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Abstract

We analyze the efficient management of nonpoint source pollution (NPS) under a limited pollution 
control budget and incomplete information. We focus on the tradeoff between data collection and 
pollution abatement efforts by incorporating information acquisition into a NPS pollution control model. 
Comparative static results show conditions under which (i) a favorable change in the abatement costs at 
one source may lead to an increase in the treatment level at all sources, and vice versa, (ii) an increase in 
data collection cost leads to an increase in data collection level, and (iii) an increase in the efficiency of 
information acquisition leads to a decrease in the level of data collection. More importantly, the model 
simulations illustrate that acquiring and exploiting information on heterogeneity of sediment loading 
distributions across polluting sources leads to a more efficient budget allocation and hence a greater 
reduction in pollution damage than would be the case without such information.
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Nonpoint Source Pollution Control Under Incomplete and Costly Information

1. Introduction

This paper examines the role of information acquisition in efficient management of NPS 

pollution. By incorporating information acquisition into a NPS pollution control model, we focus 

on the tradeoff between abatement effort and abatement effectiveness, a question that has not 

received adequate attention in the literature. We explicitly consider the heterogeneity among the 

polluting sources in the manager’s decision to reduce the pollution-related damage for a given 

expenditure on abatement activity. We analyze how abatement cost, data collection cost, and 

efficiency of extracting information from collected data affects the efficient budget allocation 

between information acquisition and abatement effort across polluting sources, and also 

elaborate on the policy implications. 

In the analysis NPS pollution is defined as pollution from diffuse sources where the 

information on the linkage between polluting sources and ambient load is incomplete. The 

pollution manager observes total ambient load or the consequent damage but is unable to detect 

with certainty the pollution from individual sources. This incomplete information (uncertainty) 

about the pollution loading creates inefficiencies in allocation of abatement effort across the 

sources. The pollution control manager depicted in this model reduces pollution loading 

uncertainty by obtaining information through data collection.

The manager updates her subjective prior distribution about the pollution loading with the 

acquired information, resulting in a posterior distribution that improves abatement effectiveness 

by allowing the manager to reallocate abatement effort to sources with relatively larger expected 

pollution loading, all else the same. However, the manager eventually faces an explicit tradeoff 
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between the scale of abatement effort and abatement effectiveness because data collection is 

costly and the manager is fiscally constrained.

We consider, for example, the case of sediment loading from forestland in Redwood 

National Park, located in northwestern California. Sediment loading mostly occurs during high 

storm events, (i.e., when rainfall intensity is high and storm duration is short), when storm run-

off overflows stream channels at road crossings, causing sediment to enter tributaries as the run-

off returns to the channel downstream.1 The sediment that enters the waterways in Redwood 

National Park fills in salmon spawning pools, thus reducing the number of available spawning 

sites. This sediment also fills in the stream channel upstream and adjacent to the Tall Trees 

Grove, home of the world’s tallest trees, increasing the incidence of flooding, bank erosion and 

saturation of the root zone, which all cause the tall trees to topple (Sprieter, Franke and Steensen, 

1981). 

If perfect information was available on sediment loading attributable to each pollution 

sources (the logging roads), park managers could allocate their entire sediment control budget to 

abatement effort. However, with incomplete information, the management of sediment loading 

requires an explicit allocation of resources between information collection and abatement. The 

results drawn from this analysis can, in general, shed light on the role of information and 

budgetary constraints on the efficient management of NPS pollution problems such as 

groundwater contamination, greenhouse gas emissions and acid rain, which are characterized as 

pollution generated from diffuse sources. This research has implications for other targeting 

programs as well. Babcock et al. (1996, 1997) consider targeting options under the USDA 

Conservation Reserve Program. However, in these analyses, there is no explicit provision of 
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information that allows the budget managers to improve the allocation of limited resources, 

thereby increasing overall environmental benefits.

The pollution control literature typically looks at market-based approaches to controlling 

NPS pollution. However, market-based approaches are not relevant when a private individual or 

public manager must decide where on their property (or the property they manage) to concentrate 

pollution abatement efforts (i.e., target abatement resources). An individual polluter may not face 

an explicit budget constraint but a public manager is usually limited in her abatement decisions 

by a fixed annual budget.2

Previous research on NPS pollution control has also focused on the social welfare 

optimization problem without regard for fiscal constraints. For instance, Cabe and Herriges 

(1992) consider the unconstrained social planner problem of NPS pollution control, 

incorporating uncertainty and information acquisition, where information reduces the social cost 

of setting a control mechanism through an ambient tax, as proposed by Segerson (1988). 

Elsewhere, Xepapedeas (1995) examines the unconstrained social planner’s use of an effluent 

tax, in conjunction with an ambient tax, as an incentive for individual polluters to reveal 

information useful in uncovering the connections between generator and ambient emissions. In 

the specific case of sediment loading, the budget-constrained manager cannot impose fees 

against nature to learn more about each source's contribution to the total ambient load. The 

manager must expend limited resources to obtain the information that otherwise could have been 

obtained by the social planner through the use of effluent fees. Furthermore, the optimal decision 

1 The primary focus of erosion control in Redwood National Park is preventing or reducing erosion from logging 
roads within the Park (DOI 1981). It is well known that logging roads are the main contributors to sediment loading 
(Mount 1995; GAO 1999; EPA 1999).
2 The European Environmental Agency (2000, 2001) and the US-GAO (1999) report that a lack of financial 
resources limits the ability of public environmental managers to achieve their core objectives.
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rules derived in a social welfare framework differ from those derived from the constrained 

management approach and lead to different policy prescriptions (Barrett and Segerson 1997).

Garvie and Keeler (1994) consider a fiscally constrained regulator who minimizes non-

compliant pollution generation by allocating a limited budget between data collection and 

enforcement. Data collection provides evidence necessary to prosecute, and, as such, improves 

enforcement effectiveness. Our focus is on the role of acquired information in reducing pollution 

loading uncertainty, which improves abatement effectiveness. We also evaluate the minimization 

of expected cost of environmental damages whereas Garvie and Keeler consider minimizing 

pollution irrespective of the related damage. Unless the damage function is linear the result will 

vary between these two objectives.

The rest of the paper is structured as follows. Section 2 develops a model to analyze 

sediment control when information is incomplete and data collection is costly. Section 3 provides 

the comparative static results for key parameters of the model. Section 4 presents the results of 

simulating the model for a case resembling the public management of sediment loading in 

Redwood National Park, located in northwestern California. There, we compare the allocation 

decisions of a perfectly informed manager, a completely uninformed manager, and an 

imperfectly informed manager who acquires information through data collection. Section 6 

concludes.

2. A Model of NPS Pollution Control with Costly Information Acquisition

Faced with budget and information constraints, the manager chooses between the level of 

abatement effort at each source and data collection, where the information acquired through data 

collection reduces pollution loading uncertainty. We model the decision to acquire information 
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and abate as a sequential problem since each activity occurs during separate periods throughout 

the year. For the Redwood National Park case, data (stream flow and ambient sediment load 

measures) are collected during the rain season between October and April. The abatement 

projects begin in late summer and end before the rain season begins again. These decisions are 

linked by a single budget, which is allocated over both periods.3 There is no discounting of the 

budget given the short duration of time that expires between allocating expenditures for 

information acquisition and abatement effort. In this formulation, we look directly at the tradeoff 

the manager faces between abatement effort and abatement effectiveness, where the latter 

depends on information about pollution loading across the sources.

The information acquisition or sequential updating process requires the manager to make 

a decision ex ante (prior to the realization) on the data collection frequency.4 This ex ante 

decision is made using a prior expectation on the information content of a given data collection 

frequency. The expected information content is simply the expected reduction in uncertainty 

about the pollution generated by each source. 5

Initially, the manager chooses the frequency of data collection on total sediment loading 

and stream flow and updates the prior subjective sediment loading distribution for each of the 

sources. In practice, the manager, prior to the beginning of the rain season, determines a fixed 

number of daily samples to collect at each data collection point throughout the rain season. We 

3 The separability of the information acquisition and abatement effort decisions is not unique to the example of 
sediment loading in Redwood National Park. Take for example, self-reporting provisions for the USDA EQIP policy 
(Cattaneo, 2001). Here, the government solicits information from agricultural producers on farming practices that 
conveys the environmental benefits derived from implementing such practices. This information acquisition cannot 
occur simultaneously with the decision to allocate resources toward environmental benefits.
4 Sequential updating typically results in “sub-optimal” decision-making when observed ex post. That is, if we knew 
yesterday what we know today, then the “optimal” decision we made yesterday could have been improved upon.
5 The model presented here examines a single round of decision-making process in a two-period sequence. Although 
information acquisition and learning are dynamic phenomena, the two-period model we present can capture the 
inter-temporal decision-making process by repeating the two-period model. The single round of decision making 
demonstrates the theoretical underpinnings of the problem.
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denote the frequency of data collection by δ. An increase in the frequency of data collection 

implies that a greater number of samples are collected each day throughout the rain season. Since 

the manager is constrained by a fixed budget, B, the maximum number of possible data 

collection frequencies δΩ is equal to B/m, where m is the per frequency cost of data collection. 

This constraint )/( mB≤δ  never binds since damages cannot be controlled without abatement at 

some sources. Note, however, that the reverse is not true.

Next, having collected data, abatement effort levels ( )NxxxX ,,, 21 L=  for the N

polluting sources are determined so as to minimize the expected cost of environmental damage,

given the updated posterior sediment loading distribution. The damage cost function )(QD  is 

twice continuously differentiable, increasing and convex in Q, the ambient pollution (i.e., 

0>∂
∂
Q

D
 and 02

2

>∂
∂
Q

D
). 

Let, nq  be the unobservable tonnage of pollution loading from the nth source, where 

Nn ,,2,1 L= . We define ))(,;( nnnnnn wxqq θα=  as a function of abatement effort, stochastic 

rainfall ( nw ) and site-specific characteristics ( nα ) that define the relationship between abatement 

and rainfall on pollution loading at that source. 6 Following Shortle and Alber (1997), uncertainty 

is introduced into the problem by taking these site-specific characteristics to be uncertain.  The 

incomplete information about nα , is explicitly incorporated into the definition of sediment 

loading by allowing site-specific characteristics to depend on nθ , where low values of nθ  are 

less certain than high values. This incomplete information does not directly affect the sediment 

6 This characterization of pollution loading is similar to prior models of stochastic nonpoint source pollution control 
(see Beavis and Walker; Shortle and Dunn; Shortle; and Horan, Shortle and Abler among others). However, in our 

interpretation of the model nθ  is the manager’s information or knowledge about site-specific characteristics for the 

nth source rather than the nth firm’s private knowledge as depicted in Shortle and Alber (1997).
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loading put does affect the marginal productivity of abatement effort (i.e., the marginal 

abatement effectiveness). The pollution loading function has the following properties 

0,0,0,0 2

2 >

<
=∂

∂>∂
∂>∂

∂<∂
∂

n

n

n

n

n

n

n

n q

w

q

x

q

x

q

α  and 0>∂
∂
δ
θn . The observable ambient pollution load, Q, is 

defined such that ∑≡
n

nqQ .7 When decisions are made on allocating resources to abatement 

effort, the manager uses )( nnn w θπ  the post-data or posterior conditional distribution for 

stochastic rainfall given the uncertainty about pollution loading. We shall fully incorporate data 

collection and information acquisition into the management model shortly. For now, assume 

knowledge is fixed so that we can derive the manager's optimal abatement decision.

The total abatement cost expenditure, C, is defined as ∑=
n

nnxcC . Recall that the per 

frequency cost of data collection, m, is also assumed to be constant so that M = δm represents the 

total data collection expenditure. These linear cost specifications allow us to focus attention on 

the tradeoff between abatement effort and abatement effectiveness. The budget constraint is 

Bmxc
n

nn ≤+∑ δ (1)

Given a fixed level of data collection, and subject to equation (1), the manager chooses 

abatement effort across the sources to 

)(
,,, 21

QEDMinimize
Nxxx L

(2)

where E is the expectation operator for the posterior conditional distribution for stochastic 

rainfall. The first order conditions for an interior abatement effort allocation are (1) and

7 We assume a linear specification since interactions between sources are negligible in our example. However, this 
simplification cannot be maintained as a rule (Lintner and Weersink, 1999).
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where λ is a Lagrangean multiplier (the shadow price of the budgeted resources).8 From (1) and 

(3), we obtain the optimal abatement effort allocations )))(((~
21 nnnnN θ,wπ,m,,c,,ccxx nn αL= , 

where x~  maps the parameters of the model into the optimal abatement effort.

Conditions (3) simply state that, at the optimum, the manager chooses abatement effort at 

each source such that the expected marginal reduction in the cost of damages (i.e., the expected 

marginal benefit from abatement effort) is equal to the marginal cost of abatement effort. We can 

rewrite (3) as
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(4')

which recasts the optimality condition in the form of the familiar requirement that the expected 

marginal rates of transformation across any two sources should equal the relative marginal 

abatement costs (the point at which the budget constraint and the iso-expected damage curve are 

tangent). Equation 4’ illustrates that the optimality condition with nonlinear damage costs differs 

8 Given desirable curvature properties of the damage cost function, we assume the second order condition holds at 
the minimum.
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from the linear damage function and the solution to minimizing an environmental goal such as 

pollution loading, where the optimality condition simplifies to

Njn
c

c

x

q
E

x

q
E

j

n

j

j

n

n

,..,2,1, =≠∀=
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∂

(5)

Before formally deriving the optimization problem when information is acquired through 

data collection, let us examine the mechanism by which abatement effort allocations are affected 

by data collection and acquired information. If, for example, source n’s actual contribution to the 

ambient load is greater than expected and j’s contribution is less than expected, given abatement 

effort and rainfall, then data collection changes )( nnn w θπ  such that for a given abatement effort 

the expected loading from the nth source increases while it decreases at the jth source. In this 

example sources n and j were selected arbitrarily from among the N sources but in actuality, 

loadings from any two sources may be greater than or less than expected loadings, a priori. 

However, since the total ambient load is fixed for a given abatement allocation and rainfall 

event, it must be the case that if one source’s load is greater than previously expected then at

least one other source’s load must be less than previously expected. We have simply 

characterized this example. A reexamination of equation 4’ reveals that data collection increases 

the numerator and lowers the denominator on the LHS, so that the LHS of (4') rises. To restore 

the equilibrium associated with a larger value of δ, we must have 0>δd

dxn  and 0<δd

dx j  (these 

conditions follow from the assumption 02

2

>∂
∂

n

n

x

q
). So, there will be a reallocation of the 

abatement efforts from source j to source n. But this is for an unchanged abatement budget. Since 
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an increase in δ  reduces the budget for abatement activity, one has to consider the net effect of a 

change in δ  by differentiating both (1) and (3) with respect to δ .

To formally model information acquisition, we assume the information acquired through 

data collection allows the manager to update Nnn ,,2,1,ˆ L=∀π , the prior subjective probability 

distribution for pollution loading at each source and derive )ˆ);;( nπφδnnn θ(xπ , the posterior 

probability distributions for pollution loading at each source that is closer to the true underlying 

distribution. In this context, "closer" refers to the notion that the information content of the 

posterior distribution is closer to the information contained in the true, yet unknown, distribution. 

The parameter φ reflects the efficiency of information acquisition. When data is collected, the 

rate at which the expected pollution loading at each source is updated toward the true underlying 

loading values increases as φ increases. In essence, φ represents the extent of the manager's skill 

and ability in utilizing the collected data to extract information. This notion of ability is in 

keeping with Arrow (1974, pp. 37) who states that each individual has the ability to receive a 

signal from natural and social environments. However, it is the limited capacity and scarcity of 

information-handling ability that sets individuals apart. Learning capacity may be enhanced 

through exogenous means such as technological advances in data collection or education 

programs and thus we are interested in how changes in capacity may affect the optimal data 

collection strategy.

Returning to the pre-data collection problem, the manager chooses the level of data 

collection that minimizes the expected damage cost from pollution loading. Substituting the 

optimal abatement functions ( x~ ) derived above into (1) and (2), the ex ante optimization 

problem is formally written as
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s.t. Bmxc
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nn ≤+∑ δ~ (7)

It should be noted again that implicit in Equation (6) is the assumption that the manager has an 

expectation about how data collection affects her subjective probability distributions about 

pollution loading, and uses this prior knowledge to choose the data collection frequency that 

minimize the expected cost of pollution related damage. 

The first order conditions for the optimal level of data collection are (7) and
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θηδ

θ
θ

~~

~ (8)

where η is the Lagrangean multiplier on the ex ante allocation of the pollution control budget. 

Noting that information acquisition is akin to provision of a collective good, condition (8) has a 

straightforward interpretation. That is, the manager optimally allocates resources to data 

collection so that the expected marginal reduction in the cost of damages over all sources (the 

LHS of (8)) equals the total marginal opportunity cost of acquiring information (the RHS of (8)). 

The total marginal opportunity cost of acquiring information consists of a direct cost of an 

additional unit of information, m, and an indirect cost (or benefit) given by the expression 

δ
θ

θ ∂
∂

∂
∂∑ n

n n

nx
cn

~
 which reflects the effect of an additional unit of information on the abatement 

expenditure by causing a reallocation of abatement effort among the various sources. Solving 

equation (8) yields ),,(ˆ Bm φδδ = , the optimal allocation of data collection, where δ̂  maps the 

parameters into the optimal data collection allocation. Now substituting this optimal allocation of 

data collection into the optimal abatement allocation yields
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))));,,(ˆ(,(,,,,),,,(ˆ(ˆ φφδθπφδ BmwBmccBmxx nnnjnnn =

where x̂  is the optimal abatement effort that maps the parameters of the data collection problem 

into the optimal level of abatement effort.

3.  Comparative Static Analysis

The comparative static results for the costly information acquisition model are derived in the 

standard manner. Because of the sequential nature of this problem, the timing of any cost change 

determines the relevant comparative static result. For example, if a change in the state of 

abatement costs occurs after data collection, then the manager can only change the optimal 

allocation of abatement across the sources. 

In this section we first consider the effect of a change in abatement cost ( nc ) on the 

optimal abatement levels. We then consider the effect of a change in the data collection cost (m) 

and the information efficiency (φ) on the optimal data collection frequency ( δ̂ ). Note that δ̂  is 

unaffected by nc  as data collection precedes abatement activity. 

The sign of the comparative static 
n

j

c

x

∂
∂~

 is ambiguous and depends on how abatement 

expenditure at source n changes in response to a change in nc . The marginal cost of abatement is 

likely to experience favorable change with advances in technology and unfavorable change due 

to such events as landslides within the abatement area, or regulation on abatement effort to 

preserve endangered species for instance. The change in abatement expenditure at source n

depends on the magnitude of the own cost elasticity of abatement effort (
n

n

n

n
cx c

x

x

c
nn ∂

∂=
~

,ε ). 
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Differentiating the budget constraint (7) with respect to a change in the per unit abatement cost at 

source n ( nc ), we derive: 

)1sgn(
~

sgn , −=




∂
∂

nn cx
n

j

c

x ε (9)

Proposition I: If 1, <
nn xcε , an increase in the per unit abatement cost at source n will result in an 

increase in abatement expenditure at that source and hence a decrease in the abatement 

expenditures at the remaining sources and vice versa.

The intuition for Proposition I is straightforward and needs no further explanation. This 

response to a change in the per unit abatement cost at one source may occur at one other source 

or be distributed across multiple sources. Proposition I implies that regulation aimed at 

protecting a species in one area can, by raising the cost of pollution abatement in that area, also 

negatively affect control efforts in other areas within the watershed, with the unintended 

consequence of raising expected damage costs from pollution.

To capture the trade-off between data collection and abatement effort we turn to the 

comparative static result for a change in the data collection cost, m. The net effect on δ from a 

change in m can be decomposed into two separate effects. An increase in m causes a reduction in 

δ ex ante. In turn, this reduction in δ generates a chain of secondary effects by changing the 

expected sediment loading for given abatement effort levels at each source. Since this secondary 

effect occurs before abatement efforts are actually chosen the abatement effort levels can change 

to exploit the gains in abatement effectiveness generated by the increase in information. Changes 

in abatement effort in turn changes the abatement expenditure, and hence the resources available 
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for information acquisition, and therefore δ. This chain of effects is depicted below, 

where∆ denotes change in a variable:
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We formally express this result by 
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The sign of this comparative static derivative is ambiguous. The second parenthesized 

term on the right-hand side (RHS) of equation (10) is the marginal cost of data collection, which 

is positive from the first order condition (8). The sign of the first parenthesized term on the RHS 

of (10), which we term the "sequential effect," is however ambiguous. The sequential effect 

represents the tradeoff between higher data expenditure, through the change in data collection 

level δ, and lower abatement expenditure, through changes in the abatement effort levels, xn’s. In 

general, the effect of the change in data collection on each individual source’s abatement level is 

ambiguous, but total abatement expenditure increases (decreases) with an increase in data 

collection cost, m, if period 1 data collection is cost elastic (inelastic). Thus, from (10) we can 

state the following proposition:

Proposition II: If data collection is sufficiently cost inelastic, so that with a higher cost of data 

collection (m), the decrease in abatement expenditure is larger than the increase in data 

collection expenditure, then the sequential effect is negative, thus inducing an increase in the 

level of data collection.
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At first, this result seems counterintuitive. We would expect less data collection when the 

cost of data collection increases. But, because of the sequential effect of data collection, in the 

form of a more efficient abatement allocation, there will be efficiency gains in the form of net 

savings on abatement costs, which allow the manager to increase data collection efforts ex ante. 

To better appreciate the result stated in Proposition II, we should bear in mind that the change in 

abatement levels at various sources when data collection changes in response to a change in its 

cost (m), depends on the size and direction of changes respectively in the abatement budget and 

in abatement productivity effects. The budget effect is a decline in abatement levels at all sources 

because the resources spent on data collection must be taken from the same given budget. In 

other words, resources spent on data collection are unavailable for abatement. The abatement 

productivity effect is a decline in the productivity at sources with lower posterior expected

sediment loading and a rise in the productivity at sources with higher posterior expected

sediment loading. Thus, Proposition II is more likely to hold when, assuming linear costs, (i) the 

posterior distribution is highly sensitive to data collection (i.e., farther away is the prior 

distribution from the underlying true distribution), and (ii) the marginal abatement productivity is 

very sensitive to sediment loading. Proposition II has an important policy implication. It cautions 

us, for example, that a policy subsidizing data collection to reduce the uncertainty about 

pollution flows from various sources, and thereby enhancing the efficiency of abatement 

programs, may lead to the opposite result by shifting resources away from data collection to 

more abatement activity.

We have also examined the effect of a change in the productivity of information 

acquisition (φ) on data collection. This is given by
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We again obtain an ambiguous result. We refer to the first term on the RHS of (11) as the 

"information efficiency effect" since it reflects the change in abatement expenditure resulting 

from a change in the efficiency of information acquisition, given the frequency of data collection 

(δ ). When the efficiency of information acquisition increases, the curvature conditions on the 

abatement functions ensure that, over an interval of abatement levels (xn, xj), the abatement 

expenditure at the nth source increases while it decreases at the jth source. Recall that we have 

assumed that the sediment loading from the nth source is greater than expected ex ante and vice 

versa for the jth source. This leads to the following proposition, which highlights the trade-off 

between the level and efficiency of information acquisition.

Proposition III: If a higher information acquisition efficiency (φ) raises the abatement 

expenditure at source n by less than it reduces the abatement expenditure at source j, then the 

information efficiency effect is negative, thus inducing an increase in the level of data collection.

One might normally expect, given diminishing marginal productivity of information, a 

manager who is more efficient in extracting information from collected data would take 

advantage of that skill and, everything else equal, opt for less data collection. Proposition III 

indicates the condition under which the opposite occurs. In such cases there is a tradeoff between 

information acquisition efficiency and the intensity of data collection, with a possible 

consequence of shifting resources from abatement activity to data collection. A policy 

implication of Proposition III is that a program aiming to improve pollution managers’ 
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knowledge and skills in information acquisition may come at the cost of reduced abatement 

activity.

4.  Model Simulation: Heterogeneity of Polluting Sources and the Value of Information

To provide a numerical illustration, we simulate a simplified pollution control model based on 

Redwood National Park’s sediment control program for Redwood Creek. Overall three separate 

models are simulated. Model I presents the case of a perfectly informed manager (PI), Model II 

is that of an uninformed manager (UI) who is assumed to believe that the sediment loading is 

uniform across all polluting sources, and Model III is the case of a data-collecting, imperfectly 

informed manager. These simulations highlight the value of information and the economic 

tradeoff between abatement effort and abatement effectiveness when information is acquired.

To evaluate the value of information we compare the optimal abatement decision in 

model I and II over a range of scenarios about the heterogeneity of sediment loading across 

sources. In each model two sources generate sediment loading. For each heterogeneity scenario, 

the damage costs attributable to the hypothetical assumption of a prior uniform distribution on 

sediment loading is compared with the damage costs under a perfect information assumption in 

order to derive the value of perfect information.

The second set of simulations evaluates Model III to determine the optimal level of data 

collection and abatement and reveals the economic tradeoff between abatement effort and 

abatement effectiveness when information is acquired. In these latter simulations we solve the 

model for the optimal data collection level that minimizes expected cost of damages and 

illustrate the response of optimal data collection to a change in the cost of data collection and the 

information acquisition efficiency. Given the assumption of diminishing marginal returns to 



18

information, complete resolution of uncertainty about the sediment loading generation by source

may entail an infinite amount of data collection, which is prohibitively costly. Thus with data 

collection, it must be the case that damages are less than those resulting from an uninformed 

manager's abatement decision but greater than those arising from the decision of a perfectly 

informed manager.

To facilitate the simulation, the model is calibrated using estimates derived in Kaplan 

(1999). First, the damage cost function is 

)Qln(674.15.8667)Damage($)ln( +−= (12)

The functional form for sediment loading is adapted from a known physical relationship relating 

ambient sediment loading with stream flow such that9

( )∑∑∑ =≡=
n

s
n

n
n

n
n

nflwqqQ (13)

where (flwn) is the average stream flow measure generated from within each of the polluting 

sources, which is a proxy for stochastic rainfall, and ns  is the sediment loading parameter for the 

nth source. For illustrative purposes and based on empirical evidence from Kaplan, Howitt and 

Farzin (2003), we define the relationship between the sediment loading parameter and abatement 

effort as follows: nn xs 0015.01−= . To construct the underlying stream flow values for each 

source for each heterogeneity scenario, we applied the following formulas: 

flw1= (1+0.1*h)*140,768, and flw2= (1-0.1*h)*140,768

where h = 0,1,…,9, and given that the average stream flow for Redwood Creek is approximately 

140,768 cubic yards. For computational convenience and without altering the qualitative results, 

we use h to be the scenario number. We vary the heterogeneity of stream flow from each source 

to reflect a few of the possible sediment loading distributions that nature imposes on the system. 
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In constructing nq , the unobservable sediment loading at each source and the ambient sediment 

load Q we substitute the source specific sediment loading parameter and stream flow equations 

into (13). 

Next, the abatement cost function was obtained from Kaplan (1999), where the abatement 

cost function for each source is estimated as a linear function of abatement level excC nnn += , 

and abatement is measured as the number of haul roads removed. To focus attention on the role 

of data collection in increasing the efficiency of abatement effort and thus the trade-off between 

data collection and abatement expenditures we assume the abatement cost coefficient is identical 

across sources and estimated the coefficient with least squares without an intercept term for 

obvious reasons. The value of the estimated cost coefficient is 2178.1 with t-statistic of 13.68 

and an R2 of 0.34. The annual budget is fixed at $200,000, which is the average annual 

abatement budget for removing haul roads in Redwood National Park. 

Table 1 presents the optimal abatement levels for the perfectly informed manager under 

the various heterogeneity scenarios. In this case the manager knows nq , the actual sediment 

loading from each source. To derive the optimal level of abatement under perfect information we 

minimize (12) subject to (13) and the abatement cost function defined above. For the uninformed

manager (UI) who assumes a prior uniform distribution over all heterogeneity scenarios, the 

optimal abatement level for each source, for all scenarios is (x1 = 57.7, x2= 57.7). This 

corresponds to the optimal abatement levels chosen by the perfectly informed manager if the 

polluting sources were in fact homogeneous. This is because, given all the same information on 

costs and damages except the true heterogeneity of the sources, the manager will make the same 

decision when the true sediment loading distribution is uniform.

9 This functional relationship can be found in Kaplan and Howitt (2002), and Singh and Krstanovic (1987).
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Table 1. Optimal Abatement under Perfect Information
Scenario x1 x2

0 57.0 57.0
1 62.6 51.3
2 68.4 45.6
3 74.4 39.5
4 81.0 33.0
5 88.3 25.7
6 96.7 17.2
7 107.3 6.7
8 114.0 0.0
9 114.0 0.0

Table 2 presents the resulting damage costs under PI and UI cases. Column 2 in Table 2 

shows the damage cost corresponding to the optimal abatement levels when the manager has 

perfect information about the distribution of ambient load across sources. Column 3 shows the 

damage cost resulting from an uninformed budget allocation. In both cases the reduction in 

damage costs when abatement is undertaken, compared to the no abatement case, exceeds the 

$200,000 spent to control sediment loading. The greater damage cost for the uninformed model 

is a result of the manager's lack of information with respect to true sediment loading. When the 

manager has perfect information less damage costs results because the manager exploits the 

knowledge about the degree of heterogeneity to allocate the budget more efficiently. This case of 

a perfectly informed manager is analogous to point source pollution control since there is no 

uncertainty about the pollution generated from each source. Column 4 shows the value of perfect 

information (VPI) for each scenario as the difference between damage costs under UI and PI. 

These costs are respectively the upper and lower bounds for possible damage costs when 

information is optimally acquired. Furthermore, the last column of Table 2 shows that the 

marginal value of perfect information increases as the difference between the true distribution 
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and the prior (uniform) distribution grows, i.e., as heterogeneity rises, except in the last two 

scenarios due to the corner solution result.10

Table 2. Damages for Model I and II
Scenario PI UI VPI=UI-PI Marginal VPI

0 657,615 657,615 0 0
1 651,702 657,185 5,483 5,483
2 633,904 655,886 21,982 16,499
3 604,037 653,689 49,652 27,670
4 561,775 650,541 88,765 39,114
5 506,614 646,356 139,742 50,977
6 437,803 641,000 203,196 63,454
7 354,233 634,249 280,016 76,820
8 257,926 625,700 367,774 87,758
9 171,247 614,452 443,205 75,431

In the second set of simulations, where costly information acquisition is evaluated, we 

limit the heterogeneity to scenario 9; that is, we assume that this scenario represents the true 

sediment loading heterogeneity at the two sources. Selection of any other scenario does not alter 

the results. In this set of simulations, we stipulate different values for m, the data collection cost, 

and for φ, the information efficiency parameter (see Table 3 for the assumed values). Any data 

collection expenditure also comes from the initial budget of $200,000 thereby reducing the 

resources available for abatement effort. To incorporate information acquisition into the 

manager's objective function, we substitute the sediment loading parameter in equation (13) with 

the expected sediment loading parameter function nn xAsE ))(0005.0001.0(1)( δ+−= , where 

δφδ )1(1)( −−=A , 1)(0 <≤ δA  and 10 << φ . Absent any prior functional forms for )(δA  we 

constructed this correspondence from the desired curvature properties (i.e., 

10 When the pollution load reaches higher levels of heterogeneity the abatement budget is allocated to abatement at 
one source only. Above this level of heterogeneity the marginal returns to perfect information decline because the 
manager, can no longer reallocate abatement effort and thus cannot take advantage of the “better” information.
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parameter equation asymptotically approaches certainty (i.e., 1)( →δA  as ∞→δ ). This 

expected sediment loading parameter encapsulates both the abatement effort and the uncertainty 

about the relationship between stream flow and abatement effort as discussed in the theoretical 

section.

Table 3 presents the optimal data collection, and expected and actual damages for the low 

and high (φ =0.6, 0.8) information efficiency scenarios. The divergence between the expected 

and actual damage, reported in Table 3, is a result of the manager not having perfect information 

when choosing abatement expenditures across sources. If the manager were perfectly informed, 

then the expected and actual damages would coincide. As Column 4 and 7 show, when it is 

optimal to acquire information, the actual damage lies in between the extreme cases of UI and PI 

abatement, where actual damages are $614,452 and $171,247 respectively (see scenario 9 in 

Table 2). These results show the important role information acquisition can play in improving 

the budget allocation and hence reducing the expected damage when compared with the case of 

the ex ante, uniform prior distribution. When, under heterogeneity scenario 9, data is optimally 

collected, the actual damage cost is always lower than the actual damage (D = $614,452) that 

would result from the allocation of the budget only to abatement efforts ( 0=δ ) under the 

uninformed management. It is should be noted that this reduction in damage costs understates the 

actual benefits of information acquisition since, in practice, the benefit of information spills over 

to a much longer time period, a consideration not accounted for in this example.

Comparing the optimal levels of data collection (δ ) under the two information 

acquisition efficiency scenarios, we see that an increase in the information acquisition efficiency 
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has an ambiguous effect, which is consistent with Proposition III. In particular, we see that when 

m = $90,000, an increase in φ from 0.6 to 0.8 leads to a higher level of data collection 

(δ increases from 0 to 1). This can be explained intuitively by noting that the effect of higher 

information efficiency is like lowering the cost of information. Coupled with a high marginal 

return on the first unit of data collection, this renders it optimal to collect data. On the other 

hand, when cost of data collection is as low as m = $15,000, so that it is optimal to collect 

information with relatively high frequency (δ = 3 for φ = 0.6), the marginal return on 

information acquisition is relatively low. Together with high efficiency of information 

acquisition, this makes it optimal to reduce the frequency of data collection to δ  = 2 when φ = 

0.8. Reducing data collection to δ  = 2 allows the manager to spend more on abatement effort 

where the marginal return (in terms of lowering the expected damage cost) is relatively high.

Table 3. Optimal Data Collection, and Expected and Actual Damages ($)
φ=0.6 φ=0.8

m δ E(Damage) Damage δ E(Damage) Damage
$90,000 0 $657,615 $614,453 1 $842,576 $599,297
$50,000 1 $816,532 $332,650 1 $515,209 $332,650
$15,000 3 $356,754 $310,063 2 $276,776 $252,335

5.  Concluding Remarks

This paper has examined the problem of NPS pollution control under incomplete and costly 

information. We have analyzed the problem within a constrained management framework to 

bring to light a more realistic setting for studying NPS pollution control. The comparative static 

results showed the conditions under which (i) the manager may lower abatement efforts at all

sources when an unfavorable change (e.g., stricter environmental regulations or adverse natural 

events) causes the abatement cost to go up at one specific source, and vice versa (Proposition I), 

(ii) data collection effort may increase despite a rise in data collection cost (Proposition II), and 
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(iii) a higher information efficiency can lead to less data collection (Proposition III). The model 

simulation results showed that by exploiting the knowledge of sediment loading heterogeneity 

across the polluting sources, the manager can improve the overall efficiency of budget allocation 

to abatement efforts and thereby further reduce pollution damages.

Of many possible extensions of the present study, we believe that studying the problem in 

a dynamic setting can be particularly insightful. Over a finite time horizon, the manager chooses 

investment paths for both information acquisition and abatement efforts. During this time 

horizon, several factors will influence the dynamics of each path. Principal among these factors 

is the decline of the productivity of information acquisition as uncertainty about the degree of 

heterogeneity is reduced. This suggests that the manager may find it optimal to decrease data 

collection and information acquisition over time. Secondly, as abatement at the source with the 

largest sediment load occurs early in the time horizon, the system will become increasingly less 

heterogeneous. With a decreasing heterogeneity of sediment loading over time, we expect that at 

some future date the abatement policy will change from a heterogeneous abatement strategy to a 

homogeneous one. Future research should shed light on these issues. 



25

References
Arrow, K.J., The Limits of Organization. New York: W.W. Norton and Co., 1974.

Babcock, B.A., Lakshminarayan, P.G., Wu, J., and D. Zilberman (1996), “The Economics of 
Public Fund for Environmental Amenities: A Study of CRP Contracts,” American Journal 
of Agricultural Economics 78: 961-971.

_____ (1997), “Targeting Tools for the Purchase of Environmental Amenities,” Land Economics
73(3): 325-339.

Barrett, J., and K. Segerson (1997), “Prevention and Treatment in Environmental Policy 
Design”, Journal of Environmental Economics and Management 33: 196-213.

Beavis, B., and M. Walker (1983), “Achieving Environmental Standards with Stochastic 
Discharges,” Journal of Environmental Economics and Management 10: 103-111.

Cabe, R., and J.A. Herriges (1992), “The Regulation of Nonpoint Source Pollution under 
Imperfect and Asymmetric Information,” Journal of Environmental Economics and 
Management 22, 134-146.

Cattaneo, A. 2001, “EQIP: Conserving While Farming,” Agricultural Outlook Spetember/AO-
284, 26-27.

European Environmental Agency (2000), EEA Annual Work Programme 2000, European 
Environmental Agency, Doc EEA/053/99final.

European Environmental Agency (2001), “Chapter 2. Current Environmental Policy” in The 
State of Action to Protect the Environment in Europe: Expert Corner Report. No 1, 
http:themes.eea.eu.int/showpage.php/improvement/policy?pg=37486

Garvie, D., and A. Keeler (1994), “Incomplete Enforcement with Endogenous Regulatory 
Choice”, Journal of Public Economics 55: 141-62.

Horan, R.D., Shortle, J.S., and D.G. Abler (1998), “Ambient Taxes When Polluters Have 
Multiple Choices,” Journal of Environmental Economics and Management 36: 186-199.

Kaplan, J.D. (1999), “Nonpoint Source Pollution, Incomplete Information and Learning: An 
Entropy Approach,” Ph.D. Dissertation, Department of Agricultural and Resource 
Economics, University of California at Davis.

Kaplan, J.D. and R.E. Howitt (2002) “Estimating Nonpoint Source Pollution: An Application of 
a Sequential Entropy Filter,” Water Resources Research 38(3): 10.1029/2000WR000088.

Kaplan, J.D., Howitt, R.E. and Y.H. Farzin (2003), “An Information-Theoretical Analysis of 
Budget-Constrained Nonpoint Source Pollution Control,” Journal of Environmental 
Economics and Management 46: 106-130.



26

Lintner, A.M. and A. Weersink (1999), “Endogenous Transport Coefficients: Implications for 
Improving Water Quality from Multi-Contaminants,” Environmental and Resource 
Economics 14: 269-296.

Segerson, K. (1988), “Uncertainty and Incentives for Nonpoint Source Pollution Control,” 
Journal of Environmental Economics and Management 15: 87-98.

Shortle, J.S., and D.G. Alber (1997), “Nonpoint Pollution,” in The International Yearbook of 
Environmental and Resource Economics 1997/1998 (H. Folmer and T. Tietenberg, Eds.), 
Edward Elger, Cheltenham, UK, and Northhampton, MA, USA; pp114-155.

Shortle, J.S., and J.W. Dunn (1986), “The Relative Efficiency of Agricultural Source Water 
Pollution Control Policies,” American Journal of Agricultural Economics 68: 668-677.

Shortle, J.S. (1990), “The Allocative Efficiency Implications of Water Pollution Abatement Cost 
Comparisons,” Water Resources Research 26(5): 793-797.

Singh, V. P. and P.F. Krstanovic (1987), "A Stochastic Model for Sediment Yield Using the 
Principle of Maximum Entropy." Water Resource Research 23:5781-793.

Spreiter, T.A., Franke, J.F. and D.L. Steensen (1995), 'Disturbed Lands Restoration: The 
Redwood experience. Paper Presentation at the Eight Biennial Conference on Research 
and Resource Management in Parks and Public Lands, April 17-21, 1995, George Wright 
Society, Hancock, Michigan.

United States General Accounting Office (1999), Water Quality: Federal Role in 
Addressing-and-Contributing to-Nonpoint Source Pollution, GAO/RCED-99-45, US 
Government Press, Washington DC.

United States Department of the Interior (1981), Watershed Rehabilitation Plan: Redwood 
National Park, United States National Park Service, April, US Government Press, 
Washington DC.

Xepapedeas, A.P. (1995), “Observability and Choice of Instrument Mix in the Control of 
Externalities”, Journal of Public Economics 56:485-498.




