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Improved accuracy assessment for 3D
genome reconstructions
Mark R. Segal* and Henrik L. Bengtsson

Abstract

Background: Three dimensional (3D) genome spatial organization is critical for numerous cellular functions,
including transcription, while certain conformation-driven structural alterations are frequently oncogenic. Genome
conformation had been difficult to elucidate but the advent chromatin conformation capture assays, notably Hi-C, has
transformed understanding of chromatin architecture and yielded numerous biological insights. Although most of
these findings have flowed from analysis of proximity data produced by these assays, added value in generating 3D
reconstructions has been demonstrated, deriving, in part, from superposing genomic features on the reconstruction.
However, advantages of 3D structure-based analyses are clearly conditional on the accuracy of the attendant
reconstructions, which is difficult to assess. Proponents of competing reconstruction algorithms have evaluated their
accuracy by recourse to simulation of toy structures and/or limited fluorescence in situ hybridization (FISH) imaging
that features a handful of low resolution probes. Accordingly, new methods of reconstruction accuracy assessment
are needed.
Results: Here we utilize two recently devised assays to develop methodology for assessing 3D reconstruction
accuracy. Multiplex FISH increases the number of probes by an order of magnitude and hence the number of
inter-probe distances by two orders, providing sufficient information for structure-level evaluation via mean-squared
deviations (MSD). Crucially, underscoring multiplex FISH applications are large numbers of coordinate-system aligned
replicates that provide the basis for a referent distribution for MSD statistics. Using this system we show that
reconstructions based on Hi-C data for IMR90 cells are accurate for some chromosomes but not others. The second
new assay, genome architecture mapping, utilizes large numbers of thin cryosections to obtain a measure of
proximity. We exploit the planarity of the cryosections – not used in inferring proximity – to obtain measures of
reconstruction accuracy, with referents provided via resampling. Application to mouse embryonic stem cells shows
reconstruction accuracies that vary by chromosome.
Conclusions: We have developed methods for assessing the accuracy of 3D genome reconstructions that exploit
features of recently advanced multiplex FISH and genome architecture mapping assays. These approaches can help
overcome the absence of gold standards for making such assessments which are important in view of the
considerable uncertainties surrounding 3D genome reconstruction.
Keywords: Chromatin conformation capture, Multiplex FISH, Genome architecture mapping, Procrustes alignment,
Principal components analysis

Background
Genome conformation is critical for numerous cellu-
lar processes, including gene regulation, while certain
conformation-driven structural alterations (e.g. transloca-
tions, fusions) are frequently oncogenic. Until recently,
genome conformation had been notoriously difficult to
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interrogate. However, the emergence of the suite of chro-
matin conformation capture assays, notably Hi-C, has
transformed understanding of chromatin architecture
and yielded numerous downstream biological insights
[2, 8, 9, 17, 24]. The data resulting from these assays,
typically performed on large cell populations, are gener-
ally depicted as contact or interaction (heat)maps, which
record the frequency with which pairs of genomic loci are
cross-linked, reflecting spatial proximity of the respective
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loci within the nucleus. Many novel conformational-
related findings have flowed from direct analysis of such
contact level data. But, by converting contact frequencies
into distances (typically assuming inverse power-law rela-
tionships [2, 13, 27, 29]), it is possible to generate a three
dimensional (3D) reconstruction of the associated chro-
matin architecture via versions of the multi-dimensional
scaling (MDS) paradigm. There have been several demon-
strations of the added value of performing downstream
analysis based on a 3D representation rather than the
attendant contact map, these benefits deriving from the
ability to superpose genomic features on the reconstruc-
tion. Examples include co-localization of genomic land-
marks such as early replication origins in yeast [4, 32],
gene expression gradients in relation to telomeric distance
and co-localization of virulence genes in the malaria par-
asite Plasmodium falciparum [2], the impact of spatial
organization on double strand break repair [15], and elu-
cidation of ‘3D hotspots’ corresponding to (say) overlaid
ChIP-Seq transcription factor extremes which can reveal
novel regulatory interactions [5].
Yet, such putative advantages of 3D structure-based

analyses are clearly conditional on the accuracy of the cor-
responding reconstruction and there are many reasons
why such accuracy can and has been questioned. First, the
very notion of a single genome architecture being repre-
sentative of the large (∼ 106) cell populations on which
Hi-C assays are performed is highly simplified [20]. This
concern has spawned several reconstruction approaches
[13, 28] wherein an ensemble of solutions is generated,
intended to reflect inter-cell variation. However, as has
been noted [26, 29], whether these collections capture bio-
logic variation is unclear, since reconstruction differences
could equally be algorithmic. The recent development
of high-throughput single-cell Hi-C assays [23], utiliz-
ing multiplexing via combinatorial cellular indexing [6],
affords the possibility of systematically studying this issue.
Here, we will assume that a consensus reconstruction
provides a meaningful summary, but address associated
reproducibility across replicate data series. Second, there
are a multitude of competing reconstruction algorithms,
each with a number of tuning parameters and little the-
oretic basis for arbitrating between them. The absence
of gold standards makes empiric comparisons problem-
atic: while some authors have appealed to simulation
[16, 22, 29, 33, 34], real data referents remain desir-
able. To that end, many of the same reconstruction algo-
rithm developers have made recourse to fluorescence
in situ hybridization (FISH) imaging as a means for
gauging the accuracy of competing algorithms and/or
tuning parameter settings. This proceeds by compar-
ing distances between imaged probes with corresponding
reconstruction-based distances. However, such methods
are tenuous at best due to the limited number of probes

(∼ 2 − 6, [17, 22, 27]) and the modest resolution thereof,
many straddling over 1 megabase (Mb).
Here we show how newly devised biotechnologies can

dramatically improve 3D genome reconstruction accuracy
assessment and demonstrate computational and statis-
tical techniques for realizing this promise. The advent
of multiplex FISH [30] has the potential to advance 3D
genome reconstruction accuracy evaluation by furnish-
ing detailed gold standards. This derives from multiplex
FISH providing an order of magnitude more probes, each
at higher resolution, and hence two orders of magni-
tude more distances than conventional FISH. All Hi-
C related techniques rely on proximity-based ligation
whereas ligation-free methods, notably genome archi-
tecture mapping (GAM), confer several advantages [3].
GAM is predicated on sequencing DNA from a large
collection of randomly-oriented, thin nuclear cryosec-
tions then determining co-segregation which, in turn,
yields a contact matrix analog. By using such matri-
ces to generate a 3D genome reconstruction we can
obtain an internal measure of accuracy by assessing
how well the reconstruction conforms to the underly-
ing collection of planar nuclear cryosections as described
in Methods.

Methods
Data Acquisition and Pre-processing
We obtained multiplex FISH probe coordinates for chro-
mosomes 20, 21, and 22 for IMR90 cells from Figures
& Data at https://doi.org/10.1126/science.aaf8084. The
numbers of probes, centered at previously defined topo-
logically associated domains (TADs, [8]) was respectively
30, 34, and 27. Importantly, as we will subsequently
exploit, numerous multiplex FISH replicates for each
chromosome were available, respectively 111, 120, and
151. However, variable patterns of low-level (< 5%) probe
missingness pertained over the replicates. We handled
this via imputation – simply averaging over non-missing
(aligned) coordinates of the corresponding probes across
replicate chromosomes – and discuss implications of this
approach under Accuracy Assessment below. Crucial to
this imputation approach was the fact that the chromo-
some replicates were imaged using a common coordinate
system [30].
While multiplex FISH probe coordinates are also

available for active and inactive X chromosomes we
are not positioned to evaluate corresponding 3D
reconstruction accuracy since the associated Hi-C
data does not differentiate between active and inac-
tive X. Given the multiplex FISH data, deconvolving
the Hi-C X chromosome data into active and inac-
tive counts would be possible, but then we couldn’t
deploy the same multiplex FISH data for accuracy
assessment.

https://doi.org/10.1126/science.aaf8084
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Hi-C data [8] for IMR90 cells was obtained from
the Gene Expression Omnibus (GEO) with accession
GSE35156. Contact matrices deriving from several series
of experiments were grouped (by the original authors) into
‘primary’ and ‘replicate’ datasets and we utilize these both
separately and together as described below in Obtaining
3D Genome Reconstructions. Based on data at 5 kilobase
(kb) resolution we coarsened, via binning, to obtain data
at 25kb, 50kb and 100kb resolution, finer resolutions not
being purposeful in view of the referent multiplex FISH
resolution.
GAM data for mouse embryonic stem cells (mESC)

was obtained from GEO with accession GSE64881. Avail-
able data include measures of proximity (‘normalized
linkage disequilibrium’ scores) which, as demonstrated
[3], are highly correlated with Hi-C contacts, despite
the former being obtained using ligation-free methods.
Accordingly, we treat these scores analogously to con-
tact matrices and use them as inputs to a 3D genome
reconstruction algorithm. However, the particular algo-
rithm we focus on, HSA (see next), requires that input
scores be non-negative, which we achieve here by simple
translation such that the resultant minimum score is zero.
Also available, and crucial for our approach to accuracy
assessment, is the binary segmentation matrix identifying
which genomic region (locus; row) was observed in which
nuclear profile (cryosection; column). Both the proxim-
ity and membership data are provided at 1Mb and 30kb
resolutions.

Obtaining 3D Genome Reconstructions
The focus of the present work is advancing methods for
evaluating the accuracy of 3D genome reconstructions by
taking advantage of newly devised assays: multiplex FISH
and GAM. While the proposed methods are agnostic
with respect to the technique used to effect the recon-
struction, we illustrate ideas using the hybrid simulated
annealing (HSA, [34]) algorithm. Beyond excellent per-
formance in benchmarking studies, HSA has a number
of compelling features. First, HSA is the only 3D genome
reconstruction algorithm that can simultaneously inte-
grate multiple data tracks. This capacity was developed
in order to utilize the parallel contact matrices that are
typically generated by Hi-C protocols corresponding to
use of differing restriction enzyme digests. Here, however,
we harness this facility by treating the abovementioned
primary and replicate contact maps as tracks. Second,
HSA adaptively estimates the power-law index whereby
contacts are converted to distances, the importance of
such adaptation having been previously emphasized [33].
Third, simulated annealing combined with Hamiltonian
dynamics provides an effective optimization approach for
exploring the high dimensional space representing the
genomic loci’s 3D coordinates.

Like other 3D reconstruction algorithms [22, 29],
HSA models (normalized) contact counts, n, via Poisson
regression:

nikjk ∼ Poi
(
μik jk

)
, k = 1, . . . ,K (1)

ln
(
μik jk

) = βk0 + βk1 ln
(
dikjk

)
(2)

dikjk = ||Xik − Xjk ||2 (3)

where in (1) k indexes track, so that in some of our appli-
cations K = 2 corresponding to primary and replicate
data, and nikjk is the count for genomic loci ik , jk . For nota-
tional simplicity we will impose that there are n common
loci across tracks: ik = 1, . . . , n; jk = 1, . . . n;∀k although
the HSA algorithm does not require this. The parameters
βk1 correspond to (per-track) power-law indices relating
expected counts (μ) to Euclidean distances (d). Provi-
sion exists for additional covariate terms (e.g. GC content,
fragment length) to be included in (2) so as to accom-
plish in-line normalization. The Xik = (

xik , yik , zik
)
and

Xjk = (
xjk , yjk , zjk

)
in (1) are the 3D coordinates for loci

ik , jk and are the (unknown) parameters constituting the
reconstruction. These are subject to constraints owing to
the local contiguity of chromatin. Zou et al. [34] cap-
ture these induced dependencies via a hidden Gaussian
Markov chain. The full log-likelihood for β ,X is then

ln(L
(
β ,X|μ, ik , jk

) ∝
∑

k

∑

ik ,jk

[− exp
(
ln

(
μik jk

)

+nikjk
(
ln

(
μik jk

)))]
(4)

to which a penalty term controlling local smoothness is
added. Note that (constrained) X enters (4) through μ

and d from (2) and (1) respectively. The resulting penal-
ized likelihood is optimized by iterating between gener-
alized linear model (GLM, cf Poisson regression) fitting
to obtain estimates β̂ and simulated annealing to obtain
estimates of the 3D coordinates X̂ = (

x̂, ŷ, ẑ
)
.

We note that the the GLM routine used (R function
glm) does not require integral (count) data and so can
accommodate normalized counts and GAM linkage dise-
quilibrium scores. HSA subsumes several tuning parame-
ters governing simulated annealing search. We have used
default values throughout; however, the ability to com-
pare accuracy of competing solutions as developed next
provides a means for exploring differing tuning parameter
settings.

Accuracy Assessment
The two recent assays under consideration, multiplex
FISH and GAM, provide distinct approaches to evaluat-
ing the accuracy of 3D genome reconstructions. Multiplex
FISH imaging provides a gold standard from which the
closeness of a 3D reconstruction can be measured, with
inference making recourse to replicates. By deploying
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large numbers of thin nuclear cryosections reconstruc-
tions based on GAM assays admit accuracy assessment
even in the absence of external gold standards. This results
from the fact that the sectioning itself provides geometric
information independent of derived distances and atten-
dant reconstructions, as we detail below.

Multiplex FISH
We take the image-based 3D genomic coordinates fur-
nished from multiplex FISH X̃ = (

x̃, ỹ, z̃
)
as the gold

standard by which we evaluate our reconstruction solu-
tion X̂ = (

x̂, ŷ, ẑ
)
. In our approach three steps are

necessary to effect such evaluation. First, we need to
align (register) the reconstruction with the gold standard.
This may involve preliminary coarsening of one or other
coordinate set to yield comparable resolution. While sub-
sequent Procrustes alignment (translation, rigid rotation
and scaling [11]) is straightforward, issues surrounding
loss (stress) symmetry are more involved and deferred
to the Discussion. Second, we need a measure of agree-
ment that quantifies how close the aligned reconstruction
is to the gold standard, with (root) mean square devia-
tion ((R)MSD), as deployed here, being the most widely
used. Alternatives that operate on the underlying dis-
tance matrices [26], and so avoid alignment, are also
addressed in the Discussion. Third, we need a scheme
for arbitrating the adequacy of the measured agreement
– it is for this typically challenging component that we
provide methods customized to the multiplex FISH and
GAM assays.
To simplify notation we let X̂i = (

x̂i, ŷi, ẑi
)
represent the

scaled, aligned 3D genome reconstruction that we wish
to compare with the gold standard X̃i = (

x̃i, ỹi, z̃i
)
at the

set of n common genomic loci. Then the mean square
deviation is given by

MSD(X̃, X̂) = 1
n

n∑

i=1
||X̃i − X̂i||2 = 1

n

n∑

i=1

[
(x̃i − x̂i)2

+(ỹi − ŷi)2 + (
z̃i − ẑi

)2]

(5)

We obtain MSD values using the R package vegan
[21] which also performs the preliminary Procrustes
alignment of X̂ to X̃. While extensive applications of
(R)MSD in the world of 3D protein structure compari-
son have revealed concerns surrounding domination by
largest deviations [14], our concern here is not with
refinements to or selection of a particular agreement
measure. Accordingly, the inferential scheme developed
next can be applied with any measure substituted for the
(R)MSD in (5).

3D protein structure comparisons have promulgated
various prescriptions for evaluating agreement ade-
quacy in terms of RMSD Ångström thresholds, although
these have been called into question [18]. However,
there is no basis for analogous thresholding of RMSD
values in the unchartered context of 3D genome recon-
struction comparisons, most of which do not pro-
vide configurations with an underlying physical distance.
Instead, we seek appropriate (R)MSD referent distri-
butions, developing differing approaches for multiplex
FISH and GAM in accordance with data structure and
availability.
For each chromosome we treat 3D coordinates pro-

vided by multiplex FISH as our gold standard X̃ and
measure the MSD to our reconstruction X̂ using (5).
But, as noted, there are numerous multiplex FISH repli-
cates for each chromosome, designated X̃l; l = 1, . . . , Lu,
there being Lu replicates for chromosome u = 1, . . . ,U .
Indeed, X̃ was obtained by locus-wise averaging over
these replicates. To obtain a referent distribution for
appraising MSD(X̃, X̂) we take advantage of these repli-
cates and simply compute MSDl = MSD

(
X̃, X̃l

)
; l =

1, . . . , Lu. The resulting empirical distribution of MSDl
values captures experimental variation around the multi-
plex FISH gold standard. Interpretation of MSD

(
X̃, X̂

)
in

the context of the MSDl distribution is demonstrated in
the Results.
A fine point is that, by construction, this distribution

will exhibit reduced dispersion than its targeted popula-
tion quantity (based on independently obtained

(
X̃, X̃l

)
)

owing to data re-use since X̃l contributes to X̃. While
this concern could potentially be mitigated by employing
a leave-one-out technique and utilizing a series of gold
standards X̃(l) obtained by averaging over all replicates
excluding X̃l, the following considerations indicate this
approach to be unnecessary: (i) the numbers of replicates
involved is large (Lu > 110 ∀u) so that the contribu-
tion of individual chromosome replicates is modest; (ii)
the imputation scheme used to handle missing coordi-
nate data necessarily borrows strength across replicates,
so even the leave-one-out scheme would not eliminate
(complex but slight) dependencies of X̃(l) on X̃l; (iii) the
3D reconstruction X̂ is compared to X̃ so consistency
requires comparing X̃l to X̃ and (iv) the impact of the
reduced dispersion will be to make for more conservative
inference.
We note that this approach to accuracy assessment

relies on the availability of suitably large numbers of
multiplex FISH image replicates. Absent such replica-
tion assessment of MSD(X̃, X̂) would require simula-
tion, the inputs to which seem highly uncertain. Further,
unlike the situation with GAM described next, the com-
plex conformational dependencies present in 3D genome
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structures, preclude permutation or bootstrap resampling
approaches.

GAM
We obtained 3D genome reconstructions for mESC chro-
mosomes based on applying HSA to GAM linkage dise-
quilibrium scores (at 1Mb resolution) as described above.
As there are currently no public multiplex FISH imaging
studies for mESCs, reconstruction accuracy assessment
based on RMSD is precluded. However, information con-
tained in locus membership in the collection of planar
nuclear profiles (cryosections) can be used as follows.
The number of available nuclear profiles is 408, this

number being sufficient to study chromatin architecture
at 30kb at the sequencing depths deployed, as formally
determined by power analysis [3]. The distribution of
numbers of loci detected per chromosome per profile is
clearly dependent on chromosome extent and position-
ing as we showcase in the Results. That the profiles are
planar cross-sections is neither used in the determination
of the normalized linkage disequilibrium score nor in the
subsequent model [3] used to identify non-random loci
interactions. However, it is central to our assessment of
3D reconstruction accuracy: by interrogating whether loci
found in the same nuclear profile have coordinates that lie
in a plane in the reconstruction we can gauge the extent to
which the reconstruction preserves this physical property
of the sectioning.
We make this proposal concrete by first using a mea-

sure of the degree to which a set of 3D points are pla-
nar, namely the proportion of variance explained by the
sum of the first two principal components (correspond-
ing to a planar projection), hereafter termed PC1 + PC2
as given by the associated eigenvalues. We also consider
the second principal component alone (termed PC2) in
order to distinguish scenarios where the sum is domi-
nated by the first principal component. Note that these
measures are coordinate system-free, essential in view
of the nature of 3D reconstruction solutions. Further,
as some nuclear profiles may capture few or even zero
loci, we restrict determination of PC1 + PC2 and PC2
to those profiles with sufficient numbers of loci. By tak-
ing this to be approximately the upper quartile of the
per chromosome per profile locus count we obtain 100
values of PC1 + PC2 and PC2 for each reconstructed
chromosome.
As was the case with multiplex FISH accuracy assess-

ment we need a reference system for evaluating our PC
scores. While there is an extensive body of work on ran-
dommatrix theory (e.g. [1]) and attendant first eigenvalue
distributions, the formulations thereof are inapplicable
and results for second eigenvalues are lacking. To evalu-
ate whether the PC scores measuring our 3D GAM-based
reconstructions conform to planes corresponding to the

nuclear profiles, we make recourse to permutation / sam-
pling. Specifically, independently for each nuclear profile
j (included in the top 100 locus counts) that contains
say nj loci, we sample nj chromosomal loci, equivalent
to permuting the loci indicator column vector of the
segmentation matrix. We then obtain the 3D coordinates
in the GAM-based reconstruction corresponding to these
sampled loci and compute the PC scores for these. This
amounts to assessing the planarity of nj points in 3D that
are randomly sampled from the reconstruction, with a
view to contrasting such planarity summaries with corre-
sponding summaries from the actual nuclear profiles. The
contrasting is effected by performing the re-sampling a
large number of times so as to provide a null distribution
for the summaries. To confer robustness, we use rank-
ing to summarize how the original PC scores compare to
this null distribution which corresponds to computing an
empiric p-value. A further level of summarization – over
the 100 profiles – is required and, for robustness, we use
the median.

Results
Multiplex FISH
In Figs. 1, 2 and 3 we present histograms depicting the
distribution of MSDl values obtained using the multiplex
FISH replicates as described above, for chromosomes 20,
21 and 22. Also shown are MSD values, derived using (5),

Fig. 1Multiplex FISH MSDs: Chromosome 20. The histogram (blue)
depicts MSDl values measuring agreement between multiplex FISH
replicates X̃l and the mean configuration X̃ . The respective vertical
lines show MSD values from HSA reconstructions X̂ : primary data
(red), replicate data (green), and combined data (black)
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Fig. 2Multiplex FISH MSDs: Chromosome 21. As for Fig. 1

from correspondingHSA 3D genome reconstructions.We
use the capacity of HSA to perform multi-track fitting
to obtain reconstructions for primary, replicate and com-
bined data series. The results shown represent reconstruc-
tions from Hi-C data binned at 50kb resolution. While
the multiplex FISH probe resolution of 100kb determines
the effective overall resolution, the need to bin (gener-
ally higher-resolution) Hi-C data and the impact this can
have on attendant reconstructions implies that accuracy
assessments can be sensitive to resolution. .

Fig. 3Multiplex FISH MSDs: Chromosome 22. As for Fig. 1

We first note that the three chromosomes studied differ
appreciably in the variation of multiplex FISH replicates
around their respective mean configurations, with chro-
mosome 21 being the most and chromosome 22 being
the least variable, as per the Procrustes MSD values. For
chromosome 20 (Fig. 1) the respective HSA reconstruc-
tions conform not just with the multiplex FISH replicates
but also with one another. For chromosome 21 (Fig. 2)
we observe disparate behaviour between the HSA recon-
structions, with that based on the replicate data series
(green) being extreme relative to the multiplex FISH repli-
cates, whereas the HSA reconstruction based on com-
bined primary and replicate data series (black) conforms
to the multiplex referent. For chromosome 22 (Fig. 3) we
see the converse (to chromosome 21) behaviour, with the
combined data being relatively extreme, while the primary
and replicate series are more concordant with the mul-
tiplex FISH replicates. However, as indicated, the extent
of variation for chromosome 22 is comparatively com-
pressed. It is notable that for all chromosomes and all data
series the HSA 3D reconstruction MSDs lie within the
extent of multiplex FISH MSDs, indicating reasonable-
ness of the 3D configurations derived from HSA. There
is no guarantee that this obtains and, indeed, at other

Table 1 Rank of median (over the top 100 nuclear profiles)
explained variances for PC1 + PC2 and PC2 of the GAM-based
HSA 3D reconstruction among an additional 1000 (within nuclear
profile) permutations of loci [1 is least, 1001 is most explained
variance]

PC1 + PC2 PC2

Chrom 1 1 1000

Chrom 2 1001 1

Chrom 3 823 1001

Chrom 4 95 424

Chrom 5 991 1001

Chrom 6 1001 99

Chrom 7 1 1001

Chrom 8 1001 787

Chrom 9 1 220

Chrom 10 1001 1

Chrom 11 1 1001

Chrom 12 35 1001

Chrom 13 919 1

Chrom 14 11 395

Chrom 15 832 977

Chrom 16 859 1

Chrom 17 1001 116

Chrom 18 388 1

Chrom 19 717 95
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Table 2 Median explained variance for first plus second principal
components and second principal components of GAM-based
HSA 3D reconstruction along with corresponding medians (and
associated median absolute deviation (MAD)) based on 1000
(within-profile) loci permutations

PC1 + PC2 PC2

Actual Permuted MAD Actual Permuted MAD

Chrom 1 96.80 96.97 0.03 12.83 12.34 0.15

Chrom 2 89.11 88.30 0.15 33.23 34.26 0.26

Chrom 3 95.39 95.29 0.10 22.50 20.61 0.16

Chrom 4 93.85 93.97 0.10 23.60 23.65 0.25

Chrom 5 95.06 94.90 0.07 17.84 17.20 0.16

Chrom 6 94.70 94.52 0.06 18.25 17.66 0.24

Chrom 7 98.47 98.58 0.03 10.19 8.99 0.15

Chrom 8 81.08 79.25 0.18 30.79 30.48 0.40

Chrom 9 97.74 98.10 0.04 26.22 26.42 0.24

Chrom 10 88.96 87.82 0.16 34.84 36.46 0.21

Chrom 11 98.51 98.69 0.01 4.79 4.41 0.08

Chrom 12 94.06 94.26 0.12 26.50 25.03 0.21

Chrom 13 96.15 96.06 0.06 15.44 15.99 0.19

Chrom 14 99.23 99.26 0.02 3.47 3.48 0.05

Chrom 15 92.37 92.24 0.13 19.12 18.71 0.19

Chrom 16 98.07 98.04 0.03 32.92 33.27 0.03

Chrom 17 79.53 77.84 0.39 31.64 31.91 0.24

Chrom 18 93.60 93.63 0.13 38.07 38.82 0.18

Chrom 19 96.29 96.25 0.07 24.78 24.35 0.25

reconstruction resolutions HSA MSDs values outside the
multuplex FISH range arise.

GAM
Tables 1 and 2 present results from applying the program
described above to all 19 mouse autosomes using GAM
proximity (normalized linkage disequilibrium) measures
at 1Mb and corresponding segmentation data that defines
locus detection in each of the 408 nuclear profiles. We
attempted to use the proximity matrices at 30kb reso-
lution, however, there were numerous HSA convergence
problems. Even at 1Mb resolution HSA reached the spec-
ified (default) maximal iteration count (100) for some of
the smaller chromosomes (15 through 19).
For each chromosome, and for each PC measure, the

Tables 1 and 2 entries represent summaries over those
100 nuclear profiles that contain the largest number of
genomic loci. These loci count upper quartiles range from
n1 = 75 (chromosome 1) down to n19 = 27 (chro-
mosome 19) and correlate (r = 0.97) with chromosome
length. These counts represent the minimum numbers of
loci per profile over the 100 nuclear profiles we utilize
– they range up to maxima of n1 = 169 to n19 = 56.

In Table 1, where we summarize via ranks, the ranking
system is such that a result of 1001 indicates that the
median (over the 100 selected nuclear profiles) eigenvalue
of the principal component(s) fitted to the actual nuclear
profiles exceeds all the corresponding median eigenval-
ues of the resampled profiles. Conversely, a result of 1
indicates that the actual nuclear profile median eigen-
value was smaller than the median for all of the resampled
profiles.
Analogously, in Table 2 we present summaries of per-

cent variance explained by the respective PCs. Thus,
for example, for chromosome 2 the median percent
variance – over the 100 selected nuclear profiles –
for our measure of planarity, PC1 + PC2, is 89.11%.
This can be referenced to the value obtained under
within-profile permutation of 88.30% with an associated
MAD – over the 1000 permutations – of 0.15%. Corre-
sponding values for PC2 alone are respectively 33.23%,
34.26% and 0.26. Values for PC1 can be obtained by
subtraction.
Results for the 19 chromosomes reveal some interest-

ing patterns and putative groupings. For several chromo-
somes (2, 5, 6, 8, 10, 17) attained PC1 + PC2 median
rankings are best – the reconstruction profiles have
most, or near most, explained variance compared with
resampling-based profiles – while some additional chro-
mosomes (3, 13, 15, 16) are in the top 20%. These
results all align with the percent variance explained
summaries provided in Table 2 wherein the actual per-
cent variance explained notably (as calibrated by the
MAD) exceeds that of the permuted value. The inter-
pretation of such a finding is that the chromosome’s
3D reconstruction is in excellent agreement with the
planarity represented by the (top 100) nuclear profiles.
What is striking, however, is the set of chromosomes for
which the planar explained variance is minimal (chro-
mosomes 1, 7, 9, 11) or near minimal (chromosomes
12, 14) – in most of these instances the second prin-
cipal component alone is dominant. Interpretation here
is uncertain, with the results potentially being driven by
the nature of the resampling scheme. In particular, in
view of local chromatin contiguity, it may be desirable to
constrain the within-profile loci considered and resam-
pled to those that are separate with respect to genomic
distance.

Discussion
In this paper we have exploited two recent biotechnolo-
gies, multiplex FISH with TAD-based probes and genome
architecture mapping, in order to assess the accuracy of
3D genome reconstructions. As indicated in the Introduc-
tion, such reconstructions can confer added value with
respect to downstream biological insight, but clearly any
putative insights are conditional on the quality of the
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reconstruction. Gauging quality has proven exceedingly
difficult accentuating the need for methods such as those
proposed here. Both these methods, and the new assays
themselves, can be refined and deployed in additional
ways.
As well as being used for accuracy assessment, mul-

tiplex FISH can also be used to improve the actual 3D
reconstructions via better calibration of the power-law
transfer function (e.g. [29]) for converting Hi-C contacts
to distances, which is a prelude to many 3D reconstruc-
tion approaches. This potential can be appreciated by
contrast with the only existing tool for performing cali-
bration, FisHiCal [27]. There, 4 FISH distances, from
probes straddling over 1Mb, were used to estimate 3
transfer function parameters, this being inherently unsta-
ble. As multiplex FISH uses ∼ 30 structurally relevant
probes targeting the centers of 100-kb TADs yielding a
far richer (∼ (30

2
) = 435) and higher resolution dis-

tance set, simply following the FisHiCal prescription
will yield substantial improvements in calibration accu-
racy. Beyond this, the extent of paired distance : contact
data will allow formulation of more sophisticated transfer
functions, enabling known power-law deficiencies [17, 19]
to be overcome. Additionally, the existence of observed
3D scaffolds [30] from the multiplex FISH probes may
better facilitate incorporation of constraints into the
constrained optimization approaches for obtaining 3D
reconstructions [2, 9].
Our use of multiplex FISH to gauge the accuracy of Hi-

C based 3D genome reconstructions is predicated on its
constituting a suitable gold standard. One limitation to
use of multiplex FISH is resolution disparity with Hi-C
data being available at much higher resolutions. Another
issue is that Hi-C counts can be driven by factors beyond
spatial proximity, such as access to the nuclear compart-
ment outside the chromosome territory core [31] as well
as the potential that Hi-C and FISH are accessing differ-
ing cell subsets [7] and may be differentially influenced
by loops [10, 12], complicates this perspective. However,
given that FISH and Hi-C proximities are largely con-
cordant, we believe that the use of multiplex FISH, with
the associated substantive increase in probe numbers and
resolution, mitigates these concerns. Moreover, we have
accommodated variation in multiplex FISH imaging in
adopting it as a referent. Additionally, we have relied
upon (R)MSD as a measure of configuration closeness.
Other metrics are available, with distanceError being fre-
quently used in the context of 3D genome reconstruction
[25, 26, 29] with related single distance [22] and cor-
relation [16, 33] measures also being deployed. These
approaches are putatively more robust to outliers than
(R)MSD, yet can require standarization to achieve scale
invariance. For (R)MSD scale difference are handled via
estimation of a corresponding (linear) scaling parameter

as part of Procrustes alignment. It should be noted that
by designating a gold standard (target) configuration this
scaling is asymmetric with respect to the multiplex FISH
and Hi-C reconstruction and forcing symmetry (equal
configuration dispersion) distorts the interpretation of the
(R)MSD statistic.
GAM ostensibly offers several advantages over Hi-C [3].

Whether these extend to 3D genome reconstruction accu-
racy awaits more extensive uptake since, at present and
like multiplex FISH, a primary limitation is the extent
of available data. The approaches to accuracy assess-
ment developed here, based on the planarity of numerous
cryosections for GAM and replicates for multiplex FISH,
will gain broader applicability as these novel assays are
used in additional settings.

Conclusion
We have developed methods for assessing the accu-
racy of 3D genome reconstructions that exploit fea-
tures of recently advanced multiplex FISH and genome
architecture mapping assays. These approaches can
help overcome the absence of gold standards for mak-
ing such assessments which are important in view of
the considerable uncertainties surrounding 3D genome
reconstruction. R code implementingmultiplex FISH- and
GAM-based accuracy assessment is available on github:
https://github.com/marksegal/reconstruct-accuracy.
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