile, several works[97, 89, 100] have found that opti-

mal PEC performance with Sn-doped hematite photoanodes was achieved at 3%

Sn doping concentration. In all of these cases there is a direct correlation be-

tween optimizing carrier density and PEC performance; however, the mystery

of extremely low optimal doping concentration for certain dopants remains elu-

sive. Two possible mechanisms could be responsible for the doping bottleneck:

compensation by oppositely-charged defects or the clustering of dopants. How-

ever, the concentration of intrinsic p-type defects is expected to be negligible in

Fe2O3[20], which leaves a strong rationale for the clustering of dopants being the

cause of low optimal doping concentration. On the theoretical side, group IV

and XIV dopants in Fe2O3 have been previously investigated from first-principles,
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focusing on their electronic structure, formation energy, and polaron hopping

barrier[12, 101, 50, 51]. However, these studies cannot explain the low optimal

doping concentration observed experimentally.

In this work, we will reveal the origin of the extremely low optimal doping

concentration in Fe2O3 through a joint theoretical and experimental study. We

suggest a novel form of dopant clustering in polaronic oxides and conclude its crit-

ical role on determining carrier concentration. We begin by detailing our compu-

tational methodology, including our proposed model for disentangling the effects

of dopant clustering. Next, the electronic structure of isolated and clustered Sn

dopant formation is provided, which resembles an electric dipole and quadrupole,

respectively. The binding energy of the clustered dopants as quadrupoles is com-

puted to validate their thermodynamic stability. Then, the formation of the the-

oretically predicted Sn-Sn pairs are confirmed by experimental EXAFS, and their

mechanistic origin is unraveled theoretically in terms of electrostatic, magneto-

static and strain effects. Finally, carrier concentrations of Fe2O3 with and with-

out dopant clustering are computed to elucidate the underlying mechanism of the

doping bottleneck. At the end, essential design principles are provided to yield

higher conductivity in polaronic oxides for the advancement of energy conversion

applications.

2.4.1 First-Principles Calculations

All Density Functional Theory (DFT) calculations were carried out using the

open source plane-wave code QuantumESPRESSO [52] with ultrasoft pseudopo-

tentials [53] and an effective Hubbard U [11] value of 4.3 eV for Fe 3d orbitals

[12, 59]. This U value is chosen for its ability to reproduce the bandgap of hematite

(∼ 2.21 eV) but also has shown to capture physics of small polarons such as the
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polaron hopping barrier [59, 12]. Plane-wave cutoff energies of 40 Ry and 240

Ry were used for wavefunctions and charge density, respectively. All calculations

were performed with a 2× 2× 1 supercell (120 atoms) of the hexagonal unit cell

with a 2× 2× 2 k-point mesh for integration over the Brillouin zone. A 3× 3× 1

supercell was also tested to ensure convergence with supercell sizes (see super-

cell convergence in SI Table S1). The consistency between these supercell sizes

also validates that the present calculations are in the dilute limit and while the

Sn at Fe concentrations of the aforementioned supercells are 2.08% and 0.93%,

respectively, these concentrations do not yield interactions between dopant peri-

odic images (even for systems with two dopants, see SI Figure S1). The actual

concentrations of dopants are determined by evaluating charge neutrality directly

from dopant formation energies at a synthesis condition as discussed later in this

section. Finally, we note that we use the same U value for systems with dopants.

While it is true that changing U will vary the bandgap (in this case the conduction

band shifts due to U correction on Fe 3d), it has been shown that the formation

energies computed with different U values were very similar and the ionization

energies changed little when referenced to the free polaron level instead of the

CBM for Fe2O3. [12]

2.4.2 Electrostatic, Magnetostatic, and Strain Model of

Binding Energy

We will later demonstrate that single dopants resemble dipoles, while dopant-

pairs resemble quadrupoles. Here, we demonstrate our analysis on the physical

contributions to the quadrupole binding energies computed from first-principles as

we will discuss later, by using an electrostatic, magnetostatic, and strain (EMS)

model. In this model, the binding energy is obtained by separately computing

57



electrostatic (∆elec
quad), magnetostatic (∆mag

quad), and strain (∆strain
quad ) contributions.

For the electrostatic effect, we compute the electrostatic potential contribution to

binding energy (∆elec
quad) by taking the difference between the quadrupole (quad)

and twice the dipole configuration (dipole):

∆elec
quad = kα

2εr

quad∑
ij

qiqj
rij
− 2

dipole∑
ij

qiqj
rij

 . (2.4)

Here k is the Coulomb constant, α is the Madelung constant, and εr is the relative

permeability (22.9 for hematite). [102] The summation goes over all polarons and

dopants i and j, with relative charges qi and qj, and physical separation rij.

Magnetic effects were computed using the Heisenberg Hamiltonian Hspin =

−1
2
∑
ij JijŜi · Ŝj, where Jij is the magnetic coupling between the spins of the ith

and jth ion, and Ŝi is the spin of the ith ion. Here we use the magnetic exchange

coupling constants computed from Ref. [103], which provided magnetic couplings

for both the superexchange between two Fe(3+) or between two Fe(2+), as well

as the double-exchange between Fe(3+) and Fe(2+). For high-spin Fe(3+) and

Fe(2+), the value of Ŝi is 5/2 and 2, respectively, while the spin of the tetravalent

dopants is zero (hence the magnetic interaction with these dopants is always zero).

In this way, we can compute the magnetic contribution to the binding energy

from the magnetic energy of the quadrupole system subtracted by two times of

the dipole system:

∆mag
quad = −1

2

quad∑
ij

JijSi · Sj − 2
dipole∑
ij

JijSi · Sj

 . (2.5)

In this work, we assume Jij between two Fe ions before and after doping are the

same, as lattice distortions are generally small compared to Fe distances. With
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the above consideration and the non-magnetic nature of dopants, our computed

magnetic energy is identical for all the dopants.

Finally, in order to compute the strain contribution to the binding energy,

we evaluated the change in energy induced by lattice distortions before and after

doping. As usual, taking this energy for the quadrupole system and subtracting

twice the dipole system:

∆strain
quad = Estrain

quad − 2Estrain
dipole . (2.6)

Here Estrain
X is the strain energy of system X, computed as a difference of total

energy of the pristine system with its equilibrium geometry and with relaxed

geometry from the doped system (first relax with dopants then substitute back

Fe atoms to keep the same composition as pristine Fe2O3). We note a similar

approach was used in Ref. [104] to evaluate strain energies.

2.4.3 Dopant Clustering by Multipole Formation

Substitutional doping by group IV and XIV elements was investigated theo-

retically by replacing a single Fe site by the dopant (X). Consistent with previous

studies [12, 50] and experimental observation,[47, 88] we found this process yields

the formation of small electron polarons corresponding to the identification of

Fe(2+) after replacing Fe(3+) by the tetravalent dopant X(4+). (Note in this

paper we use the notation X(i) to denote an ion X with valency i). The elec-

tronic structure of the single Sn-doped system is shown in Figure 2.11b right

panel, wherein the band structure exhibits a flat isolated occupied state in the

gap corresponding to the small electron polaron (EP ) with tight spatial localiza-

tion similar in size to the Fe−O bond lengths. Likewise, the projected density

of states (PDOS) in Figure 2.11b shows a sharp isolated peak composed mostly
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Figure 2.11: Electronic structure of Sn-doped Fe2O3. (a) Wavefunction of the
small electron polaron (EP ) in the single Sn-dopant system where the EP and
Sn form a dipole. (b) Band structure and projected density of states (PDOS) of
the dipole Sn system. (c) Wavefunctions of the two EP in the two Sn-dopant
system where the two EP and two Sn form a quadrupole. The Sn-Sn separation
is 3.784 Å. (d) Band structure and PDOS of the quadrupole Sn system. For
the atomistic plots, gold=Fe, red=O, grey=Sn, and the yellow/blue (+/−) cloud
is the isosurface of the polaron wavefunction (the isosurface level is 1% of the
maximum). In the band structures, dark/light blue is spin up/down and εF is the
Fermi energy.
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by Fe 3d. The wavefunction of the EP is shown in Figure 2.11a with a clear dz2

character. The EP forms at the Fe site nearest to the Sn dopant with a Sn−EP

distance of 2.981 Å (d0 in Figure 2.11a).

To investigate dopant-dopant interactions, we placed a second Sn dopant in the

lattice. All possible Sn-Sn pair configurations were tested, and the lowest energy

configuration was clearly identified (see SI Figure S2, S3 and Table S2). The

electronic structure of this corresponding configuration is shown in Figure 2.11c-d,

which exhibit the formation of two EP states. We find the asymmetry of the local

structure, which is a natural consequence of the corundum crystalline form, causes

a noticeable energetic difference of 0.12 eV between EP1 and EP2. Specifically,

in Figure 2.11c, EP1 has distances to the two adjacent Sn of d1 = 3.011 and

d2 = 3.129 Å, whereas EP2 has distances of d3 = 3.510 and d4 = 4.112 Å. The

proximity of EP1 to the Sn yields a lower energy state relative to EP2. Lastly, the

theoretically predicted Sn-Sn distance of 3.784 Å closely matches experimentally

observed Sn-Sn peak in EXAFS data of Sn-doped hematite samples (as discussed

in next section).

The remaining group IV (Ti, Zr, Hf) and XIV (Si, Ge, Sn, Pb) dopants were

also simulated in both single and pair dopant configurations with negligible dif-

ferences in their electronic structure and polaron configurations from Sn (all elec-

tronic structures are presented in SI Figure S4-S9). Note for the present study,

the configuration of two dopants is chosen to be the same for all dopants for the

purpose of discussing chemical trends, as predicted by the case of Sn. It is possi-

ble that dopants may vary in their exact pair dopant configuration, for example

see SI Table S3. This variation does not affect the main implications on carrier

concentration we conclude later. Most importantly, the stable configuration of a

single tetravalent dopant (such as Sn) resembles an electric dipole where the Sn
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and EP represent positive and negative charge centers, respectively. In this way

the system with two dopants resembles an electric quadrupole (two positive Sn

centers and two negative EP centers). Therefore, we will denote the single doped

system as a first-order multipole (dipole) system and the pair doped systems as

a second-order multipole (quadrupole) system. To examine the thermodynamic

stability of dopant-polaron quadrupole, we studied their binding energy (∆quad)

from two separate dipoles:

∆quad = Ef (quad)− 2Ef (dipole). (2.7)

Here, Ef (X) is the formation energy of the system with neutral dopants in a con-

figuration X (e.g. quadrupole or dipole dopant system). The quadrupole binding

energy was evaluated for all group IV and XIV dopants considered in this study.

We observed that the binding energy for all dopants is negative (∼ −0.1 to −0.2

eV), as shown in Table 2.6 (∆DFT
quad ), indicative of a strong tendency for dopants and

polarons to aggregate. We note that we expect dopant clustering occurs during

the cooling process from synthesis temperature (over one thousand K here) down

to room temperature. At a synthesis condition, dopants will be all ionized and the

binding of dopants into quadrupoles will not occur. Since all the binding energies

are lower than kT at room temperature, it is expected that the quadrupoles are

stable at room temperature.

2.4.4 Experimental Evidence for Dopant-Pair Formations

Extended x-ray absorption fine structure (EXAFS) data at the Sn edge were

collected at SSRL for two Sn doped Fe2O3 samples, with Sn nominal concentra-

tions of 0.1% and 1.0%. (Sn concentration of 1% corresponds to replacing 1 out

of 100 Fe with Sn; measured concentrations are 10-20% lower, see Table S4 in SI

62



for details). Synthesis methods are detailed in the SI. A standard fluorescence

set-up (32 element Ge fluorescent detector) was used with the sample set at 45◦

to the beam, and an Oxford helium cryostat maintained the temperature at 10 K.

Details about the data collection and reduction are in the SI section on EXAFS

characterization. The r-space data are plotted in Figure 2.12 for the 0.1% Sn and

1.0% Sn samples. For the 0.1% Sn sample (Figure 2.12a), the amplitudes of the

further neighbor peaks are quite large and the data can be well fit (solid orange

line) to the hematite structure, with a small expansion for the Sn-Fe pairs com-

pared to hematite; roughly 0.1 Å for closer pairs but only 0.02 Å for Fe neighbors

near 3.7 Å. This is the expected behavior around a substitutional dopant site

when the dopant valence Sn(4+) is higher that the host valence Fe(3+), and this

behavior has been observed in other similar situations.[105]. The further neighbor

Sn-O peaks are expected to contract very slightly, but because these small peaks

overlap the larger Sn-Fe peaks, the pair-distances fluctuate too much. The first O

shell, although split in hematite, collapses to a single peak with an average Sn-O

distance of 2.05 Å, very close to the averaged first neighbor distance in hematite,

2.03 Å; this is a competition between a larger ionic radius for Sn(4+), and larger

electrostatic force between Sn(4+) and O(2−).

On the other hand, the EXAFS r-space plot for 1% Sn sample is quite different

(Figure 2.12b). The data up to 3 Å are very similar to that for 0.1% Sn - i.e.

the phase of the real part of the Fourier transform, R(r), is the same. However

in the range 3-3.8 Å, the phase changes dramatically and a dip develops in the

amplitude near 3.3 Å which has the shape of an interference dip. It occurs close to

the expected position for the Sn-Fe peak in an EXAFS plot (actual distance ∼3.7

Å: note that there is a calculable phase shift of peaks in r-space plots to lower

r). These data can’t be fit to a simple distorted hematite model and the shape of
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R(r) suggests that another peak is present (see SI Figure S11). Consequently, an

additional peak, corresponding to one Sn-Sn pair with a distance close to 3.7 Å,

was included in the fit. The number of Sn-Fe pairs was correspondingly reduced

from 6 to 5. This yielded the good fit (details in SI) shown in Figure 2.12b,

and is a clear evidence that Sn-Sn pairs have formed. Remarkably, this Sn-Sn

pair distance (∼3.7 Å) matches the theoretically predicted distance of Sn-Sn pair

(3.784 Å) shown above.
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Figure 2.12: EXAFS r-space data at the Sn K edge, for (a) 0.1% and (b) 1%
Sn in Fe2O3. The plot for 0.1% Sn also shows a fit to the hematite structure;
good agreement is obtained with a slight contraction of the Sn-O pairs and a
slight expansion of the Sn-Fe pairs. At 1% Sn, the EXAFS changes significantly.
Although the first two peaks are very similar, the region from 3-3.8 Å is quite
different, particularly the shape of the phase (fast oscillating function), and a dip
develops near 3.3 Å. These data cannot be fit to the hematite structure. The data
suggest that there is another peak present; in the fit shown in part (b), one of
the Fe neighbors at ∼3.7 Å is replaced with a Sn atom, forming a Sn-Sn pair.
This leads to the excellent fit shown in (b). Fourier transform range, 3.5-13 Å−1;
fit range in r-space, 1.1-4.2 Å for both plots. In both figures, the blue and gold
bars at the bottom indicate the position of Sn-O and Sn-Fe peaks, respectively,
in undistorted hematite. The bar positions include the known shifts in r.
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2.4.5 Mechanisms of Dopant-Polaron Binding into Quadrupoles

After confirming the existence of Sn-Sn clustering both theoretically and ex-

perimentally, we turn to investigate the mechanisms of their formation. Above

the analogy was made between the single Sn-doped system and electric dipoles,

so in order to probe this electrostatic interaction, we plotted the total energy

of the single Sn-doped system as a function of Sn-polaron distance, as shown in

Figure 2.13a. The computed total energies were fitted to a Coulomb potential

(−a/r+ b) with the fitted values of a = 0.658 eV · Å and b = 0.230 eV, and a coef-

ficient of determination (R2) of 0.85. This validates a clear electrostatic attraction

between the two bodies with opposite charges like a dipole. Furthermore, we find

that b is close to the value of ionization energy of Sn (0.25 eV), as expected.

However, this Coulombic interaction competes with other factors. For example

in Mo doped BiVO4[106], strain causes short-range repulsion between the dopant

and polaron, and dominates over the Coulombic attraction.[106, 107] We find

this was also reflected in the computed quadrupole binding energies (∆quad), as

shown in Figure 2.13b, where we plotted them versus the ionic radius (RI) of

each dopant. Specifically, there is a roughly positive correlation between the ionic

radius and the quadrupole binding energy. We attribute this to the compensatory

size effects of the dopant and the polarons. Namely, the replacement of Fe(3+)

with ionic radius of 64.5 pm by Fe(2+) with ionic radius of 78.0 pm, yields an

expansion strain at the lattice site. This strain can be reduced by smaller radii

dopants (e.g. Ti, Ge, Si) that will increase the magnitude of ∆quad as shown in

Figure 2.13b, or enhanced by larger radii dopants (e.g. Sn, Hf, Zr, Pb) that will

decrease the magnitude of ∆quad towards zero. We note that the case of Ti,

an outlier in Figure 2.13b, possess stronger correlated 3d orbitals, which in turn

exhibit stronger electron localization, may compensate local expansion from small
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polarons and lower its binding energy (similar to Si which intrinsically is smaller

than the rest).

Figure 2.13: Mechanisms of dopant-polaron binding in Fe2O3. (a) Total en-
ergy of Sn-doped hematite system as a function of the Sn−EP distance. The
black curve represents a simple Coulomb potential fit which has an R2 value 0.85,
supporting the intuition of an electrostatic interaction between the Sn (positive
charge) and EP (negative charge) centers. (b) Quadrupole binding energy (∆quad)
of group IV and XIV dopants in hematite computed by Eq. 2.7, plotted against
the ionic radius of the dopant [108] (RI ; valency 4+, coordination VI). (c) Com-
puted ∆quad by Eq. 2.7 plotted against those computed with the EMS model in
Eq. 2.8. The linear fit relation (f(x)) between these models is shown in the inset
box.

Therefore, it is necessary to consider electrostatic and strain effects simultane-

ously, and also include magnetic effects (binding energies may also be modified by

the antiferromagnetism of Fe2O3). Hence, we propose a model of the quadrupole

binding energy based on electrostatic, magnetostatic, and strain effects (abbrevi-

ated to EMS), in order to analyze the importance of each contribution:

∆EMS
quad = ∆elec

quad + ∆mag
quad + ∆strain

quad . (2.8)

Here ∆elec
quad, ∆mag

quad, ∆strain
quad , correspond to electrostatic, magnetostatic, and strain

contributions to the quadrupole binding energy, respectively. The exact formu-

lation for each component of the EMS model is detailed in the methods section
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(Eq. 2.4−2.6) and the results are summarized in Table 2.6. We evaluate how well

this model reproduces DFT calculations by plotting them against each other in

Figure 2.13c. The linear fitting shows adequate agreement between the simple

EMS model and our exact DFT calculations (with a slope near unity and an R2

value of 0.864), which justifies its use for interpreting the DFT binding energies.

As shown in Table 2.6, each of the three components contributes significantly

to the overall quadrupole binding energy. The electrostatic interaction (∆elec
quad)

is typically the most dominant factor, and intuitively it is chiefly responsible for

the attraction of dopants into the quadrupole configuration. Interestingly, we

also found a non-negligible contribution from magnetostatic interactions (∆mag
quad,

42 meV) which further participates in the binding of quadrupoles. This effect is

non-trivial but is an indirect consequence of placing non-magnetic dopants next to

each other, which in-turn breaks fewer antiferromagnetic interactions and yields

a lower energy configuration when dopant-pairs form. In contrast, the effect of

strain (∆strain
quad ) typically mitigates the formation of dopant-pairs (increases the

system’s energy with clustering) due to the accumulation of lattice distortion.

However, as aforementioned, this effect can be compensatory in the dopant cases

with smaller ionic radii than Fe(3+), which can pack more efficiently next to the

polarons with larger ionic radius as specified in Figure 2.13b.
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Dopant ∆elec
quad ∆mag

quad ∆strain
quad ∆EMS

quad ∆DF T
quad

Si -0.184 -0.042 -0.33 -0.553 -0.227

Ge -0.188 -0.042 0.07 -0.160 -0.117

Ti -0.175 -0.042 -0.04 -0.256 -0.233

Sn -0.188 -0.042 0.18 -0.054 -0.029

Hf -0.188 -0.042 0.13 -0.098 -0.055

Zr -0.192 -0.042 0.13 -0.103 -0.080

Pb -0.204 -0.042 0.11 -0.135 -0.039

Table 2.6: Collected values of the binding energy for group IV and XIV dopants
in Fe2O3 computed by DFT (∆DFT

quad ) or with the EMS model (∆EMS
quad ) as in Eq. 2.8.

The various components of the EMS model are tabulated as well including the
electronic (∆elec

quad), magnetic (∆mag
quad), and strain (∆strain

quad ). All values are given in
eV.

2.4.6 Effects of Dopant Clustering on Polaron Concentra-

tions

Lastly, we discuss the effects of dopant clustering, which we will show to be

responsible for the low optimal doping concentrations of Fe2O3 observed experi-

mentally. The computed thermodynamic charge transition levels (CTLs) are dis-

played in Figure 2.14a for both the dipole (single dopant) and quadrupole (pair

dopants) systems. In quadrupole systems, there are two charge transition levels

(gold and orange lines) which correspond to the ionization energies of two elec-

tron polarons (as shown in Figure 2.11c). Because quadrupoles yield consistently

lower second CTLs, they possess very high second ionization energy ranging from

0.34 eV to 0.48 eV (the orange lines in Figure 2.14a, nearly doubled the ioniza-

tion energies of corresponding single-doped systems denoted by the blue lines).

Therefore, the ionization of both electrons after quadrupole formation is nearly

impossible. On the other hand, the first ionization energies of quadrupoles com-
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Figure 2.14: Effects of quadrupole binding on carrier concentration in Fe2O3.
(a) Band diagram of various doped systems either single-doped (dipole) or with
two dopants (quadrupole), the solid horizontal lines represent the thermodynamic
charge transition levels (CTLs), and the ionization energy corresponds to the
separation of the CTLs to the free polaron line (dashed grey line). (b) Change
in the first ionization energy when quadrupoles are formed vs. ionic radius (RI).
Notably, when the ionic radius of dopants is below that of Fe(3+), the ionization
energy is increased (as shown in blue bars), whereas it is decreased when the
dopant radius is larger (as shown in orange bars). (c) Computed free electron
polaron concentration as a function of dopant concentration for Sn, Ge, and Ti,
with and without the effect of clustering (i.e. quadrupole formation).
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pared to the ones of dipoles shift in a manner correlated with the ionic radius as

shown in Figure 2.14b. In particular, dopants with a radius larger than the host

site (Fe(3+)) have a lower first ionization after quadrupole formation (orange bars

in Figure 2.14b) and vice versa.

To show how dopant clustering affects carrier concentration quantitatively, we

compute the polaron concentrations with and without the effect of dopant clus-

tering for three representative cases: Sn, Ge, and Ti in Figure 2.14c. Equilibrium

polaron concentrations are computed following the defect formation energy and

charge neutrality approach as detailed in the method section.[20, 19]. We then

introduce clustering in the theoretical synthesis process, by considering the proba-

bility at which two dopants form into a quadrupole following a thermal Boltzmann

distribution (details in the SI section on probability of quadrupole formation). As

dopant-dopant pairs form during cooling process from synthesis temperature to

room temperature, an intermediate temperature of T = 500 K is chosen as an

approximate temperature where pairs start to form. We show the trends among

different dopants remain the same for different temperatures (see SI Figure S13).

In Figure 2.14c, we show that polaron concentration is reduced due to clustering

(solid lines) compared to the case without clustering(dashed lines), and the mag-

nitude of this reduction is closely related to their binding energy (∆quad) in Table

2.6. Specifically, dopants such as Ge and Ti with large binding energies show

significant trapping of polarons due to clustering in the second and third panels

of Figure 2.14c.

In order to avoid the adverse effects of clustering, Ti will be better suited

to be doped at very low concentrations into hematite. This explains the ex-

perimentally observed very low optimal doping concentration of Ti in hematite

(about 0.1%).[91, 82] Furthermore, co-doping Ti with another dopant less prone
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to clustering may offer higher performance in hematite, which explains the suc-

cess of recent co-doping strategies.[109, 110, 111] On the other hand, the small

quadrupole binding energy of Sn makes it easier to dope Sn into hematite to

higher concentrations without experiencing an immediate bottleneck. This ex-

plains why the optimal doping of Sn into hematite (3%) is an order of magnitude

larger than Ti.[97, 89, 100] If neglecting the effect of clustering, Ti would be a

better dopant than both Sn and Ge (see dashed lines in Figure 4c, which shows

that Ti has predicted to contribute the highest carrier concentration without clus-

tering). Therefore, to unlock the potential of Ti, it is necessary to mitigate its

strong tendency of clustering. A strategy of co-doping Sn and Ti in hematite may

offer the most effective strategy for maximizing performance of hematite photoan-

odes. Alternatively, co-doping of divalent dopants, such as Mg, has been shown

to relieve lattice distortion and can also offer further improvement to PEC perfor-

mance [112]. Ultimately, Ge is seen as the best dopant in group IV and XIV with

the highest polaron concentration, which outperforms Sn and Ti in Figure 2.14c.

Finally, we remark that here we have focused on formations of dopant cluster-

ing at an early stage, which dominate at relatively low concentrations of doping in

hematite. We also tested higher-order multipole clustering such as ‘hexapole’ for-

mation in hematite (e.g. three Sn dopants with the three introduced EP , details in

SI section on higher-order multipoles and SI Figure S14). We found that hexapoles

also have a negative binding energy, and thus it is entirely possible that dopant

clustering may grow even larger than the second-order multipoles we considered

here. However, there will also be larger and more complicated strain effects and

configurational entropy which can compensate binding energies of larger sized ag-

gregations. Eventually, at even larger doping concentrations, the precipitation of

different phases may occur, for example at 6% Sn-doping in hematite XRD shows
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SnO2 secondary phases form [89]. Future theoretical work should provide further

insights to PEC experiments by investigating the role of dopants and dopant clus-

tering on polaron mobility via small polaron hopping [106, 107, 12, 35] and optical

absorption[36, 37, 113], which together, along with carrier concentrations stud-

ied here, directly impact the photoconductivity of transition metal oxide based

photoelectrodes.

2.4.7 Conclusions

This work discovers a new mechanism of dopant clustering via the aggrega-

tion of n-type dopants and electron polarons into dopant-pairs which resemble

electric multipoles. These pairs are thermodynamically stable due to several con-

tributions which we disentangle by a simple model involving three components:

electronic, magnetic, and strain. Our model illuminates that binding occurs pre-

dominantly through electrostatic interactions but surprisingly is also mediated

by magnetic interactions which together overcome strain to yield the consistently

negative binding energies of tetravalent dopants in Fe2O3. EXAFS experiments

confirm the existence of these Sn-Sn pairs which formed at 1% doping and have

an identical interatomic distance compared to those predicted theoretically (∼ 3.7

Å).

The effect of doping with and without clustering on carrier (small electron

polaron) concentration is carefully examined. We find doping in Fe2O3 is limited

by dopant clustering which traps electron polarons and severely lowers the carrier

concentration with respect to doping concentration. This clustering is shown to

be responsible for the doping bottleneck in hematite, where dopants such as Ti

exhibit extremely low optimal doping concentration (i.e. 0.1%) for PEC appli-

cation. Strategies to overcome this doping bottleneck are proposed; specifically
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codoping with dopants that exhibit low binding energies for clustering (e.g. Sn-Ti

codoping) is seen as an ultimate solution. Lastly, for single-type doping in group

IV and XIV, we found Ge is the best dopant which can contribute the highest

polaron concentrations even at presence of dopant clustering. These findings pro-

vide a cohesive picture of the doping bottleneck in hematite and help to establish

an improved rationale for further development of hematite photoanodes usage in

renewable energy applications.
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2.5 Spin Polaron Conduction in CuO

In our 2018 work published in npj Computational Materials [35], we investi-

gated hole transport in cupric oxide (CuO), a p-type semiconductor. Due to its

relatively small bandgap (1.2-1.8 eV) and a conduction band minimum located at

a more negative potential than that of water reduction, [114, 115, 116, 117, 118,

119, 120, 121, 122, 123] it has the potential to serve as an inexpensive and envi-

ronmentally benign photocathode for a water splitting PEC. However, like other

TMO’s, CuO suffers from poor carrier conductivity, which limits the effectiveness

of CuO-based devices.[121, 122, 124, 119] Additionally, cathodic photocorrosion

of CuO can also limit the use of CuO for photoelectrochemical applications. For-

tunately, a recent study demonstrated that the photocorrosion of CuO can be

effectively suppressed by depositing a thin protection layer that prevents direct

contact of CuO and the electrolyte,[123] which encourages studies on further im-

proving charge transport and photoelectrochemical properties of CuO. Facilitated

charge transport in CuO can also be advantageous for the use of CuO in other

electrochemical devices such as gas sensors.[125, 126]

The development of charge transport in CuO depends on the understanding

and optimization of the small polaron hopping process. Strong electron-phonon

coupling in many transition metal oxides (Fe2O3, BiVO4, TiO2) leads to the lo-

calization of carriers into polarons, a quasi-particle representing the carrier and

local lattice distortion.[127, 128, 78] Due to this localization, carriers are no longer

transported through the system via typical band mechanisms. Rather, carriers

must be thermally activated in order to “hop” between sites, a process known

as polaron hopping conduction.[129, 130] This type of conduction leads to an

extremely low carrier mobility (e.g. 0.1 cm2/V/s for CuO) [127] several orders

of magnitude lower than band-like semiconductors such as Si ( 1000 cm2/V/s).
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Previous experimental studies have indicated that polaron formation also occurs

in CuO. [131, 132, 133, 134, 135] Interestingly, more exotic properties such as

“one-dimensional charge stripes” and “spin polarons” have been found in CuO

due to strong spin-charge-lattice interactions,[133] which distinguishes its con-

duction mechanism from the common electron polaron hopping conduction in

non-magnetic oxides such as BiVO4. However, there has yet to be a theoretical

investigation on the existence and transport of polarons in CuO, which would pro-

vide deeper understanding of carrier transport and therefore offer effective doping

strategies to improve the carrier transport properties in CuO and other magnetic

oxides in general. Finally, although there have been a few experimental doping

studies of CuO to date,[136, 135, 137, 138, 139, 140, 141, 142, 143] the role of

dopants in improving hole conduction in CuO has not been clearly understood.

In this study, we address these fundamental questions by comparatively in-

vestigating hole conduction in pristine and Li-doped CuO. Our focus is on the

elucidation of the mechanisms by which Li doping improves hole concentration

and mobility through a combined theoretical and experimental effort. Our work

is organized as follows, first we provide theoretical background on CuO and dis-

cuss the mechanism of hole conduction which involves a unique spin-flip hopping

process of spin polarons. Second, we show how Li doping enhances hole concen-

trations and hole mobility in CuO. Finally, we confirm our theoretical results by

preparing CuO and Li-doped CuO electrodes and experimentally compare their

photoelectrochemical properties.
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2.5.1 Polaron formation and hole conduction in CuO from

first-principles

Several experimental studies have shown that CuO has an Arrhenius depen-

dence of conductivity to temperature. [131, 132, 133, 134, 135] This dependence

is expected for materials which form small polarons (a trapped electron or hole

due to local lattice distortion) which must be thermally activated in order to hop

between lattice sites in the material, a process known as polaron hopping. [130]

The mobility of small polaron hopping follows the relationship shown in Eq. 2.9,

µ ∝ e−Ea/kT (2.9)

where Ea is the activation energy, k is the Boltzmann constant, T is the tem-

perature, and µ is the carrier mobility which is related to the conductivity σ, by

σ = enµ (n is majority carrier concentration, which are holes in this case). To

confirm the presence of polarons in CuO, we computed the electronic structure of

pristine CuO with a single electron removed from a 96 atom system (2 × 3 × 2

supercell), corresponding to a hole concentration of 2% (at. % of hole = 100 ×

[mol of hole] / [mol of O]). Detailed descriptions of our electronic structure cal-

culations can be found below under the Computational Methods section and SI.

From the density of states and wave function of the hole state, we determine that

holes form localized polaron states. These polaron states are predominantly O

2p mixed with Cu 3d as seen from the partial density of states (Figure S2) in

agreement with previous studies on the electronic structure of CuO. [144]

An intriguing consequence of hole localization around a single Cu 3d9 ion is that

the Cu magnetic moment will flip, forming a “spin polaron” (SP).[145, 146, 147,

148, 149, 150] Such states are common in copper oxides as the combination of two
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Figure 2.15: Spin Polaron Formation in CuO. a. Pristine Cu and O chain
with antiferromagnetic (AFM) ordering. b. If a hole forms (without a spin flip) it
will be highly localized as it can only distribute on one Cu atom (other neighboring
Cu atoms do not have an available state of the appropriate spin as explained in the
main text). c. After a Cu’s moment flips, the hole can redistribute over several
Cu atoms lowering the kinetic energy. d. The wavefunction of a hole in CuO
which has formed a SP with a flipped Cu spin so that it may redistribute over
several atoms, in accordance with panel C. An isosurface of 10% of the maximum
is used. (Blue ball = Cu with up spin, Grey ball = Cu with down spin, and Red
ball = O). (In the panels a-c large arrows denote the unpaired spin of Cu, small
arrows denote two spin states of O which are often paired, dashed arrows denote
states with a shared hole, blue/grey arrows= up/down, and green arrow= flipped
Cu spin.)
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SPs will create a spinless Cooper pair state which obeys Bose-Einstein statistics

and is the basis of superconducting.[147, 151] In general, a SP forms in polaronic

materials where the kinetic energy of the state can be lowered substantially from

the increased delocalization of the electron or hole wavefunction after the spin-flip

occurs. [152] For example, after an electron at a spin-up state is removed, a hole

is created at the same spin state. As a fermion, the hole obeys the Pauli exclusion

principle like electrons and can only be added to a state which is already occupied

(i.e. a state must be occupied by an electron of the same spin for a hole to form).

Therefore, in an anti-ferromagnetic system, the delocalization of a spin-up hole

is limited by the availability of neighboring atoms’ spin-up occupied states. As

shown in Figure 2.15B, with anti-ferromagnetic ordering, the hole polaron may

form into a highly localized state (limited to forming over a single Cu atom and

its bonding O atoms that have up spins, as neighboring Cu atoms do not have

an available spin-up state at which the hole can form). But after a neighboring

Cu ion’s moment flips (Figure 2.15C) an extra channel is created, and the spin-

up hole can redistribute over several sites that all have an up spin, lowering the

kinetic energy of the hole polaron. The resulting flipped Cu ion with a distributed

polaron state over several Cu and O atoms is shown in Figure 2.15D. As discussed

in Ref. [152], this lowering of kinetic energy through wavefunction delocalization

dominates over the energy cost of the spin flip and facilitates the formation of

spin polarons in CuO. Additional explanations can be found in the SI (Figures

S3-S4).

Considering that the magnetic couplings between Cu ions in CuO are signifi-

cantly large (J ∼ 100 meV), spin-spin interactions will have an important effect

on the conduction of holes in CuO. To address this point, we consider the total
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kinetic rate κ of the hopping process in Eq. 2.10,

κ =
(∑

i

e−Ei/kTκi

)
/

(∑
i

e−Ei/kT

)
(2.10)

where Ei is the energy of the ith configuration and κi is the hopping rate between

configurations (for full details see SI). For the case of CuO, we found that the

formation of a polaron at a site without a flipped spin was not possible, and,

presumably, the total energy of such a state is very high, which reduces the possible

configurations entering Eq. 2.10. Then we define hopping that does not involve

a spin-flip process to have a rate given by κi = e−E
e−ph
a /kT , with Ee−ph

a being the

usual hopping activation energy barrier due to electron-phonon interactions. We

have shown that the Boltzmann factors that are related to the energies of different

spin configurations will be dominated by the most probable hopping path (Figure

S9). As a result, the full hopping rate κ then reduces to Eq. 2.11,

κ ∼ e−(Ee−ph
a +Espin

a )/kT (2.11)

Namely as holes are conducted through the system they will invoke a spin-flip

process which will cost energy equal to the cost of flipping a spin of a Cu ion

(illustrated in Figure 2.16). In final, we see that the energy of this spin-flip

process Espin
a can be simply added to the electron-phonon process Ee−ph

a to give

the full activation energy Ea, given in Eq. 2.12.

Ea = Ee−ph
a + Espin

a (2.12)

Intuitively, a spin-flip hopping process will not have a well-defined transition state;

if there was a transition state, it would be a spin delocalized state which is not fa-
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Figure 2.16: Spin Polaron Hopping in Pristine CuO. Diagram describing
the interplay of spin and polaron hopping in CuO. As opposed to Figure 2.15,
only Cu spins are shown here for simplicity. a. Initially the spin polaron has
formed at the initial site (IS), while the moment of Cu ions at the final site (FS)
are aligned anti-ferromagnetically (AFM) (−J/4). b. After the polaron hops to
the final site (FS) the center Cu moment is flipped, costing energy according to
the strength of J . (Blue = Cu with up spin, Grey = Cu with down spin, Green
= Cu with flipped spin, Dashed Light Blue box = polaron state).

vored to form in a polaronic oxide. To confirm this point, we employed the newly-

developed constrained density functional theory (CDFT) technique for solids in

which an external potential is added to the Kohn-Sham potentials, and its strength

is varied self-consistently in order to localize a desired number of charges on a spe-

cific site. [153, 154] This allows for a direct calculation of the electronic coupling

constant between initial and final states |Hab| in CuO, which we obtained to be

1.01 meV (the numerical accuracy is 0.01 meV). This is two orders of magnitude

smaller than the computed activation energy (shown later), implying that trans-

port in CuO is indeed non-adiabatic, which cannot be described by a semi-classical

transition state theory.

The energy of this spin-flip (Espin
a ) can be obtained directly using the Heisen-

berg Hamiltonian Hspin = −∑i<j JijŜi̇̂Sj, where Jij is the magnetic coupling

between the spin of the ith and jth Cu ion and Ŝi is the spin of the ith Cu ion

(taken to be 1/2 as Cu is in a 3d9 configuration with one unpaired electron).
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The use of this model is well-established in accurate modeling of the magnetic

couplings of CuO, [155, 156, 157] and our calculations show that fitting the total

energy of different magnetic configurations of CuO with this Hamiltonian yields

an R-squared of 0.999 (Figure S7). Following a previous work, [155] we considered

five magnetic couplings in CuO: Jz, Jx, Ja, Jb, J2. Of these five couplings, the

coupling Jz is dominant over the rest with a value of −111 meV and is respon-

sible for the long-range antiferromagnetic transition of CuO at 230 K. Note that

in CuO the magnetic correlation length remains large at temperatures above the

transition temperature TN , so magnetic coupling is still relevant to our discussion

of hole conduction in CuO at room temperature. [133, 158] Second is the super-

superexchange J2 which is −39 meV yet is still three times smaller than Jz. The

remaining values are −17.4 meV for Ja, +3.0 meV for Jx, and +2.6 meV for Jb.

From this we can directly compute Espin
a according to Eq. 2.13.

Espin
a = −

∑
i<j

Jij∆
(
Ŝi̇̂Sj

)
(2.13)

In CuO, −∑i<j Jij∆
(
Ŝi̇̂Sj

)
= −(Jz +Jx +Ja + 2Jb +J2), which gives Espin

a to be

160 meV, a similar magnitude to Ee−ph
a (99 meV) as shown in Table 2.7. This re-

sult validates that Espin
a contributes significantly to the overall activation energy.

Therefore, this result suggests that dopants that can reduce the magnetic coupling

contribution Espin
a as well as the electron-phonon contribution Ee−ph

a to the activa-

tion energy can more effectively improve hole mobility in CuO. Note that here we

consider hopping along the ferromagnetic (FM) [101] direction (see Figure 2.16)

due to shorter Cu-Cu distances and superior orbital overlap between initial and

final states. Meanwhile, we find that hopping along the anti-ferromagnetic (AFM)

[101̄] direction is energetically unlikely to occur (Figure S10-S12).
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Li (%) ε∞ ε0 εp Ee−ph
a (meV)

0 6.4 11.0 15.5 99

6.25 7.9 13.0 16.7 92

12.5 8.4 16.3 17.5 88

Table 2.7: Electron-Phonon Activation Energy. Effect of Li doping on the
electron-phonon activation energy from Eq. 2.14.

2.5.2 Spin polaron conduction in Li-doped CuO from first-

principles

Our experimental work (discussed later) shows Li-doped CuO electrodes have

significantly increased photocurrent and show a positive shift of onset potential,

while also retaining a similar crystallinity and photon absorption to the pristine

CuO electrodes. Thus, it is anticipated that Li doping in CuO improves electron-

hole separation and/or carrier conduction (concentration and/or mobility). To

confirm this postulation, we applied our theoretical techniques discussed above to

clarify how Li doping improves hole conduction in CuO.

The enhancement of carrier concentration after Li doping can be confirmed

by the low hole ionization energy in Li-doped CuO, which is comparable to kT .

Specifically, the ionization energy for a p-type dopant is defined by the difference

between its charge transition level (CTL) and the valence band maximum. We

computed the hole ionization energy of Li-doped CuO to be 55 meV (corresponding

to the −1|0 transition level). Since this energy is small and comparable to kT

at room temperature, it indicates that Li introduces shallow hole states which

can be ionized at room temperature to increase the hole concentration. This

indicates a shift of the Fermi level towards the valence band maximum as has

been experimentally shown with a positive shift of the onset potential by ∼ 210
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mV. The introduction of shallow states from Li doping is also in agreement with

previous theoretical and experimental works.[135, 137]

To investigate the effects of Li doping on the transport of holes in CuO (i.e.

the effect of Li on hole hopping mobility) we first focused on the electron-phonon

contribution to the activation energy, Ee−ph
a . For this part, we computed the

electron-phonon activation energy of pristine and Li-doped CuO via Eq. 2.14.

This method represents an averaged doping effect in a continuum polarization

medium and avoids the sampling of all possible doping configurations and hopping

paths. [67]

Ee−ph
q = e2

4εp
(1/rp − 1/R) (2.14)

Here rp is the polaron radius which is approximated as rp = 1/2(π/6)1/3V 1/3,

R is the average hopping distance, and 1/εp = 1/varepsilon∞ − 1/ε0 where ε∞

is the high frequency dielectric constant and ε0 is the static dielectric constant.

The results of this calculation (Table 2.7) show that Li doping increased the

high frequency dielectric constant (ε∞) due to increased carrier concentrations

after Li doping. Although the static dielectric constant (ε0) is also increased

due to weaker Li-O bonds (ε0 is inversely proportional to the bonding energy

squared)[159], an increased ε∞ dominated and resulted in an overall lower barrier

(Ee−ph
a ). For example, the barrier decreases by 11 meV after 12.5% Li doping,

which corresponds to 1.5 times improvement on hopping mobility based on the

µ ∝ e−Ea/kT relation between Ea and mobility µ. Therefore, Li doping assists the

electron-phonon kinetics of carriers in CuO.

To consider the effect of Li on the magnetic contribution to the activation

energy Espin
a , we first recalculated the magnetic couplings in CuO after a signifi-

cant amount of Li doping (12.5%) using the same methods as before (Figure S8,
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Figure 2.17: Spin Polaron Hopping in Li-Doped CuO. Diagram describing
the interplay of spin and polaron hopping in CuO after Li doping (Orange = Li).
As the spin polaron hops through the lattice, its interaction with Li will result in
a lower magnetic barrier Espin

a due to broken magnetic couplings between Cu ions
and non-magnetic Li ions (Espin=0).

Table S3-S4). We find that the predominate magnetic coupling Jz is nearly the

same after Li doping, although overall Li suppresses the anti-ferromagnetism of

CuO due to the spinless character of Li, which has also been seen experimen-

tally. [135] The resulting energy of the spin-flip process in Li-doped CuO from

Eq. 2.13 (assuming that there are no Li near the polarons) would be 137 meV,

which is smaller than 160 meV in pristine CuO (mentioned above). We note that

the largest benefit of Li doping is seen when we consider the interaction of neigh-

boring SPs and Li. An analogue of the spin-flip hopping process after Li doping

in CuO is shown in Figure 2.17. Since Li is non-magnetic, it does not interact

with a SP when it passes by, and a single Li site can reduce the local hopping

barrier of the SP by up to 55 meV which corresponds to approximately 9 times

improvement of hopping mobility based on the µ ∝ e−Ea/kT relation (the case of

Li breaking Jz coupling). This larger effect of Li doping on the activation en-

ergy describes how Li doping significantly enhances the hole mobility in CuO, in

agreement with previous experimental measurements of the activation energy of

Li-doped CuO.[135, 138, 140, 141] For example in Ref. [135], a monotonic decrease

85



of activation energy has been observed as a function of Li doping concentration

(up to 16%), accompanied by strong suppression of the anti-ferromagnetism of

CuO. The activation energy decreases from 0.23 eV for pristine CuO to 0.035 eV

for Cu0.92Li0.08O, which leads to a three order of magnitude decrease of resistiv-

ity in experiments. [135] Since what we have discussed is relevant for isolated Li

doping (Li-Li interaction is neglected in our magnetic interaction models), even

a small amount of Li doping will have a significant impact on the conduction of

holes in CuO and can dramatically increase the photocurrent density of CuO as

we have seen in our experimental investigation. [141]

2.5.3 Experimental comparison of CuO and Li-doped CuO

electrodes

Since the direct measurement of charge transport properties of our high sur-

face area, nanofibrous polycrystalline electrodes was not possible, the effect of Li

doping on charge transport properties was evaluated by comparing photocurrent

generation of CuO and Li-doped CuO electrodes. Since these electrodes have

the same absorbance (Figure S15B), the number of electron-hole pairs generated

in these electrodes under illumination must be identical. Then, if an interfacial

charge transfer reaction that can quickly consume almost all the surface reaching

electrons is chosen for photocurrent measurement, any change in photocurrent

generation caused by Li doping must be due to a change in the number of surface-

reaching electrons caused by a change in the charge transport properties, which

affects electron-hole separation.

For this purpose, comparing photocurrent for water reduction may not be

proper because the surface of CuO is not catalytic for water reduction, and a

significant portion of the surface reaching electrons can be lost to surface recom-
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Figure 2.18: J-V Plots of CuO and Li-Doped CuO. J-V plots (scan rate
= 10 mV/s) of CuO (black) and Li-doped CuO (red) electrodes for O2 reduction
in 0.1 M KOH (pH 13) solution with O2 purging under AM1.5G,100 mW/cm2

illumination. The inset shows the enlarged current in the potential region near
the photocurrent onset potentials indicated by arrows.

bination, making it difficult to accurately evaluate the change in the number of

surface-reaching electrons. In this study, we used oxygen reduction as the photo-

electrochemical reduction reaction that occurs on the CuO surface as the kinetics

of this reaction is typically much faster than water reduction on oxide-based pho-

tocathodes. [160, 161, 162, 163] The J-V plots of CuO and Li-doped CuO for

oxygen reduction obtained in a 0.1 M KOH (pH 13) solution purged with O2

under standard illumination conditions (AM1.5G, 100 mW/cm2) are shown in

Figure 2.18.

The pristine CuO electrode already shows efficient photocurrent generation for

O2 reduction as its bandgap allows for the utilization of a great portion of the

visible solar spectrum, and its nanostructure reduces bulk electron-hole recombi-

nation. For example, it achieved a photocurrent density of ∼ 1.2 mA/cm2 at a

potential as positive as 0.8 V vs. RHE, and it increased up to ∼ 4.0 mA/cm2

when the potential was swept to 0.6 V. (The dark current initiating around 0.65 V

vs. RHE is due to electrochemical reduction of O2 which was subtracted from the

photocurrent to determine overall photocurrent.) The photocurrent observed for

O2 reduction can be considered the upper limit of photocurrent that can be ob-
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served for water reduction when an efficient hydrogen evolution catalyst is placed

on the CuO surface to improve the water reduction kinetics.

The Li-doped CuO electrode significantly enhanced photocurrent generation.

For example, the Li-doped CuO electrode achieved a photocurrent density of

∼ 2.0 mA/cm2 at a potential as positive as 0.8 V vs. RHE, and it increased

up to ∼ 5.6 mA/cm2 when the potential was swept to 0.6 V. In addition to the

evident increase in magnitude of photocurrent density, Li-doped CuO electrodes

demonstrated a considerable shift in photocurrent onset to the positive direction

by ∼ 210 mV. The photocurrent onset potential for a reaction that has high in-

terfacial charge transfer kinetics, such as O2 reduction on an oxide photocathode,

can be considered the flatband potential. This is because for such reactions the

loss of the surface-reaching minority carriers to surface recombination is negligible.

In this case, it can be assumed that photocurrent disappears when the applied

potential is the same as the flatband potential, where electron-hole separation

is no longer possible. The fact that the J-V plots of CuO and Li-doped CuO

electrodes measured with chopped illumination do not show any transient pho-

tocurrent even when the applied potential is near the photocurrent onset potential

is a good indication that recombination on the CuO surface during O2 reduction

is negligible. This confirms that the photocurrent onset potentials of these elec-

trodes can be regarded as their flatband potentials. Since the flatband potential

is the same as the Fermi level after accounting for the Helmholtz layer potential

drop at the semiconductor/electrolyte interface, and the Helmholtz layer potential

drop should not be altered by 0.1 at. % Li doping, the shift of the onset potential

of Li-doped CuO directly indicates that Li doping shifted the Fermi level of CuO

to the positive direction, closer to the valance band maximum. [164]

These experimentally obtained results agree well with computational results
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that Li doping generates shallow acceptors that effectively increase the hole con-

centration. The increase in hole concentration, which improves the hole conduc-

tivity, can reduce electron-hole recombination in the bulk or in the space charge

region, increasing the number of minority carriers reaching the surface to perform

oxygen reduction. Also, the increase in hole density that changed the Fermi level

was confirmed by the shift of the flat band potential to the positive direction.

Finally, according to our computational results, a simultaneous decrease in Ea by

Li doping also contributed to photocurrent enhancement by improving the hole

mobility of CuO.

While the impact of Li doping on the activation energy Ea and the impact on

carrier density cannot be easily separated in our photocurrent measurements, the

impact of Li doping on the activation energy has been discussed explicitly in dark

resistivity measurements of Li doped CuO between a few K to 300 K. [135, 138]

An order of magnitude decrease of the hopping activation energy with 16 at. %

Li doping clearly confirmed the combined effect of Espin
a and Ee−ph

a being low-

ered by Li doping, as the effect of Ee−ph
a alone cannot explain the observed order

of magnitude decrease in the hopping activation energy based on our calcula-

tions. [135] This study clearly demonstrated that the effect of Li-doping on Espin
a

is still considerable at 300 K (because of the short-range magnetic couplings re-

maining above Néel temperature)[133, 158] and that Li-doping can play a critical

role in improving the mobility of CuO at room temperature, which is relevant for

its PEC applications.

2.5.4 Conclusions

In conclusion, we have studied in-depth hole conduction in pristine and Li-

doped CuO by first-principles calculations accompanied by the PEC performance
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of experimentally prepared CuO and Li-doped CuO electrodes. In pristine CuO,

we have verified the existence of spin polarons (SP), which occur via the flip of a

single Cu ion’s spin so that the polaron may redistribute over several atoms, and

this delocalization effect lowers the energy of the polaron state. We then showed

how transport of SPs in CuO will involve a spin-flip hopping process and developed

a theoretical framework of computing the activation energy which involves both

electron-phonon and magnetic coupling contributions. Next, we displayed how Li

doping in CuO generates shallow states above the valence band which pushes the

Fermi level closer to the valence band maximum and improves hole concentrations

in CuO. Then, we showed how Li doping improves hole hopping mobility in CuO

by lowering the electron-phonon coupling contribution to the activation energy

due to higher electronic screening. More importantly, we demonstrated that Li

doping lowers the magnetic coupling contribution to the activation energy due

to the destruction of magnetic interactions through the replacement of Cu ions

with non-magnetic Li ions, culminating in a significantly lowered hopping bar-

rier and increased hole mobility in Li-doped CuO. Finally, we prepared CuO and

Li-doped CuO electrodes and compared their photoelectrochemical properties for

O2 reduction, where the changes in photocurrent and the onset of photocurrent

can be directly related to changes in charge transport properties and the Fermi

level, respectively. The experimental results show that Li doping enhances charge

transport properties and shifted the Fermi level toward the valence band maxi-

mum while not affecting photon absorption, which agrees well with computational

results. This work provides important insights on the mechanisms of the formation

and transport of SPs and their effect on the charge transport properties of CuO

and Li-doped CuO. Similar to Li doping, doping with other non-magnetic shal-

low acceptors may also simultaneously improve carrier concentration and hopping
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mobility of magnetic oxides. In this case, shallow dopants can be ionized easily

to increase carrier concentrations and increase dielectric screening, which weak-

ens the charge-lattice interactions. Most importantly, non-magnetic dopants can

break the magnetic couplings and lower the hopping barrier for SPs significantly,

which is critical for improvement of hopping mobility. These insights offer effective

strategies for the improvement of hopping conduction in magnetic oxides through

atomic doping, which provides important guidance for materials design.

2.5.5 Computational Methods

Cupric oxide (CuO) assembles in a monoclinic structure with C2/c symmetry

and a geometric unit cell consisting of only 8 atoms. To consider the correct

magnetic interactions prevalent in CuO, a
√

2 × 1 ×
√

2 unit cell containing 16

atoms needs to be implemented (Figure S1).[156, 158, 165] Meanwhile, a 2×3×2

supercell of 96 atoms was used for calculations considering polaron formation and

doping. A final supercell of 2
√

2 × 3 × 2
√

2 with 192 atoms was used to confirm

spin polaron formation size and charged cell correction.

It is well known that both local and semi-local exchange and correlation func-

tionals in DFT cannot accurately describe the electron correlation in magnetic

insulators, which results in a qualitatively incorrect electronic structure. To ac-

count for this issue, we applied the Hubbard U correction[11] with U = 7.5 eV, a

well-established model for this material. [166, 167, 168, 169, 170] All calculations

were carried out in the open-source plane wave code Quantum ESPRESSO [52]

with ultrasoft LDA pseudopotentials,[53] unless otherwise noted. The choice of

LSDA+U instead of GGA+U was made because GGA+U was unable to give the

correct monoclinic structure of CuO, while LSDA+U yielded a geometry of CuO

within 5% of experimental values. Nonetheless, LSDA+U and GGA+U provide
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similar electronic structures (with the experimental geometry) and overall gave

results in agreement with experimental expectations. Our calculations yielded

that Cu2+ ions have a magnetic moment of 0.57 µB with a magnetic ordering ac-

cording to Figure S1. Notably, the O atoms in this system share a non-negligible

magnetic moment of 0.14 µB (in agreement with previous experiments[165] and

theory[166]). We were also able to replicate the computed magnetic couplings at

higher levels of theory with the LSDA+U method (see Table S1-S2).
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2.6 Small Polarons Inducing Optical Transitions

in Co3O4

In our 2019 work published in Physical Review Materials as a Rapid Com-

municaion [36], we demonstrated the origin and misconceptions behind optical

transitions in Co3O4 due to the presence of small hole polarons which have active

optical transitions below the energy of the true band-band transition. Polarons,

conduction electrons or holes with self-induced lattice polarization, are known

to exist in most transition metal oxides (TMO) and deeply affect their optical

and carrier transport properties [171]. In these materials, much of the interest

has been related to the role of small polarons (SPs) that form when the induced

lattice polarization is localized in a volume on the order of the unit cell. In par-

ticular, for many important TMOs, including Fe2O3 [44, 47, 12], NiO [172, 173],

Co3O4 [174, 175], MnO [176], BiVO4 [106, 107, 18, 49], CuO [160, 35], it has

been found that the formation of SPs is responsible for the low carrier mobil-

ity and conductivity, which hinders their practical application as electrochemical

catalysts and photoelectrochemical (PEC) electrodes [33, 29, 177, 178, 179]. It

is also well-established that the transport of SPs in these TMOs can be char-

acterized through the thermally activated hopping conduction mechanism and a

logarithmic temperature dependence of the materials carrier mobility [130].

Unlike the distinct signature of SPs on the carrier conduction discussed above,

the effect of polarons on electronic structure and optical transitions in TMOs is

rather complex and difficult to elucidate. For example, in several TMOs, such as

WO3 [180, 17], TiO2 [181, 182, 183] and SrTiO3 [184, 185], the presence of large

polarons that are delocalized over several unit cells may lead to a strong band gap

renormalization through electron-phonon coupling. By contrast, the formation

93



Figure 2.19: Normal spinel atomic structure of Co3O4. Octahedral Co are
shown in green, tetrahedral Co are shown in blue/light blue (distinguishing spin
polarization direction), and O are shown in red.

of SPs may introduce isolated gap states away from the band edges due to their

spatially localized nature, which could be easily misinterpreted as band edges that

define the fundamental band gap. A prime example is Fe2O3, where recent time-

resolved spectroscopy experiments have shown that its mid-gap states are indeed

associated with optically active polarons, which in turn lead to transition energies

that are significantly lower than the fundamental band gap [78, 186]. This con-

clusion is also consistent with Lohaus et al. [79], where the authors showed that

while the band gap of Fe2O3 is 2.2 eV, an effective gap of 1.75 eV is observed due to

the formation of small polarons. Nonetheless, distinguishing mid-gap states due

to SP formation from other sources such as defect-bound states [187, 188, 189]

and surface states [190] is still not well understood in literature. Despite extensive

experiments on these TMOs, theoretical studies of SP effects on electronic struc-

ture and optical properties of TMOs are limited. More importantly, challenges

remain in first-principles methods that accurately describe polarons and electronic

structure of TMOs.

In this paper, we discuss the role of SPs (hereinafter referred to as “polarons”
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for simplicity) in tricobalt tetraoxide (Co3O4), an anti-ferromagnetic oxide with a

normal spinel structure. Despite that Co3O4 has been extensively investigated for

a wide range of technologies [191, 192, 193, 5, 194, 175, 195, 196], a fundamental

understanding of the optical properties of this material remains largely lacking,

and conflicting results have been reported, e.g., for the band gap of bulk Co3O4.

For instance, a value of 1.5-1.7 eV has been commonly reported for the optical

gap of Co3O4 [197, 198, 199, 200, 201, 202, 203]. On the other hand, several

experimental studies conclude that, despite a transition being observed around

1.5-1.7 eV, the true band gap of Co3O4 is significantly smaller, yielding a value of

around 0.7-0.9 eV [204, 205, 206, 207]. This conclusion, however, is not supported

by time-resolved optical spectroscopy measurements, which suggest the state at

∼0.8 eV above the valence band maximum is a localized polaron state [199, 198,

208]. Along this direction, other experiments have indicated that the intrinsic

carriers in Co3O4 are hole polarons that are characterized by a nearest-neighbor

hopping conduction mechanism; and such a signature implies that hole polarons

may affect the optical properties of Co3O4 in a similar way as in Fe2O3 [209, 210,

200, 197, 211, 212, 203, 213]. Collectively, the existing results indicate that much

is left to be understood regarding the nature of the optical transitions near the

band edge of Co3O4, and how it is related to polaron formation.

The aim of this work is to resolve the conflicting results in the literature

on Co3O4, and provide a coherent description of its electronic structure, car-

rier conduction, and optical properties through first-principles calculations. In

particular, we discuss the level of theory needed for a proper description of the

electronic structure of the material. In addition, we elucidate the role of po-

laron formation on the electronic band gap and optical spectra of p-doped Co3O4,

and we discuss how uniaxial strain can be used to distinguish polaron related
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Figure 2.20: a. Generalized Koopmans’ condition for electron polaron (EP) and
hole polaron (HP) in Co3O4. The exact exchange α for the PBE0(α) method is
varied until the condition HOMOq = LUMOq+1 (at fixed geometry where polaron
has formed) is met. In both cases, we find that at an exact exchange of 0.12
Koopmans’ condition is satisfied. The corresponding pristine gap is computed to
be 1.70 eV. b. Localized and c. delocalized hole wavefunction, subject to the
value of the exact exchange. Isosurface plots use a cutoff of 10% the maximum.

transitions in the optical spectra. This work provides a straightforward method

for considering SP effects in the optical absorption, alongside unambiguous SP

peak assignment in agreement with several previous experimental studies. This

work will help to distinguish SP formation from other optical effects often con-

sidered instead (e.g. exciton formation, thermal broadening of optical spectra

and electron-phonon renormalization of band edges) for TMOs in general. Our

study presents a roadmap for first-principles calculations in the investigation of

SP effects on optical absorption.
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2.6.1 Computational Methods

We begin by discussing our computational strategy for addressing the elec-

tronic properties of Co3O4 (spinel structure shown in Figure 2.19). It is well

known that density functional theory (DFT), with conventional local or semi-local

exchange-correlation functionals, is not sufficient to provide a proper description

of polarons in transition metal oxides and often severely underestimates the band

gap of these materials [11]. In order to mitigate this issue, several approaches

have been proposed, including DFT+U with an orbital specific Hubbard U cor-

rection, and hybrid functional that includes a fraction of Hartree-Fock exchange

(α), hereinafter denoted as PBE0(α). However, these calculations are known to

highly depend on the choice of the Hartree-Fock exchange or Hubbard U correc-

tion. For instance, a wide range between 0.8 and 2.0 eV has been reported in the

literature for the band gap of Co3O4, depending on the level of theory employed

[205]. In this context, it is also necessary to emphasize that, despite significant de-

velopment has been made, establishing a first-principles approach that allows for

an accurate prediction of the electronic properties of TMOs remains a significant

challenge [214].

Here, we implement both hybrid functional and DFT+U calculations to pro-

vide an unbiased description of the electronic properties of Co3O4. Notably, in

variation with previous hybrid functional calculations, we invoked the generalized

Koopmans’ condition to determine the value of α from first-principles. We stress

that this strategy has been shown to successfully predict the band gap of materi-

als with band gaps up to 14 eV and has been particularly successful for polaronic

systems [215, 216, 217, 218]. Specifically, the generalized Koopmans’ condition

enforces the condition IPq = EAq+1 at a fixed geometry for an isolated state in

the materials, where IPq is the ionization potential of an occupied state at the
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charge state q, whereas EAq+1 is the electron affinity of the same state when it

is unoccupied at the charge state q + 1. Here, we determine the value of α by

enforcing the condition IPq = EAq+1 for both the hole and electron polaron (see

Figure S1 for more details of the electron polaron), and we obtained a value of

0.12 for the Hartree-Fock exchange α in both cases, as shown in Figure 2.20. We

note that hole polarons do not form for α below 10%, as illustrated in Figure

2.20b-c). The value of α determined in this manner is an intrinsic property of the

bulk system, and the choice of defect used to enforce the Koopmans’ condition

is proper as long as it has minimum hybridization with the bulk Bloch states

[219, 215, 216].

We then determined U parameters based on the hybrid functional results, and

the stable formation of electron and hole polarons (see Table S1 for more details).

In particular, we find that the use of U values of UCo(O) = 4 eV and UCo(T) = 3

eV provides consistent results with the Koopmans’ compliant hybrid functional

(band gap agrees within 0.1 eV), as well as a proper description of the electronic

properties of the system, as discussed later in this communication. We also note

that hole polarons do not form for U values below 2.5 eV (see Figure S2).

All the calculations were then carried out using the plane-wave code Quan-

tum ESPRESSO [52] with norm-conserving pseudopotentials [54]. A plane wave

cutoff of 100 Ry was used in all PBE+U calculations, while a reduced cutoff of

50 Ry was implemented for the more demanding hybrid functional calculations

(geometry and electronic structure are converged at 50 Ry). The calculations

were generally performed within the 56 atom cubic cell with a 2 × 2 × 2 k-point

mesh for integration over the Brillouin zone. In addition, a
√

2 ×
√

2 × 2 super-

cell with 224 atoms was utilized for comparison, particularly to understand the

finite-size effects on polaron formation. Nevertheless, we find that the wavefunc-
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Figure 2.21: a. Projected density of states (PDOS) of Co(O) on t2g and eg
orbitals. Schematic representation of the electronic configuration of b. octahedral
Co3+ and c. tetrahedral Co2+ in Co3O4 due to a crystal field splitting (∆oct and
∆tet, respectively). d. PDOS of Co(T) on t2 and e orbitals. All the PDOS was
computed with DFT+U .

tion character, energy level splitting, and band structure look largely unchanged

between the 56 atom cubic cell and the 224 atom supercell (see Figure S3 for

further details). In all calculations with electron or hole polarons, the charged cell

correction scheme as developed in Ref. [69] was employed, which is necessary in

order to remove the spurious interactions of the polarons with their periodic im-

ages and with the uniform compensating background charge [220]. For the rest of

the manuscript, unless otherwise noted, the results presented here were obtained

at the DFT+U level of theory that is computationally less demanding compared

to hybrid functional calculations.

2.6.2 Electronic Structure of Pristine Co3O4

To set a baseline for the discussion of polaron effects in Co3O4, we briefly sum-

marize the electronic structure of the pristine system. As shown in Figure 2.19,

Co3O4 assembles in a normal spinel structure, where two thirds of Co occupy octa-

hedral sites (denoted by Co(O)) and the remaining third occupy tetrahedral sites

(denoted by Co(T)). We find that Co(O) exhibits a low-spin 3d6 orbital configu-
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ration with the Oh symmetry, leading to filled t2g and empty eg bands, as shown

in the calculated projected density of states (PDOS) and band diagram presented

in Figure 2.21 a-b. On the other hand, Co(T) with the Td symmetry forms a

high-spin 3d7 configuration with a half-filled eg band, yielding an overall magnetic

moment of ∼3.2 µB as already reported in experiments [221]. These Co(T) sites

experience an anti-ferromagnetic interaction mediated through a super-exchange

of mutually bonded oxygen; in addition, the presence of a large Hund’s spin ex-

change results in a splitting of the t2 band. This is shown in Figure 2.21 c-d,

where we find that the t2 minority spin states are formed at a higher energy level,

whereas all majority spin states occur at lower and similar energies [202, 222]

(also see Figure S4 for further details). Overall, the behavior of the spin states

and band splitting presented here are consistent with results reported in existing

theoretical studies [222, 223].

2.6.3 Formation of Hole Polarons with Mid-Gap States

Next, we discuss the nature of polaron formation in Co3O4. Our calculations

show that, among the Co(O) and Co(T) sites where hole polarons can form, the

total energy of a hole polaron forming at Co(O) is lower than that of Co(T)

by at least 70 meV. A more stable formation of the polaron on Co(O) is also

reflected in the calculated density of states of Co3O4 where a larger contribution

of Co(O) d states is found at the valence band edge compared to the Co(T) d

states (see Figure S4). Finally, our conclusion is consistent with the experimental

study reported by Ngamou et al. [209], where the authors show that the hopping

of polarons takes place in the octahedral sites and are responsible for driving

the electrical transport in the oxide. Collectively, these results indicate that the

computational approach employed here provides a proper description of polaron
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Figure 2.22: a. Pristine band structure of Co3O4 with a 224 atom supercell
(primitive cell band structure shown in SI Figure S5). b. Hole polarons create a
low-spin (LS) d5 configuration at Co(O) along with a Jahn-Teller (JT) distortion
which results in a D4h configuration and the creation of several mid-gap states.
c-e. Wavefunction isosurface plots (yellow cloud) of the three polaron induced
states under hole formation of a1(↑)(dx2−y2), b1(↑)(dz2), and b2(↓)(dxy) character,
respectively. Isosurface plots use a cutoff value of 10% the maximum. f. Band
structure of Co3O4 with a hole polaron which shows several induced gap states
(blue = spin up, black = spin down).

formation in Co3O4.

Beyond the findings on the thermodynamical stability of hole polaron forma-

tion in Co3O4, our calculations show that the hole polaron at Co(O) leads to

several mid-gap states. As shown in Figure 2.22, we find that upon the hole po-

laron formation, Jahn-Teller (JT) distortion occurs at the Co(O) site due to an

uneven occupation of the t2g band, and splits the degeneracy of the Oh states.

In addition, the uneven occupation of up/down states splits the spin degeneracy

due to the on-site Coulomb repulsion of the d orbitals. Specifically, we find that

the majority spin states (e.g. b2(↑), a1(↑), b1(↑)) are located at a lower energy,

whereas the minority spin states (e.g. b2(↓), a1(↓), b1(↓)) are pushed higher in the

energy. Such splitting and ordering is consistent with the previous time-resolved

spectroscopy measurements of Co(O) [223, 201]. In addition, these mid-gap states

are consistent with the experiment reported in Ref. [198], where it was found that
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mid-gap excitations are associated with a1(↑) and b1(↑) states of Co(O). As a

result, our analyses point to significant effects of hole polarons on the electronic

structure of Co3O4, most notably in the formation of mid-gap states in a similar

way as found in Fe2O3.

2.6.4 Small Polaron Induced Optical Transitions

We now turn to a more quantitative discussion of polaron effects on the elec-

tronic structure of Co3O4. In particular, we obtain a band gap of 1.6 eV and 1.7 eV

with the current choice of U and α (respectively), which is in excellent agreement

with the value of 1.5-1.7 eV reported in Refs. [197, 198, 199, 200, 201, 202, 203].

However, this is significantly larger than the result of 0.7-0.9 eV claimed by other

experiments. [204, 205, 206, 207] We note that exciton binding energies are usu-

ally less than 150 meV in many TMOs [224, 225, 17], and we show later that

the calculated optical spectra, by including excitonic effects, cannot explain the

low energy transition at 0.7-0.9 eV. Interestingly, as shown in Figure 2.22b, at

the current level of theory, we find that the mid-gap states are located at 0.8 eV

away from the valence band maximum, and are associated with the hole polaron

formation. This observation suggests that a scenario similar to the one observed

for Fe2O3 may also occur in Co3O4, i.e., the true gap of Co3O4 is ∼1.6 eV, and

the mid-gap states are responsible for the transitions found at ∼0.8 eV in the ex-

perimental optical absorption spectra [204, 205, 206, 207]. In order to verify our

hypothesis and to further elucidate the role of polaron formation, we calculated

the optical absorption spectra of Co3O4 with and without a hole polaron, and

we compared the results with available experimental data. Absorption spectrum

with a hole polaron was computed with a 56-atom supercell [226], which better

represents experimental hole concentrations of p-type Co3O4 [199, 197] due to
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abundant cation vacancies [210, 227].

Therefore, we computed the imaginary part of the dielectric function in the

random phase approximation (RPA) with local field effects (as shown in Figure 5)

and solving the Bethe-Salpeter equation that includes excitonic effects (as shown

in SI Figures S8 and S9), as implemented in the YAMBO-code [228], using the

single particle eigenvalues and wavefunctions derived from DFT+U . We note that

this choice of starting point considers the balance between accuracy and computa-

tional cost, similar to this work in Ref. [229]. In addition, for a direct comparison

with experimental measurements, we calculated the absorption coefficient from

the dielectric function [230].

A(ω) = ω

c

ε2(ω)√
ε1(ω)+

√
ε1(ω)2+ε2(ω)2

2

(2.15)

The calculated optical absorption spectra of Co3O4 are shown in Figure 2.23,

together with the experimental spectrum. We find that the introduction of hole

polarons leads to the formation of several lower energy optical transition peaks

between 0.6 and 1.2 eV in Co3O4. More importantly, we find that, in sharp

contrast to the result obtained for the pristine system, the spectrum computed

for Co3O4 with a hole polaron is in very good agreement with experimental data,

where three lower lying transitions were also found between 0.7 and 1.1 eV [204,

197, 198, 199]. Our analysis indicates that these transitions can be associated with

those occur between the p-d hybridized dispersive valence states and the localized

d states formed at the hole polaron site, for which the wavefunctions are illustrated

in Figure 2.22 c-e. Collectively, these results clearly support the interpretation

that the true optical gap of Co3O4 is ∼1.6 eV and that the optical transitions

observed at ∼0.8 eV are due to hole polaron formation at Co(O) sites. We note
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Figure 2.23: Optical absorption of Co3O4 in the pristine system (black) and
the p-doped system (blue). Notably, only p-type doping i.e. the formation of
holes, will cause mid-gap transitions below 1.6 eV, in agreement with experimental
optical spectrum of Co3O4 shown in green [204]. The inset image displays the mid-
gap transitions which are labeled according to the states formed from hole polaron
formation as in Figure 2.22. (Theoretical spectrum is an average of spectra with
light polarized in the [100], [010], and [001] directions.)

that electron polarons do not lead to the formation of low lying transitions (see

Figure S6), indicative of the p-doped nature of the experimental system.

In order to rule out the possibility that the low energy transitions ∼0.8 eV are

caused by large excitonic effects [231, 232, 233, 234], we also computed absorption

spectra of pristine Co3O4 including excitonic effects by solving the Bethe-Salpeter

Equation, as shown in SI Figure S7, S8. More detailed discussions can be found in

SI. Overall, no extra peaks in the BSE spectra show up at the energy range below

1 eV for pristine Co3O4 (no hole polaron included), which confirms the excitonic

effects do not explain the low energy transitions in the absence of SPs.

In addition, we note that we neglect electron-phonon coupling and thermal

expansion effects on the band edge positions and absorption spectra at finite
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temperature, as discussed in Refs. [235, 236]. For example, the absorption edge

may be subject to a red-shift, in addition to an overall broadening of the spectra.

This offers additional directions for future works. In any case, these effects will

not lead to an additional peak well separated from the main absorption in a

direct band-gap semiconductor like Co3O4; therefore, our conclusion on the small

polaron contribution to the low energy optical transitions still holds.

2.6.5 Detecting Hole Polaron Transitions via Strain

Finally, we propose an experimentally viable method for distinguishing opti-

cal transitions involving localized polaron states from traditional band-band bulk

state transitions. For Co3O4, the JT distortion upon the introduction of the hole

polaron extends the Co-O bonds along the C4 axis, and this distortion may oc-

cur along any of the bond axis that aligns with the [100], [010], [001] directions

of the cubic unit cell. Such a three-fold degeneracy can be broken if uniaxial

strain is applied to the system along one of the crystal lattice directions, which

in turn may affect the optical absorption spectrum. In this regard, monitoring

the change in the optical spectrum of Co3O4 in the presence of an uniaxial strain

could potentially provide signatures of hole polarons associated with a specific JT

distortion.

For demonstration, we considered a 1% tensile strain applied along the [100]

direction. We find that the three-fold degeneracy in the polaron states is broken

upon the introduction of the strain; in particular, polaron formation with the JT

elongation along the [100] direction is lowered in the energy by 5 meV compared

to those associated with the [010] or [001] directions. Here, to investigate the

collective and individual effects of these polarons on the absorption spectrum,

we computed a thermally averaged ensemble spectrum by using a Boltzmann
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Figure 2.24: Optical absorption of p-doped Co3O4 under 1% uniaxial tensile
strain along the [100] direction. Temperature dependence determines the proba-
bility for which direction the Jahn-Teller elongation will occur (as the degeneracy
is removed under strain) and results in a red-shift of optical peaks related to the
hole polaron.

probability distribution of the optical absorption obtained for each case:

Pi = eEi/kT∑
i eEi/kT

, A(ω) =
∑
i

PiAi(ω), (2.16)

where Ei and Ai are the energy and absorption spectrum of the system containing

a polaron in the state i (i denotes different JT elongation direction), respectively.

The calculated optical absorption spectrum presented in Figure 2.24 clearly

shows a red-shift in the first peak that is associated with polarons. In particular,

we find that at lower temperatures where kT is on the order of 5 meV or less, the

resulting optical spectra follow that of the lowest energy polaron associated with

JT elongation along the [100] direction. At higher temperatures, the clear red-shift

remains, although a high temperature of 300 K is sufficient to quench the 5 meV

energy difference between polaron states. In contrast to the transition associated
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with hole polarons, we find that bulk band-band transitions at higher energy

(above 1.5 eV) remain mostly unchanged upon uniaxial strain (see Figure S9).

Accordingly, this allows one to clearly distinguish the local polaron state involved

in optical transitions, whose JT distortion renders them quite sensitive to strain,

from that of the band-band bulk state transitions which are insensitive to strain.

2.6.6 Conclusions

To summarize, we present a detailed investigation of the electronic structure

and polaronic induced optical transitions in Co3O4 based on first-principles cal-

culations. We resolved several contradicting findings in the literature related to

the character of the charge carrier and band gap of the material. In particular,

we show that the optical gap of pristine Co3O4 is 1.6 eV, whereas the lower lying

transition around ∼0.8 eV is associated with the hole polaron, which was misin-

terpreted as the band edge of the material. We also demonstrated the important

effects of uniaxial strain on the optical spectra of Co3O4, which in turn can be

used to reveal the localized character of polaron-induced electronic states.

Our study also suggests a strategy for establishing a potential first-principles

approach that can simultaneously achieve an accurate description of polaron

states, electronic band structure and optical properties in polaronic magnetic ox-

ides. Specifically, the generalized Koopmans’ condition can be utilized to derive

the fraction of exact exchange from first-principles, which in turn can be used in

hybrid functional for investigating the electronic structure of the oxide. These

hybrid functionals can also be used for benchmarking DFT-U calculations, which

offer a much lower computational cost, or to provide inputs for higher level elec-

tronic structure methods, such as many-body perturbation theory within the GW

approximation.
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2.7 Combining Theory and Experiment

2.7.1 Oxygen Deficient BiFeO3

Bismuth iron oxide, BiFeO3, is a semiconductor with a rhombohedrally dis-

torted perovskite structure that yields a large ferroelectric effect. [237] For this

reason, it has been investigated as one of the most promising candidates for fer-

roelectric diode devices and ferroelectric photovoltaics. [237, 238, 239, 240] Re-

cently, BiFeO3 was also reported as a photoelectrode in a solar water-splitting

cell. [241, 242, 243, 244, 245] In these reports, BiFeO3 was demonstrated to have

a relatively narrow bandgap of ∼2.2 eV and conduction band minimum (CBM)

and valence band maximum (VBM) positions that straddle the water reduction

and oxidation potentials, [241, 242] all of which are very attractive features for

a photoelectrode in a water-splitting photoelectrochemical cell (PEC). Consider-

ing that Fe2O3, an extensively studied photoanode with a similar bandgap, has

a CBM that is ∼200 mV more positive than the water reduction potential, [246]

the shifts in the CBM and VBM to the negative direction constitute an important

advantage of BiFeO3 over Fe2O3. [33]

To date, both n-type and p-type BiFeO3 photoelectrodes have been reported, [241,

242, 243, 244, 245] meaning that BiFeO3 can serve as a photoanode or a photo-

cathode, respectively. In these studies, the doping type varied without the intro-

duction of external dopants, suggesting that the defects responsible for n-type and

p-type BiFeO3 can both readily form. [33] The defects that cause n-type behavior

include oxygen vacancies, [247] and the defects that cause p-type behavior include

Bi vacancies. [248]

Despite the many interesting and advantageous features shown for BiFeO3 as a

photoelectrode, there have been very few systematic investigations on the photo-
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electrochemical properties of BiFeO3. Because of its popularity as a ferroelectric

material, most studies on BiFeO3 photoelectrodes have focused on how the appli-

cation of an external electric field on BiFeO3 affects its photocurrent generation

or on the conversion between n-type and p-type photocurrent. [244, 245, 249, 250]

From a careful analysis of these papers, it appears that the BiFeO3 electrodes

used in these studies were very lightly doped. [33] For the purpose of accurately

evaluating the potential of BiFeO3 as a photoanode or a photocathode, optimally

doped n-type and p-type BiFeO3 electrodes need to be prepared and examined

individually.

Considering that charge transport in many oxide-based photoanodes involves

small polaron hopping, [37, 36, 35, 12, 18, 49] understanding the formation and

transport of small polarons in BiFeO3 is also critical. Unfortunately, while numer-

ous theoretical studies on BiFeO3 have been published to date, they have focused

on its bulk polarization, [251, 252] photovoltaic effects, [253, 254] and multifer-

roic effects. [255, 256] Small electron polaron formation and its effects on dopant

ionization energies and concentration of free carriers in BiFeO3 have not yet been

investigated theoretically.

In this work, we conducted combined experimental and theoretical studies

on n-type BiFeO3 photoanodes. For the experimental investigation, we prepared

highly uniform BiFeO3 photoanodes by electrodeposition and examined their pho-

toelectrochemical properties and stability for use in a PEC. We then intentionally

introduced oxygen vacancies into the pristine BiFeO3 lattice and examined the

effect on carrier concentration and photocurrent generation. The experimental

results were compared with those of a computational study, which examined the

formation of small polarons in BiFeO3 and the effect of oxygen vacancies on small

polaron formation and free carrier generation in BiFeO3 for the first time. The
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new experimental and computational results discussed in this study will signifi-

cantly increase our fundamental understanding of BiFeO3 for use as a photoanode

material.

Density functional theory calculations were performed using the Quantum

ESPRESSO package [52] with PBE+U exchange correlation functional, ultrasoft

pseudopotentials, [53] and Hubbard U parameters of 2 eV on O 2p and 3 eV on

Fe 3d. All calculations were done using the hexagonal BiFeO3 cell (space group:

R3c), which we expanded to a 2 × 2 × 1 supercell to avoid spurious interactions

during defect calculations. A 2×2×2 k-point grid was used to calculate the charge

density, and a 4 × 4 × 4 k-point grid was used for density of states. We applied

a newly developed charge correction scheme [69] to calculations containing excess

charge as implemented in JDFTx. [15] For the calculations used to investigate the

effect of oxygen vacancies, a single oxygen atom was removed from a 120-atom

supercell. Because 72 oxygen atoms are present in this supercell, this is equivalent

to removing 1.39 atomic % oxygen (1.39 oxygen atoms out of 100 oxygen atoms),

leading to the empirical formula of BiFeO2.96.

Theoretical optical absorption spectra of BiFeO3 with and without VO were

obtained by computing the imaginary part of the dielectric function in the ran-

dom phase approximation with local field effects as implemented in the YAMBO

code. [228] The input of this calculation came directly from our single particle

eigenvalues and wavefunctions from DFT+U computed in Quantum ESPRESSO.

The absorption spectrum (α) is related to the real and imaginary parts of dielectric

function (ε1 and ε2, respectively) as shown in the equation below. [230]

α(ω) = ω

c

ε2(ω)√
ε1(ω)+

√
ε1(ω)2+ε2(ω)2

2

(2.17)
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Figure 2.25: (a) J-V plots and (b) J-t plots at 0.8 V vs. RHE for pristine BiFeO3
(red) and N2-treated BiFeO3 (blue) for sulfite oxidation. All measurements were
obtained in pH 9.2 borate buffer containing 0.7 M sulfite under 1 sun illumination
(100 mW/cm2, AM 1.5 G).
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Figure 2.26: (a) Norm-squared wavefunction of the electron polaron (yellow
cloud) shown as an isosurface in the BiFeO3 lattice (purple = Bi, gold = Fe, red
= O). Isosurface value is 1% of the maximum amplitude of the wavefunction; (b)
projected density of states (PDOS) for BiFeO3 before (left) and after (right) a
single electron-polaron is introduced in a 120-atom supercell.

To gain additional insight into the photoelectrochemical properties of BiFeO3,

we conducted density functional theory (DFT) calculations to investigate the small

polaron formation and its effect on defect ionization energy and free carrier con-

centration in BiFeO3. First-principles calculations were carried out on BiFeO3

using the DFT+U method (see Computational Methods for more information).

The computed bandgap of BiFeO3 was 2.2 eV, which is in great agreement with

the experimentally measured value of the bandgap.

Due to strong electron-phonon interactions, carriers in many transition metal

oxides are trapped by their self-induced lattice distortions, forming small po-

larons. [257] Small polarons conduct through the system via a thermally-activated

hopping mechanism unlike carriers in covalent semiconductors, which conduct

through conventional band mechanisms. [258, 259] Therefore, understanding and

facilitating small polaron hopping are critical for the development of oxide-based

photoelectrodes. [37, 36, 35, 18, 106, 107]

The formation of an electron polaron in pristine BiFeO3 was simulated by
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adding one extra electron into the pristine BiFeO3 system and allowing the system

to relax. We observed that the extra electron spontaneously localizes on a single

Fe site, forming a small electron polaron as shown in Figure 2.26a. This creates

a deep, localized state that lies 1 eV below the CBM of the pristine BiFeO3 as

shown in Figure 2.26b. The formation of similar localized electron polaron states

has been observed in other Fe3+-based oxides such as Fe2O3. [12]

The Fe3+ ions in BiFeO3 have Oh crystal field splitting with 3d5 high-spin

electron configuration. [260] Thus, the extra electron occupies an Fe t2g state, and

the small polaron state has mainly t2g character. Furthermore, the presence of a

small polaron on the Fe ion, which lowers its valency from +3 to +2, perturbs

valence states and creates additional localized states above the VBM of the pristine

BiFeO3 (Figure 2.26b). These localized states have character of eg orbitals of Fe2+

and 2p orbitals of oxygen. (The corresponding wavefunctions are shown in Figure

S6.)

Previous theoretical studies on defect formation in BiFeO3 reported that the

oxygen vacancy is a very deep donor with an ionization energy greater than 1

eV, [247, 261, 262, 263] meaning that the oxygen vacancy cannot contribute to

the generation of n-type carriers at room temperature. This disagrees with our

experimental observation that the N2-treated BiFeO3 that contains more oxy-

gen vacancies has a higher carrier density and generates significantly more pho-

tocurrent at room temperature. We note that previous theoretical studies did

not consider the formation of small polarons in BiFeO3 and their effects on de-

fect ionization energies and carrier concentration. Employing recently developed

methods, [12, 18] we revisited the formation of oxygen vacancies in BiFeO3 to in-

vestigate their ionization energies with respect to the free polaron level in pristine

BiFeO3.
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When an oxygen vacancy (VO) is formed in the lattice of BiFeO3, it intro-

duces two electrons that spontaneously generate two small electron polaron states.

These two states correspond to the two peaks shown ∼0.8 eV below the CBM in

the PDOS of BiFeO3 in Figure 2.27a. As in the case of introducing a free electron-

polaron, these polaron states have mainly t2g character of Fe2+. Due to attractive

electrostatic interactions between the electron polarons and the VO site, the most

thermodynamically stable configuration is the one with the two electron-polarons

located at the Fe sites nearest to the VO, as shown in Figure 2.27b. The difference

in energy of the VO polarons seen in the PDOS is a result of their differing dis-

tances from the VO (Figure S7). The introduction of VO and the resulting small

electron polarons also generate perturbed valence states above the VBM. These

perturbed states are mainly composed of the eg orbitals (i.e. dx2−y2) of Fe2+ and

2p orbitals of oxygen (Figure S8). When absorption spectra of BiFeO3 with and

without VO were simulated and compared (Figure S9), we found that the presence

of the perturbed states above the VBM did not affect the absorption of BiFeO3.

This agrees with our experimental results.

In order to consider the effects of oxygen vacancies on the carrier concentration

in BiFeO3, it is necessary to compute the formation energy of the defect in each

of its charge states q. Typically, the charge transition level of an electron donor

from one charge state to a more positive charge state referenced to the CBM

defines the ionization energy of the defect. However, in polaronic oxides, the

feasibility of polaron hopping is determined not by the ionization energy of the

defect with respect to the CBM, but by the ionization energy of the defect with

respect to a free polaron state where the polaron is not bound to a defect. [12, 18]

Therefore, the true ionization energy of small polarons is equal to the energy

difference between the charge transition levels of the defects (solid red dots in
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Figure 2.27: (a) Projected density of states (PDOS) for BiFeO3 with a single
oxygen vacancy (VO) introduced into a 120-atom supercell; (b) Norm-squared
wavefunction of the two electron-polarons (yellow regions surrounding Fe). Iso-
surface value is 1% of the maximum amplitude of the wavefunction. The VO
is indicated by a single empty red circle between the two electron-polarons; (c)
Charge formation energy (FE) diagram of VO in BiFeO3.

Figure 2.27c) and the free polaron level (grey dashed line in Figure 2.27c). The

free polaron energy level can be obtained from the formation energy of the pristine

system with (q = −1) and without (q = 0) an extra electron. The Fermi level

corresponding to the ε0|−1 transition in the pristine system defines the free polaron

level. [12, 18] The energy difference between the free polaron level and the CBM

is the polaron binding energy.

Under this model, we computed the charge formation energy diagram of the

VO and its corresponding ionization energies. In an oxygen-rich environment, the

formation energy of a neutral VO is 3.4 eV, which agrees with previous calcula-

tions. [247, 261, 262, 263] We find that the VO has two distinct charge transition

levels corresponding to the (0/+1) and (+1/+2) transitions. The energies of these

charge transition levels relative to the VBM (1.57 eV and 1.22 eV, respectively)

are in excellent agreement with recent DFT+U calculations. [257] On the other

hand, the positions of charge transition levels relative to the CBM of BiFeO3

vary drastically depending on the choice of U , [247, 257, 262] which is a known
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effect. However, their positions with respect to the free polaron level are rela-

tively insensitive to the choice of U , which is similar to what was reported for

the case of Sn-doped Fe2O3. [12] Comparing the charge transition levels of VO to

the free polaron level, we found energy differences of 99 and 438 meV for the first

and second charge transition levels, respectively. The energy of the first charge

transition level (0/+1) relative to the free polaron level is comparable to kT at

room temperature (26 meV) and indicates that a fraction of the oxygen vacancies

in BiFeO3 can ionize at room temperature and contribute to an increased carrier

concentration. A simple thermodynamic calculation (assuming a Boltzmann-like

distribution) suggests that ∼2.05% of oxygen vacancies will be ionized to their +1

state at room temperature at thermal equilibrium. This result differs from pre-

vious reports that VO in BiFeO3 is a deep donor and cannot increase the carrier

concentration. [247, 261, 262, 263]

Our theoretical result has clarified the role of oxygen vacancies in enhanc-

ing carrier concentrations in BiFeO3, and it is consistent with our experimental

findings. This study emphasizes that in polaronic oxides, the defect ionization

energies need to be considered with respect to the free polaron level and not to

the CBM to more accurately understand the role of defects in the charge transport

properties.

To summarize, we performed combined experimental and theoretical investi-

gations on n-type BiFeO3 to evaluate its properties relevant to its use as a pho-

toanode in a photoelectrochemical cell. In our experimental study, we developed

a synthesis method to produce high-quality, uniform n-type BiFeO3 photoanodes

and examined their photoelectrochemical properties. A bandgap energy of ∼2.1

eV was determined for the BiFeO3 photoanodes, and this value agreed well with

the films’ orange color. The BiFeO3 photoanode showed a photocurrent onset po-
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tential of 0.3 V vs. RHE for sulfite oxidation, which is equivalent to its flatband

potential. This value is significantly more negative than that of other ternary

Fe-based oxide photoanodes. Upon annealing under a N2 environment to in-

tentionally introduce more oxygen vacancies, the flatband potential was slightly

shifted to the negative direction, and the photocurrent increased considerably.

These results indicate that oxygen vacancies can contribute to an increase in car-

rier density, thus improving the charge transport properties of BiFeO3. While the

photocurrent reported in this study is one of the highest among those reported

for BiFeO3 photoanodes, the observed value was still far below that expected

for a photoanode having a bandgap of 2.1 eV, suggesting that bulk recombina-

tion is a major limitation of BiFeO3. Considering that nanostructuring other

Fe3+-containing photoanodes such as Fe2O3 that suffer from short hole-diffusion

lengths can significantly increase electron-hole separation, nanostructuring BiFeO3

is a logical next step to take to improve its photocurrent generation.

In our theoretical study, we showed for the first time that an extra electron in

BiFeO3 spontaneously localizes on an Fe3+ ion and forms a small polaron. The

formation of the small polaron also perturbs valence states and creates additional

localized states above the VBM of pristine BiFeO3. When an oxygen vacancy is

introduced into the BiFeO3 lattice, it forms two electron-polarons at the two Fe

sites nearest to the VO site. By accurately referencing the charge transition level

to the free electron polaron level instead of to the CBM in our charge formation

energy calculations, we showed that the first ionization energy of the VO is 99

meV, meaning that the VO is capable of serving as a donor to enhance the carrier

concentration of BiFeO3. Overall, BiFeO3 has many attractive properties for use

as a photoanode in a water-splitting PEC, and we expect that strategies such

as nanostructuring and substitutional doping that can introduce shallow donors
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can continue to increase the photocurrent generation. Our combined investigation

contributes to a fundamental understanding of the photoelectrochemical proper-

ties of BiFeO3 that can aid future systematic investigations of both n-type and

p-type BiFeO3 photoelectrodes.

2.7.2 K Doping in LaFeO3

Computational Methods Density functional theory calculations were per-

formed using the Quantum ESPRESSO package [52] with PBE+U exchange and

correlation functional, with a Hubbard U parameter on O 2p of 2 eV and Fe 3d of

3 eV and norm-conserving pseudopotential [54] with a plane wave energy cutoff

of 80 Ry. A total energy convergence of at least 10−7 Ry was used for all self-

consistent calculations while atomic forces were relaxed until a threshold of 10−3

Ry/au was met. Final calculations implemented a 2 × 2 × 2 supercell consisting

of 160 atoms with a k-point grid of 2 × 2 × 1 with the cell parameters attained

via a variable cell relaxation. To investigate the effect of K doping, 1 out of 32

La atoms was replaced with K atom, which is equivalent to 3 at. % K doping at

the La site. This level of doping was chosen for computational studies because

experimental studies showed that 3 at % K doping at the La site is optimal for

enhancing the photoelectrochemical properties of LaFeO3.

Effect of K Doping on Electronic Structure and Optical Absorption.

LaFeO3 is a charge transfer insulator with valence states mainly composed of O

2p and conduction states mainly composed of Fe 3d orbitals (Figure 2.28a). The

electronic band structure of pristine LaFeO3 shows a direct Γ − Γ bandgap of

2.13 eV. We used Hubbard U parameters of 2 eV for O 2p and 3 eV for Fe 3d,

which enables the formation of both electron- and hole-polarons and results in a

bandgap value of pristine LaFeO3 close to the reported experimental value. [163]
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Figure 2.28: (a) Total (black) and projected (red for O 2p and blue for Fe
3d) density of states of pristine LaFeO3. The reference zero is chosen to be at
the valence band maximum. (b) Band structure of pristine (black) and K-doped
LaFeO3 (red = spin up and orange = spin down). (c) Total (black) and projected
(red for O 2p and blue for Fe 3d) density of states of K-doped LaFeO3. The inset
image shows magnified hole-polaron states.

We confirmed that the major effects of K doping on the band structure of LaFeO3

discussed here are not affected by the choice of U parameters as long as they are

chosen to allow for the formation of both electron- and hole-polarons. [35, 18, 12,

106] For example, the major results obtained with Hubbard U parameters of 4 eV

for O 2p and 5 eV for Fe 3d (Figure S1) are the same as those shown in Figure 2.28

although the exact energy levels of the band structures may vary.

After doping the system with K, we observed the formation of an isolated hole-

polaron state, which is a hybridized state consisting of O 2p and Fe 3dx2−y2 located

at 0.3 eV above the VBM (Figure 2.28 b-c). This suggests that the two holes gen-

erated by the replacement of La3+ with K+ are localized on Fe atoms and their

neighboring O atoms, [264] forming Fe4+. This result agrees well with experimen-

tal observations that the electrical conduction and dipolar relaxation in LaFeO3

are dominated by polaronic hole hopping between Fe4+ and Fe3+. [265, 266] Fig-

ure 2.29a shows a structural unit of LaFeO3 where eight Fe atoms numbered

through 1 and 8 are located at the corners of a cube with a K atom at the center.
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Figure 2.29: (a) A cube composed of eight Fe atoms at the corners numbered
from 1 through 8 with a K atom at the center (K = purple, Fe = brown, O =
red). (b-c) Hole-polaron wavefunction modulus with an isosurface at 10% of the
maximum value for the spin up (yellow) and spin down (turquoise); (b) hole-
polarons formed at the (1, 2) Fe pair, which are symmetrically identical to those
formed at the (5, 6) Fe pair; (c) hole-polarons formed at the (3, 4) Fe pair, which
are symmetrically identical to those formed at the (7, 8) Fe pair.

The most energetically preferred configurations of the two hole-polarons formed

by K doping are those with the holes occupying Fe at the off-diagonal corners.

Due to crystal symmetry, only two unique Fe-Fe diagonal positions are present as

shown in Figure 2.29b-c (Table S1). Between these two configurations, the one

shown in Figure 2.29b is more stable by 113 meV. Considering that our calculations

were performed at 0 K and only included electronic energy without an entropy

contribution, it is possible that a non-negligible concentration of hole-polarons

formed in the sample at room temperature may exist in the configuration shown

in Figure 2.29c.

Our calculations also showed that K doping decreases the bandgap by lowering

the conduction band minimum (CBM) from 2.13 eV to 2.06 eV and additionally

forms multiple highly localized states below the CBM (Figure 2.28b-c). We note

that these states are formed not due to the presence of K but due to the free holes

from K doping that form small polarons, which perturbed the system. (Even when

free holes are introduced without K, the same states form.) To understand how

these changes in electronic structure affect the optical properties of the system, we
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Figure 2.30: Calculated absorption spectra for pristine (black) and K-doped
(red) LaFeO3.

calculated the absorption spectra of pristine and K-doped LaFeO3 (Figure 2.30).

Because of the presence of optical anisotropy in the system, we averaged optical

responses from light that was polarized along the a, b, c crystal axes. The results

showed that K doping causes a negligible change in the high energy range (≥ 2.4

eV) in terms of the position and intensity of the absorption peaks. However, K

doping clearly enhances absorption in the low energy range (< 2.4 eV) due to the

lowering of the CBM and the introduction of perturbed states below the CBM.

Since the solar spectrum contains a considerable number of photons near 2 eV,

even a small increase in absorbance in this region may significantly increase the

number of photons that can be utilized by LaFeO3 for photocurrent generation.

We note that we did not include excitonic effects in this calculation because in

most transition metal oxides, the exciton binding energy is small ( 0.1 eV) and its

change by doping is negligible. [49, 17, 267]
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K as a Shallow Acceptor in LaFeO3. Although K doping introduces two

holes into the system, the experimental carrier concentration will only increase

when the dopant site does not trap the holes within the system. A dopant is

generally considered to be a trap if the defect ionization energy or the energy that

is required to free a defect-bound polaron is much higher than kT . We computed

the defect ionization energies and formation energies from first principles. In K-

doped LaFeO3, the q = −1 system (where one of the two holes from K substitution

of La has been removed) is unstable leading to a direct q = 0 to q = −2 transition.

Furthermore, the value of this charge transition level (ε0|−2) is only 30 meV above

the VBM. Since the energy required for this transition is comparable to kT at

room temperature (25 meV), K can serve as a shallow acceptor. We also note that

the ionization energy obtained from defect formation energies is not significantly

different from the energy difference between the VBM and the position of the

hole state in the PDOS (Figure 2.28c). This result indicates that the DFT+U

level has largely corrected the delocalization errors that are known to occur at

the semi-local DFT level. Additionally, it implies that the geometry relaxation at

different charge states has minimum contribution. [216, 16] From these results we

concluded that K doping can effectively increase the hole concentration in LaFeO3.

Effects of K Doping on Atomic Structure. LaFeO3 has a perovskite

structure in which the La atoms are located at the center of a cube composed

of eight Fe atoms at the corners that are octahedrally coordinated with O. How-

ever, the atoms in LaFeO3 are slightly displaced from those of an ideal cubic

perovskite structure, and LaFeO3 has an orthorhombic Pnma structure with a

G-type antiferromagnetic ordering on the Fe atoms. [268] Theoretically predicted

cell parameters for pristine and K-doped LaFeO3 are shown in Table 2.8. For K-

doped LaFeO3, the results for two configurations of hole-polaron formation shown
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in Figure 2.29b-c are shown as Configuration 1 and Configuration 2, respectively.

System a (Å) b (Å) c (Å) Volume (Å3)

Pristine 5.652 7.903 5.568 248.69

K-doped C1 5.644 7.887 5.569 247.91

K-doped C2 5.649 7.886 5.566 247.95

Table 2.8: Theoretically predicted cell parameters and band gap values for pris-
tine LaFeO3 and K-doped LaFeO3.

Despite the fact that K+ (164 pm) has a larger ionic radius than La3+ (136

pm), [108] the result shows that K doping (one K atom in the 160 atom cell)

shrinks the unit cell volume by ∼0.3% for both configurations. This is because

a fraction of Fe3+ (64.5 pm) is substituted by Fe4+ (58.5 pm) owing to the hole-

polaron formation. To confirm this, we considered four different systems: (1)

pristine sample with a neutral charge; (2) pristine sample plus two holes without

K doping, giving a +2 charge; (3) K-doped minus two holes, giving a −2 charge;

and (4) K-doped sample with corresponding Fe4+ formation with a neutral charge

(Table S2). System 2 has the same number of Fe4+ ions as System 4, but La is not

replaced with K. System 3 has no Fe4+ formation even though La is replaced with

K. We found that System 2 (pristine sample plus two holes, +2 charge) showed a

decreased cell volume due to Fe4+ formation, whereas System 3 (K-doped sample

minus two holes, −2 charge) showed an increased cell volume because K+ has

a larger radius than La3+. System 4 (K-doped sample with corresponding Fe4+

formation) showed consistency with the average cell volume of Systems 2 and 3

as expected. However, because the magnitude of cell shrinkage caused by the

formation of Fe4+ is greater than that of expansion caused by the replacement of

La by K, the cell volume of System 4 is smaller than that of the pristine sample

(System 1).
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In summary, we performed a combined theoretical and experimental investi-

gation to examine the effect of substitutional K doping at the La site (3 at. %)

of LaFeO3. The theoretical study showed that K doping creates shallow acceptor

levels above the VBM of LaFeO3 and can effectively increase the majority carrier

density. Furthermore, K doping decreased the bandgap by lowering the CBM and

additionally generated multiple highly localized defect states below the CBM. The

theoretical study also showed that the two holes generated by the replacement of

La3+ with K+ are localized on Fe atoms and their neighboring O atoms, form-

ing Fe4+. The most stable hole-polaron configurations around K were examined.

In terms of structure, our theoretical study predicted that K doping results in a

shrinkage of the unit cell owing to the conversion of Fe3+ to smaller Fe4+ even

though K+ has a large ionic radius than La3+.

The results obtained from the theoretical studies were verified by experimen-

tally preparing LaFeO3 and K-doped (3 at. %) LaFeO3 as high-quality, high-

surface-area electrodes having the same morphology. The XRD patterns indeed

showed a decrease in all cell parameters, which confirms the substitution of La3+

by K+ and the resulting Fe4+ formation. The increase in Fe4+ concentration in

K-doped LaFeO3 was also supported by XPS. The UV-vis-NIR absorption spectra

showed that K doping decreased the bandgap by ∼0.2 eV and enhanced the ab-

sorption below the bandgap as predicted by the electronic band structure and sim-

ulated optical response of K-doped LaFeO3. Furthermore, Mott-Schottky analysis

confirmed an increase in carrier density caused by K doping. Due to the increase

in photon absorption and charge transport properties, K-doped LaFeO3 generated

a significantly increased photocurrent for O2 reduction, which is a good measure

of the increase in the number of surface-reaching electrons under illumination.

K-doped LaFeO3 also increased the photocurrent for water reduction. However,

124



the increase in this case was not significant due the poor catalytic ability of both

the pristine and K-doped LaFeO3 for water reduction, resulting in considerable

surface recombination. The beneficial effect of the decreased bandgap of K-doped

LaFeO3 on photocurrent generation was confirmed by IPCE, which showed pho-

tocurrent generation below the bandgap of the pristine LaFeO3. The enhanced

photocurrent caused by K doping was also confirmed to be stable. This study

demonstrated that substitutional doping of La3+ with K+ offers an effective way

to increase both photon absorption and charge transport properties that directly

influence photocurrent generation by LaFeO3. We plan to perform further investi-

gations of doping at the Fe site as well as doping at the La site with other dopants

that vary in nature (alkaline, alkaline earth, or transition metals) and valency

to obtain a comprehensive understanding of the effect of composition tuning of

p-type oxides with a perovskite structure.
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Chapter 3

Designing Quantum Defects in

Two Dimensional Materials

3.1 Overview

Quantum technologies offer exotic and impressive capabilities in computation,

sensing, and information [269]. While several systems of quantum computation

exist, defect based qubits offer a distinct advantage in their ability to operate

optically and under room temperature conditions [270, 271, 272]. Furthermore

defects in two-dimensional (2D) materials yield a higher-ceiling for defect based

quantum technologies where spatially controlling doping, entangling qubits, and

qubit tuning are all more attainable [273, 274]. In particular, two-dimensional

hexagonal boron nitride (h-BN) has demonstrated that it can host defect-based

single photon emitters (SPEs) [275] and qubits [276].

As such, my work has focused on the prediction of defects in h-BN for quantum

applications. From a computational perspective, studying defects in 2D materials

offers several technical challenges. In 2018, I was awarded an NSF scholarship for
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studying quantum information science through a program known as QISE-NET.

This program provides supplemental funding to perform ongoing research in col-

laboration with Argonne National Laboratory, so that we may study defects in

h-BN (this was later highlighted in the UC Santa Cruz newsletter). In particular,

these efforts culminated in our work from 2018, wherein we demonstrated how to

compute the single-particle band gap of h-BN via a Koopmans’ compliant hybrid

functional approach which incorporates improved screening effects in our calcu-

lation but mitigates the expense of many-body theory based methods i.e. the

GW approximation [216]. Additionally, this work demonstrated the layer depen-

dence on defect ionization energies. Following this up, we then studied radiative

and nonradiatiave recombination of defects in h-BN. One particularly interesting

facet of this research in the demonstration of how significantly the nonradiative

recombination of defects can be effected by strain, wherein we predicted the strain

fingerprints of NBVN which matches closely with subsequent experimental mea-

surements. [277] Recently, I also implmented computing the zero-field splitting

of S ≥ 1 systems, an essential quantity in defect based-qubit systems like NV

center in diamond. In addition, I have implemented computing intersystem cross-

ing (necessary for spin initialization and readout) with spin-orbit coupling and

electron-phonon interaction. With these computed static and dynamical proper-

ties, we are able to predict spin qubits read-out efficiency and new quantum spin

defect systems in hexagonal boron nitride which can be potential candidates for

spin-based quantum technologies.
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3.2 Charge Defect Formation and Ionization En-

ergies

In our 2018 work published in Physical Review Materials [216], we demon-

strated methods of computing charge transition levels at various levels of theory

and propose referencing to vacuum among other things as a way to achieve consis-

tency at semi-local DFT, hybrid DFT, and GW.We also employ Koopmans’ condi-

tion to achieve hybrid functionals which reproduce GW results. Two-dimensional

(2D) materials provide the unique opportunity to scale future electronics smaller

than ever believed physically possible, implying engineering 2D materials is a

promising strategy that can meet the demands of future nanotechnologies [278].

As defects play a crucial role in the optical and electronic properties of these

systems, the engineering of defects in 2D materials has sparked continuous inter-

est [279, 280, 281, 282, 283, 284]. For example, defects in h-BN have been found to

be the source of stable polarized and ultra-bright single-photon emissions at room

temperature [285, 286, 273, 287]. Hence, the development of our understanding of

defects in 2D materials will open up further possibilities for emerging applications

in quantum information and nanotechnology with much better scalability than

traditional defects in 3D materials.

Unlike in their 3D counterparts [288, 19, 289, 70, 290], first-principles tech-

niques for calculating defect properties in 2D materials still face significant chal-

lenges. Specifically, eliminating the periodic charge interactions for charged de-

fects in 2D materials requires a charge correction scheme that accounts for the

weak and anisotropic dielectric screening of 2D systems [291, 292, 293]. Further-

more, several exchange-correlation functionals that provide accurate electronic

structures for 3D bulk systems are no longer applicable to ultrathin 2D systems.
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For example, the fraction of Fock exchange (α) in hybrid functionals can be ap-

proximated as the inverse of dielectric constant (ε∞) of the material [294, 295],

but this is problematic for ultrathin 2D materials where ε∞ decreases to unity in

the limit of infinite vacuum sizes (complete separation between periodic images).

Therefore, the determination of α in hybrid functionals for 2D materials remains

an open question. On the other hand, many body perturbation theory techniques

(e.g. GW approximation) give accurate quasiparticle energies such as band gaps

and band positions; however, high computational cost and slow convergence with

respect to empty states make the screening of many defects in 2D materials im-

practical with conventional implementations [296, 297, 298, 299, 300, 301].

In our previous work [16, 69], we developed an efficient and accurate method

that can give reliable charge corrections for total energies and electronic states of

charged defects in 2D materials without any supercell extrapolations, and then pro-

vided accurate defect CTLs with the DFT+GW scheme [302, 303, 304, 305]. Such

implementation is built on top of the WEST-code [306], Quantum-Espresso [52]

and JDFTx [15] packages. In our GW calculations, we avoided explicit inclusion

of empty states and inversion of dielectric matrices [306, 224, 307], while also

speeding up vacuum size convergence with a 2D Coulomb truncation [308]. In

this letter, we propose to solve two important issues for 2D materials. First, we

determine which level of theory and which electron chemical potential reference

one should use to calculate a CTL. Second, we show how to define the fraction

of Fock exchange in hybrid functionals for accurate band edges and band gaps.

In the end, we combine these two findings to obtain accurate defect ionization

energies for 2D materials.

129



3.2.1 Methodology

Computational Methods In this work, all structural relaxations and total

energy calculations were performed using open source plane wave code Quantum-

ESPRESSO [52] with Perdew-Burke-Ernzerhof (PBE) [10] exchange-correlation

functional, ONCV norm-conserving pseudopotentials [54, 55], a wavefunction cut-

off of 70 Ry and a k-point mesh corresponding to 12 × 12 × 1 or higher in the

primitive cell. The vacuum between periodic images along non-periodic direction

is at least 30 Bohr.

Once the structural parameters were determined, we performed a separate

single-point calculation using a wavefunction cutoff of 45 Ry and hybrid function-

als including HSE, B3PW91, PBE0 and PBE0(α) with a sufficient k-point mesh

as large as 36 × 36. The band gap is determined from the difference between

valence band maximum (VBM) and conduction band minimum (CBM). If the

k-point of VBM or CBM is not included in the k-point mesh, it is interpolated

between eigenvalues of the same band of nearby k-points.

A single point calculation using a wavefunction cutoff of 45 Ry and PBE

functional was performed as the starting point for GW calculations. The GW

calculations were performed using the WEST code [306]. We used the G0W0 ap-

proach with starting wavefunctions and eigenvalues at the PBE level of theory.

We employed the contour deformation technique for frequency integration of the

self energy. For the dielectric matrix calculation, the number of eigenpotentials

(NPDEP) was chosen to be 3Nelectron, and we used 4Nelectron to validate its con-

vergence. The final GW correction values were extrapolated between 9 × 9 and

12× 12 k-point meshes to infinite k-points similar to Ref. [16].

The charge corrections [69] for the total energies and eigenvalues of charged

defects at the DFT level employed the techniques developed in Ref. [69] and
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Figure 3.1: Schematic plot of the two paths (distinguished with blue/red color)
that transition from charge state q to q+1. For each path, there is a corresponding
vertical excitation, which can be computed either with EAq+1 or IPq (noted with
up/down arrowheads), as discussed in the main text.

in the SI section IV, which were implemented in the JDFTx code [15, 308, 309]

(computed dielectric profiles are shown in the SI). Dielectric profiles are computed

by applying finite electric fields following the procedure discussed in Ref. [16], with

a smearing width of 1 Bohr (smearing widths of 0.5 to 4.0 Bohr yield identical

charge corrections).

Thermodynamic Charge Transition Levels

A thermodynamic CTL is the value of electron chemical potential εF at which

the stable charge state of the system changes, e.g. from q to q + 1. Therefore,

CTLs are calculated through the equivalency of the formation energies q and q+1,
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given by Eq. (3.1) [19].

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq+1)

= Eq(Rq)− Eq+1(Rq+1)− εF (3.1)

Here Ef
q (R) is the defect formation energy with charge q and geometry R, and

Rq is the relaxed geometry of the system with charge q. Eq(R) is the total energy

that relates to Ef
q (R) and εF following the definition of Eq. (1) in Ref. [16].

Diagrammatically, Eq. (3.1) is the energy difference between two potential surface

minimua in position space R, as shown in Fig. 3.1.

3.2.2 Implementing Quasiparticle Corrections in Defect

Charge Transition Levels

It is well-known that local and semi-local functionals do not give accurate

total energy differences between two charge states, where an electron removing

(IP)/adding process (EA) is involved. An alternative approach [16] is to separate

Eq. (3.1) into two parts: the vertical excitation energy between two charge states

(q and q+1) at the same geometry (R) (denoted as quasiparticle energies εQP ) and

the geometry relaxation energy at a fixed charge state (denoted with Erlx). Since

DFT is known to provide reliable geometry relaxation energies (if one corrects the

fictitious charge interactions between periodic images as we did in Ref. [16]), this

separation allows us to accurately calculate the vertical excitation energies with

a higher level of theory appropriate for non-neutral excitations, such as the GW

approximation.

One can separate Eq. (3.1) by two possible physical pathways from Ef
q (Rq) to

Ef
q+1(Rq+1) as shown in Fig. 3.1. One pathway (red path) occurs with a vertical
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excitation at Rq (Ef
q+1(Rq) − Ef

q (Rq)) followed by a geometry relaxation at the

charge state q+1 (Ef
q+1(Rq+1)−Ef

q+1(Rq)), shown in Eq. (3.2). The other pathway

(blue path) occurs through the geometry relaxation at the charge state q plus a

vertical excitation at Rq+1, corresponding to Eq. (3.3).

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq)︸ ︷︷ ︸
εQP

+Ef
q+1(Rq)− Ef

q+1(Rq+1)︸ ︷︷ ︸
Erlx

= εQPq+1|q(Rq) + Erlx
q+1 (3.2)

εq+1|q = Ef
q (Rq)− Ef

q (Rq+1)︸ ︷︷ ︸
Erlx

+Ef
q (Rq+1)− Ef

q+1(Rq+1)︸ ︷︷ ︸
εQP

= Erlx
q + εQPq+1|q(Rq+1) (3.3)

Note that all three equations (Eq. (3.1), (3.2), (3.3)) are exactly equivalent theo-

retically. Yet, in practice they may yield sizable differences, as discussed later.

Furthermore, the vertical excitation energies εQPq+1|q in Eq. (3.2) and Eq. (3.3)

can be determined from either the ionization potential of the charge state q (IPq)

or the electron affinity of the charge state q + 1 (EAq+1) , as noted in Fig. 3.1

with up/down arrowheads. Note that we obtained IP and EA through eigenvalues

at different levels of theory based on the Janak’s theorem [310]. The difference

between IPq and EAq+1 is largely related to the delocalization or localization

error at a particular level of theory, and serves as a stringent test for an exchange-

correction scheme in electronic structure calculations [311].
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Method Defect

CB VNCB CN VNCB

CTL (0/+1) (0/+1) (-1/0) (-1/0)

Eq3.1 -3.63 -4.22 -3.54 -1.57

PBE Eq3.2 -3.61 -4.29 -3.51 -1.66

Eq3.3 -3.64 -4.33 -3.49 -1.67

Eq3.1 -3.65 -4.19 -3.50 -1.87

PBE0 Eq3.2 -3.60 -4.17 -3.50 -1.87

Eq3.3 -3.62 -4.21 -3.50 -1.21*

Eq3.2 -3.40 -4.29 -3.74 -1.74

G0W0 Eq3.3 -3.28 -4.22 -3.73 -1.70

IPq(Rq)-EAq+1(Rq)

PBE 2.68 2.60 2.75 2.50

PBE0 1.15 1.09 1.13 1.42

G0W0 0.04 0.20 0.03 0.19

Table 3.1: Charge transition levels (CTLs) relative to vacuum (in eV) of mul-
tiple defects in monolayer h-BN. These values are collected via three methods
(Eq. (3.1-3.3)) at various levels of theory (PBE, PBE0, G0W0@PBE ). The CTLs
relative to vacuum are remarkably similar. The one exception, VNCB (-1/0) at
PBE0 (marked with *) incidentally has a band inversion resulting in a defect
level within the valence band, breaking the reliability of Eq. (3.3). We also show
IPq(Rq)−EAq+1(Rq) at different levels of theory. Note that at the G0W0 level,
this difference is < 0.2 eV.

Therefore, we firstly compared the CTL with PBE, PBE0 and G0W0@PBE

for three different defects in monolayer BN as shown in Table 3.1, where εQP is

obtained by taking the average of IPq and EAq+1 as:

εQPq+1|q(R) = 1
2(EAq+1(R) + IPq(R)) (3.4)

Note that we propose to set εF equal to the vacuum level (determined by the

electrostatic potential in the vacuum region of supercells) and use it as a reference
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for Eq. (3.1). We found this choice (opposed to band edges) is particularly

advantageous for obtaining consistent CTLs among different methods as shown in

Table 3.1. (More computational details for G0W0@PBE can be found in SI, with

similar numerical techniques and parameters used in Ref. [16]). There are several

interesting observations from Table 3.1, as follows. First, we found excellent

agreement (within 0.1 eV) among Eq. (3.1), (3.2) and (3.3) for each defect at

each level of theory. Second, we found the results obtained among PBE, PBE0

and G0W0@PBE are also strikingly similar (within 0.2 eV) for each defect. This

means the CTLs of 2D materials relative to vacuum are not affected by the level of

theory one chooses. Note that the difference between IPq and EAq+1 is more than

2 eV for PBE, reduced to 1 eV at PBE0 level (α = 0.25), but less than 0.2 eV

at G0W0@PBE, which indicates the delocalization error present with semi-local

DFT has been mostly corrected at G0W0@PBE [311].

3.2.3 Generalized Koopman’s Condition for Exact Exchange

of 2D Materials

After we obtained reliable CTLs, in particular relative to vacuum, we focused

on how to calculate accurate band edge positions and band gaps of 2D materials

in order to determine defect ionization energies. Using the GW approximation,

we obtained an accurate quasiparticle band gap (indirect at T→M) 6.01 eV for

bulk h-BN (Table 3.2), in excellent agreement with the experimental fundamental

electronic gap 6.08 ± 0.015 [312]. Nonetheless, GW is still too computationally

demanding for materials’ screening and computing forces is non-trivial. Therefore,

the development of computationally affordable methods such as accurate non-

empirical hybrid functionals for 2D materials is strongly desired.
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The generalized Koopmans’ condition has been mostly used to determine

the appropriate fraction of Fock exchange (α) for molecules and molecular crys-

tals [313, 314, 315, 316, 317, 318, 319]. One recent work [215] enforced this condi-

tion (i.e. EAq+1 = IPq) on defects in bulk semiconductors to obtain α and in turn

predicted accurate electronic structure of the corresponding pristine bulk systems.

The fundamental assumption is that the optimized α depends on the long range

screening of the system and not on the nature of the probe defects. This con-

dition is also valid for deep defects in 2D materials, where defect wavefunctions

are well localized like molecule orbitals in the supercells, and their contribution

to dielectric screening is negligible compared to the crystal environment. Another

advantage of applying this condition to 2D systems is that both EAq+1 and IPq

can be exactly referenced to vacuum. In order to validate the applicability of

the generalized Koopmans’ condition to 2D materials, we used the defect CB as a

probe to determine α for h-BN (BC for graphane). This method gives α of 0.409,

0.347, 0.324, 0.225 for monolayer, bilayer, trilayer and bulk h-BN, respectively.

Note that the α value 0.225 for bulk h-BN, agrees well with the predicted α from

the inverse of high frequency dielectric constant (α = 1/ε∞ ≈ 0.2) [320], which

supports the assumption that long-range screening determines α. We also inves-

tigated other defects CN and VNCB as probes of α (their corresponding electronic

structure can be found in SI).

Interestingly, we found that IPq and EAq+1 from Kohn-Sham eigenvalues varied

linearly with α. Fig. 3.2 shows this linearity for three defects in monolayer h-BN,

and three defects predict very similar α, which justifies the insensitivity of α to

the explicit defect. It is also notable that the slopes of IPq and EAq+1 are opposite

but nearly equal, explaining how the average of IPq and EAq+1 as εQP for CTL

in Eq. (3.2) and (3.3) works well (as shown in Table 3.1).
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Figure 3.4: Charge transition level CB (+1/0) in h-BN with different levels of
theory. Defect charge transition levels gradually become shallower with lower
ionization energies while increasing the number of layers (ionization energies are
written adjacent to arrows from the CTL to CBM). Note that the defect CTLs
are very similar relative to vacuum between different methods.

Most commonly, two-dimensional systems are synthesized with a few layers of

the material, therefore understanding the effect of increasing thickness is essential

to connect with realistic experiments. As such, we have computed the band gaps

of monolayer, bilayer, trilayer and bulk h-BN, as well as graphane with several

hybrid functionals including HSE, PBE0, B3PW and PBE0(α) (with α predicted

earlier), as well as with G0W0@PBE for a reliable comparison (see Table 3.2).

As anticipated, PBE strongly underestimated monolayer h-BN band gap: 4.71

eV with a direct transition at the K point. With any level of theory beyond

PBE, monolayer h-BN is predicted to have a larger, indirect gap from K to Γ. In

accordance with quantum confinement, we observed that the band gaps of h-BN

obtained at B3PW, PBE0(α), and G0W0 show a sharp increase at ultrathin BN

(monolayer to trilayer) compared to bulk BN. However, HSE and PBE0 provide

almost the same band gaps between ultrathin and bulk BN. This is because there is

a severe change in the dielectric screening from monolayer to bulk, and a different

portion of Fock exchange must be instilled.
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Using PBE0(α) we obtained results consistent with quantum confinement and

in best agreement with our G0W0 calculations with a MAE of 0.14 eV (see SI

Fig. 3). In addition, the B3PW functional [321, 322] provided a more accurate

bulk BN band gap than PBE0 and HSE but still underestimated the band gaps

of ultrathin BN. Therefore, the direct/indirect transitions and magnitude of the

gaps from bulk to monolayer are provided accurately solely with PBE0(α) and

G0W0. In brief, the results shown in Table 3.2 validate our method for determining

accurate fundamental band gaps for 2D materials from first-principles. We note

that calculated band edge positions relative to vacuum are also similar at PBE0(α)

and G0W0 as shown in Fig. 3.4 and SI.

3.2.4 Defect Ionization Energies in 2D Materials

Finally, CTLs and ionization energies for CB in h-BN computed at PBE, HSE,

PBE0(α) and G0W0 levels of theory as a function of number of layers are shown

in Fig. 3.4. Consistent with the findings in Table 3.1, CTLs changed less than

0.1 eV across different theoretical methods relative to vacuum. Interestingly, no

clear trend and only small difference have been found in the band edge positions

of h-BN from monolayer to triple layers. These results illustrate that one just

needs to correct the band edge positions of pristine 2D materials with PBE0(α)

or G0W0, and use CTLs determined from DFT with semi-local functionals, then

the difference of the two yields accurate defect ionization energies in 2D materials.

On another note, we found there is a clear monotonic decrease in the ionization

energies of defects in BN with increasing number of layers, mostly contributed by

CTLs’ shift towards vacuum (shown in Fig. 3.4; also see SI Fig. 5). This effect

can be understood as a result of increased dielectric screening with more layers of

h-BN, and is consistent with the effect of dielectric environments on the ionization
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Figure 3.5: Ionization energies of CB in h-BN with varying number of layers. It is
observed that ionization energies decrease monotonically with increasing number
of layers. Note that PBE0(α) and G0W0 give results in excellent agreement.

energies of MoS2 [323].

3.2.5 Conclusions

In summary, we established fundamental principles to reliably and efficiently

compute ionization energies for defects in 2D materials. Specifically, band edge

positions of the pristine systems should be computed with our proposed PBE0(α)

hybrid functional or GW approximations, and the defect CTL can be obtained

reliably by standard DFT with semi-local functional, if relative to vacuum. We

successfully applied the proposed methods for a variety of defects from monolayer

to triple layer h-BN, as well as graphane. We also demonstrated that defect

ionization energies decreased with increasing number of layers in h-BN, mainly

due to enlarged dielectric screening. Our findings in this work suggest efficient and
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accurate methods to compute defect ionization energies and electronic structures

in 2D materials, which can be applied to screening new promising defects for

quantum information and optoelectronic applications.
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3.3 Carrier Recombination Mechanisms

3.3.1 Introduction

The engineering of spin defects in wide-band semiconductors offers a promising

avenue for the development of quantum spin devices. [324, 325, 326, 282] They

are among the few alternatives for quantum technologies that operate at room

temperature. Deep defects in two-dimensional (2D) materials such as hexagonal

boron nitride (h-BN) [327, 287, 328, 285, 275, 329, 330, 331, 332, 333, 334, 335, 336]

and transition metal dichalcogenides (TMD) [337, 338] have proven to be promis-

ing single photon sources with polarized and ultrabright single photon emission

at room temperature. These materials exhibit unprecedented potential for sev-

eral applications, including large-scale nanophotonics and quantum information

processing, [339, 340, 341, 342, 343] which in turn provide a new platform for

exploring quantum phenomena. [282] In order for these defect centers to provide

bright SPE, [324, 342] the radiative recombination rate (photon emitted) needs

to be high, while the non-radiative recombination rate (no photon emitted) must

be substantially lower to yield a high quantum efficiency. Furthermore, a weak

electron-phonon coupling is also required to ensure long spin relaxation time for

the application of qubit and stable single photon emission at room temperature.

Despite the importance of maximizing radiative rates for quantum information,

the factors which determine the recombination process at defects in 2D materi-

als are not understood experimentally or theoretically. Past theoretical studies

have either focused on radiative recombination in pristine 2D materials [344, 16]

or phonon assisted non-radiative recombination for defects in 3D wide band-gap

semiconductors. [345, 346] Therefore, a fully comparative study of both recombi-

nation processes for defect centers in 2D materials is highly desired.
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Figure 3.6: Schematic diagram of carrier recombination at the NBVN defect
in monolayer h-BN. In order for a defect to be a robust single photon source,
it is necessary to have the radiative recombination rates much higher than the
non-radiative ones.

Furthermore, the high tunability of SPE allows them to be integrated within

a vast array of applications. [287, 342] Among these methods, strain modulation

is one of the most effective strategies, especially for low-dimensional materials

which can work under large distortion. [347] For example, in 2D systems, some key

electronic properties such as band gap, change by 1.5% under 1% uniaxial tension

in TMD monolayers [348] or 6% under 1% uniaxial tension in phosphorene [349].

Additionally, the non-radiative process, which is intrinsically sensitive to lattice

deformation (as it is phonon mediated), may exhibit even more drastic changes

under strain.

In this communication, we first introduce the formalism of computing the

radiative and non-radiative lifetime of defect excited states from first-principles.

We then focus on comparing radiative and non-radiative processes of different

transitions in a series of important defects in monolayer h-BN, where we discuss

the dominant recombination processes and their implication on SPE efficiency.

Finally, we show that applying strain to h-BN defects can effectively tune the
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non-radiative rates and quantum yield of SPE.

The radiative and non-radiative transition rates between two electronic states

under perturbation can be computed via Fermi’s golden rule:

rRif = 2π
~
g
∣∣∣ 〈f |HR|i〉

∣∣∣2 δ(Ei − Ef ), (3.5)

rNRif = 2π
~
g
∑
n,m

pin
∣∣∣ 〈fm|He−ph|in〉

∣∣∣2 δ(Ein − Efm). (3.6)

Here, rRif and rNRif denote the recombination rates between electronic states i and

f via a radiative process (rRif ) and non-radiative process (rNRif ), respectively. g is

the degeneracy factor of the final state, i.e. several equivalent energy-degenerate

atomic configurations of the final state might exist. [350] For defects in 2D mate-

rials studied in this work, g factors are all equal to 1. HR is the electron-photon

coupling (electromagnetic) Hamiltonian and He−ph is the electron-phonon cou-

pling Hamiltonian. A sum over phonon states n,m enters the non-radiative re-

combination process with an occupation number pin of the vibronic state |in〉.

For ground state calculations, we employed open source plane-wave code Quan-

tum ESPRESSO [52] with ONCV norm conserving pseudopotentials [54, 55] and

a supercell size of 6 × 6 or higher. Charge corrections for the total energies and

eigenvalues of charged defects were applied by employing the techniques devel-

oped in Ref. [16, 69]. The total energies, defect formation energies and geometry

were computed at both PBE and hybrid functional levels (the results presented

in the main text are computed at PBE, and detailed comparison between two

levels can be found in the Supporting Information (SI) Table S4). The band gaps

of pristine h-BN are computed at GW@PBE as done in our previous work [16],

which are 6.01 eV for bulk and 7.01 eV for monolayer h-BN respectively. The

exciton dipole moments and exciton energies as input for radiative lifetime were

computed at many body perturbation theory with GW approximation for quasi-

146



particle energies [306, 224, 351] and then solving the Bethe-Salpeter equation

with the Yambo-code [228], as well as Random Phase approximation with DFT

eigenvalues (detailed comparison can be found in the SI, Table S3; the results

in the main text are computed at DFT-RPA). More computational details and

formulation of radiative rates rRif are discussed in the SI and Ref. [21].

The non-radiative rate is simplified by the static coupling approximation with

a one-dimensional (1D) effective phonon approximation[345, 350, 352, 353, 354,

347, 355, 356, 357, 235, 358, 359, 360, 346, 361, 362, 363, 364] (the validation of 1D

effective phonon approximation in h-BN is based on the similarity of Huang-Rhys

factors between 1D effective phonon and all phonon calculations, as discussed in

the SI, section IV):

rNRif =2π
~
g|Wif |2Xif (T ), (3.7)

Xif (T ) =
∑
n,m

pin | 〈φfm(R)|Q−Qa|φin(R)〉|2

× δ(m~ωf − n~ωi + ∆Eif ), (3.8)

Wif = 〈ψi(r,R)|∂H
∂Q
|ψf (r,R)〉

∣∣∣∣∣
R=Ra

, (3.9)

where rNRif is naturally separated into an electronic term Wif and a phonon term

Xif (T ) with temperature dependence from thermal population (pin). Here ∆Eif

is the zero phonon line energy (ZPL), which can be measured experimentally by

photoluminescence. We implemented the non-radiative recombination rates as

postprocessing codes of Quantum ESPRESSO [52].

3.3.2 Defect-band versus defect-defect transitions in h-BN

A single defect may introduce several energy levels within the band gap of

the host material. This yields the possibility for transitions to occur between
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Table 3.3: Non-radiative lifetimes and capture coefficients of defects in h-BN
and GaN through defect-band recombination(only for the hole capture processes
A−1 + h+ → A0). For comparison a dominant defect-defect recombination at
NBVN in monolayer h-BN is also listed. The capture coefficients Cp (with a unit
of cm2/s for 2D and cm3/s for 3D systems) and lifetimes are reported at T = 300
K. Lifetimes are defined as the inverse of rates τNR = 1/rNRif and computed in
6× 6 h-BN supercell or 2× 2× 2 GaN supercell.

System ZPL
(eV)

∆Q
(amu1/2Å)

~ωf

(meV)
Cp

(cmn/s) τNR

ML CBVN(2D) 5.78 0.58 86 10−32 > 1 ms
ML OBOBVN(2D) 4.26 0.84 85 10−29 > 1 ms
ML NBVN(2D) 5.46 0.51 95 10−33 > 1 ms
ML CN(2D) 3.87 0.35 150 10−16 > 1 ms
Bulk CN(3D) 2.69 0.35 149 10−16 6.6 µs
GaN-CN(3D) 1.00 1.39 39 10−9* 0.29 ps
ML NBVN(2D) 2.04 0.53 100 10−4 102 ps
(defect-defect)
* 7× 10−10 in Ref. [350].

defect states (“defect-defect” transition), as well as from a defect state to a band

edge (“defect-band” transition). The computed non-radiative lifetimes and cap-

ture coefficients of the most probable defect-band transitions for hole captures in

multiple defects in monolayer and bulk h-BN as well as bulk GaN are listed in

Table 3.3 (where XBVN (X=C, O, N) denotes X substitution of boron accompa-

nied by a nitrogen vacancy). The capture coefficients are defined as a product of

recombination rates rij with surface area or volume for 2D or 3D systems, respec-

tively. The corresponding defect formation energies and configuration coordinate

diagrams are presented in the SI, Figure S1. We find that all defect-band transi-

tions in monolayer h-BN have very small rates (the corresponding lifetime exceeds

milliseconds). This is in contrast to typical 3D bulk defects in other materials,

such as GaN-CN or GaN-(ZnGaVN), where the non-radiative lifetime is at the

picosecond level with a similar defect concentration to h-BN. [360, 350, 365]

One key reason that non-radiative defect-band recombination in monolayer
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h-BN is typically slow, is due to large energy differences between defect states

and band edges (∼ 4 − 6 eV) as the ZPL shown in Table 3.3. [16, 216, 297]

Nonetheless, other factors such as the effective phonon frequencies ~ωf and the

change of nuclear positions ∆Q can also affect the rates, as discussed later. For

example, comparing monolayer BN-CN with bulk BN-CN, only the ZPL changes

significantly (over 1 eV) and other parameters (~ωf and ∆Q) retain nearly con-

stants, which ultimately leads to a two order of magnitude difference in their

capture rates. Physically, the phonon-assisted non-radiative rate is dominated by

a charge transfer process between initial and final state potential energy surfaces,

and can be approximated by a classical Marcus’ theory picture (see Figure 3.6).

Given the form of the energy barrier for charge transfer, [347] a large energy differ-

ence between the two states (ZPL) results in an exponential drop in the transfer

rate (although exceptions can be found [366, 367, 368, 346]). Therefore, in mono-

layer h-BN, the large ZPLs of defect-band transitions result in extremely slow

non-radiative recombination processes (over milliseconds). On the other hand,

several defects have allowed defect-defect transitions with viable non-radiative

rates due to smaller energy differences, e.g. the NBVN (nitrogen substitution of

boron accompanied by a nitrogen vacancy) defect-defect transition in monolayer

h-BN (Table 3.4).

Hence, the remaining discussions are focused on defect-defect transitions in

monolayer h-BN. Defect-defect non-radiative recombination is performed for neu-

tral excited and ground state with constrained occupation number. The equilib-

rium geometry, ZPL and vibrational frequency can be also obtained at DFT with

constrained occupation. More computational details for defect-defect nonradiative

recombination can be found in SI, section III, Figure S2 and Table S4.
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Figure 3.7: Defect levels and possible defect-defect transitions of NBVN in
monolayer h-BN. Both up and down spin channels of the 2B1/1B1 transitions
are marked in red as they are optically allowed with light polarized along defect
C2 symmetry axis. The exact radiative (τR) and non-radiative (τNR) lifetimes are
given for the spin up transition with a 6×6 supercell. The remaining transitions
in gray are all optically forbidden and have very long radiative and non-radiative
recombination lifetimes (exceeding 1 ms).

3.3.3 Competition between radiative and non-radiative re-

combination lifetime at h-BN defects

Considering a typical point defect such as NBVN which has been proposed as

a promising defect for SPE, [331, 287, 286] we find it introduces several isolated

energy levels that lead to multiple possible radiative and non-radiative defect-

defect recombination pathways (as shown in Figure 3.7). However, we found only

the transition between 1B1 ↑ and 2B1 ↑ (HOMO-LUMO transition for the majority

spin channel) has a viably short radiative lifetime and non-radiative lifetime. All

other processes have a non-radiative lifetime longer than ms, much slower than

this transition which is at a picosecond level.
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Table 3.4: Properties of defect-defect non-radiative recombination of the NBVN
defect in monolayer h-BN. Non-radiative lifetimes are computed with a 6×6 su-
percell at 300 K and Sf denotes the ground-state Huang-Rhys factor.

Transition ZPL
(eV)

~ωf

(meV) k* Sf Xif Wif
Cp

(cm2/s)
τNR

(ps)
2B1 ↑ / 1B1 ↑ 2.04 100 20 5.3 1.3 0.38 10−4 102
1B1 ↓ / 1A1 ↓ 1.33 58 23 16.6 105 10−7 10−11 > 109

2B1 ↓ / 1A1 ↓ 2.94 65 46 7.8 10−4 10−6 10−19 > 109

2B1 ↓ / 1B1 ↓ 1.61 57 28 3.2 10−13 0.03 10−19 > 109

* k = ∆Eif/~ωf

The non-radiative transition rate is determined by multiple factors based on

Eq. 3.7. The first factor is the phonon term Xif . As the ZPL for all defect-defect

transitions are relatively small (less than 3 eV, unlike defect-band transitions), we

analyze the subtle difference causing variation of Xif among different transitions,

based on the relation: Xif ∝ e−S S
k

k! where k ≈ ∆Eif/~ωf and S is the HR

factor. [350]. Specifically (k > S for all defect-defect transitions we study here),

a high S implies a large electron-phonon coupling and generally will increase

the phonon contribution Xif . For example, the HR factor for the 1B1 ↓/1A1 ↓

transition (16.6) is several times larger than other transitions in Table 3.4 and

therefore yields the largest Xif of 105 at 300 K. On the other hand, a high value

of k means a large energy difference (ZPL) relative to the phonon frequency and

will reduce phonon contribution Xif , similar to earlier discussions on defect-band

transitions. The second factor is the electronic term Wif , which is proportional

to the overlap between electronic wavefunctions 〈ψi〉ψf . Ultimately, only the

2B1 ↑/1B1 ↑ transition has a reasonably large Xif and the largest Wif , which

leads to a viable non-radiative recombination process with a lifetime of 102 ps at

300 K.

The radiative process is more straightforward to interpret as it is directly

related to the symmetries of wavefunctions via the dipole transition matrix ele-
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ments 〈ψi|r|ψf〉. Computational details can be found in section VI and Table S3

in the SI. The corresponding transition section rules for radiative recombination

of NBVN defect in h-BN are listed in Table S5. Both the 2B1 ↑/1B1 ↑ transition

and the 2B1 ↓/1B1 ↓ transition are symmetry allowed, [286] resulting in short

radiative lifetimes of 1.4 ps and 2.5 ps, respectively. This lifetime can be con-

sidered to be a lower-bound compared to that of experimental results, because

a much higher defect concentration is adopted in practical calculations (1 defect

in a 72-atom supercell, i.e. 1 defect per 2 nm2, compared to order of one SPE

per µm2 in experiments [287]) and both radiative and non-radiative lifetimes will

increase linearly with decreasing defect concentrations or increasing supercell size

(see Ref. [354] and section V Table S1 and S2 in the SI). At the low concentration

limit, we can consider the defect acts as an isolated molecule in the 2D plane [21],

which gives an upper-bound of the actual lifetime, i.e. 40 ns for 2B1 ↑/1B1 ↑

radiative lifetime at NBVN. This is in good agreement with the experimental ra-

diative lifetime of monolayer h-BN SPE, which are measured to be on the order

of ns.[287, 285, 275, 330] We note that different from the recombination rates, the

capture coefficient is generally constant as a function of defect concentration or

supercell sizes (see Table S1 and S2 in the SI).

The quantum yield of a SPE (excluding substrate effects) is defined as γif =

rR
if/(rR

if + rNR
if ). [369, 370, 371] By comparing the radiative lifetimes with the non-

radiative ones shown in Table 3.4 for the NBVN defect, we have γ > 98% which

shows it has the potential to be a highly efficient quantum emitter. In practice,

several other external effects can cause the quantum yield to be substantially

lower. In particular, substrate recombination [372], photobleaching [373], and

strain (discussed in the next section) are known to play the role of limiting the

quantum yield of defect SPE.
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3.3.4 Effect of strain on the non-radiative lifetime of de-

fects in h-BN

Table 3.5: Properties of 1B1 ↑ −2B1 ↑ defect-defect state transition for NBVN
defect in monolayer h-BN under strain. Strain directions are shown in Figure 3.8.
Xif and lifetime are reported at 300 K.

Strain ZPL
(eV)

∆Q
(Å)

~ωf

(meV) Sf Wif Xif
τNR

(ps)

No strain 2.04 0.666 100 5.33 0.38 1.26 102
Biaxial −1% 2.08 0.613 105 4.69 0.39 0.28 429
Biaxial 1% 2.01 0.732 96 6.18 0.36 9.20 16

Uniaxial ‖ −1% 2.02 0.637 102 4.96 0.39 0.95 127
Uniaxial ‖ 1% 2.07 0.703 98 5.80 0.36 1.98 70

Uniaxial ⊥− 1% 2.10 0.642 103 5.05 0.38 0.38 336
Uniaxial ⊥1% 1.98 0.697 98 5.69 0.37 5.39 25

In this work, we discuss the impact of strain on non-radiative recombination

(and leave other external effects for future study) with NBVN as an example. Pre-

sumably, strain will change the radiative lifetime little (orbital overlaps between

initial and final states are largely preserved) compared to that of the non-radiative

lifetime which can be strongly affected by changes in local structures. As shown

in Figure 3.8, strain may be applied along the C2 symmetry axis (denoted as ||

strain) or orthogonal to the symmetry axis (denoted as ⊥ strain). We consider

effects of strain along both directions as well as the combinatory effects of biaxial

strain for the 2B1 ↑/1B1 ↑ transition (shown in Table 3.5).

As discussed earlier, the non-radiative recombination rate is composed of an

electronic term Wif and a phonon term Xif . Because Wif is proportional to the

wavefunction overlap, the change in Wif due to strain is found to be negligible,

as shown in Figure 3.9a. However, there are significant changes of the phonon

term Xif due to strain. We note that compressive strain indicates lattice shrink-

ing (−); while tensile strain indicates lattice stretching (+) and induces opposite

153



Figure 3.8: Illustration of the directions of uniaxial strain based on the C2v
symmetry of NBVN in h-BN. Uniaxial strains applied parallel (|| blue arrows) or
perpendicular (⊥ red arrows) to the C2 axis are considered. The optimized atomic
structure of NBVN defect is also shown. The green balls denote B atoms and the
grey balls denote N atoms.

changes on non-radiative rates from the former. Therefore, we only discuss com-

pressive strain here. First, compressive strain decreased interatomic distances,

which in turn decreased the change in the atomic coordination between initial and

final states (∆Q in Table 3.5). As such, under compressive strain, the HR factor

S = ωf∆Q2/2~ decreased resulting in an exponential decrease of the phonon term

Xif . Such trends occurred regardless of the direction of strain applied (i.e. ⊥ or

|| to the C2 axis). Second, a change in the ZPL also occurred under strain [275].

After the formation of the nitrogen vacancy, a weak B-B bond is formed per-

pendicular to the C2 symmetric axis (see Figure 3.8). When compressive strain is

applied perpendicular to the C2 axis (⊥ strain), the ZPL is increased, due to larger

bonding-antibonding splitting of the B-B bond that shifts up the 2B1 energy level

(see Figure 3.7 for related wavefunctions and energy levels). As a result, for ⊥

strain the change in ZPL and HR factor coincided and yielded an exponential de-

crease of Xif under compressive strain (red curve Figure 3.9b). In contrast, for ||
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Figure 3.9: Strain induced properties related to non-radiative recombination
lifetime of the 1B1 − 2B1 defect-defect transition of NBVN in monolayer h-BN.
Strain directions are shown in Figure 3.8.
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strain, these changes counteracted each other resulting in a nearly constant value

of Xif (blue curve Figure 3.9b). In addition, biaxial strain is a simple combina-

tory effect of || and ⊥ strain, mostly dominated by the trend of ⊥ strain (black

curve Figure 3.9b). All in all, the exponential change in Xif for both biaxial and

uniaxial ⊥ strain resulted in exponential modification to the non-radiative lifetime

of the defect, as black and red curves shown in Figure 3.9c. In particular, in the

case of tensile biaxial strain, with 1%, the quantum yield decreased by 10% due

to an order of magnitude decrease in non-radiative lifetime. This highlights the

significant impact strain can have on the efficiency of defect SPE.

3.3.5 Conclusion

In summary, in this work we compared the radiative and phonon-assisted non-

radiative recombinations at defects in wide bandgap 2D materials, using mono-

layer h-BN as a prototypical example. We found the radiative recombination rates

far surpass the non-radiative ones, highlighting the potential of point defects in

wide bandgap 2D materials as single photon emitters. Defect-band non-radiative

recombinations all have negligible rates possibly due to large energy differences be-

tween initial and final states, and only a small subset of defect-defect non-radiative

transitions are possible. Transitions vary on several orders of magnitude due to

wavefunction symmetry, HR factor, as well as zero-phonon line (ZPL). Finally, we

show that compressive or tensile strain up to 1% can alter the non-radiative life-

time by orders of magnitude. Hence, strain largely impacts the quantum yield of

single photon emitters and alters the photon energy of the emitter for use towards

specific optoelectronic applications. Our study provides important insights on the

critical factors of defects in 2D materials as single photon emitters for quantum

information applications.
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3.4 Intersystem Crossing and Exciton-Defect Cou-

pling of Spin Defects

In our 2021 work published in npj Computational Materials [374], we imple-

mented and employed methods for computing static and dynamic properties of

spin defects in h-BN, in particular zero-field splitting and intersystem crossing

rates were computed. Using a vast array of methods we are able to identify new

extrinsic dopants in h-BN as single photon emitters and spin defect qubits. Op-

tically addressable defect-based qubits offer a distinct advantage in their ability

to operate with high fidelity under room temperature conditions [270, 271]. De-

spite tremendous progress made in years of research, systems which exist today

remain inadequate for real-world applications. The identification of stable single

photon emitters in 2D materials has opened up a new playground for novel quan-

tum phenomena and quantum technology applications, with improved scalability

in device fabrication and a leverage in doping spatial control, qubit entangle-

ment, and qubit tuning [375, 273]. In particular, hexagonal boron nitride (h-

BN) has demonstrated that it can host stable defect-based single photon emitters

(SPEs) [277, 376, 377, 23] and spin triplet defects [378, 379]. However, persis-

tent challenges must be resolved before 2D quantum defects can become the most

promising quantum information platform. These challenges include the undeter-

mined chemical nature of existing SPEs[329, 377], difficulties in controlled gener-

ation of desired spin defects, and scarcity of reliable theoretical methods which

can accurately predict critical physical parameters for defects in 2D materials due

to their complex many-body interactions.

To circumvent these challenges, design of promising spin defects by high-

integrity theoretical methods is urgently needed. Introducing extrinsic defects
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can be unambiguously produced and controlled, which fundamentally solves the

current issues of undetermined chemical nature of existing SPEs in 2D systems.

As highlighted by Ref. [271, 380], promising spin qubit candidates should satisfy

several essential criteria: deep defect levels, stable high spin states, large zero-

field splitting, efficient radiative recombination, high intersystem crossing rates

and long spin coherence and relaxation time. Using these criteria for theoreti-

cal screening can effectively identify promising candidates but requires theoretical

development of first-principles methods, significantly beyond the static and mean-

field level. For example, accurate defect charge transition levels in 2D materials

necessitates careful treatment of defect charge corrections for removal of spurious

charge interactions [291, 292, 293, 16] and electron correlations for non-neutral

excitation, e.g. from GW approximations [16, 306] or Koopmans-compliant hy-

brid functionals [216, 381, 382, 215]. Optical excitation and exciton radiative

lifetime must account for defect-exciton interactions, e.g. by solving the Bethe-

Salpeter equation, due to large exciton binding energies in 2D systems [383, 384].

Spin-phonon relaxation time calls for a general theoretical approach to treat com-

plex symmetry and state degeneracy of defective systems, along the line of recent

development based on ab-initio density matrix approach [385]. Spin coherence

time due to the nuclei spin and electron spin coupling can be accurately pre-

dicted for defects in solids by combining first-principles and spin Hamiltonian ap-

proaches [386, 387]. In the end, nonradiative processes, such as phonon-assisted

nonradiative recombination, have been recently computed with first-principles

electron-phonon couplings for defects in h-BN [388], and resulted in less com-

petitive rates than corresponding radiative processes. However, the spin-orbit

induced intersystem crossing as the key process for pure spin state initialization

during qubit operation has not been investigated for spin defects in 2D materials
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from first-principles in-depth.

This work has developed a complete theoretical framework which enables the

design of spin defects based on the critical physical parameters mentioned above

and highlighted in Figure D.1a. We employed state-of-the-art first-principles

methods, focusing on many-body interaction such as defect-exciton couplings and

dynamical processes through radiative and nonradiative recombinations. We de-

veloped methodology to compute nonradiative intersystem crossing rates with

explicit overlap of phonon wavefunctions beyond current implementations in the

Huang-Rhys approximation[24]. We showcase the discovery of transition metal

complexes such as Ti and Mo with vacancy (TiVV and MoVV) to be spin triplet

defects in h-BN, and the discovery of SiVV to be a bright SPE in h-BN. We pre-

dict TiVV and MoVV are stable triplet defects in h-BN (which is rare considering

the only known such defect is V−B [276]) with large zero-field splitting and spin-

selective decay, which will set 2D quantum defects at a competitive stage with

NV center in diamond for quantum technology applications.
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Figure 3.10: Screening of spin defects in h-BN. a Schematic of the screen-
ing criteria and workflow developed in this work, where we first search for defects
with stable triplet ground state, followed by large zero-field splitting (ZFS), then
“bright” optical transitions between defect states required for SPEs or qubit op-
eration by photon, and at the end large intersystem crossing rate (ISC) critical
for pure spin state initialization. b Divacancy site in h-BN corresponding to ad-
jacent B and N vacancies (denoted by VB and VN). c Top-view and d Side-view
of a typical doping configuration when placed at the divacancy site, denoted by
XVV. Atoms are distinguished by color: grey=N, green=B, purple=Mo, blue=Ti,
red=X (a generic dopant).

In the development of spin qubits in 3D systems (e.g. diamond, SiC, and AlN),

defects beyond sp dangling bonds from N or C have been explored. In particular,

large metal ions plus anion vacancy in AlN and SiC were found to have potential

as qubits due to triplet ground states and large zero-field splitting (ZFS) [389].

Similar defects may be explored in 2D materials [390], such as the systems shown

in Figure D.1b-d. This opens up the possibility of overcoming the current lim-

itations of uncontrolled and undetermined chemical nature of 2D defects, and

unsatisfactory spin dependent properties of existing defects. In the following, we

will start the computational screening of spin defects with static properties of the

ground state (spin state, defect formation energy and ZFS) and the excited state

(optical spectra), then we will discuss dynamical properties including radiative

and nonradiative (phonon-assisted spin conserving and spin flip) processes, as the
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flow chart shown in Figure D.1a. We will summarize the complete defect discovery

procedure and discuss the outlook at the end.

3.4.1 Screening Triplet Spin Defects in h-BN

To identify stable qubits in h-BN, we start from screening neutral dopant-

vacancy defects for a triplet ground state based on total energy calculations of

different spin states at both semi-local PBE (Perdew–Burke-Ernzerhof) and hy-

brid functional levels. We considered the dopant substitution at a divacancy site

in h-BN (Figure D.1b) for four different elemental groups. The results of this pro-

cedure are summarized in Supplementary Table 1 and Note 1. With additional

supercell tests in Supplementary Table 2, our screening process finally yielded that

only MoVV and TiVV have a stable triplet ground state. We further confirmed the

thermodynamic charge stability of these defect candidates via calculations of de-

fect formation energy and charge transition levels. As shown in Supplementary

Figure 1, both TiVV and MoVV defects have a stable neutral (q = 0) region for a

large range of Fermi level (εF ), from 2.2 eV to 5.6 eV for MoVV and from 2.9 eV

to 6.1 eV for TiVV. These neutral states will be stable in intrinsic h-BN systems

or with weak p-type or n-type doping (see Supplementary Note 2).

With a confirmed triplet ground state, we next computed the two defects’

zero-field splitting. A large ZFS is necessary to isolate the ms = ±1 and ms =

0 levels even at zero magnetic field allowing for controllable preparation of the

spin qubit. Here we computed the contribution of spin-spin interaction to ZFS

by implementing the plane-wave based method developed by Rayson et al. (see

Methods section for details of implementation and benchmark on NV center in

diamond) [391]. Meanwhile, the spin-orbit contribution to ZFS was computed

with the ORCA code. We find that both defects have sizable ZFS including both
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spin-spin and spin-orbit contributions (axial D parameter) of 19.4 GHz for TiVV

and 5.5 GHz for MoVV, highlighting the potential for the basis of a spin qubit

with optically detected magnetic resonance (ODMR) (see Supplementary Note 3

and Figure 2). They are notably larger than previously reported values for ZFS of

other known spin defect in solids [389], although at a reasonable range considering

large ZFS values (up to 1000 GHz) in transition-metal complex molecules [392].

3.4.2 Screening SPE Defects in h-BN

To identify single photon emitters in h-BN, we considered a separate screen-

ing process of these dopant-vacancy defects, targeting those with desirable optical

properties. Namely, an SPE efficiently emits a single photon at a time at room

temperature. Physically this corresponds to identifying defects which have a sin-

gle bright intra-defect transition with high quantum efficiency (i.e. much faster

radiative rates than nonradiative ones), for example current SPEs in h-BN have

radiative lifetimes ∼1-10 ns and quantum efficiency over 50%. [393, 394]

Using these criteria we screened the defects by computing their optical tran-

sitions and radiative lifetime at Random Phase Approximation (RPA) (see Sup-

plementary Note 4, Figure 3 and Table 3). This offers a cost-efficient first-pass

to identify defects with bright transition and short radiative lifetime as poten-

tial candidates for SPEs. From this procedure, we found that CVV(T), SiVV(S),

SiVV(T), SVV(S), GeVV(S) and SnVV(S) could be promising SPE defects ((T) de-

notes triplet; (S) denotes singlet), with a bright intra-defect transition and radia-

tive lifetimes on the order of 10 ns, at the same order of magnitude of the SPEs’

lifetime observed experimentally. [394] Among these, SiVV(S) has the shortest

radiative lifetime, and in addition, Si has recently been experimentally detected

in h-BN with samples grown in chemical vapor deposition (the ground state of
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SiVV is also singlet).[395] Hence we will focus on SiVV as an SPE candidate in the

following sections as we compute optical and electronic properties at higher level

of theory from many-body perturbation theory including accurate electron corre-

lation and electron-hole interactions. Note that CVV (commonly denoted CBVN)

has also been suggested to be a SPE source in h-BN. [396]

3.4.3 Single-Particle Levels, Optical Spectra and Radia-

tive Lifetime

The single-particle energy levels of TiVV, MoVV and SiVV are shown in Fig-

ure 3.11. These levels are computed by many-body perturbation theory (G0W0)

for accurate electron correlation, with hybrid functional (PBE0(α), α = 0.41

based on the Koopmans’ condition [216]) as the starting point to address self-

interaction errors for 3d transition metal defects. [397, 398] For example, we find

that both the wavefunction distribution and ordering of defect states can differ

between PBE and PBE0(α) (see Supplementary Figure 4-6). The convergence

test of G0W0 can been found in Supplementary Figure 7, Note 5, and Table 4.

Importantly, the single particle levels in Figure 3.11 show there are well localized

occupied and unoccupied defect states in the h-BN band gap, which yield the

potential for intra-defect transitions.
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Figure 3.11: Single-particle levels and wavefunctions. Single-particle de-
fect levels (horizontal black lines) of the (a) TiVV, (b) MoVV, and (c) SiVV defects
in h-BN, calculated at G0W0 with PBE0(α) starting wavefunctions. The blue/red
area corresponds to the valence/conduction band of h-BN. States are labelled by
their ordering and representation within the CS group with up/down arrows indi-
cating spin and filled/unfilled arrows indicating occupation. A red arrow is drawn
to denote the intra-defect optical transition found in Figure 3.12. Defect wave-
functions at PBE0(α) are shown with an isosurface value 10% of the maximum.
The blue and yellow color denotes different signs of wavefunctions.

Obtaining reliable optical properties of these two-dimensional materials ne-

cessitates solving the Bethe-Salpeter equation (BSE) to include excitonic effects

due to their strong defect-exciton coupling, which is not included in RPA calcula-

tions (see comparison in Supplementary Figure 8 and Table 5). [224, 399, 400, 17]

The BSE optical spectra are shown for each defect in Figure 3.12a-c (the related

convergence tests can be found in Supplementary Figure 9-10). In each case we

find an allowed intra-defect optical transition (corresponding to the lowest en-

ergy peak as labeled in Figure 3.12a-c, and red arrows in Figure 3.11). From the

optical spectra we can compute their radiative lifetimes as detailed in the Meth-

ods section on Radiative Recombination. We find the transition metal defects’

radiative lifetimes (tabulated in Table 3.6) are long, exceeding µs. Therefore,

they are not good candidates for SPE. In addition, while they still are potential

spin qubits with optically-allowed intra-defect transitions, optical readout of these
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defects will be difficult. Referring to Table 3.6 and the expression of radiative life-

time in Eq. 1.14 we can see this is due to their low excitation energies (E0, in the

infrared region) and small dipole moment strength (µ2
e−h). The latter is related to

the tight localization of the excitonic wavefunction for TiVV and MoVV (shown in

Figure 3.12d-f), as strong localization of the defect-bound exciton leads to weaker

oscillator strength. [401]

Figure 3.12: BSE optical spectra and exciton wavefunctions. Absorption
spectra of the (a) TiVV, (b) MoVV, and (c) SiVV defects in h-BN at the level of
G0W0 + BSE@PBE0(α). The left and right panels provide absorption spectra
for two different energy ranges, where the former is magnified by a factor of 40
for TiVV and MoVV and a factor of 5 for SiVV for increasing visibility. A spectral
broadening of 0.02 eV is applied. The exciton wavefunctions of (d) TiVV, (e) MoVV
and (f) SiVV are shown on the right for the first peak.

On the other hand, the optical properties of the SiVV defect are quite promising

for SPEs, as Figure 3.12c shows it has a very bright optical transition in the

ultraviolet region. As a consequence, we find that the radiative lifetime (Table 3.6)

for SiVV is 22.8 ns at G0W0 + BSE@PBE0(α). We note that although the lifetime

of SiVV at the level of BSE is similar to that obtained at RPA (13.7 ns), the

optical properties of 2D defects at RPA are still unreliable, due to the lack of

excitonic effects. For example, the excitation energy (E0) can deviate by ∼1 eV

and oscillator strengths (µ2
e−h) can deviate by an order of magnitude (more details
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can be found in Supplementary Table 5). Above all, the radiative lifetime of SiVV

is comparable to experimentally observed SPE defects in h-BN,[394] showing that

SiVV is a strong SPE defect candidate in h-BN.

Defect E0 (eV) µ2
e−h (bohr2) τR (ns) Eb (eV)

TiVV 0.556 2.81 ∗ 10−2 1.95 ∗ 105 4.018

MoVV 1.079 2.29 ∗ 10−2 3.26 ∗ 104 3.965

SiVV 4.036 6.28 ∗ 10−1 22.8 2.189

NBVN 2.408 1.87 35.9 2.428

Table 3.6: Optical excitation energy (E0), modulus square of the transition
dipole moment (µ2

e−h), radiative lifetime (τR) and exciton binding energy (Eb) of
several defects in h-BN at the level of theory of G0W0 + BSE@PBE0(α). The
corresponding excitation transitions are 1a′↑ → 2a′↑ for the TiVV defect, 1a′′↑ → 3a′↑
for the MoVV defect and 1a′↑ → 2a′↑ for the SiVV defect. For comparison, we
include the results of NBVN (in-plane structure) from Ref. [388].

3.4.4 Multiplet Structure and Excited-State Dynamics

Finally, we discuss the excited-state dynamics of the spin qubit candidates

TiVV and MoVV defects in h-BN, where the possibility of intersystem crossing is

crucial. This can allow for polarization of the system to a particular spin state by

optical pumping, required for realistic spin qubit operation.
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Figure 3.13: Multiplet structure of triplet defects. Multiplet structure
and related radiative and nonradiative recombination rates of the (a) TiVV defect
and the (b) MoVV defect in h-BN, computed at T = 10K. The radiative process
is shown in red with zero-phonon line (ZPL) and radiative lifetime (τR); the
ground state nonradiative recombination (τNR) is denoted with a dashed line in
dark blue; and finally the intersystem crossing (ISC) to the singlet state from the
triplet excited state is shown in light blue. The zero-field splitting (D) is denoted
by the orange line. For the TiVV defect, the pseudo Jahn-Teller (PJT) process is
shown with a solid line in dark blue.

An overview of the multiplet structure and excited-state dynamics is given

in Figure 3.13 for the TiVV and MoVV defects. For both defects, the system will

begin from a spin-conserved optical excitation from the triplet ground state to the

triplet excited state, where next the excited state relaxation and recombination

can go through several pathways. The excited state can directly return to the

ground state via a radiative (red lines) or nonradiative process (dashed dark blue

lines). For the TiVV defect shown in Figure 3.13a, we find the system may relax

to another excited state with lower symmetry through a pseudo Jahn-Teller dis-

tortion (PJT; solid dark blue lines), and ultimately recombine back to the ground

state nonradiatively. Most importantly, a third pathway is to nonradiatively relax

to an intermediate singlet state through a spin-flip intersystem crossing (ISC), and
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then again recombine back to the ground state (dashed light-blue lines). This ISC

pathway is critical for the preparation of a pure spin state, similar to NV center

in diamond. Below, we will discuss our results for the lifetime of each radiative or

nonradiative process, in order to determine the most competitive pathway under

the operation condition.

3.4.5 Direct Radiative and Nonradiative Recombination

First, we will consider the direct ground state recombination processes. Fig-

ure 3.14 shows the configuration diagram of the TiVV and MoVV defects. The

zero-phonon line (ZPL) for direct recombination can be accurately computed by

subtracting its vertical excitation energy computed at BSE (0.56 eV for TiVV and

1.08 eV for MoVV) by its relaxation energy in the excited state (i.e. Franck-Condon

shift [402], ∆EFC in Figure 3.14). This yields ZPLs of 0.53 eV and 0.91 eV for

TiVV and MoVV, respectively. Although this method accurately includes both

many-body effects and Franck-Condon shifts, it is difficult to evaluate ZPLs for

the triplet to singlet-state transition currently. Therefore, we compared with the

ZPLs computed by constrained occupation DFT (CDFT) method at PBE. This

yields ZPLs of 0.49 eV and 0.92 eV for TiVV and MoVV, respectively, which are in

great agreement with the ones obtained from BSE excitation energies subtracting

∆EFC above. Lastly, the radiative lifetimes for these transitions are presented in

Table 3.6 as discussed in the earlier section, which shows TiVV and MoVV have

radiative lifetimes of 195 µs and 33 µs, respectively (red lines in Figure 3.13).

In terms of nonradiative properties, the small Huang-Rhys (Sf ) for the |31A′′〉

to |30A′′〉 transition of the TiVV defect (0.91) implies extremely small electron-

phonon coupling and potentially an even slower nonradiative process. On the

other hand, Sf for the |31A〉 to |30A〉 transition of the MoVV defect is modest (3.53)
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and may indicate a possible nonradiative decay. Following the formalism presented

in Ref. [388], we computed the nonradiative lifetime of the ground state direct

recombination (T = 10 K is chosen to compare with measurement at cryogenic

temperatures [403]). Consistent with their Huang-Rhys factors, the nonradiative

lifetime of TiVV is found to be 10 s, while the nonradiative lifetime of the MoVV

defect is found to be 0.02 µs. The former lifetime is indicative of a forbidden

transition; however, the TiVV defect also possesses a pseudo Jahn-Teller (PJT)

effect in the triplet excited state (red curve in Figure 3.14a). Due to the PJT

effect, the excited state (CS, |31A′′〉) can relax to lower symmetry (C1, |31A〉) with

a nonradiative lifetime of 394 ps (solid dark blue line in Figure 3.13a, additional

details see Supplementary Note 9 and Figure 11). Afterward, nonradiative decay

from |31A〉 to the ground state (|30A′′〉) (dashed dark blue line in Figure 3.13a)

exhibits a lifetime of 0.044 ps due to a large Huang-Rhys factor (14.95).

Figure 3.14: Configuration coordinate diagrams. Configuration diagram of
the (a) TiVV defect and (b) MoVV defect in h-BN. The potential energy surfaces
for each state are as follows: the triplet ground state in black, triplet excited state
in blue, and for the TiVV defect the pseudo Jahn-Teller triplet excited state in red.
The zero-phonon lines (ZPL) are given as the energetic separation between the
minima of the respective potential energy surfaces, along with the corresponding
Huang-Rhys factors (S). The dashed black line represents the vertical excitation
energy between triplet ground and excited states, and ∆EFC represents relaxation
energy to equilibrium geometry at the excited state.
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3.4.6 Spin-Orbit Coupling and Nonradiative Intersystem

Crossing Rate

Lastly, we considered the possibility of an ISC between the triplet excited state

and the singlet ground state for each defect, which is critical for spin qubit ap-

plication. In order for a triplet to singlet transition to occur, a spin-flip process

must take place. For ISC, typically spin-orbit coupling (SOC) can entangle triplet

and singlet states yielding the possibility for a spin-flip transition. To validate our

methods for computing SOC (see methods section), we first computed the SOC

strengths for the NV center in diamond. We obtained SOC values of 4.0 GHz for

the axial λz and 45 GHz for non-axial λ⊥ in fair agreement with previously com-

puted values and experimentally measured values [24, 404]. We then computed

the SOC strength for the TiVV defect (λz = 149 GHz, λ⊥ = 312 GHz) and the

MoVV defect (λz = 16 GHz, λ⊥ = 257 GHz). The value of λ⊥ in particular leads

to the potential for a spin-selective pathway for both defects, analogous to NV

center in diamond.

To compute the ISC rate, we developed an approach which is a derivative of

the nonradiative recombination formalism presented in Eq. 1.16:

ΓISC = 4π~λ2
⊥X̃if (T ) (3.10)

X̃if (T ) =
∑
n,m

pin |〈φfm(R)〉φin(R)|2 δ(m~ωf − n~ωi + ∆Eif ) (3.11)

Compared with previous formalism, [24] this method allows different values for

initial state vibrational frequency (ωi) and final state one (ωf ) through explicit

calculations of phonon wavefunction overlap. Again to validate our methods we

first computed the intersystem crossing rate for NV center in diamond. Using the

experimental value for λ⊥ we obtain an intersystem crossing rate for NV center in
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TiVV GSR ZPL (eV) Sf Wif (eV/(amu1/2Å)) τNR (ps)
|31A′′〉 → |

3
0A
′′〉 0.494 0.91 1.02× 10−1 8.80× 1012

|31A〉 → |
3
0A
′′〉 0.482 14.95 1.91× 10−2 4.41× 10−2

PJT EJT (eV) Sf δJT (eV) τC
NR (ps)

|31A′′〉 → |
3
1A〉 0.012 10.75 0.006 3.94× 102

ISC ZPL (eV) Sf λ⊥ (GHz) τISC (ps)
|31A′′〉 → |

1
0A
′〉 0.189 17.48 312 8.30× 101

MoVV GSR ZPL (eV) Sf Wif (eV/(amu1/2Å)) τNR (µs)
|31A〉 → |

3
0A〉 0.915 22.05 1.5× 10−2 0.02

ISC ZPL (eV) Sf λ⊥ (GHz) τISC (µs)
|31A〉 → |

1
0A〉 0.682 7.22 257 2.7

Table 3.7: Various nonradiative recombination lifetimes along with relevant
quantities for the TiVV and MoVV defects in h-BN, including ground state re-
combination (GSR), pseudo Jahn-Teller (PJT), and intersystem crossing (ISC).

diamond of 2.3 MHz which is in excellent agreement with the experimental value

of 8 and 16 MHz [403]. In final, we obtain an intersystem crossing time of 83

ps for TiVV and 2.7 µs for MoVV as shown in Table 3.7 and light blue lines in

Figure 3.13.

The results of all the nonradiative pathways for two spin defects are sum-

marized in Table 3.7 and are displayed in Figure 3.13 along with the radiative

pathway. We begin by summarizing the results for TiVV first and then discuss

MoVV below. In short, for TiVV the spin conserved optical excitation from the

triplet ground state |30A′′〉 to the triplet excited state |31A′′〉 cannot directly re-

combine nonradiatively due to a weak electron-phonon coupling between these

states. In contrast, a nonradiative decay is possible via its PJT state (|31A〉) with

a lifetime of 394 ps. Finally, the process of intersystem crossing from the triplet

excited state |31A′′〉 to the singlet state (|10A′〉) is an order of magnitude faster (i.e.

83 ps) and is in-turn a dominant relaxation pathway. Therefore the TiVV defect in

h-BN is predicted to have an expedient spin purification process due to a fast in-

tersystem crossing with a rate of 12 GHz. We note that while the defect has a low

optical quantum yield and is predicted to not be a good SPE candidate, it is still
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noteworthy, as to date the only discovered triplet defect in h-BN is the negatively

charged boron vacancy, which also does not exhibit SPE and has similarly low

quantum efficiency. [378] Meanwhile, the leveraged control of an extrinsic dopant

can offer advantages in spatial and chemical nature of defects.

For the MoVV defect, its direct nonradiative recombination lifetime from the

triplet excited state |31A〉 to the ground state |30A〉 is 0.02 µs. While the comparison

with its radiative lifetime (33 µs) is improved compared to the TiVV defect, it still is

predicted to have low quantum efficiency. However, again the intersystem crossing

between |31A〉 and |10A〉 is competitive with a lifetime of 2.7 µs. This rate (around

MHz) is similar to diamond and implies a feasible intersystem crossing. Owing

to its more ideal ZPL position (∼1eV) and improved quantum efficiency, optical

control of the MoVV defect is seen as more likely and may be further improved

by other methods such as coupling to optical cavities [328, 405] and applying

strain [388, 277].

3.4.7 Conclusion

In summary, we proposed a general theoretical framework for identifying and

designing optically-addressable spin defects for the future development of quan-

tum emitter and quantum qubit systems. We started from searching for defects

with triplet ground state by DFT total energy calculations which allow for rapid

identification of possible candidates. Here we found that the TiVV and MoVV

defects in h-BN have a neutral triplet ground state. We then computed zero-

field splitting of secondary spin quantum sublevels and found they are sizable for

both defects, larger than that of NV center in diamond, enabling possible control

of these levels for qubit operation. In addition, we screened for potential single

photon emitters (SPEs) in h-BN based on allowed intra-defect transitions and
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radiative lifetimes, leading to the discovery of SiVV. Next the electronic structure

and optical spectra of each defect were computed from many-body perturbation

theory. Specifically, the SiVV defect is shown to possess an exciton radiative life-

time similar to experimentally observed SPEs in h-BN and is a potential SPE

candidate. Finally, we analyzed all possible radiative and nonradiative dynami-

cal processes with first-principles rate calculations. In particular, we identified a

dominant spin-selective decay pathway via intersystem crossing at the TiVV de-

fect which gives a key advantage for initial pure spin state preparation and qubit

operation. Meanwhile, for the MoVV defect we found that it has the benefit of

improved quantum efficiency for more realistic optical control.

This work emphasizes that the theoretical discovery of spin defects requires

careful treatment of many-body interactions and various radiative and nonra-

diative dynamical processes such as intersystem crossing. We demonstrate high

potential of extrinsic spin defects in 2D host materials as qubits for quantum in-

formation science. Future work will involve further examination of spin coherence

time and its dominant decoherence mechanism, as well as other spectroscopic fin-

gerprints from first-principles calculations to facilitate experimental validation of

these defects.

3.4.8 Computational Details

In this study, we used the open source plane-wave code Quantum ESPRESSO [52]

to perform calculations on all structural relaxations and total energies with op-

timized norm-conserving Vanderbilt (ONCV) pseudopotentials [54] and a wave-

function cutoff of 50 Ry. A supercell size of 6× 6 or higher was used in our calcu-

lations with a 3× 3× 1 k-point mesh. Charged cell total energies were corrected

to remove spurious charge interactions by employing the techniques developed in
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Refs. [69, 16, 406] and implemented in the JDFTx code [15]. The total energies,

charged defect formation energies and geometry were evaluated at the Perdew-

Burke-Ernzerhof (PBE) level [10]. Single-point calculations with k-point meshes

of 2× 2× 1 and 3× 3× 1 were performed using hybrid exchange-correlation func-

tional PBE0(α), where the mixing parameter α = 0.41 was determined by the

generalized Koopmans’ condition as discussed in Ref. [216, 215]. Moreover, we

used the YAMBO code [228] to perform many-body perturbation theory with the

GW approximation to compute the quasi-particle correction using PBE0(α) eigen-

values and wavefunctions as the starting point. The random phase approximation

(RPA) and Bethe-Salpeter Equation (BSE) calculations were further solved on

top of the GW approximation for the electron-hole interaction to investigate the

optical properties of the defects, including absorption spectra and radiative life-

time.

3.4.9 Zero-Field Splitting

The first-order ZFS due to spin-spin interactions was computed for the dipole-

dipole interactions of the electron spin:

Hss = µ0

4π
(ge~)2

r5

[
3(s1 · r)(s2 · r)− (s1 · s2)r2

]
. (3.12)

Here, µ0 is the magnetic permeability of vacuum, ge is the electron gyromagnetic

ratio, ~ is the Planck’s constant, s1, s2 is the spin of first and second electron,

respectively, and r is the displacement vector between these two electron. The

spatial and spin dependence can be separated by introducing the effective total

spin S = ∑
i si. This yields a Hamiltonian of the form Hss = ST D̂S, which

introduces the traceless zero-field splitting tensor D̂. It is common to consider

the axial and rhombic ZFS parameters D and E which can be acquired from the
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D̂ tensor:

D = 3
2Dzz and E = (Dyy −Dxx)/2 . (3.13)

Following the formalism of Rayson et al., [391] the ZFS tensor D̂ can be computed

with periodic boundary conditions as:

Dab = 1
2
µ0

4π (ge~)2∑
i>j

χij 〈Ψij(r1, r2)|r
2δab − 3rarb

r5 |Ψij(r1, r2)〉 . (3.14)

Here the summation on pairs of i, j runs over all occupied spin-up and spin-down

states, with χij taking the value +1 for parallel spin and −1 for anti-parallel spin,

and Ψij(r1, r2) is a two-particle Slater determinant constructed from the Kohn-

Sham wavefunctions of the ith and jth states. This procedure was implemented

as a post-processing code interfaced with Quantum ESPRESSO. To verify our

implementation is accurate, we computed the ZFS of the NV center in diamond

which has a well-established result. Using ONCV pseudopotentials, we obtained

a ZFS of 3.0 GHz for NV center, in perfect agreement with previous reported re-

sults [389]. For heavy elements such as transition metals, spin-orbit (SO) coupling

can have substantial contribution to zero-field splitting. Here, we also computed

the SO contribution of the ZFS as implemented in the ORCA code [26, 407] (ad-

ditional details can be found in Supplementary Note 10, Figure 12, and Table

6).

3.4.10 Spin-Orbit Coupling Constant

Spin-orbit coupling (SOC) can entangle triplet and singlet states yielding the

possibility for a spin-flip transition. The SOC operator is given to zero-order
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by [25]:

Hso = 1
2

1
c2m2

e

∑
i

(∇iV × pi)Si (3.15)

where c is the speed of light, me is the mass of an electron, p and S are the

momentum and spin of electron i and V is the nuclear potential energy. The

spin-orbit interaction can be rewritten in terms of the angular momentum L and

the SOC strength λ as [25],

Hso =
∑
i

λ⊥(Lx,iSx,i + Ly,iSy,i) + λzLz,iSz,i. (3.16)

where λ⊥ and λz denote the non-axial and axial SOC strength, respectively. The

SOC strength was computed for the TiVV defect in h-BN using the ORCA code

by TD-DFT [26, 27]. More computational details can be found in Supplementary

Note 10.
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Appendix A

Formalism of Nonradiative

Recombination

A.1 Static Coupling

Figure A.1: Diagram of the transition between two vibronic states. The two
quadratic curves represent the electronic states (i, f) and the vibrational modes
present at each state are superimposed with states (n,m).

Here we consider a system which is initially in a vibronic state |Ψin(r, R)〉

and transitions to a final vibronic state |Ψfm(r, R)〉 with i 6= f . Here the indices
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(i, f) denote the electronic state, while (n,m) denote the phonon state as shown

schematically in Figure A.1. Within the Born-Oppenheimer approximation these

states are a direct product of the electronic states |ψ(i,f)(r, R)〉 and phonon states

|φ(n,m)(R)〉.

|Ψ(in,fm)(r, R)〉 = |ψ(i,f)(r, R)φ(n,m)(R)〉 (A.1)

The coordinate r denotes the spatial dependence of the electronic wavefunction

ψ(i,f) and R is the configuration of atomic positions.

The probability of transitioning between vibronic state |Ψi,n(r, R)〉 to the state

|Ψf,m(r, R)〉 is given by Fermi’s Golden Rule:

Γin→fm = 2π
~
f(i, n)|Vin,fm|2δ(Ein − Efm) (A.2)

Here f(i, n) is the probability of occupying phonon state n when in the electronic

state i, which follows a thermal Maxwell-Boltzmann distribution. The dirac delta

function ensures the conservation of energy between vibronic states Ein and Efm.

And finally Vin,fm is the electron phonon coupling matrix, discussed in more detail

later.

If we wish to compute the collective transition rate between electronic states

i and f this follows readily from Eq. (A.2).

Γi→f =
∑
n,m

Γin→fm

Γi→f = 2π
~
∑
n,m

f(i, n)|Vin,fm|2δ(Ein − Efm) (A.3)

Here we have now summed over all possible initial and final phonon states (n and

m) to give the full probability of transitioning from electronic state i to state f .
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A term of particular interest in Eq. (A.3) is the electron-phonon coupling

matrix Vin,fm. Within the static coupling approximation we approximate the

electron-phonon coupling to first order in R. First consider the total Hamiltonian

Htot to first order in R about some position R0 as:

Htot(r, R) = H(r, R0) +
∑
R

∂H

∂R
(R−R0) (A.4)

where H is the electron Hamiltonian, and the partial of H with respect to R is

for every atomic position in 3D space. Meanwhile the electronic wavefunction is

ψi(r, R) to first order in R is given by

|ψi(r, R)〉 = |ψi(r, R0)〉+
∑
R

(R−R0) |∂ψi
∂R
〉 (A.5)

where in Eq. (A.4-A.5) the evaluation of the derivative with respect to R at R0

is implicit.

Using the approximations of Eq. (A.4-A.5), the electron-phonon coupling
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matrix is given by:

Vin,fm = 〈Ψf,m(r, R)|Htot(r, R)|Ψi,n(r, R)〉

= 〈ψf (r, R0)φf,m(R)|H0|ψi(r, R0)φi,n(R)〉

+
∑
R

(
〈ψf (r, R0)φf,m(R)|∂H

∂R
(R−R0)|ψi(r, R0)φi,n(R)〉

+ 〈ψf (r, R0)φf,m(R)|H0(R−R0)|∂ψi
∂R

φi,n(R)〉

+ 〈∂ψf
∂R

φf,m(R)|(R−R0)H0|ψi(r, R0)φi,n(R)〉
)

+O(R2)

=
∑
R

〈φf,m(R)|(R−R0)|φi,n(R)〉
[
〈ψf (r, R0)|∂H

∂R
|ψi(r, R0)〉

+ 〈ψf (r, R0)|H0|
∂ψi
∂R
〉+ 〈∂ψf

∂R
|H0|ψi(r, R0)〉

]

=
∑
R

〈φf,m(R)|(R−R0)|φi,n(R)〉 〈ψf (r, R0)|∂H
∂R
|ψi(r, R0)〉 (A.6)

Where in the first step we have we have removed any terms of order R2 (denoted

with O(R2)). In the second step, the first term is removed do to orthogonality

〈ψf |ψi〉 = 0, and the latter part is rewritten with the factorization of the electronic

and phonon parts due to there independence on R andH, respectively. In the final

step, we are left with only one term as the last two terms cancel (see Appendix).

Thus, the static coupling approximation gives an electron-phonon coupling matrix

of the form:

Vin,fm =
∑
R

〈φf,m(R)|(R−R0)|φi,n(R)〉 〈ψf (r, R0)|∂H
∂R
|ψi(r, R0)〉 (A.7)

Alternatively, the electron-phonon coupling can instead be expressed in terms
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of phonon modes Qk,

Vin,fm =
∑
k

〈ψf (r, R0)| ∂H
∂Qk

|ψi(r, R0)〉 〈φf,m(R)|(Qk −Qk,0)|φi,n(R)〉 (A.8)

=
∑
k

Ck
if 〈φf,m(R)|Qk|φi,n(R)〉 (A.9)

with

Qi,k = 1√
Mk

∑
R

MRµk(R)Ri

Qf,k = 1√
Mk

∑
R

MRµk(R)Rf (A.10)

Here Ri = Ri − Ri(0) and Rf = Rf − Rf (0) is the displacement of the atomic

positions from equilibrium. MR is the mass of the atom located at position R,

Mk is the reduced mass in the kth phonon mode, and µk(R) is the phonon mode

displacement vector at position R.

In Eq. (A.9), we have defined the electron-electron coupling constants Ck
if .

Ck
if = 〈ψf (r, R0)| ∂H

∂Qk

|ψi(r, R0)〉 =
∑
R

µk(R) 〈ψf (r, R0)|∂H
∂R
|ψi(r, R0)〉 (A.11)

Now for the full transition rate we have

Γi→f = 2π
~
∑
k1,k2

Ck1
if C

k2
if

(∑
n,m

f(i, n) 〈φi,n(R)|Qk1|φf,m(R)〉

· 〈φf,m(R)|Qk2|φi,n(R)〉 δ(~ωin − ~ωfm −∆Eif )
)

(A.12)

If we use the integral form of the dirac delta function δ(x) = 1
2π
∫∞
−∞ e

ixtdt then

we can reduce the phonon-phonon coupling piece of Eq. A.12 (see Appendix for
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derivation):

Γif = 2π
~
∑
k1,k2

Ck1
if C

k2
if · A

k1,k2
if (A.13)

where,

Ak1,k2
if = 1

2πZ

∫ ∞
−∞

χk1,k2
if (t, T )e−it∆Eif/~ dt (A.14)

χk1,k2
if (t, T ) = Tr

[
Qk1e

−itHf/~Qk2e
−(β~−it)Hi/~

]
(A.15)

A.2 Full-Phonon

This section discusses details of computing Eq. A.14 & A.15 in practice,

following the implementation of [Shi 2015 PRB]. First of all we will assume that

the phonon modes in states i and j are the same, so k1 = k2 = k. Next we

introduce the following diagonal (Nvib ×Nvib) matrices:

a(τξ)k = ωk
sinh (i~ωkτξ)

, c(τξ)k = ωk coth (i~ωkτξ/2) ,

d(τξ)k = ωk tanh (i~ωkτξ/2) . (A.16)

Where, ξ = (i, j), τi = −t−iβ, τj = t, and ωk is the frequency of the kth harmonic

oscillator. We then define matrices:

C(τi, τj)k = c(τi)k + c(τj)k , D(τi, τj)k = d(τi)k + d(τj)k . (A.17)

And also

DHT = −D−1d(τj)K , (A.18)

AHT = 1
2(D−1 − C−1) +DHT(DHT)T , (A.19)
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where

Kk = ∆Qij,k = 1√
Mk

∑
R

MRµk(R)∆Rij . (A.20)

This gives the final form:

χkij(t, T ) =

√√√√ det{[a(τj)]} det{[a(τi)]}
(i~)2N det{(C)} det{(D)}

× exp
[
−KTd(τj)K + KTd(τj)D−1d(τi)K

]
(AHT) (A.21)

One can then integrate Eq. A.14 to give the final phonon part.

A.3 Linear Response Theory

Here we consider the single particle Hamiltonian (h) to first order deviation in

the one-dimensional effective coordinate (Q) as:

h = ha + ∂h

∂Q
(Q−Qa) (A.22)

We can consider the latter term as a perturbation on the system where only

the term ∂h
∂Q

acts on the electronic states (Q acts on phonon states). Therefore,

the first-order response of the electronic eigenstate (ϕm) is given by:

|∆ϕm〉 =
∑
n6=m
|ϕn〉

〈ϕn| ∂h∂Q |ϕm〉
εm − εn

(A.23)

We now work to solve for 〈ϕn| ∂h∂Q |ϕm〉, the term we want to replace in the
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current formalism. First consider a simple rewrite of Eq. A.23.

|∆ϕm〉 =
∑
n 6=m
|ϕn〉 〈ϕn|

 ∂h
∂Q
|ϕm〉

εm − εn
(A.24)

Evoking the completeness relation gives

|∆ϕm〉 =
(

1− |ϕm〉 〈ϕm|
) ∂h
∂Q
|ϕm〉

εm − εn
(A.25)

Then taking the inner product with 〈ϕn| and implementing the orthogonality of

these states 〈ϕn|ϕm〉 = δnm (in this case n and m differ, so 〈ϕn|ϕm〉 = 0).

〈ϕn|∆ϕm〉 =
(
〈ϕn| − 〈ϕn|ϕm〉 〈ϕm|

) ∂h
∂Q
|ϕm〉

εm − εn
(A.26)

=
(
〈ϕn|

) ∂h
∂Q
|ϕm〉

εm − εn
(A.27)

=
〈ϕn| ∂h∂Q |ϕm〉
εm − εn

(A.28)

This gives the final form we desired (n = i initial state; m = f final state)

〈ϕi|
∂h

∂Q
|ϕf〉 = (εf − εi) 〈ϕi|

∂ϕf
∂Q
〉 (A.29)

Note that ϕf is also considered to change first order in Q and hence |∆ϕf〉 = |∂ϕf

∂Q
〉.
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A.4 Supplemental Derivations

A.4.1 S1

Proof that

〈ψf (r, R0)|H0|
∂ψi
∂R
〉+ 〈∂ψf

∂R
|H0|ψi(r, R0)〉 = 0. (A.30)

Consider,

∂

∂R

(
〈ψf (r, R0)|H0|ψi(r, R0)〉

)
= (A.31)

〈∂ψf (r, R0)
∂R

|H0|ψi(r, R0)〉+ 〈ψf (r, R0)|H0|
∂ψi(r, R0)

∂R
〉

+ 〈ψf (r, R0)|∂H0

∂R
|ψi(r, R0)〉

0 = 〈∂ψf (r, R0)
∂R

|H0|ψi(r, R0)〉+ 〈ψf (r, R0)|H0|
∂ψi(r, R0)

∂R
〉+ 0

⇒ 〈∂ψf (r, R0)
∂R

|H0|ψi(r, R0)〉+ 〈ψf (r, R0)|H0|
∂ψi(r, R0)

∂R
〉 = 0 (A.32)

Here the left hand side is zero because 〈ψf |ψi〉 = 0, while the final term on the

right hand side is zero because ∂H0/∂R = 0.
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A.4.2 S2

Below the mathematical steps which allow for the rewriting of Eq. (A.12) in

terms of Eq. (A.13-A.15) are presented.

∑
n,m

f(i, n) 〈φi,n(R)|Qk1 |φf,m(R)〉 · 〈φf,m(R)|Qk2 |φi,n(R)〉 δ(~ωfm − ~ωin + ∆Eif )

= 1
2π~Z

∑
n,m

e−β~ωin 〈φi,n(R)|Qk1 |φf,m(R)〉 · 〈φf,m(R)|Qk2|φi,n(R)〉

·
∫ ∞
−∞

eit(ωin−ωfm−∆Eif/~) dt

= 1
2π~Z

∫ ∞
−∞

(∑
n,m

〈φi,n(R)|Qk1 |φf,m(R)〉 · 〈φf,m(R)|Qk2|φi,n(R)〉

· e−(β~−it)ωin−itωfm−it∆Eif/~)
)
dt

= 1
2π~Z

∫ ∞
−∞

(∑
n,m

〈φi,n(R)|Qk1e
−itωfm|φf,m(R)〉

· 〈φf,m(R)|Qk2e
−(β~−it)ωin|φi,n(R)〉 e−it∆Eif/~)

)
dt

= 1
2π~Z

∫ ∞
−∞

(∑
n

〈φi,n(R)|Qk1

∑
m

e−itωfm |φf,m(R)〉 · 〈φf,m(R)|

Qk2e
−(β~−it)ωin |φi,n(R)〉 e−it∆Eif/~

)
dt

= 1
2π~Z

∫ ∞
−∞

(∑
n

〈φi,n(R)|Qk1e
−itHf/~Qk2e

−(β~−it)ωin |φi,n(R)〉 e−it∆Eif/~
)
dt

= 1
2π~Z

∫ ∞
−∞

Tr
[
Qk1e

−itHf/~Qk2e
−(β~−it)Hi/~

]
e−it∆Eif/~ dt (A.33)

Plugging this piece back into Eq. A.12 gives the final condensed form of the

transition rate.

Γif = 2π
~
∑
k1,k2

Ck1
if C

k2
if · A

k1,k2
if (A.34)
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Where we have shown that

Ak1,k2
if = 1

2πZ

∫ ∞
−∞

χk1,k2
if (t, T )e−it∆Eif/~ dt (A.35)

χk1,k2
if (t, T ) = Tr

[
Qk1e

−itHf/~Qk2e
−(β~−it)Hi/~

]
(A.36)
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Appendix B

Semiclassical Transport Theory

B.1 Prelude

Carriers in several transition metal oxides such as Fe2O3, BiVO4, as well as

ABO3 perovskites form what are known as polarons. A polaron is quasi-particle

known for its tendency to self-trap due to large electron-phonon interactions. Aas

the carrier moves through the lattice so due the surrounding lattice distortions

as visualized in Figure B.1a. Due to this, polarons due not conduct via regular

band conduction but instead they must hop from site to site in a process known

as polaron hopping.
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Figure B.1: (a) Top is the local geometry qA, where the electron is localized
on the left ion. As the electron moves through to the bottom configuration qB,
the local geometry distorts along with the movement of the electron. (b) These
energy curves are plotted against the geometry of the lattice q, representing the
potential energy well the electron is in if it is localized at either site A or site
B. The height of the intersection of these curves, ∆G∗, represents the barrier the
electron must overcome to hop from site A to site B. When coupling between the
states is introduced then this activation energy is reduced by the amount of that
coupling, VAB.

The theory of transport for such systems has been developed by many but for

the purposes of this report which hopes to key into the most essential concepts

of activation transport, and although I have reviewed many works which I do not

mention here, I will rather focus on the works of Newton and Sutin [408], as well

as Landau [409] and Zener [410] (although both Landau and Zener are properly

referenced here, I only used [410] since I could not find a translated copy of [409]).

Over the past nearly 50+ years various bits and pieces of this overall theory have

been implemented and modified with varying assumptions and approximations

(often in literature without explicit mention of what approximations are being

made). To make matters more complicated, citations on transport can often be

inaccurate; in the sense that a report’s citation for a theory or equation will not
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be derived or fully motivated in the paper they cite! This can lead to a long look

down some rabbit holes to find truly resourceful citations for this type of theory,

but I guess that is the case with any research, I digress. Nonetheless, I believe

the aforementioned citations properly explain the most important concepts of

this theory and can explain the equations/approximations implemented in many

recent works [73, 411, 412, 413, 414].

B.2 Semiclassical Model

The work of Newton and Sutin [408] begins with introducing the concept of a

semiclassical model for the transition rate ksc to approximate the true quantum

mechanical transition rate:

ksc = κelΓnkel ∼ kqm (B.1)

where κel is the thermally averaged electronic transmission coefficient and Γn is

a thermally averaged nuclear tunneling factor. This semiclassical transition rate

is proportional to the classical transition rate, kel and is equivalent when the

factors κel and Γn reach unity. To understand these factors, consider the spirit of

Figure B.1a where the system is initially in state ψA and transport occurs if the

state ψB is reached. The purposes of these factors is to introduce, respectively,

non-adiabatic behavior where the system can remain a state ψA despite being

brought to the crossing point (qC in Figure B.1b) and quantum tunneling where

the state ψB is reached without reaching the crossing point energy. In this sense

we see that 0 ≤ κel ≤ 1 and Γn ≥ 1. From this we see there are perhaps three

cases of transport to consider closely:

1. κel = 1 and Γn = 1
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2. κel 6= 1 and Γn = 1

3. Γn 6= 1

Reviewing several works [73, 411, 412, 413, 414], shows that in most cases the

latter of these cases is not often used and the assumption that Γn ∼ 1 is made.

B.2.1 Case 1.

The first case pertains to that of a solely classical theory, i.e. if the crossing

point configuration qC is reached than the transition will occur, 100% of the time

(κel = 1) and there is no chance of the transition occurring otherwise (Γn = 1).

Therefore we have the transition rate is given by (in the high-temperature limit)

kel = νne
−E‡/kBT (B.2)

where E‡ is the energy to bring q to the crossing point qC and νn is an effective

vibration frequency of the reactants. More details on the activation energy, E†

are discussed later.

B.2.2 Case 2.

In the second case we relax our assumptions and allow for the case that the

system may not reach the final state ψB despite reaching the crossing point con-

figuration (κel 6= 1). Now in this case the probability the system will undergo a

transition from ψA to ψB is given by

κel = 2P12

1 + P12
(B.3)
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where P12 is the probability of the transition of ψA → ψB per single passage

through the intersection region qC . According to Landau-Zener P12 is given by

(derivation given below)

P12 = 1− exp
[
− 4π2|Hab|2

hv|FA − FB|

]
(B.4)

where FA and FB are the ‘forces’ acting on the two states and v is the average

velocity the system moves through the intersection region. In most cases v is taken

to be the Boltzmann averaged velocity vp =
√

2kBT/πµ. Accordingly evaluating

for a linear path tangent to the reaction coordinate at the crossing point gives

v|FA−FB| = 4νn
√
λπkBT where λ is the reorganization energy (exact derivation

not found). This gives a final formula for P12 in terms of parameters relevant to

the problem.

P12 = 1− exp
[
− π3/2|Hab|2

hν
√
λπkBT

]
(B.5)

Plugging Eq. B.5 and Eq. B.3 into Eq. B.1 along with setting Γn = 1 gives the

transition rate ksc

ksc =
1− exp

[
− π3/2|Hab|2
hν
√
λπkBT

]
1− (1/2) exp

[
− π3/2|Hab|2
hν
√
λπkBT

]νne−E‡/kBT (B.6)

It’s important to notice a few cases dependent on the coupling constant Hab. If

Hab is large (adiabatic regime) then P12 = 1 and likewise κel = 1 and we have

recovered case 1 and if Hab is small then P12 < 1 and kel < 1 so we must use

Eq. B.6 rather than Eq. B.2 (a plot of P12 along with κel is shown in Figure B.2.
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Figure B.2: How P12 and the transfer rate change with the coupling parameter
γ.

B.3 Supplemental Derivations

B.3.1 Relation of E‡ with λ and Hab

Consider the below Figure B.3, in this figure, these curves are drawn assuming

that the potential energies are harmonic in q with identical curvature and displays

the case where the process is not neutrothermal (curves with the same minima so

∆E = 0). With these assumptions made one can express the activation energy

E† in terms of reorganization energy λ and the electron transfer energy ∆E, as

shown below.

Figure B.3: Alternative schematic of the hopping barrier.
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Let ψA have potential energy VA = q2 and let ψB have potential energy VB =

(q − a)2 + b. Initial conditions fix a and b

Vb(a) = ∆E ⇒ b = ∆E (B.7)

Vb(0) = λ+ ∆E ⇒ a2 = λ (B.8)

Solving for the intercept of the potential energy surface q∗,

Va(q∗) = Vb(q∗) ⇒ (q∗)2 = (q∗)2 − 2q∗q + a2 + b (B.9)

⇒ q∗ = (a2 + b)/2a (B.10)

Plugging the intercept into VA(q) gives the activation energy,

E‡ = VA(q∗) =
[
(a2 + b)/2a

]2
(B.11)

Finally, plugging in a and b gives

E‡ = (λ+ ∆E)2

4λ (B.12)

In any case where the initial and final configurations are equivalent or nearly

equivalent such that ∆E � λ, then our expression reduces to E‡ ∼ λ/4. If

we wish to include a correction of the electronic coupling |Hab| (as shown in

Figure B.1b), we need only subtract this from our above expression to get a final

expression for the activation energy.

E‡ = (λ+ ∆E)2

4λ − |Hab| (B.13)
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B.3.2 Probability of transfer P12

Consider ψA and ψB as before and the process of transport from ψA to ψB.

Initially in this process the configuration is in the state ψA but with finite velocity

at any subsequent time it is in a linear combination of these states:

ψ(t) = A(t)ψA +B(t)ψB (B.14)

As time evolves in the transport A(t) will go from 1 to 0 and B(t) will go from 0

to 1. Furthermore along this transition EB will become less than EA and so ψB

will be more stable than ψA. Consider an alternative basis of wavefunctions φ1

and φ2 which are linear combinations of ψA and ψB, where for all t, the energy

of the state φ1 is less than that of φ2. These new states no longer satisfy the

Hamiltonian but rather,

Hφ1 = ε1 + ε12φ2

Hφ2 = ε12 + ε2φ2

 , (B.15)

where ε12 is the electronic coupling constant (such as Hab or Vab). We then im-

pose the following assumptions so that explicit functions of A(t) and B(t) can be

obtained:

1. ε12 relative kinetic energy of the two systems

2. the transition region is small so that ε1 − ε2 is a linear function of time and

ε12, φ1 and φ2 are independent of time:

2π
h

(ε1 − ε2) = αt , ε̇12 = φ̇1 = φ̇2 = 0 . (B.16)
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We now want to solve the Schrödinger equation and for later reasons we will

rewrite the coefficents A(t) and B(t) in terms of new coefficients C1(t) and C2(t):

(
H − h

2πi
∂

∂t

) [
C1(t) exp

(2πi
h

∫
ε1 dt

)
φ1 + C2(t) exp

(2πi
h

∫
ε2 dt

)
φ2

]
(B.17)

Using the assumptions we made above this reduces into two coupled first-order

differential equations:

h

2πi
∂C1

∂t
= ε12 exp

[
−2πi

h

∫
(ε1 − ε2) dt

]
C2 (B.18)

h

2πi
∂C2

∂t
= ε12 exp

[2πi
h

∫
(ε1 − ε2) dt

]
C1 (B.19)

If we are initially in the state ψA or φ1 then

|C1(−∞)| = 1 and C2(−∞) = 0 (B.20)

Note that |C1(∞)| is the probability of transfer and therefore we only need the

asymptotic solutions of Eq. B.18 and Eq. B.19. Plugging in Eq. B.19 into Eq. B.18

gives a single differential equation for C1,

d2C1

dt2
+
(2πi
h

(ε1 − ε2)− ε̇12

ε12

)
dC1

dt
+
(2πε12

h

)2
C1 = 0 (B.21)

Imposing Eq. B.16 and rewriting C1 = exp[−(πi/h)
∫

(ε1 − ε2)dt]U1 and f =

(2πε12/h) reduces this to the Weber equation:

d2U1

dt2
+
(
f 2 − iα

2 + α2

4 t
2
)
U1 = 0 (B.22)
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The solution to this differential equation is known, but is not simple! Referring

to the asymptotic forms we indeed find that

P12 = |C1(∞)|2 = 1− exp(−2πγ) , where γ = 2π
h

ε12

| d
dt

(ε1 − ε2)|
(B.23)

Finally, the recognition that

∣∣∣∣∣dEdt
∣∣∣∣∣ =

∣∣∣∣∣dEdx dxdt
∣∣∣∣∣ ⇒

∣∣∣∣∣ ddt(ε1 − ε2)
∣∣∣∣∣ = v|FA − FB| (B.24)

allows us to rewrite Eq. B.23 as

P12 = 1− exp
[
− 4π2|Hab|2

hv|FA − FB|

]
(B.25)

which is precisely Eq. B.5.
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Appendix C

Zero-Field Splitting

C.1 Dipole-Dipole Spin Hamiltonian

This section follows chapter 6 in Ref. [415] closely. Here is a method for com-

puting spin-spin contribution of the zero-field splitting from Kohn-Sham orbitals

at defect centers with high spin (S > 1). Originally, we consider the spin-spin

interaction of two dipole moments Ŝ1 and Ŝ2, separated by r:

ĤD = µ0

4πg
2µ2

B

[
Ŝ1 · Ŝ2

r3 − 3(Ŝ1 · r)(Ŝ2 · r)
r5

]
(C.1)

where g is the electron g-factor and µB is the Bohr magneton. Expanding scalar

products gives:

ĤD =µ0

4π
g2µ2

B

r5

[
(r2 − 3x2)Ŝ1xŜ2x + (r2 − 3y2)Ŝ1yŜ2y + (r2 − 3z2)Ŝ1zŜ2z (C.2)

− 3xy(Ŝ1xŜ2y + Ŝ1yŜ2x)− 3xz(Ŝ1xŜ2z + Ŝ1zŜ2x)− 3yz(Ŝ1yŜ2z + Ŝ1zŜ2y)
]
.
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Now we seek to convert from the operators Ŝ1 and Ŝ2 to the combinatory Ŝ =

Ŝ1 + Ŝ2. It easily shown (see appendix) that:

Ŝ1xŜ2x = 1
2 Ŝ

2
x −

1
41 (C.3)

and

Ŝ1xŜ2y + Ŝ1yŜ2x = 1
2(ŜxŜy + ŜyŜx) . (C.4)

Inserting Eq. C.3 and Eq. C.4 into Eq. C.2 gives:

ĤD =µ0

4π
g2µ2

B

r5
1
2

[
(r2 − 3x2)Ŝ2

x + (r2 − 3y2)Ŝ2
y + (r2 − 3z2)Ŝ2

z (C.5)

− 3xy(ŜxŜy + ŜyŜx)− 3xz(ŜxŜz + ŜzŜx)− 3yz(ŜyŜz + ŜzŜy)
]
.

which is analogous to Eq. C.2 but is in terms of a single spin operator Ŝ. Therefore

Eq. C.5 can be converted into a typical spin-hamiltonian form where 〈 〉 represents

integration over real space wavefunctions.

ĤD = ŜT ·D · Ŝ (C.6)

D = µ0

8πg
2µ2

B


〈 r2−3x2

r5 〉 〈−3xy
r5 〉 〈−3xz

r5 〉

〈 r2−3y2

r5 〉 〈−3yz
r5 〉

〈 r2−3z2

r5 〉

 Ŝ =


Ŝx

Ŝy

Ŝz

 (C.7)
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C.2 Two Particle Wavefunctions from DFT Cal-

culations

This section follows Ref. [391] exactly. Here we are interested in the evaluation

of integrals of the form:

Iab =
∫∫

ρ(r1, r2)fab(r1 − r2) dr1 dr2 , (C.8)

with

fab(r1 − r2) = r2δab − 3rarb
r5 , (C.9)

r = r1 − r2 and a, b ∈ {x, y, z}. Here ρ(r1, r2) is the two-particle charge density

which is constructed by the anti-symmetric product of single particle orbitals:

Ψ(r1, r2) = 1√
2

[ψi(r1)ψj(r2)− ψi(r2)ψj(r1)] . (C.10)

And thus the two particle charge density is given by (note fab is symmetric under

particle exchange):

ρ(r1, r2) =
[
ψ∗i (r1)ψ∗j (r2)ψi(r1)ψj(r2)− ψ∗i (r2)ψ∗j (r1)ψi(r1)ψj(r2)

]
. (C.11)

Here we alleviate the expense in this calculation by expanding ρ(r1, r2) in

terms of plane waves and thus circumventing the cost from direct integration.

This expansion gives

ρ(r1, r2) =
∑

G1,G2

ρ(G1,G2)eiG1·r1eiG2·r2 (C.12)
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and thus

Iab = 1
8
∑

G1,G2

ρ(G1,G2)
∫∫

ei[r·(G1−G2)]/2ei[R·(G1+G2)]/2fab(r) dr dR , (C.13)

where r = 1
2(r1−r2) and R = 1

2(r1+r2), with dr1 dr2 = 1/2 dr dR. The integration

over R can be done directly and yields 8ΩδG1,−G2 . Therefore G1 = −G2 = G

and Eq. C.13 simplifies to

Iab = Ω
∑
G
ρ(G,−G)

∫
eiG·rfab(r) dr , (C.14)

where Ω is the volume of the unit cell. The integration over r is slightly more tricky

but can still be evaluated to give the final result (see appendix for integration over

R and r)

Iab = 4πΩ
∑
G
ρ(G,−G)

(
GaGb

G2 −
δab
3

)
, (C.15)

where

Dab = µ0

4πg
2µ2

B

[1
2Iab

]
. (C.16)

Therefore the spin-spin Hamiltonian is given by (Ref. [416])

ĤD = D

(
Ŝ2
z −

S(S + 1)
3

)
+ E

(
Ŝ2

+ + Ŝ2
−

2

)
, (C.17)

with

D = 3
2Dzz , E = Dyy −Dxx

2 , Ŝ± = Ŝx ± i Ŝy (C.18)
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C.3 Beyond two-band result

Consider a two particle wavefunction built of parallel spin electrons with i 6= j:

Ψα(1, 2) = 1√
2

ψαi (1) ψαj (1)

ψαi (2) ψαj (2)

 (C.19)

= 1√
2
[
ψαi (1)ψαj (2)− ψαi (2)ψαj (1)

]
(C.20)

The corresponding two particle density is:

ρα = Ψα(1, 2)∗Ψα(1, 2) (C.21)

= 1
2

[
|ψαi (1)|2|ψαj (2)|2 + |ψαi (2)|2|ψαj (1)|2 (C.22)

− ψαi (1)∗ψαj (2)∗ψαi (2)ψαj (1)− ψαi (2)∗ψαj (1)∗ψαi (1)ψαj (2)
]

Consider a two particle wavefunction built of anti-parallel spin electrons with

i 6= j:

Ψαβ(1, 2) = 1√
2

ψαi (1) ψβj (1)

ψαi (2) ψβj (2)

 (C.23)

= 1√
2
[
ψαi (1)ψβj (2)− ψαi (2)ψβj (1)

]
(C.24)
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The corresponding two particle density is:

ραβ = Ψαβ(1, 2)∗Ψαβ(1, 2) (C.25)

= 1
2

[
|ψαi (1)|2|ψβj (2)|2 + |ψαi (2)|2|ψβj (1)|2 (C.26)

− ψαi (1)∗ψβj (2)∗ψαi (2)ψβj (1)− ψαi (2)∗ψβj (1)∗ψαi (1)ψβj (2)
]

= 1
2

[
|ψαi (1)|2|ψβj (2)|2 + |ψαi (2)|2|ψβj (1)|2

]
(C.27)

The full many-particle D tensor including spin operator terms is given by (see

Eq. 18 of Ref. [391] and Eq. 31 of Ref. [417]):

Dab = 1
S(2S − 1)

∑
i>j

〈Ψ|fab(ri, rj)(2Ŝiz Ŝjz − ŜixŜjx − Ŝiy Ŝjy)|Ψ〉
 (C.28)

= 1
S(2S − 1)

[
1
2
∑
i>j

〈Ψ|fab(ri, rj)σ̂iz σ̂jz |Ψ〉 (C.29)

− 1
4
∑
i>j

〈Ψ|fab(ri, rj)σ̂ixσ̂jx|Ψ〉 −
1
4
∑
i>j

〈Ψ|fab(ri, rj)σ̂iy σ̂jy |Ψ〉
]

Recalling that σ̂z |±〉 = ± |±〉, σ̂x |±〉 = |∓〉, and σ̂y |±〉 = ±i |∓〉. We have:

for parallel spin states: σ̂iz σ̂jz = 1, σ̂ixσ̂jx = 1, σ̂iy σ̂jy = −1, (C.30)

for anti-parallel spin states: σ̂iz σ̂jz = −1, σ̂ixσ̂jx = 1, σ̂iy σ̂jy = 1. (C.31)

Now we consider each term in Eq. C.29, first for the case of parallel spins then in

the case of anti-parallel spins.
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Parallel spins (σ̂iz σ̂jz term):

(σ̂iz σ̂jz )ρα = Ψα(1, 2)∗(σ̂iz σ̂jz )Ψα(1, 2) (C.32)

= Ψα(1, 2)∗Ψα(1, 2) (C.33)

= 1
2

[
|ψαi (1)|2|ψαj (2)|2 + |ψαi (2)|2|ψαj (1)|2 (C.34)

− ψαi (1)∗ψαj (2)∗ψαi (2)ψαj (1)

− ψαi (2)∗ψαj (1)∗ψαi (1)ψαj (2)
]

fab(1, 2)(σ̂iz σ̂jz )ρα = Jαij −Kα
ij (C.35)

Parallel spins (σ̂ixσ̂jx + σ̂iy σ̂jy term):

(σ̂ixσ̂jx + σ̂iy σ̂jy)ρα = Ψα(1, 2)∗(σ̂ixσ̂jx + σ̂iy σ̂jy)Ψα(1, 2) (C.36)

= Ψα(1, 2)∗Ψβ(1, 2)−Ψα(1, 2)∗Ψβ(1, 2) (C.37)

fab(1, 2)(σ̂ixσ̂jx + σ̂iy σ̂jy)ρα = 0 (C.38)

Anti-parallel spins (σ̂iz σ̂jz term):

(σ̂iz σ̂jz )ραβ = Ψαβ(1, 2)∗(σ̂iz σ̂jz)Ψαβ(1, 2) (C.39)

= −Ψαβ(1, 2)∗Ψαβ(1, 2) (C.40)

= −1
2

[
|ψαi (1)|2|ψβj (2)|2 + |ψαi (2)|2|ψβj (1)|2

]
(C.41)

fab(1, 2)(σ̂iz σ̂jz)ραβ = −Jαβij (C.42)

204



Anti-parallel spins (σ̂ixσ̂jx + σ̂iy σ̂jy term):

(σ̂ixσ̂jx + σ̂iy σ̂jy)ραβ = Ψαβ(1, 2)∗(σ̂ixσ̂jx + σ̂iy σ̂jy)Ψαβ(1, 2) (C.43)

= 2Ψαβ(1, 2)∗Ψβα(1, 2) (C.44)

=
[
ψαi (1)∗ψβi (1)ψβj (2)∗ψαj (2) (C.45)

+ ψαi (2)∗ψβi (2)ψβj (1)∗ψαj (1)

− ψαi (1)∗ψβj (2)∗ψβi (2)ψαj (1)

− ψαi (2)∗ψβj (1)∗ψβi (1)ψαj (2)
]

fab(1, 2)(σ̂ixσ̂jx + σ̂iy σ̂jy)ραβ = −2Kαβ
ij (C.46)

Plugging Eq. C.35 (both up and down), Eq. C.38, Eq. C.42, and Eq. C.46 into

Eq. C.29 gives:

Dab = 1
2S(2S − 1)

(
α∑
i>j

Jαij −Kα
ij) + (

β∑
i>j

Jβij −K
β
ij) + (

αβ∑
i>j

−Jαβij )− 1
2(

αβ∑
i>j

−2Kαβ
ij )


(C.47)

Origin of each term: Eq. C.35 Eq. C.35 Eq. C.42 Eq. C.46

Therefore in final we have:

Dab = 1
2S(2S − 1)

∑
i>j

χij(Jij −Kij) (C.48)

Note that the inclusion of an anti-parallel i = j term is theoretically possible but
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resolves to zero. This is because in this case the J and K term will cancel:

Kαβ
ii = fab(1, 2)

[
ψαi (1)∗ψβi (2)∗ψβi (2)ψαi (1) + ψαi (2)∗ψβi (1)∗ψβi (1)ψαi (2)

]
(C.49)

= fab(1, 2)
[
|ψαi (1)|2|ψβi (2)|2 + |ψαi (2)|2|ψβi (1)|2

]
(C.50)

= Jαβii (C.51)

C.4 Important notes

Spin Contamination One very important drawback when approximating the

multielectron wavefunction with Kohn-Sham wavefunctions as in Eq. C.10 is the

affect of spin-contamination. In principle, the sum over multiple states above may

not be necessary and terms where i = j for anti-parallel should cancel to zero.

However, due to the construction of a Slater determinant from spin-unrestricted

DFT calculations, the wavefunctions are no longer eigenfunctions of the total spin

operator S2, thereby introducing error into the calculation of ZFS (see Ref. [418]

for more detail). Hence a more appropriate form of Eq. C.48 should be written

as:

Dab = 1
S(2S − 1)

1
2(

α∑
i>j

Jαij −Kα
ij) + 1

2(
β∑
i>j

Jβij −K
β
ij)−

1
2(

α∑
i

β∑
j

Jαβij −K
αβ
ij )


(C.52)

Therefore there are
(
α+β

2

)
number of Jij −Kij terms to be computed. This form

is more explicit to what is actually implemented in the code.

Convert G vectors to Cartesian A second important note, is that in most

plane-wave basis codes the G-vectors will be defined in 3D on a crystal basis

(so the components are simple integers). However, when computing the sum in
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Eq. C.15 it is essential (for non-simple cubic systems) to convert the G-vectors to

the Cartesian basis. For example if g = (n, l,m) in the crystal basis (n, l,m ∈ Z),

we can convert it to it’s Cartesian form as:


b1x b2x b3x

b1y b2y b3y

b1z b2z b3z




n

l

m

 =


nb1x + lb2x +mb3x

nb1y + lb2y +mb3y

nb1z + lb2z +mb3z

 (C.53)

Diagonalize Dab The resulting matrix from the approach detailed above will

be in the Cartesian basis and therefore in order to obtain the ZFS parameters

Dx, Dy, Dz, one must compute the eigenvalues and eigenvectors of the matrix

Dab. The eigenvector corresponding to Dz is known as the principal axis and

can be identified as the eigenvector with the largest eigenvalue (and should also

be fairly recognizable given the symmetry of the defect and the orientation of

the defect orbitals). In many cases, such as cases with C3v, or D3h symmetry,

etc. the eigenvalues Dx and Dy will be equivalent. Distinguishing the two can be

done in terms of considering the cross product of their eigenvectors (v̂Dx and v̂Dy ,

respectively) should satisfy v̂Dx × v̂Dy = v̂Dz .

C.5 Supplemental Derivation

Proof of Eq. C.3 Recall Ŝx = Ŝ1x + Ŝ2x and [Ŝ1x, Ŝ2x] = 0.

Ŝ2
x = Ŝ2

1x + Ŝ2
2x + 2Ŝ1xŜ2x (C.54)

Therefore,

Ŝ1xŜ2x = 1
2 Ŝ

2
x − (Ŝ2

1x + Ŝ2
2x) , (C.55)
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and since Ŝ1x and Ŝ2x represent individual pauli matrices, it can be easily shown

that Ŝ2
1x = Ŝ2

2x = (1/2)2. This gives:

Ŝ1xŜ2x = 1
2 Ŝ

2
x −

1
41 . (C.56)

The same is true for (y, z) and components.

Proof of Eq. C.4 The anti-commutator (denoted as {, }) of Ŝx and Ŝy is

given by

{Ŝx, Ŝy} = ŜxŜy + ŜyŜx

= (Ŝ1x + Ŝ2x)(Ŝ1y + Ŝ2y) + (Ŝ1y + Ŝ2y)(Ŝ1x + Ŝ2x)

= Ŝ1xŜ1y + Ŝ1yŜ1x + Ŝ2xŜ2y + Ŝ2yŜ2x + Ŝ1xŜ2y + Ŝ2xŜ1y + Ŝ1yŜ2x + Ŝ2yŜ1x

= {Ŝ1x, Ŝ1y}+ {Ŝ2x, Ŝ2y}+ 2(Ŝ1xŜ2y + Ŝ1yŜ2x)

= 2(Ŝ1xŜ2y + Ŝ1yŜ2x) . (C.57)

Where the anti-commutator relation {Ŝ1a, Ŝ1b} = 0 for a 6= b was used and we

have shown

Ŝ1xŜ2y + Ŝ1yŜ2x = 1
2(ŜxŜy + ŜyŜx) . (C.58)

The same is true for other combinations of (x, y, z).

Substitution between Eq. C.8 and Eq. C.13 The transformation of co-
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ordinates requires calculating the Jacobian for integration.

dr1x dr2x =

∣∣∣∣∣∣∣
∂r1x/∂rx ∂r1x/∂Rx

∂r2x/∂rx ∂r2x/∂Rx

∣∣∣∣∣∣∣ drx dRx

=

∣∣∣∣∣∣∣
1/2 1/2

−1/2 1/2

∣∣∣∣∣∣∣ drx dRx

= 1
2 drx dRx (C.59)

Repeating for y and z components gives a total factor of 1/8.

Integration over R in Eq. C.13 Consider the part of Iab from Eq. C.13

which depends on R:

IR =
∫

Ω
ei[R·(G1+G2)]/2 dR (C.60)

For simplicity consider the x component which integrates over lattice vector (a):

IRx =
∫ a

0
ei[Rx(G1x+G2x)]/2 dRx

= −2i
G1x +G2x

[
ei[a(G1x+G2x)]/2 − 1

]
(C.61)

As G1 and G2 represent reciprocal lattice vectors they both have the form:

G = v1b1 + v2b2 + v3b3 (C.62)

where the reciprocal lattice vectors bi obey the property bi · aj = 2πδij. This will

result in

IRx = −2i
G1x +G2x

[
e2πik − 1

]
(C.63)
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where k ∈ Z. Therefore the integral equates to zero except under the condition

that G1x = G2x. In this limit we have:

lim
η→0

−2i
η

[
eiaη − 1

]
LH= lim

η→0
−2i(ia)eiaη

= 2a (C.64)

Carrying out the integration over y and z will result in the volume of the unit cell

and force G1 = G2. This gives the final result:

IR =
∫

Ω
ei[R·(G1+G2)]/2 dR = 8ΩδG1,G2 (C.65)

Integration over r in Eq. C.14 Consider the solution to the following inte-

gral:

∫
eiG·r

1
|r−C|

dr = 4π
G2 e

iG·C . (C.66)

Taking the second derivative (a, b ∈ {x, y, z}):

− ∂2

∂Ca∂Cb

∫
eiG·r

1
|r−C|

dr = 4πGaGb

G2 eiG·C . (C.67)

Meanwhile,

− ∂2

∂Ca∂Cb

1
|r−C|

= δab
r3 −

3r′ar′b
r5 + 4πδab

3 δ(r) . (C.68)

Therefore,

∫
eiG·r

r2δab − 3r′ar′b
r5 dr = 4πGaGb

G2 eiG·C + 4π
3 δab , (C.69)
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and the final form fo Iab is obtained:

Iab = 4πΩ
∑
G
ρ(G,−G)

(
GaGb

G2 −
δab
3

)
(C.70)

Convolution Theorem

Consider the Fourier transform of ψ.

ψ(r) = 1
Ω
∑
G
ψ(G) eiG·r and ψ(G) =

∫
Ω
ψ(r) e−iG·r dr (C.71)

The product ψ∗j (r)ψi(r) therefore has the form:

ψ∗j (r)ψi(r) = 1
Ω2

(∑
G′
ψi(G′)eiG

′·r
)(∑

G′′
ψ∗j (G′′)e−iG

′′·r
)
. (C.72)

The Fourier transform of the product of these wavefunctions is thus given by:

F
{
ψ∗j (r)ψi(r)

}
= 1

Ω2

∫
Ω

[(∑
G′
ψi(G′)eiG

′·r
)(∑

G′′
ψ∗j (G′′)e−iG

′′·r
)]

e−iG·r dr

= 1
Ω2

∑
G′
ψi(G′)

[∑
G′′

ψ∗j (G′′)
(∫

Ω
ei(G

′−G′′−G)·r dr
)]

= 1
Ω
∑
G′
ψi(G′)

[∑
G′′

ψ∗j (G′′) δ(G′ −G′′ −G)
]

= 1
Ω
∑
G′
ψi(G′)ψ∗j (G−G′) . (C.73)

Therefore we can compute f1(G), f2(G), f3(G) as:

f1(G) = 1
Ω
∑
G′
ψ∗1(G−G′)ψ1(G′) , f2(G) = 1

Ω
∑
G′
ψ∗2(G−G′)ψ2(G′) ,

f3(G) = 1
Ω
∑
G′
ψ∗1(G−G′)ψ2(G′) .

(C.74)
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Appendix D

Photoluminescence

Figure D.1: Top, schematic representation of two adiabatic potential energy
surfaces with various vibronic levels with energetic separation (~ω). Bottom,
luminescence (red) and absoprtion (blue) spectra of NV center in diamond. This
diagram provides an amazing visual representation so I borrowed it from Ref. [419],
a fantastic reference for the NV center.

212



D.1 Normalized Photoluminescence

Following Ref. [345], at T = 0K the absolute luminescence intensity I(~ω)

(photons per unit time per unit energy) for a single emitter is given by:

I(~ω) = nDω
3

3ε0πc3~
|~µeg|2

∑
m

| 〈χgm|χe0〉 |2 δ(EZPL − Egm − ~ω) . (D.1)

Here nD is the refractive index (n =
√
ε); χe0 and χgm are vibrational levels of

the excited and ground state with energy Ee0 and Egm (with EZPL = Ee0 −Eg0).

Here we assume the Franck-Condon approximation holds, i.e. the transition dipole

moment |~µeg| depends weakly on the lattice parameters. A prefactor of ω3 arises

from the density of states of photons that cause the spontaneous emission (∼ ω2

– Pg. 465 Ashcroft & Mermin: Debye model) and the perturbing electric field

(| ~E|2 ∼ ω).

If only the normalized luminescence is desired (experimentally the absolute

intensity is difficult), then we can consider the normalized luminescence intensity,

defined as

L(~ω) = Cω3A(~ω) , (D.2)

where

A(~ω) =
∑
m

| 〈χgm|χe0〉 |2 δ(EZPL − Egm − ~ω) (D.3)

is the optical spectral function, and C is a normalization constant.
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D.2 The optical spectral function

In Ref. [345], the direct calculation of Eq. D.3 is avoided. We assume: (1)

normal modes that contribute the luminescence are those of the solid with the

defect (opposed to bulk modes without the defect) and (2) the modes of the excited

state are identical to the ground state. Using a generating function approach in

which the main quantity to compute directly from first-principles results is the

HR function:

S(~ω) =
∑
k

Skδ(~ω − ~ωk) , (D.4)

where

Sk = ωk q
2
k/(2~) (D.5)

are partial Huang-Rhys (HR) factors and

qk =
∑
i

√
mi (~Re;i − ~Rg;i) ·∆~rk;i (D.6)

are generalized coordinates in vibrational mode k (∆~rk;i is a normalized vector

that describes the displacement of ion i in phonon mode k). The larger the dot

product between the normalized phonon mode k and the displacement vector

(~Re;i− ~Rg;i); the greater the contribution of mode k to the overall HR function in

equation D.4. From S(~ω) we can compute A(~ω) as:

A(EZPL − ~ω) = 1
2π

∫ ∞
−∞

G(t) eiωt−γ|t| dt (D.7)
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with the generating function G(t) defined as

G(t) = eS(t)−S(0) , (D.8)

where S(t) is the Fourier transform of the HR function

S(t) =
∫ ∞

0
S(~ω)e−iωt d(~ω) . (D.9)

A broadening of the ZPL γ enters the form of the photoluminescence in Eq. D.7

and can be chosen to reproduce the experimental ZPL width. This procedure

of computing photoluminescence is implemented here: https://github.com/

Ping-Group-UCSC/PL-code.

D.3 Additional Derivations

The form of the spectral function:

A(~ω) =
∑
m

| 〈χgm|χe0〉 |2δ(EZPL − Egm − ~ω) (D.10)

isn’t quite exact, in fact while the quantum number m represents the state of a

vibrational mode, in a solid crystal (in 3D space) has 3N vibrational modes which

we denoted by k. More exactly:

A(~ω) =
∑
k

∑
m

| 〈χkgm|χke0〉 |2δ(EZPL − Ek
gm − ~ω) (D.11)

where Ek
gm is actually Ek

gm = Ek
gm−Ek

e0 but since we have assumed g and e have the

same vibrational states kg = ke and so Ek
gm = (m+1/2)~ωk−(0+1/2)~ωk = m~ωk.
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Hence,

A(~ω) =
∑
k

∑
m

| 〈χkgm|χke0〉 |2δ(EZPL −m~ωk − ~ω) (D.12)

or

A(EZPL − ~ω) =
∑
k

∑
m

| 〈χkgm|χke0〉 |2δ(~ω −m~ωk) (D.13)

Now focusing on the phonon overlap:

∑
m

| 〈χkgm|χke0〉 |2 (D.14)

The solution of this overlap is [420]

| 〈χkgm|χke0〉 |2 = e−Sk
Smk
m! (D.15)

in addition

∑
m

| 〈χkgm|χke0〉 |2 = e−Sk
∑
m

(Sk)m
m! = e−Sk

(
eSk

)
= 1 (D.16)

where

Sk = ωkq
2
k/2~ (D.17)

The spectral density S(~ω) is defined as:

S(~ω) =
∑
k

Skδ(~ω − ~ωk) =
∑
k

ωkq
2
k

2~ δ(~ω − ~ωk) (D.18)

216



Note: χgm(Q) = χem(Q−Q0 + ∆Q) when ∆Q = Q0

217



Appendix E

Optical Properties

E.1 Macroscopic Dielectric Function

See Ref. [421, 422, 423] for additional details. Within the Alder-Wiser for-

mulation (consistent with KS approach for periodic boundary conditions) the

irreducible polarizability is given by:

χ0
G,G′(q) = − 4

(2π)3

∑
v,c

∫
BZ

dk
〈k + q, c| ei(q+G)·r |k, v〉 〈k, v| e−i(q+G′)·r |k + q, c〉

Ec(k + q)− Ev(k)

(E.1)

Note the compressed notation used here fG,G′(q) = f(G + q,G′ + q).

E.1.1 Independent-Particle-Approximation

The simplest approach, known as the independent-particle approximation is

to directly compute the dielectric matrix ε from the irreducible polarizability.

εG,G′(q) = δG,G′ − vG(q)χ0
G,G′(q) (E.2)
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Here vG(q) is the simple Hartree kernel.

vG(q) = 4π
|q + G|2

(E.3)

Therefore, within the independent-particle approximation, the macroscopic di-

electric function (long-wavelength limit of the G = G′ = 0 element) is given

by:

εM = lim
q→0

ε0,0(q) (E.4)

E.1.2 Random-Phase-Approximation

In reality, the irreducible polarizability should be fed into a Dyson equation

for the reducible polarizability which includes the Hartree term explicitly in the

polarizability.

χG,G′(q) = χ0
G,G′(q) +

∑
G1,G2

χ0
G,G1(q)

[
vG1(q)δG1,G2

]
χG2,G′(q) (E.5)

Then the dielectric matrix is provided by a calculation reminiscent of Eq. E.2.

ε−1
G,G′(q) = δG,G′ + vG(q)χG,G′(q) (E.6)

An important difference is that here the inverse of the dielectric matrix is com-

puted and therefore an inversion is necessary to obtain the final macroscopic

dielectric function.

εM = lim
q→0

1
ε−1

0,0(q)
(E.7)
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E.2 Absorption spectra

Follows Jackson Ch. 7 [230]. A polarized plane wave electromagnetic field has

the general form

Ẽ(z, t) = n̂ Ẽ0e
ik̃z−iωt (E.8)

This gives the wave vector to be

k̃ = ω
√
µε̃ = ω

c

√
µε̃

µ0ε0
' ω

c

√
ε̃r (E.9)

where µ ' µ0, and ε̃r ≡ ε̃/ε0. Within a medium the dielectric constant ε̃r can take

a complex form and therefore so will k̃.

k̃ = β + i
α

2 (E.10)

Plugging this into Eq. E.8, we see that α is responsible for the attenuation of the

wave within the medium.

Ẽ(z, t) = n̂ Ẽ0e
−αz/2eiβz−iωt (E.11)

The intensity of the beam is proportional to the square of the electric field and

so we see the intensity dies exponentially with α as it travels a distance z in the

medium.

I(z) ∝ e−αz (E.12)

For this reason α is known as the absorption coefficient and is responsible for the

energy transfer of light to the medium due to the medium’s dielectric response εr.
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A direct relation between α and ε̃r can be obtained with some algebra:

k̃ = β + i
α

2 = ω

c

√
ε̃r (E.13)

⇒ k̃2 = β2 − α2

4 + i βα = ω2

c2 ε̃r (E.14)

Relating real and imaginary parts and taking ε̃r = ε1 + i ε2, we have:

β2 − α2

4 = ω2

c2 ε1 (E.15)

βα = ω2

c2 ε2 (E.16)

Multiplying by β2 and inserting where appropriate we have

β4 −
(
ω2

c2 ε1

)
β2 −

(
ω4

c4 ε
2
2

)
= 0 (E.17)

This is a biquadratic function whose solutions resemble that of the quadratic

function. In this case our solutions are given by (β > 0 and β ∈ R):

β =

√√√√ ω2

c2 ε1 +
√

ω4

c4 ε21 + ω4

c4 ε22

2 (E.18)

β = ω

c

√√√√ε1 +
√
ε21 + ε22

2 (E.19)

Finally, the absorption coefficient (up to µ ' µ0):

α(ω) = ω

c

ε2(ω)√
ε1(ω)+

√
ε21(ω)+ε22(ω)
2

(E.20)
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Unless the absorption is very strong, we have ε1 � ε2 and can write the absorption

coefficient in the simple form:

α(ω) ' ω

c

ε2(ω)√
ε1(ω)

(E.21)

E.3 Additional forms of the absorption coeffi-

cient

α(ω) = 2ω
c
k(ω) (E.22)

= 2ω
c
Im

(√
ε(ω)

)
(E.23)

= 2ω
c
Im

(√
ε1(ω) + ε2(ω)

)
(E.24)

= ω

c

√
2(|ε(ω)| − ε1(ω)) (E.25)

= ω

c

√
2(|ε(ω)| − ε1(ω))

√
|ε(ω)|+ ε1(ω)√
|ε(ω)|+ ε1(ω)

(E.26)

= ω

c

√
2(|ε(ω)|2 − ε1(ω)2)√
|ε(ω)|+ ε1(ω)

(E.27)

= ω

c

√
(ε1(ω)2 + ε2(ω)2)− ε1(ω)2√

|ε(ω)|+ε1(ω)
2

(E.28)

= ω

c

ε2(ω)√
|ε(ω)|+ε1(ω)

2

(E.29)

= ω

c

ε2(ω)√
ε1(ω)+

√
ε1(ω)2+ε2(ω)2

2

(E.30)
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Appendix F

Why we may average IP & EA

From Janak’s Theorem the IP and EA of a system are defined in terms of the

derivative of the total energy of the system:

EA(q) = −∂E
∂n

∣∣∣∣∣
n=q+

(F.1)

IP(q + 1) = −∂E
∂n

∣∣∣∣∣
n=(q+1)−

(F.2)

Within the framework of DFT (with local and semi-local functionals), energy is a

continuous and smooth functional of the number of electrons in the system E[n].

As shown in Figure 1, this leads to inconsistency between the eigenvalues of the

q and q + 1 system (resulting in IP(q + 1) 6= EA(q)). In particular, both the IP

and EA will be incorrect at local and semi-local levels of theory. We can however,

approximate the true eigenvalue between the q and q + 1 state by averaging the

value of the DFT eigenvalue over the range q to q + 1. In practice this would

require having an analytic form of the value of the eigenvalue in terms of electron

number. While this is certainly doable, we can obtain a fast approximation easily

by first assuming the total energy as quadratic in electron number (this is the
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second order approximation we make):

E[n] = E0 + E1n+ E2n
2 (F.3)

From Janak’s theorem we can then obtain ε[n]:

ε[n] = E1 + 2E2n (F.4)

We can then simply compute the average of ε[n] over the range q to q+1 (denoted

as εq|q+1):

εq|q+1 = 1
(q + 1)− q

∫ q+1

q
ε[n] dn = E1 + 2E2(q + 1/2) (F.5)

Since ε[n] is linear this is identical to the average of ε[n] at the points q and q+ 1:

εq|q+1 = 1
2 (ε[q + 1] + ε[q]) = E1 + 2E2(q + 1/2) (F.6)

Therefore from Eq. F.6 and Eq. F.1-F.2 we have:

εq|q+1 = 1
2 (EA(q) + IP(q + 1)) (F.7)
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Figure F.1: Delocalization error in LDA, taken from Ref. [424].
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