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Abstract

Protein activity is often regulated by ligand binding or by post-translational modifications

such as phosphorylation. Moreover, proteins that are regulated in this way often contain

multiple ligand binding sites or modification sites, which can operate to create an ultrasensi-

tive dose response. Here, we consider the contribution of the individual modification/binding

sites to the activation process, and how their individual values affect the ultrasensitive

behavior of the overall system. We use a generalized Monod-Wyman-Changeux (MWC)

model that allows for variable conformational free energy contributions from distinct sites,

and associate a so-called activation parameter to each site. Our analysis shows that the

ultrasensitivity generally increases as the conformational free energy contribution from one

or more sites is strengthened. Furthermore, ultrasensitivity depends on the mean of the acti-

vation parameters and not on their variability. In some cases, we find that the best way to

maximize ultrasensitivity is to make the contribution from all sites as strong as possible.

These results provide insights into the performance objectives of multiple modification/bind-

ing sites and thus help gain a greater understanding of signaling and its role in diseases.

Author summary

Multisite protein modification is ubiquitous in gene regulation and signal transduction,

often in the form of multisite phosphorylation. Many models of multisite ultrasensitivity

are available in the literature, but they usually assume that all sites contribute equally to

the activation of the multisite target. In this work, we relax this assumption and carry out

computational and mathematical analysis of a multisite system in which the conforma-

tional free energy contribution varies across sites. We find that the ultrasensitivity of the

system tends to increase (with some exceptions) when the conformational free energy

contributed by any given site is strengthened. Our analysis predicts that all active sites

should have approximately the same conformational free energy contribution, a property

observed in proteins with unstructured modification domains and bulk electrostatics. We

were also able to predict from first principles an energy range of -2 to -4 kcal/mol per site

that effectively maximizes ultrasensitive behavior. This prediction is consistent with
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experimental measurements in phosphorylation sites. Another strategy predicted by some

of our models is to select a subset of the sites and activate them uniformly, while silencing

other modification sites in the protein. This strategy is also observed experimentally in

many multisite phosphorylation proteins.

Introduction

Cellular systems rely heavily on signal transduction and environmental sensing pathways to

successfully respond to internal and external environmental signals and conditions. To regu-

late signal transduction cascades, mammalian cells use ligand binding or post-translational

modifications (PTMs) such as protein phosphorylation, methylation or ubiquitination. Several

forms of disease can arise when there are defects in signal transduction pathways, including

cancer, diabetes, and heart disease.

Many proteins regulated by ligands or PTMs are multisite proteins, that is, they have multi-

ple sites on which they can be modified or where a ligand can bind. For example, activation of

mitogen activated protein kinases requires phosphorylation on two sites [1], and the hemoglo-

bin tetramer has four sites where oxygen can bind ([2] and references therein). In fact, some

proteins have more than 150 modification sites [3]. Ligand binding/PTMs can either promote

or inhibit protein activity through conformational changes [4, 5], and can influence the target’s

enzymatic activity, location, stability, or interactions with other macromolecules [6].

A common role for multisite modifications lies in the creation of switch-like, or ultrasensi-

tive, dose response curves [7–9]. These are positive, monotonically increasing, sigmoidal func-

tions that have two important properties: first, they respond minimally to low levels of input;

second, once the input is sufficiently large, they switch from a low output to a near maximal

output in response to a relatively small increase in the input. In other words, ultrasensitive sys-

tems can both filter out low-level noise and respond with a high gain over an appropriate

range of input. Ultrasensitivity has important roles in signal transduction, and a widely-stud-

ied problem is how to implement such dose responses using common biochemical reactions

[2].

A classical 1965 model by Monod, Wyman and Changeux (MWC) [10] uses multisite mod-

ifications to create ultrasensitive responses. This model remains highly influential today [11–

14]. In the MWC model, the target molecule/receptor can be in either an active (relaxed) con-

formation or an inactive (tense) conformation, and ligand binding/PTMs can influence the

probability that the target is in one state or the other. One way to envision this is that ligand

binding promotes a conformational change that flips the target from inactive to active (or

from active to inactive in the case of an inhibitory ligand). In the MWC model, this is equiva-

lent to the point of view that the ligand binds preferentially to the active conformation, a phe-

nomenon known as conformational selection. In multisite MWC models, there are multiple

binding sites for ligand, each of which can be either empty or bound. Such models exhibit

cooperativity in ligand binding, as the binding of some ligands to the target will promote flip-

ping to the active state, and in the active state, all binding sites have a higher affinity for ligand.

In other words, the presence of ligand increases the probability of the receptor existing in the

state with higher ligand affinity, thereby increasing the probability of the next ligand binding.

In addition to ‘cooperativity’, the term ‘allostery’ is frequently used in conjunction with MWC

models, and refers to the effect that one ligand binding to the target has on additional “distant”

binding sites in the same molecule, as well as to the effect that ligand binding has on the con-

formational change that activates the target. The concepts of ultrasensitivity, allostery and
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cooperativity are important not only in understanding the logic of cellular regulation, but also

with regard to disease pathology and drug discovery [15].

Classical mathematical models of allostery and cooperative ligand binding, such as the

MWC model, were based on observations of cooperativity between symmetric subunits of

oligomeric proteins, such as hemoglobin (a tetramer), threonine deaminase (also a tetramer)

and aspartate transcarbamylase (a hexamer) [16]. Given that the molecules under study con-

sisted of multiple identical or very similar subunits, it made sense to treat all binding sites as

identical. More recently, however, the concept of allostery has been expanded to include

monomeric proteins, where binding of a ligand at one site can result in modulation of function

or binding at a (perhaps) distant site in the same polypeptide chain [17]. For instance, binding

or modification events occurring in an intrinsically-disordered segment of a protein can pro-

mote its folding, and this can be communicated to an adjacent segment, with the net effect that

a coupled folding-and-binding event or PTM in one region of the protein influences subse-

quent interactions or modifications at a distant site(s) within the same monomer [18]. Yet

another example is hetero-oligomers that display cooperativity such as the ATPase rings in the

proteasome and CCT chaperonin complex [19–22]. In such cases, there is no reason to expect

that binding/modification sites will be identical, or that they will make identical contributions

to the underlying conformational change once bound/modified.

In the current paper, we set out to explore multisite systems in which the modification of

some sites may have a stronger effect on the induced conformational change than the modifi-

cation of other sites. To do this, we generalize the classical MWC system and assign different

parameters to different sites. We aim to determine what combinations of parameters lead to a

high level of ultrasensitivity. Each site i is assigned an activation parameter ci, generalizing the

parameter c in the original formulation of the MWC model. Small values of the parameter ci
correspond to a strong ability for the i-th site to activate the protein. One can also associate to

each site a corresponding conformational free energy contribution, that is, the difference in

the Gibbs energy function associated to the site i, ΔGi = rt ln(ci). In other words, rt ln(ci) is the

site-specific free energy contribution to tense-to-relaxed flipping from ligand binding at site i.
Notice that the conformational free energy contribution ΔGi is negative number when the acti-

vation parameter ci is less than one, and becomes more negative as ci approaches 0. Also note

that a large negative ΔGi (and hence a small ci) corresponds to a strong conformational free

energy contribution, which will promote flipping to the active state. In contrast, if ci> 1, then

ΔGi will be positive, meaning that the modification does not promote flipping to the relaxed/

active state but instead makes it more likely that the target will stay in the tense state.

Our main results can be summarized as follows. First, making the conformational free

energy contribution associated with ligand binding to a single site i more favorable (that is,

making this free energy change more negative, which is equivalent to making the activation

parameter ci smaller) has a strong tendency to increase the ultrasensitivity of the system, as

measured by its associated Hill coefficient H. This effect is not guaranteed as there are some

exceptions, especially for low values of the number of sites n, but it holds in most circum-

stances and under several orders of magnitude for the parameters in the system.

Second, for a fixed number of sites n, each of which is at least moderately active, one can

calculate the average of the activation parameters and get a good approximation of the Hill

coefficient of the system by assuming that all sites have this average activation parameter. That

is, the Hill coefficient is approximately independent on the variability of the parameters ci,
only on their mean value.

Third, we find that when the cost of site maintenance is taken into account, one can obtain

an optimal ultrasensitive behavior by focusing on a subset of the sites. The strategy is to have a

subset of the sites be equally active, and all other sites have a low or negligible conformational
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free energy contribution. This prediction has been indeed observed in a number of experimen-

tal systems, where only a subset of the sites have the ability to activate the protein. In addition,

we demonstrate that there are diminishing marginal ultrasensitivity increases in response to

conformational free energy contribution improvements, which allows us to predict a maximal

effective conformational free energy contribution per site, on the order of -2 to -4 kcal/mol.

This prediction follows from first principles of the mathematical model, and it is surprisingly

consistent with experimental data for a typical protein phosphorylation site [23–26].

For completeness, the last sections contain a study of ultrasensitive behavior in a non-allo-

steric multisite model where all sites are independent from each other, applicable in some

cases where the MWC allosteric assumptions are not satisfied. It was found that this system

has a more complex relation between activation parameters and ultrasensitivity, which was

explored both through computations and mathematical analysis.

Results

Generalized MWC dose response

In this section, we carry out a generalization of the MWC model to account for different acti-

vation parameters at distinct sites. See Enciso and Ryerson [8], where a similar generalization

was carried out for protein modification efficiencies. Consider a target molecule with n sites in

modified-form I, in one of two states, relaxed (RI) or tense (TI), where I 2 {0, 1}n is a binary

vector representing the modified-form of the target. In the case of protein activation models,

relaxed and tense states correspond to different levels of activity. We assume that all modified-

forms in the relaxed (R) conformation are active and have the same activity, whereas all modi-

fied-forms in the tense (T) conformation are inactive, and have the same (low) activity. Under

MWC assumptions, the relaxed state has a higher affinity to the ligand than the tense state, this

is assumed here for the states RI and TI. The unmodified state, I ¼~0 ¼ ð0; 0; � � � ; 0Þ, and the

fully-modified state, I ¼~1 ¼ ð1; 1; � � � ; 1Þ, are the two extreme modified-forms, and a total of

2n modified-forms are possible. The modification of site i on the target will result in modified-

form J, where J = I [ {i}. In other words J is the modified-form consisting of adding one more

modification at site i to the modified-form I. For example, in Fig 1a, a two-site target can be in

the relaxed state with no modifications R(0,0) and be reversibly modified to R(1,0) or R(0,1) and

subsequently to R(1,1). A target in a relaxed state can also flip to the tense state in that form. For

instance, R(1,1) can flip to the T(1,1) state. Similarly, the tense target in modified-form T(1,0) can

be reversibly modified to T(1,1). We call u the kinase concentration in the case of multisite

phosphorylation and u denotes the ligand concentration in the case of ligand binding.

The general system can be described by the chemical reaction network in Fig 1b. The

parameter αi is the microscopic association constant for ligand binding at site i. Note that αi is

an affinity, i.e. not a dissociation constant but the inverse thereof. If instead of ligand binding

the protein is modified by post-translational modification (phosphorylation, acetylation, etc.),

αi represents the modification efficiency of site i, which, for example, will be determined by

the relative suitabilty of the site to be phosphorylated by a given kinase and dephosphorylated

by a given phosphatase. The parameter L is the equilibrium constant between R~0 and T~0 . L is

typically assumed to be greater than 1, so that, in the absence of modification, the tense/inac-

tive state is favored over the relaxed/active state. Indeed, L> 9 is required for the target to be

less than 10% active in the absence of modification. This network has the property of detailed

balance, as the product of the equilibrium constants around any closed cycle of states is 1; this

is the same as saying that the net free energy change around any closed cycle of states is 0. For

this reason each forward and reverse reaction pair is in equilibrium.
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Fig 1. Generalized MWC allosteric model. (a) The figure shows the eight possible states of a target molecule/receptor regulated by the MWC mechanism

and containing two sites for ligand binding or post translational modification (i.e., n = 2). The four states shown in blue (with closed ‘mouth’) are the tense,

inactive states, while the four states shown in green (with open ‘mouth’) are the relaxed, active states. Modification/ligand binding is indicated by the

presence of absence of a small yellow ball. The L, α and c parameters are explained in the text. (b) Chemical reaction network demonstrating the possible

modified-forms of a receptor with n sites, where I is the index vector for the modified-form and J is the index vector after adding one more modification at

site i. (c) Table of statistical weights for each state possible with n = 2.

https://doi.org/10.1371/journal.pcbi.1007966.g001
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We use the notation cI ¼
Y

Ii¼1

ci. Notice that LcI is the equilibrium constant between the

relaxed (active) state RI and the tense (inactive) state TI. In this sense, one can think of ci as the

contribution to this equilibrium constant made by each individual site i, and ΔGi as the free

energy differential between active and inactive protein contributed by modification at site i.
The statistical weights for each state possible when n = 2 is listed in Fig 1c. The probability

of a state, say R(1,0) is defined as the ratio between the statistical weight and the partition func-

tion Z. In the n = 2 case, Z = 1 + α1 + α2 + α1 α2 + L + Lα1 c1 + Lα2 c2 + Lα1 α2 c1 c2. S1 Fig

shows a table of the statistical weights of each modification state when n = 3 and the associated

Z. For general n, Z ¼ 1þ Lþ
Xn

i¼1

ðai þ LaiciÞ.

We will use u to represent the concentration of ligand or the concentration of modifying

enzyme. If the MWC target molecule is a receptor that is regulated by ligand binding, then u is

the concentration of ligand. If the MWC target molecule is instead regulated by post-transla-

tional modification, then u is the concentration/activity of the modifying enzyme. In the latter

case, we assume that the modifying enzyme is in steady state with a corresponding demodify-

ing enzyme (e.g. a kinase-phosphatase system), and that both enzymes are far from saturation.

Under these assumptions, the dose response relating kinase concentration u to the fraction of

the target sites that are modified is the same as the dose response relating ligand concentration

to the fraction of the target sites that are bound. See [6, 28] for further details. Following a simi-

lar analysis to that of Enciso & Ryerson [8], since the system is in detailed balance, for every

index I,

RIuai ¼ RJ and RILc
I ¼ TI

Solving for RI and TI, we can relate RI to R~0 (relaxed protein with no modifications) by

induction as:

RI ¼ ujIjR~0a
I and TI ¼ ujIjR~0a

ILcI:

Note that

X

I

ujIj ¼
Xn

i¼0

ð
n
i Þu

i ¼ ðuþ 1Þ
n
;

X

I

cIujIj ¼
Xn

i¼0

X

jIj¼i

cIujIj ¼
Xn

i¼0

ui
X

jIj¼i

cI ¼
Xn

i¼0

uiriðcÞ ¼
Xn

i¼0

riðucÞ ¼
Yn

j¼1

ðucj þ 1Þ;

X

I

ujIjaI ¼
Yn

i¼1

ðuai þ 1Þ and similarly;
X

I

ujIjaIcI ¼
Yn

i¼1

ðuciai þ 1Þ:

Here, riðcÞ ¼
X

jIj¼i

cI is the symmetric polynomial in i with entries c [8]. For example, con-

sider n = 2 with c = (c1, c2). Here, ρ2(c) = c1 c2, ρ1(c) = c1 + c2, and ρ0(c) = 1. At various points

we are able to rewrite a sum into a product, using the principle that if xi is a constant for i = 1,
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2, � � �, n, then
X

I

xI ¼
Yn

j¼1

ðxj þ 1Þ. For general n, the above allows us to write

ST ¼
X

I

RI þ TI ¼ R~0
X

I

ujIjaI þ LR~0
X

I

cIujIjaI ¼ R~0
Yn

i¼1

ðuai þ 1Þ þ LR~0
Yn

j¼1

ðucjaj þ 1Þ;

R~0 ¼ ST
1

Yn

i¼1

ðuai þ 1Þ þ L
Yn

i¼1

ðuciai þ 1Þ

:

The response of this system is given by the total concentration of relaxed protein, regardless

of its level of modifications. That is,

f ðu; c; aÞ ¼
X

I

RI ¼ R0

X

I

ujIjaI ¼ R0

Yn

i¼1

ðuai þ 1Þ ¼

ST

Yn

i¼1

ðuai þ 1Þ

Yn

i¼1

ðuai þ 1Þ þ L
Yn

i¼1

ðuciai þ 1Þ

:

That is

f ðu; c; aÞ ¼
ST

1þ L
Yn

i¼1

uciai þ 1

uai þ 1

¼ SToðZðu; c; aÞÞ;
ð1Þ

where Zðu; c; aÞ ¼
Yn

i¼1

uciai þ 1

uai þ 1
and oðxÞ ¼

1

1þ Lx
. Notice from this functional form when

any ci is equal to 1, it simply multiplies the dose response by one and becomes the same as a

system with n − 1 sites. This is a nontrivial comment which is not obvious from the system oth-

erwise, but it is biologically intuitive. If a target molecule has weak sites, they only contribute

weakly or not at all to increase the Hill coefficient. For fixed parameter values c and α, we

define the maximal response f1ðcÞ ¼ lim
u!1

f ðu; c; aÞ. A simple calculation shows that

f1ðcÞ ¼ 1

1þLc1c2 ���cn
and depends only on c1, c2, � � �, cn and is independent of α. This maximal out-

put value will allow us to normalize response curves across different parameter values in the

sections below.

Since the effect of varying the modification parameters αi was extensively described in

Enciso and Ryerson [8], in the majority of the discussion here, we will assume that the αi are

equal to each other, and in fact we can set αi = 1. To see this, one can re-scale u by defining

�u ¼ u�a. The new dose response has the same Hill coefficient as the old system, however the

new system satisfies αi = 1 for all i. This helps to better understand the effect of individual acti-

vation parameters.

Computational results on MWC ultrasensitivity

Recall from the previous section that f(u, c, α) represents the dose response for the generalized

MWC system with parameters ci and αi, for i = 1, 2, � � �, n, where n is the number of sites, and

u is the ligand/enzyme concentration.

In this section we carry out a computational analysis of the dose response and its Hill coeffi-

cient, where the parameters ci are sampled logarithmically. More specifically, log(ci) is chosen

with uniform distribution between [10−4, 0.9]. The parameter L� 1 was fixed, and the
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parameters αi were chosen to be identical to each other, ai ¼ �a, here the value of �a does not

affect the Hill coefficient.

We calculated the Hill coefficient H by solving for EC90 and EC10 with a standard numerical

solver. Here, we solved for u such that f(u, c, α) − βf1(c) = 0 for both β = 10% and 90%. With

both EC10 and EC90, we can calculate H as

H ¼
lnð81Þ

ln EC90

EC10

� � ð2Þ

derived in [27]. H> 1 implies the dose response curve is ultrasensitive, while H = 1 implies

there is no ultrasensitivity, and H< 1 shows negative ultrasensitivity. One can also think of

H> 1 showing that the dose response has a good switch [28]; the larger the value of H the

more ultrasensitive the dose response curve.

Fig 2a displays the dose response curves in this system for n = 2, 4, 8, ci = 0.01, L = 1000,

and ai ¼ �a ¼ 1. These functions show that when all the sites contribute equally, the Hill

Fig 2. Ultrasensitivity of MWC system. (a) Dose response curve, f(u, c, α), when n = 2, 4, and 8 for increasing u with ci = 0.01, ai ¼ �a ¼ 1 and L = 1000.

(b-d) Heat maps for H when c1, c2 2 [10−4, 0.9] with L = 1000 and ai ¼ �a ¼ 1 and (b) n = 2, (c) n = 4, ci = 0.01 for i� 3, similarly with (d) n = 8. White

indicates undefined H values.

https://doi.org/10.1371/journal.pcbi.1007966.g002
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coefficient tends to increase with the number of sites. In Fig 2b–2d, c1 and c2 were increased

from 10−4 to 0.9 and each ci = 0.01 for i� 3, αi = 1, and L = 1000. In these figures, H decreases

for increasing c1 only, suggesting that H increases with increasing conformational free energy

contribution (recall that larger values of c correspond to lower activation contributions). Note

that for the n = 2 case, there are cases for large values of c1 where the Hill number is undefined.

S2 Fig shows similar data on a linear scale.

In S2 Fig panel e, we show a Monte Carlo approach to study whether H is always a decreas-

ing function of ci. By symmetry, we take any individual ci parameter to be c1, without loss of

generality. To find the proportion of cases where H decreases on c1, we find a numerical

approximation to Hc1
ðcÞ as follows:

Hc1
ðcÞ ¼

@HðcÞ
@c1

�
Hðc1 þ Dx; c2; � � � ; cnÞ � Hðc1; c2; � � � ; cnÞ

Dx
;

for small Δx to determine if
@HðcÞ
@c1

< 0. Here, for different values of L and n with ai ¼ �a ¼ 1, for

1000 simulations, we sampled ci 2 [10−4, 0.9] logarithmically for i = 1, 2, � � �, n. The proportion

of simulations where H decreases on c1 is almost always one for n> 4. For n = 2 there are

many parameter sets where that is not the case.

In Fig 3 we further analyze the effect of varying the activation parameters on the Hill coeffi-

cient. In Fig 3a, we sampled a vector c 2 Rn
with entries in the interval [10−4, 0.9] logarithmi-

cally. This vector of activation parameters has arithmetic mean �c and coefficient of variation

CVðcÞ ¼ sðcÞ
�c . To each vector c one can assign a second vector ĉ ¼ ð�c;�c; � � � ;�cÞ for which

CVðĉÞ ¼ 0. After calculating H for each case, we can see in Fig 3a, that when there is no varia-

tion between ci (solid line), with parameter values αi = 1 and L = 1000, H decreases with

increasing mean of c for n = 2, 3, 4, 6 and 8. Any variation among the ci does not significantly

affect H when �c < 10� 2. For larger values of �c, H depends on the variability among the ci as

well as their mean. When αi is sampled from the range [0.1, 10] the dependence of H on �c is

less clearly defined, compared to the case αi = 1 (see S3 Fig panels a-b).

In Fig 3b, for the same parameter values ci and αi = 1 we plot H against the total conforma-

tional free energy contribution ΔGtot defined as

DGtot ¼ rt ln
Yn

i¼1

ci

 !

ð3Þ

where r is the gas constant and t is the temperature (traditionally R and T but labeled as r and

t, respectively, to maintain consistent notation and not be mistaken for the MWC tense and

relaxed states). For fixed n, as the total conformational free energy contribution increases,

ultrasensitivity generally tends to increase, and after some threshold, it tends to level off. To

increase ultrasensitivity at that point, a target/receptor cannot profitably utilize more confor-

mational free energy contribution, but instead must evolve more sites. As a concrete example,

let us consider an MWC molecule with two sites under selective pressure to increase its ultra-

sensitivity. Changes to the microscopic modification affinities/efficiencies (i.e., the ΔGi‘s) will

either decrease ultrasensitivity (if the changes are unbalanced), or at best leave ultrasensitivity

unaltered (if the changes are balanced) [8]. Thus, the only viable options to increase ultrasensi-

tivity are to (a) evolve another site, or (b) strengthen the conformational free energy contribu-

tion of the existing sites. At first, significant increases to ultrasensitivity can result from the

second option. A mutation that strengthens the conformational free energy contribution of

one of the sites will move the molecule up and to the right in the cloud of points for n = 2

shown in Fig 3b, with the largest jump coming from strengthening the weakest site. As
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additional mutations of this type arise and become fixed by natural selection, the molecule will

move to the top right of the cloud; here the conformational free energies will be approximately

balanced and have magnitudes of approximately -2 to -4 kcal/mol. At this point, substantial

improvement to ultrasensitivity (i.e., an increase of the Hill number by greater than 0.5 units)

can only arise if the molecule evolves an additional site.

To view this more clearly, consider Fig 3c, which shows ultrasensitivity for increasing values

of total conformational free energy contribution where parameter values have been set to ci ¼
�c and ai ¼ �a ¼ 1 and fixed n and L. In other words, when each ci is the same, meaning the

conformational free energy contribution is the same in all sites, we can see that ultrasensitivity

generally increases and eventually levels off as the conformational free energy contribution

Fig 3. Activation parameters and H in MWC. (a) Scatter plot for H when ci are independently and logarithmically chosen from the interval [10−4, 0.9]

(dots) and when ci are all identical (solid line), L = 1000, and ai ¼ �a for n = 2, 3, 4, 6, 8. (b) Scatter plot for H for increasing total conformational free energy

contribution (Eq 3) when ci = c 2 [10−4, 0.9], ai ¼ �a, and L = 1000 for n = 2, 3, 4, 6, 8. Asterisk is the approximated H for Ste5 from [24]. (c) Scatter plot for

H for increasing total conformational free energy contribution (Eq 3) when ci ¼ �c 2 ½10� 4; 0:9�, ai ¼ �a, and L = 1000 for n = 2, 3, 4, 6, 8. Diamonds

represent the knee of the curve. (d) H for increasing total conformational free energy contribution where ci ¼ �c 2 ½10� 4; 0:9�, ai ¼ �a and L = 1000 and with

a maintenance cost of 4 kcal/mol per site where n = 2, 3, 4, 6, 8. The Ste5 data point is added for illustration purposes with the same maintenance cost for

each of the 8 phosphorylation sites.

https://doi.org/10.1371/journal.pcbi.1007966.g003
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increases. Fig 3c also helps to make a prediction of the energy that each site optimally contrib-

utes, given a total conformational free energy contribution.

Calculating the “knee” of the curve provides a rough estimate of the total conformational

free energy contribution required before the ultrasensitivity begins to level off. The knee of a

saturating curve is a mathematical definition that captures the point at which the curve is

reaching saturation. It is defined in our context as max a� x� b|Yn(c) − ℓ(x)|, where Yn(x) is

the Hill coefficient curve in Fig 3c for n sites, a, b are the lowest and highest total energy values

among the data points for n sites respectively, and ℓ(x) is a secant line joining (a, Yn(a)) and (b,

Yn(b). For a more detailed explanation, refer to Figure 2b in Ref [29].

The approximated knee of each curve in Fig 3c was found and is depicted with a diamond

and listed in Table 1. Notice that the energy for saturation increases roughly linearly with the

number of sites. In each case, the amount of energy per site is approximately -2 to -4 kcal/mol.

This analysis is consistent with some previous experimental findings [23, 24]. The approxi-

mated H for Ste5 from [24] with n = 8 phosphorylation sites is indicated with an asterisk in Fig

3b and 3c. We derive the value -1.6 kcal/mol per site in this system, which is equivalent to a

10-fold affinity increase per site as approximated in [24]. Not only does this data point approx-

imately lie close to the curve for n = 8, but in fact it lies close to the knee of the curve when all

sites contribute an equal amount, as predicted in the above analysis. The marginal effect of an

additional kcal of free energy is dependent on only one other parameter, namely L (assuming

the αi are roughly equal to each other). If L ranges from 30 to 10,000, the analysis is roughly

similar (see S3 Fig panels c-d), and it leads to an energy range of around -2 to -4 kcal/mol per

site (see also S1 Table).

There are ways of evaluating ultrasensitivity other than the Goldbeter-Koshland method

[27]. In S4 Fig, we measure ultrasensitivity in two additional ways: (1) fitting the dose response

curve to the Hill function [9] and (2) Levitzki’s n50 [30]. We see similar results, thus the quali-

tative results here do not depend on how ultrasensitivity is measured.

In Fig 3d, similar to Fig 3b, we plot H for increasing values of total conformational free

energy contribution where now we take into account a maintenance cost for each site, denoted

by Mc. Such a maintenance cost may arise, for example, if there is rapid turnover of a post-

translational modification, as has been observed for phosphorylation-dephosphorylation of

some substrates [31, 32]. This type of rapid dynamics in modification-demodification cycles

could constitute a non-negligible expenditure of energy for the cell.

The total activation energy including maintenance can be calculated as ΔGtot + Mc�n,

where ΔGtot is given by (Eq 3) and Mc = 4 kcal/mol, which was arbitrarily chosen. In this figure,

we assume for simplicity that energy is equally distributed among all sites. Once the cost of

Table 1. Ultrasensitivity at knee.

L n H total cfe cfe/site

1000 2 1.80 -7.37 -3.69

1000 3 2.47 -8.67 -2.89

1000 4 2.99 -9.80 -2.45

1000 6 3.71 -11.97 -1.99

1000 8 4.21 -14.39 -1.80

Ultrasensitivity as measured by the Goldbeter-Koshland formula described in Eq (2) along with the approximated

knee of the curves in Fig 3c for fixed values of L and n. The knee of curve occurs at a single value of total

conformational free energy contribution (cfe) with a Hill number H. Parameters ai ¼ �a ¼ 1.

https://doi.org/10.1371/journal.pcbi.1007966.t001
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maintenance is taken into account, one can see more clearly that for each level of total confor-

mational free energy contribution there is an optimal value of n. For instance, if the total

energy is -20 kcal/mol, then the optimal number of sites is n = 3; any fewer sites will not have

as high ultrasensitivity, while any larger number of sites requires an excessive amount of main-

tenance. If there are more than four sites in this system, it is beneficial to eliminate or silence

the remaining sites. Similar qualitative results can be seen in S5 Fig with different maintenance

cost values.

To summarize, in this section we have shown that (1) increasing the conformational free

energy contribution at a single site has a strong tendency to increase the ultrasensitivity of the

response, with some exceptions, (2) for fixed n, the ultrasensitivity depends on the mean of the

free energies of activation and very little on their variance, and (3) we estimate from first prin-

ciples an effective energy range of -2 to -4 kcal/mol per site, which is consistent with experi-

mental data.

Generalized independent dose response

The assumption of cooperativity between sites plays a role in the ultrasensitive behavior of the

dose response curves. However, if we do not assume cooperativity between sites, will we

observe the same effect in the previous section on H? In this section, we use a non-allosteric

model and carry out a similar study as for the generalized MWC model. The proposed model

has been used elsewhere [8, 33] but here it is generalized for the first time to have different acti-

vation parameters at different sites.

Consider a target molecule with n modification sites in modified-form I 2 {0, 1}n, where we

no longer assume that there is cooperativity between sites. The target can be in one of two

states, AI (active) or BI (inactive) and thus gives 2n possible modified-forms.

The target S in modified-form I can be described by the chemical reaction in Fig 4a, where

vi> 1 represents the conformational free energy contribution of the i-th modification site.

Each vi can also be related with the binding energy of the i-th modification site in the MWC

model through the formula

DGi ¼ � rt lnðviÞ:

That is, the larger the value of vi, the larger the free energy. The parameter vi can also be

thought of as the inverse of vi ¼
1

ci
of the activation parameter in the MWC model. For nota-

tion purposes, vI ¼
Y

Ii¼1

vi.

To obtain the dose response for total target ST as a function of enzyme concentration u, we

use mass action kinetics on the chemical reaction below

AIÐ
d

vI
BI

As in the MWC model, d is the reaction rate constant and is analogous to L. The associated

differential equation for the active target is:

dAI

dt
¼ vIBI � dAI; ð4Þ

PLOS COMPUTATIONAL BIOLOGY Effect of magnitude and variability of energy of activation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007966 August 6, 2020 12 / 26

https://doi.org/10.1371/journal.pcbi.1007966


with conservation of mass equation for the target in modified-form I:

SI ¼ AI þ BI:

We allow this reaction to reach equilibrium by assuming that this activation/deactivation

reaction is much faster than protein modification. This is a reasonable assumption in the case

of protein phosphorylation. Solving for steady state of (4),

0 ¼ vIðSI � AIÞ � dAI ¼ vISI � AIðvI þ dÞ;

that is

AIðvI þ dÞ ¼ vISI

and

AI ¼
vI

vI þ d
SI

Fig 4. Independent Multisite Modification Model. (a) Target molecule in modified-form I can be in the inactive state BI or active AI state. (b) Dose

response curve, f(u, v) when n = 2, 5, 7 for increasing kinase concentration u with vi = 100 and d = 1000 (c-e) Heat maps for H when v1, v2 2 [10, 108] with

d = 1000, and (c) n = 2, dashed line used to denote region where d ¼ ffiffiffiffiffiffiffiffiv1v2

p
. (d) n = 4, vi = 100 for all i� 3, similarly with (e) n = 7.

https://doi.org/10.1371/journal.pcbi.1007966.g004
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In order to calculate the activity level of a target molecule in modified-form I, we defined

the function QI(v), which can be considered to be the fraction of time a protein is active, as

AI ¼
vI

d þ vI
SI ;

AI

SI
¼

vI

dþ vI
:

Hence,

QIðvÞ ¼
vI

d þ vI
: ð5Þ

To further understand QI(v), consider the case when n = 2. If both sites are modified, then

Qð1;1Þ ¼
v1v2

d þ v1v2

� 1 for large values of vi relative to d. If neither site is modified, then

Qð0;0Þ ¼
1

d þ 1
. In other words, the activity of a protein increases with the amount of modifica-

tions. Notice that the activity level will depend on the activation parameters of the specific sites

and the overall number of sites modified.

We can also determine the concentration of SI, as a function of enzyme concentration u.

We can accomplish this by first considering the fraction, pi, that is modified on the i-th site, at

steady state. Then, from [8], given ki is the disassociation rate constant of the i-th site,

piðuÞ ¼
u

uþ ki
: ð6Þ

We assume that the modification states of the different sites are independent of each other,

an assumption that is in a sense the opposite of cooperativity. In other words, the modification

of one site does not influence the modification of another. This allows to calculate the propor-

tion of target in state I as

SI

ST
¼
Y

Ii¼1

pi

Y

Ii¼0

ð1 � piÞ ¼
Y

Ii¼1

u
uþ ki

Y

Ii¼0

1 �
u

ki þ u

� �

¼
Y

Ii¼1

u
uþ ki

Y

Ii¼0

ki

ki þ u
;

where ST is the total amount of target molecule. The dose response is calculated as follows:

f ðu; vÞ ¼
X

I

QISI ¼
X

I

vI

d þ vI

Y

Ii¼1

u
uþ ki

Y

Ii¼0

ki

ki þ u
: ð7Þ

This function has a maximal output value f1(v), which is found in a similar fashion to the

MWC maximal output value by evaluating the limit of f(u, v) as u!1. Note that for any I
containing a zero (i.e., any modified-form with at least one site un-modified), lim

u!1
SI ¼ 0.

Only I ¼~1 ¼ ð1; 1; � � � ; 1Þ will contain a non-zero limit for SI, giving f1ðvÞ ¼ Q~1 . This maxi-

mal output value can be used to normalize the dose response curves across different parameter

values, similar to the MWC system.

Computational results on independent system ultrasensitivity

For multisite proteins, we can determine the proportion of active target by calculating f(u, v)

from the independent system above. In Fig 4b, we plot dose response functions for n = 2, 4,

and 8 with vi = 100, ki = 1 and d = 1000.

Similar to the MWC section above, we show how H is affected by the activation parameters

of individual sites. In Fig 4c–4e, we measure H in a similar fashion to that in Fig 3, by solving

for EC10 and EC90 given the dose response f(u, v) in (Eq 7). Here, d = 1000 and ki = 1 and
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parameters v1 and v2 were sampled with values in [1, 108] logarithmically and each vi = 100 for

i> = 3 for n = 2, 4, and 8. This implies that H does not increase monotonically with increasing

vi, and there is a local minimum for low values of vi.
To determine the effect the variability between parameters vi has on H, we varied parame-

ters vi, measured H and compared to when all parameters vi are equal, similar to the MWC sys-

tem. In Fig 5a, we sampled a vector with entries from [1, 104], logarithmically. This v has an

arithmetic mean �v and coefficient of variation, CV ¼
sdðvÞ

�v
. For each sample, there is a second

vector, v̂ ¼ ð�v; �v; � � � ; �vÞ such that CVðv̂Þ ¼ 0. After calculating H for each case, we can see in

Fig 5a, that when there is no variation between vi (solid line), ki = 1 and d = 1000, H can

increase or decrease depending on the mean of v for n = 2, 3, 4 and 8. Here, we can see that

any variation between the vi may affect H (asterisks).

In Fig 5b, we show the same data from Fig 5a but plotting CV(v) vs H. Here we see that CV
(v) has some effect on H, regardless of n. This is particularly interesting since, contrary to

MWC, the variation between vi affects H. We also see that there are values of �v where H
increases and values where it decreases. How often is H increasing with increasing v1?

In Fig 5c, similar to S3 Fig panel e, we provide the proportion of simulations where H
increases with increasing v1 based on n and d. The proportion was found in a similar fashion

as in the MWC system. Here, we logarithmically sampled vi 2 [10, 104] and ki = 1.

The computational and analytical results described in the section below titled “Independent

System Mathematical Analysis” suggest that that d > ffiffiffiffiffiffiffiffiv1v2

p
is a biologically reasonable

assumption that will give dose response functions where the effect of two modifications is sig-

nificantly different than the effect of a single modification. Similarly, d < ffiffiffiffiffiffiffiffiv1v2

p
gives dose

response functions where the effect of a single modification has a similar effect as two modifi-

cations, termed “1+” regime. In this “1+” regime we see H increasing on v. When d ¼ ffiffiffiffiffiffiffiffiv1v2

p
,

we have a dose response function where the effect of one modification is approximately 50% of

the effect of two modifications, with no ultrasensitivity (H� 1). We can also see that if d is

slightly past the 50% of max activation, H can be maximized by increasing the free activation

of energy v.

To summarize, in this section we show that (1) ultrasensitivity increases under specific

parameter regimes and (2) may depend on the variability between the activation parameters.

Fig 5. Activation parameters and H in independent model. (a) Scatter plot for H when vi 2 [10, 104] (asterisks) and when vi ¼ �v for i = 1, 2, � � �, n (solid

curve) for different values of n. (b) H vs CV(v) for different values of n. (c) Heat map showing the proportion of times H increased with increasing vi as a

function of n and d for vi 2 [10, 104] and ki = 1 with 1000 simulations of randomly chosen vi 2 [10, 104].

https://doi.org/10.1371/journal.pcbi.1007966.g005
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MWC system mathematical analysis

In this section, we provide a mathematical analysis of the generalized MWC system showing

that H(c, α) is roughly independent of the variation of c. We will show that H is essentially a

function of �c and �a. That is, the variability of activation parameters only affects H to the extent

that it changes the mean, �c. Consider f(u, c, α) from Eq (1) and define

�a ¼
a1 þ a2 þ � � � þ an

n
; Da ¼ ða1 � �a; a2 � �a; � � � ; an � �aÞ ;

�c ¼
c1 þ c2 þ � � � þ cn

n
; Dc ¼ ðcn � �c; c2 � �c; � � � ; cn � �cÞ:

For notation purposes, let ĉ ¼ ð�c;�c; � � ��cÞ 2 Rn
and â ¼ �a; �a; � � � ; �aÞ 2 Rn

. Recall that

given a C2 function f such that
@f
@x ða; bÞ ¼

@f
@y ða; bÞ ¼ 0, it holds that

f ðx; yÞ ¼ f ða; bÞ þ oðx � a; y � bÞ:

We will use this to show that

Hðc; aÞ ¼ Hðĉ; âÞ þ oðDc;DaÞ:

This formula demonstrates in particular that H essentially does not vary if the mean of c is

preserved, as illustrated in Fig 3a.

Proposition 1 Hðc; âÞ ¼ Hðĉ; âÞ þ oðDcÞ
Proof: For simplicity, assume ST = 1 and assume for now that u and â are fixed. By the

approximation of the geometric mean using the arithmetic mean, we have

Yn

i¼1

uci�a þ 1

 !1=n

¼
1

n

Xn

i¼1

ðuci�a þ 1Þ þ oðDcÞ ¼ ðu�c�a þ 1Þ þ oðDcÞ:

Taking the n-th power,
Yn

i¼1

ðuci�a þ 1Þ ¼ ðu�c�a þ 1Þ
n
þ oðDcÞ: Let M> 0 such that |ω(x) −

ω(y)|�M|x − y| for all x, y> 0. Then,

jf ðu; c; âÞ � f ðu; ĉ; âÞj � MjZðu; c; âÞ � Zðu; ĉ; âÞj

¼ M
Yn

i¼1

uci�a þ 1

u�a þ 1
�
Yn

i¼1

u�c�a þ 1

u�a þ 1

�
�
�
�
�

�
�
�
�
�

¼
M

ðu�a þ 1Þ
n

Yn

i¼1

ðuci�a þ 1Þ � ðu�c�a þ 1Þ
n

�
�
�
�
�

�
�
�
�
�
¼ oðDcÞ:

Then f ðu; c; âÞ ¼ f ðu; ĉ; âÞ þ oðDcÞ. It follows that

EC10ðc; âÞ ¼ EC10ðĉ; âÞ þ oðDcÞ and EC90ðc; âÞ ¼ EC90ðĉ; âÞ þ oðDcÞ:

Thus,

Hðc; âÞ ¼
lnð81Þ

ln EC90ðc;âÞ
EC10ðc;âÞ

� � ¼
lnð81Þ

ln EC90ðĉ;âÞ
EC10ðĉ;âÞ

� �þ oðDcÞ ¼ Hðĉ; âÞ þ oðDcÞ:
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One can assume that â doesn’t change since H is unaffected by increasing or decreasing its

value, as explained in the sections above. Also, the above analysis is carried out for u in a neigh-

borhood of EC10ðĉ; âÞ and EC90ðĉ; âÞ, hence one can assume that u does not vary significantly.

Proposition 2 Hðĉ; aÞ ¼ Hðĉ; âÞ þ oðDaÞ.
Proof: Similar to Proposition 1,

Yn

i¼1

u�cai þ 1

 !1=n

¼
Xn

i¼1

u�cai þ 1

n
þ oðDaÞ ¼ uĉâ þ oðDaÞ:

Taking the n-th power,
Yn

i¼1

ðu�cai þ 1Þ ¼ ðu�c�a þ 1Þ
n
þ oðDaÞ: In particular, for �c ¼ 1,

Yn

i¼1

ðuai þ 1Þ ¼ ðu�a þ 1Þ
n
þ oðDaÞ. Therefore, Zðu; ĉ; aÞ ¼ Zðu; ĉ; âÞ þ oðDaÞ: In the same

way as in Proposition 1, Hðĉ; aÞ:
Proposition 3 Hðc; aÞ ¼ Hðĉ; âÞ þ oðDc;DaÞ.
Proof: The first-order Taylor approximation of H(c, α) around ðĉ; âÞ can be written as

Hðc; aÞ ¼ Hðĉ; âÞ þ
Xn

i¼1

ðci � �cÞ
@

@ci
Hðĉ; âÞ þ

Xn

i¼1

ðai � �aÞ
@

@ai
Hðĉ; âÞ þ oðDc;DaÞ

¼ Hðĉ; âÞ þ Dc � rcHðĉ; âÞ þ Da � raHðĉ; âÞ þ oðDc;DaÞ:

From Proposition 1, DDcHðĉ; âÞ ¼ Dc � rcHðĉ; âÞ ¼ 0: Similarly, from Proposition 2,

DDaHðĉ; âÞ ¼ Da � raHðĉ; âÞ ¼ 0: Therefore, Hðc; aÞ ¼ Hðĉ; âÞ þ oðDc;DaÞ.

Independent system mathematical analysis

In this section, the following theorem and proposition provide mathematical analysis for the

independent system showing that for n = 2, H increases when d < ffiffiffiffiffiffiffiffiv1v2

p
.

Theorem 1 Suppose that f(u, z)> 0 is a saturating C2 function defined for all u, z> 0, such
that fu(u, z)> 0. If the function

sðu; zÞ ¼
fvðu; zÞ � f ðu; zÞf1z ðzÞ=f

1ðzÞ
ufuðu; zÞ

ð8Þ

is strictly increasing on u, then H(z) is increasing for every parameter z> 0.

Proof: Let p(z) and q(z) represent the EC10 and EC90 values of the dose response respec-

tively, that is

f ðpðzÞ; zÞ ¼ 0:10f1ðzÞ and f ðqðzÞ; zÞ ¼ 0:90f1ðzÞ;

where f1(z) is the maximum value of f(u, z). Differentiating both sides, it follows that

fuðpðzÞ; zÞp0ðzÞ þ fvðpðzÞ; zÞ ¼ 0:10f1z ðzÞ and fuðqðzÞ; zÞq0ðzÞ þ fvðqðzÞ; zÞ ¼ 0:90f1z ðzÞ:

That is

p0ðzÞ ¼
� fzðpðzÞ; zÞ þ 0:10f1z ðzÞ

fuðpðzÞ; zÞ
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and

q0ðzÞ ¼
� fzðqðzÞ; zÞ þ 0:90f1z ðzÞ

fuðqðzÞ; zÞ
:

Recall HðzÞ ¼
ln ð81Þ

ln ðqðzÞ=pðzÞÞ
. Then,

dH
dz
¼
� lnð81Þðq0ðzÞpðzÞ � p0ðzÞqðzÞÞ

qðzÞpðzÞ ln qðzÞ
pðzÞ

� �� �2
, and

dH
dz

> 0 if

and only if

� lnð81Þðq0ðzÞpðzÞ � p0ðzÞqðzÞÞ

qðzÞpðzÞ ln qðzÞ
pðzÞ

� �� �2
> 0

, p0ðzÞqðzÞ > q0ðzÞpðzÞ

,
� fzðpðzÞ; zÞ þ 0:10f1z ðzÞ

fuðpðzÞ; zÞ
qðzÞ >

� fzðqðzÞ; zÞ þ 0:90f1z ðzÞ
fuðqðzÞ; zÞ

pðzÞ

,
fzðpðzÞ; zÞ � 0:10f1z ðzÞ

pðzÞfuðpðzÞ; zÞ
<

fzðqðzÞ; zÞ � 0:90f1z ðzÞ
qðzÞfuðqðzÞ; zÞ

,
fzðpðzÞ; zÞ � f ðpðzÞ; zÞf1z ðzÞ=f

1ðzÞ
pðzÞfuðpðzÞ; zÞ

<
fzðqðzÞ; zÞ � f ðqðzÞ; zÞf1z ðzÞ=f

1ðzÞ
qðzÞfuðqðzÞ; zÞ

:

The last inequality follows since 0.10 = f(p(z), z)/f1(z), 0.90 = f(q(z), z)/f1(z). Overall, we

have that

dH
dz

> 0 if and only if sðpðzÞ; zÞ < sðqðzÞ; zÞ:

Thus, if σ(u, z) is an increasing function of u, then dH
dz > 0.

Given the dose response in (Eq 7), does σ(u, v) increase on u? Here, we provide a derivation

for the associated σ function for the Independent dose response when n = 2. More specifically,

we now apply the theorem to the independent model with z = v1.

Proposition 4 For the independent system in (7), for n = 2, assuming that ki = k are equal to
each other, H(v) is increasing on v1 and v2 if d <

ffiffiffiffiffiffiffiffiv1v2

p
.

Proof: We use the above result and show that when d < ffiffiffiffiffiffiffiffiv1v2

p
, then σ(u, v) is increasing

on u.

Consider f(u, v) as given by (7) and σ(u, v) from (8). For the case n = 2, without loss of gen-

erality let ST = 1; a different value of ST only re-scales the dose response and does not change

H. Let z = v1. Notice that setting z = v2 would give the same result by symmetry. Also, let

� ¼
Q11;v1
Q11

> 0, QI;v1
¼
@QI

@v1

, and fu ¼
@f
@u

. It now follows that

f ðu; vÞ ¼ Q00S00 þ Q01S01 þ Q10S10 þ Q11S11

fv1
ðu; vÞ ¼ Q00;v1

S00 þ Q01;v1
S01 þ Q10;v1

S10 þ Q11;v1
S11 f1v1

ðvÞ ¼ Q11;v1

fuðu; vÞ ¼ Q00S000
þ Q01S001

þ Q10S010
þ Q11S011

f1ðvÞ ¼ Q11:
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Then,

sðu; v1Þ ¼
fv1
ðu; v1Þ � f ðu; v1Þf1v1

ðv1Þ=f1ðv1Þ

ufuðu; v1Þ

¼
Q00;v1

S00 þ Q01;v1
S01 þ Q10;v1

S10 þ Q11;v1
S11 � ðQ00S00 þ Q01S01 þ Q10S10 þ Q11S11Þ

Q11;v1
Q11

uðQ00S000
þ Q01S001

þ Q10S010
þ Q11S011

Þ

¼

Q10;v1 ku

ðuþkÞ2
þ

Q01;v1 ku

ðuþkÞ2
þ

Q11;v1u
2

ðuþkÞ2
� Q00

k2

ðuþkÞ2
þ Q10

ku
ðuþkÞ2

þ Q01
ku

ðuþkÞ2
þ Q11

u2

ðuþkÞ2

� �
�

u Q00
� 2k2

ðuþkÞ3
þ Q10

kðk� uÞ
ðuþkÞ3

þ Q01

kðk� uÞ
ðuþkÞ3

þ Q11
2uk
ðuþkÞ3

� �

¼

1

ðuþkÞ2

u
ðuþkÞ3

kuQ10;v1
þ kuQ01;v1

þ u2Q11;v1
� �ðk2Q00 þ ukQ01 þ ukQ10 þ u2Q11Þ

� 2k2Q00 þ kðk � uÞQ10 þ kðk � uÞQ01 þ 2ukQ11

¼
uþ k
u

kuðQ10;v1
þ Q01;v1

Þ � �k2Q00 � uk�ðQ10 þ Q01Þ

k2ð� 2Q00 þ Q10 þ Q01Þ þ ukð� Q10 � Q01 þ 2Q11Þ

¼
uþ k
u

uðQ10;v1
þ Q01;v1

� �Q10 � �Q01Þ � �kQ00

kðQ10 þ Q01 � 2Q00Þ þ uð2Q11 � Q10 � Q01Þ

¼ �
uþ k
u

uð�Q10 þ �Q01 � Q10;v1
� Q01;v1

Þ þ �kQ00

uð2Q11 � Q10 � Q01Þ þ kðQ10 þ Q01 � 2Q00Þ

¼ �
uþ k

C3uþ C4

C1uþ C2

u
;

where

C1 ¼ �Q10 þ �Q01 � Q10;v1
� Q01;v1

C3 ¼ 2Q11 � Q01 � Q10 > 0

C2 ¼ �kQ00 > 0 C4 ¼ kðQ10 þ Q01 � 2Q00Þ > 0:

Let t1 ¼
uþ k

C3uþ C4

and t2 ¼ �
C1uþ C2

u
, so that σ = τ1τ2. Note that τ2 is a strictly increasing

function on u since t2 ¼ � C1 �
C2

u
.

In the following text, we show that τ1 is also strictly increasing on u if and only if

d <
ffiffiffiffiffiffiffiffi
v1v2

p
. To see this, notice that τ1 is strictly increasing if and only if

k
C4

<
1

C3

, which is

equivalent to C3 k< C4. This is equivalent to

kð2Q11 � Q01 � Q10Þ < kðQ01 þ Q10 � 2Q00Þ
2Q11 � Q01 � Q10 < Q01 þ Q10 � 2Q00

0 < Q01 þ Q10 � Q00 � Q11

0 <
v2

d þ v2

þ
v1

d þ v1

�
1

d þ 1
�

v1v2

d þ v1v2

0 < v2ðd þ v1Þðd þ 1Þðd þ v1v2Þ þ v1ðd þ v2Þðd þ 1Þðd þ v1v2Þ
� ðd þ v2Þðd þ v1Þðd þ v1v2Þ � v1v2ðdþ 1Þðd þ v2Þðd þ v1Þ

0 < v2ðd þ 1Þðd þ v1Þ½d þ v1v2 � v1ðd þ v2Þ�
þðd þ v2Þðd þ v1v2Þ½v1ðd þ 1Þ � ðd þ v1Þ�

0 < v2dðd þ 1Þðd þ v1Þð1 � v1Þ þ dðd þ v2Þðd þ v1v2Þðv1 � 1Þ
0 < ðv1 � 1Þ½� v2ðd þ 1Þðd þ v1Þ þ ðd þ v2Þðd þ v1v2Þ�
0 < ðd þ v2Þðd þ v1v2Þ � v2ðd þ 1Þðd þ v1Þ
0 < d2 þ dv1v2 þ dv2 þ v1v2

2
� v2d2 � v1v2d � v2d � v1v2

0 < d2 þ v1v2
2
� v2d2 � v1v2

0 < ðv2 � 1Þðv1v2 � d2Þ
0 < ðv1v2 � d2Þ
d2 < v1v2

d <
ffiffiffiffiffiffiffiffiv1v2

p
:
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As long as d < ffiffiffiffiffiffiffiffiv1v2

p
, it follows that τ1 is an increasing function on u making σ the product

of two increasing functions and thus, σ is increasing on u.

Theorem 2 Suppose n = 2. If Q01 > 1/2 and Q10 > 1/2, then H is increasing as a function of
v1 and v2.

Proof: If Q01 > 1/2 and Q10 > 1/2, it follows that
v1

d þ v1

>
1

2
and

v2

dþ v2

>
1

2
:

Then,

v1 >
1

2
ðd þ v1Þ and v2 >

1

2
ðd þ v2Þ

2v1 > d þ v1 and 2v2 > d þ v2

v1 > d and v2 > d:

Thus, d2 < v1 v2 and so d < ffiffiffiffiffiffiffiffiv1v2

p
. Thus, by Proposition (4), H is increasing as a function

of v1 and v2.

The point where d ¼ ffiffiffiffiffiffiffiffiv1v2

p
(the dotted line in Fig 4c) corresponds to the case where the

conformational free energy contribution contributed by the singly modified forms is equal to

exactly half of that contributed by the doubly modified forms. It can be shown that this situa-

tion (which we shall call the ‘linear regime’) results in a dose response curve with a Hill num-

ber of 1. If v1 and/or v2 are then increased so that
ffiffiffiffiffiffiffiffiv1v2

p
(the region to the right of the dotted

line in Fig 4c) becomes greater than d, the singly modified forms now have more than half the

conformational free energy contribution of the doubly modified forms, and the Hill number

increases. The Hill number will continue to increase until the two singly modified forms, col-

lectively, contribute exactly the same conformational free energy contribution as the doubly

modified form. At this point, the system is in the ‘+ regime’, where modification of one, the

other, or both sites lead to the same level of activation.

On the other hand, if d > ffiffiffiffiffiffiffiffiv1v2

p
, then the system is closer to the ‘both or none regime’,

where efficient activation only occurs when both sites are modified. Here, increasing v1 or v2

reduces the Hill number by pushing the system away from ‘both or none’ and closer to ‘linear’.

Discussion

In a protein with multiple ligand binding sites, the individual sites can differ from each other

in two ways: in their microscopic ligand binding affinity, and in the energetic contribution

they make, once bound or modified, to functional outcomes such as a ligand-induced confor-

mational change in the bound protein. Likewise, for a protein that is post-translationally modi-

fied on multiple sites, the individual sites may have different modification efficiencies, and

may also, independently, make differential contributions to downstream functional conse-

quences once modified. For example, in the case of phosphorylation, the amino acid sequence

around the target phosphoacceptor residue can substantially influence the efficiency of phos-

phorylation by the relevant kinase, as well as the efficiency of dephosphorylation by cellular

phosphatases [34]. Such tuning of the steady-state level of site modification is biochemically

distinct and clearly separable from the effects that the phosphorylation of that site will have on

the conformation of the target molecule, its ability to bind other macromolecules, etc. [35–37].

Previously, Enciso and Ryerson [8] asked the question “how can the microscopic ligand

binding affinities (a.k.a. modification efficiencies) be tuned if the goal is to maximize ultrasen-

sitivity?” Interestingly, they found that ultrasensitivity was maximal when the microscopic

affinities were balanced. For instance, for a protein with 4 ligand binding sites, ultrasensitivity

was maximized when all 4 sites had exactly the same ligand binding affinity. For a protein with

PLOS COMPUTATIONAL BIOLOGY Effect of magnitude and variability of energy of activation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007966 August 6, 2020 20 / 26

https://doi.org/10.1371/journal.pcbi.1007966


4 phosphorylation sites, ultrasensitivity was maximized when all 4 sites had the same phos-

phorylation/dephosphorylation efficiency.

Here we examined how differential energetic contributions of the sites might affect the per-

formance objective of ultrasensitivity. We considered a simple model in which binding/modi-

fication promotes a conformational change that flips the modified molecule from an inactive

to an active state; this example is readily extended to other known consequences of ligand

binding or post-translational modification. We generalized the classic allosteric MWC model

to allow for differences in the energetic contributions for any number of distinct sites. We also

considered an independent modification model that does not assume allostery or cooperativity

among sites. For the generalized MWC system, we found that ultrasensitivity generally

increased when the energetic contribution (i.e., the conformational free energy contribution)

of one or more of the sites was strengthened. Here, ‘strengthened’ means that the conforma-

tional free energy contribution became more negative; this results in the corresponding activa-

tion parameter c becoming smaller. Furthermore, we found that there was no benefit derived

from balancing the conformational free energies, nor any penalty for unbalancing them. Our

results have implications for understanding the potential trajectories that can be pursued by a

protein under selective pressure to increase the ultrasensitivity of its response to modification.

Regarding our finding that decreasing the activation parameter ci of individual sites has a

strong tendency to increase the Hill coefficient, this result is analogous to work by Rubin and

Changeux [38]. In Fig 2 of that work the authors illustrate computationally that for fixed

parameter values of the MWC model, decreasing c leads to an increase in a different version of

the Hill coefficient. In our paper we are able to consider individual sites, rather than all sites

together, so our result is in a sense a generalization of that shown in [38].

Despite the fact that there is no penalty associated with the conformational free energies

being unbalanced, our model nevertheless suggests a factor that may tend to lead to roughly

balanced conformational free energies: diminishing returns. Successive, equal-valued

improvements of conformational free energy contribution are diminishing with respect to

their effect on ultrasensitivity. That is, changes that are of equal magnitude to previous changes

increase ultrasensitivity by a smaller amount than the previous changes did. Furthermore,

changes to weaker sites increase ultrasensitivity more dramatically than equivalent changes to

stronger sites. Eventually, the marginal increase in ultrasensitivity caused by additional

improvements to conformational free energy contribution becomes negligible. At this point it

can be argued that a zone of effective neutrality has been reached, where the probability of fixa-

tion of a new mutation that incrementally improves ultrasensitivity will be essentially indistin-

guishable from the probability of fixation of a neutral mutation [39]. At this point, substantial

improvement to ultrasensitivity can only arise if the molecule evolves an additional site.

There is an additional factor that may further promote the balancing of conformational free

energies. Using both computational and mathematical analysis, we showed that when the sites

are at least moderately active, the ultrasensitivity is mostly dependent on the mean of the acti-

vation parameters and is largely independent from their variance (Fig 3a). Since increasing the

variance of the activation parameters tends to be associated with weaker (less negative) total

conformational free energy contribution, a prediction is that the sites tend to have roughly

equal activation parameters. This can be implemented e.g. by bulk electrostatic mechanisms,

which are commonly found experimentally [23, 24, 40].

These considerations lead to a prediction that conformational free energies will be roughly

balanced, with a kcal/mol value roughly equal to the point where ultrasensitivity starts to level

out substantially. As shown in Fig 3b and 3c and Table 1 and S1 Table, this “leveling out point”

is roughly between -2 to -4 kcal/mol per site, depending on the number of sites n and the level

of basal activation (which is determined by the parameter L). This range of -2 to -4 kcal/mol
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does assume that the efficiency of modification is roughly constant across all sites, but is other-

wise surprisingly independent of other parameters. For example, the range found changed

very little upon variation of the value of L from 30 to 10,000, therefore covering most biochem-

ically realistic values for this constant. The range of approximately -2 to -4 kcal/mol corre-

sponds to activation coefficient (c) values between approximately 0.05 and 0.001. Such c values

are all within the range reported for classic “MWC enzymes” such as threonine deaminise, glu-

cose-6-phosphate deaminase, aspartate transcarbamoylase and glyceraldehyde-3-phosphate

dehydrogenase [41–44]. Moreover, with regard to phosphorylation, the effect of a single phos-

phate on conformation [25], protein-protein binding [26] or protein-membrane binding [23,

24] has been estimated to be about 2 kcal/mol.

We also showed (Fig 3d) that when the number of sites is large, and a hypothetical mainte-

nance cost per site is included (such as might arise from rapid phosphorylation-dephosphory-

lation cycles [31, 32]), an optimal strategy to maximize ultrasensitivity can be to focus on a

subset of the sites, and essentially keep the other sites silent. In such cases, evolving another

site is not a viable strategy to increase ultrasensitivity, and it can be argued that there is an opti-

mal number of functional sites that will maximize benefit (ultrasensitivity) while containing

cost.

This analysis applies for other forms of multisite modification other than phosphorylation

such as ligand binding, methylation, acetylation, etc. When the multisite target molecule has a

symmetric structure (such as hemoglobin which is a tetramer), one can assume that the con-

formational free energy contribution is similar across all sites. In this sense the current study is

most relevant when the target structure is more heterogeneous, such as in the case of phos-

phorylation. Although phosphorylation consumes energy and is not thermodynamically

closed, the MWC model is still a popular model to describe it [8, 45, 46]. It is also mathemati-

cally more amenable than the non-allosteric, independent model that we also included for

completeness.

Work by Kafri et al [19] has previously studied a mathematical model of chaperon-contain-

ing TCP-1 protein that has several sites with different ATP binding affinities. This system can

provide very interesting parallels with our framework. Their mathematical model shows that

when a protein has multiple sites with different ligand affinities, the Hill coefficient can be

reduced leading to apparent negative cooperativity. We do observe a similar effect (see eg

Fig 3), although that model has important differences such as variability in modification affin-

ity rather than conformational free energy contribution.

The analysis in this manuscript is limited to systems in equilibrium, i.e. the long term

response to a constant input. For non-equilibrium systems, and in situations where energy is

used, recent work by Estrada et al. [47] shows that one can obtain a larger Hill coefficient. The

authors use techniques similar to kinetic proofreading, which can give rise to large response

differences given small differences in ligand affinity. A full discussion of non-equilibrium

dynamics is however outside of the scope of our work.

Many dose response curves for allosterically-regulated proteins can be well-modeled by the

standard MWC model. Our goal in generalizing the MWC model was to explore the qualita-

tive theoretical consequences of allowing the conformational free energies of different sites to

vary, and not to make a tool for empirical fitting to data. On this point, however, it should be

noted that Stefan et al. [48] have shown how an extended MWC model such as the one devel-

oped here can be used in parameter estimation, and experimental methods to measure MWC

parameters are constantly improving [49–51]. Another useful recent tool is a method devel-

oped by Gruber et al. [52] which facilitates the determination of parameters in the MWC

model, by finding a theoretical relationship between the Hill coefficient and model

parameters.
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Supporting information

S1 Fig. Statistical weights of MWC modification states for n = 3. Table of each possible

modification state in the generalized MWC system above when n = 3 and the corresponding

statistical weight of that state. When n = 3, the associated partition function Z = 1 + α1 + α2 +

α3 + α1α2 + α1α3 + α3α3 + α1α2α3 + L + α1c1L + α2c2L + α3c3L + α1α2c1c2L + α1α3c1c3L +

α2α3c2c3L + α1α2α3c1c2c3L.

(TIF)

S2 Fig. Ultrasensitivity of MWC system. Heat maps for H when c1, c2 2 [10−4, 0.9] with

L = 1000 and ai ¼ �a ¼ 1 and (a) n = 2, (b) n = 4, ci = 0.01 for i� 3, similarly with (c) n = 8.

These figures are the same data points from Fig 2 in a linear scale.

(TIF)

S3 Fig. Parameters and H in MWC. (a) Scatter plot for H and the arithmetic mean of c where

ci are independently and logarithmically chosen from [10−4, 0.9], L = 1000, and αi are indepen-

dently and logarithmically chosen from [0.1, 10] for n = 2, 3, 4, 8. (b) H from (a) with the

coefficient of variation (CV) along the x-axis. (c) Scatter plot for H when increasing total con-

formational free energy with ci 2 [10−4, 0.9], L = 30 and ai ¼ �a for n = 2, 3, 4, 8. (d) Scatter plot

for H for when L = 10, 000. (e) Proportion of 10000 parameter sets in which H decreased when

a ci is marginally increased for different values L and n. (f) H values for key scenarios. When a

target molecule has 3 sites, H = 2.40 when ai ¼ �a ¼ 1, L = 1000, and ci = 0.01. Adding a site

with c4 = 1 will yield the same H. However, if c4 = 0.01, H = 3.08.

(TIF)

S4 Fig. Ultrasensitivity and total conformational free energy in MWC. Scatter plots for ultra-

sensitivity when increasing total conformational free energy with ci 2 [10−4, 0.9], L = 1000 and

ai ¼ �a ¼ 1 for n = 2, 3, 4, 8 and 10000 points. Ultrasensitivity is measured with (a) a non-linear

regression fit to the Hill function f ¼
xH

kH þ xH
, where H is the Hill number labeled HFit and (b)

a generalized Levitzki derivation for ultrasensitivity [30] as HLev = 4 � EC50 � f 0(EC50, α, c)
where f0(EC50, c, α) is the derivative of the dose response function evaluated at the EC50, the

effective enzyme/ligand concentration at which there is a 50% maximal protein response, labeld

HLev. We can consider HLev as the sensitivity at 50% maximal response. EC50 was found with

the standard MatLab fzero solver and the derivative with diff after normalizing to the f1(c).
(TIF)

S5 Fig. Ultrasensitivity and total conformational free energy in MWC with Maintenance

costs. Scatter plots for ultrasensitivity when increasing total conformational free energy with ci
2 [10−4, 0.9], L = 1000 and ai ¼ �a ¼ 1 for n = 2, 3, 4, 8 and a maintenance cost of (a) Mc = 2,

(b) Mc = 4 (from Fig 3) and (c) Mc = 8. The Ste5 data point is added for illustration purposes

with the same maintenance cost for each of the 8 phosphorylation sites.

(TIF)

S1 Table. Ultrasensitivity at knee. Ultrasensitivity as measured by the Goldbeter-Koshland

formula described in Eq (2) along with the approximated knee of curves similar to those in Fig

3c for fixed values of L and n. Parameters ai ¼ �a ¼ 1.

(TIF)
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