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The Neutral Density Temporal Residual Mean Overturning Circulation

A. L. Stewarta, and A. F. Thompsonb

aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
bEnvironmental Science and Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA

Abstract

Diagnosis of the ocean’s overturning circulation is essential to closing global budgets of heat, salt and biogeochemical tracers.
This diagnosis is sensitive to the choice of density variable used to distinguish water masses and identify transformations between
them. The oceanographic community has adopted neutral density for this purpose because its isopycnal slopes are approximately
aligned with neutral slopes, along which ocean flows tend to be confined. At high latitudes there are often no tenable alternatives
because potential density varies non-monotonically with depth, regardless of the reference pressure. However, in many applications
the use of isoneutral fluxes is impractical due to the high computational cost of calculating neutral density. Consequently neutral
density-related diagnostics are typically not available as output from ocean models.

In this article the authors derive a modified Temporal Residual Mean (TRM) approximation to the isoneutral mass fluxes, referred
to as the Neutral Density Temporal Residual Mean (NDTRM). The NDTRM may be calculated using quantities that are routinely
offered as diagnostic output from ocean models, making it several orders of magnitude faster than explicitly computing isoneutral
mass fluxes. The NDTRM is assessed using a process model of the Antarctic continental shelf and slope. The onshore transport
of warm Circumpolar Deep Water in the model ocean interior approximately doubles when diagnosed using neutral density, rather
than potential density. The NDTRM closely approximates these explicitly-computed isoneutral mass fluxes. The NDTRM also
exhibits a much smaller error than the traditional TRM in regions of large isoneutral temperature and salinity gradients, where
nonlinearities in the equation of state diabatically modify the neutral density.
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1. Introduction

The meridional overturning circulation (MOC) describes the
advective transport of mass, heat, salt, and biogeochemical trac-
ers globally between the major ocean basins (Talley, 2013). The
importance of this circulation for climate and biogeochemical
cycles has motivated attempts to determine a global overturning
streamfunction (e.g. Lumpkin and Speer, 2007) and the con-
struction of an array of instruments to continuously monitor the
MOC in the North Atlantic (Johns et al., 2011). It is difficult
in general to characterize the mean paths of fluid parcels, or
“streamlines,” in a turbulent flow like the ocean or atmosphere,
so there is an ongoing effort to develop accurate methods for
estimating the MOC. For example Döös et al. (2012) and Zika
et al. (2012) have recently proposed a description of the global
MOC using a streamfunction with temperature and salinity as
coordinates, in which motion along streamlines correspond di-
rectly to water mass transformations.

One case in which it is possible to exactly characterize vol-
ume transports is when the fluid is constrained to flow within
a stack of non-intersecting material surfaces, a criterion that
is approximately satisfied by isopycnals in the ocean. It has
long been known that calculating the “Eulerian-mean” MOC,
i.e. using the time- and zonal-averaged velocity, yields mis-
leading results (Döös and Webb, 1994; Nurser and Lee, 2004a;
Hirst et al., 1996). Calculating volume fluxes within isopycnal

surfaces yields a much more accurate estimate of the transport,
accounting for the “eddy” component of the MOC (Marshall
and Radko, 2003; Zika et al., 2013). In principle it is possible
to compute the MOC from the isopycnal volume fluxes in any
predictive ocean model or reanalysis product. To avoid aliasing
this calculation requires output of the model velocities and state
variables with a time interval much shorter the typical turnover
time of mesoscale eddies (Ballarotta et al., 2013). However, the
frequency may be limited by digital storage constraints and the
burden of post-processing such a large volume of data. These
constraints may be circumvented, and the accuracy of the cal-
culation improved, by computing and averaging the isopycnal
fluxes during numerical integration of the model. These fluxes
are typically available as output in models that use an isopy-
cnal vertical coordinate (e.g. Hallberg and Rhines, 1996), and
are also available in some non-isopycnal models like the MIT
general circulation model (MITgcm, Marshall et al., 1997b,a).

When neither high-frequency model output nor isopycnal
fluxes are available, an alternative approach to computing the
MOC is to approximate the isopycnal fluxes using the Trans-
formed Eulerian Mean (TEM, Plumb and Ferrari, 2005; Nurser
and Lee, 2004b) or Temporal Residual Mean (TRM, Mc-
Dougall and McIntosh, 1996, 2001). At leading order in the
isopycnal fluctuations, the TEM/TRM streamfunctions may be
computed solely from the averages of the velocity, the density,
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and the product of the velocity and the density (Wolfe, 2014).
They therefore incur a much smaller computational cost than
directly calculating the fluxes between isopycnal surfaces.

The volume fluxes calculated between isopycnal surfaces
will depend upon the choice of density variable. Parcels of
ocean water are strongly constrained to follow so-called neutral
surfaces, as parcels moving along these surfaces feel no buoy-
ant restoring forces (McDougall, 1987). It is therefore desirable
that the isopycnal slopes of the chosen density variable should
coincide with neutral slopes (Eden and Willebrand, 1999; Mc-
Dougall and Jackett, 2005a). Mathematically, neutral surfaces
are locally perpendicular to the vector A, where

A = β∇S − α∇θ. (1)

Here S is the (practical) salinity, θ is the potential tempera-
ture, β is the saline contraction coefficient, and α is the ther-
mal expansion coefficient. Neutral surfaces are in fact only
well-defined if A has zero helicity, i.e. A · ∇ × A = 0 (Mc-
Dougall, 1987). The helicity of A is generally non-zero due to
the nonlinearity of the equation of state for seawater. However,
the helicity does tend to be small because the ocean spans a
relatively small volume in temperature/salinity/pressure space
(McDougall and Jackett, 2007), so for practical purposes an ap-
proximate set of neutral surfaces can be constructed.

There are several possible candidates for the density vari-
able that should be used to define isopycnal fluxes. Potential
density carries the benefit of being materially conserved away
from regions of direct heating or salt forcing, except due to
diffusion of temperature and salinity. However, the slopes of
potential density surfaces can differ substantially from neutral
slopes (McDougall, 1987). This is most pronounced at high
latitudes, where potential density may no longer vary mono-
tonically with depth; in such regions, using potential density
to compute isopycnal fluxes would result in a substantial loss
of information. de Szoeke et al. (2000) constructed an “ortho-
baric density”, by empirically removing the dependence of in
situ density. However, the corresponding isopycnal slopes still
differ substantially from neutral slopes, and orthobaric density
also varies non-monotonically with depth in some regions (Mc-
Dougall and Jackett, 2005a). Jackett and McDougall (1997)
proposed a “neutral density” variable γ that is constructed to be
constant along approximate neutral surfaces. This construction
should ensure monotonicity with depth, though neutral density
is only quasi-materially conserved; the nonlinearity of the equa-
tion of state precludes the existence of any density variable that
is both isoneutral and materially conserved (McDougall and
Jackett, 2005b).

Using neutral density to compute the MOC provides an ac-
curate representation of the overturning circulation at all ocean
depths, in contrast to potential density (Hirst et al., 1996). How-
ever this also magnifies the difficulties associated with calculat-
ing isopycnal fluxes, described above, due to the computational
expense incurred in calculating the neutral density at many time
intervals. Consequently there are currently no ocean models
that maintain neutral density as a state variable, offer neutral
density as an output product, nor compute mass/volume fluxes

between neutral density surfaces. Thus it is not even possible to
compute a TEM or TRM streamfunction based on neutral den-
sity, as this requires the average of the product of velocity and
density uγ. In principle the neutral density and isopycnal vol-
ume fluxes could be computed during model integration, or dur-
ing post-processing from high-frequency model output. How-
ever, we will show in §3–4 that the computational cost of cal-
culating neutral density makes such approaches inefficient, es-
pecially if applied to global models running at eddy-permitting
resolution or higher.

In this paper we propose an efficient method of approxi-
mating volume fluxes between neutral density surfaces using
a modified TRM that uses only quantities typically available as
output from z-coordinate and terrain-following ocean models
(e.g. Marshall et al., 1997b,a; Haidvogel et al., 2008). More
precisely, we assume that the time-mean salinity S , potential
temperature θ and pressure p are available, along with the time-
mean of the product of the velocity and state variables, e.g. uθ.
This approximate TRM streamfunction, which we refer to as
the Neutral Density Temporal Residual Mean (NDTRM) is de-
rived in §2. Then in §3 we test the accuracy of the NDTRM
using a process model of the Antarctic continental shelf and
slope. Finally, in §4 we discuss our findings and provide con-
cluding remarks.

2. Derivation of the Neutral Density Temporal Residual
Mean (NDTRM) streamfunction

2.1. Volume fluxes within neutral density layers

In the interest of a self-contained derivation, we begin with
a brief review of McIntosh and McDougall (1996) and Mc-
Dougall and McIntosh (2001), who derive expressions for the
TRM using neutral density as a state variable. We restrict our
attention to a Cartesian geometry to simplify our presentation,
defining the overbar • as a time average over many eddy rota-
tion timescales in a statistically steady state.

Consider a neutral surface γ = γ0 at a lateral position (x0, y0).
The depth of the neutral surface is z = z0(γ0, t). The overturning
streamfunction is defined as the lateral volume flux between
z = z0 and the ocean surface (e.g. Döös and Webb, 1994), which
for simplicity we regard as a rigid lid at z = 0,

Ψ(x0, y0, γ0) =

∫ z=0

z=z0(γ0)
u dz. (2)

Here u = (u, v) is the horizontal velocity vector. Note that Ψ
is a function of lateral position and neutral density: vertical
gradients in this streamfunction correspond to lateral velocities
within density classes, whilst lateral gradients correspond to di-
apycnal fluxes.

We proceed under the assumption that deviations of the
isopycnal depth z0 from the mean are small compared to the
ocean depth, measured by ε ∼ z′0/H � 1. We similarly as-
sume that the perturbations of the velocity, potential tempera-
ture, salinity and neutral density are small relative to vertical
changes in their respective means, e.g. γ′/γzH = O(ε). This
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holds if such deviations are associated with the eddy-induced
vertical heaving of the isopycnals. We may then expand (2) via
a Taylor expansion1,

Ψ =

∫ 0

z0

u dz +

∫ z0

z0+z′0

u dz

=

∫ 0

z0

u dz +

∫ z0

z0+z′0

{
u(z0) + (z − z0)uz(z0) + O

(
(z − z0)2)} dz

=

∫ 0

z0

u dz − u(z0)z′0 −
1
2 z′0

2uz(z0) + O
(
ε3

)
=

∫ 0

z0

u dz − u′(z0)z′0 −
1
2 uz(z0)z′0

2 + O
(
ε3

)
. (3)

Equation (3) gives an approximation to the lateral volume flux
above the isopycnal z = z0 in terms of quantities evaluated at
the mean isopycnal depth z = z0. The first term in (3) is the flux
associated with the mean velocity v above the mean isopycnal
depth z = z0. The second term accounts for net volume fluxes
associated with correlations between the velocity and isopyc-
nal depth: if isopycnal depth and velocity perturbations tend
to occur together, z′0v′ , 0 then there is on average a net lat-
eral transport associated with those perturbations. The third
term accounts for variations in the transport associated with the
mean velocity shear: if the velocity is positively sheared then
the mean lateral transport anomaly associated with an upward
isopycnal displacement is smaller than the opposing transport
associated with downward displacements.

McIntosh and McDougall (1996) decompose (3) as

Ψ(y0, z0) = Ψ +Ψ?, (4a)

Ψ =

∫ 0

z0

u dz, (4b)

Ψ? = −u′(z0)z′0 −
1
2 uz(z0) z′0

2 + O
(
ε3

)
, (4c)

whereΨ andΨ? are the mean and eddy streamfunctions respec-
tively. They go on to express z′0 as a function of the mean and
perturbation densities (γ,γ′) at depth z = z0. However, no ocean
model currently offers neutral density-related output due to the
high cost of computing γ. In §2.2 we instead relate z′0 to the
perturbation temperature θ′, salinity S ′ and pressure p′, which
ocean models must typically compute at every time step in or-
der to solve the equations of motion, and are therefore available
at a low computational cost.

Note that the mean density at the mean isopycnal depth γ(z0)
may differ from the density γ0 on the isopycnal z = z0(γ0) (Mc-
Dougall and McIntosh, 1996). To obtain the latter we pose a
Taylor expansion of the density about the mean isopycnal depth,

γ0 = γ(z0 + z′0) = γ(z0) + z′0γz(z0) + 1
2 z′0

2γzz(z0) + O
(
ε3

)
. (5)

1Formally such asymptotic approximations should be made in dimension-
less variables. Throughout the manuscript we retain dimensional variables for
clarity and for consistency with previous derivations of the TRM (McIntosh and
McDougall, 1996; McDougall and McIntosh, 2001; Nurser and Lee, 2004a,b;
Wolfe, 2014).

For consistency with (4c), we wish to relate γ0(z0) to the isopy-
cnal depth perturbation z′0. We first take the average of (5),

γ0 = γ(z0) + z′0γ
′
z(z0) + 1

2 z′0
2γzz(z0) + O

(
ε3

)
. (6)

Subtracting (6) from (5) yields an expression for the perturba-
tion neutral density γ′,

γ′(z0) = −z′0γz(z0) + O
(
ε2

)
. (7)

Finally, substituting (7) into (6) yields

γ0 = γ(z0) −
∂

∂z

(
1
2 z′0

2γz

)
+ O

(
ε3

)
. (8)

Here we have expressed γ0 as a function of z′0 because our ap-
proximation of the neutral relation in §2.2 yields an expression
for z′0, rather than the density perturbation γ′, in terms of the
temperature and salinity perturbations θ′ and S ′.

2.2. The neutral relation

The eddy streamfunction (4c) requires evaluation of correla-
tions between the isopycnal depth and velocity perturbations (z′0
and u′), or alternatively the density and velocity perturbations
(γ′ and u′) (McIntosh and McDougall, 1996). However, nei-
ther z′0 nor γ′ are typically offered as ocean model output due to
the high cost of computing neutral density. Instead we employ
the neutral relation (Jackett and McDougall, 1997) to relate z′0
directly to the hydrographic perturbations (θ′,S ′,p′), which are
readily available as ocean model output.

We begin by writing the neutral relation (1) in the form (Mc-
Dougall, 1987)

β∇nS = α∇nθ, (9)

where ∇n is the horizontal gradient operator within the neutral
surface. Equation (9) may be derived by taking the dot product
of A with vectors tangent to the neutral surface and lying in the
x/z and y/z planes respectively. Neutral density is defined with
respect to a 4◦ grid of reference casts, distributed throughout
the world ocean (Jackett and McDougall, 1997). The neutral
density at any given parcel of ocean water may be determined
by finding its isoneutral depth on a nearby reference cast: the
neutral density assigned to this depth on the reference cast de-
fines the neutral density of the parcel. In practice the water
properties between the parcel and the reference cast may not
be available, so an approximate, integrated form of (9) is used.
This method is used to determine the parcel’s neutral density
from each of the four neighboring casts, which are then com-
bined via a weighted average (Jackett and McDougall, 1997).
In this subsection and the next we will relate z′0 to the hydro-
graphic perturbations (θ′,S ′,p′) with regard to a single neigh-
boring reference cast. However, our calculation of the eddy
streamfunction (4c) employs a weighted average over the four
nearest reference casts, as explained below.

Consider an arbitrary fluid parcel that lies always on the
density surface γ = γ0, with lateral position (x0, y0). At this
point, the salinity, potential temperature and pressure are de-
noted S 0(γ0, t), θ0(γ0, t) and p0(γ0, t) respectively. Let (xc, yc)
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be the lateral position of a neighboring reference cast. By defi-
nition, the parcel is always isoneutral to the depth zc on the ref-
erence cast that has an assigned neutral density of γ0. We define
the salinity, potential temperature and pressure at (xc, yc, zc) as
S c, θc and pc respectively. Integrating (9) along any isoneutral
path that connects the parcel and the reference cast, we obtain∫ lc

l0
β
∂S
∂l

dl =

∫ lc

l0
α
∂θ

∂l
dl. (10)

Here l is an along-path coordinate, in which l0 and lc are the
positions of the parcel and the reference cast.

We now approximate (10) by posing a Taylor expansion of
the saline contraction and thermal expansion coefficients, e.g.

α(S , θ, p) = αm + (S − S m)
∂αm

∂S m

+ (θ − θm)
∂αm

∂θm
+ (p − pm)

∂αm

∂pm
+ O

(
∆2

)
. (11)

Here the Taylor expansion has been performed about the mid-
values of the salinity, potential temperature, and pressure, de-
fined as

S m =
S 0 + S c

2
, θm =

θ0 + θc

2
, pm =

p0 + pc

2
. (12)

We have abbreviated βm = β(S m, θm, pm) and αm =

α(S m, θm, pm) for notational convenience. We also use the
shorthand notation ∂βm/∂S m ≡ ∂β/∂S (S m, θm, pm) for partial
derivatives. The small parameter ∆ measures deviations of the
S , θ and p from their midpoint values along the neutral path.
One definition for this parameter is the ratio of the parcel-to-
cast distance to a dynamical lengthscale L that characterizes
lateral property variations, ∆ = (lc − l0)/L � 1, though other
definitions could be constructed from (11). In Appendix A we
show that (11) may be used to reduce the integrated neutral re-
lation (10) to a direct relationship between the parcel and cast
properties,

(S c − S 0) βm − (θc − θ0)αm = O
(
∆3

)
. (13)

Jackett and McDougall (1997) derive (13) under the assump-
tion that the pressure and potential temperature covary linearly
along the neutral path, though they state that in general the error
is quadratic in the perturbation terms. In Appendix A we show
that in fact the error in (13) is always cubic.

2.3. Neutral surface depth perturbations
We now use (13) to relate the isopycnal depth perturbations

z′0 to the perturbation salinity S ′0, potential temperature θ′0 and
pressure p′0. First, we pose a double Taylor expansion of the
isopycnal salinity S 0 in terms of the isopycnal depth perturba-
tion z′0 and the salinity perturbation at the mean isopycnal depth
S ′0(z0, t),

S 0(γ0, t) = S (z0(γ0, t), t) = S (z0 + z′0, t)

= S (z0, t) + z′0S z(z0, t) + O
(
ε2

)
= S (z0) + S ′(z0, t) + z′0S z + O

(
ε2

)
. (14)

In (14) and hereafter all quantities are implicitly evaluated at the
lateral parcel position (x0, y0). Taking the mean of (14) relates
the mean isopycnal salinity to the mean salinity at the mean
isopycnal depth,

S 0(γ0, t) = S + O
(
ε2

)
, (15)

where again we use the shorthand S ≡ S (z0). Analogous re-
sults to (14) and (15) hold for the potential temperature θ and
pressure p.

Second, we pose a Taylor expansion of the saline contraction
and thermal expansion coefficients evaluated at the midpoint
properties between the parcel and reference cast. For example,
using (14) we may expand αm as

αm = α

[
1
2 (S 0 + S c) , 1

2 (θ0 + θc) , 1
2 (p0 + pc)

]
= α

[
1
2

(
S + S ′ + z′0S z + S c

)
, 1

2

(
θ + θ′ + z′0θz + θc

)
,

1
2

(
p + p′ + z′0 pz + pc

) ]
+ O

(
ε2

)
= αm + 1

2

(
S ′ + z′0S z

) ∂αm

∂S m
+ 1

2

(
θ′ + z′0θz

) ∂αm

∂θm

+ 1
2

(
p′ + z′0 pz

) ∂αm

∂pm
+ O

(
ε2

)
. (16)

Here we denote the mean midpoint salinity, potential tempera-
ture and pressure as

S m ≡
S + S c

2
, θm ≡

θ + θc

2
, pm ≡

p + pc

2
, (17)

respectively. Note that (17) defines the midpoint of the mean
parcel and cast properties, rather than the mean of the midpoint
parcel and cast properties (12), though from (15) these quanti-
ties are identical up to O(ε2), e.g. S m = S m(γ0, t) + O(ε2). We
use a similar shorthand for the saline contraction and thermal
expansion coefficients evaluated at the midpoint of the mean
parcel and cast properties

βm ≡ β
(
S m, θm, pm

)
, αm ≡ α

(
S m, θm, pm

)
. (18)

We use the shorthand notation ∂βm/∂S m ≡ ∂β/∂S (S m, θm, pm)
for partial derivatives.

Finally, we substitute (14) (and equivalent expressions for θ
and p) and (16) (and the equivalent expression for βm) into (13).
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Neglecting terms of O(ε2) and higher and rearranging yields

z′0

{
− S z βm + θz αm

+
(
S c − S

)  1
2 S z

∂βm

∂S m
+ 1

2θz
∂βm

∂θm
+ 1

2 pz
∂βm

∂pm


−

(
θc − θ

) [
1
2 S z

∂αm

∂S m
+ 1

2θz
∂αm

∂θm
+ 1

2 pz
∂αm

∂pm

] }
= −

{
− S ′ βm + θ′ αm

+
(
S c − S

)  1
2 S ′

∂βm

∂S m
+ 1

2θ
′ ∂βm

∂θm
+ 1

2 p′
∂βm

∂pm


−

(
θc − θ

) [
1
2 S ′

∂αm

∂S m
+ 1

2θ
′ ∂αm

∂θm
+ 1

2 p′
∂αm

∂pm

] }
+ O

(
∆3, ε2

)
, (19)

where implicitly all quantities are evaluated at z = z0. Using
(19), the eddy streamfunction (4c) can be expressed entirely in
terms of averaged products that are readily available as output
from ocean models, namely u′S ′, u′θ′, u′p′, S ′2, θ′2, p′2, S ′θ′,
S ′p′, and θ′p′. We derived (19) based on a single neighbor-
ing reference cast, but in practice one would compute the eddy
streamfunction (4c) using a weighted average over the four
neighboring reference casts (Jackett and McDougall, 1997). We
provide explicit expressions for the eddy streamfunction in Ap-
pendix B.1.

The cast properties are strictly functions of the neutral den-
sity surface γ0, e.g. θc = θc(γ0). In practice these are deter-
mined approximately via (5)

θc(γ0) = θc

(
γ(z0) + z′0γz(z0) + O

(
ε2

))
= θc

(
γ(z0) + γ′(z0) + z′0γz(z0) + O

(
ε2

))
= θc(γ(z0)) +

[
γ′(z0) + z′0γz(z0)

] ∂θc

∂γ0
(γ(z0)) + O

(
ε2

)
=⇒ θc(γ0) = θc(γ(z0)) + O

(
ε2

)
, (20)

where the final equation follows from taking an average of both
sides of the equality, and noting that θc(γ0) = θc(γ0).

2.4. The Boussinesq case

Most ocean models (e.g. Hallberg and Rhines, 1996; Mar-
shall et al., 1997a; Shchepetkin and McWilliams, 2005) employ
the Boussinesq approximation for computational simplicity, in
which the equation of state is simplified to prescribe the density
as a function of salinity S , potential temperature θ, and hydro-
static pressure via the depth z. Following a similar derivation
as above, in this case the neutral surface depth perturbations are

Table 1: Definitions of the Boussinesq TRM streamfunctions discussed in this
paper. The second column provides equation numbers corresponding to our
various approximations of the isopycnal depth perturbation z′0. Explicit forms
for the eddy components of these TRM streamfunctions are given in Appendix
B. The third column provides equation numbers for the equivalent TEM forms
of the eddy streamfunctions, which are compared in §3. The fourth column
provides the formal accuracy of each streamfunction; ε and ∆ are defined in §2
below (2) and (12) respectively.

Streamfunction Def. of z′0 TEM ψ? Accuracy
Ψ

(σ)
TRM (25) (B.11) O(ε3)

Ψ
(γ)
TRM (24) (B.12) O(ε3)

Ψ
(γ)
NDTRM0 (23) (B.10) O

(
ε∆2, ε3, ε2∆

)
Ψ

(γ)
NDTRM1 (22) (B.9) O

(
ε∆3, ε3, ε2∆

)
Ψ

(γ)
NDTRM2 (21) (B.8) O

(
ε∆3, ε3

)

given by

z′0

{
− S z βm + θz αm

+
(
S c − S

)  1
2 S z

∂βm

∂S m
+ 1

2θz
∂βm

∂θm
+ 1

2
∂βm

∂zm


−

(
θc − θ

) [
1
2 S z

∂αm

∂S m
+ 1

2θz
∂αm

∂θm
+ 1

2
∂αm

∂zm

] }
= −

{
− S ′ βm + θ′ αm

+
(
S c − S

)  1
2 S ′

∂βm

∂S m
+ 1

2θ
′ ∂βm

∂θm


−

(
θc − θ

) [
1
2 S ′

∂αm

∂S m
+ 1

2θ
′ ∂αm

∂θm

] }
+ O

(
∆3, ε2

)
. (21)

This modifies the eddy streamfunctionΨ?, the explicit form for
which is discussed in Appendix B.2.

We have found that little accuracy is lost (see §3) if theO(ε∆)
terms are neglected from (21), namely those proportional to
derivatives of βm and αm. Under this approximation the neutral
surface depth perturbation is given by a much simpler expres-
sion,

z′0 = −
S ′ βm − θ

′ αm

S z βm − θz αm
+ O

(
∆3, ε2, ε∆

)
. (22)

This simplified form is somewhat easier to interpret in physi-
cal terms: the denominator of (22) resembles an expression for
density stratification N2, whilst the numerator approximately
measures changes in density associated with fluctuations in
salinity and potential temperature. Importantly, the saline con-
traction and thermal expansion coefficients are evaluated mid-
way between the parcel and the cast. This crudely approximates
the fact that density variations of the parcel are determined by
temperature and salinity perturbations with respect to the in-
tegrated saline contraction and thermal expansion coefficients
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Figure 1: Schematic of the model-setup for our Antarctic shelf/slope test case. Contours show a snapshot of the daily-averaged potential temperature field.

along neutral paths, rather than their local values. We can obtain
an expression for z′0 that depends entirely on local quantities by
taking the approximation a step further,

z′0 = −
S ′ β − θ′ α

S z β − θz α
+ O

(
∆2, ε2, ε∆

)
. (23)

Here α and β are shorthands for α(S , θ, p) and β(S , θ, p) respec-
tively. In this case the denominator is exactly proportional to
the density stratification, and the numerator is proportional to
the variations of locally-referenced potential density with salin-
ity and potential temperature. The eddy streamfunctions corre-
sponding to both (22) and (23) are given in Appendix B.2.

2.5. Traditional TRM isopycnal depth perturbations
For the purpose of comparison, we also provide an expres-

sion for the isopycnal depth perturbation z′0 directly in terms of
the density perturbation γ′, which may be obtained by rearrang-
ing (7) as

z′0 = −
γ′

γz
+ O

(
ε2

)
. (24)

The resulting TRM streamfunction is much simpler than the full
NDTRM streamfunction. However, accurate calculation of the
product u′γ′ requires the neutral density to be computed every-
where in the domain, a feature not currently available in ocean
models, and which imposes a substantial additional computa-
tional burden (see §3).

To provide an independent benchmark for the accuracy of the
TRM, we employ an analogous expression for z′0 in terms of the
potential density perturbation σ′,

z′0 = −
σ′

σz
+ O

(
ε2

)
. (25)

The corresponding TRM streamfunction is given by (B.11).
The various approximations to the isopycnal depth perturbation
and eddy streamfunction derived in this section are summarized
in Table 1.

3. A test case: overturning at the Antarctic margins

In this section we assess the accuracy of our various approx-
imations to the TRM streamfunction, listed in Table 1. We per-
form this assessment using a process model of the Antarctic
continental shelf and slope, a region where the nonlinearities
in the equation of state are particularly pronounced (e.g. Gill,
1973). To facilitate our analysis and ensure computational ef-
ficiency, we simplify the model geometry and physics where
possible, but retain sufficient detail to qualitatively reproduce
the water mass structure associated with the Antarctic Slope
Front (Thompson and Heywood, 2008). Stewart and Thompson
(2015) discuss the implications of this model for cross-slope ex-
change around the Antarctic margins.

3.1. Model configuration

The model configuration is sketched in Figure 1, which
shows an instantaneous cross-slope slice of the model’s po-
tential temperature field. We used the MIT general circula-
tion model (MITgcm, Marshall et al., 1997b,a) to simulate
the flow in a re-entrant channel with a cross-channel width
of Ly = 450 km, an along-channel length Lx = 400 km, and
a depth of 3000 m. The ocean depth shoals to 500 m at the
shoreward boundary, as shown in Figure 1, via a continental
slope whose dimensions are typical of the Western Weddell
Sea. The domain lies on an f -plane with Coriolis parameter
f0 = −1.31 × 10−4 rad s−1.

A 50 km-wide strip of the ocean surface at the shoreward
edge of the domain is forced by a fixed salt input of 2.5 ×
10−3 g m−2 s−1, typical of the brine rejection associated with
sea ice formation in coastal polynyas (Tamura et al., 2008).
North of this, we impose a steady, piecewise-sinusoidal west-
ward wind stress with a maximum strength of 0.075 N m−2 over
the center of the continental slope, representative of conditions
around the Antarctic margins (Large and Yeager, 2009). The
remainder of the surface interacts thermodynamically with a
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Figure 2: Time- and alongshore-mean (a) potential temperature, (b) salinity, (c) neutral density and (d) potential density referenced to the surface. The time average
was taken over 5 years in statistically steady state.

layer of sea ice of fixed width 1 m, which does not itself evolve
in response to the ocean below. Thermodynamic exchanges
are computed according to a two-equation ice-ocean boundary
layer model Schmidt et al. (2004). The offshore boundary is re-
stored to Weddell Sea hydrography (Thompson and Heywood,
2008). The model properties therfore remain close to the hy-
drography of the real Weddell Sea, and thus the neutral density
defined by Jackett and McDougall (1997) accurately quantifies
the density stratification. The restoring increases linearly from
zero at the edge of the restoring region to a timescale of 56 days
at the offshore boundary.

Momentum is extracted at the ocean bed via a linear drag
with coefficient rb = 1 × 10−3 m s−1. We also extract energy via
a lateral Laplacian viscosity of 12 m2 s−1, a vertical Laplacian
viscosity of 3×10−4 m2 s−1, a dimensionless biharmonic viscos-
ity of 0.1, and dimensionless biharmonic Leith and modified-
Leith viscosities (Fox-Kemper and Menemenlis, 2008), both
equal to 1. Potential temperature and salinity are subject to
vertical diffusion with coefficients of 5 × 10−6 m2 s−1.

The model employs a spatial resolution of 1 km in the hor-

izontal, whilst the vertical grid spacings ranges from 13m at
the surface to 100m at the ocean bed. We found that cross-
slope transport in the ocean interior was reduced by around 50%
when the horizontal resolution was reduced to 2 km, whereas
increasing the resolution to 0.5 km did not substantially change
the solution. We integrate the momentum equation forward
in time using a second-order Adams-Bashforth scheme, while
tracers are evolved using the second-order moment advection
scheme of Prather (1986), which has been shown to minimize
numerical diapycnal diffusion in the MITgcm (Hill et al., 2012).
The time step of 179 s was chosen to ensure the advective CFL
criterion would be satisfied at all points in space and time. The
model was integrated until it reached statistically steady state,
as judged from time series of the total and eddy kinetic energies.

In Figure 2 we plot the time- and alongshore-mean potential
temperature, salinity, neutral density and potential density in
statistically steady state. The model captures the characteristic
water mass structure of the Antarctic Slope Front in the western
Weddell Sea (Thompson and Heywood, 2008), with the warm,
salty layer of Circumpolar Deep Water (CDW) sandwiched be-
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tween relatively cold, fresh Antarctic Surface Waters (AASW)
and a deep outflow of Antarctic Bottom Water (AABW). We
will show that the overturning circulation is more accurately
computed using neutral density, shown in Figure 2(c), than po-
tential density, shown in Figure 2(d). In the cross-slope hydro-
graphic data collected by Thompson and Heywood (2008), the
potential density always varies non-monotonically with depth
somewhere, regardless of the reference level. As a result,
computing the isopycnal transports using any potential density
would lead to a loss of information. In our model test case it so
happens that surface-referenced potential density varies mono-
tonically with depth everywhere, and so can be used to quantify
the utility of computing the overturning circulation using neu-
tral density. However, we emphasize that this is a special case:
defining the potential density with reference to deeper levels, or
modifying the forcing parameters, leads to non-monotonicity
in the potential density stratification. We will henceforth refer
to surface-referenced potential density simply as the potential
density σ.

3.2. Computing the overturning circulation
The purpose of our test case is to assess our various ap-

proximations to the TRM against an accurate calculation of the
model’s isopycnal volume transports. The along-slope sym-
metry of the model geometry and forcing allow us to sim-
plify this analysis by computing the overturning circulation in
the y/z plane only, reinterpreting the averaging operator • in
§2 as a time- and alongshore-mean and the streamfunctions
as only having one component. In realistic ocean geometries
this not possible because the properties (S c, θc, pc) of the near-
est reference casts are themselves functions of latitude, longi-
tude and depth. Instead the TRM streamfunction components
would need to be computed at all points in space, and then the
alongshore-integrated fluxes computed between the time-mean
isopycnals. In our case, however, the entire domain lies con-
ceptually along a transect from (61W,67S) to (50.6W,67S), so
the cast properties are only functions of y and z.

We define the “exact” cross-slope overturning streamfunc-
tions as follows,

ψ(φ)(y, z0(φ0)) =

∫ 0

z=z0(φ0)
v dz (26)

where φ = γ or φ = σ for neutral density and potential den-
sity respectively. Here φ = φ0 defines an arbitrary isopyc-
nal surface, and z0(φ0) and z0(φ0) are the instantaneous and
mean depths of that isopycnal. For the case of potential den-
sity φ = σ, we used the MITgcm LAYERS package to compute
the mean cross-slope volume fluxes and mean layer thicknesses
within 181 discrete density layers spanning the range shown in
Figure 2. We used a much finer density increment between the
densest layers to account for the larger range of depths spanned
by those densities. The mean was calculated by computing the
fluxes and layer thicknesses in each density layer at each time
step and averaging over time. Such an operation would be pro-
hibitively computationally expensive if attempted with neutral
density. Instead we performed the equivalent calculation by

computing the neutral density from the daily-averaged poten-
tial temperature, salinity, and velocity fields, and computing the
fluxes and layer thicknesses within 143 discrete density layers.

To compute the two-dimensional TRM streamfunctions we
use the daily-averaged potential temperature θ and salinity S
to compute the neutral density γ and potential density σ ev-
erywhere in the domain. We combine these quantities with the
daily-averaged cross-slope velocity v to compute the mean and
correlation terms in the various TRM streamfunctions listed in
Table 1. Again, the averaging operator • is redefined as an
average in time and along the slope, so we consider only the
cross-slope component of each streamfunction. These stream-
functions therefore correspond to taking a Transformed Eule-
rian Mean (TEM, e.g. McIntosh and McDougall, 1996), so we
denote them with the subscript TEM to differentiate them from
the full, three-dimensional TRM streamfunctions derived in §2.
For example,

ψ
?(γ)
TEM(y0, z0) =

v′γ′

γz
, (27)

where γ is the neutral density averaged over 5 years of daily out-
put and in the along-slope direction, and v′ and γ′ are the devi-
ations of the daily cross-slope velocity and neutral density from
their respective means. Explicit TEM versions of the stream-
functions listed in Table 1 are given in Appendix B.

3.3. Accuracy of the NDTEM/NDTRM

We now directly quantify the error associated with various
approximations to the overturning circulation in neutral density
layers. For reference, we first consider the TEM approxima-
tion to the overturning circulation in potential density layers.
Figure 3 panel (a) shows the exact overturning streamfunction
ψ(σ). The overturning circulation is characterized by a single
counter-clockwise cell with sinking on the continental shelf and
upwelling in the offshore restoring region. The majority of the
onshore transport (∼ 2/3) is wind-driven AASW and concen-
trated close to the surface, whilst the remainder (∼ 1/3) is CDW
following an interior pathway. All onshore transport is balanced
by an outflow of AABW along the ocean bed. Panel (b) shows
the pointwise error in the potential density TRM streamfunction
ψ(σ)

TEM. The largest errors are mostly found close to ocean sur-
face and bed, where isopycnals intersect solid boundaries and
the integral between the isopycnal depth and the surface in (3) is
not well defined (Young, 2012). Away from the boundaries the
pointwise errors are very small, less than 5% over most of the
domain. The major exception is the continental shelf, where the
shallow ocean depth results in the generation of submesoscale
flows and relatively large departures of the isopycnal surfaces
from their mean depths. This corresponds to a larger value of
ε in (4c), and consequently the relative error is around 25% at
some points. Below we will show that the error in the cross-
slope transport is much smaller than this; to some extent the
pointwise errors describe a slight shift in the depth of the over-
turning cell on the continental shelf.

In panels (c) and (d) of Figure 3 we present analogous plots
using streamfunctions based on neutral density. The overturn-
ing circulation is qualitatively similar, but somewhat stronger
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Figure 3: (a) Exact overturning circulation computed within potential density layers via (26) with φ = σ and (b) error associated with the traditional TEM
approximation using eddy potential density fluxes, equivalent to (B.11). Here potential density is referenced to the surface. (c,d) Equivalent plots using neutral
density-based streamfunctions, i.e. using (26) with φ = γ for (c) and (B.12) for (d). In panels (a) and (c) the contour interval is 0.025 Sv, and in panels (b) and (d)
the contour interval is 0.01 Sv.

due to an enhancement of the onshore transport of CDW in the
ocean interior. Below we will show that the onshore transport
of CDW increases by over 50% when volume fluxes are calcu-
lated within neutral density layers instead of potential density.
This discrepancy is partly due to the fact that the slopes of po-
tential density surfaces differ from neutral slopes. At any point
the local neutral slope satisfies

sγ = −
β(S , θ, p)∇hS − α(S , θ, p)∇hθ

β(S , θ, p)S z − α(S , θ, p)θz
, (28)

where ∇h ≡ (∂x, ∂y) is the horizontal gradient. In practice the
slope of the neutral density surfaces is determined by the ap-
proximate neutral relation (13). The slope of the potential den-
sity surfaces should satisfy

sσ = −
β(S , θ, pref)∇hS − α(S , θ, pref)∇hθ

β(S , θ, pref)S z − α(S , θ, pref)θz
, (29)

where pref is the surface pressure. The saline contraction coeffi-
cient β varies weakly with depth, so sγ and sσ differ largely due

to the pressure-dependence of the thermal-expansion coefficient
α (McDougall, 1987). For our surface-referenced potential den-
sity σ, the difference in the slopes is most pronounced close to
the ocean bed, where the pressure is much greater than pref,
and in the coldest parts of the domain, where ∂α/∂p is largest.
Thus the enhancement of ψ(γ) relative to ψ(σ) in Figure 3(a) and
(c) is most pronounced in the cold outflow of AABW, close to
the ocean bed. The neutral density TEM ψ

(γ)
TEM is qualitatively

similar to the potential density TEM, though the errors on the
continental shelf have a maximum magnitude of ∼30% in this
case.

We now turn our attention to the new streamfunctions de-
rived from the neutral relation in §2. In Figure 4(a) we have
reproduced for reference the exact overturning circulation com-
puted from fluxes within neutral density layers. In panels (b–c)
we plot successively more accurate approximations ψ(γ)

NDTEM0,
ψ

(γ)
NDTEM1 and ψ

(γ)
NDTEM2 corresponding to approximations (23),

(22), and (21) respectively. The lowest-order approximation,
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Figure 4: (a) Exact overturning circulation computed within neutral density layers. (b-d) Error in the TEM overturning streamfunctions (B.10), (B.9) and (B.8)
calculated using successively more accurate approximations to the isopycnal depth perturbation z′0, derived from the neutral relation (9) in §2. In panel (a) the
contour interval is 0.025 Sv, and in panels (b–d) the contour interval is 0.01 Sv.

ψ
(γ)
NDTEM0, is equivalent to computing the TEM using the locally-

referenced potential density, as advocated by McIntosh and Mc-
Dougall (1996). This is the least accurate approximation, with
relative errors close to 50% on the continental shelf. Using
the higher-order approximations improves the agreement of the
TEM with the exact streamfunction, reducing the typical rel-
ative errors in the ocean interior on the continental shelf to
around 20%. However, it is unclear whether there is much im-
provement between ψ(γ)

NDTEM1 and ψ(γ)
NDTEM2. The largest relative

errors in the ocean interior on the continental shelf actually in-
crease to approximately 33% for ψ(γ)

NDTEM2, though we note that
this measure of the error is particularly sensitive to noise.

3.4. Shoreward water mass transport

The pointwise errors between exact and TEM streamfunc-
tions shown in Figures 3 and 4 can be misleading because a
slight shift in the position of a strong overturning circulation
can produce a large pointwise error. Arguably a more physi-
cally relevant quantity is the cross-slope transport, and in par-

ticular the net transport of water masses across the width of
the domain. In Figure 5(a) we plot the total shoreward vol-
ume transport as a function of offshore position y0, defined by
streamlines that originate at the edge of the restoring region
y = 400 km and extend continuously to y = y0. By defini-
tion this transport increases monotonically with y0, with some
streamlines that originate at y = 400 km forming closed loops
before they reach the continental shelf, visible in Figure 3 pan-
els (a) and (c).

Figure 3 indicates that switching from potential to neutral
density increases the calculated transport in the ocean inte-
rior, and thus the transport of warm CDW onto the continen-
tal shelf. In Figure 5(b) we therefore also plot the net shore-
ward CDW transport, defined analogously to the total transport
but counting only streamlines that lie within the CDW layer.
We define the AASW/CDW boundary as a potential density of
27.84 kg m−3 or a neutral density of 28.15 kg m−3.

The cross-slope structures of the total and interior shore-
ward transports, shown in Figures 5(a) and (b) respectively, bear
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Figure 5: (a) Total shoreward transport and (b) interior shoreward transport as functions of offshore distance, calculated for a range of “exact” and TEM streamfunc-
tions as described in §3.4.

strong resemblance to one another. This implies that most of the
discrepancies between the total shoreward transports predicted
by the various streamfunctions are associated with the interior
CDW transport, rather than the near-surface AASW transport.
Although the error between the TEM and exact streamfunctions
is relatively small compared to the total shoreward transport,
they constitute a much larger fraction of the interior transport.
As mentioned above, the exact interior CDW transport com-
puted within neutral density surfaces is around 50% larger than
the corresponding transport within potential density surfaces.
This may be an important consideration when diagnosing on-
shore transport of CDW in models of the Antarctic margins,
where the CDW supplies almost all of the heat associated with
basal melting of the Antarctic ice sheets (e.g. Thoma et al.,
2008; Nøst et al., 2011).

We conceptually divide the model domain into continental
shelf (50 km < y < 150 km), continental slope (150 km < y <
250 km) and deep ocean (250 km < y < 350 km). Figure 5(b)
shows that in general the exact and TEM interior transports
agree closely over the continental slope. Here the wind stress
is close to its maximum, so the overturning is dominated by the
mean component ψ, which may be determined accurately from
the mean offshore velocity v. In the deep ocean the highest-
order approximation ψ(γ)

NDTEM2 is predictably the most accurate
approximation to the exact overturning ψ(γ), and is comparable
to the traditional TEM ψ

(γ)
TEM. On the continental shelf there

is almost no difference between the two higher-order TEM ap-
proximations ψ(γ)

NDTEM1 and ψ
(γ)
NDTEM2, though both exhibit ap-

proximately half of the error of lowest-order approximation
ψ

(γ)
NDTEM0. However, the traditional TEM ψ

(γ)
TEM underpredicts

the onshore transport in the interior by over 50% in places
(though the error in the total transport is much smaller). By
contrast, the exact and TEM streamfunctions computed based

on potential density, ψ(σ) and ψ(σ)
TEM, agree almost perfectly on

the continental shelf.
The inaccuracy of ψ(γ)

TEM is surprising because in principle the
error isO(ε3), the same order as the error in ψ(σ)

TEM. Furthermore,
ψ

(γ)
TEM differs from our NDTEM streamfunctions only in the ap-

proximation of the perturbation isopycnal depth z′0. This sug-
gests that the error associated with approximation (24) is larger
than those associated with (25), (23), (22) and (21). In other
words, the effective ε is larger in (24). To understand why, con-
sider the evolution of an arbitrary, materially-conserved tracer
c,

Dc
Dt

= ċ, (30)

where ċ represents any sources and sinks of c. Potential tem-
perature, salinity and potential density are almost exactly ma-
terially conserved: for c = S , c = θ and c = σ the source/sink
term ċ contains only small explicit and numerical mixing terms.
Thus there should be relatively small errors incurred by tracer
fluctuations such as σ′ in (25) and S ′ in (14). However, neutral
density is not materially conserved due to nonlinearities in the
equation of state (see McDougall and Jackett, 2005b), which
are particularly pronounced on the continental shelf where
there are large isoneutral θ/S gradients (see Figures 1 and 2).
These non-conservative terms may enhance the neutral density
anomaly γ′ via (30), reducing the accuracy of the Taylor ex-
pansion in γ′ used to derive the isopycnal depth perturbation
(24).

4. Discussion

In this article we have shown that the traditional TRM for-
mulation may be extended to provide an efficient and accurate
estimate of the volume fluxes between neutral density surfaces,
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which we refer to as the Neutral Density Temporal Residual
Mean (NDTRM). The novelty in the derivation of the NDTRM
lies in the approximation to the isopycnal depth perturbation
z′0, which is given in the Boussinesq case by equations (23),
(22) and (21), in order of increasing accuracy. These approx-
imations depend only on mean quantities and fluctuations in
the potential temperature and salinity, allowing efficient calcu-
lation of the corresponding eddy streamfunctions (B.8)–(B.10).
However, these approximations to the neutral surface depth per-
turbation also require knowledge of the neighboring reference
cast properties (θc,S c,pc) at the corresponding neutral density
(Jackett and McDougall, 1997). These properties may be de-
termined using the mean potential temperature and salinity via
(20). Thus calculation of the NDTRM requires the neutral den-
sity to be computed once for each grid box in the model domain,
from the time-mean properties of the simulation.

We obtained the neutral densities and cast properties using a
modified version of the original neutral density calculation code
of Jackett and McDougall (1997). However, this dataset may
not in general provide an accurate characterization of approxi-
mately neutral surfaces in ocean models, whose solutions may
differ substantially from the real ocean’s hydrography. As neu-
tral density is defined by a projection along approximately neu-
tral surfaces from the central Pacific, local model biases could
dramatically alter the neutral density in other ocean basins.
Models with large biases may therefore be better served by
defining their own set of neutral density reference casts, based
on their own mean states. Our method of calculating the over-
turning in neutral density coordinates would apply equally well
in such situations: one need only replace the cast dataset of
Jackett and McDougall (1997) with the model’s own “reference
casts”. Our idealized model test case has been constructed in
such a way that the model ocean properties remain close to the
hydrography in the northwest Weddell Sea, and thus a neutral
density based on the Jackett and McDougall (1997) casts accu-
rately describes the stratification.

Figure 5(b) demonstrates that potential density does not pro-
vide a satisfactory approximation to the flux between neutral
density surfaces. On the continental shelf, where there are
large isoneutral gradients of potential temperature and salinity,
the fluxes between potential density surfaces underpredict the
shoreward transport in the interior by around 50%. One should
also bear in mind that in observations from the Antarctic mar-
gins (e.g. Thompson and Heywood, 2008) there is no reference
pressure that makes the potential density monotonic, so com-
puting fluxes within potential density layers would inevitably
lead to a loss of information.

In our tests of the NDTRM we restricted our attention to the
simpler TEM, Boussinesq case. This clarifies the presentation
whilst still testing the novel aspect of our derivation: the use of
the approximate neutral relation (13) to obtain an expression for
the isopycnal depth perturbation z′0. In the non-Boussinesq case
it may be more physically relevant to consider the true mass
fluxes between neutral density surfaces (Greatbatch and Mc-
Dougall, 2003). We have simply used thickness averaging for
simplicity of presentation and interpretation; it is straightfor-
ward to extend our results to the case of mass-weighted fluxes.

Our results could also be completely re-cast in terms of Conser-
vative Temperature and Absolute Salinity (McDougall, 2003),
which serve as the basis of the latest TEOS-10 equation of state.

The major advantage of the NDTRM is that it may be com-
puted much more quickly than either the “exact” flux within
neutral density surfaces or the traditional neutral density TRM
(B.12). For the essentially two-dimensional TEM test case
described in §3, calculation of the NDTEM streamfunctions
ψ

(γ)
NDTEM0, ψ(γ)

NDTEM1 and ψ
(γ)
NDTEM2 required less than a minute

on one core of a modern desktop computer. By contrast, to
calculate ψ(γ) and ψ(γ)

TEM we first computed the neutral density
from daily snapshots of θ and S for five years of model out-
put data, which required a total of 24 core-days or around 1440
core-hours. The subsequent calculation of the volume fluxes
within the daily neutral density snapshots then required a fur-
ther 60 core-hours, for a total of around 1500 core-hours. The
quasi-two-dimensional nature of the test case exaggerates this
contrast slightly, but the difference is still several orders of mag-
nitude.

Our test case in §3 demonstrates that a careful treatment of
the overturning circulation is necessary to accurately charac-
terize water mass transformations in regions with large isopy-
cnal gradients of potential temperature and salinity. We illus-
trated this using an idealized model of the Antarctic margins,
where large θ/S gradients are supported across the shelf break
in the western Weddell Sea (Thompson and Heywood, 2008)
and western Ross Sea (Gordon et al., 2009). Similar configura-
tions arise in the North Atlantic where warm northward surface
flows encounter cold shelf water masses, for example in the
Greenland Sea (Rudels et al., 2012). The Antarctic Circumpo-
lar Current also supports isopycnal θ/S gradients between the
deep northern basins and the Antarctic margins. Combined with
the relatively high eddy kinetic energy in this region, this leads
to water mass transformations via cabelling on the order of a
few Sverdrups (Urakawa and Hasumi, 2012). The TRM stream-
functions derived in this paper could be used to efficiently di-
agnose water mass transformations in such regions, with im-
proved accuracy over potential density-based calculations.

Acknowledgement

A.L.S.’s and A.F.T.’s work was carried out at the California In-
stitute of Technology under a contract with the National Aero-
nautics and Space Administration and funded through the Pres-
ident’s and Director’s Fund Program. The simulations pre-
sented herein were conducted using the CITerra computing
cluster in the Division of Geological and Planetary Sciences at
the California Institute of Technology, and the authors thank
the CITerra technicians for facilitating this work. The au-
thors gratefully acknowledge the modeling efforts of the MIT-
gcm team. The authors thank Trevor McDougall and another
anonymous reviewer for insightful comments that improved the
manuscript.

12



Appendix A. Approximation of the neutral relation

Here we show that the integrated neutral relation (10) may be
approximated using (13) up to third-order accuracy in the small
parameter ∆ � 1. Substituting the Taylor expansion (11) for
β(S , θ, p) into (10), we obtain∫ lc

l0
β(S , θ, p)

∂S
∂l

dl =

∫ lc

l0

{
βm
∂S
∂l

+ (S − S m)
∂βm

∂S m

∂S
∂l

+ (θ − θm)
∂βm

∂θm

∂S
∂l

+ (p − pm)
∂βm

∂pm

∂S
∂l

}
dl + O

(
∆3

)
.

(A.1)

The first term on the right-hand side of (A.1) may be integrated
directly as ∫ lc

l0
βm
∂S
∂l

dl = (S c − S 0) βm, (A.2)

whilst the second term integrates exactly to zero,∫ lc

l0
(S − S m)

∂βm

∂S m

∂S
∂l

dl =
∂βm

∂S m

∫ lc

l0

∂

∂l

[
1
2 (S − S m)2

]
dl

=
∂βm

∂S m

[
1
2 (S − S m)2

]lc

l0
= 0. (A.3)

The third term on the right-hand side of (A.1) also integrates to
zero. To see this, we write (9) using derivatives with respect to
l and apply the Taylor expansion (11) to obtain

β
∂S
∂l

= α
∂θ

∂l
=⇒ βm

∂S
∂l

= αm
∂θ

∂l
+ O (∆) . (A.4)

Substituting this into the third term on the right-hand side of
(A.1), we obtain∫ lc

l0
(θ− θm)

∂βm

∂θm

∂S
∂l

dl =
∂βm

∂θm

αm

βm

∫ lc

l0
(θ− θm)

∂θ

∂l
dl = 0, (A.5)

where the final equality follows from direct integration, as in
(A.3). By applying an analogous procedure to the right-hand
side of (10), and applying (A.4) to the last term on the right-
hand side of (A.1), we arrive at

(S c − S 0) βm − (θc − θ0)αm =(
∂αm

∂pm
−
αm

βm

∂βm

∂pm

) ∫ lc

l0
(p − pm)

∂θ

∂l
dl + O

(
∆3

)
. (A.6)

Jackett and McDougall (1997) showed that the remaining
term on the right-hand side of (A.6) is also O(∆3) if potential
temperature θ is assumed to depend linearly on pressure p. In
fact, if it is possible to write θ = θn(p) following the neutral
coordinate l, then the integral may be written as∫ lc

l0
(p − pm)

∂θ

∂l
dl =

∫ pc

p0

(p − pm)
dθn

dp
dp. (A.7)

Then, posing a Taylor expansion of θn(p) about p = pm yields

dθn

dp
=

dθn

dp

∣∣∣∣∣
p=pm

+ (p − pm)
d2θn

dp2

∣∣∣∣∣∣
p=pm

+ O
(
∆2

)
. (A.8)

Substituting (A.8) into (A.7) and evaluating the integral, it fol-
lows that the right-hand side of (A.6) is O(∆3).

However, in general it may not be the case that we can write
θ = θn(p) along the neutral path, i.e. the path may encounter
multiple values of potential temperature θ at the same pressure
p. In this case, we start by writing p = p(l) and θ = θ(l) along
the neutral path. We note that the in general mid-value of the
pressure along the path is not equal to the pressure mid-way
along the path, pm , p(lm). However, the difference between
these pressures is O(∆2):

pm − p(lm) = 1
2 (p(l0) + p(lc)) − p

(
l0 + 1

2 (lc − l0)
)

= 1
2

[
2p(l0) + (lc − l0)

∂p
∂l

(l0) + O(∆2)
]

−

[
p(l0) + 1

2 (lc − l0)
∂p
∂l

(l0) + O(∆2)
]

= 0 + O(∆2). (A.9)

Thus, we may write the integral on the right-hand side of (A.6)
as∫ lc

l0
(p − pm)

∂θ

∂l
dl =

∫ lc

l0
(p − p(lm))

∂θ

∂l
dl + O

(
∆3

)
. (A.10)

Then, expanding p(l) and ∂θ/∂l as Taylor series about l = lm, it
may be shown that the expressions in (A.10) areO(∆3), and thus
the approximate neutral relation (13) is accurate up to O(∆3).

Appendix B. The NDTRM streamfunction in explicit form

In this Appendix we give explicit expressions for the
NDTRM eddy streamfunction, both in the general case of an
arbitrary pressure distribution, and in the Boussinesq case.

Appendix B.1. General case
Equation (19) for the isopycnal depth perturbations can be

written more succinctly using coefficients for the perturbation
salinity S ′, potential temperature θ′ and pressure p′ in the nu-
merator,

B = βm −
1
2
∂βm

∂S m

(
S c − S

)
+ 1

2
∂αm

∂S m

(
θc − θ

)
(B.1a)

A = αm + 1
2
∂βm

∂θm

(
S c − S

)
− 1

2
∂αm

∂θm

(
θc − θ

)
(B.1b)

G = − 1
2
∂βm

∂pm

(
S c − S

)
+ 1

2
∂αm

∂pm

(
θc − θ

)
. (B.1c)

We also denote the denominator as

N2 =

{
S z βm − θz αm

−
(
S c − S

)  1
2 S z

∂βm

∂S m
+ 1

2θz
∂βm

∂θm
+ 1

2 pz
∂βm

∂pm


+

(
θc − θ

) [
1
2 S z

∂αm

∂S m
+ 1

2θz
∂αm

∂θm
+ 1

2 pz
∂αm

∂pm

] }
(B.2)
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where the notation N2 has been chosen because the denomi-
nator is approximately proportional to the density stratification.
These definitions allow us to rewrite (19) as

z′0 = −
BS ′ −Aθ′ + Gp′

N2 + O
(
∆3, ε2

)
, (B.3)

and thus the eddy streamfunction (4c) is

Ψ? =
Bu′S ′ −A u′θ′ + Gu′p′

N2

−

1
2 uz

N4

{
B2 S ′2 +A2 θ′2 + G2 p′2

− 2BA S ′θ′ + 2BG S ′p′ − 2AG θ′p′
}

+ O
(
ε∆3, ε3

)
. (B.4)

Appendix B.2. Boussinesq case
Under the Boussinesq approximation (21) there is no pres-

sure perturbation coefficient G = 0, and the coefficients asso-
ciated with the salinity and potential temperature perturbations
are identical to (B.1a) and (B.1b). The denominator is slightly
modified to

N2 =

{
S z βm − θz αm

−
(
S c − S

)  1
2 S z

∂βm

∂S m
+ 1

2θz
∂βm

∂θm
+ 1

2
∂βm

∂zm


+

(
θc − θ

) [
1
2 S z

∂αm

∂S m
+ 1

2θz
∂αm

∂θm
+ 1

2
∂αm

∂zm

] }
. (B.5)

The eddy streamfunction is again given by (B.4). If we further
approximate the isopycnal depth perturbations as (22) then we
the coefficients reduce to

A = αm, B = βm, N
2 = S zβm − θzαm. (B.6)

Finally, under the most severe approximation (23), the coeffi-
cients become

A = α, B = β, N2 = S zβ − θzα. (B.7)

As above, α and β are shorthands for α(S , θ, p) and β(S , θ, p)
respectively.

Appendix B.3. TEM streamfunctions
In the TEM test case described in §3m the mean • should be

interpreted as a time- and alongshore-average. The term pro-
portional to uz in (B.4) can be neglected because in a re-entrant
channel it is not possible to support a cross-slope geostrophic
transport. In this case (B.4) reduces to

ψ?
(γ)
NDTEM2 =

B v′S ′ −A v′θ′

N2 + O
(
ε∆3, ε3

)
. (B.8)

At each point in our computational domain we calculate the
coefficients B, A and N2 using each of the four neighboring

reference casts, and then use the weighted average of each co-
efficient to calculate the streamfunction via (B.8). Additionally
neglecting the O(ε2∆) terms in (B.8) yields

ψ?
(γ)
NDTEM1 =

βm v′S ′ − αm v′θ′

βm S z − αm θz
+ O

(
ε∆3, ε3, ε2∆

)
. (B.9)

Further approximating (B.9) by replacing the midpoint saline
contraction and thermal expansion coefficients, βm and αm, with
their values at the parcel, β and α, simplifies (B.9) to

ψ?
(γ)
NDTEM0 =

β v′S ′ − α v′θ′

β S z − α θz
+ O

(
ε∆2, ε3, ε2∆

)
. (B.10)

Recall that α and β are shorthands for α(S , θ, p) and β(S , θ, p)
respectively.

For the purpose of comparison we also employ the straight-
forward TRM form of the eddy streamfunction (McIntosh and
McDougall, 1996) using potential density,

ψ?
(σ)
TEM =

v′σ′

σz
+ O

(
ε3

)
, (B.11)

and using neutral density,

ψ?
(γ)
TEM =

v′γ′

γz
+ O

(
ε3

)
. (B.12)

These may be derived by substituting expressions (25) and (24)
for the isopycnal depth perturbation into (4c).
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