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Abstract

The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained 

clinicians can spend hours looking for the right publication(s) supporting a single gene that 

best explains a patient’s disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly 

accelerates this process. AMELIE parses all 29 million PubMed abstracts and downloads and 
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further parses hundreds of thousands of full-text articles in search of information supporting the 

causality and associated phenotypes of most published genetic variants. AMELIE then prioritizes 

patient candidate variants for their likelihood of explaining any patient’s given set of phenotypes. 

Diagnosis of singleton patients (without relatives’ exomes) is the most time-consuming scenario, 

and AMELIE ranked the causative gene at the very top for 66% of 215 diagnosed singleton 

Mendelian patients from the Deciphering Developmental Disorders project. Evaluating only the 

top 11 AMELIE-scored genes of 127 (median) candidate genes per patient resulted in a rapid 

diagnosis in more than 90% of cases. AMELIE-based evaluation of all cases was 3 to 19 times 

more efficient than hand-curated database–based approaches. We replicated these results on a 

retrospective cohort of clinical cases from Stanford Children’s Health and the Manton Center for 

Orphan Disease Research. An analysis web portal with our most recent update, programmatic 

interface, and code is available at AMELIE.stanford.edu.

INTRODUCTION

Millions of babies born worldwide each year are affected by severe genetic, often Mendelian 

disorders (1). Patients with Mendelian diseases have one or two genetic variants in a 

single gene primarily responsible for their disease phenotypes (2). Roughly 5000 Mendelian 

diseases, each with a characteristic set of phenotypes, have been mapped to about 3500 

genes to date (3). Exome sequencing is often performed to identify candidate causative 

genes, resulting in a relatively high (currently 30%) diagnostic yield (4). A genetic diagnosis 

provides a sense of closure to the patient family, aids in patient trajectory prediction and 

management, allows for better family counseling, and, in the age of gene editing, even 

provides first hope for a cure. However, identifying the causative mutation(s) in a patient’s 

exome to arrive at a diagnosis can be very time-consuming, with a typical exome requiring 

hours of expert analysis (5).

Definitive diagnosis of a known Mendelian disorder is accomplished by matching the 

patient’s genotype and phenotype to previously described cases from the literature. 

Manually curated databases (6-10) are used to more efficiently access extracts of the 

unstructured knowledge in the primary literature. Automatic gene ranking tools (11-18) 

use these databases to prioritize candidate genes in patients’ genomes for their ability 

to explain patient phenotypes. An important feature of many gene ranking tools is the 

use of phenotype match functions on patient phenotypes and gene- or disease-associated 

phenotypes. Phenotype match functions exploit the structure of a phenotype ontology (9) 

and known gene-disease-phenotype associations to quantify the inexact match between two 

sets of phenotypes (11, 12), with recent approaches developed to computationally extract 

phenotype data from electronic medical notes (19, 20). The goal of all gene ranking tools is 

to aid a busy clinician in arriving at a definitive diagnosis of any case presented to them in 

the shortest amount of time by reading up on genes in the order the algorithm has ranked 

them.

Given the rapidly growing number of rare diseases with a known molecular basis (21) 

and the difficulty of manually finding a diagnosis for some rare diseases with variable 

phenotypes, many patients experience long diagnostic odysseys (22). Expert clinician time is 
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expensive and scarce, but machine time is cheap and plentiful. We aimed to accelerate the 

diagnosis of patients with Mendelian diseases by using information from primary literature 

to construct gene rankings, thus allowing clinicians to discover the causative gene along with 

supporting literature in a minimum amount of time.

Here, we introduce AMELIE (Automatic Mendelian Literature Evaluation). AMELIE 

uses natural language processing (NLP) to automatically construct a homogeneous 

knowledgebase about Mendelian diseases directly from primary literature. To perform 

this operation, AMELIE was trained on data from manually curated databases such as 

Online Mendelian Inheritance in Man (OMIM) (6), Human Gene Mutation Database 

(HGMD) (8), and ClinVar (10). AMELIE then used a machine learning classifier that 

integrated knowledge about a patient’s phenotype and genotype with its knowledgebase 

to rank candidate genes in the patient’s genome for their likelihood of being causative 

and simultaneously supported its ranking results with annotated citations to the primary 

literature. We compare this end-to-end machine learning approach to gene ranking methods 

that rely on manually curated databases using a total of 271 singleton patients from three 

different sources, including two clinical centers and a research cohort.

RESULTS

Overview of AMELIE

Given a patient’s genome sequencing data and a phenotypic description of the patient, 

AMELIE aims to both identify the gene causing the patient’s disease (when possible) and 

supply the clinician with literature supporting the gene’s causal role. To this end, AMELIE 

creates a ranking of candidate causative genes in the patient’s genome with the aim of 

ranking the true causative gene at the top. AMELIE constructs its candidate causative gene 

ranking by comparing information from the primary literature to information about the 

patient’s genotype and phenotype.

To process information from the full text of primary literature, AMELIE constructs a 

knowledgebase directly from the primary literature up front using NLP techniques trained 

on manually curated databases. After knowledgebase construction, AMELIE ranks any 

patient’s candidate causative genes using a classifier, which compares knowledge from 

the AMELIE knowledgebase with phenotypic and genotypic information about the patient. 

AMELIE explains each gene’s ranking to the clinician by citing articles about this gene in 

the knowledgebase.

Identification and download of relevant Mendelian disease articles based on all of PubMed

The first step toward building the AMELIE knowledgebase was discovering relevant 

primary literature. Of 29 million peer-reviewed articles deposited in PubMed, only a fraction 

is relevant for Mendelian disease diagnosis. We constructed a machine learning classifier 

that, given titles and abstracts of articles from PubMed, identified potentially relevant 

articles for the AMELIE knowledgebase.

Machine learning classifiers take as input a numerical vector describing the input, called 

the “feature vector.” Here, we used a so-called term frequency–inverse document frequency 
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transformation to convert input text into a feature vector. We implemented the title/abstract 

document classifier as a logistic regression classifier. Logistic regression transforms its 

output using the logistic sigmoid function to return a probability value that is then mapped 

into binary (positive/negative) decision-making (23).

Machine learning classifiers learn to classify an input as positive (relevant) or negative 

(irrelevant) by being exposed to a large number of labeled positive and negative examples 

(the training set). OMIM (6) is an online database of Mendelian diseases, genes, and 

associated phenotypes. HGMD (8) is a database of disease-causing mutations in the human 

genome. The training set for the title/abstract relevance classifier consisted of titles and 

abstracts of 56,479 Mendelian disease–related articles cited in OMIM and HGMD as 

positive training examples and 67,774 random titles and abstracts of PubMed articles 

(largely unrelated to Mendelian disease) as negative training examples.

Precision and recall are two standard measures of evaluating classifier performance. 

Precision measures the fraction of all inputs classified positive that are truly relevant. 

Recall measures the fraction of truly positive inputs that are classified positive. Fivefold 

cross-validation (splitting all available labeled training data to include 80% in a training set 

and evaluating on the remaining 20%, five times in round-robin fashion) returned an average 

precision of 98% and an average recall of 96%.

All 28,925,544 titles and abstracts available in PubMed on 30 September 2018 were 

downloaded and processed by the document classifier. The classifier identified 578,944 

articles as possibly relevant on the basis of their PubMed title and abstract, of which we 

downloaded 515,659 (89%) full-text articles directly from dozens of different publishers.

Building a structured database of information about Mendelian diseases from full text

From the full text of an article, multiple types of information were extracted. Gene mentions 

in full text were identified using lists of gene and protein names and synonyms from the 

HUGO Gene Nomenclature Committee (24), UniProt (25), and the automatically curated 

PubTator (26), a National Center for Biotechnology Information service combining gene 

mentions found by multiple previously published automatic gene recognition methods. 

AMELIE recognized about 93% of disease-causing gene names. However, through a 

combination of unfortunate gene synonyms (such as “FOR,” “TYPE,” “ANOVA,” or 

“CO2”), as well as genes mentioned only in titles of cited references, or interaction partners 

of causative genes, a median of 12 distinct gene candidates was found in each article (table 

S1).

To discover which gene(s) were the subject of the PubMed article, each distinct gene 

candidate extracted from an article received a “relevant gene score” between 0 and 1 

indicating the likelihood of the gene being important in the context of the article. Training 

data for the relevant gene classifier were obtained from OMIM and HGMD. A total of 

304,471 downloaded full-text articles contained at least one gene with a relevance score of 

0.1 or higher. These articles, along with their above-threshold scoring genes, formed the 

AMELIE knowledgebase. Articles in the AMELIE knowledgebase contained a median of 1 

gene with a relevant gene score between 0.1 and 1 (table S1). Furthermore, genetic variants 
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(for example, “p.Met88Ile” or “c.251A>G”) were identified in the full text of each article 

and converted to genomic coordinates (chromosome, position, reference, and alternative 

allele) using the AVADA (Automatic Variant Evidence Database) variant extraction method 

(27). A median of three distinct genetic variants was extracted from 123,073 full-text articles 

in the AMELIE knowledgebase.

Phenotype mentions were recognized in full-text articles using a list of phenotype names 

compiled from Human Phenotype Ontology (HPO) (9). By linking all genes with a relevant 

gene score of at least 0.5 in an article with all phenotypes mentioned in the same article, we 

arrived at a total of 872,080 gene-phenotype relationships covering 11,537 genes (fig. S1).

Five scores between 0 and 1 were assigned to the full text of each article. A “full-text 

document relevance” score assessed the likely relevance of the article for the diagnosis 

of Mendelian diseases. A “protein-truncating” and a “nontruncating” score each gave 

an assessment of whether the article was about a disease caused by protein-truncating 

(splice site, frameshift, and stopgain) or nontruncating (other) variants. A “dominant” and 

a “recessive” score each gave an assessment of the discussed inheritance mode(s) in the 

article.

Precision and recall of full-text article information (relevant genes, extracted phenotypes, 

and full-text article scores) varied between 74 and 96%. All the data described in this section 

were entered into the AMELIE knowledgebase, keyed on the article that they were extracted 

from (Fig. 1A). The top journals from which the most gene-phenotype relationships were 

extracted are shown in Fig. 1B and table S2. We estimated that the number of newly 

described gene-phenotype relationships has increased by an average of 10.5% every 2 years 

since the year 2000 (fig. S2).

The AMELIE classifier assigns patient genes a likelihood of being causative

Given a patient with a suspected Mendelian disease, AMELIE aims to speed up discovery 

of the causative gene by ranking patient genes for their ability to describe a set of patient 

phenotypes. AMELIE performs standard filtering of the patient variant list (21, 28) to 

keep only “candidate causative variants” that are rare in the unaffected population and are 

predicted to change a protein-coding region (missense, frameshift, nonframeshift indel, core 

splice site, stoploss, and stopgain variants). Core splice sites were defined to consist of the 

2 base pairs at either end of each intron. Genes containing candidate causative variants were 

called candidate causative genes (or “candidate genes”). AMELIE ranked about 97% of 

known disease-causing mutations, excluding only those in deeper intronic and non–protein-

coding intergenic regions.

We defined an article in the AMELIE knowledgebase to be about a candidate causative 

gene if the candidate causative gene had a relevant gene score of at least 0.1 in the 

article to maximize recall while maintaining a median of 1 relevant gene per article. We 

constructed a machine learning classifier called the “AMELIE classifier” that assigns a score 

between 0 and 100 to triples (P, G, and A), consisting of a set of patient phenotypes P, a 

candidate causative gene G, and an article A about the candidate gene. Given a patient with 

phenotypes P and a candidate gene G, the AMELIE score indicates whether the article A 
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is likely helpful for diagnosing the patient because it links mutations in G to the patient’s 

phenotypes P. Higher AMELIE scores indicate articles more likely relevant to diagnosis. 

The AMELIE classifier was implemented as a logistic regression classifier and returns a 

score between 0 and 100 called the “AMELIE score.” The AMELIE score is used to both 

rank patient candidate genes and explain rankings by citing primary literature, as described 

below.

The AMELIE classifier uses a set of 27 real-valued features, falling into six feature 

groups (Fig. 1C). The six feature groups comprise (i) five features containing information 

about disease inheritance mode extracted from the article and patient variant zygosity, (ii) 

five features containing information about AVADA-extracted variants from the article and 

overlap of these variants with patient variants, (iii) two features containing information 

about patient phenotypes based on the Phrank (11) phenotypic match score of phenotypes 

in article A with the patient phenotypes P, (iv) five features containing information about 

article and patient variant types, (v) three features containing information about article 

relevance and relevance of the candidate gene in the article, and (vi) seven features 

containing a priori information about the patient’s candidate causative variants in G such 

as in silico pathogenicity scores (29) and gene-level mutation intolerance scores (30, 31).

To train the AMELIE classifier, we constructed a set of 681 simulated patients using data 

from OMIM (6), ClinVar (10), and the 1000 Genomes Project (32). Each simulated patient s 
was assigned a disease from OMIM, with phenotypes noisily sampled from the phenotypes 

associated with the disease. The genome of each simulated patient was based on genome 

sequencing data from the 1000 Genomes Project. An appropriate disease-causing variant 

from ClinVar was added to each simulated patient’s genome. Each simulated patient was 

assigned a diagnostic article As describing the genetic cause of the patient’s disease. In total, 

the simulated patients covered a total of 681 OMIM diseases (1 per patient) and a total of 

1090 distinct phenotypic abnormalities (table S3). The sampled phenotypes for each disease 

covered an average of 21% of the phenotypes manually associated with the disease by HPO.

The AMELIE classifier was trained to recognize the diagnostic article As out of all articles 

about genes with candidate causative variants in a patient s. Of a total of 681 training 

“patients” constructed using data in OMIM and ClinVar, the single positively labeled article 

was recognized and downloaded during AMELIE knowledgebase construction in 664 cases 

(98%), creating 664 positive training examples. The negative training set for the AMELIE 

classifier consisted of triples (Ps, G, and A) for each simulated patient s, where G was 

a noncausative candidate gene in patient s and A was an article about G. For training 

efficiency, we used only 664,000 random negative training examples out of all available 

negative training examples.

The AMELIE classifier assigns each candidate gene G an AMELIE score, defined as the 

best AMELIE classifier score for any paper A about gene G, as it relates to patient P (Fig. 

1C). Candidate causative genes were ranked in descending order of their associated score.
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Evaluating AMELIE on a retrospective patient test set

We evaluated AMELIE on a set of 215 real singleton patients with an established diagnosis 

from the Deciphering Developmental Disorders (DDD) project (33). The DDD dataset 

included HPO phenotypes (a median of 7 per patient), exome data in variant call format, 

and the causative gene for each patient (1 per patient). AMELIE’s goal was to rank the 

established causative gene at or near the top of its ranked list of candidate genes for each 

patient. Filtering for candidate causative variants resulted in a median of 163 variants in 127 

candidate genes per patient Fig. 1C). We used the set of 215 patients obtained from the DDD 

study to evaluate AMELIE against Exomiser (14), Phenolyzer (15), Phen-Gen (16), eXtasy 

(17), and PubCaseFinder (18). The output of all methods, consisting of a list of ranked 

genes, was subset to the (median) 127 candidate genes that AMELIE used for each patient 

based on the filtering criteria previously described (Fig. 2A). This ensured the fair evaluation 

of all gene ranking methods against the same set of genes.

AMELIE analyzed a median of 4173 articles per patient and ranked the causative gene at 

the very top in 142 (66%) of 215 cases and in the top 10 in 193 cases (89.7%). Other 

methods ranked the causative gene at the top between 38% of cases (Exomiser) and 8% 

of cases (Phen-Gen) (Fig. 2B). AMELIE performed significantly better than all compared 

methods (all P values ≤1.68 × 10−9; one-sided Wilcoxon signed-rank test; table S4). Of 117 

distinct top-ranked articles supporting the DDD patients where AMELIE ranked the test 

set causative gene at number 1, only 36 (31%) were cited in OMIM as determined by a 

systematic Google search of omim.org (table S5).

Because of the large number of patients expected to be sequenced for Mendelian diagnosis 

(34), one may want to set guidelines for rapid versus in-depth exome or genome analysis. 

In our test set of 215 patients, AMELIE offered a diagnosis for 90% of diagnosable cases 

when evaluating only up to the top 11 AMELIE-ranked genes per case or 9% of a median of 

127 candidate causative genes. If using any of the other methods, the clinician would have 

to investigate between a median of 30 genes (when using Exomiser to rank patient candidate 

causative genes) and 108 genes per patient to arrive at the diagnosis in 90% of diagnosable 

cases (Fig. 2C).

If the clinician used AMELIE to determine the order in which they evaluate their entire 

candidate gene list, one gene after the other, on the DDD set of 215 patients, they would 

evaluate a total of 735 gene-patient matches to arrive at the causative gene for all 215 

patients. If the clinician went through the list of candidate genes in random order, they 

would evaluate an expected total sum of 14,383 gene-patient matches to arrive at the 

causative gene for all patients. By this metric, AMELIE improved diagnosis time by a factor 

of 19.6× over a random baseline. The next best tool, Exomiser, would require the clinician 

to read about 2085 genes until arriving at the causative gene for all patients, an improvement 

of 6.9× faster over a random baseline. The performance of other methods ranged from a 

speedup of 3.13× to 1.04× (Fig. 2D). The speedup provided by AMELIE was thus more than 

twice that provided by the next best tool, Exomiser.
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Replication of AMELIE performance on 56 clinical cases from two sites

To test for the result replication across data sources, we evaluated AMELIE using 56 

singleton clinical cases seen by the Medical Genetics Service at Stanford Children’s Health 

and the Manton Center for Orphan Disease Research at Boston Children’s Hospital. Patient 

genotype and phenotype data were obtained from Stanford and the Manton Center Gene 

Discovery Core.

We performed a comparison of gene ranking performance using AMELIE against other 

methods as above for the DDD patients. AMELIE ranked the causative gene at the very top 

in 33 (59%) of 56 cases and in the top 10 in 50 cases (89%). Again, AMELIE significantly 

outperformed all other methods (all P values ≤6.65 × 10−3; one-sided Wilcoxon signed-rank 

test; fig. S3A and table S6). AMELIE offered a diagnosis for 90% of patients in the test set 

of 56 Stanford and Manton patients if evaluating the top 15 candidate genes per patient (9% 

of a median of 172.5), replicating its performance on the DDD set (fig. S3B).

To arrive at the causative gene for each patient in the clinical test set from Stanford and 

Manton when using AMELIE, a clinician would need to evaluate 300 genes compared 

to a baseline of 6106 genes if evaluating genes in random order. Similar to the DDD 

patient test set, AMELIE resulted in a speedup of 20× compared to the baseline, 2× to 

20× faster than other methods (fig. S3C). Because the other methods do not use simulated 

patients for training, gene ranking results using other methods were obtained by running 

each respective method once on the simulated patient set. Fivefold cross-validation on the 

681 simulated patients showed that AMELIE generated significantly better causative gene 

rankings compared to the other methods (all P values ≤5.24 × 10−10; fig. S4 and table S7).

We ran multiple tests with modified AMELIE knowledgebases and AMELIE classifiers 

to dissect the relative contribution of different AMELIE components to its causative gene 

ranking performance. For all 175 test cohort patients with the causative gene ranked at the 

top, we investigated which machine learning features of the AMELIE classifier contributed 

most to the high score of the causative gene. Overwhelmingly, for 149 (85%) of 175 real 

test patients, the feature contributing most to the high score was a high phenotypic match 

between the patient and the article. However, 14 of a total 27 AMELIE classifier features 

(52%) occurred at least once within the three features contributing most to the top rank of a 

patient’s causative gene (Fig. 3A and table S8).

To measure how much AMELIE relied on certain feature groups, we retrained the AMELIE 

classifier six times, each time dropping one of its six feature groups. With dropped-out 

features, the number of causative genes ranked at the top across the test set of 271 real 

patients shrank between 4 and 39% (Fig. 3B and table S9). AMELIE did not better rank 

causative genes when phenotype recognition was augmented by data from Unified Medical 

Language System (35), Medical Subject Headings (36), and Systematized Nomenclature of 

Medicine–Clinical Terms (37), three databases containing additional phenotype names and 

synonyms. However, AMELIE ranked 32% more causative genes at the top when using 

full-text data rather than data gathered only from titles and abstracts.
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AMELIE’s performance is not correlated with number of articles about a causative gene

We investigated whether the number of articles about the causative gene in the AMELIE 

knowledgebase is correlated with the causative gene rank by performing linear regression 

between the causative gene rank and number of articles analyzed for the causative gene. The 

regression revealed no significant relationship (P = 0.85 that the slope of regression is equal 

to 0 according to a Wald test with t distribution of the test statistic; Fig. 3C), suggesting 

that AMELIE performs well independent of the number of papers it has analyzed about a 

causative gene. For the 22 patients (8% of a total of 271 real test patients) with less than 10 

papers analyzed for the causative gene, AMELIE ranked causative genes at the top for 10 

(45%) cases. In contrast, Exomiser ranked the causative gene at the top in six (27%) of these 

cases.

The AMELIE knowledgebase and AMELIE classifier work together to arrive at high 
causative gene ranks

We investigated the relative contribution of the AMELIE classifier and the AMELIE 

knowledgebase to AMELIE’s overall gene ranking performance. We retrained the AMELIE 

classifier using data from DisGeNET (38), a text mining–based database containing gene-

phenotype relationships, disease-causing variants, and links to primary literature from 

PubMed. Using DisGeNET data resulted in significantly worse causative gene rankings 

compared to the AMELIE knowledgebase (P ≤ 4.76 × 10−23; table S10). We then replaced 

the AMELIE classifier (Fig. 1C) with the Phrank (11) phenotypic match score to estimate 

the impact of the AMELIE classifier on overall AMELIE performance. Gene ranking by the 

Phrank phenotypic match score resulted in ranking 94 (35%) of 271 real patients’ causative 

genes at the top, significantly worse compared to the AMELIE classifier, which ranked 175 

causative genes at the top (P = 1.33 × 10−11, one-sided Wilcoxon signed-rank test). We 

conclude that the AMELIE knowledgebase and the AMELIE classifier work together to 

achieve AMELIE’s high causative gene ranking performance.

Interactive and programmatic access to AMELIE-based literature analysis

AMELIE can be used through its web portal at https://AMELIE.stanford.edu for patient 

analysis. The portal offers both an interactive interface (fig. S5) and an application 

programming interface that enables integrating AMELIE into any computer-assisted clinical 

workflow. The AMELIE knowledgebase will be updated every year. A pilot of AMELIE has 

been running at this web address since August 2017, as a service to the community, using an 

AMELIE knowledgebase automatically curated from articles published until June 2016 and 

has since served many thousands of queries from more than 40 countries.

DISCUSSION

We present AMELIE, a method for ranking candidate causative genes and supporting 

articles from the primary literature in patients with suspected Mendelian disorders. We show 

that AMELIE ranks the causative gene first (among a median of 127 genes) in two of three 

of patients and within the top 11 genes in over 90% of 215 real patient cases. These results 

were closely replicated on a cohort of 56 clinical patients from Stanford Children’s Health 

and the Manton Center for Orphan Disease Research.
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Mendelian disease diagnosis is a complex problem and clinicians or researchers can spend 

many hours evaluating a single case. With 5000 diagnosable Mendelian diseases caused 

by roughly 3500 different genes that manifest in different subsets of more than 13,000 

documented phenotypes, manual patient diagnosis from the primary literature is highly 

labor intensive. Manually curated databases such as OMIM, Orphanet, and HGMD take a 

step toward alleviating clinician burden by attempting to summarize the current literature. 

However, manual curation is growing even more challenging because the literature about 

Mendelian diseases is increasing at an accelerating rate. On the basis of AMELIE analysis, 

the number of gene-phenotype relationships in Mendelian literature has been increasing by 

an average of 10.5% every 2 years since the year 2000. Because AMELIE is an automatic 

curation approach requiring only an initial critical mass of human-curated data to train 

on, it is not constrained by the bottleneck of on-going human curation. For example, of 

117 top-ranked articles supporting the DDD patients where AMELIE ranked the test set 

causative gene at number 1, only 36 (31%) were cited in OMIM. OMIM, a manually curated 

database, does not, of course, promise to capture all papers pertaining to any given disease 

gene but an automated effort like AMELIE can.

Compared to existing gene ranking approaches, AMELIE replaces the notion of a fixed 

disease description (that is, a single set of phenotypes) with the notion of an article and the 

phenotypes described in it. This approach has multiple advantages. First, it is often fastest to 

convince a clinician about a diagnosis given an article directly describing the disease, which 

often includes disease information such as patient images and related literature. In addition, 

with considerable phenotypic variability in Mendelian diseases (39), matching patients to 

specific reports in the literature is conceptually more helpful for definitive diagnosis than 

matching to a disease, which is effectively a compendium of previously described patient 

phenotypes.

Because of its dependence on literature and exome sequencing data, AMELIE is subject 

to a number of limitations. Biomedical literature is not guaranteed to contain the full 

set of phenotypes known to be associated with a disease, and AMELIE makes no claim 

about capturing this full set. Rather, AMELIE focuses on causal gene ranking using its 

knowledgebase, and as we show, it already does it to great practical utility. Certain articles 

about Mendelian diseases may mention a very small number of phenotypes (or none at 

all) and just mention disease and causative genes. Although this situation does not appear 

to be very common in practice (as seen by the good performance of AMELIE), the 

problem could be alleviated by automatically parsing disease names from such articles 

and associating diseases with manually curated phenotype information from resources such 

as HPO. NLP approaches could also be used to read additional texts, such as electronic 

medical notes (19, 20). Furthermore, AMELIE requires, as input, a list of HPO terms to 

describe patient phenotypes, although these may be provided by tools such as ClinPhen 

(19) that automatically extract HPO phenotypes directly from free-text clinical notes. Last, 

AMELIE is hampered by access to literature. Although AMELIE successfully obtained 80% 

of full-text articles that it deemed relevant on the basis of title and abstract, better publisher 

programmatic access to full-text literature for the purposes of text mining may lead to even 

better gene ranking results.
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Understanding the impact of hundreds of thousands of variants in thousands of different 

genes against a body of knowledge of millions of peer reviewed papers that is ever 

expanding is a challenging task. Because a diagnosis shapes the future management of a 

patient, there must always be a human expert approving every diagnosis. However, the sheer 

number of patients that can benefit from a molecular diagnosis and our intention to sequence 

millions of them in the next few years absolutely necessitate automating, as much as 

possible, the diagnostic process to potentiate rapid, affordable, reproducible, and accessible 

clinical genome-wide diagnosis. Hence, along with complementary medical record parsing 

tools (19, 20), AMELIE provides a step toward integrating personal genomics into standard 

clinical practice.

MATERIALS AND METHODS

Study design

We implemented an NLP and machine learning system dubbed “AMELIE” to automatically 

identify candidate causative genes in patients with Mendelian (monogenic) diseases 

based on information in primary literature. The system consists of two components: a 

knowledgebase constructed directly from primary literature and a classifier that ranks 

candidate causative genes for a patient with a Mendelian disease.

To construct the AMELIE knowledgebase, we trained logistic regression classifiers (23) 

largely on OMIM (6) and HGMD (8) data to identify potentially relevant PubMed abstracts. 

Similar classifiers were used to determine full-text relevance and identify disease-causing 

genes, phenotypes, disease inheritance modes, disease-causing variants, and disease-causing 

variant types from abstract and article text. The AMELIE classifier was implemented as 

a logistic regression classifier (23). We constructed a set of 681 simulated patients with 

a single disease-causing variant using data from the 1000 Genomes Project (32), OMIM 

(6), HPO (9), and ClinVar. The AMELIE classifier was trained to recognize the simulated 

patients’ disease-causing genes (positive training examples) against a background of non–

disease-causing genes (negative training examples).

We evaluated AMELIE against other knowledgebases and gene ranking tools using a set 

of 215 previously diagnosed patients from the DDD project (33). The DDD study has 

U.K. Research Ethics Committee (REC) approval (10/H0305/83, granted by the Cambridge 

South REC, and GEN/284/12, granted by the Republic of Ireland REC). Each patient was 

associated with a candidate gene list generated using variant frequency filtering techniques, 

by restricting variant frequency to ≤0.5% minor allele frequency in a large control cohort 

(30). Using the DDD patient data, we compared AMELIE against five other gene ranking 

tools [Exomiser (14), Phenolyzer (15), Phen-Gen (16), eXtasy (17), and PubCaseFinder 

(18)]. We replicated the results on the DDD cohort by combining 35 patients from Stanford 

Children’s Health and 21 patients from the Manton Center for Orphan Disease Research into 

a further set of 56 test patients. Informed consent was obtained from all participants. Further 

details about the AMELIE algorithm are provided in Supplementary Materials and Methods.
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Statistical analysis

To test performance differences between any two different gene ranking methods, we used 

the one-sided Wilcoxon signed-rank test throughout the manuscript. P < 0.05 was considered 

significant. No adjustments to alpha level or multiple testing correction methods were 

applied. The Wilcoxon signed-rank test is a nonparametric test and does not assume any 

particular distribution of data. We used this test to compare two matched samples: in our 

case, two lists of causative gene ranks on the same set of patients generated by two different 

methods. To test for significance of the slope of the regression line in Fig. 3C, we used the 

Wald test with t distribution of the test statistic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. AMELIE knowledgebase creation and subsequent patient causal gene ranking classifier.
(A) AMELIE knowledgebase creation. AMELIE applies multiple machine learning 

classifiers to all (current) 29 million PubMed abstracts to parse, predict relevance, download 

full text, and lastly extract Mendelian gene-phenotype relationships and related attributes 

automatically. (B) Number of gene-phenotype relationships extracted from the 10 journals 

that AMELIE extracted most gene-phenotype relationships from. (C) The AMELIE 

classifier combines 27 features to rank all articles in the AMELIE knowledgebase for their 

ability to explain any input patient.
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Fig. 2. AMELIE patient causative gene ranking outperforms methods based on manually 
curated databases.
(A) Evaluation scheme. The output gene ranking of all algorithms was subset to the same list 

of candidate genes AMELIE uses its gene ranking to ensure a fair comparison. (B) Fraction 

of (n = 215) DDD cases ranked as 1, 1 to 2, or 1 to 3 by six different tools. (C) The number 

of top-ranked genes needed to achieve a 90% diagnosis rate across (n = 215) DDD cases 

by various gene ranking tools. By evaluating up to AMELIE’s 11th top-ranked gene, a 90% 

diagnosis yield on the DDD cases was achieved. The next best tool, Exomiser, achieved a 

90% diagnosis yield by evaluating up to Exomiser’s 30th gene. (D) The speedup in terms 

of number of genes to investigate when perusing the ranked gene lists provided by each tool 

from top to bottom until the causative gene was found compared to the expected value of a 

random baseline gene ordering for (n = 215) DDD cases.
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Fig. 3. Investigating AMELIE’s gene ranking performance.
(A) For each of the 175 patients with AMELIE causative gene rank 1 among all (n = 

271) real DDD, Stanford, and Manton patients, the 27 features to the AMELIE classifier 

were ranked by their contribution to the top-ranked article’s high score. The panels (left 

to right) show the fraction of patients for which certain features were ranked most, 

second most, or third most contributing. PTV, protein-truncating variant; NTV, non–protein-

truncating variant; MCAP, Mendelian clinically applicable pathogenicity score, an in silico 

pathogenicity score; PV, patient variant; het, heterozygous; EV, full-text article–extracted 

variant. (B) Retraining the AMELIE classifier with fivefold cross-validation, each time 

omitting one of AMELIE’s six feature groups, shows the degree to which feature groups 

aided performance across all (n = 271) DDD, Stanford, and Manton patients. (C) Each blue 

dot represents one of (n = 271) real DDD, Stanford, or Manton patients in this log-log plot. 

The red line is a linear regression line between number of articles about causative gene (x 
axis) and causative gene rank (y axis), with red denoting the 95% confidence interval.
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