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Abstract 

 

Low-Dimensional Materials at the Nanoscale:  

Transition Metal Chalcogenides, Carbon Nanomaterials and Organic Semiconductors 

 

by 

 

Seita Onishi 

 

Doctor of Philosophy in Physics 

 

 University of California, Berkeley 

 

Professor Alex Zettl, Chair 

 

 

 

The overall theme of this dissertation is the electronic transport and electromechanical study of 

low dimensional materials at the nanoscale. The dissertation is divided into three parts based on 

the class of materials: I. collective ground states in ultrathin materials, II. carbon nanomaterials 

based nanomechanical resonators and III. organic semiconductors.  

 

In part I, the superconductivity and charge density waves in transition metal chalcogenides are 

introduced. Crystal synthesis of transition metal chalcogenides by chemical vapor transport is 

presented. The materials have quasi-low dimensional crystal structure: either quasi-two 

dimensional (e.g. NbSe2, TaS2, WTe2, FeSe) or quasi-one dimensional (e.g. NbSe3, TaS3, 

(NbSe4)3I). Monolayer NbSe2, grown by molecular beam epitaxy, shows a superconducting 

transition at Tc=2K and is studied down to 50mK with magnetic fields. The sliding charge 

density waves in NbSe3 nanoribbons are studied with narrowband noise, which directly probes 

the order parameter. A proposal to scale down the contactless conductivity measurement 

technique for nanoscale samples with lithographically fabricated planar coils is presented. 

 

In part II, microstructures of suspended carbon nanotubes and graphene are studied as 

nanomechanical resonators. Carbon nanotubes are clamped on one end and the other end is free 

to enable field emission. The field emission provides a means of electrical readout. Fabrication 

of carbon nanotube field emitting mechanical resonators on an integrated platform are explored. 

The platform is designed to allow the study of the nanomechanical motion across multiple 

characterization techniques. Graphene nanomechanical resonators are studied as a first step in 

the development of a microactuator-based platform to control strain fields in graphene. In 

particular, non-uniaxial strains for large pseudo-magnetic field effects are intended. 

 

In part III, organic nanowire formation with DPP-TPA molecules for use in photovoltaics is 

explored. The nanowire’s charge carrier mobility is characterized in a field effect transistor. In 

addition, the use of rubrene single crystals for the study of photophysics at the interface with 

novel acceptor molecules is explored.
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Introduction 
The understanding of how a large ensemble of atoms results in the physical properties of 

materials is one of the fundamental themes of condensed matter physics. The task is well 

articulated in what is often called Dirac’s challenge [1]: 

“The underlying physical laws necessary for the mathematical theory of a large 

part of physics and the whole of chemistry are thus completely known, and the 

difficulty is only that the exact application of these laws leads to equations much 

too complicated to be soluble. It therefore becomes desirable that approximate 

practical methods of applying quantum mechanics should be developed, which 

can lead to an explanation of the main features of complex atomic systems 

without too much computation.” 

Most macroscopic (“cm”-scale) objects, which are made of >1023 number of atoms, behave 

according to classical physics. The wavefunctions of atoms decohere over small length scales 

and at first glance, it appears the quantum mechanical effects are irrelevant, when the ensemble 

is viewed as a whole. However, collective ground states (e.g. superconductivity, charge density 

waves) is evidence that the laws of quantum mechanics is not trapped to the atomic length scale. 

The electrons in a material collectively behave as a quantum mechanical object, which results in 

the manifestation of very noticeable quantum mechanical effects at the “cm”-scale. In particular, 

when collective grounds states enable the transport of quasi-particles (e.g. zero resistance), the 

quantum mechanical transportation of energy and information is interesting for applications in 

technology. Intrigued by collective transport phenomena, this work focuses mainly on electronic 

transport in crystalline solids. 

Even, when restricted to crystalline solids, there is still a great variety in the possible crystal 

structure and combinations of elements. Their dimensionality is an attractive classification 

scheme for its simplicity. The behavior of collective ground states are heavily dependent on the 

dimensionality of the system. For example, the Aslamazov-Larkin equation (see section 1.1.1) 

successfully describes the effects of order parameter fluctuations in many superconductors [2]. 

The equation does not require any knowledge of the material’s crystal structure, except its 

dimension. If the anisotropy of the chemical bonds confine the electrons, such that it is 

effectively a sheet (wire), it is considered a 2D (1D) system. Often, the theoretical model is 

simpler in low dimensions. The exact solution for the Ising model of ferromagnetism was found 

for 1D in 1925 [3] and for 2D in 1944 [4]. Low dimensional systems are not simply cross-

sections of the 3D case and, for some cases, results in fundamentally different behavior. 

Electrons in 1D systems are expected to behave as a Luttinger liquid [5] rather than a Fermi gas 

in conventional metals. Theoretically, a metallic state of fermions should not exist in 2D but 

experimental observations of metallic states suggest the emergence of fundamentally different 

conduction mechanisms [6]. Hence, low dimensional systems have the potential to yield new 

electronic phases that do not occur in 3D materials. In particular, the driving mechanism of 

CDW (i.e. Peierls instability) is the strongest in 1D. It is also intriguing that the high Tc 

superconductivity occurs in cuprates, which have quasi-2D crystal structure. 

Theoretically, 1D systems are modeled as a chain of atoms (see Fig. 1-9). The experimental 

realization of a well-ordered chain of atoms, which are electronically decoupled from a substrate, 
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is highly challenging. Similarly, 2D systems are often modeled as sheets of atoms. Historically, 

three materials classes have emerged as promising systems for experimental studies: transition 

metal chalcogenides, carbon nanomaterials and solids organic molecules. In this section, the 

material classes are introduced in order of historical occurrence with the context of realizing a 

low dimensional system. This work studies each of the three materials classes through synthesis, 

device fabrication and electronic transport/electromechanical measurements to understand their 

strengths and weaknesses for the study of 2D and 1D systems. The low dimensional effects in 

some of the materials were studied predominantly before the availability of nanoscale 

characterization. Hence, the focus of this work will be on studying the materials from a 

nanoscale perspective. 

The diversity of carbon bonds (i.e. sp3, sp2 and sp1) [7] anticipates the creation of materials 

with much more complex structures than commonly found in binary and ternary compounds of 

other elements. The vast knowledge in organic chemistry enables molecular structures to be 

altered in steps to tune the electronic interactions. In 1964, Little [8] theoretically proposed that a 

polymer with the right interaction between the side-chain and the backbone, could realize 

superconductivity with Tc well above room-temperature. Organic charge transfer salts (e.g. TTF-

TCNQ) [9] were one of the first materials to experimentally realize the CDW state, which was a 

theoretical conjecture [10]. Two types of molecules, a donor and an acceptor, assemble into a 

crystal by charge transfer. The delicate sharing of charge between the acceptor and donor 

molecules results in the formation of a 1D conduction channel. Numerous members of this 

materials class enabled the experimental study of a rich spectrum of CDW and superconducting 

behavior.    

Blue bronzes (i.e. K0.3MoO3 and Rb0.3MoO3) followed the organic charge transfer salts as their 

inorganic analogs. Charge transfer with the MoO3 clusters create an atomic chain of alkali metal 

ions [10]. The drawback of the charge transfer salts is that charge transfer is crucial for both 

electronic confinement and structural support. Hence, any attempt to isolate the 1D conduction 

channel from the material would completely destroy it. In contrast, the atomic chains in 

transition metal trichalcogenides (e.g. NbSe3, TaS3) are weakly bound to the rest of the chains. 

Within each chain, the charge balance is satisfied and the inter-chain attraction is through weak 

van der Waals forces. These materials are quasi-1D, since they are technically an ensemble of 

chains and inter-chain interactions complicate the study of the single chain properties. 

Experimental techniques to isolate, identify and contact atomic chains need to be developed. A 

similar technical development was demanded for conducting polymers [11]. When measuring the 

conductivity of a collection of atomic chains, the measurement is complicated by the 

contributions of inter-chain hopping and the role of interaction with the chains running in parallel 

[12,13].  

An indirect way of extracting the role of inter-chain interactions is by reducing the sample size 

and studying the size dependence. At the nanoscale, the sample size becomes comparable to or 

below the critical length scales of some electronic states (e.g. correlation length for CDW). This 

approach is explored for NbSe3 in section 6.1. In addition, electron beam lithography can create 

contacts with nanoscale separation (typically ~100nm). Techniques to reach below this length 

scale is highly specialized and under development [14]. There could be 1D materials, which are 

too short to contact without nanofabrication but long enough to bridge across the nanofabricated 

contacts. Hence, advances in nanofabrication prompts for the search of 1D systems to be 

revisited at the nanoscale.       
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The discovery of carbon nanotubes enabled the study of materials at the true 1D limit. A single 

walled carbon nanotube can have diameters as small as 0.4nm [15]. The entire tube is a single 

molecule in that the carbon atoms are covalently bonded and electrons are delocalized across the 

whole tube. The large aspect ratio yields tubes long enough to bridge across lithographically 

fabricated contacts. The electronic transport in single walled carbon nanotubes show signatures 

of a Luttinger liquid, a uniquely 1D phenomenon [16]. Depending on the chirality of the tubes, 

single walled carbon nanotubes are semiconducting or metallic [15], which enables the study of 

materials with a variety of band structures at the true 1D limit. In addition, the semiconducting 

tubes are susceptible to the modulation of carrier concentration by electrostatic gating. 

The early studies of 2D systems were in thin films [17,18] and charges confined to 

heterostructure interfaces [19,20]. Similar to quasi-1D materials, these systems were bound to 

the substrate and could not be isolated. Transition metal dichalcogenides are layered materials, in 

which the inter-layer forces are weak. Many of the materials [21] (e.g. NbSe2, TaS2) support 

collective ground states with low dimensional effects (e.g. CDW and superconductivity with 

anisotropic properties). Most of the studies were in the quasi-2D regime, in which a stack of 

many layers were used. In principle, a single layer could have been extracted from the material 

without destroying it but a monolayer was not isolated [22].  

In 2004, graphene was isolated from the layered material, graphite [23]. Graphene is the truly 

2D limit of graphite since it is a one atom thick sheet of covalently bonded carbon atoms. 

Graphene exhibits quantum Hall effects similar to the heterostructure based systems [24]. The 

massless Dirac fermions emerging from graphene’s special band structure actually allow 

quantum Hall effect to be observed at room temperature, making the phenomenon more 

accessible. To clarify, the massless Dirac fermions are not a consequence of low dimensionality 

and could arise in a 3D system, as well [25]. In this sense, graphene is special for its band 

structure and not a representative 2D metal. Mechanical exfoliation (Scotch tape method [26]) 

and the study of layered materials at the ultrathin limit is found in older literature (e.g. ultrathin 

NbSe2 study in 1972 [22]) but a single atomic layer was not successfully isolated until graphene. 

The isolation of graphene is attributed to the combination of: 1) the Scotch tape method, 2) an 

ingenious way to identify thin films by optical interference [27] and 3) advances in 

micro/nanofabrication. 

Carbon nanomaterials (i.e. carbon nanotubes, graphene) are at the forefront in the effort to 

realize truly low dimensional materials. Their low dimensional behaviors are already confirmed 

by electronic transport. The natural next step in complication would be the study of other 

physical properties (e.g. optical [28,29] and thermal [30]). In particular, the combination of 

electrical conductivity and high Young’s modulus makes them interesting for electromechanical 

studies. Nanomechanical resonators of carbon nanomaterials have been demonstrated as 

sensitive probes for its mechanical properties [31–33]. For quasi-1D materials, the study of the 

Young’s modulus in TaS3 and NbSe3 [34] demonstrated that the CDW significantly impacts the 

mechanical properties. At the nanoscale, the CDW transition was detected in nanomechanical 

resonators of NbSe2 [35]. While carbon nanomaterials do not undergo CDW transitions, the 

electromechanical measurements could be an effective probe for their electronic states. The 

readout of a single electron spin with carbon nanotube nanomechanical resonators have been 

theoretically proposed [36]. The extreme mechanical strength of graphene allows it to be 

manipulated with large strains [37,38]. Through strain, the lattice parameter can be continuously 

tuned and, depending on the strain directions, even the lattice symmetry can be manipulated. 

While graphene is a 2D honeycomb lattice of carbon atoms, its manipulation with strain could 
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yield a whole spectrum of materials, which span different lattice constants and symmetries. To 

explore these prospects, this work studies the electromechanical properties of carbon nanotubes 

and graphene in Part II. 

Recently, monolayers of other layered materials have been isolated with mechanical 

exfoliation and 2D materials “beyond graphene” [39–41] has become a popular topic. The 

popularity is partly driven by the need for materials with band gaps to further scale down the 

semiconductor based electronic devices. For these purposes, semiconductors (e.g. MoS2 [42] and 

black phosphorous [43]) are interesting. From a low dimensionality perspective, metallic 

transition metal dichalcogenides (e.g. NbSe2, TaS2) are even more interesting. Neither graphite 

nor graphene do not possess collective ground states. Superconductivity was “induced” in them 

by proximity effects [44,45]. In contrast, the transition metal chalcogenides are rich with CDW 

and superconductivity phases in the bulk. The effect of approaching the monolayer limit in a 

layer-by-layer manner would provide great insight into the effect of dimensionality on the 

collective ground states. Many studies on the CDW at the monolayer limit have recently 

emerged [46–49]. For the study of CDW, the quasi-1D transition metal chalcogenides are 

distinct, as many of them support sliding CDW. A desirable extension of the CDW study at the 

monolayer limit is to study the CDW at the single chain limit of quasi-1D materials. If a sliding 

CDW persists to the single chain limit, both static and dynamic CDW properties could be 

studied. With the recently reported isolation of single chain TiS3 [50], similar interests in the 

field appear to be emerging. The study of collective ground states towards the atomic 2D and 1D 

limit of transition metal chalcogenides are discussed in Part I. 

Parallel to the developments in inorganic low dimensional materials, interest in organic 

semiconductors have recently emerged. The interest is driven by applications in flexible 

electronics and photovoltaics. Unlike the charge transfer salts, the molecules are not designed to 

be metals but semiconductors. The inter-molecular hopping of charge carriers are enhanced by 

increasing the  orbital overlap between molecules. To implement this strategy, there have been 

extensive studies to control the self-assembly of molecules to optimize the charge transport 

mechanism [51]. By tuning the steric interaction of the molecules with the selection of functional 

groups, the self-assembly can yield 1D nanostructures [52]. As the band gaps [53] and dielectric 

constants [54] of organic solids can be modified by slightly changing the functional groups, there 

is a potential to create a wide spectrum of 1D nanostructure of various electronic properties. A 

spectrum of materials would provide insight into the structure-property relationships, as the 

organic charge transfer salts have. It is of interest whether the enhancement of charge transport 

through  orbital overlap is enough to support delocalized transport across molecules. Attempts 

to create such a system is discussed in Part III.  
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Part I  
 

Collective ground states in ultrathin 

chalcogenides 
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1 Collective ground states in solids 

Electrical currents in a solid are carried by charge carriers that behave similarly to free charged 

particles in vacuum but are actually quasiparticles. Quasiparticles exist within a crystalline lattice 

and their free particle-like behavior is an emergent phenomenon [55] from the crystal structure. 

Unlike a free particle in a vacuum, there are bandgaps in a material, in which certain range of 

energy and momenta are forbidden for quasiparticles [56]. Although solids are composed of 

electrons, protons and neutrons, some materials yield exotic quasiparticles (e.g. fractional charge 

[19,20], massless Dirac fermions [57] and Weyl fermions [58,59]). It is interesting that emergent 

behavior allows the study of exotic particles at energy scales far below that of high energy 

particle physics experiments. 

A collective ground state forms, when bosonic quasiparticles (e.g. Cooper pairs [60]) emerge 

and condense to the ground state. Collective transport phenomena occur when the collective 

ground state is driven by an electric field and results in charge conduction. Compared to 

electrical conduction by electrons and holes, collective transport yields fundamentally different 

behavior, such as zero resistance and an interesting coupling of dc and ac response. 

The physical characteristics of the two examples of collective ground states: superconductivity 

and charge density waves (CDW) are introduced in this chapter. While collective transport in 

superconductors are well known, sliding CDW [10] is introduced as another example of 

collective transport. This chapter provides background for the subsequent chapters in Part I.   
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1.1 Superconductivity 

Superconductivity is characterized by zero electrical resistance and perfect diamagnetism 

(Meissner effect). Below the critical temperature (Tc), the electrons in a metal form pairs 

(“Cooper pairs”), which condense to a superfluid. In the first class of superconductors that were 

discovered, the mechanism for Cooper pair formation was the attraction between a pair of charge 

carriers mediated by phonons. This class of phonon-mediated superconductivity is well 

understood by BCS theory [61] and is called “conventional superconductivity”.  

There are superconductors, which cannot be explained by phonon-mediated pairing called 

“unconventional superconductors” [62]. Among unconventional superconductors, there are 

various classes of exotic superconductivity (e.g. cuprate, iron-based, heavy fermion and organic) 

and a single pairing mechanism does not necessarily apply to all of them. Fig. 1-1 shows a 

representative sample of superconductors. The superconductors are presented as a timeline as 

there have been extensive efforts to raise the Tc up to room temperature. The figure shows both 

conventional superconductors (circles) and unconventional superconductors (diamonds, stars and 

squares). The fullerene superconductors1 (triangles pointing down) and strongly covalent 

material based superconductors2 (triangles pointing up) cannot be definitively determined as 

conventional or unconventional at this point. The figure is not an exhaustive list3 of 

superconductors but illustrates some of the significant developments in the history of 

superconductivity research. In particular, many more conventional superconductors than those 

shown in Fig. 1-1 were discovered in the early years of superconductivity.  

                                                 
1 It is debated whether fullerene superconductors are unconventional, as the evolution of Tc with lattice parameter is 

consistent with phonon-mediated pairing but the normal state has a phase diagram similar to cuprates [280]. 
2 The applicability of phonon-mediated pairing is ambiguous [281] and there are suggestive data for unconventional 

superconductivity [282]. 
3 References to literature on many superconductors are compiled on the Superconducting Materials Database [283] 

and can be accessed free of charge. 
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1.1.1 Superconducting transition 

When a material undergoes a phase transition to a superconductors, its resistance drops to zero 

at T<Tc. Experiments on currents circulating in a superconductor indicate that the decay time is 

>100,000 years [63], implying that superconductors possess practically perfect conductivity.  

Fig. 1-2 schematically shows R(T) of a material when it undergoes a superconducting 

transition. Typically, the resistivity in metals settle to a temperature independent constant value 

(“residual resistivity”) at low T due to impurity scattering. For a superconductor, the resistance 

drops lower than the normal state resistance (Rn) and Tonset is the highest temperature at which 

this occurs, marking the onset of superconductivity. The transition width is the range of 

temperature from Tonset to Tzero, where the resistance reaches zero. The R(T) curve has an 

inflexion point at the middle of the transition, which defines Tc. Below Tc, the resistance 

gradually flattens to zero resistance. The finite resistance that persists for Tzero<T<Tc is caused by 

phase slip events [2]. The resistance drop at Tc<T<Tonset is driven by fluctuations of the 

superconducting order parameter [2]. In this temperature range, the whole sample is not yet 

superconducting but the dynamics of fluctuating superconducting domains result in excess 

conductivity. The temperature dependence of the fluctuation enhanced conductivity (SSC) 

depends on the dimensionality of the system, according to the Aslamazov-Larkin formula [64] 

 
Fig. 1-1 Timeline of superconductivity.  
Fig. 2.4, Jensen Ray Master’s thesis [286]. The left, vertical axis corresponds to the critical 

temperature (Tc). The bottom, horizontal axis corresponds to the year of discovery. The right 

vertical axis is marked with the boiling point of cryogens. Conventional superconductors 

(circles), cuprates (diamonds), heavy fermion superconductors (diamonds), fullerene 

superconductors (triangles pointing down), strongly covalent materials based 

superconductors (triangles pointing up) and iron-based superconductors (squares) are shown. 
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ΔSSC = t̅−(4−D)/2  Eq. 1-1 

where t̅ = (T − Tc)/Tc, the reduced temperature and D is the dimensionality of the system (i.e. 

D=1,2,3). The fluctuation enhanced conductivity is found from R(T) by 

ΔSSC =
1

R
−

1

Rn
 Eq. 1-2 

 
1.1.2 Magnetic properties of a superconductor 

When cooled to the superconducting state, the magnetic susceptibility of the superconductor 

drops to -1/4 [63] The Meissner effect should be distinguished from shielding, as it is often 

confused. According to Lenz’s law [65], all conductors responds to a change in magnetic flux 

with current flow, which sets up a magnetic field to counteract the change in flux. In the case of 

a normal metal, the current decays after the magnetic field reaches steady state. For a 

superconductor, the current continues to circulate without dissipation and shield the flux, even in 

the steady state. In contrast, the Meissner effect is caused by perfect diamagnetism without a 

time dependent magnetic field. Shielding and Meissner effect is distinguished by controlling 

when the magnetic field is turned on. Suppose a metal is cooled from the normal state (T>Tc) to 

the superconducting state (T<Tc). If the magnetic field is turned on after entering the 

superconducting state, the field is cancelled by shielding. If the magnetic field is turned on 

before entering the superconducting state, the superconductor does not see the change in flux 

because the field is already in the steady state before the transition. Instead, the flux is 

spontaneously expelled from the material during the superconducting transition. This effect 

 
Fig. 1-2 Resistive superconducting transition.  

R(T) of a system transitioning from the finite resistance (normal) state to the zero resistance 

(superconducting) state as it is cooled below Tc. Tc is defined as the inflection point in the 

middle of the transition. 



10 

 

cannot be explained by shielding and is called Meissner effect. The Meissner effect 

fundamentally distinguishes superconductivity from other zero resistance phenomena (e.g. 

ballistic transport). 

Superconductors fail to completely expel magnetic flux if the external magnetic field (Bext) is 

greater than a material dependent value called the critical field (Bc). The penetration of flux 

occurs in two different ways, depending on whether the superconductor is type I or type II. In 

type I superconductors, the superconducting state is completely destroyed when Bext>Bc and the 

material becomes a normal metal, despite T<Tc. In type II superconductors, the 

superconductivity is suppressed by a magnetic field in two stages. Above the lower critical field 

(Bc1), the material still exhibits zero resistance but flux lines penetrate the superconductor as 

vortices. As Bext is further increased, the density of vortices increase. At the upper critical field 

(Bc2), the vortices connect and the superconducting state is completely destroyed. 

Fig. 1-3 summarized the difference between type I and II. In both type I (Fig. 1-3a) and II (Fig. 

1-3b) the magnetization (M) decreases to a more negative value in response to increasing Bext for 

Bext<Bc and Bext <Bc1, respectively. M(B) is consistent with the diamagnetic response of a 

superconductor. For Bext>Bc in type I, M=0 immediately, indicating the complete penetration of 

flux. For Bext>Bc in type II, M approaches 0 slowly until it hits zero at Bext=Bc2. There is actually 

a third critical field Bc3 related to surface properties [66] but type II superconductors are 

primarily characterized by Bc1 and Bc2. For the development of electromagnets or power 

transmission lines, Bc2 is an important figure of merit, as it determines the highest achievable 

fields or currents [67]. 

There is a theoretical limit on the Bc, called the “Pauli paramagnetic” or “Chandrasekhar-

Clogston” limit [68,69] 

BP = 1.84Tc Eq. 1-3 

In Cooper pairs with singlet pairing, the particles in the pair have opposite spins. When a 

magnetic field is applied, one particle can align its spin to the field but its partner would have to 

anti-align its spin. For Bext>BP, Bext overcomes the Zeeman splitting energy and flips the sign of 

the anti-aligned spin. Altering the spin symmetry breaks the Cooper pair and the 

superconductivity is no longer sustained.  



11 

 

 
 

1.1.3 Conventional superconductors 

More than 27 elements in the periodic table are known to be superconductors and the list 

grows when elements, which become superconductors under high pressure [70] are included. As 

presented in the 1963 review by Matthias et al. [71], there are many compounds and alloys, 

which are conventional superconductors. In the review, many compounds, superconductors and 

non-superconductors, are sorted by their crystal structure and compared to form the basis of an 

empirical search rule for superconductors (“Matthias’ rule” [72]).  

Currently, the record for the highest Tc is held by H2S under pressure4 with Tc=203K [73]. 

Prior to the discovery, cuprates held the record for ~20 years (see Fig. 1-1). In the past, it was 

believed that there was a theoretical upper bound to the Tc in conventional superconductors 

based on the McMillan equation. As shown in Fig. 1-4, the McMillan equation (dotted line) 

saturates as the electron-phonon coupling () increases. However, according to Moussa and 

Cohen [74], the McMillan formula is valid for ≤1. The line, dashed line and dashed/dotted line 

are the results of using the correct Eliashberg Tc formula for large  with each corresponding to 

different assumptions for the phonon spectrum. The three lines both indicate that the upper 

bound for Tc continues to increase with the increase of . Hence, BCS superconductors with high 

Tc are theoretically possible. 

                                                 
4 H3S, which emerges from H2S at high pressure, has been found to be responsible for the high Tc from X-ray 

diffraction experiments [284]. 

 
Fig. 1-3 Critical fields of superconductors.  
Figure based on Fig. 4, Ch. 10, Kittel [287]. Magnetization (M) dependence on external 

magnetic field (Bext) of a) type I superconductor and b) type II superconductor.  
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1.1.4 Unconventional superconductors 

As shown in Fig. 1-1, the landscape of superconductors is rich with unconventional 

superconductors. The cuprates (diamond markers) have had a particularly strong impact on the 

field of superconductivity. The record Tc was rapidly increased to 93K by YBCO in 1987 [75]. 

At that time, the record Tc for conventional superconductors had remained at 23K in Nb3Ge for 

14 years. Since then, many cuprates with high Tc have been discovered and unconventional 

pairing mechanisms became a popular route towards high temperature superconductivity. 

However, the mechanism of Cooper pair formation in cuprates is still under debate [62]. As 

shown in Fig. 1-5, the physical picture of cuprates is complicated further by the rich phase 

diagram that contains exotic phases. 

More recently, iron-based superconductors were discovered. The discovery was unexpected as 

magnetism was believed to be detrimental to superconductivity [76]. Matthias’ rule advised to 

avoid magnetism [72] and many compounds containing iron exhibit magnetic phases. Currently, 

the highest Tc in iron-based superconductors has not exceeded the record Tc in cuprates. 

However, the comparison of iron-based superconductors with cuprates could refine the 

theoretical understanding of unconventional superconductivity. One interesting difference is that 

in the iron-based superconductor phase diagram, as shown in Fig. 1-6, the superconducting phase 

is directly next to the antiferromagnetic phase. 

 
Fig. 1-4 Theoretical bound of Tc at high   
Fig. 1, Moussa and Cohen [74]. The vertical axis is the critical temperature (Tc) divided by 

the phonon frequency (ph). The horizontal axis is the electron-phonon coupling (). The 

dotted line is the McMillan formula. The line is the upper bound for the Tc from the 

Eliashberg equation corresponding to infinite phonon hardening. The dashed (dashed/dotted) 

line is the upper (lower) bound corresponding to more extensive theoretical considerations.  
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Fig. 1-5 Schematic phase diagram of cuprates.  
Fig. 3A, Norman [62]. 

 

 

Fig. 1-6 Phase diagram of the iron-based superconductor Ba(Fe1-xCox)2As2.  

Fig. 4B, Norman [62]. 
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1.1.5 Two-dimensional superconductivity 

Fig. 1-7 shows the change in R(T) of a bismuth film as the film thickness is changed [17]. For 

the thinnest film, the sheet resistance is highest and R(T) shows thermally activated behavior of 

an insulator. For thinner films, the sheet resistance is lower. Below R=h/4e2=6.45k, R(T) 

switches to superconducting behavior, marked by sharp drops to zero. Interestingly, there is no 

metallic state between the insulating and superconducting states. A metallic state would result in 

R(T), which extrapolates to R(T=0)=0 or saturate to a finite value as T→0 but such states cannot 

be found in Fig. 1-7. The “superconductor-insulator transition” (SIT) [17] has been seen in many 

two-dimensional systems. 

Magnetic fields also drive the SIT by quenching the superconducting state in 2D 

superconductors [18]. Fig. 1-9 shows the R(T) switches from a superconducting to thermally 

activated behavior, as the magnetic field is increased. Interpretation is complicated by the 

existence of parallel channels of “fermionic excitations” [18] but SIT behavior in this system was 

supported through analysis of how R scales with B and T.  

It was expected that the electrons in 2D systems either localize to yield insulators or condense 

to a superconducting state and a metallic state should not exist. However, there have been 

experimental observations of intervening metallic states in SIT, which has been challenging 

theoretical understanding [6]. Recently, with the possibility of isolating ultrathin layers of 

superconductors from layered materials, the study of two-dimensional superconductivity has 

experienced a re-emergence of interest [77].    
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Fig. 1-7 Disorder driven SIT.  
Fig. 1, Haviland, Liu and Goldman [17]. SIT tuned by sheet resistance. From the top to 

bottom curve, bismuth film thickness varies from 4.36Å to 74.27Å. 
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Fig. 1-8 Magnetic field driven SIT.  
Fig. 1, Yazdani and Kapitulnik [18]. SIT tuned by magnetic field in MoGe film. In the main 

panel, from the top to bottom curve, magnetic field varies from 0.6T, 0.55T, 0.45T, 0.44T, 

0.40T, 0.30T, 0.20T, 0.10T, 0.05T and 0T. 
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1.2 Charge density wave (CDW) 

When a material is cooled below the transition temperature (TP) to the CDW state, the charge 

density spontaneously distorts to produce a periodic lattice with a new periodicity, which appears 

as a peak in a diffraction pattern. The emergence of a CDW superlattice in real space has been 

confirmed by scanning tunneling microscopy [78]. In a material with atomic lattice spacing a, 

the CDW wavelength  could be either commensurate (/a is a simple rational fraction) or 

incommensurate (/a is not a simple rational fraction) [10]. For example, the CDW in 1T-TaS2 is 

incommensurate at high temperature and commensurate at low temperature [79].  

The CDW transition is driven by instabilities in the electron-phonon coupling, which occur for 

low dimensional systems. CDW occur in quasi-1D (e.g. NbSe3 [80]) and quasi-2D (e.g. NbSe2 

[81]) materials where anisotropies in bonding configuration causes a quasi-low D electronic 

structure. Compared to superconductors, many CDW materials are more robust against thermal 

fluctuations. For example, the NbS3 has a CDW transition at around 620-650K [82]. 

The emergence of a new periodicity by the CDW opens a bandgap at the Fermi level. The 

CDW transition is a metal-insulator transition, where the system is a metal for T>TP and 

insulator for T<TP. However, a real material might not be a pure insulator, even at T<TP, due to 

ungapped portions of the Fermi surface. The CDW is normally pinned relative to the atomic 

lattice of the material. However, in some materials, the CDW can be made to slide with an 

electric field above a certain threshold field (ET). The sliding CDW results in excess 

conductivity, which adds to the ohmic response of the material, and the makes the I(V) curve 

nonlinear. The sliding CDW is found mostly in quasi-1D materials and rarely occurs in quasi-2D 

materials (see Table 2-1).   

 

1.2.1 Low dimensional effects 

Suppose there is a one dimensional chain of atoms, which are spaced evenly at a distance of a 

from each other. Fig. 1-9a shows a 1D metal, where the charge distribution is uniform along the 

chain. At low-D, this configuration is actually unstable against a spatially periodic perturbation 

with wave vector q=2kF. Fig. 1-9b shows the electrons spontaneously bunch up with their nearest 

neighbors and form a chain of spacing 2a. This distortion of the lattice is called “Peierls 

distortion”. The charge distribution is no longer uniform and fluctuate periodically along the 

chain as a “charge density wave” (CDW). The new 2a periodicity of the distorted lattice results 

in a bandgap formation at the Fermi surface and the system becomes an insulator.  

The instability against q=2kF perturbations can be justified by the dimensional dependence of 

the Lindhard response function F(q) [78]. To illustrate the dimensional dependence, the 

derivation by Mihaila [83] is partially reproduced below. The potential Φ𝑒𝑥𝑡(𝒓, 𝜔) due to an 

external field on a collection of charges induces a field, which gives rise to a potential 

Φ𝑖𝑛𝑑(𝒓, 𝜔). The total potential of the system is 

Φ𝑡𝑜𝑡(𝒓, 𝜔) = Φ𝑒𝑥𝑡(𝒓, 𝜔) + Φ𝑖𝑛𝑑(𝒓, 𝜔) Eq. 1-4 

The total, external and induced charge distribution also follow a similar relationship. 

ρ𝑡𝑜𝑡(𝒓, 𝜔) = ρ𝑒𝑥𝑡(𝒓, 𝜔) + ρ𝑖𝑛𝑑(𝒓, 𝜔) Eq. 1-5 

The potential and the charge distribution are related by the Poisson equation. 
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−∇2Φ𝑡𝑜𝑡,𝑒𝑥𝑡 𝑜𝑟 𝑖𝑛𝑑(𝒓, 𝜔) = 4𝜋ρ𝑡𝑜𝑡,𝑒𝑥𝑡 𝑜𝑟 𝑖𝑛𝑑(𝒓, 𝜔) Eq. 1-6 

From a linear response approximation 

𝜌𝑖𝑛𝑑(𝒓, 𝜔) = 𝑒2 ∫ 𝑑D𝑟′𝜒(𝒓, 𝒓′, 𝜔)Φ𝑡𝑜𝑡(𝒓′, 𝜔) Eq. 1-7 

For a fermion gas at the static response limit, the response function 𝜒(𝒓, 𝒓′, 𝜔) in momentum 

space is called the Lindhard response function 𝐹(q) = −𝜒(q, 𝜔 = 0), 

𝐹(q) = 2 ∫
𝑑Dk

(2𝜋)D

𝑓𝐤+𝐪 − 𝑓𝐤

ϵ𝐤+𝐪 − ϵ𝐤k≤kF

 Eq. 1-8 

where f is the Fermi-Dirac function and ϵ is the energy. For dimensions D=1, 2 and 3, 

𝐹D=1(q) =
2kF

𝜋ϵF

1

2q
log |

1 +
1
2

q

1 −
1
2 q

| Eq. 1-9 
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Eq. 1-10 

𝐹D=3(q) =
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1
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1 −
1
2 q

|] Eq. 1-11 

Fig. 1-10 shows F(q) for D=1, 2 and 3. Each curve is normalized by F(0) for comparison. At q = 

2kF, the function becomes more mathematically well-behaved as D increases: there is a 

divergence for D=1, a discontinuity for D=2 and a continuous function at D=3. Hence, a 1D 

system is most unstable to perturbations of periodicity q=2kF. 

Materials with quasi-2D structure have been experimentally discovered but cannot be 

completely explained by the Peierls distortion, since Eq. 1-10 does not diverge. The general form 

of the Lindhard response function (Eq. 1-8), suggests a divergence at ϵk+q = ϵk. This occurs 

when parts of the Fermi surface run parallel to each other and is called Fermi surface nesting. For 

2D systems, it is generally believed that nesting drives the system to a CDW transition. 

However, many of the experimental reports are inconsistent with this model and the mechanism 

is still under debate [84]. For example, NbSe2 has been studied as a prototypical 2D CDW 

material but the size and location of the energy gap and nesting vectors still do not agree well 

with theory. Alternative CDW mechanisms such as saddle point [85] and electron-phonon 

coupling [86] have been proposed.  
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Fig. 1-9 Peierls distortion of 1D electron gas.  
Fig. 2.1, Grüner and Zettl [10]. Position of the atoms, charge distribution and band structure 

for a) before Peierls distortion and b) after Peierls distortion. 
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1.2.2 Sliding CDW 

In the CDW state, the charge density  is modulated in space as [10] 

𝜌(𝑥) = 𝜌0 cos(2kF𝑥 + 𝜙) + const Eq. 1-12 

As the energy does not depend on the phase of the wave (, the CDW could slide without 

dissipation. Fröhlich proposed conduction by sliding CDW as a possible mechanism for the zero 

resistance in superconductivity [87] but the model did not account for the Meissner effect 

[88,89]. Experimentally, sliding CDW has been observed but only when driven by electric fields 

greater than a threshold field (ET) because the CDW is pinned by defects for E<ET [10]. It is 

believed that the unavoidable presence of defects has so far prevented the realization of the 

perfect conductivity for sliding CDW.  

Sliding CDW has been experimentally observed in only a special subset of materials with 

CDW transitions [10,78] (see Table 2-1). In the rest of the CDW materials, the CDW is believed 

to be either impossible to depin or ET lies beyond the experimentally testable range. At this 

point, it is unknown whether all CDW states are capable of sliding, when driven with a high 

enough electric field, or there are inherently “static” CDW. The majority of the materials with 

sliding CDW have a quasi-1D crystal structure (e.g. NbSe3, TaS3). Generally, it is believed that 

the pinning is stronger in 2D systems and hinders sliding. However, sliding CDW have been 

discovered recently in quasi-2D materials [90]. 

 
Fig. 1-10 Dimensional dependence on the Lindhard dielectric function.  
Fig. 1, Mihaila [83]. Lindhard response function F(q) is plotted for dimensions D=1 (Eq. 1-9 

with blue, short dashed line), D=2 (Eq. 1-10 with red, long dashed line) and D=3 (Eq. 1-11 

with black, solid line). F(q) is normalize by F(0) and q (horizontal axis) is in units of kF. 
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1.2.2.1 Experimental signatures of sliding CDW 

An experimental signature of a sliding CDW is the appearance of non-linearity in the I(V) 

curve, which exceeds the linear ohmic behavior at high voltage bias. The dc conductivity follows 

the empirical formula 

σtotal = σA + σB (1 −
ET

E
) exp (−

E0

E − ET
) Eq. 1-13 

where A is the ohmic component and B and E0 are free parameters. In Fig. 1-11, the current 

(triangles, right axis) is plotted against the electric field, obtained by dividing the bias voltage by 

the contact separation. The I(E) curve is practically the same as an I(V) curve. The curve is linear 

below E<ET=5.2mV/cm but grows super-linearly with E for E>ET due to the added contribution 

from the sliding CDW. The differential resistance (dV/dI) is shown in the same graph (circles, 

left axis). This quantity is commonly measured directly by a lock-in amplifier. The derivative is 

more sensitive to non-linear effects and enables measurement with a lower current through the 

sample. Heating effects need to be minimized as it also results in a super-linear increase in 

conductivity with field. Consistent with the I(V) curve, dV/dI is flat for E<ET and decreases by 

more than 50% as E is increased above ET.  

Sliding CDW leads to conduction, despite the system being in an insulating CDW state at 

T<TP. Another possible interpretation is that the CDW state is destroyed for E>ET and the 

conduction is recovered from closing the CDW energy gap. In Fig. 1-12, (T) for T = 60~30K 

exhibits an anomaly, where the resistivity ( increases with cooling. The anomaly is caused by 

the CDW opening an energy gap at the Fermi level and decreasing the number of carriers 

available. The anomaly is more suppressed for j = 11.6A/mm2 (open circles) than for j = 

0.116A/mm2 (filled circles) because the high current excitation biases the sample with E>ET. The 

suppression of the CDW signature in  at E>ET might be interpreted as the suppression of the 

CDW order parameter itself. However, the X-ray diffraction peak from the lower CDW 

superlattice, is the same for low and high current bias in Fig. 1-12. The normalized temperature 

evolution of the lower CDW is similar to that of the upper CDW, which means the CDW order 

parameter is unaffected by the strength of the electric field [91]. The X-ray diffraction result is 

strong evidence for a sliding CDW. 
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Fig. 1-11 Non-linear I(V) curve of sliding CDW in NbSe3.  
Fig.5.2b, Grüner and Zettl [10]. Current (right axis) and normalized differential resistance 

(left axis) response to the electric field (bottom axis) from a dc bias voltage. T=51K, below 

the lower CDW transition temperature in NbSe3 (TP2=59K). Non-linearity appears at E>ET 

for the current and E>E0 for the differential resistance. 
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Fig. 1-12 Temperature dependence of X-ray peak intensity for CDW in NbSe3.  
Fig. 2, Fleming et al. [91]. Peak intensities from X-ray diffraction corresponding to the upper 

CDW transition (triangles) and lower CDW transition (circles). The points corresponding to 

the pinned CDW (solid circles) and sliding CDW (open circles) follow the same temperature 

dependence. Inset: temperature dependence of resistivity.  
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1.2.2.2 Threshold field 

For E<ET, the CDW is pinned by impurities and the type of pinning is divided into strong and 

weak pinning. The phase correlation length L0 is defined as [10] 

〈𝜙(𝑥)𝜙(0)〉~exp (−
𝑥

L0
) Eq. 1-14 

where (x) is the phase of the CDW at position x. For strong pinning, L0 is the average distance 

between the impurities. For weak pinning, L0 is much larger than the average distance between 

the impurities, as the CDW adjusts its phase to minimize energy over multiple impurities. The 

threshold field increases with the impurity concentration (ni). For weak pinning, 

ET~𝑛𝑖
2 Eq. 1-15 

For strong pinning, 

ET~𝑛𝑖 Eq. 1-16 

Fig. 1-13 shows the temperature dependence of ET in NbSe3. ET is determined either from 

dV/dI measurements similar to Fig. 1-11 or the onset of narrowband noise (see section 1.2.2.3). 

For the upper CDW, E0(T) from Eq. 1-13 is shown, as well. Comparison with R(T) (dashed line), 

shows that the ET(T) curve on the right corresponds to the upper CDW transition and the curve 

on the left to the lower CDW. When cooled below TP, both the upper and lower ET(T) first dip 

down to a minimum value and gradually increase again when cooled further. ET(T) for other 

materials (e.g. TaS3, NbS3, (TaSe4)2I, NbSe4)3.33I and K0.3MoO3) shows the same general trend 

[10]. ET diverges as T → TP from T<TP due to . The dependence of ET on  is determined by 

the tradeoff between the CDW strain (~and the impurity interaction strength (~. The 

difference in scaling leads to the divergence of ET as  collapses while approaching TP. 

The theoretical explanation for the increase of ET as T → 0 is still under debate. Two models 

and their comparison to experimental data have been discussed by McCarten et al. [92]. In the 

model by Maki and Virosztek [93,94], the thermal fluctuation of the CDW order parameter at 

finite temperature weakens the coupling of the CDW to the pinning potential. Hence, the CDW 

is pinned the strongest at T=0 and the pinning is weakened as the thermal fluctuation effects 

become stronger at higher temperature. In the model by Lee and Rice [95], ET(T) is attributed to 

the temperature dependence of the carriers in the CDW state (nc). At finite temperature, 𝑛𝑐 →

𝑛𝑐
𝑒𝑓𝑓

 by the interaction of the CDW condensate and normal carriers. ET is affected by the 

variation in charge density, as the force on the CDW condensate varies as FCDW = 𝑒𝑛𝑐
𝑒𝑓𝑓

E and 

the model predicts ET(T)~
1

𝑛𝑐
𝑒𝑓𝑓

(T)
. When compared with experiment [92], 𝑛𝑐

𝑒𝑓𝑓
(obtained from 

narrowband noise measurements) reached a maximum at the middle of the CDW transition and 

decreased as T → 0 but  
1

𝑛𝑐
𝑒𝑓𝑓

(T)
 did not exactly match the ET(T) data. 
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Fig. 1-13 ET(T) of bulk NbSe3.  
Fig. 5.3, Grüner and Zettl [10]. ET from the upper and lower CDW are determined by dV/dI 

measurement (triangles) and onset of narrowband noise (circles). E0(T) for the upper CDW 

shows a similar temperature dependence as ET. The dotted line is R(T), showing the resistive 

anomalies from the upper and lower CDW.  
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1.2.2.3 ac response 

The CDW conduction is also strongly frequency dependent, which has been observed 

experimentally in multiple materials [10]. The system behaves similar to a semiconductor with 

an energy gap ℏ𝜔0, where 0 is associated with pinning potential. For 𝜔 > 𝜔0, the conductivity 

increases with frequency, consistent with [10] 

Re σac(ω) =
𝑛𝑐𝑒2𝜏

𝑚∗

𝜔2/𝜏2

(𝜔0
2 − 𝜔2)2 + 𝜔2/𝜏2

 

Eq. 1-17 

Im σac(ω) =
𝑛𝑐𝑒2𝜏

𝑚∗

(𝜔0
2 − 𝜔2)𝜔/𝜏2

(𝜔0
2 − 𝜔2)2 + 𝜔2/𝜏2

 

where nc is the density of carriers condensed in the CDW state,  is the CDW damping time 

constant and m* is the effective mass of the CDW. For 𝜔 < 𝜔𝑇, there is no frequency 

dependence but the dielectric constant is strongly enhanced by the CDW (e.g. 2 × 108 in NbSe3 

at T = 42K)  [10]. The dielectric constant in the static limit is 

ε1(𝜔 → 0) = 1 +
4𝜋𝑛𝑐𝑒2

𝑚∗𝜔0
2  Eq. 1-18 

0 increases with impurity concentration (ni), as denser impurity means a traveling CDW 

encounters them with higher frequency. Hence, ε1(𝜔 → 0) decreases as ni increases. In contrast, 

ET increases as ni increases. The product of the two are actually independent of ni [10] 

ε1𝐸𝑇 = 0.58𝑛𝑐𝑒𝜆 Eq. 1-19 

Another characteristic ac response of the CDW is narrowband noise. Sliding CDW emit an ac 

signal, which is narrowly centered at a specific frequency, called “narrowband noise” [10]. 

Interestingly, a material under dc bias results in the emission of an ac signal. Although the exact 

origin of the narrowband noise has not been revealed, it is believed to be generated by the 

interaction of the sliding CDW and the pinning potential. Fig. 1-14 shows the noise spectrum of 

NbSe3. At zero bias (Fig. 1-14e), the noise spectrum does not show any peak. However, when 

driven with E>ET (Fig. 1-14a-d), the system shows narrowband peaks in the noise spectrum. The 

fundamental frequency and its harmonics can be clearly seen and the narrowband noise shifts to 

higher frequency as the excitation is increased. 

As shown in Fig. 1-15, there is a linear relationship between the narrowband noise frequency 

and the current carried by the sliding CDW. Denoted as ICDW or JCDW for current density, this 

quantity is measured by subtracting the ohmic contribution of the normal carriers from the 

current under E>ET. The relation can be rationalized from  [10]  

ICDW = 𝑒𝑛𝑐A𝑣𝑑 Eq. 1-20 

where A is the cross-sectional area of the materials and vd is the drift velocity of the CDW. 

Given the narrowband noise frequency (fNBN) and the wavelength of the pinning potential (𝜆̅), we 

can substitute 𝑣𝑑 = fNBN𝜆̅ 

ICDW = 𝑒𝑛𝑐AfNBN𝜆̅ Eq. 1-21 

The ratio ICDW/fNBN is proportional to nc, the number of carriers condensed in the CDW state. 

As nc~ the CDW order parameter [96], narrowband noise measurements provides a direct 

probe of the order parameter. Fig. 1-16 shows the amplitude of the X-ray diffraction peak 
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corresponding to the lower CDW in NbSe3 (asterisks). The X-ray amplitude, and hence  grows 

as the material is cooled below the transition temperature and the BCS gap equation fits the data 

well near the transition temperature. When plotted together, ICDW/fNBN (open circles), shows a 

similar temperature dependence.  

 

 

Fig. 1-14 Narrowband noise of bulk NbSe3.  
Fig. 5.10, Grüner and Zettl [10]. Noise spectrum of NbSe3 with currents and voltages (a) 

I=270A, V=5.81mV; (b) I=219A, V=5.05mV; (c) I=154A, V=4.07mV; (d) I=123A, 

V=3.40mV; (e) I=V=0. 
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Fig. 1-15 Narrowband noise frequency vs JCDW of bulk NbSe3.  
Fig. 5.13, Grüner and Zettl [10]. JCDW is the current density corresponding to the excess 

current due to sliding CDW. F1 is the fundamental frequency of the narrowband noise. 
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Fig. 1-16 CDW order parameter evolution with temperature.  
Fig. 5.16, Grüner and Zettl [10]. ICDW is the excess current from sliding CDW and f1 is the 

fundamental narrowband noise frequency. X-ray amplitude is amplitude of X-ray diffraction 

peak corresponding to the CDW state. The BCS gap equation describes the temperature 

dependent evolution of the CDW order parameter. 
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2 Transition metal chalcogenides 

Compounds formed by transition metals (e.g. molybdenum, tantalum, tungsten and niobium) 

and chalcogens (e.g. sulfur, selenium and tellurium) are called transition metal chalcogenides 

(TMC). Denoting M for transition metal and X for chalcogen, compounds belonging to MX, MX2, 

MX3 and MX4 are discussed in this chapter. TMC form quasi-low D materials with highly 

anisotropic electronic structure [97]. The TMC introduced here possess interesting electronic 

states (e.g. superconductivity, CDW, Weyl fermions), which are summarized in Table 2-1.  

In quasi-2D crystals, the atoms form layers, which stack along an axis perpendicular to the 

layers. The chemical bonds are strong covalent bonds in the plane of the layers but weak van der 

Waals bonds perpendicular to the layers. As the bonding between the layers are weak, quasi-2D 

crystals are easily cleaved parallel to the layers, analogous to peeling off sheets from a stack. 

Most quasi-2D TMC are MX2 (e.g. NbSe2, TaS2, WTe2), but a MX (i.e. FeSe) is introduced as 

well. 

In a quasi-1D crystals, the atoms form chains, which run parallel to each other. The chemical 

bonds are strong covalent bonds along the length of the chains but are weak van der Waals bonds 

between neighboring chains. Similar to quasi-2D materials, the weak inter-chain bonding allows 

the crystal to cleave easily along the chain to yield bundles of fewer chains [50]. Quasi-1D 

materials with MX3 (e.g. NbSe3, TaS3) and MX4 (e.g. (NbSe4)2I, (NbSe4)3I, (NbSe4)3.33I) formula 

are introduced in this chapter. 

It could be argued that the quasi-low D materials are not truly low-D systems because some 

electronic interaction between the layers/chains take place. Recently, many studies have focused 

on studying them in the ultrathin limit, towards truly low-D effects, and some background on the 

topic will be introduced in this chapter.  
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 Material 
Characteristic 

transition/electronic state 

Transition 

temperature (K) 
Q

u
as

i-
2
D

 

2H-NbSe2 

CDW TP=33 

Superconductivity Tc=7.2 

1T-TaS2 

Incommensurate CDW TP~352 (warming) 

Nearly commensurate CDW 
TP~348 (cooling) 

TP~240 (warming) 

Commensurate CDW TP~140 (cooling) 

1T’-WTe2 

Extreme magnetoresistance Note1 

Insulating state 
T*=38 at B=2T 

(‘turn on’ temperature) 

FeSe Superconductivity Tc=8 

Q
u
as

i-
1
D

 

NbSe3 

Sliding CDW TP1=144 

Sliding CDW TP2=59 

TaS3  

(orthorhombic) 
Sliding CDW TP=215 

TaS3    

(monoclinic) 

Sliding CDW TP1=240 

Sliding CDW TP2=160 

(TaSe4)2I Sliding CDW TP=265 

(NbSe4)2I Sliding CDW TP=210 

(NbSe4)3I Ferrodistortive, structural Tstructural=274 

(NbSe4)3.33I Sliding CDW TP=285 

Table 2-1 Summary of quasi-low materials.  
Note 1: It is unclear whether WTe2 transitions to extreme magnetoresistance from a 

“normal” state at a certain temperature.  
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2.1 Quasi-2D Materials (stacked sheets) 

As illustrated5 in Fig. 2-1a, quasi-2D TMC have a layered crystal structure. In graphite and 

hexagonal boron nitride (h-BN), each layer is one atom thick [23,98]. For TMC, each layer is 

three atoms thick: a plane of transition metals is sandwiched by chalcogen atoms from top and 

bottom, as shown by the side view of one layer in Fig. 2-1b. The transition metals do not directly 

bond to each other but are held in place by bonding with the chalcogen atoms in between. In 

most quasi-2D TMC (e.g. NbS2, NbSe2, TaS2, TaSe2, MoS2, WS2 [99]), the atoms from MX2 

layers with the crystal structure shown in Fig. 2-1b,c. When one layer is isolated and viewed 

from the top, the atoms form a hexagonal lattice which resembles h-BN. However, it should be 

noted that the bonding configuration is very different because the small, green spheres represent 

the top and bottom chalcogens. Two of the materials discussed in this chapter are exceptions to 

the rule above: WTe2 forms MX2 layers but do not form the hexagonal lattice and FeSe form MX 

layers. 

 
  

                                                 
5 Figure created by free and open source 3D graphics software Blender (https://www.blender.org/). 

 
Fig. 2-1 Crystal structure of MX2.  
Small, green spheres are chalcogen atoms (e.g. sulfur, selenium) and large, purple spheres are 

transition metal atoms (e.g. tantalum, sulfur). a) Stack of four tri-atomic layer sheets. b) 

Orthographic side view of one sheet of tri-atomic layer. c) Orthographic top view of one 

sheet of tri-atomic layer.  
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2.1.1 Polytypes 

Polymorphism is commonly known as the existence of different crystal structure for an 

element or a compound. Polytypes are a subset of polymorphs, in which the crystals vary along 

only one dimension [100]. Specifically, this is realized in layered materials with sheets that stack 

differently. The variation is illustrated in Fig. 2-2 and depends on alignment of the metal atoms 

between stacked sheets and bonding configuration with the chalcogens (octahedral or trigonal). 

Polytypes are commonly referred with Ramsdell notation [100], consisting of the number of 

layers in the unit cell and the lattice type (e.g. 2H(a), 1T). In Fig. 2-2, the symmetry group (e.g. 

D6h
4, D3d

3) for each polytype is shown as well. As exemplified by TaS2, electronic properties 

differs significantly between polytypes. 

 
2.1.2 NbSe2 

Niobium diselenide (NbSe2) consists of MX2 layers shown in Fig. 2-1b,c with niobium for the 

transition metal (large, purple spheres) and selenium for the chalcogen (small, green spheres). 

The 2Ha stacking has been the most widely studied and easily obtained polytype of NbSe2 (see 

Fig. 2-2). In the discussion below “NbSe2” refers to 2Ha-NbSe2. NbSe2 at the ultrathin limit is 

discussed in chapter 5. 

NbSe2 is a metal with CDW transition at TP=33K. Fig. 2-3 show the signatures of the CDW 

transition in R(T) and heat capacity measurement. The resistivity increases slightly when the 

sample is cooled below TP=33K but metallic behavior persists with further cooling. Since the 

CDW is a metal-insulator transition, the resistivity should continue to increase with cooling 

below TP. In NbSe2, only a small portion of the Fermi surface is gapped by the CDW and the rest 

 
Fig. 2-2 Polytypes of MX2.  
Fig. 1, Wilson et al. [106]. Side view of unit cell. Open circle represents chalcogen atom. 

Solid circle represents transition metal atom. Each polytype is labeled by Ramsdell notation 

[100] and space group. 
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remains metallic. The CDW resistive anomaly is detectable in only high quality samples with 

residual resistivity ratio >30 [101]. The mechanism of the CDW transition in NbSe2 has been 

extensively studied but is still debated [49]. 

NbSe2 is superconducting below Tc=7.2K, as indicated by the sharp drop in resistivity. Other 

MX2 (i.e. MoS2 and TaS2) need to be intercalated with dopants to become a superconductor but 

NbSe2 does not require doping [102]. Due to its layered structure, Bc2 is highly anisotropic and 

Bc2
∥ > Bc2

⊥  [103]. The coherence length is typically calculated from Bc2 with the Ginzburg-

Landau equation. For NbSe2, the theory is inconsistent with the experimentally observed 

temperature dependence of Bc2
∥ /Bc2

⊥  [104]. The Doniach-Lawrence model is commonly applied 

to layered superconductors but Toyota et al. [105] have argued that the interlayer coupling is too 

strong to be Josephson coupling. 

 

 
2.1.3 TaS2 

Tantalum disulfide (TaS2) consists of layers with MX2 structure shown in Fig. 2-1b,c. Various 

polytypes of TaS2 (e.g. 1T, 4Hb, 6R) have been studied [106], but we focus on 1T-TaS2. 1T-TaS2 

exhibit characteristic hysteretic CDW transition [107]. Fig. 2-4 shows R(T) of 1T-TaS2. On 

cooling from 400K, the resistivity rapidly increases at T=350K and T=240K. On warming from 

low temperature, the resistivity drops at T=140K and T=350K. For standard CDW anomalies, 

the CDW transition should occur at the same temperature on cooling and warming. In contrast, 

1T-TaS2 has a 5K wide hysteresis loop centered at 350K and a 100K wide loop at 190K. 

 
Fig. 2-3 R(T) and C(T) of 2H(a)-NbSe2.  
Fig. 2, Harper et al. [81]. 

 



35 

 

Scanning tunneling microscopy studies show that the hysteresis is caused by transitions between 

the incommensurate, “nearly commensurate” and commensurate phase. 

In ultrathin 1T-TaS2, TP have been reported to vary with thickness and charge carrier density 

[47,108]. In addition, ultrathin 1T-TaS2 becomes superconducting when tuned to high carrier 

density with liquid gating [108] (see section 6.2).    

 

 

Fig. 2-4 R(T) of 1T-TaS2.  
Fig. 3, Thompson et al. [107]. Arrows on the curve indicate direction of temperature change. 
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2.1.4 WTe2 

WTe2 forms MX2 layers but occurs as the distorted 1T (1T’) polytype [109]. When a standard 

MX2 layer is viewed from the top (see Fig. 2-1c), the metal atoms form a hexagonal lattice. Fig. 

2-5 shows the tungsten atoms in 1T’-WTe2 bunch up with their neighbors and form a chain of 

tungsten atoms, which run along the MX2 layer. 

WTe2 has been known as a semimetal since 1966 [110]. Recently, high quality crystals 

exhibited interesting magnetoresistance effects. In typical metals, the resistance increases with 

the application of a magnetic field but saturates above a specific field [111]. In WTe2, the 

resistance continues to increase, even when the field is as high as 60T [112]. Fig. 2-6 shows R(T) 

of WTe2, which is metallic with no magnetic field. When a magnetic field is applied 

perpendicular to the layers, R(T) switches to thermally activated behavior below the ‘turn on’ 

temperature (T*). As shown in the top inset, T* increases linearly with magnetic field. This 

behavior is seen in other materials, such as Cd3As2, PtSn4 and LaSb, and classifies WTe2 as an 

extreme magnetoresistance material [113]. 

After the discovery of Weyl semimetals in TaAs [59,113], Soluyanov et al. [114] predicted 

WTe2 to be a type II Weyl semimetal, in which Weyl nodes occur at the intersection of electron 

and hole pockets. Subsequently, Fermi arcs were experimentally observed in WTe2 [115]. Due to 

the topologically protected close interaction of top and bottom surfaces of a Weyl semimetal, the 

interlayer interaction in WTe2 is of special interest. Comparison of the carrier effective mass at 

B∥ and B⊥ showed that they only differed by a factor of 2 at T>100K, despite being a layered 

material [116].

 

 

Fig. 2-5 Crystal structure of WTe2.  
Fig. 1a, Ali et al. [112]. Left: side view. Right: top view of only the tungsten atoms. 
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2.1.5 FeSe 

Unlike other transition metal chalcogenides, FeSe forms MX layers, as shown in Fig. 2-7a. In 

MX2 layers, one chalcogen atom bonds to three neighboring metal atoms, whereas in MX layers, 

one chalcogen atom bonds to four neighboring metal atoms. Viewing from the top, one FeSe 

layer appears as a square lattice with alternating iron and selenium atoms, as shown in Fig. 2-7b. 

FeSe is commonly referred as  iron selenide to distinguish it from other compounds of the Fe-

Se phase diagram but the Greek symbol varies among literature. It is more reliable to refer to 

FeSe by its crystal structure (tetragonal FeSe or “PbO-type”). 

Fig. 2-8 shows examples of an iron-based superconductor (see section 1.1.4). All the 

compounds share a layered crystal structure, consisting of iron containing sheets. Similar to 

cuprates, the iron-based superconductor family differ only by the molecules between the sheets 

called “blocking layers”.  Tc is sensitive to the blocking layers because they tune the lattice 

spacing and charge density in the iron containing layer. In iron arsenide compounds, the blocking 

 

Fig. 2-6 R(T,B) of WTe2. Ali et al. [112].  

R(T) curve labeled by the magnetic field strength (from top to bottom): 14.5T, 9T, 6T, 4T, 

2T and 0T. Magnetic field is perpendicular to the WTe2 layers. Top inset: ‘turn on’ 

temperature (T*) vs magnetic field.  
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layers need to exist to balance the charge. In contrast, FeSe does not need a blocking layer and 

has the simplest structure among the iron-based superconductors. 

 

 

 

 

Fig. 2-7 Crystal structure of FeSe.  
Fig. 1, Hsu et al. [117]. a) Side view. The unite cell is outlined by black lines. b) Top view. 
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Fig. 2-8 Crystal structure of iron-based superconductors.  

Fig. B1a Paglione and Greene [76]. 
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FeSe is a superconductor with Tc=8K [117]. Fig. 2-9 shows M(T). Below T~8K, the 

susceptibility () drops to  during the zero field cooling (ZFC) measurement due to shielding 

currents in the superconducting state. The field cooling (FC) curve also sharply drop at the same 

temperature, indicating the Meissner effect (see section 3.3.2). The magnetic anomaly at T~105K 

is attributed to a structural phase transition. For T<105K, FC shows  increases with cooling. 

The inset shows the change in M during a magnetic field sweep. The hysteresis and the collapsed 

diamond shape is evidence for superconductivity. The diagonal tilt of the pattern is interpreted as 

the coexistence of a paramagnetic phase, which could be the cause of anomalous M(T) during 

FC. 

Similar to many layered materials, the Tc of FeSe can be raised to 32K by intercalation of 

alkali metals [118]. Surprisingly, an anomalously large superconducting gap was observed in 

2012 for monolayer FeSe grown on strontium titanate by molecular beam epitaxy [119]. 

Subsequently, a resistive superconducting transition at 100K was reported [120]. The role of the 

substrate/FeSe interface is still unclear. Shiogai et al. reported Tc=40K in ultrathin FeSe obtained 

by controlled electrochemical etching with an ionic liquid. The Tc was enhanced for both SrTiO3 

and MgO substrates but the FeSe carrier density could have been significantly affected by the 

ionic liquid in the device. The mechanism for Tc enhancement in the FeSe/SrTiO3 system is still 

unknown [121] and there is suggestive experimental evidence that it is a conventional 

superconductor [122,123]. 

   

 

 
Fig. 2-9 (T) of FeSe.  
Fig. 4A, Hsu et al. [117]. “ZFC” is short for zero field cooldown and “FC” is short for field 

cooldown with B=3mT. Inset: M(B) at T=2K. 
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2.2 Quasi-1D Materials (bundled chains) 

There has been interest in quasi-1D materials due to theoretical predictions of exotic 

phenomena in 1D many-body systems (e.g. Peierls instability, Luttinger liquid [5]). Materials 

include conducting polymers [12], carbon nanotubes [29] and NbSe3 [124]. In some materials, 

such as conducting polymers, the 1D object is difficult to extract from the bulk. In blue bronze 

(K0.3MoO3) [10], the 1D conduction channel is supported by charge transfer to the surrounding 

chemical species and extraction from the bulk would destroy the material. 

In contrast, TMC form MX3 chains, which are bound to other chains through weak van der 

Waals forces. As illustrated in Fig. 2-10 with NbSe3 as an example, a Nb (metal) atom bonds to 

three Se (chalcogen) atoms and another Nb atom bonds to the Se on the other side. The chain 

grows longer in this manner and results in a covalently bonded chain of Nb atoms with triangular 

planes of Se in between. (NbSe4)nI does not have the same structure as MX3 but is introduced 

below as an analog to MX3-like chains with inter-chain bonds mediated by charge transfer. 
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2.2.1 NbSe3 

NbSe3 forms atomic chains shown in Fig. 2-10. As shown in Fig. 2-11, R(T) is overall metallic 

with sudden increases in resistance at TP1=144K and TP2=59K, corresponding to the  upper and 

lower CDW transitions, respectively. For both transitions, the increase in resistance is consistent 

with the CDW gap opening but the system recovers metallic behavior as it is cooled further. The 

Fermi surface of NbSe3 is not completely gapped and the remaining metallic part of the Fermi 

surface dominates over the gapped part. 

Both the upper and lower CDW in NbSe3 slide when biased with E>ET (see section 1.2.2). 

NbSe3 has been a prototypical material for sliding CDW studies and deeper understanding of the 

phenomena (e.g. narrowband noise [125] and plasticity [126,127]). 

 
Fig. 2-10 Crystal structure of NbSe3.  

Fig. 3.1, Grüner and Zettl [10]. 
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2.2.2 TaS3 

TaS3 has a similar crystal structure to NbSe3 (see Fig. 2-10), where Ta replace the Nb atoms 

and S replace the Se atoms. Fig. 2-12 shows the normalized conductivity of TaS3 against 1/T. As 

increasing 1/T corresponds to lowering T, the graph indicates a sharp decrease in conductivity 

below TP. The CDW transition appears as a peak at TP=215K in the numerical derivative shown 

in the inset. Similar to NbSe3, sliding CDW behavior was observed [128]. In contrast to NbSe3, 

the conductivity of TaS3 continues to decrease for T>TP=215K, which indicates that the Fermi 

surface is completely gapped. Transport study of the CDW conduction in TaS3 is simplified by 

the absence of a metallic portion. TaS3 with TP=215K is distinguished as orthorhombic TaS3, 

with the subsequent discovery of monoclinic TaS3, which exhibits two CDW transitions at 

TP1=240K and TP2=160K. 

 
Fig. 2-11 R(T) of NbSe3.  

Fig. 2, Chaussy et al. [80]. 
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Fig. 2-12 (1/T) of TaS3.  

Fig. 1, Thompson et al. [128]. Inset: numerical derivative of (T) indicates a metal-insulator 

transition at TP=215K. 

 



45 

 

2.2.3 (NbSe4)nI 

(NbSe4)nI belongs to the class of (MX4)nY, where Y is either iodine or bromine (not yttrium). 

As shown by the structure on the right of Fig. 2-13, (MX4)nY forms MX4 chains, which are charge 

balanced by the Y chemical species between the chains. n is the coordination number between the 

MX4 chains and periodically occurring Y species. As the inter-chain interactions are mediated by 

charge transfer, the MX4 chains are more closely electronically coupled to each other than MX3 

chains. 

(NbSe4)2I, (NbSe4)3.33I and (TaSe4)2I) are known to have a sliding CDW at TP=210K, 285K 

and 265K, respectively [78]. (NbSe4)3I exhibits an anomalous kink in R(T) at T=274K, but the 

behavior is thermally activated for both above and below the kink. Unlike its n=2 variant, 

(NbSe4)3I is a semiconductor, which undergoes a ferrodistortive structural transition at T=274K 

[78]. 

 
 

  

 
Fig. 2-13 Comparison of MX2, MX3 and (MX4)nY crystal structure.  

Fig. 1, Gressier et al. [288]. 
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2.3 Ultrathin limit 

Since the isolation of graphene from graphite by mechanical exfoliation in 2004 [23], the study 

of layered materials at the ultrathin limit (~10nm) has been a popular field. In particular, 

materials at the monolayer limit have exhibited extraordinary electronic properties. The 

manipulation of ultrathin layered materials has evolved to the creation of creation of van der 

Waals (vdW) heterostructures. Background on mechanical exfoliation, the monolayer limit and 

vdW heterostructures are provided in this section, as they are relevant to the motivation behind 

the experiments discussed in Chapters 4-7.  

 
2.3.1 Mechanical exfoliation 

Often called the “Scotch tape” method, mechanical exfoliation has been applied to many 

layered materials [129]. With mechanical exfoliation, materials have been studied at the ultrathin 

limit, where their collective ground states become strongly dependent on thickness 

[46,47,96,130]. The thickness dependence of collective ground states provides insight into the 

role of interlayer coupling for the collective ground states [22].   

As illustrated in Fig. 2-14, an adhesive tape is first pressed on to the layered material. When 

the tape is peeled off, some layers of the material remain stuck on the tape. Often, the portion of 

the tape with the layered material is pressed onto other clean parts of the tape and peeled off 

multiple times to “thin down” the material. Finally, the tape is pressed onto a substrate and 

removed. With this method, thin flakes of the layered material are transferred to a substrate and 

some monolayers can be found among the flakes. For further details on mechanical exfoliation 

are presented in the doctoral dissertation by Ҫağlar Girit (section 2.1 [131]). 

The identification of graphene was equally important as mechanical exfoliation for isolating 

graphene. Intuition might suggest that any material would be difficult to see with an optical 

microscope if it is only a single atom thick. However, optical interference effects enable 

graphene to be seen by an optical microscope when it is on top of a silicon wafer coated with a 

300nm thick layer of SiO2 [27]. This effect is applicable to other materials (e.g. transition metal 

dichalcogenides [132]), given that the SiO2 thickness is adjusted to match the optical properties 

of the material. Since graphene, many layered materials have thinned down to the monolayer 

limit [42,43,133].  
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2.3.2 Monolayer limit 

A layered material’s behavior usually changes significantly when it is isolated as a 

monolayer. Even at the ultrathin length scale, the monolayer is distinct because a unique crystal 

symmetry is realized only in the absence of other layers. The bandgap in MoS2 is direct for the 

monolayer but is indirect for bilayer and thicker [134]. The unique electronic structures in some 

monolayers have given rise to remarkable physical properties. In graphene, the charge carriers 

behave as massless Dirac fermions [57]. Photoluminescence is exceptionally strong in monolayer 

MoS2 from spin-orbit coupling effects, which are unique to the monolayer [134].    

 

2.3.3 van der Waals heterostructure 

In ultrathin materials, the surface and interface effects play larger roles as the surface/bulk 

ratio is reduced. It is anticipated that novel phenomena can be probed at the interface of different 

ultrathin materials. For example, the moiré pattern formed by lattice mismatch in a graphene/h-

BN stack led to the realization of the Hofstadter butterfly, a theoretically predicted quantum 

fractal phenomenon [135,136]. The proposed assembly of “van der Waals heterostructures” 

formed by stacking layered materials as illustrated in Fig. 2-15 has attracted attention [41]. As 

shown in Table 2-2, there is a rich landscape of layered materials in which combinations of 

materials can be selected to form interfaces mediated by vdW forces.  

 

Fig. 2-14 Mechanical exfoliation schematic.  

Fig. 1, Novoselov and Neto [289]. 



48 

 

 

 
  

 

Fig. 2-15 van der Waals heterostructure schematic.  
Fig. 1, Geim and Grigorieva [41]. 

 

 

Table 2-2 Library of quasi-two dimensional materials.  
Fig. 2, Geim and Grigorieva [41].  
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Sophisticated techniques for creating van der Waals heterostructures have been developed and 

adopted by many research groups [43,137,138]. Many of the early use of heterostructures were 

for protection from impurities [137] and air degradation [43], using h-BN as a substrate and 

capping layer. Wang et al. demonstrates that encapsulation in h-BN minimizes impurity effects 

in graphene [137]. The superior quality is due to the h-BN providing an atomically smooth 

substrate and the manipulation of graphene without using polymers. In addition, Cao et al. shows 

that when air sensitive materials (e.g. black phosphorous and monolayer NbSe2) are encapsulated 

with h-BN, they are protected from degradation in air [43].  

Currently, vdW heterostructures of layered materials with h-BN are the most prevalent. 

However, h-BN is an insulator and it is often used to facilitate access to the pristine physical 

properties of another material. There is increasing interest in vdW heterostructures, in which 

both components are electronically active [139,140]. If two collective ground states, which 

normally reside in different materials are made to interact at the interface, novel electronic state 

could arise. The materials introduced in this chapter are rich in many-body effects (e.g. 

superconductivity, CDW and Weyl fermions) and are synthesized, as discussed in Chapter 4, to 

study their interaction in van der Waals heterostructures.  
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3 Low temperature measurement apparatus 

Many of the sample characterization and measurement in the subsequent chapters involve 

measurement at low temperatures: from room temperature down to liquid helium temperature 

(4.2K) or sometimes 50mK. Low temperatures are required since the characteristic electronic 

ground states of the materials studied (e.g. transition metal chalcogenides) often occur below 

room temperature. Specialized instruments (cryostats) and techniques are required to reach low 

temperatures and this chapter details the instruments employed. In principle, cryostats can be 

adapted to host a wide range of characterization techniques. Most of the cryostats presented in 

this chapter are for electrical transport and magnetoresistance measurements. As an exception, 

the MPMS measures magnetization.    
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3.1 Electrical transport measurements 

Samples are primarily characterized by electrical transport measurements. Often the transition 

to electronic ground states of interest show signatures in the temperature dependence of the 

sample resistance R(T). For example, superconductivity results in a drop to zero resistance as the 

sample is cooled below the critical temperature and CDW exhibits a “resistive anomaly”, in 

which the resistance rapidly increases with cooling below the CDW transition. For sliding CDW, 

electrical transport is one of the clearest ways to demonstrate its occurrence. Various other 

physical probes (e.g. magnetization, thermal conductivity and heat capacity) have been 

established as general low temperature measurement techniques in experimental condensed 

matter but electrical transport is the simplest measurement to set up.  

 

3.1.1 Sample preparation 

Wires are attached to the electrical contacts of the samples, which allows a continuous 

electrical pathway from the sample to the measurement instruments located outside the cryostat. 

Samples are typically wired up as shown in Fig. 3-1. The work should be performed under a 

stereo microscope with tweezers. TDI-5A-SA-I tweezers and No.11 scalpels are recommended 

for manipulation of the gold wires. With this technique, electrical contacts can be made to 

samples of size >200m. 

The sample is electrically contacted by attaching Ø25m gold wires with silver paste. It is 

crucial to use wires of small diameter to prevent them from popping off while changing the 

sample temperature. If cooling to liquid helium temperature, thermal contraction/expansion 

significantly moves the relative position of the wires. In such a case, a thin, flexible wire allows 

the strain to be relieved by bending whereas a thick, rigid wires would not. In addition, the gold 

wires should be annealed by flowing current through it until it grows red hot. The annealed wires 

are pliable and easily guided to the desired placement, whereas unannealed wires are too springy 

to stay in their guided configurations. The silver paste is Dupont 4929 with thinners either 

Dupont 4987 or 2-n-butoxyethyl acetate to tune the consistency. The consistency should be thick 

enough to prevent silver paste from flowing to other undesired locations on the sample and thin 

enough to allow time to paint with it before drying. A wooden stick with a piece of Ø25m 

(unannealed) gold wire attached at the end makes a good “paint brush”.  

An alternative to painting gold wires to the sample is to wire bond. This often requires contact 

pads to be pre-made on the sample by evaporating metal and often used for lithographically 

fabricated devices of nanoscale materials (Part II9.1). The contact pads need to be clean and flat 

for successful bonding. 50-100nm thick gold pads of width and length 200m are best for 

comfortably making contact with wire bonding. The drawback of wire bonding is that it could 

damage the material since it sends substantial energy as ultrasonic waves during the bonding 

process. Although it lacks the versatility of silver paste, wire bonding can rapidly contact many 

samples for which the bonding parameters are optimized.   

From the sample, the wires are connected to the quartz that the sample is attached to. The 

junction between the wires and the quartz serves as “anchor points” which act as stress relief 

when the relative position of the components change by thermal expansion/contraction. The 

wires between the sample and anchor points should bow as shown in Fig. 3-1 to minimize stress 

on the junctions. The anchor points are important for their mechanical purpose and have no 

electrical purpose. In practice, it is simpler to first glue down the sample with superglue to the 
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quartz and then glue down wires, cut to the appropriate length, at the anchor points. Finally, 

guide the wires to the desired placement on the sample and paint the junctions between the wires 

and the sample. From the anchor points, gold wires should be connected to contacts on the 

cryostat, which ultimately interface to measurement instruments. 

The sample is attached to a copper block in the cryostat with GE varnish (VGE 7031) to 

ensure good thermal contact to the copper. GE varnish allows mounted samples to be removed 

by applying a little force and the remaining GE varnish can be cleaned off with isopropanol. 

Since copper has good thermal conductivity, the temperature is assumed to be the same 

anywhere on the copper and the sample temperature is measured by a temperature sensor located 

on the copper block, close to the sample. The sample temperature is controlled by controlling the 

temperature of the copper block with heaters.  

 

 
3.1.2 Nb test sample 

To test the thermometry of the homemade systems, a sample of known R(T) is measured. 

Since niobium is a superconductor below 9.2K [141], the sharp drop in resistance provides a 

well-defined feature to check the accuracy of temperature measurement. The niobium sample is a 

RF sputtered thin film on Si/SiO2, provided by Aritoki Suzuki, a post-doctoral researcher in the 

Adrian Lee group. Niobium thin film deposition with the electron beam evaporator did not show 

superconductivity. Niobium thin film deposition is notoriously sensitive to deposition conditions 

and the superconductivity was likely quenched by heavy disorder. The thin film form is desirable 

 

Fig. 3-1 Sample mounted for low temperature transport.  
The sample is mounted to be in good thermal contact with a copper block in the cryostat and 

electrically contacted with silver paste and gold wire. 
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since the small cross-section makes the sample resistance high enough to yield a measurable 

voltage drop for the nanovoltmeter. Although with a thickness of >200nm, the thin film Tc 

should be comparable to the bulk, there are reports where the film deposition conditions could 

raise the Tc to 9.7K [142]. In hindsight, a wire of narrow diameter would have avoided 

complications from film deposition conditions. 

Four contacts are placed on the corners of the niobium film by wirebonding. A thin layer of 

niobium oxide forms on the surface, which is a conductor at room temperature but an insulator at 

low temperature. Hence, it is necessary to break through the oxide with wirebonding and silver 

paint cannot be used.  

 

3.1.3 Resistance measurement 

To measure the dc resistance of the sample, the sample is measured in a four-point probe 

configuration. Excitation is supplied by the current source (Keithley 2400 or 2602) and the 

voltage is measured by the nanovoltmeter (Keithley 181). The current leaving the current source 

is measured and recorded for each measurement. If the sample resistance becomes too high, the 

current source is unable to provide the programmed value of the current. The drop in source 

current appears as a drop in voltage and could be misinterpreted as a drop in resistance if we do 

not track the actual value of the sourced current.  

When the sample is at low temperature, there is a significant temperature difference between 

the sample and the measurement electronics, which is always at room temperature. The thermal 

gradient causes a thermoelectric voltage  across the wires that connect the sample and the 

measurement electronics. The voltage for the current bias (Iexc) in one direction (V+) and in the 

reversed direction (V-) is measured for each temperature to cancel voltage offset according 

with the formula:  

R =
V+ + ξ − (V− + ξ)

2|Iexc|
 

Eq. 3-1 

To ensure that the sample settles from any transient response, the voltage is measures 1s after the 

switch in current direction. 
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3.2 Homemade system 

Before the commercial systems became prevalent, homemade cryostats were the standard for 

experiments at low temperature. Homemade systems are simpler in design and can be easily 

customized for a desired purpose. The equipment introduced below were made and used by past 

Zettl group members but needed to be refurbished as they were not in use for some time. The gas 

flow cryostat and the bath cryostat are introduced in this section. The gas flow cryostat is well-

suited for fast cooldowns of multiple samples, as the sample can be exchanged without taking 

out the cryostat from the helium bath. The gas flow cryostat cannot hold a sample at low 

temperature for a long time, as it consumes the most helium at low temperature. In contrast, the 

bath cryostat is well-suited for maintaining the sample at low temperature for a long period of 

time and temperature sweeps of low sweep rates. However, the probe needs to be taken out of 

the helium bath when loading a new sample and significant amount of helium is lost when 

reinserting the probe. In addition, the doping vessel is introduced in this section. It is a module, 

which fits in the bath cryostat probe for in situ measurement of samples after chemical 

modification in a sealed environment. 

  

3.2.1 Gas flow cryostat 

The gas flow cryostat cools the sample with a flow of cold helium gas. As shown in Fig. 3-2, 

the cryostat is a tube with a double concentric tubes running from the gas inlet end (magnified in 

bottom panel) to the sample space (magnified in top panel). The gas inlet end of the cryostat goes 

inside a bath of liquid helium (e.g. a storage dewar). Considering the length of the cryostat, a 

standard 60L storage dewar is the most suitable. A resistor (R~500) is attached to the bottom of 

the cryostat and immersed inside the liquid helium. Wires, running up from the resistor to 

outside the dewar, is connected to a variac. The resistor works as a gas flow control heater, 

where the power to the heater controls the rate of cold helium gas release. The power is 

controlled by the variac setting (100% power corresponds to the 120V ac, from the electrical 

outlet). The resistor should be a metal film type and ceramic resistors should not be used as they 

will become insulating in liquid helium. 

When the flow control heater is powered, helium evaporates and pressurizes the dewar. As 

shown in the bottom magnification panel, the helium gas goes: 1) into the cryostat through a hole 

at above liquid level, 2) down to the opening of the inner tube at the bottom and 3) back up 

through the inner tube. The helium gas is cooled when it goes down the outer tube to the inner 

tube since the outer tube is in thermal contact with a bath of liquid helium. The cold helium gas 

is carried to the sample space at room temperature through the inner tube, while the 

superinsulation and vacuum jacket between the inner and outer tube provides thermal insulation. 

As shown in the top panel, the cold helium gas shoots out to the sample space at the top of the 

cryostat. The probe is mounted in a way, such that the rubber stopper plugs up the hole at the top 

of the cryostat (facing the right side of the image) and the sample is placed in the stream of cold 

helium gas. As indicated by the blue arrows, the cold gas goes: 1) through the sample space, 2) 

back through the space between the inner and outer cylinder and 3) out through the exit ports on 

the left side of the image. The exit ports should be open during a cooldown and regulation of 

flow through the ports can provide a coarse control over the temperature. When the cryostat is 

not in use, the exit ports should be closed and the hole on the right should be plugged up to avoid 

ice blocks. 
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Fig. 3-3 shows the probe for the gas flow cryostat. The probe is essentially a rubber stopper, 

which fits into the opening of the gas flow cryostat, and a support rod which holds the sample. 

The support rod is made of thermally insulating material, such as wood or stainless steel. 

Twisted pairs of wires run along the support rod to provide electrical connection from the sample 

end of the probe to BNC connectors on the other end. #40 AWG copper wire with enamel 

insulation are used, as wires of large diameter leak in too much heat from room temperature. At 

the sample end, the wires connect to contact pads on the copper plate. The contact pads are 

circles of silver epoxy (H20E) on top of Stycast (2850FT), which insulates the silver epoxy from 

the copper. The sample is mounted on a copper plate by GE varnish and electrical contacts are 

made to the contact pads. A silicon diode is placed on the bottom side of the copper plate, close 

to the sample to monitor the sample temperature. 

The sample is protected from the direct stream of cold gas with a copper can, which attaches to 

a rubber stopper. The copper can and the stopper does not form a complete seal and some gas 

can leak in and fill the inside of the gas with helium. Ø0.008in manganin wire is non-inductively 

wound around the copper can to work as the temperature control heater. The temperature of the 

sample is finely controlled by controlling the power to this heater. When incorporated in a PID 

loop based temperature controller (Lakeshore 340), the probe can hold a constant temperature or 

ramp temperature up and down with controlled ramp rates. When using the PID loop, the 

temperature feedback should be based on the “control diode”, which is placed on the can to 

provide close feedback to the change in heater power. The sample diode does not respond 

quickly enough to the change in heater power and causes the system to oscillate in temperature. 

The control diode is placed on the inside of the can because direct exposure to the stream of cold 

gas results in large temperature gradients. 
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Fig. 3-2 Gas flow cryostat.  
The gas intake portion and sample space are magnified and blue arrows are added to indicate 

helium gas flow. 
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The cryostat enables rapid cooldown, as the sample is immersed in cold gas and makes good 

thermal contact with the coolant. Fig. 3-4 shows a typical cooldown time of the gas flow 

cryostat. At time=5min, the power to the flow control heater (Pheat) is increased from 0% to 20% 

with the variac. Cold gas begins to flow into the sample chamber and the sample temperature 

decreases rapidly to T~25K in 5min. The cooling rate slows down after reaching T~25K but the 

temperature drops further to T~15K when Pheat is increased to 50%. At time=15min, the 

temperature is increased by slowly ramping down Pheat. At high flow (Pheat =80%) and longer 

cooling time (~30min), the cryostat can reach T=4.7K. The gas flow rate can be increased by 

pressurizing the helium dewar with helium gas, as typically done while transferring liquid helium 

to another dewar. However, this results in an increase in sample temperature, as the heating 

effect of introducing warm helium gas is greater than the benefits of increased flow rate.  

Even without a feedback loop, well-controlled temperature ramps can be performed by 

controlling the power to the flow control heater. Fig. 3-5 shows the resistance of a niobium thin 

 
Fig. 3-3 Probe for gas flow cryostat.  
The large rubber stopper (right) fits into the opening of the gas flow cryostat sample space. 

Sample is mounted on a copper plate and twisted pairs run along the support rod to provide 

electrical connection from the sample to BNC connectors. The sample diode reads the sample 

temperature and the control diode is part of a feedback loop based temperature control 

system.  



58 

 

film (see section 3.1.2) for T=290-8K. The resistance is measured by four wirebonded contacts 

with 100A dc current bias. R(T) is overall metallic and the resistance drops to zero at 9.3K, 

consistent with the superconducting transition in niobium. For low temperature, the temperature 

ramp rate is limited to <0.5K/min. The inset shows a magnification of the superconducting 

transition. The hysteresis between the cooldown and warmup R(T) curve of ~0.04K is small and 

indicates the sample and the temperature sensor is in good thermal contact to the cryostat.  

The temperature stability with a PID loop was characterized in collaboration with Jacob 

Bryon. Fig. 3-6 shows the temperature reading from the sample diode while the temperature 

controller is set to hold the temperature fixed at ~30K. The temperature controller uses the input 

from the control diode to adjust the heater power. The temperature fluctuation is less than ±0.1K 

from the mean value. After 4min, the mean value drifts by ~0.1K. 

 

  

 
Fig. 3-4 Cooldown time of gas flow cryostat.  
The power to the helium flow control heater (Pheat) is adjusted with a variac. The arrows mark 

the points at which Pheat was changed. Inset: magnification of low temperature data at 

time=10-16min. 



59 

 

 

 

Fig. 3-5 R(T) of Nb measured with gas flow cryostat.  
Resistance of RF sputtered Nb film for T=290-8K. Inset: superconducting transition at 9.3K. 

Arrows indicate direction of temperature change. 
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Fig. 3-6 Temperature stability of gas flow cryostat.  
Temperature held constant by controlling heater output with PID loop. 
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3.2.2 Bath cryostat 

The bath cryostat cools the sample by placing it in a probe, which is immersed into a bath of 

liquid helium. The sample is placed inside the probe, thermalized to a block, which is thermally 

connected to the helium bath outside of the probe. The sample can be maintained at low 

temperature as long as the liquid helium is replenished. Heat from the environment at room 

temperature leaks into the dewar and slowly boils off the helium but the loss can be minimized to 

make the helium last for many days between filling. 

The probe for the bath cryostat was previously designed and fabricated by Kasra Khazeni, a 

former graduate student in the Zettl group (PhD 1997), but after many years of use, the probe 

needed to be refurbished.  Kevin Nuckolls, an undergraduate researcher in the Zettl group, 

restored the function of the probe and detailed the work in his Undergraduate Honors Thesis 

[143]. The work in this section is a collaboration with Kevin and all figures are either adapted or 

reproduced from Nuckolls [143]. Kevin created the designs for components that needed to be 

fabricated after discussing with me. The components of the cryostat were fabricated by the 

Physics Department Machine Shop and assembled by Kevin. Kevin and I tested the cryostat and 

characterized its performance. 

Fig. 3-7 shows the overview of the cryostat components. The probe is a stainless steel tube 

with electrical and vacuum connections at the top and sample space at the bottom. The magnified 

view of the sample space is shown (outlined by dashed lines). The “probe end attachment” 

connects to the bottom of the probe and houses thermometry components and “sample shelves”. 

The sample shelves can be removed from the probe end attachment to mount samples under a 

microscope. When sealed with the inner can, the sample space is isolated from the environment 

and can be evacuated with a pump connected to the port at V1. The electrical wires from the 

sample shelves run up the length of the probe to the breakout box, which connects the wires to 

BNC connectors to interface with measurement instruments. When the bottom of the probe is at 

cryogenic temperature, the blackbody radiation from the top of the probe is a significant heat 

source since room temperature is hotter by hundreds of Kelvins. The radiation baffles are placed 

in the probe to block the radiation. 

The probe fits into a stainless steel can called the “outer can”. The outer can comes into direct 

contact with liquid helium and provides adequate thermal contact between the probe and the 

bath. The thermal contact should be large enough to cool the sample to the bath temperature 

(T=4.2K) but limited so that the sample temperature can be varied with a heater. When the outer 

can is evacuated with a pump connected to V2, the heat exchange by convection is disabled and 

the probe is significantly decoupled from the bath. Limited thermal contact is still provided by 

conduction through springy beryllium copper contacts (“thermal links”), which are attached to 

the probe and touch the walls of the can. To reach the base temperature of the cryostat, the 

thermal coupling to the bath is maximized by leaking in some helium gas through the V2. The 

helium gas significantly improves the thermal contact by convection. 

The can is designed to fit inside a dewar equipped with a superconducting magnet, which can 

provide magnetic fields up to 17T. The bottom part of the can is copper to minimize the 

screening of the magnetic field. When the dewar is connected to a vacuum pump at V3, lower 

temperatures than 4.2K can be reached by evaporative cooling (e.g. 1.5K). As this process 

involves evacuating a large volume, specialized pumps and vacuum lines are required. 
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Fig. 3-7 Overview of bath cryostat.  

Adapted from Fig. 4.1, Nuckolls [143] with modifications. V1, V2 and V3 are valves to ports 

where a vacuum pump is connected. The probe is a long stainless steel tube with multiple 

twisted pairs of wires (red and green wavy lines) running along it. At the top, the wires 

connect to a breakout box. At the bottom, the wires connect to the sample. The details of the 

probe bottom are magnified in the panel on the left (outlined by the dashed line). The inner 

can enables the sample space to be placed under vacuum with a pump at V1. The probe fits in 

a can called the “outer can” and is immersed in a bath of liquid helium while enclosed in the 

outer can. The dewar, which holds the probe is equipped with a superconducting magnet.  
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Fig. 3-8 shows the wiring of the cryostat. Inside the cryostat, wires are soldered to a 26 pin 

connector at the top and travel down the probe as twisted pairs6. The number of wires7 along the 

probe is limited to 8 twisted pairs (i.e. 16 wires). As the wires carry heat from room temperature 

to the sample, running too many wires compromises the cooling power of the cryostat. The 

twisted pairs are bundled inside a Teflon tube to facilitate pushing the bundle along the probe. 

The pair for the heater is in a bundle by itself, as it is more prone to damage from the high 

currents required for heater operation. 

At the bottom of the probe, the twisted pairs are soldered to pin connectors, which plug into a 

matrix of pin connectors. Pin connectors, which uses an alloy with very small magnetic response, 

are selected for use at high magnetic fields 8. Components on the probe end attachment (i.e. 

samples, temperature sensors and heater) are connected to the wires from the top of the probe 

with twisted pairs, which plug into the back side of the matrix. At the probe end attachment, the 

8 twisted pairs are distributed among the components as needed. Wiring configurations is easily 

changed by plugging and unplugging pin connectors. For example: 5 pairs (10 wires) can be 

allocated to a single sample, while reserving a pair for the heater and 2 pairs for sample 

temperature sensor. 

Outside of the probe, a breakout box connects to the 26 pin connector at the top. Each twisted 

pair from the probe is connected to one of the BNC connectors from an array of 14, housed in a 

metal box. The breakout box interfaces the twisted pairs to BNC cables connected to 

measurement instruments. Each twisted pair is wired to a switch controlled circuit (Fig. 3-8, 

outlined by the dashed line) to protect the sample from unwanted electrical biases and pulses. In 

the diagram, 1P+ corresponds to the positive signal wire of the twisted pair and 1P- to the 

negative signal wire of the same pair. The two wires are connected to a double pole double throw 

(DPDT) switch S1. Practically, the switch snaps to 3 positions: connect, open and short9. In the 

“connect” position, 1P+ connects to the inner pin and 1P- to the outer shell of the isolated BNC. 

In the “open” position both are 1P+ and 1P- are floating because they are not connected to 

anything. In the “short” position, 1P+ and 1P- are shorted to each other. When S2 is closed, the 

wires are shorted to the box as well. 

Fig. 3-9 shows the breakout box assembled from the components listed in Table 3-1. Fig. 3-9a 

shows the front of the box. Each BNC connector corresponds to a twisted pair and are labeled 

according to the pin naming convention of the 26 pin connector. Fig. 3-9b shows the back of the 

box with the cover removed. The wires from the 26 pin connector to each BNC are made into 

twisted pairs and shielded by aluminum foil. When the cover is placed, the aluminum box 

provides additional shielding from environmental noise. 

 

  

                                                 
6 When soldering to the 26 pin connector, the pins should be appropriately heat sunk with a hemostat to prevent  

deformation of the plastic that house the pins. If the plastic is deformed, the vacuum seal at the connector is  

compromised. 
7 #40 AWS copper wire, coated with enamel. 
8 Mill-Max Manufacturing Corp. 310-13-164-41-001000. Alloy: 61.5% Cu, 35.4% Zn and 3.1% Pb 
9 It is called DPDT because conventionally the open position is not counted as a “throw”. 
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Fig. 3-8 Electrical wiring of bath cryostat.  
Adapted from Fig. 4.5, Nuckolls [143] with modifications. Red and green wavy lines 

represent twisted pairs of wires and are labeled with the number of pairs it represents. a) 

Schematic of electrical wiring from along the whole probe. The right (left) side of the figure 

corresponds to the top (bottom) of the probe. Electrical breakout box is located outside of the 

probe and consists of 14 copies of the electrical circuit outlined by the dashed line. The wires 

run down the probe to the matrix at the bottom. b) Bottom of the probe. All twisted pairs 

branch out from the back of the matrix. The pairs are distributed among the two sample 

shelves with the constraint N1+2+N2+2=8-1 (one pair is dedicated to the heater). 
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Fig. 3-9 Electrical breakout box.  
Adapted from Fig. 4.8, Nuckolls [143] with modifications. Box dimensions =7x5x3in. a) 

Front of the box with a 3x4 array of a unit composed of a BNC connector and two switches. 

Two more units (not shown) and a 26 pin connector are attached to the side. Each unit is a 

circuit shown on the top right of Fig. 3-8a. The switch, located closer (further) to the BNC, 

corresponds to S1 (S2). b) Back of the box with the cover removed. Each pair of wire, 

corresponding to a twisted pair in the probe, are twisted and shielded with aluminum foil.  

Component Manufacturer Part number 

Enclosure (box) Bud industries CU-3008-A 

Isolated BNC Amphenol RF Division 31-10-RFX 

DPDT switch TE Connectivity MTA206P 

26-pin connector Amphenol JMS3116M16-26S 

Table 3-1 List of parts for breakout box.  

Components used for making the breakout box shown in Fig. 3-9. 



66 

 

Fig. 3-10a shows a CAD design model10 of the probe end attachment from two perspectives. 

The cylindrical portions at the top and bottom have grooves to wind heaters for temperature 

control. The diameter of the cylinders are close to the diameter of the inner can opening, so 

heaters wires cannot protrude beyond the cylinder diameter. The top cylindrical portion has four 

holes (4-40 through), surrounding the large hole in the center, to attach the piece to the bottom of 

the matrix of pin connectors. The wires from the matrix comes through the large hole at the 

center. The blade-like portion in the middle has two holes (8-32 through) to mount the sample 

shelves, which are shown in Fig. 3-10b. Each shelf has a tapped hole and mounted by putting an 

8-32 screw into the sample tapped hole on the shelf through the probe attachment and tightening. 

This design enables the sample to be mounted at a tilt of =0-90o with respect to a magnetic 

field. The two shelves need to be mounted on opposite sides of the blade-like piece to leave 

clearance for ≠ mounting. Both the probe end attachment and the samples shelves are made of 

copper to minimize temperature gradients. 

Fig. 3-10c shows the fabricated probe end attachment. The heater is wound only on the bottom 

groove, as we believed only the bottom heater would be sufficient for temperature control. The 

heater is a non-inductively wound coil of manganin wire11 with a total resistance of 13. The 

whole coil is coated with Stycast (2850FT) for good thermal contact to the probe. The 

rectangular black pieces are pin connectors attached to the copper by Stycast to thermalize the 

wires to low temperature. The top of the pin connectors are soldered to wires from the matrix and 

pin connectors corresponding to various components (i.e. heater, temperature sensor and sample) 

plug in from below.  

In Fig. 3-10c, one sample shelf is mounted on the bottom hole. The image on the right is a 

magnified view of the sample shelf. The edge of the top shelf surface is covered with a line of 

Stycast to electrically insulate from the copper. Twisted pairs of wires attach to the circles of 

silver epoxy (H20E). The silver circles are contact pads to paint on wires from the sample. On 

the back side of the top shelf surface (not visible in image), a temperature sensor is mounted by 

GE varnish (VGE 7031). The Cernox (Lakeshore CX1050-BG-HT) temperature sensor is used 

for its low magnetic field induced errors. The sensor is in bare chip form to avoid possible 

incorporation of magnetic materials in other packaging options. The designs of the probe end 

attachment and sample shelf are detailed in Fig. 3-11 and Fig. 3-12.  

                                                 
10 Made with AutoCAD by Kevin Nuckolls. 
11 Ø0.008in manganin wire with Kapton coating. 
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Fig. 3-10 Probe end attachment and sample shelf image.  
a) Fig. 4.13, Nuckolls [143]. CAD based model of the probe end attachment from two 

perspectives b) Fig. 4.15, Nuckolls [143]. CAD based model of the sample shelves from three 

perspectives c) Fig. 6.11, Nuckolls [143] with scale bars added for clarity. Optical image of 

the probe end attachment with sample shelf, electrical wiring and sample attached. 
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Fig. 3-11 Probe end attachment design.  
Adapted from Fig. 4.14, Nuckolls [143]. All dimensions are in inches. a) Side view and b) 

top view. 

 

Fig. 3-12 Sample shelf design.  
Fig. 4.16, Nuckolls [143]. All dimensions are in inches. 
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Fig. 3-13 shows the bottom of the probe, where the inner can attaches to. At the bottom half of 

the image, the matrix of pin connectors are shown. The probe end attachment (not shown in 

image) is mounted below the matrix. The inner can forms a seal with the cylindrical flange above 

the matrix. Ø0.5mm indium wire is placed at the junction between the probe and the inner can 

and squeezed by tightening the eight 1-72 screws to form an indium seal for vacuum.  

Fig. 3-14a shows the inner can, which is made of copper. At the top, there are 8 tapped holes 

for 1-72 screws. Fig. 3-14b shows the dimensions of the inner can. It is important that the inner 

diameter of the can closely matches the diameter of the cylinder protruding from the flange in 

Fig. 3-13 to form a vacuum seal. The space, enclosed by the inner can and the interior of the 

probe up to V1, is isolated and can be evacuated with a pump connected at V1. The lowest 

pressure reached at room temperature is 9×10-6torr after pumping overnight with a turbo pump 

(Pfeiffer HiCube 80 Eco). The procedure for forming the indium seal, developed by Kevin, is 

detailed in Nuckolls [143] and reproduced here. 

 

 
Fig. 3-13 Indium seal before sealing inner can.  
Adapted from Fig. 4.12, Nuckolls [143] with modifications. Indium wire is placed at the 

junction between the bottom of the probe and inner can (not shown) to form a vacuum seal. 



70 

 

 
  

 

Fig. 3-14 Inner can. 

 a) Fig. 4.10, Nuckolls [143]. Optical image of inner can. b) Fig. 4.9, Nuckolls [143]. 

Schematic of inner can. All dimensions are in inches. 
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Fig. 3-15 shows the sample temperature ramp up and down for T=8.5-9.2K. The temperature 

is controlled with a PID loop based controller (Lakeshore 340). The controller adjusts the output 

of the heater with feedback from the temperature sensor reading. For both temperature ramps up 

and down, a linear rate of ~0.06K/min is maintained. At the end of the temperature ramp down 

near the cooldown rate slows down in preparation for holding a constant temperature at 8.5K. 

Fig. 3-16 shows R(T) of a test sample of niobium thin film (see section 3.1.2). The resistance 

is measured by four-point probe technique with 100A dc current bias. However, there is a thin 

layer of niobium oxide between the niobium and the contacts. Wirebonding would have broken 

through the oxide but the sample was contacted with silver paint. The drop in resistance below 

T=9.04K is in agreement with the Tc=9.2K from literature [141]. The resistive transition does not 

drop to zero and broadens out to a tail due to contact effects. There is very little hysteresis 

between R(T) measured on warmup (red squares) and cooldown (green triangles), indicating 

good thermal contact between the temperature sensor and the sample. 

In principle, the base temperature of the cryostat should be 4.2K, the temperature of the helium 

bath. However, the lowest base temperature reached by this system is 5.1K and requires further 

development to reach lower temperatures. Two reasons have been proposed: 1) there are too 

many wires (16 #40 AWG copper wires) that run down the probe or 2) there is an unobstructed 

optical path from the top of the probe to the sample space and blackbody radiation heats the 

Excerpt from page 39-41 of Nuckolls [143]  

Indium Seal Forming Procedure 

1. Grease the base of the probe end attachment, the inside of the inner can, inside 

about 2 inches from the top, and the top surface. Also, place a very thin layer of 

vacuum grease on the probes end, where the indium will be placed. This helps 

when one wishes to remove it later. 

2. Carefully slide the inner can up the probe staff, tucking wires into the can with a 

set of tweezers as you go. Slide it up until there is about half an inch of space 

between the top of the inner can and the sealing surface of the probe. 

3. Place all eight, 1-72 screws into their respective holes, only about 0.5mm below 

the probe’s bottom surface. 

4. Cut roughly 3.5 inches of the 0.5mm indium wire and begin to tuck this wire 

between the small portions of the screws that stick out and the probes outer 

surface, as shown in [Fig. 3-13]. The 3.5 inch indium wire will be slightly too 

long, but allows the ends to be cut at a slant to be pressed into one another. Make 

sure that this cut lines up between screws. 

5. Slide the inner can up the probe staff and align one of the screws with about a 

half twist into the threaded hole of the inner can. Firmly press on the base of the 

inner can to make some seal and tighten the screws using the star pattern method 

until inner can is securely fastened to the end of the probe. 

6. Now, open the probe back up to the point where the inner can is half an inch 

below the sealing interface. On top of the original, now flattened indium ribbon, 

repeat the above steps to install a second indium wire, again 0.5mm in diameter. 
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sample space. Regarding reason 1), we have not tried any cooldowns with less than 16 wires. To 

address reason 2, cylinders of copper have been placed inside the probe to serve as radiation 

baffles. The baffles should absorb the radiated heat from above and conduct it away to the inner 

walls of the probe. However, placing the baffles raised the base temperature to 5.6K. It is 

possible that the baffles did not thermalize well with the inner walls of the probe due to poor 

contact. For future work, a spring based mechanism for improved contact should be explored. 

Fig. 3-17 shows the warmup of the cryostat to 220K with the heater. The outer can is 

evacuated to weaken the thermal coupling between the probe and the helium bath. For future 

experiments, it is useful to evaluate the maximum temperature achievable with the 13 heater. 

Higher heater resistance would enable higher power outputs but the heater resistance is limited 

by the amount of wire that fit inside the groove on the probe end attachment (see Fig. 3-10). 

When operated at 1W, the heater allows the sample to reach 220K in <10hours. Operating the 

heater at 1.3W caused damage after 2hours of continuous operation. The heater was actually not 

damaged but the wires in the twisted pair from the 26 pin connector to the matrix was shorted to 

each other. With ~300mA of current the insulation of the wires melted.    

Although room temperature cannot be reached with the heater, 220K is the glass transition 

temperature of DEME-TFSI [144], a commonly used ionic liquid for strong electrostatic gating 

(see section 6.2). It is convenient to reversibly reach the glass transition temperature, as the ionic 

liquid responds to a change in gate voltage only at above its glass transition temperature.   

 

 

 
Fig. 3-15 Bath cryostat temperature control.  
Fig. 6.1, Nuckolls [143]. Sample temperature is ramped up and down with a linear rate of 

~0.06K/min, controlled with a PID loop. 
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Fig. 3-16 R(T) of Nb measured by bath cryostat.  
Fig. 6.13, Nuckolls [143]. Niobium contacted by silver paint and measured by four-probe. 

Silver paint contacts cause significant contact resistance. Cooldown (green triangles) and 

warmup (red squares) are shown. 
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3.2.3 Doping vessel 

For materials, which are sensitive to doping, the sample can be exposed to chemical species 

in a “doping vessel” and directly mounted (i.e. without taking it out of the vessel) to a cryostat 

for low temperature measurements. The doping vessels were used by Michael Fuhrer, a former 

graduate student in the Zettl group (PhD1998), for studying superconductivity in alkali metal 

doped C60 crystals [145]. Careful study of superconductivity in Rb-doped C60 crystals was 

enabled by high quality samples obtained with the doping vessel [145]. Synthesis conditions 

were optimized because the crystal resistance was monitored during doping and independent 

control of sample and alkali metal temperatures were possible. 

Recently, interest in graphite intercalation and C60 crystal doping has re-emerged, since it can 

now be applied to carbon materials at the ultrathin limit (e.g. bilayer graphene, C60/graphene 

hybrid structure [146]). The doping vessels are reproduced12 based on the design shown in 

Fuhrer [145] with slight modifications. The stainless steel parts are made of 316 stainless steel to 

be non-magnetic. Fig. 3-18 shows the doping vessel design and Fig. 3-19 shows the photograph 

of the fabricated doping vessel. The sample is mounted on the stage and wires from the sample 

travel outside along the feedthrough. Torr Seal is applied to the feedthrough opening to seal it for 

vacuum. The Swagelok connection on the tube fits into the stage to make a vacuum seal. The 

tube is a metal tube mated to a Pyrex tube. The glass end of the tube is initially open and 

connected to a valve via a Quick-Connect fitting13. The valve enables air sensitive materials (e.g. 

Rb) to be loaded into the vessel inside a glovebox and carried to the sealing setup without 

                                                 
12 Fabricated by Department of Physics Machine Shop 
13 Kurt J. Lesker Company, QF25XVC050 

 
Fig. 3-17 Bath cryostat warmup to 220K with heater.  
Adapted from Fig. 6.2, Nuckolls [143] with modifications. Before time=1.2hrs (dashed line), 

power to the heater is increased manually to 1W. After time=1.2hrs, power to the heater is 

maintained at 1W. 
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exposure to air (see Fig. 4-2). The glass end is sealed with a torch, while maintaining vacuum 

inside the vessel, similar to ampoules (see section 4.1.1). 

The temperature sensor assembly screws into the backside of the stage to probe the sample 

temperature through the 0.050in thick stainless steel. The threading is changed to 6-32 (from 6-

40 in Fuhrer [145]) as it is a more commonly used size. Temperature sensors are mounted on the 

copper portion to thermally couple to the sample. The opening on the copper portion is designed 

to tightly fit around the cylindrical “AA” package from Lakeshore Cryotronics. Multiple sensor 

assemblies are prepared to quickly switch between sensor types (e.g. thermocouple for high 

temperature and Cernox for low temperature).  

After the doping vessel is sealed, the alkali metal vapor is obtained by heating with a heating 

tape around the Pyrex. The ability to monitor the sample resistance and temperature provides 

good control over the doping conditions. After doping the sample, the doping vessel is mounted 

on a cryostat for low temperature measurement. The Ø0.25in tubing protruding from the 

Swagelok connection is clamped onto the bottom of a probe, similar to one described in section 

3.2.2, and cooled in a bath cryostat. 
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Fig. 3-18 Doping vessel design.  

Adapted with modifications from Fig. 9-4, Fuhrer [145]. 
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Fig. 3-19 Doping vessel image.  
Optical image of the doping vessel. Ruler is in inches. 
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3.2.4 UHV cryostat 

Chapter 5 describes low temperature transport measurements for a sample in ultra-high 

vacuum (~10-10torr). The cryostat is part of a variable temperature STM with a minimum 

temperature of 4.2K and works essentially as a bath cryostat. The STM sample space is 

thermally coupled to a metal block immersed in liquid helium. Since the STM must be isolated 

from mechanical vibrations, a copper braid provides the thermal coupling and some optimization 

is required to reach a base temperature of 4.2K. For transport measurements, the sample is 

mounted on the same sample space for STM measurements and its resistance is measured 

through an electrical feedthrough in the UHV chamber. The equipment is built and maintained 

by members of the Crommie group, who have provided me assistance for the measurement.  
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3.3 Commercial systems 

Commercial systems are configured for user-friendly, automated processes of routine 

measurements. The PPMS Dynacool is an automated cryostat, which allows measurements of 

R(T) for T=400-1.8K, without much expertise in cryogenics. Due to its closed circuit cryogen 

design, it does not need to be filled with liquid helium and its cryogenic capabilities can be 

maintained with very little cost. In addition, the temperature range is extended down to 50mK 

with the D850 module. The MPMS is another automated cryostat equipped with a SQUID 

magnetometer and enables magnetization measurement of the sample for T=400-1.5K.  

   

3.3.1 PPMS Dynacool 

The physical property measurement system (PPMS, Quantum Design) is an automated 

cryostat with electrical connections to the sample and a superconducting magnet to apply high 

magnetic fields. The Dynacool is a version of the system, which does not need to be filled with 

liquid helium to replenish its cryogen. The helium is condensed by a gas flow based system and 

circulated in a closed circuit. Among the cryostats discussed in this chapter, the Dynacool 

requires the least amount of helium and consumes at most one K-type cylinder per month. The 

system allows control of sample temperature for T=400-1.8K and magnetic fields up to B=±9T, 

with automated control. 

Lower temperatures down to 50mK are reached with dilution refrigeration (DR). The mixture 

of He4 and He3 isotopes enables cooling to temperatures far below the boiling point of helium 

[147]. The DR module (D850, Quantum Design) fits inside the Dynacool and allows sample 

temperature control for T=4-0.05K. The D850 cools down from 300K to base temperature in ~6 

hours and has a cooling power of 0.25W at 100mK. D850 controls temperature with DR for 

T=1.1-0.05K and evaporative cooling of pure He4 liquid for T=4-1K. The switch between the 

two modes of operation is automated by the instrument but requires some waiting time. 

Fig. 3-20 shows the cryostat temperature as it is switched from evaporative cooling to DR. 

T=4K initially and the D850 begins the switch to DR for setpoint ≤1K. While the He4-He3 

mixture is condensed, the temperature cannot be controlled. After 150 minutes, the D850 enters 

DR mode (signaled by the spike in T) and control for T=1.1-0.05K is possible. 
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Fig. 3-21 shows the switch from DR to evaporative cooling. T~0.8K initially and the D850 

begins the switch to evaporative cooling for setpoints ≥1.1K. In the first step, the pump for the 

dilution of He3 out of the mixture is stopped and to condense the He3 into the He4-He3 mixture. 

This process, which takes ~100min is called “Condensing for Evaporative Cooling”. In the 

second step, called “Distilling Mixture”, the He3 is pumped out of the mixture, so that a liquid of 

pure He4 remains and the He3 is flowed back into a storage tank. After 60min, T settles to the 

setpoint (e.g. 4K) and control for T=4-1K by evaporative cooling is possible. 

The detail below, which could not be found in our copy of the manual, may be useful for 

future experiments. For setpoints = 2-1.1K, only the “Condensing for Evaporative Cooling” step 

is executed and control for T=2-1K is possible. If T=4-2K is desired, while in the T=2-1K range, 

D850 enters the “Distilling Mixture” and T remains constant at 2K until the process is complete. 

Once the system is in the T=4-2K range, T=4-1K can be reached continuously.  

 

 

Fig. 3-20 Cooldown from 4K to dilution cooling.  
Cryostat is initially at T=4K (time=0) and prepares for dilution cooling when setpoint <1K is 

entered. To the left of the dashed line, He3-He4 mixture is condensing and temperature 

control is disabled. To the right, the cryostat enables temperature control for T=1.1-0.05K by 

dilution cooling.  
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In principle, the combined capabilities of the Dynacool and D850 enables control over T=400-

0.05K. However, the sample location is different for T=400-1.8K and T=4-0.05K by design. If 

measurements at T=400-4K are desired for a sample characterized in the D850, it needs to be 

removed from the cryostat and remounted into the Dynacool after the D850 module is removed. 

For an air sensitive sample (e.g. monolayer NbSe2, see section 5.3.3), the sample behavior would 

change, every time it is removed from the inert environment of the cryostat. Hence, a method is 

devised to measure R(T) for T=300-0.05K without removing the sample from the cryostat. 

For T=400-4K, the sample temperature cannot be measured with D850 because its sensor is 

uncalibrated for T>4K. The electrical connection to the sample is available at all times during the 

D850 operation. To resolve this problem, a diode (DT670, Lakeshore Cryotronics) is mounted on 

the D850 sample space and the diode readout is used to measure the sample temperature for 

T>4K. This method allows both R and T data to be collected but the sample temperature cannot 

be effectively controlled for T>4K. During D850’s cooldown (warmup) to (from) T=4K, the 

system controls the temperature with a feedback loop based on the sensor located at the 

 

Fig. 3-21 Warmup to 4K from dilution cooling.  
Cryostat is initially at T~0.8K (time=0) and prepares for evaporative cooling after 

setpoint=4K is entered. The condensation and distillation processes are automatically 

controlled by the instrument and temperature cannot be controlled during these processes. 
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Dynacool sample space. Since there is poor thermal connection between the Dynacool and D850 

sample spaces, a method to run the Dynacool temperature control system with input from the 

D850 sample temperature needs to be developed. 

Fig. 3-22 shows the D850 sample temperature during warmup to 300K. The sample is initially 

at T=2.5K and begins an automated warmup procedure to 300K for removal of the D850 when a 

setpoint=300K is entered. During this warmup, the Dynacool only displays the temperature of 

the Dynacool sample space. T in Fig. 3-22 is measured by the silicon diode mounted on the 

D850. As shown in the inset, the temperature changes very rapidly for T>10K, starting with a 

jump from 2.5K to 6K. Such a fast change makes the reading unreliable since the sample and 

sensor might not have sufficient time to thermalize to the same temperature. The ramp rate 

appears to be slow enough for T>10K and could be slowed down further by changing the 

temperature ramp rate of the Dynacool. 

Fig. 3-23 shows the D850 sample temperature during cooldown from 300K. The sample is 

loaded at room temperature with the D850 module into the Dynacool and the Dynacool lowers 

the chamber temperature to T<4K to enable the D850 to enter DR mode. The inset shows the 

temperature change for T<10K is much slower for the cooldown compared to the warmup (see 

Fig. 3-22 inset). Temperature data for T=10-4K are much more reliable, when measured during 

cooldown from 300K. The silicon diode needs to be forward biased at 10A for temperature 

measurement but the heat load from the bias exceeds the D850 cooling power and base 

temperature becomes limited to T~3K. If the diode bias is turned off at this point, the sample can 

be cooled to 50mK. 

It should be noted that mounting the silicon diode actually puts a small magnetic field on the 

sample. Fig. 3-24 shows R(B) for -10mT≤B≤10mT for a sample with positive 

magnetoresistance. The minimum should all be located at B=0T but the R(B) scans at different 

temperatures show the minimum occurs at B~1.5mT. The packaging of the diode is contains a 

ferromagnetic material, which adds an offset to the applied magnetic field. For measurements 

which require precise control of the magnetic field, it would be better to obtain a diode in the 

“bare die” form (e.g. DT670-BR, Lakeshore Cryotronics), which would be free of ferromagnetic 

material.   

A material’s dependence on the magnetic field direction (B) often provides valuable 

information.   It is common to change the sample orientation, so that the magnetic field is 

pointed either perpendicular (B⊥) or parallel (B∥) to the sample plane. The sample holder for 

D850 enables only B⊥. To apply B∥, an L-shaped copper piece has been mounted on the sample 

holder. Fig. 3-25 shows the modified sample holder. The yellow block, mounted horizontally is 

the silicon diode for measuring the sample temperature. The L-piece is mounted by two holes 

where brass screws screw into the tapped holes on the sample holder (only one screw shown in 

image). The sample orientation is changed by removing the screws and rotating the L-piece by 

90o anti-clockwise. The plane with the sample attached becomes horizontal (wall → floor) and 

the plane with the diode becomes vertical (floor → wall). There are mounting holes on both sides 

of the L-piece (i.e. floor and wall) that match the configuration of tapped holes in the sample 

holder. The wires from the sample go to contact pads14 along the edges of the L-piece. Form the 

contacts pads, wires connect to the contact pads on the sample holder. The wires are long enough 

that the sample orientation can be changed without reconfiguring the wiring. 

                                                 
14 Made with Stycast (2850FT) and silver epoxy (H20E). See section 3.2.1 and 3.2.2. 



83 

 

  

 
Fig. 3-22 Warmup from dilution cooling to 300K.  

Temperature measured with silicon diode mounted on the sample holder. 
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Fig. 3-23 Cooldown from 300K to dilution cooling.  
Temperature measured with silicon diode mounted on the sample holder. Curve settles to 

T~3K after reaching dilution cooling, due to heat load from the 10A bias to the diode.  
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Fig. 3-24 Magnetic field offset from silicon diode.  
R(B) at T=1.40, 1.45, 1.50 and 1.55K of a sample with positive magnetoresistance. Magnetic 

materials in silicon diode package adds ~1.5mT offset.  
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3.3.2 MPMS 

The magnetic property measurement system (MPMS, Quantum Design) is an automated 

cryostat equipped with a SQUID magnetometer. SQUID magnetometry is a sensitive 

measurement of sample magnetization (M) and particularly well-suited for measurements of 

samples under a low magnetic field15. Based on experience, samples with M as low as ~10-4emu 

could be measured. Sample temperature is controlled for T=400-1.8K and magnetic fields up to 

B=±2T can be applied. The system uses liquid helium as the cryogen, which needs to be refilled 

every few days. Temperature control at T=4-1.5K is limited to 2 hours, as the system utilizes a 

smaller volume of helium cooled by evaporative cooling for this temperature range. 

The SQUID magnetometer measurement is well-suited for samples which are difficult to make 

electrical contacts to, such as small samples, and electrical insulators. In samples with multiple 

                                                 
15 For samples under high magnetic fields, torque magnetometry has remarkable sensitivity. 

 

Fig. 3-25 Sample holder for 𝐁∥ and 𝐁⊥ in dilution refrigerator.  
Sample is mounted vertically on the side wall of the L-shaped copper piece. On the 

horizontal face is a silicon diode for temperature measurement at T<4K. 
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domains, it is possible that there are small superconducting domains that are isolated from each 

other. Such domains are difficult to detect from R(T) if they do not form a percolation network 

that bridges across the contacts but magnetometry does not require contacts.  

Signatures of ferromagnetism and superconductivity are detected in zero-field cooldown 

(ZFC)/field cooldown (FC) measurements. ZFC measurement is performed with the following 

steps: 1) the sample is cooled under zero magnetic field to below its transition temperature, 2) 

the magnetic field Bext is turned on at the lowest temperature and 3) M of the sample is 

measured, while warming up and under Bext. Subsequently, FC measurement is performed by 

measuring M, while cooling and under Bext. For ferromagnetism, the M(T) curves are different 

for ZFC and FC below the Curie temperature. For superconductivity, the magnetization becomes 

negative below the critical temperature due to diamagnetism. As the ZFC diamagnetic signal is 

due to shielding and FC is due to Meissner effect, the two curves do not necessarily overlap (see 

section 1.1.2). 

Magnetization is measured by moving the sample through the detection loops with a stepper 

motor [148]. The detection loops is a superconducting wire wound in a second-order gradiometer 

configuration and inductively coupled to the SQUID. As shown in Fig. 3-26a, the loops are 

wound in one direction for the top and bottom, and in the opposite direction for the middle two. 

The SQUID translates magnetic flux to voltage for each sample position. The V vs position 

graph of Fe2O3 in Fig. 3-26b is a typical result for a sample with positive magnetization. The 

SQUID voltage peaks to a positive voltage at 1.5cm and 4.5cm, and dips down to a negative 

voltage at 3cm. The shape of the curve corresponds to the sample passing through the bottom 

loop at 1.5cm, the middle two loops at 3cm and the top loop at 4.5cm. The sign of the SQUID 

voltage reverses as the winding directions of the loops reverse and the peaks are half the height 

of the dip because the middle loop is wound twice. 

A curve is fit to the V vs position data, assuming the sample is a point dipole of magnetization 

M. The measured M is the result of this fitting. It should be noted that one scan of the sample 

position through the detection loops yields one value of magnetization. In order to obtain M(T), 

at least one SQUID voltage vs sample position graph must be collected at each temperature. For 

every measurement of M, the fit should be checked to ensure that it reasonably follows the data. 

If the sample location is not correctly centered, the fit could even yield a magnetization in the 

opposite direction. 

Samples are loaded into the MPMS by inserting a steel rod with the sample mounted on the 

bottom with a plastic straw and a gel cap. The vacuum seal of the MPMS chamber is able to 

form a seal around the steel rod to maintain the sample space under vacuum, as oxygen results in 

undesired paramagnetic signals at low temperature. The plastic straw is attached to the steel rod 

by polyimide tape (Kapton) and the gel cap holds the sample at the middle of the straw by tightly 

fitting inside the straw. The use of a plastic drinking straw may appear crude but the 

measurement sensitivity is unaffected as long as the sample is held by a non-magnetic material 

shaped as a cylinder with uniform mass distribution along its length. The uniformity of the 

cylinder is important because the pickup coils are configured to be sensitive to the spatial 

gradient of magnetization.  

The sample undergoes three cycles of pumping out the air and purging with helium to flush 

out the oxygen. At this step, it is possible that a pressure difference develops along the length of 

the straw and the gel cap is sucked out from the bottom of the straw. To avoid losing the sample 

in this manner some holes should be made at the top of the straw and the bottom of the straw 

should be covered, but not sealed with polyimide tape. The top and bottom of the straw should 
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be sufficiently far from the sample to prevent the non-uniformity from affecting the 

measurement.  

The MPMS can perform measurement at above room temperature up to 400K. For such 

measurements, a quartz tube should be used instead of a plastic straw. When heated to above 

room temperature, the straw expands significantly and loosens its grip around the gel cap. Hence, 

the gel cap could move around during measurement, due to vibrations. In contrast, a quartz tube 

would not expand as much as the straw. 

    

 

  

 
Fig. 3-26 MPMS measurement process.  

a) The sample is vertically moved through superconducting detection loops in a second-order 

gradiometer configuration. The SQUID is inductively coupled to the detection coils and 

translates the magnetic flux to voltage at each position of the sample. The curved arrows 

accentuate the difference in winding direction between the middle two loops and the top and 

bottom loops. b) Moving the sample (e.g. Fe2O3) produces the graph shown. From the fit 

(solid line), the magnetization of the sample is calculated. 
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4 Crystal growth 

High quality crystals are often necessary for observation of novel physical phenomena. As 

illustrated by Bloch’s theorem [149], periodic order of a crystalline lattice is essential for the 

formation of a band structure. Emergent phenomena (e.g. CDW, superconductivity, massless 

Dirac fermions [57] and Weyl fermions [58,59]) are the results of a material’s characteristic band 

structure (see Chapter 1). When the crystalline order is compromised, the characteristic physical 

phenomena are obscured and dominated by disorder effects. For example, when measuring R(T) 

in a metal, resistivity decreases with cooling from the suppression of electron-phonon scattering. 

In a disordered metal, the resistivity increases with cooling because “Anderson localization” 

[150] made the system into an insulator.  

Crystal growth of organic semiconductors and transition metal chalcogenides (TMC) are 

presented in this chapter. Organic crystal growth (specifically rubrene) is motivated by the 

project discussed in Chapter Part III15. TMC crystals are grown for study at the ultrathin limit 

(see section 2.3). Specifically, TMC grown are NbSe2, 1T-TaS2, NbSe3, TaS3, (NbSe4)3I, WTe2, 

FeSe, Fe3Se4, and FeSe2. The synthesis methods are based on synthesis methods found in the 

literature but sometimes modified to match the needs of ultrathin study. In particular, some 

synthesis methods have been developed to quickly produce small crystals.  
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4.1 Growth techniques 

Crystal growth often starts with the condensation of the source material molecules from a 

mobile state (e.g. gas or ions in a solution) into a solid. However thin film deposition processes, 

such as electron beam evaporation, does not necessarily result in crystallization. The substrate is 

much colder than the source temperature and when the molecules encounter the substrate, their 

kinetic energy is immediately quenched. The molecules adhere at the site where they first 

encounter the substrate and are unable to explore the most energetically stable configuration. In 

contrast, crystallization occurs when the molecules have enough time/energy to explore its 

neighborhood for the most energetically favorable site. To realize this condition, the molecules 

are slowly formed into a well ordered crystal. 

To realize such crystal growth conditions, two techniques have been employed: vapor 

transport and flux growth. The apparatus for crystals growth for both methods are homemade. 

Vapor transport successfully grows crystals of all materials presented here. Since there is a 

possibility that flux growth is more suitable for WTe2 and FeSe growth, flux growth syntheses 

are explored as well.  

 

4.1.1 Vapor transport 

Crystal growth by vapor transport involves the transport of source material in vapor form 

across a temperature gradient from hot to cold. Two variations are introduced: physical and 

chemical vapor transport. Physical vapor transport is used when the source material can vaporize 

or sublime at easily attainable temperatures (i.e. <1000oC). Here, it is used in the growth of 

organic crystals. Fig. 4-1a schematically shows the physical vapor transport of rubrene. At the 

hottest part of the gradient, the source material in powder form is heated to give off vapors of the 

source material. A continuous flow of inert gas (e.g. N2) carries the source material vapor along 

the temperature gradient from the hot zone to the cool zone. At some point in the temperature 

gradient, the vapor is cooled to the condensation temperature of the source material. At this point 

in the temperature gradient, the material slowly deposits on the walls of the furnace and grows as 

crystals.  

Chemical vapor transport is used when vapors of the source materials cannot be easily 

obtained. For TMC crystal growth, a transport agent is necessary because most of the transition 

metals have melting points ≳2,500oC [151]. The transport agent vaporizes at a lower temperature 

and reacts with the source material to form a chemical complex, which diffuses as a gas. As 

shown in Fig. 4-1b, the complex forms at the hot zone and dissociates at the cool zone, 

depositing the materials for crystal growth. After dissociation, the free transport agent complexes 

with new source material at the hot zone and carries it to the cool zone. This cycle continuously 

feeds material to the growing crystal. Taking NbSe2 as an example, the suggested chemical 

reaction is [152] 

NbSe2(s)+5/2I2(g) ⇌ NbI5(g)+2Se(g) Eq. 4-1 

In this case, the starting material is NbSe2 powder. As the transport agent (iodine) reacts with 

NbSe2 to form a gaseous complex and selenium is a gas at >685oC [151]. In literature, the exact 

composition of the intermediate complex are often not determined. Iodine is commonly used as a 

transport agent for its low boiling point (184oC [151]) and chemical reactivity. 
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During vapor transport, the material is simultaneously synthesized and purified by the 

temperature gradient. Most of the impurities in the source material have a different condensation 

temperature than the source material. Hence, the impurities are deposited at different parts of the 

temperature gradient and separated from the target crystal. The target crystal grows at a point, 

where the molecules’ kinetic energies are too low to remain in the gas phase but still high 

enough to explore the energy landscape for the most stable configuration. A well-ordered crystal 

lattice is the most energetically stable form for a solid and the temperature gradient enables the 

chemical species to find this state. Slow growth is essential for minimizing structural defects 

(e.g. dislocations). Typical growth durations are 2 weeks to a month for ~1mm crystals. To 

realize the conditions above, a long furnace with a shallow temperature gradient is desired.  

Physical vapor transport uses an open system, where inert gas from an external source can 

flow through the open ends of a tube (Fig. 4-1a). In contrast, chemical vapor transport is a closed 

system, in which both ends of the tube are sealed (ampoule) and transport occurs with the 

diffusion of the pre-loaded transport agent (Fig. 4-1b). Ampoules are made by first sealing one 

end of a quartz tube with a hydrogen torch and loading the ingredients for crystal growth. 

Subsequently, the open end of the quartz tube is connected to the adapter of a vacuum station at 

the point labeled “quartz piece” in Fig. 4-2 and evacuated. Finally, the quartz piece is heated at a 

point near the quartz piece/vacuum junction with a hydrogen torch until the tube is sealed. While 

the quartz piece is evacuated, heating the quartz makes the wall cave inward. The purpose is to 

make the walls collapse from all sides to seal the tube. However, if the wall caves in too rapidly, 

the material becomes overstretched and a hole is pulled. Particularly for ampoules of large 

diameter, it is necessary to deform the prospective sealing point of the quartz piece into a “neck” 

with a hydrogen torch before attaching it to the vacuum station.  

As ampoules are sealed systems, some reactions could result in explosions. If too much 

transport agent is added, pressure could build up at high temperature due to thermal expansion 

and cause the ampoule to explode. Ampoules are also used for reacting elements together to form 

the source material powder. In this case, caution should be exercised when ramping up the 

temperature. If the metal and the chalcogenide reacts quickly (e.g. niobium and selenium) the 

chalcogenide vapors at high temperature condense into a solid metal chalcogenide. However, if 

the reaction is slow (e.g. tantalum and sulfur), the ampoule fills with chalcogenide vapor and 

pressure builds up as the temperature is raised. When exploring a reaction for the first time, it is 

advised to seal an ampoule within a larger ampoule, in case the smaller ampoule breaks. The 

system should be closely monitored during the first temperature ramp up. 
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The vacuum station, shown in Fig. 4-2, is developed with the help of Jacob Bryon. The quartz 

piece is evacuated with the turbomolecular pump, while valves V1 and V3 are open and V2 is 

closed. Before sealing the ampoule, the gate valve V3 is closed to protect the pump. If a hole is 

pulled during the ampoule sealing process, the rapid loss of vacuum would damage the pump. 

The setup reaches ~10-6torr, while pumping, but the vacuum degrades without actively pumping. 

The large volume of the ballast stabilizes the vacuum to ~10-2torr while sealing the ampoule. The 

vacuum would be improved if a cryo-pump is used instead. However, we found vacuum <10-

1torr is sufficient for the growth of high quality crystals (see section 2.1.2). For loading air 

sensitive materials, such as alkali metals or AlCl3, the setup can be disconnected at flange F1 to 

load the ingredients inside a glovebox. After coming out of the glovebox, the materials in the 

quartz piece are protected from air as long as V1 is closed. Some crystal growth processes are 

accelerated by the presence of argon compared to vacuum. To seal the ampoule with some argon, 

the system is first flooded with argon by opening V2. Then, the pump is started and V2 is closed. 

 
Fig. 4-1 Vapor transport schematic.  
a) Physical vapor transport for rubrene crystal growth. b) Chemical vapor transport for NbSe2 

crystal growth with iodine as transport agent. The temperature vs position graph at the 

bottom indicates the systems in a) and b) are placed in a temperature gradient. 
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Before all the argon is pumped out, V3 is closed when the desired pressure of argon is indicated 

by the gauge. 

 
The temperature gradient is created by a homemade temperature gradient furnace (see Fig. 

4-3). The furnace consists of two quartz tubes of different diameters concentrically arranged. For 

physical vapor transport, adapters for flowing inert gases are connected at both ends and another 

tube is placed inside the inner tube to load ingredients and extract crystals. For chemical vapor 

transport, ampoules are placed in the inner tube. The outer tube serves as thermal insulation to 

trap the heat from the heating coil around the inner tube. Fiberglass insulation is inserted at the 

ends as thermal insulation and to separate the inner tube from the outer tube wall. Quartz is used 

for its stability up to high temperature and optical transparency. The furnace is designed, so that 

we can look through the furnace walls and the crystal growth progress can be monitored without 

interrupting the growth.  

The heating coil is Ø0.5mm nichrome (Chromel C) wire wound with spacing, which gradually 

grows from left to right. The temperature is highest (lowest) in the region with the smallest 

(largest) distance between coil windings. The coil is fixed in place by alumina paste, which runs 

along the length of the inner tube. The coil remains in place due to friction at room temperature 

but at high temperature, the wire in the coil expands and moves around. As the strain on the coil 

is trapped from the winding process, the coil would completely loosen from the setup if it is not 

fixed in place. Three parallel lines of alumina paste, which are equally separated from each other 

provide this mechanical support. Placing asbestos tape between the coil and the inner tube during 

the winding process is a known solution but a substitute had to be found due to unavailability of 

asbestos tape. The alumina paste (Ceramabond 569, AREMCO Products Inc.) is stable at high 

temperature but coats the outer tube with a thin layer of yellowish material after a few weeks of 

 
Fig. 4-2 Ampoule sealing station.  
Valves are labeled by V1, V2 and V3. F1 indicates a flange. 
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running the furnace. According to the manufacturer, the alumina paste does not outgas and the 

yellow coating is likely due to a chemical reaction between components in the alumina paste and 

the nichrome wire. An alternative product (Pyro-Paint 634-ZO, AREMCO Products Inc.) has 

been suggested but has not been used in a furnace yet. 

The temperature along the length of the furnace for different power settings of the variac are 

measured to obtain a calibration of the variac power to temperature profile. The gradient furnace 

has been operated at ~1000oC but the inner tube becomes cloudy, possibly due to the changes in 

the quartz crystal structure. In practice, the furnaces are limited to <800oC for routine operation, 

which proves sufficient for TMC growth. Once the synthesis parameters for successful crystal 

growth is identified, the outer tube is wrapped with aluminum foil to enhance the heating 

efficiency. In this manner, multiple furnaces could be powered from a single 120V, 20A circuit. 

In some instances, commercial furnaces without a deliberate temperature gradient have been 

used (e.g. Lindberg 59344 box furnace and Barnstead International F21135 tube furnace). The 

temperature inhomogeneity inside the furnaces have proven sufficient for some vapor transport 

growths.  

 

 
 

 

 

Fig. 4-3 Temperature gradient furnace schematic.  
Homemade temperature gradient furnace consists of concentric quartz tubes separated by 

fiberglass insulation (dots pattern). The heating coil is wound on the inner tube and powered 

by a variac. The gradual variation in coil winding spacing results in a temperature gradient. 

The coils are fixed in place by alumina paste (wavy lines pattern). 
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4.1.2 Flux growth 

In flux growth, materials are crystallized in solution. The growth starts at high temperature, 

when the source material is completely dissolved in a solution (“flux”). As the temperature is 

lowered, the solubility of the source material in flux is reduced. At some temperature, the flux is 

saturated and the materials, begin to precipitate out of the flux. When the temperature decrease is 

slow, the precipitate forms very slowly, enabling them to grow into crystals. The temperature is 

decreased until the flux solidifies. At this point, the flux grown crystals are embedded in a solid 

piece of flux. In most cases, the flux is water soluble (e.g. KCl) and the crystals are extracted by 

dissolving the flux. 

The advantage of flux growth compared to vapor transport is that it does not depend on the 

chemistry of the transport agent. It is well-suited for the crystal growth of compounds, which are 

more complex than binary compounds, as many ingredients can be simultaneously dissolved in 

the flux [153]. The drawback of flux growth is that the impurities in the flux or the source 

material can be trapped in the crystal. Crystals grown by vapor transport are often regarded as 

“cleaner” than flux growth. However, there are instances in which flux growth yields higher 

quality crystals than vapor transport [154]. 

Since the cooling rate translates to crystal growth rate, it is important that the materials are 

slowly cooled. The furnaces in the lab were limited to cooling rates of ≥6oC/hr, as the control 

electronics were not designed for slower rates. To enable slower cooling rates, a control unit for 

flux growth has been designed, constructed and tested by Patrick Stetz (see Fig. 4-4). The control 

unit is based on a feedback loop, which adjusts power to the furnace heating coils with a relay. 

The temperature reading from a type K thermocouple is sent back to the control unit. The 

ampoule for flux growth is placed inside a copper block (~7kg) to smooth out rapid changes in 

temperature by adding thermal mass. Ampoule temperature is measured by a thermocouple 

placed closed to the ampoule, inside the copper block, and logged by a commercial readout 

system. Another thermocouple is placed near the heating elements, outside of the copper block, 

to serve as the temperature feedback. The feedback thermocouple is necessary because the 

thermal response of the copper block is too slow to use for feedback control and causes 

temperature oscillations. 

As shown in Fig. 4-4, the Fuji Electric PXR3 is the central piece of the feedback electronics. 

Large currents for heating the furnace goes through the relay and heats it up. While the relay 

(Crydom D1225) is designed to operate up to 80oC, it is isolated in a separate enclosure to avoid 

overheating the other electronic components. The heat sink actually dissipates heat efficiently 

enough that the relay temperature only increases slightly. The temperature controller maintains 

temperature at a setpoint and carries out automated temperature ramping. Fig. 4-5 shows the 

temperature of the ampoule during a cooldown at 0.9oC/hr. The line in the inset represents data 

points taken every 2 minutes, demonstrating a linear cooling rate is maintained for >100 hours. 

The main panel is the time=16-22hrs section of the cooldown with a linear fit with slope 

0.9oC/hr. In summary, cooling rates much slower than the previous limit, 6oC/hr has been 

realized by making a new temperature controller. 

Currently, the system is controlled by a commercial software, which executes a pre-defined 

temperature ramp process. For more flexibility, a custom program should be developed (e.g. with 

LabVIEW) to control the temperature by continuously renewing the setpoint. A temperature 

ramp would be executed by periodically renewing the setpoint to a value calculated from the 
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initial temperature, final temperature and ramp rate. For large enough thermal mass, the stepwise 

change in temperature is smoothed out to a continuous, slow change in temperature.  

 

 

 
Fig. 4-4 Flux growth control unit schematic.  
The temperature controller interfaces with the computer and controls furnace temperature 

through the relay. The control is based on a feedback loop with the thermocouple reading as 

feedback. 
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Fig. 4-5 Flux growth control unit test run.  
The line in inset is from data points, taken every 2min. The main panel is the 16-22hrs 

section of the cooldown displayed in inset. The open circles are data points and the line is a 

linear fit with slope -0.9oC/hr.  
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4.2 Characterization 

Crystals are primarily characterized by R(T) measurements. The characteristic 

superconducting or charge density wave transition temperatures of the material are compared 

with previous studies. The crystals are glued to a quartz substrate and 25m (1mil) diameter 

annealed gold wires are attached to the crystal with silver paste (see section 3.1.1). Each 

contacted crystal is loaded into a commercial, automated cryostat (Quantum Design PPMS 

Dynacool, see section 3.3.1) and R(T) is measured with the current switching method (see 

section 3.1.3). 

The magnetic properties of synthesized crystals are characterized by a SQUID magnetometer 

(Quantum Design MPMS, see section 3.3.2). The samples are loaded in a gel cap and snugly fit 

to a plastic straw. Signatures of superconductivity, ferromagnetism/ferrimagnetism and 

antiferromagnetism are confirmed by ZFC/FC cycles and M(B) hysteresis loops.  

For some samples, the crystal structures are deduced from X-ray diffraction (XRD). XRD is 

performed by Antonio DiPasquale at the X-ray Crystallography Facility in College of Chemistry, 

UC Berkeley. 
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4.3 Organic crystal (rubrene) 

Rubrene crystals (see “Rubrene” in Fig. 13-1) are grown by physical vapor transport for the 

photoconductivity experiment described in Chapter Part III15. The synthesis is based on Laudise 

et al. [155]. Rubrene powder is placed at the hottest zone of a temperature gradient with 

2.5cm3/min N2 gas flows from the hot zone to the cool zone. The temperature gradient is 

stabilized by a PID feedback loop based temperature controller, which maintains the 

thermocouple reading at 180oC. The thermocouple does not indicate the actual temperature of 

rubrene, as it is not in direct contact with it, but the hot zone temperature is assumed to ~300oC, 

the source temperature used by Podzorov et al. [156]. The thermocouple location is unchanged 

throughout all growths for reproducibility of thermal conditions. The temperature setting for 

growth was initially found by ramping up the power until small crystallites appeared on the 

cooler zone. 

It is challenging to reach into the long furnace tube with tweezers to extract the crystals. To 

facilitate crystal extraction, short quartz tubes, with slightly smaller diameters than the gradient 

furnace, are inserted at the growth zone. The crystals grow on the inner walls of the inserted 

tubes. After growth, the tubes are taken out of the furnace to extract the crystals. After 4 days of 

growth, orange crystals of ~2mm x 1mm x 10m (see Fig. 4-6) are obtained. The inter-molecular 

forces are weak van der Waals forces, making the crystals extremely fragile. NbSe2 crystals of 

thickness ~10m are strong enough to be picked up with tweezers. In contrast, rubrene crystals 

of similar thickness break, when they are pinched with tweezers. Instead, they are manipulated 

by a hypodermic needle connected to a vacuum. 

 

 
Fig. 4-6 Synthesized rubrene crystal.  

Thickness~10m. 
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4.4 Transition metal chalcogenide crystals 

The crystal structures and electronic properties of the transition metal chalcogenides are 

introduced in Chapter 2. Many of the compounds in Table 2-1 are synthesized to study collective 

ground states (e.g. superconductivity and CDW, see Chapter 1) at the ultrathin limit. The 

synthesis parameters and characterization results are presented in this section. The crystals were 

synthesized mostly by a team of undergraduate researchers in the Zettl group: Joey Barreto, 

Corey Shih, Xiyue Wang, Patrick Stetz and Jacob Bryon and characterized with their help. 

Magnetization measurement are in collaboration with Owen Chen, an undergraduate researcher 

in the Zettl group. The synthesis parameters for the crystals grown are summarized in Table 4-1 

and Table 4-2. 
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4.4.1 Quasi-2D CDW material 

NbSe2 and 1T-TaS2 are classified as quasi-2D CDW materials, as they form plate-like crystals 

and exhibit CDW phase transitions. The background on the crystal structure and characteristic 

transitions are discussed in section 2.1. Synthesis parameters are more sensitive for quasi-2D 

CDW materials than for the quasi-1D CDW materials and more trials are required before 

successful crystal synthesis. Large crystals are obtained from month-long growths. An alternate 

accelerated growth method is also presented. With this method, crystals of ~1mm x 1mm are 

obtained in ~1 week without a gradient furnace. 

 

4.4.1.1 NbSe2 

NbSe2 crystals are grown with the help of Jacob Bryon, Joey Barreto and Corey Shih.  

Fig. 4-8a shows large crystals grown from pre-reacted NbSe2 powder and iodine sealed in an 

ampoule, while in a temperature gradient (see Fig. 4-7) for 56 days. The source material is 

placed at the hottest zone at 713oC, the crystals grow at the 700-670oC zone. The synthesis 

parameters are summarized in Table 4-1I. Since the crystals grow close to the hot zone, it is 

likely that temperature inhomogeneity in a box furnace is sufficient for crystal growth.  

 

 

Synthesis XI XII 

Description TaS2 powder FeSe powder 

Materials 

(purity) 

Ta powder 

(99.9%) 

 

1,423.9mg 

(7.9x10-3mol) 

Fe grains 

(99.999%) 

1,119.7mg 

(20x10-3mol) 

Sulfur 

powder 

(sublimed)  

497.9mg 

(15.6x10-3mol) 

Se powder 

(99.999%) 

1,551.2mg 

(20 x10-3mol)) 

    

Ampoule size  

(dia. x length) 
1.27cm x 20cm 1.27cm x 17cm 

Reaction 

condition 

1.600oC for 4 days. 

2.1,050oC for 1 day. 

3.920oC for 5 days. 

1.750oC for 1 day. 

2.1,075oC for 1 day. 

3.Cool to 400oC for 1 day. 

Table 4-2 Powder source material synthesis parameters. 
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Fig. 4-8b shows crystals of ~1mm are obtained from a 12 day growth in a box furnace at 

700oC (Table 4-1II). Instead of using pre-reacted NbSe2, niobium and selenium in their 

elemental form can be used. Interestingly, with a stoichiometry of Nb:Se=1:3, growth of NbSe3 

is expected but only NbSe2 is obtained. A possible reason is that NbSe3 does not grow when 

iodine is present (see section 4.4.2.1). Comparing the images in Fig. 4-8a,b, the crystal from a 56 

day growth and 12 day growth have similar lateral dimensions. However the 56 day growth is 

400m thick, whereas the 12 day growth is <100m thick. 

 

 
Fig. 4-7 NbSe2 crystal synthesis temperature profile.  
Image of the ampoule after synthesis is scaled and placed according to its placement in the 

gradient furnace. Tsource=713oC, Tgrowth=700-670oC. 
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Fig. 4-8 Synthesized NbSe2 crystals optical images.  

a) Grown for 56 days in gradient furnace. b) Grown for 12 days in box furnace. 
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The reported Tc in literature for NbSe2 is 7.2K [81] (see section 2.1.2). However, the R(T) in 

Fig. 4-9 shows depressed Tc<5.5K. A crystal grown in 10-5torr (solid line) actually has a lower 

residual resistivity ration (RRR) than a crystal grown in 10-1torr (dotted line). As shown in the 

inset, the crystal from 10-5torr has a lower Tc as well. The depression in Tc appears not to be 

caused by contaminants in vacuum. Both crystals are grown from commercially obtained pre-

reacted NbSe2 powder with a purity of 99.8%.  

Fig. 4-10 shows R(T) of a crystals grown from 99.99% Nb powder and 99.999% Se powder 

(Table 4-1II). The right on the right shows the onset of superconductivity at 7.2K. Hence, the 

depression of Tc is due to the impurities in the source material. A small anomaly is seen at ~32K 

in the main panel. In the left inset, the anomaly is accentuated by comparing with RHT(T) (red, 

dotted line). RHT(T) is obtained by fitting a polynomial at higher temperature (T=35-40K) and 

extrapolating for T<35K. The resistive anomaly slightly diverges to a resistance higher than 

RHT(T) for T~32-25K. This anomaly is a signature of the CDW transition [81] (see Fig. 2-3). In 

Fig. 2-3, the resistance continues to remain above the RHT(T), whereas R(T) recovers RHT(T) for 

T<25K in Fig. 4-10. 

The CDW resistive anomaly in NbSe2 is known to appear only in high quality crystals 

(RRR≥30), as discussed by Staley et al. [101]. In a previous study [101], the superconducting 

transition is at Tc=7.2K for crystals with RRR=10 but the CDW anomaly is absent in the R(T). 

With RRR=66, our NbSe2 crystals are high quality compared to crystals reported in literature 

(see Table 4-3). 
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Fig. 4-9 Effect of vacuum condition on NbSe2 synthesis.  
Resistance for each sample is normalized to its resistance at 300K. NbSe2 crystals 

synthesized in 10-1torr (dotted line) and 10-5torr (solid line) are compared. Both samples are 

synthesized from NbSe2 powder (99.8%). Inset: same data from T=6-4K, with magnified 

view of the superconducting transition. 
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Fig. 4-10 R(T) of synthesized NbSe2.  
NbSe2 crystal synthesized with high purity materials (Table 4-1II). Main panel: resistance of 

NbSe2 crystal from 300K to 2K. Left inset: resistance from 45K to 15K. The red dashed line 

is RHT(T), a fit to the data for T=35-40K to accentuate the resistance anomaly. Right inset: 

resistance from 7.5K to 6.9K. The blue line is the resistance on cooldown and red line is the 

resistance on warmup. 

Year RRR Reference 

2010 13-67  [290] 

2009 10  [101] 

2003 10-100  [291] 

1994 18-61  [292] 

Table 4-3 NbSe2 RRR from literature.  
Courtesy of Jacob Bryon. 
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4.4.1.2 1T-TaS2 

1T-TaS2 crystals are grown with the help of Corey Shih and Joey Barreto. Our synthesis 

methods are based on Enomoto et al. [157] and the information in the notebooks of Brian Burk, a 

former graduate student in the Zettl Group (PhD 1994). 

For trials with the hot zone at <800oC, the growth rate is slow and only very small crystals are 

obtained after a week of growth. Best results are obtained with the condition summarized in 

Table 4-1III with a tube furnace at 950oC, using the temperature inhomogeneity of the furnace 

(see section 4.1.1). The ampoule is held at 1050oC for a day at the start of the growth to react the 

Ta and S for synthesis from elemental Ta and S. This step is unnecessary when starting with pre-

reacted TaS2 powder but is kept the same for consistency. As the 1T polytype is stable only at 

high temperatures [158], the ampoule is immediately quenched with ice water after synthesis. As 

shown in Fig. 4-11a, plate-like crystals as large as 8mm are grown from elemental Ta, S and 

iodine (as transport agent) after 29 days. Excess sulfur is added to preferentially grow the 1T-

polytype [158]. 

The synthesis time is shortened when pre-reacted TaS2 is used instead of elemental Ta and S, 

with the parameters listed in Table 4-1IV. With only 7 days, the crystal shown in Fig. 4-11b is 

made from TaS2 powder, elemental sulfur (to provide excess sulfur) and iodine (as transport 

agent). After initially using commercial TaS2 powder, recipes for reacting elemental Ta and S are 

developed to obtain higher purity source material. The recommended material amounts for a 

synthesis run are shown in Table 4-2XI. The temperature should be varied according to the steps 

shown in Table 4-2XI. The ampoule will explode if the temperature is increased too rapidly 

because the reaction between tantalum and sulfur is slow (section 4.1.1). Without sufficient time 

to be captured by the tantalum, the ampoule is filled with unreacted sulfur gas at high 

temperature and pressure builds up due to thermal expansion. Hence, the ampoule is held at 

600oC to let the elemental sulfur react with the tantalum. The subsequent steps at high 

temperature are annealing steps to homogenize the tantalum + sulfur compound. 

Fig. 4-12 shows R(T) of a 1T-TaS2 crystal (image of sample shown in Fig. 4-11b). R(T) 

recorded on cooldown (warmup) is marked with an arrow pointing left (right). There are two 

hysteresis loops, one centered at 355K and the other at 190K, which are attributed to two CDW 

transitions (see section 2.1.3). R(T) increases non-linearly on cooldown for T<100K since the 

material is an insulator at this temperature range [107]. The above features in R(T) are consistent 

with Thompson et al. [107] (see Fig. 2-4). One difference is the kink at 160K in Fig. 4-12, which 

is causes by some domains with a higher CDW transition temperature than the rest. 
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Fig. 4-11 Synthesized 1T-TaS2 crystals optical image.  

a) Grown for 29 days. b) Grown for 7 days.   

 
Fig. 4-12 R(T) of synthesized 1T-TaS2.  

From thick TaS2 crystal (Table 4-1III). 
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4.4.2 Quasi-1D CDW material 

Due to the quasi-1D crystal structure of NbSe3 and TaS3, they form fibrous whiskers in their 

crystalline form. In contrast to the faceted plate-like crystals of NbSe2 and TaS2, the quasi-1D 

CDW materials look similar to black cotton balls. The background on the crystal structures and 

electronic properties are discussed in section 2.2.  

 

4.4.2.1 NbSe3 

NbSe3 is synthesized with the help of Jacob Bryon. The crystals are grown by loading 

stoichiometric amounts of Nb and Se in an ampoule and placing the ampoule in a temperature 

gradient (see Fig. 4-13). The source material is located at the 707oC zone and the crystal grows at 

the 664-653oC zone. The synthesis parameters are summarized in Table 4-1V. As an alternative, 

NbSe3 is also grown in a box furnace set to 700oC (Table 4-1VI), using its temperature 

inhomogeneity (see section 4.1.1). It is important that iodine is not used for the synthesis of 

NbSe3. The presence of iodine preferentially grows NbSe2, even when the source material is 

loaded with the molar ratio Nb:Se=1:3. For NbSe3 growth, Se appears to act as a transport agent. 

Fig. 4-14 shows NbSe3 grown in the gradient furnace for 19 days (Table 4-1V). Consistent 

with the quasi-1D crystal structure, the crystals look fibrous. The R(T) in Fig. 4-15 shows an 

overall metallic behavior with CDW resistive anomalies at TP1=144K and TP2=59K. The R(T) 

features are consistent with the R(T) from Chaussy et al. [80] (see Fig. 2-11). 

 

 

 
Fig. 4-13 Temperature profile for NbSe3 crystal synthesis.  
Optical image of the ampoule after synthesis is scaled and placed according to its placement 

in the gradient furnace. Tsource=707ºC, Tgrowth=667-653oC. 
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Fig. 4-14 Synthesized NbSe3 optical image.  

Grown in gradient furnace (Table 4-1V). 

 
Fig. 4-15 R(T) of synthesized NbSe3.  

Grown in box furnace (Table 4-1VI). 
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4.4.2.2 TaS3 

TaS3 is synthesized with help from Corey Shih. TaS2 and elemental sulfur are loaded in an 

ampoule according to stoichiometry and iodine is added as a transport agent (see Table 4-1VII). 

The ampoule is filled with some argon to accelerate the growth and placed in a temperature 

gradient. Fig. 4-16 shows the gradient. The line is an interpolation based on a fit on the 6 data 

points shown as circles markers. The source material is at 666oC and the crystal grows at the 

545-534oC zone. Cotton-like crystals (see Fig. 4-17) are grown in 7 days. 

 

 

 
Fig. 4-16 Temperature profile for TaS3 crystal synthesis.  
The black curve shows a cubic spline interpolation between the data points (open circles) as a 

guide to the eye. The rectangle at the bottom represents the ampoule. Crystals grow in the 

shaded region. Tsource=666oC, Tgrowth=545-534oC. 
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Fig. 4-18a shows R(T) of the synthesized crystals. A third order polynomial (red line) is fit to 

the data for T=220-200K. Using the numerical derivative of the fit, the quantity 
1

R

dR

dT
 is calculated 

and displayed in the inset. The curve in the inset peaks at 214K, indicative of a transition, which 

is consistent with the TP=215K CDW transition reported in Thompson et al. [128]. Fig. 4-18b 

shows the Arrhenius plot of the TaS3 resistance. Due to the CDW gap formation, the resistance 

follows the thermally activated behavior R~e− 2Δ/kBT. The energy gap =788K obtained from 

the slope in the Arrhenius plot is consistent with =740K from Thompson et al. [128]. 

 

 
Fig. 4-17 Synthesized TaS3 crystals optical image. 
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Fig. 4-18 R(T) of synthesized TaS3.  

a) Resistance at T=300-60K. Red line is a fit to the T= 220-200K data. Inset: 
1

R

dR

dT
 from 

numerical derivative of the fit. b) Arrhenius plot for T=300-83K. Red, dotted line is a linear 

fit to T=190–123K range. =788K from slope. 
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4.4.2.3 (NbSe4)3I 

(NbSe4)3I was synthesized, while working on NbSe2 synthesis with Joey Barreto. This material 

is formed when iodine, which is usually included as a transport agent, becomes part of the 

crystal, instead of dissociating at the crystal growth zone. NbSe2 powder and iodine are loaded in 

an ampoule (see Table 4-1VIII) and placed in a temperature gradient shown (see Fig. 4-19). The 

hot zone is at 689oC and the crystals grow at the 544-539oC zone. NbSe2 requires higher 

temperatures (see Fig. 4-7) and does not grow during (NbSe4)3I synthesis. Hence, the synthesis 

parameters described in Table 4-1VIII yield only (NbSe4)3I. Fig. 4-20 shows crystals, which 

were grown for 55 days. They are shiny, needle-like crystals, which are thicker and straighter 

compared to NbSe3, possibly due to the increased inter-chain interaction by the iodine. 

The crystals are characterized by electrical transport. As silver paste does not make good 

electrical contact to this material, contacts are formed by evaporating 50nm of gold through a 

shadow mask and painting wires to the gold contacts with silver paste. Fig. 4-21 shows R(T), 

which indicates thermally activated hopping behavior from T=300-200K. The kink at 272K is 

attributed to the ferrodistortive structural transition known to occur at T=274K [78] (see section 

2.2.3). I(V) curves measured at 230K does not show any non-linear conduction for E≥15V/cm, 

which is an order of magnitude higher than ET=3V/cm reported for (NbSe4)3.33I [159]. (NbSe4)2I 

or (NbSe4)3.33I would exhibit sliding CDW behavior at T=230K (see Table 2-1). 

 

 

 
Fig. 4-19 Temperature profile for (NbSe4)3I growth.  
The rectangle at the bottom represents the ampoule. Crystals grow in the shaded region. 

Tsource=689oC, Tgrowth=544-539oC.  
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Fig. 4-20 Synthesized (NbSe4)3I crystals optical image. 
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Fig. 4-21 R(T) of synthesized (NbSe4)3I.  

The kink at 272K is from a structural phase transition. Inset: magnified view of the transition. 
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4.4.3 WTe2 

WTe2 crystals are grown with help from Patrick Stetz. Tungsten wire and tellurium shots are 

sealed in an ampoule with iodine as transport agent (see Table 4-1IX). The synthesis reported by 

Ali et al. [112] use bromine for the transport agent but iodine appears to be an acceptable 

alternative. The ampoule is placed in a temperature gradient (see Fig. 4-22) for 33 days. The 

source materials are placed close to the hottest zone at 696oC and crystal growth occurs close to 

the source materials in the 696-668oC zone. Needle like crystals are obtained (see Fig. 4-23). 

Fig. 4-24a shows R(T) of the synthesized WTe2 crystals under B⊥=0, 2, 4, 6, 9T. R(T) is 

metallic for B⊥=0 down to 2K. For B⊥≥4T, there is a ‘turn on’ temperature T*, below which the 

resistance increases with cooling. This behavior is consistent with previous study [112] (see Fig. 

2-6). However, the ‘turn on’ effect is weaker in our samples. In Fig. 4-24a, the residual 

resistance (i.e. R(T→0)) for B⊥=9T increases by a factor ~10 compared to B⊥=0, whereas the 

factor is more than ~100 in Fig. 2-6. This is attributed to the difference in quality of the crystals. 

The RRR=38 for our crystals, whereas RRR=370 for the crystals in Fig. 2-6 [112]. 

Fig. 4-24b shows magnetoresistance MR =
R(B)−R(0)

𝑅(0)
× 100% at T=1.8K. For |B|>6.5T, 

wiggles can be seen in the MR curve. A second order polynomial, MRfit, is fit to the data and 

subtracted. The result, MR-MRfit, is plotted against 1/B in the inset for B=6.25-9T. The data for 

increasing and decreasing B both exhibit periodic oscillations, which are identified as 

Shubnikov-de Haas oscillations. The Shubnikov-de Haas oscillations are similar to those 

reported by Ali et al. [112].  

To obtain higher quality crystals, flux growth should be explored. Although flux growth is 

usually thought to be more prone to contamination by impurities, reports of flux growth in excess 

tellurium has yielded very high quality crystals [154]. The vapor transport grown crystals by Ali 

et al. [112] have RRR ~370, whereas the flux grown crystals by Wu et al. report RRR>900 

[154]. It is possible that vapor grown WTe2 suffers from Te vacancies, similar to MoTe2 [160]. 

Growth in a Te rich environment is more suitable for filling the vacancies. We have developed a 

setup for flux growth and began trials to replicate the process but have not obtained crystals from 

flux growth yet (see section 4.1.2). 
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Fig. 4-22 Temperature profile for WTe2 crystal synthesis.  
The rectangle at the bottom represents the ampoule. Crystals grow in the shaded region. 

Tsource=696oC, Tgrowth=696-668oC.  

 

 

 
Fig. 4-23 Synthesized WTe2 crystal optical image. 
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Fig. 4-24 Electrical transport of synthesized WTe2.  
a) R(T) of synthesized WTe2 crystal under a magnetic field oriented perpendicular to the 

plate-like crystal face. b) Magnetoresistance (MR) for -9T≤B≤9T at T=1.8K. 
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4.4.4 FeSe 

FeSe is synthesized with help from Xiyue Wang, Joey Barreto, and Patrick Stetz. Owen Chen 

assisted with the magnetic property characterization. As shown in Fig. 4-25, the Fe-Se phase 

diagram is complex with many phases. The target phase is the tetragonal FeSe (labeled as . 

While developing the synthesis parameters for FeSe, we accidentally synthesized other Fe-Se 

compounds. The synthesis methods for FeSe2 and Fe3Se4 are also presented. 

Tetragonal FeSe synthesis is based on Koz et al. [161]. Pre-reacted FeSe powder and AlCl3 are 

loaded in an ampoule (see Table 4-1X). According to Koz et al., AlCl3 releases HCl when heated 

by reacting with water, which is released from the ampoule walls.  

Al2Cl6(g) + 3H2O(g) → Al2O3(s) + 6HCl(g) Eq. 4-2 

HCl is the transport agent, which complexes to FeSe 

2HCl(g)+FeSe(s) ⇌ FeCl2(g) + H2Se(g) Eq. 4-3 

AlCl3 is protected from air during ampoule loading and sealing process (see section 4.1.1) to 

avoid it reacting with the moisture in the air.  

At the same time, crystal growth is facilitated by high water content in the ampoule for 

increased HCl production during synthesis. Argon gas is bubbled through water and leaked into 

the ampoule before sealing. The ampoule is placed in a temperature gradient shown in Fig. 4-26, 

with the source material at 363oC. The crystals grow in the 268-252oC zone. Fig. 4-27 shows 

rectangular crystals up to 250m x 150m large, which are obtained after 24 days. The 

rectangular shape is consistent with the habit of the tetragonal crystal structure. 

For the synthesis described above, tetragonal FeSe grows only when the source material is pre-

reacted FeSe powder. Starting with elemental Fe and Se results in FeSe2 crystals (see section 

4.4.4.1). FeSe powder is synthesized by sealing elemental Fe and Se into an ampoule and heating 

the ampoule according to the program listed in Table 4-2XII. To avoid the ampoule exploding 

during synthesis, the amount of ingredients should not exceed those listed in Table 4-2XII for an 

ampoule with diameter 1.27cm and length 17cm. The 2 step temperature is also a precaution 

against an explosion (see section 4.1.1). 
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Fig. 4-25 Fe-Se phase diagram.  

Fig. 1, Okamoto [293]. Tetragonal FeSe phase labeled as . 
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Fig. 4-26 Temperature profile for FeSe crystal synthesis.  
Image of the ampoule after synthesis is scaled and placed according to its placement in the 

gradient furnace. Crystals grow at the dark region 15-19cm. Tsource=363oC, Tgrowth=268-252oC 

 
Fig. 4-27 Synthesized FeSe crystals optical image. 
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Fig. 4-28 shows the magnetic susceptibility () measurement for T=10-5K. For ZFC,  drops 

to negative below 8.5K and approaches -1/4, demonstrating almost complete shielding. The 

diamagnetic signal below 8.5K is consistent with the onset of superconductivity in tetragonal 

FeSe [117]. Magnetization at 5K for magnetic fields -1T≤B≤1T is shown in the inset. M(B) is 

hysteretic and the collapsed diamond shape is characteristic of superconductivity. At high 

magnetic field, the curves asymptote to a diagonal line, indicating the coexistence of a 

paramagnetic behavior. Paramagnetic behavior is discussed in Hsu et al. as well [117].  for FC 

does not drop at 8.5K and even slightly increases. For lower temperatures,  is slightly negative 

but negligible compared to the ZFC. This suggests the superconducting volume fraction is low, 

as Meissner effect should have reduced the FC curve as low as the ZFC curve. The report by Hsu 

et al. [117], observe similar behavior with a more pronounced increase of  during FC (see Fig. 

2-9). The anomaly at 100K is not observed in our samples. 

As vapor transport growth of FeSe is very slow, we believe flux growth [162] is more suitable 

for obtaining large crystals. We have developed a setup for flux growth (see section 4.1.2) but 

our synthesis trials for FeSe flux growth is still in its early stages. 

 

 

  

 
Fig. 4-28 Magnetic property of synthesized FeSe crystal.  
Magnetic susceptibility of synthesized FeSe for T=10-5K. Sample is measured after zero-

field cooling (ZFC) and during field cooling (FC) with a magnetic field B=2mT. The dotted 

line is drawn at =-1/4, the value for complete shielding. Inset: sample magnetization at 

T=5K as the field is scanned between -1T and 1T. 
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4.4.4.1 FeSe2 

When elemental Fe and Se with Fe:Se=1:1 are used as the source material instead of pre-

reacted FeSe, needle-like FeSe2 crystals grow instead of tetragonal FeSe (see Fig. 4-29). All 

other synthesis parameters are the same: AlCl3 is added for vapor transport and the same 

temperature gradient (see Fig. 4-26) is used. The crystals are confirmed to be FeSe2 with single 

crystal XRD. The crystals structure is “marcasite structure” (orthorhombic, Pnnm) with lattice 

parameters a=4.7Å, b=5.8Å, c=3.6Å [163]. FeSe2 (marcasite structure) is a semiconductor with 

bandgap 0.5-1.0eV [164,165]. Wu Shi proposed using ionic liquid gating (see section 6.2) to 

explore if superconductivity could be induced in FeSe2, as it has been in other semiconductors 

[144]. If superconductivity is induced, it is interesting whether it will be iron-based or BCS (see 

section 1.1). 

 
  

 
Fig. 4-29 Synthesized FeSe2 crystals optical image. 
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4.4.4.2 Fe3Se4 

Fe3Se4 is obtained in our attempt to grow tetragonal FeSe with iodine (transport agent) and 

pre-reacted FeSe powder. Adopting similar conditions as other TMC crystal growth, the hot zone 

is set at 667oC. The synthesis did not yield rectangular FeSe crystals but yielded hexagonal, 

plate-like crystals. According to single crystal XRD, the synthesized crystal has a “NiAs 

structure” (monoclinic, C2/m), with lattice parameters a=12.7Å, b=3.5Å, c=5.2Å [163]. This 

Fe3Se4 is labeled as  in the Fe-Se phase diagram (see Fig. 4-25). FeSe is not produced because it 

is only stable below 457oC and high growth temperature is not suitable for its growth. Karkin et 

al.  [166] reports difficulties with iodine vapor transport, as well. AlCl3 based vapor transport or 

flux growth is more promising for growing large crystals. 

Magnetic properties of crystals from another trial with a slightly cooler hot zone of 620oC is 

characterized. Fig. 4-30a shows the ZFC and FC curves do not overlap below 192K. The history 

dependence is an indication of ferromagnetism/ferrimagnetism. Fig. 4-30b shows M(B) at 

T=4.2K and the characteristic hysteresis of ferromagnetism is seen. However, M(B) at T=290K 

shows a small hysteresis. It is possible that there is a domain with a higher Curie temperature 

than 290K but a weaker magnetic signal. The kink at 123K is interesting, as it is possibly the 

signature for transition to the anti-ferromagnetic state [167]. From the magnetic behavior, we 

believe the crystal is a mixture of Fe3Se4 domains and Fe7Se8 domains. According to the 

magnetic phase diagram in Fig. 4-31, a ferrimagnetic to anti-ferromagnetic transition with Néel 

temperature at 123K is possible. Since the paramagnetic to ferrimagnetic transition for Fe7Se8 

occurs at T>400K, it is possible the crystal is still ferrimagnetic at 290K. The transition at 192K 

is attributed to Fe3Se4. This section included for possible future interests in magnetic materials 

(i.e. anti-ferromagnetism and ferrimagnetism). However, the current synthesis parameters need 

to be further refined if a pure Fe7Se8 crystal is required. 
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Fig. 4-30 Magnetic properties of synthesized Fe3Se4/Fe7Se8.  
a) Magnetization for T=320-4.5K after zero-field cooling (ZFC) and during field cooling 

(FC) with magnetic field B=100mT. b) Magnetization as magnetic field is scanned between 

0.1T and -0.1T at 4.5K (circles) and 290K (squares). 
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Fig. 4-31 Magnetic phase diagram for FeSe with NiAs structure.  

Fig. 1, Terzieff & Komarek [294]. 
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5 Monolayer NbSe2 (MBE grown) 

NbSe2 was studied as one of the prototypical layered material with anisotropic 

superconducting properties [168]. Since then, many other superconductors with layered structure 

have emerged (e.g. cuprates, MgB2 and iron based superconductors, see section 1.1). The 

discovery of the “Scotch tape” method has renewed interest in collective ground states at the 

ultrathin limit (see section 2.3). The thickness dependence of the CDW phase has recently been a 

topic of extensive study in 1T-TaS2 [47]. The isolation of an atomic layer of a superconductor is 

of great relevance to the study of two-dimensional superconductivity, previously pursued 

primarily with molecular beam epitaxy (see section 1.1.5). As both superconducting and CDW 

phases exist in NbSe2, it is an interesting material for the study of collective ground states in the 

ultrathin limit.  

Recent studies on monolayer NbSe2 obtained samples by mechanical exfoliation [130,169]. 

We have explored a complementary sample structure using monolayer NbSe2 grown by MBE. 

Samples were grown by Yi Zhang, a post-doctoral researcher in the Shen group, and Hyejin Ryu, 

a post-doctoral researcher at the Advanced Light Source. Our samples offer unique advantages 

for surface sensitive and in situ vacuum studies. Transport in MBE grown monolayer NbSe2 was 

studied in a UHV cryostat with the help of Miguel Ugeda, a post-doctoral researcher in the 

Crommie group, Aaron Bradley, a graduate student in the Crommie group, and Yi Chen, a 

graduate student in the Crommie group. Subsequently, I extended the transport study to lower 

temperatures using a dilution refrigerator to study superconductivity. Miguel, Aaron and Yi Chen 

characterized the samples with STM. In particular, they studied the CDW at the monolayer limit 

with STM and a short discussion on their results are included in the end. 
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5.1 Ultrathin NbSe2 

Superconductivity in ultrathin NbSe2 was reported in 1972 [22]. Frindt proposed that the layer 

number dependence of superconductivity would elucidate the role of interlayer coupling. Fig. 5-1 

shows the decrease in Tc as the number of layers are reduced. The thickness of the sample was 

estimated by dividing the sheet resistance by the bulk resistivity. The estimated thickness (filled 

circles), are shown together with nearest integer multiple of the monolayer thickness (open 

circles). The Tc was measured down to the bilayers and an extrapolation predicts Tc=3.8K in 

monolayer NbSe2.  

In 2015, superconductivity in monolayer NbSe2 with Tc=2K was reported [169] (see Fig. 5-2). 

The thickness was characterized by height measurements with atomic force microscopy. 

Subsequently, a higher Tc=3.1K was reported by Xi et al. [48]. The discrepancy in Tc is possibly 

due to the presence of graphene. In the first study [169], ultrathin NbSe2 was covered by 

graphene to protect it from the environment. For 3 and 4 layer thick NbSe2, covering with 

graphene or h-BN made no difference. However, it is possible that graphene has some effect for 

monolayer NbSe2. 

The recent study of monolayer NbSe2 by Xi et al. [130] report, for magnetic fields pointing 

parallel to the layer, Bc2
∥ > BP exceeds BP (see section 1.1.2). A similar effect is reported for 

ionic liquid gated MoS2 as well [170]. According to Xi et al. [130], the carrier spins are protected 

by a combination of spin-orbit coupling effect and the unique crystal symmetry of the 

monolayer. It is interesting to note that, Bc2
∥ > BP has been reported in bulk NbSe2 for magnetic 

fields directed parallel to the layers [171,172]. Magnetoresistance experiments indicate 

Bc2
∥ ~6.5BP for monolayer [130] and Bc2

∥ ~1.5BP for bulk [171]. However, the measurement and 

definition of Bc2
∥  differ between the two studies and further study is needed for a fair comparison. 
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Fig. 5-1 Tc vs NbSe2 thickness (1972).  
Fig. 2, Frindt [22]. The vertical axis is Tc from the resistive superconducting transition. The 

horizontal axis is the sample thickness (t). The top label c0=12.6Å is the unit cell dimension 

corresponding to two NbSe2 layers. Filled circles are placed at thicknesses deduced from 

resistivity. Open circles are placed at the nearest multiple of single layer thickness (c0/2) with 

the same T as its nearest filled circle. The line extrapolates to Tc=3.8K in the single layer. 
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Fig. 5-2 Tc vs NbSe2 thickness (2015).  
Fig. 4c, Cao et al. [169]. The resistive superconducting transition from 30 layer NbSe2 down 

to monolayer. The monolayer transition is centered at Tc~2K. The layer thicknesses are 

measured by atomic force microscopy. 

 



135 

 

5.2 MBE grown monolayer NbSe2 

Although many layered materials are susceptible to mechanical exfoliation down to the 

ultrathin limit (Table 2-2), Geim and Grigorieva warn that materials does not necessarily possess 

the chemical stability of its bulk form at the ultrathin limit [41]. Electrical devices of ultrathin 

NbSe2 fabricated in air exhibit insulating behavior [77,101]. However, when NbSe2 is exfoliated 

and encapsulated by h-BN or graphene [169], it remains metallic and superconducting down to 

the monolayer limit. NbSe2 at the few unit cell thickness range decomposes if exposed to air, 

possibly due to photo-oxidation effects, which produce Nb2O5 and selenium precipitates 

[173,174]. Many of the recent studies [130,169,175] on ultrathin NbSe2 protects the sample from 

air exposure by encapsulating it in h-BN.  

We study a complimentary device structure to the mechanically exfoliated and h-BN capped 

devices. Monolayer NbSe2 are grown on bilayer graphene (BLG) with MBE by Yi Zhang and 

Hyejin Ryu [28]. As illustrated in Fig. 5-3, the device consists of a silicon carbide (SiC) 

substrate, BLG, monolayer NbSe2 (1ML NbSe2) and selenium capping layer (Se cap). The BLG 

is epitaxially grown on the SiC and serves as a flat substrate that minimizes structural defects in 

NbSe2. The ~10nm thick selenium capping layer is deposited at the end of the growth in order to 

protect the NbSe2 after removing it from the UHV growth chamber. The advantage of the 

selenium capping layer is that it can be easily removed to re-expose the NbSe2 surface, making it 

amenable to in situ studies with surface sensitive probes, such as scanning tunneling microscopy 

and photoemission. 

 

 

 

Fig. 5-3 MBE 1ML NbSe2.  
Adapted from Fig. 1, Onishi et al. [295]. The layers shown are (from bottom to top): silicon 

carbide substrate/epitaxially grown bilayer graphene/MBE grown monolayer NbSe2/selenium 

capping layer (~10nm). Metal contacts (yellow plates) are on the four corner of the sample. 
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Fig. 5-4 shows an STM scan of a representative sample area obtained by Miguel, Aaron and 

Yi Chen in the Crommie group. Monolayer NbSe2 forms a continuous network on top of BLG. 

Parts of the substrate are masked during MBE growth, to obtain exposed areas of graphene. As 

shown in Fig. 5-5, contacts are placed in a four-point probe configuration to the exposed 

graphene to study the transport behavior. 5nm/100nm of Ti/Au is evaporated through a shadow 

mask and the contacts are connected to cryostat wiring either by wire bonding or with silver 

paste. 

Fig. 5-6 shows R(T) for T=50-5K of the MBE 1ML NbSe2 (Fig. 5-3), before removal of the Se 

capping layer (solid line). The behavior is metallic for T=50-30K but R(T) switches to a 

thermally activated behavior for T=30-5K, possibly due to localization effects (see section 5.4). 

It is possible that the heat treatment during Se cap removal would alter the chemical composition 

of the NbSe2 film to NbSex>2. To address this concern, R(T) of the sample before and after 

selenium capping layer removal are compared. After measuring R(T) with the Se cap, the same 

sample is heated in a UHV chamber at 330oC to remove the Se cap and R(T) is measured in situ. 

To emphasize, the sample before and after removal of the Se cap are measured in the same UHV 

chamber (see section 3.2.4) with the same contact geometry and the sample without the Se cap is 

never exposed to air. As shown in Fig. 5-6 inset, the sample after Se cap removal (dotted line) 

has a lower resistance than the sample before Se cap removal (solid line). We attribute the 

difference to annealing effects during the selenium evaporation. R(T) of the sample without Se 

cap shows that the system is overall metallic for T=30-200K with a switch to thermally activated 

behavior for T=30-5K, similar to the sample with Se cap.  

In order to compare the sample with Se cap and without Se cap, the resistance of each sample 

is normalized by the resistance at 50K (R(T)/R(50K)). Both curves are similar in their switch 

from metallic to thermally activated behavior at T~30K. Closer inspection reveals that the 

resistance minimum shifts slightly from T~30K for the sample with selenium to T~33K for the 

sample without Se cap. However, the difference is subtle, as the dip is broad and the minima are 

not well defined. With a change in chemical composition, much more dramatic change in R(T) is 

expected. Hence, we conclude that the transport behavior is not affected by the presence of 

selenium and does not change significantly during the removal of the Se cap. In hindsight, R(T) 

data for T>50K from the sample with Se cap would have been useful, as the electron-phonon 

coupling can be extracted from the slope (dR/dT) at high temperature, where R(T) is linear 

[176]. After the measurement in Fig. 5-6, the sample is imaged with STM in situ and looked 

similar to the typical samples in STM studies (see Fig. 5-4). 
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Fig. 5-4 STM image of MBE 1ML NbSe2.  
Fig. 1b, Ugeda et al. [49]. The monolayer NbSe2 domains (purple region) cover most of the 

bilayer graphene (black region). 
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Fig. 5-5 Contact geometry on MBE 1ML NbSe2.  

Fig. S3, Ugeda et al. [49]. The contacts are evaporated on the exposed parts of graphene. 

 
Fig. 5-6 Comparison of MBE 1ML NbSe2 with and without Se cap.  
R(T) first measured with Se cap (solid line). Subsequently, Se cap is evaporated off the same 

sample in UHV and R(T) is measured in situ (dashed line). Both R(T) are normalized to their 

resistance at 50K for comparison. Inset: resistances of the sample without normalization. 
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5.3 Superconductivity 

Fig. 5-7 shows R(T) of MBE 1ML NbSe2 for T=4-0.05K. The selenium capping layer is kept 

on the sample during measurement. At high temperature, the sample is in the normal state and 

resistance increases with cooling, possibly due to localization (see section 5.4). Below 

Tonset=2.6K, the resistance begins to drop and diverges from the extrapolated normal state 

behavior (upper dashed line), consistent with the onset of superconductivity. The midpoint 

temperature (Tmid=1.9K) is where the resistance falls to half of the normal state resistance. We 

define the normal state resistance as Rn=R(Tonset=2.6K). Upon further cooling, the resistance falls 

to a constant value of R=15 (lower dashed line). The value of this constant resistance varies 

between samples and is very close to zero for some. For a superconductor, the resistance should 

remain at zero for T< Tzero. We believe the temperature independent residual resistance for some 

samples originates from the graphene portion, which is in series with the NbSe2. The 

superconducting part of the sample falls to zero resistance for T<Tzero=1.3K. Our observed 

transition temperature is in agreement with Tc=2K reported by Cao et al. [169] but lower than the 

Tc=3.1K reported by Xi et al. [48]. 

 

   

 
Fig. 5-7 Resistive superconducting transition in MBE 1ML NbSe2.  
Sample R(T) measured by four-point probe (see Fig. 5-5). The dashed line at the upper part 

of the graph is extrapolated R(T) from the normal state (T>2.6K). The dashed line at the 

lower part of the graph is a horizontal line at R=15. Tmid for R(Tmid)=0.5R(Tonset) is 

determined from the thin, horizontal and vertical construction lines. 
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5.3.1 Perpendicular magnetic field dependence 

Fig. 5-8 shows R(T) of MBE monolayer NbSe2 under a magnetic field directed perpendicular 

to the film (B⊥). As B⊥ increases, the transition gradually shifts to lower temperatures and 

broadens. At 3T, the superconductivity is completely quenched and R(T) switches to a thermally 

activated behavior. At 6T, the resistance increases more rapidly with cooling. The switch to 

insulating behavior is suggestive of a SIT (see section 1.1.5) in 2D superconductors. For our 

samples, we cannot confirm the large divergence in R at low T, which were seen in disorder 

induced SIT of Bi (see Fig. 1-7). However, R(T)of our samples resemble the magnetically tuned 

SIT in MoGe films (see Fig. 1-8).  

Recently, in bilayer NbSe2, the emergence of a quantum metal state between the 

superconducting and insulating state was observed [175]. The state is characterized by the 

resistance settling to a temperature independent, magnetic-field dependent value at low 

temperature. As our system has a complicated structure of bilayer graphene and NbSe2, further 

study is needed to investigate how the system behaves when superconductivity is quenched. 

Fig. 5-9 shows B⊥-dependence of the resistance at T=0.15-3K. At low magnetic field (|B|<2T) 

and T<Tc, the resistance increases rapidly with B⊥, due to the destruction of the superconducting 

order parameter. For a superconductor, the resistance should saturate to a constant value after 

superconductivity is completely quenched at high magnetic field. Our samples exhibit a slight 

positive magnetoresistance at high fields (|B|>2T) but the dependence is much weaker compared 

to the superconducting state. For the sample at 3K, well above Tc, only the small positive 

magnetoresistance is seen for both low and high fields. At a high magnetic field, the R decreases 

as T increases, consistent with the insulating behavior in Fig. 5-8 at high field. 

Further details on R(B) in the superconducting state are shown on Fig. 5-10. There is little 

difference between the R(B) measured during field ramp up and down (labeled by arrows). 

Hence, the 100nA excitation is below the threshold of vortex motion. For the curve measurement 

at 0.15K, the data from ramp up and down are combined as the dataset is incomplete by 

themselves. At 0.15K, the change in magnetic field causes the sample to heat up and data points, 

which were measured without a well-controlled sample temperature is discarded. Even for 

0.15K, R(B) from the ramp up and down look identical, when reliable data for both ramp 

directions are available. To minimize heating during magnetic field ramps, ramp rates are limited 

to 0.01T/s for T>0.15K and 0.001T/s for T=0.15K. 

Fig. 5-15 shows Bc2
⊥ (T) extracted from R(B). The Bc2

⊥  is defined as R(Bc2
⊥ )=0.5Rn. Bc2

⊥  

increases as the temperature is lowered and extrapolates to Bc2
⊥ (T=0)~1.3T. The decrease in slope 

below 0.5K is consistent with the trend seen in bulk NbSe2 [172]. Near Tc, the linear 

extrapolation from the data near Tc (dashed line) intercepts Bc2=0 at T~1.75K<Tc=1.9K. 

However,  Bc2(T) has been known to exhibit positive curvature near Tc in bulk layered 

superconductors [102]. It is possible that a similar effect occurs for monolayer NbSe2. 
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Fig. 5-8 R(T) of MBE 1ML NbSe2 under 𝐁⊥.  

Each R(T) curve is labeled by B⊥ strength. The sample geometry is SiC/BLG/1ML 

NbSe2/Se, with Se cap still on the sample during measurement. 
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Fig. 5-9 R(B), -9T≤𝐁⊥≤9T of MBE 1ML NbSe2.  
Resistance is measured as the magnetic field is varied at constant temperature. R(B) for 

T=0.15K, 0.5K, 1K, 1.5K, 2K, 2.5K and 3K are shown. At low magnetic field, the resistance 

increases with temperature, whereas at high magnetic field, the resistance decreases with 

temperature. 



143 

 

 
  

 

Fig. 5-10 R(B), 𝐁⊥=0-3.5T of MBE 1ML NbSe2.  
Magnification of R(B) shown in Fig. 5-9 for low magnetic field. Each curve is labeled by the 

sample temperature during measurement. The arrows show the direction of magnetic field 

sweep. 
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Fig. 5-11 𝐁𝐜𝟐
⊥ (T) of MBE 1ML NbSe2. 

Each data point corresponds to R(Bc2)=0.5Rn, where Rn is the normal state resistance with no 

magnetic field, and is extracted from R(B) similar to Fig. 5-10. Tc=1.9K from the 

superconducting transition at B=0T in Fig. 5-7, is marked by an arrow. The dashed line is a 

linear extrapolation to Bc2=0. 
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5.3.2 Parallel magnetic field dependence 

 For a superconductor of atomic thickness, Bc2
∥ > Bc2

⊥  with a very large Bc2
∥ /Bc2

⊥  is expected. 

Bc2
∥ >31.5T was reported in exfoliated monolayer NbSe2 [130] and the remarkably high Bc2

∥  is 

attributed to protection provided by the unique symmetry of the monolayer NbSe2 (see section 

5.1).  

Fig. 5-12 shows R(T) with magnetic fields parallel to the sample. Tc shifts to lower 

temperature for higher magnetic field. For B⊥>3T, superconductivity is completely quenched 

and R(T) switches to thermally activated behavior (see Fig. 5-8). In contrast, superconductivity 

survives even at B∥=9T. 

Fig. 5-13 shows R(B∥) of the sample. The positive magnetoresistance is interpreted as the 

suppression of superconductivity. As the field increases, the R(B) curves for T=0.7-1.2K emerge 

from a horizontal line of constant resistance at R=15. The finite resistance is due to the portion 

of the sample, where graphene is in series with the NbSe2. The lower (higher) the temperature for 

R(B) measurement, higher (lower) the field at which the curve emerges out of the R=15  

threshold. For T<0.7K, the resistance remains at R=15 for B=0-9T because 9T is not strong 

enough to suppress the superconductivity to R>15.  

For R(B∥), B=9T is not high enough to reach Rn. For a large enough B, R should rapidly 

increase with B and saturate to a constant value, similar to R(B⊥) (see Fig. 5-10). Since 

R(Bc2
∥ )=0.5Rn cannot be defined, Bc2

∥  cannot be studied without higher magnetic fields. It would 

be interesting to compare Bc2
∥ (T) in our MBE monolayers and in exfoliated monolayers.   
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Fig. 5-12 R(T) with 𝐁∥ of MBE 1ML NbSe2.  
Each R(T) measured at constant magnetic field in the parallel to the sample.  
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Fig. 5-13 R(𝐁∥) of MBE 1ML NbSe2.  
Each R(B) curve is measured at constant temperatures from 0.7K to 1.2K in 100mK steps. 

R(B) for T<0.7K shows no change in resistance for B=0-9T. 
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5.3.3 Monolayer NbSe2 exposed to air 

A sample is exposed to air for 15min after Se cap removal in UHV. Fig. 5-14 shows the 

comparison between R(T) of the air exposed sample and a sample with Se cap (see Fig. 5-7). Tc 

for the air exposed sample (blue, dotted line) is depressed to 0.65K. To compare the change in 

transition width, the resistance in each sample is normalized by its Rn and the temperature is 

normalized by its Tc=Tmid. As expected, the transition is broader for the air exposed sample due 

to disorder effects. Most of the broadening occurs for T>Tc, where the transition is driven by 

fluctuation enhanced conductivity, and the behavior is surprisingly unchanged for T<Tc, where 

resistance is dominated by phase-slips (see section 1.1.1). 

 
  

 
Fig. 5-14 Superconductivity in air exposed MBE 1ML NbSe2.  
Fig. 3, Onishi et al. [295]. Resistance of samples (shown in inset) is normalized by the 

normal state resistance by Rn=R(Tonset). The temperature is normalized by Tc. Two samples: 

one with selenium cap (black, solid line) and one exposed to air without selenium cap (blue, 

dotted line), are compared. 
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Fig. 5-15 compares Bc2(T) of the air exposed sample and a sample protected with Se cap. As 

expected, the sample exposed to air (blue, squares) has an overall lower Bc2(T) with 

Bc2(T=0)~0.2T. The reduced Bc2 of the air exposed sample could be the result of reduced Tc. The 

Bc2 for the air exposed sample and sample with Se cap are each normalized by BP=1.84Tc (Eq. 

1-3, see section 1.1.2). The two samples are compared in the inset with the T normalized by Tc. 

Even after normalizing, Bc2/BP of the air exposed sample reaches only half the value of the 

selenium capped sample.  

 

 
  

 

Fig. 5-15 Bc2(T) of air exposed MBE 1ML NbSe2.  
Fig. 4, Onishi et al. [295]. Upper critical field (Bc2) defined as R(Bc2)=0.5Rn. Two samples: 

one with selenium cap (black circles) and one exposed to air without selenium cap (blue 

squares), are compared. Inset: Bc2 is normalized by the Pauli paramagnetic limit BP=1.84Tc 

and temperature is normalized by Tc. 
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Fig. 5-16 shows R(B⊥) of the air exposed sample. A series of curves from 100mK to 1K in 

100mK intervals are shown, with the line color progressing from dark to light blue as they 

correspond to higher temperature. The red dashed line corresponds to R(B) at 4K, which 

represents normal state behavior at T>> Tc. As with the Se capped sample (see Fig. 5-9), the 

R(B) curves for T≤1K show positive magnetoresistance due to the suppression of 

superconductivity. The R(B) curves measured during increasing and decreasing magnetic field 

are identical. At B>0.8T, all the curves adopt behavior of weak positive magnetoresistance as the 

superconductivity is completely suppressed and the resistance saturates to the normal state value. 

The inset shows R(T) at different values of B. Superconductivity is completely quenched for 

B>0.8T. The slope of the weak positive magnetoresistance is similar to the normal state 

magnetoresistance at 4K. At B>0.8T, R(B) at 4K has a lower resistance than R(B) at T≤1K  

because the system switches to thermally activated behavior when superconductivity is quenched 

at high magnetic fields. 

In the superconductivity literature, the most common criterion for extracting Bc2 from R(B) is 

R(Bc2)=0.5Rn, where Rn is the normal state resistance. However, other criteria (e.g. R(Bc2)=0.9Rn 

and R(Bc2)=0.1Rn) are found in the literature [177–182]. The comparison of Bc2(T) based on 

different criteria has aided in interpreting the interplay between the superconducting domains and 

global behavior of the sample in past studies [182]. We have extracted Bc2(T) with various 

criteria but do not propose a complete interpretation as further study is needed for this system. 

The horizontal line labeled with “90%” and “50%” in Fig. 5-16 correspond to the values from 

R(B) used to extract the Bc2 with the R(Bc2)=0.9Rn and R(Bc2)=0.5Rn criterion, respectively. 

In Fig. 5-17, Bc2(T) from R(Bc2)=0.9Rn (green, open triangles) and R(Bc2)=0.5Rn (blue, open 

squares) are shown. In addition, Bc2(T) from the “onset” criterion (black, open circles)  is shown. 

The “onset” criterion determines Bc2 as the field, at which finite resistance emerges from the zero 

resistance state. R(B) near this point is linearly extrapolated, as shown by the construction in the 

inset and the intersection with R=0 and the linear extraction is taken as Bc2. This criterion is of 

particular relevance to NbSe2, as the characterization of Bc2 in bulk NbSe2 was based on this 

criterion [103]. Bc2(T) behavior is similar across all three criterion. For R(Bc2)=0.5Rn, linear 

extrapolation to Bc2=0 (blue, dotted line) intersects at T=678mK, close to Tmid=650mK. 

Monolayer NbSe2 from exfoliation were confirmed to undergo 2D superconducting transitions 

by applying the Aslamazov-Larkin formula (Eq. 1-1) [130]. It is interesting whether the air 

exposed monolayer NbSe2 still shows a 2D superconducting transition. Fig. 5-18a shows the 

superconducting transition at B=0 (solid line) and R(T) of the sample under B⊥=3T (dashed 

line). The superconductivity is completely quenched at 3T and R(T) shows a slight thermally 

activated behavior. R(T) at B=3T is taken as Rn and the excess conductivity (S) is extracted 

from the data using Eq. 1-2. Fig. 5-18b shows S vs t̅ = (T − Tc)/Tc. From the slope in the log-

log plot, the dimension of the system is found from the Aslamazov-Larkin formula (Eq. 1-1). For 

t=̅0.2-1, the closest fit is for D=1.9 but for t=̅1-5, the fit indicates D=2.6. Lines with slopes 

corresponding to D=2 (blue, double dotted/single dashed line) and D=3 (triple dotted/single 

dashed line) are shown for comparison. In contrast to the study of K3C60 thin films [183], we find 

that the slope for of our sample in Fig. 5-18b is sensitive to the value of Tc. We believe 

Tc=678mK is the most physically relevant because Bc2
⊥ (Tc)=0 (see Fig. 5-17) and close to 

Tmid=650mK.  
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Fig. 5-16 R(𝐁⊥) of air exposed MBE 1ML NbSe2.  
Each R(B) curve is measured at constant temperatures from 100mK to 1K in 100mK steps. 

As the line color is varied from black to lighter shades of blue, the temperature increases. The 

red, dashed line corresponds to R(B) at 4K. The upper horizontal line is drawn at 0.9Rn and 

the lower horizontal line is drawn at 0.5Rn. Inset: R(T) at constant magnetic fields from 0 to 

1T in 0.1T steps.  

 

 

Fig. 5-17 Bc2(T) of air exposed MBE 1ML NbSe2.  
Triangles, squares and circles represent Bc2 defined as 0.9Rn, 0.5Rn and Ronset, respectively. 

Blue, dotted line is the linear extrapolation to Bc2=0, which intersects at T=678mK. Inset: 

R(B) for B=0-0.08T at 100mK. Red line is linear extrapolation to R=0. Each Bc2 for Ronset is 

found by this construction. 
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Fig. 5-18 Dimensionality of MBE 1ML NbSe2 superconducting transition.  

a) R(T) used to evaluate the excess conductivity (S). Dotted line shows R(T) when 

superconductivity is quenched with B⊥=3T. b) log-log plot of S vs t̅ = (T − Tc)/Tc, with 

Tc=678mK. Data points are displayed as open circles. Eq. 1-1 is fit to the data with D=1.9 

(red, solid line) and 2.6 (red, dashed line). Lines corresponding to D=2 (blue, double 

dotted/single dashed line) and D=3 (triple dotted/single dashed line) are shown.  
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5.4 Localization effects 

R(T) of the 1ML MBE NbSe2 switches from metallic behavior to thermally activated behavior 

(see Fig. 5-6). The resulting dip in R(T) reaches a  minimum at T~30K. Fig. 5-19 shows R(T) of 

a sample, which is exposed to air for 15min (red, dashed line), 30min (green, dashed/single dot 

line) and 45min (blue, dashed/double dot line). As the air exposure time increases, the dip in 

R(T) at T~30K becomes progressively more pronounced. Although it is interesting that the dip 

occurs near the bulk NbSe2 CDW transition temperature, the growth of the feature with 

increasing disorder suggests that it is caused by localization effects.  

The formula for weak localization in 2D is [184] 

ΔSWL =
W

L

𝑒2

2π2ℏ 
αp ln (

T

T0
) 

Eq. 5-1 

where , p and T0 are fit parameters and W, L are width and length of the sample, respectively. 

ΔSWL is the excess conductance 

ΔSWL =
1

R
−

1

R0
 

Eq. 5-2 

R0(T) is metallic component of the sample resistance without weak localization effects. Since 

weak localization causes an increase in resistance, the excess conductivity is actually negative 

(ΔSWL ≤ 0). For each curve in the R(T) shown in Fig. 5-19, R0 is obtained by fitting   

R0 = a + bTp Eq. 5-3 

to the temperature range with metallic behavior. The fitting ranges are 58K to 74K for the 

sample at UHV and 50K to 80K for the sample after air exposure. p is close to 1 for all the R(T) 

curves (see Table 5-1).  

Fig. 5-20 shows the Eq. 5-1 fit (red line) to the data in Fig. 5-19. The sample in UHV matches 

the fit to 4K but the sample after air exposure follows the fit for T=10-40K and turns away to 

higher conductivity for T<10K. The fit parameters are shown in Table 5-1. T0 progressively 

increases for longer exposure to air but the sample at UHV (i.e. the limit of no air exposure) has 

higher T0 than the sample with 15min exposure. Despite the ln(T/T0) behavior, the value of p 

for each fit is unusually large [184] and indicates that conventional weak localization does not 

explain the dip in R(T). Further study with controlled introduction of disorder is needed to 

determine the relationship between disorder and the switch to thermally activated behavior.  
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Sample 𝐓𝟎(K) 𝐩 𝛂 𝛂𝐩 

Ultrahigh vacuum 39.9 0.96 18.1 17.3 

15min air exposure 39.3 0.92 9.4 8.7 

30min air exposure 43.4 1.01 3.5 3.5 

45min air exposure 44.9 1.07 2.5 2.6 

Table 5-1 Weak localization fit parameters.  

Fit parameters for Eq. 5-3 displayed as red lines in Fig. 5-20. 

 

 
Fig. 5-19 Effect of air exposure on MBE 1ML NbSe2.  

R(T) of sample in ultrahigh vacuum (black, solid line), after 15min air exposure (red, dashed 

line), after 30min air exposure (green, dashed/single dot line) and after 45min air exposure 

(blue, dashed/double dot line). 



155 

 

  

 
Fig. 5-20 Weak localization fit to R(T).  

Excess conductivity (S) calculated from data shown in Fig. 5-19 for a) UHV, b) 15min air 

exposure, c) 30min air exposure and d) 45min air exposure. Red line is the fit to ln(T/T0) 

dependence. 
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5.5 CDW 

The signature of CDW transition appears in R(T) of bulk NbSe2 only as a weak resistive 

anomaly and high quality crystals are required to see the effect (see section 4.4.1.1). Non-linear 

conduction from sliding CDW would be a clear signature of the CDW state (see section 1.2.2). 

However, sliding behavior has not been observed in bulk NbSe2. We attempted to slide the CDW 

in our MBE 1ML NbSe2 by applying electric fields up to 4V/cm at 4.2K but did not see 

nonlinear conduction.  

STM provides a direct probe of the CDW as it measures the local charge density. Fig. 5-21 

shows STM scans of MBE 1ML NbSe2 at different temperatures obtained by Miguel, Aaron and 

Yi Chen in the Crommie group. At 4K (Fig. 5-21e), a 3x3 reconstruction pattern, marked by the 

blue rhombus, can be clearly seen in addition to the NbSe2 atomic lattice. The inset shows that 

the 3x3 reconstruction appears as a peak in the fast Fourier transform (FFT) of the image. This 

superlattice is consistent with the CDW superlattice seen in bulk NbSe2 [49]. Hence, the CDW 

state exists at 4K in monolayer NbSe2. The scan at 25K in Fig. 5-21d shows the CDW signature 

is still present. However, at 45K, the CDW signature is faded and only the NbSe2 atomic lattice 

is visible, as shown in Fig. 5-21c. The CDW transition temperature for monolayer NbSe2 is in 

the range 25K≤T<45K, close to the bulk TP=33K. 

There is a discrepancy between the STM result [49] and results based on optical properties 

[48]. The optical study used terahertz Raman spectroscopy and reported that the CDW transition 

is strongly enhanced to 145K in monolayer NbSe2. The STM results are supported by ab initio 

calculations from Mauri et al. [185]. 

Theoretically, a phase transition at finite temperature for a two dimensional system is only 

possible for a Kosterlitz-Thouless transition due to the Mermin-Wagner theorem [186–189]. As 

STM is a local measurement, which probes the system at the atomic scale, it would be interesting 

to expand the study with complimentary techniques, which probe longer length scales (e.g. 

microwave transmission and optics). 
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Fig. 5-21 Temperature dependent STM image of MBE 1ML NbSe2.  
Fig. 1c, d and e, Ugeda et al. [49]. STM image of NbSe2 at c) T=45K, d) T=25K and e) 

T=5K. 3x3 reconstruction illustrated by blue lines and confirmed by FFT in the inset in e) are 

clearly visible at T=25, 5K but absent in T=45K. 
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6 Ultrathin NbSe3 

Recent studies on ultrathin transition metal chalcogenides have focused on mechanical 

exfoliation of quasi-2D MX2 materials (e.g. NbSe2, TaS2, see section 2.1) [46,134,190,191]. 

However, it is possible to mechanically exfoliate NbSe3 (an MX3 material, see section 2.2) to 

obtain nanoribbons as thin as 18nm [96]. For the study of CDW in the ultrathin limit, MX3 

materials are of significant interest because many of them enable the CDW to slide (see Table 

2-1). In addition to the static CDW properties (e.g. transition temperature and magnitude of 

resistive anomaly), the CDW dynamics (e.g. threshold field and narrowband noise) provide 

further insight into the nature of the CDW state. 

This chapter discusses the effects of nanoribbon thickness on sliding CDW in NbSe3. 

Narrowband noise measurements, which reliably probes the CDW order parameter for bulk 

crystals, has been applied to NbSe3 nanoribbons. Preliminary results from fabrication of 

nanoribbon devices for studying the system under ionic liquid gating are shown. Another 

promising route towards obtaining NbSe3 in the single atomic chain limit is the synthesis of 

NbSe3 in a spatially confined environment, (e.g. inside of a nanotube). Interesting preliminary 

results of NbSex confined in a boron nitride nanotube are presented.  
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6.1 Mechanically exfoliated NbSe3 

Previous studies have obtained nanowires and nanoribbons of NbSe3 by direct synthesis [192] 

or ultrasonic exfoliation [124]. We have obtained NbSe3 nanoribbons by mechanical exfoliation 

and studied the thickness dependence of CDW parameters (i.e. transition temperature, resistive 

anomaly magnitude, threshold noise and narrowband noise). The nanoribbons have a length to 

width ratio of 10:1, where the width is at least ten times the thickness for each one. The thickness 

ranges from 55nm to 18nm. As the material is thinned down, the resistive anomaly is suppressed 

and threshold field (ET) increases, as reported in previous studies [92,124]. The thickness 

dependence of narrowband noise has not been previously studied and the results of probing the 

CDW order parameter with narrowband noise in ultrathin NbSe3 are discussed.  

Mehdi Jamei, a fellow graduate student in the Zettl group (PhD 2015), carried out the 

experiments and obtained the results shown in section 6.1.2. Subsequently, I analyzed his results 

to interpret the effect of thickness dependence in the CDW of NbSe3 nanoribbons. His 

experimental methods are reproduced from his doctoral dissertation [193] to provide background 

information for section 6.1.2.  

 

6.1.1 Experimental methods 

NbSe3 nanoribbons obtained by mechanical exfoliation were contacted by electron beam 

lithography (see section 9.1). In/Cr/Au trilayer contacts were evaporated on surfaces treated with 

nitrogen plasma to obtain the best contact. The threshold fields were detected by measuring the 

differential resistance with a lock-in amplifier and the pulse method. The narrowband noise was 

studied by measuring the output of the dc biased sample with a spectrum analyzer. A custom 

circuit was built to overcome the high impedance of the sample. 

 

6.1.1.1 Device fabrication 

Mechanical exfoliation of NbSe3, electron beam lithography and contact deposition are 

detailed in pages 19-20 of Mehdi Jamei’s doctoral dissertation [193] and reproduced below. 
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Page 19 of Jamei [193]  
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Page 20 of Jamei [193]  
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A similar schematic to Figure 1.16 in Mehdi’s doctoral dissertation [193] is shown in Fig. 9-1. 

Although Mehdi suggests to use ZEP over PMMA as the resist for its chemical resistance to 

nitrogen plasma, PMMA was also found to be an acceptable resist for the same device 

fabrication process (see section 6.2). 

The procedure described above begins with identifying NbSe3 exfoliated nanoribbons, as 

shown in Fig. 6-1. The nanoribbons appear as orange ribbons with a well-defined rectangular 

shape on Si/SiO2 wafer (identified by circles). The wispy shapes are tape residue, which results 

from the tape adhesive remaining on the SiO2 surface after exfoliation. Fig. 6-2 shows NbSe3 

nanoribbons, which are contacted with metal. The size and room temperature resistance for the 

devices are listed in Table 6-1. The thickness is measured by atomic force microscopy and the 

lateral dimensions are measured with a scanning electron microscope. The resistance is measured 

by two-probe and the contact resistances are calculated to be <20% by comparing the two-probe 

resistance and with the bulk NbSe3 resistivity. 

Page 22 of Jamei [193]  
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Fig. 6-1 Optical image of NbSe3 nanoribbons obtained by mechanical exfoliation.  

Fig. 1.25a, Jamei [193]. The substrate is a silicon wafer with a thin film of silicon dioxide on 

top. The orange rectangular ribbons are NbSe3 nanoribbons and the green wispy shapes are 

tape residue. The NbSe3 nanoribbons, selected for device fabrication, are circled. 
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Fig. 6-2 Optical image of lithographically contacted NbSe3 nanoribbons.  
Fig. 1.29, Jamei [193]. Four strips of In/Cr/Au trilayer contacts (yellow strips) are placed on 

top of an NbSe3 nanoribbon (orange ribbon). 

 

Sample # 
Thickness 

(nm) 

Width 

(nm) 

Length 

(m) 

Resistance 

at RT (k) 

Contact Resistance 

(%) 

1 55 550 7.4 0.76 19.5 

2 34 450 4.6 0.92 18.3 

3 31 280 3.2 1.08 14.6 

4 18 150 1.1 1.20 15.1 

Table 6-1 Size and resistance of fabricated NbSe3 nanoribbon devices.  

Table 1, Onishi et al. [96]. The contact resistance is calculated by comparison to the bulk 

NbSe3 resistivity 2.5 × 10−4Ω cm [10].  
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6.1.1.2 Measurement techniques 

R(T) was measured with the current switching technique (see section 3.1.3) in a gas flow 

cryostat (see section 3.2.1). As the contact resistance was low, the measurements are two-probe. 

The threshold field was measured in two ways to minimize heating effects [193]: lock-in 

amplifier (P=0.01nW and f=500Hz) and the pulse method using low duty cycle pulses (1s pulse 

width with 1Hz repetition rate). The narrowband noise was measured with a spectrum analyzer 

and a custom amplifier. The threshold field measurement and narrowband noise measurement 

methods are detailed in pages 25-28 of Mehdi Jamei’s doctoral dissertation [193] and reproduced 

below. 

 

Page 25 of ref. [193]  

 



166 

 

 

Page 26 of ref. [193]  
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Page 27 of ref. [193]  
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6.1.2 Thickness dependence 

From previous studies [92,124], it is known that the CDW resistive anomaly is suppressed 

and the ET increases as the NbSe3 sample size is made smaller, below the micron length scale. 

The mechanically exfoliated NbSe3 nanoribbons show the same finite size effects, which become 

more pronounced for thinner nanoribbons. It is unclear whether these effects are caused by 

enhancement of surface pinning or the collapse of the CDW order parameter. Since narrowband 

noise is a well-established technique to directly probe the CDW order parameter for bulk NbSe3, 

it is applied to NbSe3 nanoribbons to answer this question.  

 

6.1.2.1 CDW resistive anomaly 

The R(T) of bulk NbSe3 has an overall metallic behavior but exhibits two anomalies below 

TP1=144K and TP2=59K, which correspond to the upper and lower CDW, respectively (see 

section 2.2.1). Previous studies [92,124] on finite size effects in NbSe3 demonstrate that the 

resistive anomalies becomes more suppressed as the sample size is made smaller. Fig. 6-3 shows 

R(T) of NbSe3 nanowires obtained by ultrasonic cleaving [124]. Each curve corresponds to 

nanowires of different width and the width decreases, going from the bottom curve to the top. As 

the sample width decreases, the CDW anomalies are suppressed progressively. The sample size 

is classified by the number of NbSe3 chains running along the sample, calculated from the room 

temperature resistance. Below 2000 chains, the threshold indicated by the dotted line, R(T) 

switches to a different behavior, in which resistance increases with cooling in a power law 

relationship. The power law behavior is attributed to the one-dimensional form of the system. 

The inset shows the slight decrease in TP1 and TP2 with sample size. 

The R(T) of NbSe3 nanoribbons obtained by mechanical exfoliation show both similarities and 

differences to ultrasonically cleaved nanowires. Fig. 6-4a shows the change in resistance of 

Page 28 of ref. [193]  
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NbSe3 nanoribbon samples for T=220-10K. The nanoribbons have thickness t=55, 34, 31 and 

18nm and the data from bulk NbSe3 are shown for comparison. For each sample, the resistance is 

normalized by its resistance at 220K. Consistent with common NbSe3 R(T), the bulk sample 

shows a resistive anomaly at TP1=144K and TP2=59K. In the nanoribbons, the anomalies are 

suppressed, showing a smaller increase in resistance before returning to metallic behavior. For 

the upper CDW, the anomaly is progressively suppressed as the sample becomes thinner. As 

shown in Fig. 6-4b, t=55nm has the most pronounced anomaly among the nanoribbons and 

t=18nm has the least pronounced anomaly. t=34, 31nm with the intermediate anomaly height 

have similar values. In contrast, the anomaly for lower CDW is severely suppressed in the 

nanoribbons. As shown in Fig. 6-4c, even the thickest nanoribbon (t=55nm) is already as 

suppressed as the t=18nm sample. No clear progression in anomaly height with variation in 

thickness can be seen, as the suppression effect seems to set in at a greater thickness but a slight 

resistive anomaly is still visible for all the samples. 

In the nanoribbons, the power law behavior of the nanowires are not observed. Assuming a 

square cross-section, the dimensions for the 2000 chains nanowire (the threshold chain number 

for power law behavior in [124]) is width=thickness=√2000=45 chains. To compare, the 

measured dimensions of our nanoribbon samples are translated to chain numbers, using the 

NbSe3 monoclinic unit cell dimensions a=1.0nm, c=1.56nm and  =109.5o, which contains six 

chains. The same unit cell parameters were used in the nanowire study [124]. The height of one 

chain is estimated as 
1

2
× 1.0nm × sin(70.5o) = 0.47nm. From Table 6-2, we see that in the 

t=18nm nanoribbon, the system is confined to 38 chains in the thickness direction. However, as 

the width is much greater than the thickness, the total number of chains 10,800>>2000. Since the 

power law is attributed to one-dimensional confinement effects, the absence of power law 

behavior in the nanoribbons is possibly due to the lack of confinement in the width direction. 

Hence, the nanoribbons from mechanical exfoliation impose a more two-dimensional 

confinement effect compared to the nanowires from ultrasonic cleaving. 

For the nanowires, the upper and lower CDW anomalies seem to be equally sensitive to the 

sample size reduction. The increased sensitivity to sample size reduction of the lower CDW 

anomaly is possibly characteristic to the two-dimensional confinement effects of the 

nanoribbons.  



170 

 

 

 
Fig. 6-3 R(T) of ultrasonically cleaved NbSe3 nanowires.  
Fig. 2, Slot et al. [124]. Temperature dependence of resistance per sample length (R/L) for 

NbSe3. Each curve corresponds to a sample with different chain numbers deduced from room 

temperature resistance. From bottom to top the chain numbers are: 25640, 9490, 4170, 2430, 

1400, 1030 and 220. Two of the curves are labeled by chain numbers found from Shapiro-

step measurements. Each open circle corresponds to the point where an I(V) curve was 

measured. Inset shows the sample size dependence of the CDW transition temperature (TP) 

for the upper CDW (squares) and lower CDW (circles). 

 



171 

 

 

 
Fig. 6-4 R(T) of mechanically exfoliated NbSe3 nanoribbons.  
Figure 1, Onishi et al. [96]. Each marker corresponds to data from samples of various 

thickness with bulk (gray circle) and nanoribbons of thickness 55nm, 34nm, 31nm and 18nm. 

The resistance for each sample is normalized by its resistance at 220K. a) Overall (220-10K) 

temperature dependence with resistive anomalies at the upper and lower CDW transitions. 

The resistive anomalies are magnified for the b) upper and c) lower transition. 
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The CDW transition temperature is conventionally determined from R(T) as the temperature at 

which 
1

R

dR

dT
  is minimum. To find the derivative numerically, a third order polynomial is fit to the 

resistive anomalies for each sample (bulk, t=55, 34, 31 and 18nm). Fig. 6-5a shows the fit to the 

upper CDW and Fig. 6-6a for the lower CDW. The data range for the fit is restricted to the 

temperature range, at which the resistance increases with cooling. The metallic behavior, 

occurring at temperatures above and below the CDW transition are excluded. The temperature 

range for each fit is shown in Table 6-3. As the transition width differs between sample 

thicknesses, a different temperature range is chosen for each sample to produce the best fit. In 

particular, the transitions are much broader in the nanoribbon samples than the bulk NbSe3. A fit 

over T=8K is sufficient to encompass the whole transition in bulk NbSe3 but a temperature 

range as large as T=22K is required for the upper CDW of the t=31nm sample. Variation of the 

fitting range by 1K does not result in any significant change in the calculated TP. 

The derivative is found by taking the derivative of the polynomial fit and evaluating it at each 

temperature. Fig. 6-5b shows the calculated 
1

R

dR

dT
 for the upper CDW and Fig. 6-6b for the lower 

CDW. Both figures show smooth curves, which dip to a minimum. Higher order polynomials 

might enhance the fit to the data but are not suitable since they follow the noise of the data too 

closely and results in sharp wiggles. The wiggles of the fit contribute significantly to the 

derivative term and produces a derivative with many sharp peaks. A cubic spline fit was 

attempted but was not successful for this reason. Although the dips are not as sharp and well 

defined as that of the bulk sample, the nanoribbons also show notable dips. In Fig. 6-4c, the 

resistive anomaly is greatly suppressed and obscured but the minimum in Fig. 6-6b indicates that 

the CDW transition still occurs. 

TP1 and TP2, determined from the minima in Fig. 6-5b and Fig. 6-6b are listed in Table 6-3. 

Their thickness dependences are shown in Fig. 6-7. TP1 appears to decrease with thickness, 

consistent with previous study [124] but TP2 does not show any clear trend. The error from the 

polynomial fit process is translated to error in finding TP and displayed as error bars for each data 

point in Fig. 6-7. The error bars indicate that the variation in TP is still within error and further 

study is required to determine the relationship with nanoribbon thickness. 

Thickness 

(nm) 

Thickness 

(# of chains) 

Width 

(nm) 

Cross-sectional area 

(nm2) 
Total # of chains 

55 117 550 30,250 121,000 

34 72 450 15,300  61,200 

31 66 280  8,680  34,720 

18 38 150  2,700  10,800 

Table 6-2 Number of chains in NbSe3 nanoribbons.  
For each sample, thickness is in nm, as measured, and in # of chains, assuming each chain is 

0.47nm high. The cross-sectional area is found by A = thickness x width. The total # of 

chains is calculated assuming the unit cell, consisting of 6 chains, has a cross-sectional area 

of 1.5nm2 [124]. 
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Fig. 6-5 Numerical derivative of upper CDW resistive anomaly.  
a) Upper CDW R(T)/R(220) from Fig. 6-4b with 3rd degree polynomial fits. The temperature 

range for fitting are shown in Table 6-3. b) 
1

R

dR

dT
 of the fitted polynomials. The temperature 

corresponding to the minimum of each curve is interpreted as TP1.  

 



174 

 

 

 
Fig. 6-6 Numerical derivative of lower CDW resistive anomaly.  
a) Lower CDW R(T)/R(220) from Fig. 6-4c with 3rd degree polynomial fits. The temperature 

range for fitting are shown in Table 6-3. b) 
1

R

dR

dT
 of the fitted polynomials. The temperature 

corresponding to the minimum of each curve is defined as TP2. 
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 Upper CDW Lower CDW 

Thickness (nm) Fit range (K) TP1(K) Fit range (K) TP2(K) 

Bulk 140-148 144 54-61 58 

55 137-150 142 50-61 55 

34 135-150 141 48-61 54 

31 129-151 141 46-59 51 

18 135-150 140 54-66 59 

Table 6-3 R(T) numerical derivative parameters.  
For each sample, the range of temperature used in the polynomial fit in Fig. 6-5 and Fig. 6-6 

are shown. TP1 and TP2 correspond to the CDW transition temperature, defined as the 

temperature at which 
1

R

dR

dT
 is minimum.   
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Fig. 6-7 Thickness dependence of TP.  
The x’s show a) TP1 of the upper CDW and b) TP2 of the lower CDW from the minimum of 
1

R

dR

dT
 in Fig. 6-5b and Fig. 6-6b. The error bars are placed according to the errors from the 

polynomial fitting process. 
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6.1.2.2 Threshold field 

Previous study [92] has shown that ET increases as the thickness decreases (see Fig. 6-8). With 

increase in 1/t (i.e. decrease in t), ET increases and asymptotes to ET~1/t for thin samples, as 

indicated by the dashed lines. The measurements at T=120K (filled symbols) and 50K (open 

symbols) correspond to ET of the upper and lower CDW, respectively. While Fig. 6-8 primarily 

features sample thicknesses on the microscale, subsequent studies [124,192] have confirmed that 

ET increases with a decrease in sample size at the nanoscale as well. 

Fig. 6-9a shows the differential resistance (dV/dI) of the t=55nm nanoribbon as the electric 

field bias is swept. The sample is measured at both T=110K and 49K to detect sliding behavior 

for both the upper and lower CDW behavior, respectively. dV/dI behavior is consistent with 

sliding CDW (see Fig. 1-11). Similar behavior is seen for the upper CDW in the t=18nm 

nanoribbon in Fig. 6-9b. However, the lower CDW in t=18nm does not show sliding behavior up 

to 106V/cm. For the upper CDW at 110K, ET is 0.2V/cm for bulk, 196V/cm for t=55nm and 

20,000V/cm for t=18nm. For the lower CDW at 49K, ET is 0.01V/cm for bulk and 28V/cm for 

t=55nm. The (lower CDW) ET for t=18nm, if it exists at all, is >106V/cm. 

Fig. 6-9c shows ET(T) of bulk and nanoribbons of t=55-18nm, measured by pulse method (see 

section 6.1.1.2). Each sample shows the divergence near TP and increase in ET for T → 0, 

consistent with previous study (see section 1.2.2.2). For both the upper and lower CDW, the 

nanoribbons have ET higher than the bulk by a factor >102. For the upper CDW, the increase of 

ET with decrease in t can be seen for t=55-18nm. For the lower CDW, ET for t=34nm is smaller 

than t=55nm. ET for t=31 and 18nm could not be measured reliably. It appears that ET diverges 

to ET>106V/cm for the lower CDW. For bulk, ET for the upper CDW is greater than that of the 

lower CDW by an order of magnitude. However, at t=55nm the difference is smaller, although 

ET is still greater for the upper CDW. At t=34nm, ET for the upper and lower CDW states are 

within the same order of magnitude. As with the resistive anomaly, ET for lower CDW is more 

sensitive to the reduction in thickness. 
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Fig. 6-8 ET vs thickness of NbSe3.  
Fig. 3, McCarten et al. [92]. Horizontal axis is the reciprocal of the thickness 1/t. rR is short 

for residual resistivity ratio. rR=35 is Ta-doped and rR=220 is undoped NbSe3. 
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Fig. 6-9 ET of NbSe3 nanoribbons.  
Differential resistance dV/dI of a) t=55nm and b) t=18nm nanoribbons at T=110K and 49K. 

c) ET(T) of bulk NbSe3 and nanoribbons. Each point is measured by pulse method.  
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6.1.2.3 Narrowband noise 
The suppression of the CDW resistive anomaly suggests the weakening of the CDW state with 

reduction in size. However, the sample resistance measures the convolution of the normal state 

and CDW condensate response. A method to isolate the CDW condensate response would give 

further insight into the CDW state. For sliding CDW (e.g. NbSe3), narrowband noise 

measurement is a well-established means to directly probing the CDW order parameter for bulk 

(see section 1.2.2.3). Here, the same measurement is to NbSe3 nanoribbons.    

Fig. 6-10 shows the response of the narrowband noise fundamental frequency (fNBN) to the 

change in CDW current density (JCDW) for the lower CDW at T=49K. CDW current is obtained 

by ICDW = I(E > ET) − Iohmic where Iohmic is the extrapolation from the linear I(V) response at 

E<ET (see section 6.1.1.2). For each sample JCDW = ICDW/A, where the A is the cross-sectional 

area A = width × t. JCDW vs fNBN is linear for bulk NbSe3, as expected, and the linear response 

still holds for the t=55 and 34nm nanoribbons. The slope is less steep for thinner samples, 

indicating the decrease in the density of carriers condensed in the CDW state (nc), according to 

Eq. 1-21. As summarized in Table 6-4, nc for t=55nm is significantly suppressed to 0.4 of the 

bulk value and nc for t=34nm is further suppressed to 0.19 of the bulk. It appears that thinning 

down NbSe3 results in the suppression of the CDW order parameter. This interpretation is 

complicated by the surface pinning effects as discussed in the next section. 
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Fig. 6-10 Narrowband noise frequencies for NbSe3 nanoribbons.  
Current density of the excess current from sliding CDW (JCDW) vs fundamental frequency of 

the narrowband noise (fNBN). The lines are linear fits to the data and the slope of each line is 

used to extract nc. 
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6.1.2.4 Order parameter vs surface pinning effects 

Fig. 6-11a shows the thickness dependence of ET for the upper and lower CDW. The minimum 

ET from ET(T) in Fig. 6-9c are shown in red. ET for the nanoribbons are significantly greater than 

ET for bulk, separated by the dashed line and ET is greater for thinner nanoribbons. ET for the 

lower CDW grows with decreasing thickness at a steeper slope and becomes greater than ET of 

the upper CDW at t~43nm. It appears that the lower CDW ET diverges to ET>106V/cm for 

t<34nm, in the region shaded in blue.  

An interesting question arises: is the increased ET in ultrathin samples due to the collapse of 

the order parameter or enhancement of surface pinning? At first, it seems natural to assume an 

increase in ET is caused by the change in pinning conditions. However, ET diverges as the order 

parameter collapses (see section 1.2.2.2). The black markers in Fig. 6-11a indicates nc diminishes 

as the sample is made thinner. Furthermore, extrapolation to lower t (in the region shaded in 

blue) suggests 𝑛𝑐 → 0 at a finite thickness t~25nm. 

Given ET and nc, it is possible to calculate the thickness dependence of the static dielectric 

constant (1) using Eq. 1-19. In bulk, the CDW state results in large (>107) dielectric constant 

(see section 1.2.2.3). It is expected that the dielectric constant would significantly decrease with 

the suppression of the CDW order parameter in ultrathin samples. Fig. 6-11b shows that the 1 

would fall to 7.2 × 10−5 of the bulk in t=55nm and further down to 2.7 × 10−6 in t=34nm. 

There is still a possibility that surface pinning effects are causing the decrease in the measured 

nc with thickness. Strong surface pinning could create a layer in which the ET decays from 

ET
surface>ET

bulk to ET
bulk over a finite distance, as we move from the surface to the center of the 

material. This effect would lead to an overestimation of JCDW, as the cross-sectional area should 

be Aeff < A = width × thickness. Since the surface/volume ratio is smaller in thinner 

nanoribbons, this error results in larger fNBN for smaller nanoribbons.  

In the study of finite size effects in microscale NbSe3 by McCarten et al. [92], surface pinning 

effects are ruled out based on 1) ET response to impurity concentration and surface treatment, 2) 

thickness dependence of small signal ac conductivity, 3) comparison of low field (E<ET) and 

high field (E=20ET) conductivities and 4) signatures of homogenous sliding CDW from 

narrowband noise, mode-locking and broad band noise.  

Fig. 6-12 shows the imaginary part of the small signal ac conductivity, Im (), for samples of 

t=3.7, 0.81 and 0.17m. As expected from Eq. 1-17, each curve peaks at a particular frequency. 

The peak moves up in frequency for thinner samples, which is consistent with the increase in ET. 

However, it is unusual that the width of the curve does not change with thickness. If the 

distribution of ET changes as the sample is made thinner, Im () peak should broaden 

accordingly, as it is sensitive to the spatial distribution of the pinning potential. This observation 

is used as one of the arguments against surface pinning effects by McCarten et al. [92]. A similar 

measurement should be applied to the mechanically exfoliated NbSe3 nanoribbons in a future 

study, as it would help distinguish between order parameter collapse and surface pinning 

enhancement. 
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 Upper CDW Lower CDW 

Sample 

thickness 

(nm) 

ET(min) 

(V/cm) 

ET(min) 

(V/cm) 

Slope 

(A/MHz-cm2) 

𝑛𝑐

𝑛𝑐,𝐵𝑢𝑙𝑘
 1/Bulk 

Bulk 0.40 0.01 125 1 1 

55 100 40 47.6 0.40 7.2×10-5 

34 200 500 23.8 0.19 2.7×10-6 

31 200 Note 1    

18 800 Note 1    

Table 6-4 Thickness dependence of ET and fNBN of NbSe3 nanoribbons.  

Table 2, Onishi et al. [96]. ET(min) is the minimum ET for each sample in Fig. 6-9c. Slope of 

each JCDW/fNBN is obtained from the linear fits in Fig. 6-10. nc and 1 are calculated from Eq. 

1-21 and Eq. 1-19, respectively and normalized to the bulk values. Note 1: No ET found to 

106V/cm. 

 

 
Fig. 6-11 Thickness dependence of CDW dynamics in NbSe3 nanoribbons.  
a) Change in ET (red, right axis) and nc (black, left axis) with nanoribbon thickness are 

shown. b) Static dielectric constant (1) calculated from ET and nc.    
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Fig. 6-12 Small signal ac conductivity in microscale NbSe3.  

Fig. 20, McCarten et al. [92]. Each curve corresponds to a sample of thickness 1) 3.7m, 2) 

0.81m and 3) 0.17m. 
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6.1.2.5 Contact separation and CDW strain 

A study with spatially resolved X-ray scattering on bulk NbSe3 [126] found that the CDW 

within 2mm of an electrical contact is deformed. In Fig. 6-13, the model based on X-ray 

scattering results shows the current conversion to ICDW is incomplete near the contacts and 

increases gradually to the equilibrium value over the distance of 1mm. However, a multi-contact 

transport study [194] found evidence for complete current conversion for L̅=20-0.5m, where L̅ 

is the separation between contacts. In the X-ray study, the CDW is relaxed to its equilibrium 

state over the L̅=4mm distance, whereas in the transport study, the CDW is strained due to 

L̅<2mm. It appears that the current conversion behavior is different for strained and unstrained 

CDW. For our study, the CDW is strained as L̅=7.4-1.1m and we assume complete current 

conversion for all samples. 

  

 
Fig. 6-13 Model of CDW current distribution.  
Fig. 7, Brazovskii et al. [126]. The electric field (solid line) and CDW current (dashed line) 

modeled from spatially resolved X-ray scattering measurements on NbSe3 with contacts 

separated by 4 mm. 
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6.2 Ionic liquid gating of NbSe3 nanoribbons 

Charge carrier concentrations in semiconductors can be modulated by an electric field effect 

(see Chapter 12). The strength of the electric field is limited by the dielectric strength of the gate 

dielectric. When the limit is exceeded, dielectric breakdown occurs in the insulator and the gate 

voltage cannot be sustained. However, liquid gating has emerged as a technique for varying 

charge carrier concentrations by up to 1014cm-2 [195], beyond the limit of solid gating. Recently, 

liquid gating has turned various transition metal dichalcogenides (e.g. MoS2, MoSe2, WS2, 

MoTe2) from a semiconductor to a superconductor, either by strong electric field effect or ion 

intercalation [108,144]. 

It would be interesting to extend the narrowband noise measurement to study the effect of 

liquid gating on the CDW carrier concentration. It is also possible that the liquid gating 

significantly changes the electronic ground states in NbSe3. The study is in its early stages but 

preliminary progress is presented. Wu Shi, a post-doctoral researcher in the Zettl group, has 

started making preliminary measurements. Devices were fabricated by Joey Barreto and Xiyue 

Wang, undergraduate researchers in the Zettl group. 

Fig. 6-14 shows the EBL (see Fig. 9-1) fabrication steps for ionic liquid gating. NbSe3 

nanoribbons are transferred on Si/SiO2 substrate by mechanical exfoliation. A layer of PMMA is 

deposited on top of the NbSe3 nanoribbons by spin coating. An electron beam pattern exposes 

the PMMA to write an array of alignment markers. Fig. 6-14a shows the pattern after 

developing. A ribbon lying horizontally in the center of the image is the target nanoribbon. 

Unlike CNT, pre-fabricated metal markers and not necessary for alignment (see Fig. 9-3), since 

the NbSe3 nanoribbons can be identified through the PMMA in an optical microscope. 

Fig. 6-14b shows the contact pattern after exposure and developing. In/Cr/Au contacts are 

deposited immediately after RIE (see section 6.1.1.1). Fig. 6-14c,d show the device after lift-off. 

The 400m x 400m metal pad at the top of the image in Fig. 6-14d is the gate electrode for the 

gating liquid. Before measurement, the liquid is deposited to cover the gate electrode and the 

sample area. The gate electrode has a large area compared to the sample to accumulate charge at 

the sample surface.   

In Fig. 6-14d, the metal lines going to the sample are darker than the contact pads because they 

are covered with a thin layer of deposited SiO2. They are protected by SiO2 because the ions in 

the gating liquid degrades the contact to the sample. Patterning of the SiO2 mask does not need 

another step of lithography. After metal deposition (but before lift-off), the contact pattern is 

faintly visible, even though the whole chip is covered by metal. The parts, which should not be 

covered by the SiO2 mask (i.e. contact pads and the gate electrode), are painted with a 

photoresist under a microscope. The SiO2 layer is then deposited by electron beam evaporation 

and only the metal contact and SiO2 mask pattern remain after lift-off.    
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Fig. 6-14 Fabrication of ionic liquid gating device.  
Courtesy of Joey Barreto. a) NbSe3 nanoribbon on a grid of alignment markers. b) Contact 

pattern after electron beam exposure and developing. c) In/Cr/Au pattern after metal 

deposition and lift-off. d) Overall image of the device with contacts pads. The metal pad at 

the top is the electrode for liquid gating. 
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6.3 BNNT encapsulated NbSe3 

Thang Pham, a fellow graduate student in the Zettl group, Patrick Stetz, an undergraduate 

researcher in the Zettl group, and I attempted to grow NbSe3 inside of boron nitride nanotubes 

(BNNT). Thang provided the BNNT and characterized the samples with TEM and Patrick 

carried out the synthesis.  

NbSe3 has been approaching the single-chain limit through plasma etching [194], ultrasonic 

cleaving [124], chemical synthesis [192] and mechanical exfoliation [96], but the smallest 

reported nanoscale NbSe3 samples remain >220 chains [124]. In addition, the study of a material 

at the single atomic chain limit would require protection from chemical reactions with the 

environment [124,41]. Learning from studies on layered TMC at the monolayer limit [43], h-BN 

is a reliable capping layer for encapsulating air sensitive samples and has enabled transport 

studies by tunneling, despite being an insulator. Similarly, a sheath of h-BN (i.e. BNNT) is a 

promising candidate for protecting a single chain of NbSe3 from environmental factors, while 

preserving access to its electrical and optical properties. 

Similar to the insertion of C60 molecules in BNNT [196], our synthesis method introduces Nb 

and Se in the vapor phase to BNNT. Nb and Se are loaded with 1:3 stoichiometric ratio in a 

Ø1.27cm x 20cm long quartz tube, similar to NbSe3 crystal growth (see Table 4-1VI), but BNNT 

are also added. The BNNT stick to the wall of the quartz tube and makes it difficult to control the 

BNNT location with respect to Nb and Se. For improved control over BNNT location, we load it 

inside a short Ø0.64cm quartz tube with both ends open. The BNNT stick to the wall of the 

Ø0.64cm tube and the tube can slide around within the Ø1.27cm tube. After sealing in vacuum 

(see section 4.1), the quartz tube is heated at 690oC inside a box furnace (Lindberg 59344) for 

120hrs. 

Fig. 6-15 shows the BNNT after the synthesis described above. A BNNT runs vertically across 

the middle of the image. Multiple well-ordered walls of the BNNT are visible. The interior of the 

tube shows two chains running parallel to the tube. We believe the chain is an NbSex, which 

grew inside the BNNT. It is unclear whether the chains are NbSe3 since confinement effects at 

the interior of nanotubes could result in unique crystal structures [196]. Interestingly, the two 

chains appear to be twisting with each other multiple times. 1D confinement is prone to creating 

helical order, as shown from previous studies in other systems [197]. 

Fig. 6-16 shows an EDS spectrum from TEM of the twisting chains inside the BNNT interior. 

Clear peaks of both Nb and Se are identified. The silicon contamination is present for all types of 

samples and believed to originate from the detector. The copper signal is from the TEM grid. 

Synthesis with only selenium and BNNT as a control experiment yielded BNNT filled with 

selenium but looked very distinct from the structures shown in Fig. 6-15.  

The helical structure of NbSex is suggestive of topologically non-trivial states, possibly similar 

to those observed in Ru2Sn3 [198]. As NbSe3 supports a CDW state, the one-dimensional 

character of the NbSex is likely to be driven to a CDW state by Peierls instability. As the 

interaction of topological insulators and superconductivity has accumulated much interest 

[199,200], a system with a possible coexistence of CDW and topological effects would be 

interesting for studying novel collective states. 
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Fig. 6-15 NbSex inside boron nitride nanotube.  
TEM image courtesy of Thang Pham. A boron nitride nanotube runs vertically across the 

center of the image. Along the center of the tube, two chains run and twist with each other 

multiple times. 
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7 Microfabricated contactless measurement platform 

Contactless measurement of sample conductivity is a well-established technique for bulk 

crystals [201]. For layered materials, contactless measurements can offer unique advantages and 

higher accuracy than the commonly employed four-probe method. We propose to scale down the 

dimensions of the measurement setup using lithographic techniques to be compatible with 

nanoscale samples (e.g. van der Waals heterostructures). 

 The results of my simulations on scaling down the contactless measurement setup to the 

microscale are presented. Jiyoung Chang, a post-doctoral researcher in the Zettl group, and I 

designed the microcoils. Jiyoung fabricated the microcoils, using photolithography (Marvell 

Nanolab). This project is still in progress and will be continued by collaborators. In particular, 

the next step is to measure the RF characteristics of the fabricated prototypes. Towards this goal, 

Corey Shih, an undergraduate researcher in the Zettl group, has developed a method of creating 

copper squares on the microcoils to serve as samples for testing and I have been setting up for 

RF characterization.  
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7.1 Contactless measurement 

For conductivity measurements, electrical contacts are made on the top surface of the material 

to flow current and probe the electric field. In layered materials, where the in-plane conductivity 

is much higher than the out-of-plane conductivity, the current could be limited to only the layer 

in contact with the electrodes. When this occurs, the assumption that the current (I) is evenly 

distributed across the cross-sectional area (A) of the sample for finding J=I/A is invalid and leads 

to errors in conductivity measurements. For some graphite intercalated compounds, the error has 

been noted and the error was avoided by using a contactless measurement technique [202]. 

Fig. 7-1 shows the contactless measurement probe developed and used by William Vareka for 

the study of Bi2Sr2CaCu2Ox [203,204]. Radio frequency (RF) signal of ~50MHz is emitted from 

the drive coil, located above the sample. The pick-up coil, located below the sample, measures 

how the sample affects the transmission of the RF signal. Due to the changing electromagnetic 

fields, eddy currents are induced in the sample and shields some of the RF signal. RF 

transmission is lower for samples of higher conductivity. The probe is designed to be mounted in 

a cryostat for measurements down to cryogenic temperatures for its utility in the study of 

collective ground states. For example, the measurement of both the magnitude and the phase 

enables the extraction of the superfluid density in superconductors [205]. RF measurements offer 

great insight into CDW dynamics, as well (see section 6.1.2.3 and 6.1.2.4). Contactless 

measurements are preferred at high frequency, as contacts introduce uncontrolled impedances 

[206]. 

The RF transmission technique is well established on the bulk crystal scale. It would be 

interesting to apply the technique to the layered materials at the ultrathin limit and van der Waals 

heterostructures. However, mechanical exfoliation and assembled heterostructures have typical 

lateral dimensions ~10m. With machining, it is difficult to fabricate a probe with coil radius 

<250m [205]. Coils with dimensions similar or even smaller than the ~10m sample are 

required. Analogous to the way lithographic techniques scaled down the 4-point probe 

measurement for nanoscale samples, we propose to employ lithographically fabricated coils to 

adapt the contactless measurement technique for nanoscale samples. 

The development of contactless measurement for nanomaterials would be interesting as it is 

non-trivial to find a method to make good contact to the material. Even for graphene, a well-

characterized conductor, a special technique to make a one-dimensional contact to its edge is 

required to make good contact [207]. For air-sensitive samples, making contact is complicated 

further by the need to encapsulate the material within an insulating matrix [169]. In addition, the 

coil based inductive coupling scheme of the contactless measurement technique could enable ac 

susceptibility [208,209] measurements to probe spin dynamics [210] at the single device level of 

nanomaterials. 
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Fig. 7-1 Schematic of contactless measurement probe.  
Fig. 5.3, Vareka [204]. The sample is placed in the slot in the middle, between drive and 

pick-up coils at the top and bottom to measure RF transmission.  
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7.2 Simulation 

The effect of reducing the coil radius and the separation between the coils are simulated with 

the equation presented in Sakakibara et al. [201]. The conductivity () of the sample enters the 

equation as a modification to the wave vector (k) 

k′2 = k2 + iωμ0σ Eq. 7-1 

where =2f for the frequency (f) and 0= the permeability of free space. 

As illustrated in Fig. 7-2, the geometry of the probe is parametrized by coil radius (a), separation 

between the two coils (l) and sample thickness (t). Each coil is modeled as a single plane, where 

the diameter of the wire and the width of the coil is considered negligible. One coil is located at 

z=-u and the other coil is located at z=-u+l. The sample extends from z=0 to z=t. According to 

Sakakibara et al. [201] the RF transmission (T) from the drive coil to the pick-up coil is 

calculated by 

T =
∫

4kk′𝐽1
2(ka)𝑒−k(𝑙−t)

(k + k′)2ek′t − (k − k′)e−k′t
𝑑k

∞

0

∫ 𝐽1
2(ka)e−k𝑙𝑑k

∞

0

 
Eq. 7-2 

where J1( ) is the first order Bessel function of the first kind. 

Using Eq. 7-2, T for various coil dimensions are found by numerically evaluating the integrals 

(Wolfram Mathematica). Fig. 7-3 shows the programming code for the calculation. The program 

outputs T as a function of the sample resistivity () For the parameters used by Vareka [204], the 

program successfully reproduces previously calculated results (Table 5.1, Vareka [204]). 

Fig. 7-4 shows T( for a single layer of graphene (t=0.35nm) with cmAs shown on 

the top axis, the resistivity range corresponds to sheet resistance ≲200. The measurement 

conditions are: a=100m, l=200nm and f=1GHz (solid line) and 10GHz (dashed line). For both 

f=1 and 10GHz, T increases sharply as  increases from 0 and saturates to T0=0.806 at higher . 

The increase is steeper for f=1GHz than f=10GHz. For sat defined by T(sat)=0.999T0, 

sat=0.20cm for f=1GHz and sat=1.6cm. The sensitivity to sample resistivity rapidly 

diminishes as the sample resistivity is increased. A highly conductive sample is required to apply 

the contactless measurement at the monolayer scale. Fig. 7-5 shows the data from Fig. 7-4 as a 

relative change (T0-T)/T0. 

Fig. 7-6 shows T( curves with each corresponding to a stack composed of a different layer 

number of graphene. As the layer number is increased from 1 to 100, the increase to T0 becomes 

less steep. Fig. 7-7 shows the corresponding relative change. For higher layer number the range 

of sensitivity expands to lower  and more resistive samples become compatible with the 

measurement. For a 100 layer sample, (T0-T)/T0>1% for <5.6cm. 

Table 7-1 shows parameters extracted from T() simulations with a=100, 10 and 1m for a 

single layer of graphene similar to Fig. 7-4. Reducing the coil diameter makes the rise to T0 

steeper and narrows the measurable resistivity range. sat=1.89 for a=100m but sat=0.07 for 

a=1m. 
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Fig. 7-2 Geometry for RF transmission calculation.  
Fig. 2, Sakakibara et al. [201]. Side view of the contactless measurement probe. A coil of 

radius (a) is located at z=-u and z=-u+l. The sample of thickness t is located between the two 

coils. 
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Fig. 7-3 Mathematica code for simulation of contactless measurement.  

Simulation results are obtained for different frequency (f) and layer number (t). 
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Fig. 7-4 Graphene contactless measurement simulation.  

Simulated RF transmission (T) for a t=0.35nm sheet of material with resistivity . Top axis is 

in units of sheet resistance Rsheet=t. a=100m, l=200nm, f=1GHz (solid line) and 10GHz 

(dashed line). 
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Fig. 7-5 Graphene simulation RF transmission relative change.  
The simulation result in Fig. 7-4 displayed as relative change in RF transmission with respect 

to T0=0.806. 
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Fig. 7-6 Multi-layer graphene contactless measurement simulation.  
Simulated RF transmission (T) for n layers of t=0.35nm sheets. For each curve, n is fixed 

while the resistivity ( of the material is varied. Top axis is in units of monolayer sheet 

resistance Rsheet=t. a=100m, l=200nm, f=1GHz and n=1, 2, 3, 4, 5, 10, 20, 50 and 100. 
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Fig. 7-7 Multi-layer graphene simulation RF transmission relative change.  
The simulation result in Fig. 7-6 displayed as relative change in RF transmission with respect 

to T0=0.806. 

 

a (m) T0 sat (-cm) 

100 0.8060 1.89 

  10 0.6975 0.25 

    1 0.1135 0.07 

Table 7-1 Coil radius reduction simulation.  

a=coil radius. T() increases from 0 and saturates to T0 at high . T(sat)=0.999T0. t=0.35nm, 

l=200nm, f=1GHz. 
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The simulations assume that the coils are circular but microfabricated coils are actually planar 

square coils. Calculation of the electromagnetic fields with planar coil geometry is not simple 

and requires finite element simulations. Instead, we plan to empirically characterize the behavior 

of the fabricated prototypes by using samples of well-controlled geometry. Evaporated films of 

copper will be used as test samples. Fig. 7-8 shows the simulation result with a copper film of 

t=100-1000nm in 100nm increments. There is significant change in T for t=100-500nm, the 

range easily accessible by standard evaporation techniques. T=0.72 at t=100nm and falls to 

T=0.42 at t=500nm. 

 

  

 
Fig. 7-8 Copper thin film contactless measurement simulation.  

f=1GHz, a=100m and l=1m. 
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7.3 Microfabricated platforms 

Fig. 7-1 shows the lithographic analogs of the contactless measurement probe fabricated by 

photolithography. The system consists of fused quartz chips patterned with metal. There is a top 

chip and a bottom chip, each patterned with a planar coil. The sample is placed on the coil of the 

bottom chip and covered by a top chip. When assembled as designed the coils on the top and 

bottom chips align. With this flip-chip geometry, the sample is placed between two coils, similar 

to the machined probe. 

Fig. 7-9 shows the microscope image of the bottom chip. At the center, there is a 200m x 

200m lithographically fabricated planar coil (microcoil). The microcoil starts from the line on 

the left, makes 3 turns as it spirals to the center. The layer with the microcoil is covered with an 

insulator (SiO2) and a contact pad above the insulator (green region) makes contact to the center 

of the microcoil through a via, which penetrates to the layer below the insulator. Finally, the 

whole chip is covered with 100nm of SiO2 to avoid direct electrical contact to the sample. Square 

holes are etched at the contact pads to allow access by probes.  

The four crosses surrounding the microcoil are alignment markers for placing the top chip. The 

top chip is patterned with a microcoil, two contact pads and four alignment markers. , Similar to 

the bottom chip, it is also covered with 100nm SiO2 to prevent shorting. It is slightly smaller than 

the bottom chip and is placed to fit in the region outlined with the dashed line. When placing the 

top coil, its position is adjusted with a micromanipulator under a microscope to align the crosses 

on the top chip with those of the bottom chip. When aligned, the microcoils of the top and 

bottom chip overlap and the contacts on the top chip touch the lower (upper) half of the T1 (T2) 

contact pad. A small amount of silver paste is placed at T1 and T2 during the assembly of the 

two chips to ensure good electrical contact. Both T1 and T2 extend to an area, which is not 

covered by the top chip. Contacts can be made to the bottom microcoil from B1 and B2 and the 

top microcoil from T1 and T2. The probe is essentially complete with these four contact pads. 

The four additional contacts P1, P2, P3 and P4 enable van der Pauw measurement of the sample 

to compare while characterizing the performance of the device. 

Microcoils of various dimensions were fabricated to find the optimum design for contactless 

measurement. The width of the line composing the coil (w), the separation between the lines (s) 

and the number of turns in the coil (nturns) are varied. In Fig. 7-10a,b,c nturns is varied to be 1, 3 

and 5 respectively, while w=2m and s=4m are kept constant. The simulations do not model 

the dissipation from the finite impedance of the coil wires, however metal at the length scales 

shown could result in some non-negligible dissipation. The widths of the lines are varied: 

w=2m in Fig. 7-10a,b,c; w=4m in Fig. 7-10d,e; w=5m in Fig. 7-10f; w=20m in Fig. 7-10h. 

The microcoil in Fig. 7-10h is exceptionally large and the alignment markers lie further out, 

beyond the field of view in this image (see Fig. 7-9) Small s is desired to enable tighter packing 

of the coil to fit more turns but, as shown in Fig. 7-10g, the narrow gaps cause problems during 

metal lift-off. The control device with no microcoil, shown in Fig. 7-10i needs to be tested to 

ensure the signals originate from the microil and the sample. 
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Fig. 7-9 Microfabricated contactless measurement probe.  
Courtesy of Corey Shih. Optical image of bottom chip is shown. The rectangle outlined with 

a dashed line shows the approximate size and position of the top chip. There are contact pads 

for the bottom coil (B1, B2), top coil (T1, T2) and 4-probe measurement (P1, P2, P3, P4). 4-

probe measurement is only used for comparison with contactless measurement during testing. 
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Fig. 7-10 Variation of microcoils.  
Images courtesy of Corey Shih. The scale for all images are the same and the scale bar in a) 

applies to all. The coils in each panel are characterized by: line width (w), line separation (s) 

and number of turns (nturns). a) w=2m, s=4m and nturns=1; b) w=2m, s=4m and nturns=3; 

c) w=2m, s=4m and nturns=5; d) w=4m, s=4m and nturns=3; e) w=4m, s=4m and 

nturns=5; f) w=5m, s=4m and nturns=4; g) w=2m, s=2m and nturns=5; h) w=20m, 

s=10m and nturns=3; i) no coil 
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Fig. 7-11a shows a 100nm thick copper square patterned on the microcoil to provide a test 

sample.  The copper square is produced by patterning the bottom chip with EBL (see section 

9.1). Since the chip is made of mostly an insulator (i.e. SiO2), it would charge up during electron 

beam exposure and result in errors. To prevent charging, the chip is first coated with 5nm of 

copper. Subsequently, a 105nm thick copper square is created by electron beam lithography and 

evaporation. The 5nm thick film of copper is etched off (12s in 10mg/mL Na2S2O8) and only the 

100nm thick copper square remains on top of the SiO2 capping layer. The metal lines near the 

four corners of the copper square each go to contact pads P1, P2, P3 and P4 in Fig. 7-9. To 

measure the sample resistance by van der Pauw, the metal lines can be extended to the copper 

square with additional fabrication. The squares on the metal lines are holes in the SiO2 capping 

layer to access the metallic layer underneath. So far, we have demonstrated that it is possible to 

create test samples of copper. For future work, test samples of copper with thickness=100-500nm 

needs to be created for testing (see Fig. 7-8). 

In the testing phase of the project, the RF response of the microcoil with copper squares should 

be characterized with a network analyzer. To interface the contact pads of the chips with the 

network analyzer input and output, the chips should be mounted on a printed circuit board 

(PCB). Fig. 7-11b shows the design of the PCB top surface. The bottom surface is covered with 

copper to serve as a ground plane. At the left and right edges, SMA (Amphenol 132255) 

connectors are mounted to interface with the network analyzer. The 0.109inch line, running 

across the middle, is the signal line where the width is calculated to produce a 50 microstrip 

line. The microcoil chip is mounted in the center of the PCB, where the signal line gaps, and 

contacted by wirebonding. The PCB is fabricated (Advanced Circuits) from 0.062inch thick FR-

4 board with 1oz (i.e. 1.37mil thick) copper on top and bottom.  
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Fig. 7-11 Test sample for microcoil contactless measurement probe.  
a) Image courtesy of Corey Shih. Copper square fabricated on top of microcoil by electron 

beam lithography. b) Printed circuit board design for mounting microcoil chips and 

interfacing to network analyzer. All dimensions are in inches. Copper covers the black parts. 
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Part II  
 

Carbon nanomaterials based mechanical 

resonators 
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8 Carbon nanomaterials 

Microelectromechanical sensors (MEMS) have enjoyed success in the creation of innovative 

micromachines [211] (e.g. micromotor, micro heaters [212] and micro chemical vapor deposition 

[213]) using lithographic techniques. At small length scales, the thermal and mechanical 

response times are fast and even display technology based on shutter motion is possible [214]. 

Further device innovation is anticipated from expansion of the fabrication domain to the 

nanoscale. Nanoelectromechanical sensors (NEMS) use the design concepts from MEMS to 

further scale down the components (e.g. nanomotor [215]). Although the MEMS/NEMS 

boundary is not strictly defined, NEMS often involves the incorporation of pre-synthesized 

nanomaterials as components. 

Carbon nanomaterials, particularly carbon nanotubes (CNT) and graphene, are popular 

nanomaterials to use as NEMS components. They are mechanically strong and electrically 

addressable (i.e. metal, semiconductor or semimetal). In addition, they are chemically robust and 

compatible with most chemical processes in lithography. 

At the “cm” size scale, the crystalline forms of pure carbon are either diamond or graphite. 

The two allotropes arise because the s and p orbitals of the carbon atoms hybridize differently 

[7,216]. Diamond is composed of sp3 bonds, which yields a three dimensionally bonded crystal 

with strong bonds between atoms in all direction. Graphite is composed of sp2 bonds, which 

yield a crystal made of stacked single atom thick layers. Within each layer, the carbon atoms are 

strongly bonded to their neighbors. The force between the layers are weak van der Waals forces, 

enabling layers to be peeled off as easily as seen with pencils. 

At the nanoscale, sp2 bonds give rise to a rich group of carbon nanomaterials (i.e. fullerenes, 

nanotubes and graphene). Theoretically, graphene (the single atom thick sheet in graphite) is the 

simplest building block among the sp2 carbon allotropes and the other allotropes can be 

conceived by manipulating graphene, as shown in Fig. 8-1. When multiple layers of graphene are 

stacked on top of each other, graphite (bottom right) is obtained. When a small sheet is cut from 

graphene and rolled up into a tube, a carbon nanotube is produced (bottom middle). The 

graphene can be cut in a way that the piece rolls up into a ball-like molecule composed of 

hexagons and pentagons of carbon, called fullerenes (bottom left). The schematic in Fig. 8-1 is 

presented to simplify theoretical understanding and does not represent the synthesis mechanism. 

Before the experimental discovery of isolated graphene, graphene was a convenient theoretical 

construct for the band structure of sp2 bonded carbon allotropes [24]. Each carbon allotrope was 

experimentally discovered in their isolated form and was not created out of graphene. 

Historically, graphite was known as a naturally occurring material and graphene was discovered 

[23] after fullerenes [217] and CNT [218,219]. The bonds in fullerenes and CNT are not purely 

sp2, as the curvature introduces some strains to the bonds. The strained bonds facilitate chemical 

functionalization [220] and fullerenes have played an important role in the development of 

organic photovoltaics (see Chapter 15). 

CNT can either be a single-walled (SW) CNT, which is as a single rolled up sheet of graphene, 

or a multi-walled (MW) CNT, which is made of multiple concentric cylinders fitting into each 

other. The SWCNT and MWCNT diameters vary, with the smallest SWCNT diameter ~0.4nm 

and largest MWCNT diameter ≥100nm [15]. With optimized synthesis conditions, very large 

aspect ratios are obtained (e.g. Ø5nm x 1mm MWCNT) [221]. A SWCNT is either a 

semiconductor or a metal depending on the direction, in which the graphene sheet is rolled up 

(“chirality of the tube”) [15]. In contrast, all MWCNT are metallic. 
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The fundamental frequency of a mechanical resonator scales as f0~√
E

ρm

t

L2
, where E=Young’s 

modulus, m=density, t=thickness and L=length [31]. Graphene has a high Young’s modulus 

(E=1.0TPa) [222], low mass density (m=2200kg/m3) [31] and is one atom thick (t=0.35nm). 

High frequency graphene mechanical resonators with f0=70.5MHz have been demonstrated [31–

33]. Table 8-1 compares the Young’s moduli (E) between candidate materials for MEMS/NEMS 

use. Graphene and CNT have higher Young’s moduli than materials that are commonly 

considered “hard” (e.g. SiC and diamond).  

The light mass of carbon nanomaterials make them promising for highly sensitive mass 

sensors. For measurement of deposition rates in thin film deposition, a quartz crystal monitor 

measures the deposited mass of the material by the change in frequency of a vibrating 

membrane. The change in frequency of a vibrating beam depends on the change in mass as 

Δf0 = −
f0

2m0
Δm, where m0 is the mass of the beam [223]. A CNT is an excellent material for 

maximizing the f0/m0 ratio and has demonstrated sensitivity to weigh 0.40 gold atoms Hz-1/2. 

 

 

 
Fig. 8-1 sp2 carbon allotropes.  
Fig. 1, Geim and Novoselov [296]. Schematic of constructing fullerenes (bottom left), 

nanotubes (bottom middle) and graphite (bottom right) from graphene (top). 
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Material E (TPa) Reference 

Graphene 1.0 

 [222] 

CNT 0.27-1.47 

SiC 0.43 

 [297] 
Ultrananocrystalline  

diamond 
0.96 

ta-C 0.80 

Polysilicon 0.16  [242] 

Table 8-1 Young’s moduli of MEMS/NEMS materials.  
Experimentally measured Young’s modulus (E). CNT includes both single-walled and multi-

walled carbon nanotubes. Wide range of the measured E are reported in literature. Other 

materials with desirable mechanical properties: silicon carbide (SiC), ultrananocrystalline 

diamond and hydrogen-free tetrahedral amorphous carbon (ta-C) are listed.  Polysilicon is the 

most commonly used material for MEMS. 
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9 Fabrication techniques 

Fabrication techniques for creating nanomechanical resonators are discussed. Electron beam 

lithography is relevant to other chapters, where electrical contacts are made to nanoscale 

samples. Techniques for creating suspended nanostructures are discussed with regard to concepts 

adopted from micromachining.  
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9.1 Electron beam lithography 

Electron beam lithography (EBL) is used to electrically contact or control the shape of 

samples. Typically photolithography is limited to 2m feature sizes and optical imaging is 

diffraction limited. Using the higher resolution of electron microscopy, EBL allows users to find 

and precisely align patterns to nanomaterials, providing “eyes” and “hands” for the manipulation 

of nanomaterials. Since exposure is controlled by the scan pattern of the electron beam, a mask 

does not need to be fabricated for each new pattern and makes EBL well-suited for versatile 

fabrication at the laboratory scale. EBL samples requires conducting substrates, since an 

insulator would accumulate charge from the electron beam and distort the beam path to 

uncontrolled directions. When patterning an insulator, it should be coated with a thin layer (e.g. 

~3nm) of metal to prevent charging (see section 7.3).  

EBL is performed with a scanning electron microscope (SEM, Sirion XL30, FEI), modified 

with a commercial beam controller for lithography purposes (NPGS, JC Nabity Lithography 

Systems). For EBL, requiring very small resolution, a dedicated EBL writer (e.g. crestec, 

Marvell Nanolab) is more suited. EBL is often complemented with photolithography: a substrate 

is first patterned with features of size >2m and fabrication requiring higher resolution is 

continued by EBL. Contact pads of ~200 x 200m and lines from the sample area to the pads are 

fabricated by photolithography to enable contact by probes or wirebonding. The contact pads are 

not actually “too large” for EBL. For writing small features, the small spot size with low beam 

current (~28pA) requires a long time for exposing a designated area. For writing large areas (but 

with lower resolution), a large spot size with large beam current (~2,800pA) can be used. A 

pattern with four contact pads are exposed in ~20min. Hence, EBL can create a complete device 

with contacts pads as long as only a few devices are needed. For wafer-scale fabrication, 

photolithography is much more time efficient. 

Fig. 9-1 schematically illustrates the steps in EBL for placing an electrical contact on a 

nanomaterial. First the target nanomaterial is placed on a substrate (Fig. 9-1a). Typically, the 

substrate is a silicon chip covered with a layer of SiO2 to provide an insulating platform for the 

sample. Silicon chips are frequently used in EBL for the following reasons: 1) it cleaves easily 

from wafers, 2) wafers are easily available from the semiconducting industry, 3) it is often doped 

to suitable conductivity, 4) it provides a smooth, flat surface and 5) impurity concentrations are 

well controlled. Electron beam resist (PMMA16) is deposited to cover the substrate and the 

nanomaterial (Fig. 9-1b). 

Electron beam exposes the PMMA in a pattern specified by the design file (Fig. 9-1c). The 

electron beam cuts the bonds in PMMA and reduces the polymer to shorter units of lower 

molecular weight, which has a significantly higher solubility in developer than the unexposed 

PMMA. The developer17 selectively removes the electron beam exposed PMMA and creates 

openings in the PMMA layer (Fig. 9-1d). The illustrated procedure is for positive resist (exposed 

parts open up) and negative resist (e.g. HSQ) would result in an inverse pattern, where the 

exposed parts remain and the unexposed parts are removed after developing. 

During metal deposition, a thin film of metal forms on top of the PMMA but metal is 

deposited directly on to the nanomaterial and the substrate in areas, where the PMMA layer is 

                                                 
16 950 PMMA A4, MicroChem is deposited by spin coating at 3000rpm for 40s and baked at 170oC on a hot plate 

for 2min 
17 Immersed in 1:3 MIBK:IPA, MicroChem for 90s and rinsed with IPA and water. 



213 

 

open (Fig. 9-1e)18. Subsequently, the sample is immersed in acetone to dissolve the PMMA 

(“lift-off process”). The metal film on the PMMA peels off in solution and only the metal 

directly deposited on the substrate remains (Fig. 9-1f).  

As illustrated in Fig. 9-2, it is important that the thickness of the metal film (tmetal) does not 

exceed the PMMA thickness (tPMMA). When tmetal<tPMMA (Fig. 9-2a), acetone enters the gap 

between the top of metal on the substrate and the bottom of the metal on PMMA to dissolve the 

PMMA for a successful lift-off. If tmetal>tPMMA (Fig. 9-2b), the gap closes and acetone cannot 

access the PMMA layer. tPMMA varies with spin speeds and composition (e.g. tPMMA~200nm for 

the parameters described in footnote 16). For the same reason, the deposition method needs to be 

directional (e.g. electron beam or thermal evaporation) to avoid conformal coating. Practically, 

the walls of the PMMA opening has rounded corners, which means tmetal cannot actually 

approach the tPMMA limit so closely. To fabricate patterns with thick films, tPMMA is increased by 

spinning PMMA multiple time to layer them on top of each other. The deposited PMMA is 

baked only once at the end, as excessive baking could cross link the polymers and make them 

difficult to dissolve with acetone.   

                                                 
18 For NbSe3 nanoribbon devices (see section 6.1.1.1), the device is treated with nitrogen plasma after the step in 

Fig. 9-1d and immediately followed by metal deposition in Fig. 9-1e. 
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Fig. 9-1 Electron beam lithography steps.  
a) Deposit nanomaterial on substrate. b) Coat with electron beam resist (PMMA). c) Expose 

pattern (aligned to nanomaterial) with electron beams. d) Develop exposed pattern. e) 

Deposit metal. f) Lift off metal.    
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Fig. 9-3 shows the procedure for aligning exposure patterns to nanomaterial location. For the 

first step, an SEM image of the substrate with the deposited nanomaterial is obtained (Fig. 9-3a). 

In this example, the substrate is a Si/SiO2 chip pre-patterned with metal, using photolithography 

(bright shapes). The 2m wide lines labeled 1-8 go to contact pads, located outside the field of 

view. The four pairs of “L-shaped” objects are alignment markers. The target nanomaterials are 

MWCNT circled in red. 

When used for imaging, the SEM scans the whole field of view with the electron beam and 

creates an image based on the readings from the detector. For lithography, software control of 

the beam scanning area restricts electron beam exposure to pre-programmed shapes at specified 

locations in the field of view. The exposure pattern is controlled by a file designed in a CAD 

program (Fig. 9-3b). The polygons, filled with a yellow stripe pattern, are areas to be exposed. 

During the exposure process, the field of view is adjusted, so that the “L-shaped” green polygons 

in the design file and the alignment markers on the substrate overlap. The software writes the 

pattern at the correct location based on its relative location to the green polygons. When finding 

the alignment markers, we cannot image the targeted area for writing, since it would expose the 

entire field of view. Instead, only the vicinity of the expected locations of alignment markers are 

imaged (alignment windows, outlined by green dashed lines). When optimized, the limited 

exposure during alignment is negligible and the alignment windows do not open up after 

developing. 

After developing, metal deposition and lift-off (Fig. 9-1d-f), the specified polygons in the 

design file are realized as metal electrodes (Fig. 9-3c). Fig. 9-3d shows a magnified view of one 

of the targeted MWCNT. As intended in the design file, the MWCNT is contacted on one end 

with the bottom electrode, facing an electrode at the opposite side and approached by another 

electrode from the side. The image demonstrates the precise control over electrode geometry and 

position with respect to a nanomaterial, enabled by EBL.     

 
Fig. 9-2 Metal thickness for successful lift-off.  

For thickness of metal film (tmetal) and thickness of PMMA (tPMMA), a) tmetal<tPMMA allows 

acetone to enter into the PMMA layer (successful lift-off) and b) blocks access to PMMA 

layer (failed lift-off).  
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Fig. 9-3 Aligning patterns to nanomaterials.  
Procedure for precisely aligning lithographically fabricated features to nanomaterials. a) 

SEM image of CNT (circled in red) deposited on a substrate before electron beam 

lithography. b) CAD pattern to control electron beam exposure. Alignment windows (green, 

dashed outline), alignment markers (green, outline) and exposure patterns (yellow, hatched 

polygons) are shown. c) Substrate after electron beam lithography according to the CAD 

pattern and metal deposition. d) Magnified view of CNT with metal electrodes.    
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9.2 Suspension of nanostructures 

Suspended structures are lithographically fabricated with micromachining techniques 

developed for MEMS. As shown in Fig. 9-4a, an etch layer is the topmost layer of the substrate 

and the structure to be suspended rests on top of the etch layer. An opening is created in the etch 

mask by lithography (Fig. 9-1a-d). Etchant [224,225] enters through the opening and etches the 

etch layer underneath the structure (“release”). Fig. 9-4b shows the suspended structure after 

release. The etchant does not have any effect on the etch mask material, but the structure after 

etch mask removal is shown for clarity. 

At the micro/nano-scale, capillary forces of drying liquids [226] are strong enough to destroy 

suspended nanostructures. When a suspended structure is taken out of a liquid, some of the liquid 

collect in pits or adhere to the surface by surface tension. When drying, the menisci of the liquid 

moves and pulls suspended structures with it, as illustrated in Fig. 9-4c. To avoid capillary 

forces, the fabrication process is often designed to make release the last step and the release is 

performed with a dry etch technique, using either etchants in the vapor phase (e.g. HF vapor, 

XeF2) or microwave generated plasma (e.g. reactive ion etcher). HF is commonly used as a wet 

etchant but there are instruments, which enable HF dry etching by releasing controlled amounts 

of HF vapor in a chamber (primaxx, Marvell Nanolab). Ethanol is mixed with the HF vapor to 

capture water, which emerge as a byproduct of the etching reaction.  

When using liquid etchants or immersing in liquid after release, suspended structures are dried 

by critical point drying (CPD). The P-T phase diagram in Fig. 9-5 explains the principle of CPD. 

The menisci develop when undergoing the liquid-vapor transition across the liquid-vapor phase 

boundary (solid line). However, the phase boundary ends at a critical point. By going around the 

critical point in the supercritical region, the liquid is dried without the formation of a meniscus. 

The standard CPD instruments uses the critical point in CO2. The device with suspended 

structures is first immersed in methanol and cooled to exchange methanol with liquid CO2. 

Methanol is chosen for its miscibility with liquid CO2. 

 Etching processes in micromachining are generally divided into anisotropic and isotropic 

etching techniques [224,225]. Fig. 9-6a shows anisotropic etching, where etching only occurs in 

the downward direction and the etched pit does not widen beyond the opened area of the etch 

mask. In contrast, Fig. 9-6b shows isotropic etching, where etching progresses sideways as well. 

An undercut below the etch mask opening is created. Most anisotropic etching acquire some 

degree of isotropic etching quality due to non-idealities. When designing an etch mask pattern, 

the undercut with respect to etch depth must be considered. KOH etching of silicon is an 

interesting intermediate between the etching schemes shown in Fig. 9-6a,b, as it selectively 

etches the (111) plane of silicon. It is often used to create microstructures with silicon nitride 

(Si3N4) windows by etching through ~500m silicon from the bottom. Fig. 9-6c shows the etch 

area defined by an etch windows at the bottom. The top is covered by Si3N4, which does not get 

etched by KOH. The etch progresses at a 54.7o angle and opens up a window at the top. 

Fig. 9-7 shows failed fabrication attempts, which highlight the importance of micromachining 

concepts discussed in this section. Fig. 9-7a,b show structures, which were released by wet 

etching and dried without CPD. The cantilevered metal films were pulled down by capillary 

forces (see Fig. 9-4c) and stuck to the bottom. In Fig. 9-7c, the undercut in the etch process was 

too large and etched the support underneath a significant length of a metal line. The mechanical 

stress built up during metal deposition caused the metal to peel back.  
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Fig. 9-4 Suspending micro/nano-structures.  
a) Structure before suspension (release). b) Suspended structure after release. c) Capillary 

force while drying from wet etching.  
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Fig. 9-5 Critical point drying.  
Fig. 11, Bustillo, Howe and Muller [226]. Starting from a liquid (1), the system is taken to 

the supercritical region (2) and turned to vapor (3). This path of liquid-vapor conversion 

avoids the formation of a meniscus. 
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Fig. 9-6 Etching directions in micromachining.  
Common types of etching in micromachining. a) Anisotropic etching. b) Isotropic etching. c) 

KOH etching of silicon. 
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Fig. 9-7 Collapsed and over-etched devices.  
a, b) Collapsed metal layer as a result of drying without CPD. c) Delaminated metal layer 

from excessive undercuts during etching. 
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10 Field emitting CNT nanomechanical resonator 

Most nanomechanical resonators involve nanomaterials clamped on two ends and driven to 

resonance by a capacitively coupled gate or irradiated by laser light. The CNT resonator 

discussed in this chapter is a singly clamped CNT. The system strongly couples to 

electromagnetic fields by field enhancement, characteristic of one dimensional nanostructures, 

and enables readout of the mechanical motion via modulation of the field emission current. The 

system realizes an interesting coupling between high frequency nanomechanical resonator, 

nanoscale antenna and tunneling electrons. 

This chapter introduces field emission in relation to carbon nanotubes. Results from previous 

studies on the singly clamped CNT resonator are summarized (e.g. nanotube radio, atomic and 

self-oscillation). Benjamín Alemán, a fellow graduate student in the Zettl Group (PhD 2011) 

began fabrication of an integrated device with a singly clamped CNT nanomechanical resonator. 

Aidin Fathalizadeh, a fellow graduate student in the Zettl group (PhD 2016), and I continued 

developing the fabrication method but the project is still in progress as we have encountered 

obstacles due to high voltage biasing. The devices were also developed to provide samples for a 

collaboration with Christophe Goze-Bac19 for enhancement of nuclear magnetic resonance 

sensitivity with nanoantennae (see section 2.6, Fathalizadeh [227]). 

 

  

                                                 
19 Directeur de Recherche CNRS, BioNanoNMRI, L2C, Université de Montpellier 

https://scholar.google.com/citations?view_op=view_org&hl=ja&org=12910636459127148143
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10.1 Field emission 

The work function (𝜑) of a metal is the energy difference between the Fermi level (EF) in the 

metal and the vacuum energy level. For an electron to leave the metal, it must have an energy 

(Ee-) which overcomes the work function. The model in Fig. 10-1 shows that an electric field (E) 

makes the energy barrier triangular. The barrier height linearly decreases as we increase the 

distance (x) from the metal surface. For a strong electric field, the electron tunnels through the 

barrier into vacuum, despite Ee-< 𝜑 (“field emission”). 

Fig. 10-2 shows a CNT of length h and diameter 2 in contact to an electrode held at an 

electric potential V=0. Facing the CNT tip, there is a counter-electrode at V=Va. The counter-

electrode is a distance d away from the electrode and not in direct contact with the CNT. There is 

an electric field Em=Va/d between the two electrodes. The CNT is effectively a sharp conducting 

needle that protrudes from a conducting plate and the electric field is enhanced to E′=Em at the 

CNT tip, where >1 is the field enhancement factor. For E′ of sufficient strength, electrons from 

the CNT field emits and are collected at the counter-electrode, resulting in field emission current. 

 is calculated by [228] 

γ = 3.5 +
ℎ

𝜌
+ 𝑂 (

ℎ

𝑑
)

3

  Eq. 10-1 

The result for h<<d can also be derived analytically by using image charges. CNT are good field 

emitters, as a MWCNT of h=1m and =10nm results in  The field emission current is 

calculated by the Fowler-Nordheim equation [229] 

I = c1(γEm)2exp (−
c2

γEm
)  Eq. 10-2 
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Fig. 10-1 Energy barrier for Fowler-Nordheim tunneling.  
Fig. 2.1, Fathalizadeh [227]. Electric field (E) modifies the tunneling barrier height (V) into a 

function which linearly decreases with distance (x) from the metal surface. This model is 

used for the derivation of the Fowler-Nordheim tunneling equation. The Fermi energy (EF), 

work function (𝜑) of the metal and the energy of the electron (Ee-) are shown.  
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Fig. 10-2 Geometry for field enhancement calculation.  

Fig. 1, Wang et al. [228]. A CNT is modeled as the black bar of length h and diameter 2. 

The bottom line is the electrode in contact with the CNT and the top line is the counter-

electrode, located a distance d away from the bottom electrode. 
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10.2 Nanomechanical resonator 

Readout of nanomechanical resonator motion has been successfully demonstrated with 

capacitive coupling [31,230], optical interferometry [33] and piezoelectric coupling [231]. The 

field emission current of singly clamped CNT provides another surprising method of detecting 

nanomechanical motion.  

Fig. 10-3a shows the schematic for the nanotube radio [229]. The field enhancement 

accumulates charge at the tip of the nanotube, which couples to electromagnetic fields. A field 

oscillating at the same frequency as the mechanical resonance frequency (c) of the cantilevered 

CNT excites large amplitude mechanical oscillations. The field enhancement factor () at the tip 

of the CNT is sensitive to the distance from the electrode in contact (h). Mechanical motion 

modulates h, and hence , which modulates the field emission current (Eq. 10-2). As an antenna, 

the CNT amplifies and modulates the RF signal to readout the RF signal amplitude as dc current. 

Fig. 10-3b shows a TEM images of a CNT connected to a metal on the right and facing a 

counter-electrode on the left (not shown in image). The structure is prepared inside a TEM with a 

piezomanipulator and observed in situ. The CNT does not move when the RF excitation is off 

resonance (top image) and oscillates when on resonance. Keeping one CNT end free (i.e. not 

restricting its motion with a second clamp) is important for the observed large amplitude 

oscillations. The resonance frequency is in the 10-400MHz range. Frequency is fine-tuned by 

controlling the tension of the CNT with the voltage bias. For coarse-tuning, the CNT shortens 

when it is strongly biased to field emit at large currents. 

Further study in the TEM found that the CNT executes sustained self-oscillations without RF 

excitations when the counter-electrode approaches it from the side [232]. Fig. 10-4 shows the 

vibrating CNT in the TEM when the counter-electrode (emerging from bottom of image) is 

biased at 40V with respect to the CNT. While voltage biased, field emission current of 0.1-1A 

from the CNT is detected. The CNT for a 0V bias does not oscillate, as shown in the inset. The 

mechanism behind oscillations is fundamentally different from the nanotube antenna (Fig. 

10-3a), since oscillations depend only on dc electric fields. The study proposes a model based on 

an instability, which occurs in the balance between the CNT’s mechanical restoring force and 

electrostatic forces. 

The high fundamental frequency of a nanomechanical resonator enables the ground state of the 

mechanical motion to be reached by cooling to temperatures achievable by current refrigeration 

technology [230,233]. Near the ground state, the resonator motion acquires quantum mechanical 

properties, even though the resonator is a classical object at high temperature. Ground state 

cooling has been successfully demonstrated with an aluminum nitride based resonator [231] and 

the field has been opened up for exploring the effects of coupling the quantum mechanical 

resonators with various physical systems. The singly clamped CNT resonator is an interesting 

system to study for its coupling of mechanical motion to quantum tunneling.  
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Fig. 10-3 Singly clamped CNT mechanical resonator.  
Fig. 2, Jensen et al. [229]. a) schematic of the oscillation mechanism of the mechanical 

resonator. b) CNT viewed in TEM at off resonance (top panel) and on resonance (bottom 

panel). 
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Fig. 10-4 Self-oscillating CNT mechanical resonator.  

Fig. 5b, Weldon et al. [232]. Scale bar=1m. TEM image of self-oscillating CNT at 40V 

bias. Lithographically fabricated electrodes contact the CNT and approach it from the side. 

Inset: static CNT at 0V bias. 
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10.3 Device integration 

In contrast to the system assembled by a piezoelectric manipulator inside the TEM, the system 

shown in Fig. 10-4 is fabricated by lithographic techniques prior to loading into the TEM. As a 

nanofabricated device, the electrode geometry can be more precisely controlled during 

fabrication and be preserved, while transporting the sample across many characterization 

techniques. An integrated device allows multiple biases to be introduced simultaneously at 

multiple electrode locations. The multiple bias geometry is interesting for exploring parametric 

amplification and noise squeezing [234–236]. 

To be compatible with TEM, the sample needs to be suspended over a hole, in which the 

electron beams can go through unobstructed. Fig. 10-5 shows an optical image of the chip with a 

silicon nitride fabricated by photolithography [237]. The yellow polygons are gold contact pads 

that provides electrical connection window region in the center, shown in the magnified view. 

The square in the middle of is a silicon nitride (Si3N4) window of 10-200nm thickness. The 

silicon underneath the Si3N4 has been etched down to the bottom of the chip, resulting in a side 

view similar to Fig. 9-6c. 

 
  

 

Fig. 10-5 Silicon nitride (Si3N4) window chips.  
Fig. 2.8, Fathalizadeh [227]. At the center of the chip, a silicon nitride window (10-200nm 

thick) is surrounded by lines which go to the 6 contact pads (shown in low magnification 

view). CNT are located on the window (labeled “SiN”) and contacted by EBL (see Fig. 9-3). 

After etching the silicon nitride, features in the window area are suspended over a hole, 

which goes completely through the whole chip. 
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MWCNT are deposited on the Si3N4 window chip by spin coating from liquid dispersion (10 

x10L drops, while spinning at 2000rpm). Arc-grown MWCNT from Henry Garcia, a former 

graduate student in the Zettl group, are used, as they contain very few structural defects. The 

CNT are partially burned while monitoring with thermogravimetric analysis to remove 

amorphous carbon and dispersed in IPA by sonication. The dispersion is sonicated for ~1min, 

when left without agitation for >1/2 day to redisperse the CNT. The concentration and deposition 

conditions are adjusted to place 1-3 MWCNT of 1-2m length in the Si3N4 window region. The 

deposited MWCNT are located with an SEM image and electrodes, aligned to the MWCNT, are 

fabricated by EBL (see section 9.1). At the final step, the Si3N4 is etched with a reactive ion 

etcher (200W, 30s, 25sccm SF6) to produce the CNT and electrodes suspended over a hole. Two-

probe devices, with CNT contact electrode and the counter-electrode facing each other, and three 

probe devices, with a side gate, (see Fig. 9-3d) are fabricated.      

Fig. 10-6 shows the I(V) curve of a fabricated device, measured at P<5×10-7Torr20. The device 

show increasing current with voltage, reaching 1A at ~94V. To distinguish the current from 

leakage currents, the device is measured again with the voltage bias polarity reversed, which 

showed I<0.1nA up to -100V. The response is consistent with electrons field emitting from the 

CNT. For the limit where the counter-electrode is infinitely far away, field emission only occurs 

when electrons field emit from the CNT to the counter-electrode. For the opposite voltage bias 

polarity, the lower field enhancement factor of the counter-electrode does not enable electrons to 

tunnel from the counter-electrode to the CNT. The red line is the fit to the Fowler-Nordheim 

equation (Eq. 12-4) with fit parameters c1=8.9×10-4A/V2 and c2=1.5×1011V/m. Compared to the 

fit parameters (c1=3.4×10-5A/V2 and c2=7.0×1010V/m ) in Jensen et al. [229], c1 is significantly 

higher for us and c2 is on the same order as Jensen et al. 

  

                                                 
20 Desert Cryogenics TTP4 vacuum probe station and Keithley 2410 source-measure unit. 
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The device fabrication does not produce field emitting devices with high yield. Visual 

inspection with the SEM shows the electrode alignment and release succeeds with high yield. 

However, many devices show similar current response on the order of ~1A for both positive 

and negative voltage biases. In addition, large current spikes appear during voltage sweeps as 

shown in Fig. 10-7. Two large spikes at 84, 95V appear on increasing voltage (black line). There 

is a large hysteresis between increasing and decreasing voltage sweeps, in which the current 

during decreasing voltage sweep is greater, possibly due to increased prevalence of the voltage 

spikes. 

At first, the current spikes were thought to be signatures of contaminants desorbing from the 

CNT, while it is heated with large field emission current. However, continued operation results 

in damage to the device. Fig. 10-8 shows and SEM image of a damaged chip. The damage 

appears to be caused by running excessive current and occur at the metal traces leading to the 

sample area. Surprisingly, the sample area is completely undamaged. Damage appears on the 

20m wide line at the bottom left corner but the narrower 5m and 2m lines are unaffected. 

 
Fig. 10-6 Field emission I(V) curve.  
Singly clamped CNT shows current increase with voltage, consistent with the Fowler-

Nordheim equation (red line). I<2nA with reversed bias polarity. 
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The excessive current is attributed to current leakage from the conducting silicon underneath the 

Si3N4 layer. During high voltage bias, the uncontrolled voltage difference between the silicon 

and the metal layer results in leakage of large currents caused by dielectric breakdown of the 

Si3N4. The Si3N4 thickness in the damaged devices are 20-50nm. To enhance the dielectric 

strength, devices with 200nm thick Si3N4 are fabricated on intrinsic silicon (no dopants). 

However, the 200nm thick Si3N4 devices contained shorts between the metal layer to the silicon 

with leakage current reaching >1nA at V=30V on the most insulating devices. 

 

 

 
Fig. 10-7 I(V) curve hysteresis.  

Voltage sweep up (black) and down (blue). 
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Fig. 10-9 shows a CNT nanomechanical resonator fabricated on Si/SiO2. SiO2 is chosen 

because it demonstrates reliable dielectric strength, when used as a gate dielectric in FET devices 

(see Fig. 12-1). The CNT is contacted by the electrode on the top right and faces the counter-

electrode on the bottom left. The electrodes and the CNT are cantilevered over a pit etched into 

silicon. Unlike the Si3N4 window devices, the hole does not go through the entire thickness of the 

chip, making it incompatible for TEM. The CNT and electrodes are placed on a silicon chip with 

300nm of thermally grown SiO2. To release the structures, all of the SiO2 is etched by HF 

vapor21 and a 1.8m deep pit is etched into Si with XeF2 vapor22. A thick metal layer (50nm Cr, 

150nm Au)23 is used for the electrodes to prevent the electric fields at high voltage from pulling 

the metal down to the silicon floor of the pit. 

The Si/SiO2 based CNT resonator can be biased to 60V with no leakage current (<0.1nA). For 

>60V, the device is damaged from SiO2 dielectric breakdown or collapse of the metal layer to 

the bottom of the pit. Field emission signals could not be seen with this device, despite visual 

                                                 
21 primaxx, Marvell Nanolab: 1250sccm N2; 350sccm ethanol; 310sccm HF; 4×7min. 
22 xetch, Marvell Nanolab: 2torr XeF2; 5Torr N2; 15×10s. 
23 950PMMA A4 spun at 3000rpm, 40s twice and baked 170oC, 2min. Double layer to avoid lift-off problems.  

 

Fig. 10-8 High bias damage on Si3N4 window device.  
Fig. 2.11, Fathalizadeh [227]. SEM image of Si3N4 window (20-50nm thick) based device 

after biasing at V≤100V. 
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confirmation in SEM that the CNT is successfully contacted and released. Since voltage bias is 

limited to <60V, the field emission current could be too low and might be detectable with a more 

sensitive measurement setup (e.g. lock-in amplifier). With both the Si3N4 window and Si/SiO2 

based devices, it is challenging to insulate the device’s conductors from the conducting bulk 

silicon underneath. For a careful study of the CNT resonator mechanical motion, fabrication on a 

substrate containing nor conductors (e.g. SiO2, Al2O3) is recommended to ensure that the only 

conductors in the device is the metal layer and the CNT.  

 

 

  

 
Fig. 10-9 Si/SiO2 based CNT mechanical resonator.  
MWCNT is connected to a metal electrode (top right) and faces a counter-electrode (bottom 

left). The CNT is cantilevered over a pit etched into silicon. 
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11 Graphene strain engineering platform 

Application of extreme hydrostatic pressure has profound effect on a material’s physical 

properties by changing its lattice parameters [73]. For a system, which is solid at ambient 

pressure, strain from mechanically pulling or pushing on the material could change the lattice 

parameter in a similar way. In contrast to hydrostatic pressure, strain from mechanical stress is 

directional. Hence, the control of strain presents the opportunity to manipulate the lattice 

symmetry (i.e. break or enhance it), as well as interatomic distances [37,38].  

Motivated by the observation of large, strain-induced pseudo-magnetic fields in graphene 

[238], Qin Zhou, a post-doctoral researcher in the Zettl group, and I have been developing a 

versatile microfabricated platform for studying strain engineered graphene. Microactuators, a 

concept borrowed from MEMS design, are introduced and serves as the essential component of 

the strain platform. Qin designed and fabricated the microactuators by photolithography (Marvell 

Nanolab) and I fabricated graphene nanomechanical resonators on the strain platform by EBL. 

Qin led the measurement with the optomechanical detection setup and I assisted.  
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11.1 Pseudo-magnetic field 

The exceptional mechanical strength of graphene allows it to withstand large strains (>15%) 

without tearing [222,239]. A proposal for “strain engineering”, predicted a strain field with 

threefold symmetry would result in a pseudo-magnetic field. The system was realized and 

studied with STM in nanobubbles of graphene, which occur when graphene is grown on Pt(111). 

Scanning tunneling spectroscopy revealed Landau levels, which correspond to pseudo-magnetic 

fields >300T. Fig. 11-1a shows the topography of the nanobubble measured by STM. The bubble 

rises to a peak 0.4nm high and has a triangular base. The steep increase to the peak height 

indicates a highly strained graphene lattice. Fig. 11-1b shows a theoretical simulation for 

comparison and the overlaid pseudo-magnetic fields support the high fields deduced from 

Landau levels. 

 
 

  

 
Fig. 11-1 Pseudo-magnetic field in strained graphene.  
Fig. 3b,c, Levy et al. [238]. Pseudo-magnetic field induced by triangular strain field in a 

graphene nanobubble. a) Topography of graphene nanobubble measured by STM. Color 

legend corresponds to sample height. b) Simulated topography of nanobubble (black lines) 

and color legend corresponds to pseudo-magnetic field strength.  
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11.2 Microactuators 

We propose to develop a platform to controllably create and tune large strain fields for further 

study of pseudo-magnetic fields in graphene. The strain platform is designed to be transported 

across a variety of measurement techniques (i.e. transport, optical spectroscopy, electron 

microscopy) and consists of microactuators, which are fabricated prior to graphene placement. 

Microactuators have already been used to induce a large uniaxial strain (>10%) in graphene 

[240]. More complex strain fields than uniaxial strains can be easily created by fabricating, 

multiple microactuators on one platform. In particular, a triangular strain field can be realized 

with three microactuators arranged with threefold symmetry. In addition, strain field control at 

the microscale would be advantageous for avoiding structural defects and grain boundaries 

[241]. 

Microactuators are suspended polysilicon beams, which moves in response to an electrical 

input. Polysilicon is used commonly in MEMS fabrication for its adequate mechanical strength, 

electrical conductivity [242] and compatibility with fabrication techniques (e.g. it can be 

deposited and etched). Two types of actuation mechanisms are introduced here: thermal and 

electrostatic. Both types can push or pull depending on its orientation and bidirectional actuation 

is possible when actuators of opposite orientation are connected to the same shuttle. 

Fig. 11-2 illustrates the operation of the thermal microactuator. The image on the left shows 

suspended polysilicon beams (red) connecting two contact pads. The beams all have a bend in 

the middle and connect to another silicon beam, which serves as a shuttle (blue). Actuation 

occurs when current flows between the contact pads, through the bent beams. Joule heating 

causes thermal expansion and reduces the bend angle of the beams, resulting in the displacement 

of the shuttle towards the top of the image. The image on the right shows how the (pulling) force 

from the actuator is communicated to the sample, which is connected to the other end of the 

shuttle (black rectangle). The opposite end of the sample is fixed to a load shuttle, which is also 

suspended and fixed in place by suspended beams of narrower width. When the sample is pulled, 

the force on the sample is known from the combination of the measured loading shuttle 

displacement and the restoring force from the supporting beams. 

A drawback of the thermal microactuator is the need for large current flow. For sensitive 

electrical measurements, the flow of large currents near the sample could be a source of 

significant electrical noise. In the microacutator from a previous study [240], the sample is 

protected from the high temperatures at the actuator by placing heat sinks along the actuated 

shuttle. However, for low temperature measurements (e.g. ~10mK by dilution refrigeration), the 

heat load could overwhelm the cooling power of the cryostat. 

A microactuator based on an electrostatic force does not require current flow for actuation. 

Fig. 11-3 shows a type of electrostatic microactuator called the “comb-drive”. It is composed of 

two parts of conducting material (polysilicon) with fingers, which face each other in an 

interdigitating geometry but are never directly in contact. When there is a voltage difference 

between the two, the suspended moveable part (left) moves towards the stationary electrode 

(right), which is anchored to the substrate. The interdigitated geometry enhances the capacitance 

between the two parts. A shuttle connected to the moveable part would be actuated to the right of 

the image when the microactuator is voltage biased. The comb-drive microactuator has strained 

graphene up to 1% in a previous study [243]. In principle, the comb-drive microactuators should 

be able to deliver just as much force as the thermal microactuators. 
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Fig. 11-2 Thermal microactuator.  
Fig. 1c, Pérez Garza et al. [240]. Left: flowing current through the bent actuator beams (red) 

causes them to bend more from thermal expansion, leading to the displacement of the shuttle 

(blue). Right: motion of the microactuator induces a strain (U) on the sample placed 

between the actuated shuttle (left) and load shuttle (right). Heat sinks also shown on actuated 

shuttle.  

 

Fig. 11-3 Electrostatic microactuator.  
Fig. 3, Tang et al. [298]. When voltage is applied between the movable plate and the 

stationary electrode, the plate is attracted towards the electrode (i.e. move to the right).     
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11.3 Straining graphene 

The strain platform was designed and fabricated by Qin Zhou. Devices with both thermal and 

comb-drive microactuators were fabricated. The experiments in this section focuses on 

developing a method of placing graphene on the platform for straining. The devices tested so far 

consist of a single microactuator per device and uses multilayer (5-10 layer) CVD graphene to 

simplify testing.   

 Fig. 11-4a shows the sample area of the strain platform for uniaxial straining. The device is 

fabricated from suspended polysilicon beams on a silicon substrate, with a layer of SiO2 between 

the polysilicon and the substrate. Both the loading shuttle (left) and the actuated shuttle (right) 

are shown in the middle. They are suspended by polysilicon beams extending from the 

surrounding anchored structures. The array of holes are etch holes to allow etchant to go in and 

undercut beneath the structure to completely remove the SiO2 during release. The actuated 

shuttle connects to microactuators with the beam extending to the right of the image.   

As shown in Fig. 11-4b, the strips of graphene are placed and patterned by nanofabrication to 

suspend across the actuated and load shuttle. For the sample shown in the image, the filament 

like structures are graphene strips destroyed during the fabrication process. The sample was 

intended to be three parallel strips of graphene, similar to the one at the bottom. Details on the 

nanofabrication procedure are discussed later (see Fig. 11-9). 

When graphene is suspended on the strain platform, it can be studied as a nanomechanical 

resonator. As a first step to characterizing the strain in graphene, the mechanical resonance of the 

graphene is measured by optical interferometry [31]. Fig. 11-5 shows the schematic of the 

measurement setup. Mechanical resonance in graphene is excited by capacitively coupling the 

RF excitation from the network analyzer through the conducting silicon plane underneath the 

graphene. The graphene and the silicon underneath form a plane, where interference effects 

make its reflectance sensitive to the distance between graphene and silicon. A dc offset is added 

to slightly pull down the graphene to the position, where the reflectance is most sensitive to 

graphene position. The sample is probed with a 633nm laser and the intensity of the reflected 

beam is measured by a photodiode and fed back into the network analyze. The mechanical 

resonance in graphene is detected by the modulation of the reflected intensity. The sample is 

measured in P<1.5×10-5torr vacuum. 
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Fig. 11-4 Microactuator-based strain engineering platform.  
SEM image of a) sample area (no sample shown in this image). The right shuttle connects to 

a microactuator (not shown). b) Strips of multi-layer graphene as sample (top two destroyed). 

The bottom strip bridges across the load (left) and actuated (right) shuttle.  
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Fig. 11-6a shows the measured frequency response of the graphene resonator. The Lorentzian 

peak centered at 17.7MHz is attributed to the resonance frequency of the graphene. There is a 

feature centered at 12.3MHz where the intensity peaks at lower frequency and dips at higher 

frequency. The origin of this response is unknown. Since the graphene is 5-10 layers thick, it 

could be a mode from interlayer coupling. 

Fig. 11-6b shows the change in resonance peak, when graphene is tensioned by the 

microactuator. Each spectrum is shifted vertically with respect to the other spectra for clarity and 

a lower spectrum corresponds to stronger actuator force. The peak increases from 18MHz to 

32MHz, when tensioned with the actuator. However, increasing actuator force beyond this point 

results in decreasing peak frequency. This effect is explained by slipping at the 

polysilicon/graphene interface. As shown in Fig. 11-4b, the graphene is fixed to the platform by 

van der Waals attraction to the polysilicon structure.  

To prevent slipping, a layer of metal is evaporated on top of the graphene strips to clamp down 

on the graphene [33]. Fig. 11-7 shows the device with metal clamps. The strip running 

horizontally across the middle is graphene and the structures to its left and right are parts of the 

 

Fig. 11-5 Graphene resonator measurement setup.  
Graphene nanomechanical resonator is electrostatically driven and measured by optical 

interferometry.  Strain on graphene is applied with the strain platform.  
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strain platform. The metal clamp is false-colored in yellow. We have not characterized the 

mechanical resonance of the clamped device since we wanted to first develop a clamped device 

with single layer graphene. For the multilayer, there is ambiguity in how effectively the clamp 

couples to all the layers. 

The microactuator motion is also confirmed by in situ actuation in SEM. A strain platform is 

biased through a feedthrough in the SEM and graphene is imaged as it is pulled by the actuator. 

Fig. 11-8a shows the graphene before pulling, with some tears in the middle, possibly from 

damage during fabrication. As the graphene is pulled, Fig. 11-8b,c shows propagation of the tear 

across the sample as well as another tear, originating from the left side. Finally, Fig. 11-8d shows 

the graphene completely torn in two. The strain platform could be useful for the study of 

graphene mechanical properties in response to forces in the lateral directions. The strain platform 

for this experiment uses a thermal microactuator and the current bias of the microactuator 

slightly distorts the image with each step in current increase. For best image quality, the electron 

optics (e.g. focus, beam shift) need to be readjusted for every microactuator displacement. The 

same (or possibly worse) image distortion effects are expected for the electrostatic actuator. 
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Fig. 11-6 Graphene resonator response.  
Courtesy of Qin Zhou. a) Resonator frequency response spectrum with no bias on the 

microactuator. b) Graphene strain effect on the spectrum. Each spectrum corresponds to a 

different microactuator bias, with increasing microactuator force for a spectrum located 

lower. 
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Fig. 11-7 Metal clamps on graphene.  
SEM image of multilayer graphene with Cr/Au metal (yellow false color) deposited on top to 

mechanically clamp down on graphene.  
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Fig. 11-8 in situ observation of tearing graphene.  
SEM image of graphene during strain application by microactuator. Metal clamps are false-

colored in yellow. a) Multilayer graphene is suspended across the load and actuated shuttle 

with metal clamps over a separation sa=1.7m at zero microactuator bias. Separation is 

increased to b) sb, c) sc and d) sd, where sa<sb<sc<sd. sa is shown on top of each panel for 

comparison. 
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Fig. 11-9a-g illustrates the nanofabrication process for the graphene nanomechanical 

resonators on the strain platform. Fig. 11-9h is a legend for the materials in the figure. The 

fabrication steps are explained below. 

 

1. Fig. 11-9a: the strain platform is microfabricated at wafer scale (Marvell Nanolab). 

The structure shown is before release and still bound by SiO2. 

2. Fig. 11-9b: CVD graphene is transferred to cover the sample area [244]. 

3. Fig. 11-9c: 50nm copper etch mask is patterned by EBL (see section 9.1). The 

position and geometry of the copper should correspond to that of graphene after 

etching. 

4. Fig. 11-9d: unwanted areas of graphene is etched by reactive ion etching (50W, 

50sccm O2, 25s) 

5. Fig. 11-9e: etch copper in 100mg/mL Na2S2O8 for 2min. Steps 3-5 pattern graphene 

to a well-controlled geometry. (e.g. three parallel strips suspended across the strain 

platform).  

6. Fig. 11-9f: pattern Cr/Au (1.5nm/50nm) metal clamps on top of the patterned 

graphene strips. 

7. Fig. 11-9g: etch SiO2 for 125min in “pad etch”24. Exchange liquid in order of pad 

etch, water, methanol and dry by CPD. This step releases the device (see section 9.2). 

 

The fabrication process above needs to be improved, as it does not produce devices with high 

yield. In particular, graphene is often damaged in the release step. Fig. 11-10a shows patterned 

multilayer graphene before release. After release, Fig. 11-10b shows the graphene rolls up into 

filament-like structures. We can confirm that the CPD is successful because the polysilicon 

beams are suspended. We suspect bubble formation during SiO2 etching might be causing 

damage. Changing the etchant to pad etch from the commonly used BHF:HF solution to mitigate 

bubble formation does not solve the problem. Devices where graphene suspends across 2m 

gaps yield some undamaged graphene but graphene rarely survives in devices with 5m gaps. 

Devices fabricated from mechanically exfoliated monolayer graphene is also damaged during 

release. To make progress with prototype testing of the strain platform, the source of graphene 

damage during fabrication needs to be identified and corrected. 

 

 

                                                 
24 18% NH4F, 33% acetic acid, 14% ethylene glycol, 25% H2O [225,285] 
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Fig. 11-9 Fabrication of graphene nanomechanical resonator on strain platform.  
a) Microfabricated strain platform before release. b) Graphene transferred on platform. c) 

Etch mask made from patterned copper. d) Graphene etched. e) Strips of graphene after 

copper is etched off. f) Cr/Au clamps patterned on top of graphene. g) Device released. h) 

Color/pattern legend of materials illustrated in a-g. 
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Fig. 11-10 Graphene damage during release.  
SEM image of graphene patterned on strain platform a) before release (supported by SiO2) 

and b) after release (suspended). 
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Part III  
 

Organic semiconductors 
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12 Charge carrier mobility 

Mobility is defined by the expression  

𝜇 = |𝑣|/E Eq. 12-1 

where v is the charge carrier velocity and E is the electric field driving the charge carrier motion 

[245]. It is related to a material’s conductivity by  

σ = 𝑛𝑒𝜇𝑒 + 𝑝𝑒𝜇ℎ Eq. 12-2 

where n and p are electron and hole carrier concentrations, respectively, and e and h are 

electron and hole mobilities, respectively. The mobility corresponds to how quickly the carriers 

in the material can respond to a change in the electric field. Hence, it determines the signal 

switching speed between the on and off state when the material is incorporated into an electronic 

device, such as a transistor. The processing speed of an electronic device is heavily dependent on 

the semiconductor’s mobility [246].  

In recent years, the mobility in organic semiconductors have been measured mostly in a field 

effect transistor (FET) configuration. As shown schematically in Fig. 12-1a, the semiconductor 

material is placed between source and drain contacts. Conductivity of the semiconductor is 

measured by an I(V) curve across the source and drain contacts. The gate electrode is placed 

underneath the semiconductor, separated by the dielectric. When a voltage is applied across the 

drain contact and the gate electrode, the electric field changes the number of charge carriers in 

the semiconductor, altering its conductivity. The dielectric insulates the semiconductor from the 

gate electrode, preventing any leakage current from flowing from the gate to the drain. 

In the case of organic semiconductors, the material is insulating when a gate is not applied. 

The low conductivity of organic semiconductors 10-16-10-20 -cm-1 [247], actually classifies 

them as insulators (see Fig. 12-2) [248]. However, when a gate voltage is applied, charge carriers 

are induced in the material and results in a significant enhancement in conductivity. Hence 

organic semiconductors are “semiconductors” in the sense that its conductivity is modulated by 

gate voltage in a FET, unlike other insulators such as quartz and diamond. When gate voltage is 

applied, a continuous sheet of conduction channel forms at the interface of the semiconductor 

and the dielectric (Fig. 12-1b). This occurs for source-drain voltages, which are much lower than 

the gate voltage VSD ≪ VG, in the linear regime. The drain current follows the relation  [249] 

ID,lin =
W

L
Cμ [(VG − VT)VSD −

VSD
2

2
] 

Eq. 12-3 

where VT is the threshold voltage. It is common that VT≠0 due to dopants at the 

semiconductor/dielectric interface, which could withdraw or induce carriers in the material even 

when VG=0. 

When VSD~𝑉𝐺, in the saturation regime, the distortion in the electric field causes the 

conduction channel to be “pinched off”, just short of reaching the source contact (Fig. 12-1c). In 

the saturation regime, any increase in VSD does not result in increase of ID since it only causes 

the recession of the pinch off point away from the source contact. Instead, the drain current 

increases as the square of the gate voltage [249] 

ID,sat =
W

2L
Cμ(VG − VT)2 

Eq. 12-4 

From Eq. 12-4, the expression for mobility is derived 
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μ =
2L

CW
(

d√ID,sat

dVG
)

2

 

Eq. 12-5 

where L is the separation between the source and drain electrodes, W is the width of the 

conduction channel between the electrodes and C is the capacitance associated with the gate 

dielectric and  
d√ID,sat

dVG
 is the slope of the linear fit to √ID vs VG. 

 

 

 
 

 

Fig. 12-1 Field effect transistor.  
a) FET electrical circuitry. The labels “S” and “D” stand for source and drain contacts, 

respectively. The source is biased by a source-drain voltage (VSD) and current is measured on 

the drain contact. The gate voltage (VG) is applied on the gate to modulate the charge carrier 

density in the semiconductor. b) FET in the linear response regime. The gray region is the 

conduction channel formed by the gate electric field. c) FET in the saturation response. The 

conduction channel (gray region) no longer bridges across the whole source-drain distance, 

due to the linearly decaying profile of the electric field. 



252 

 

 

Fig. 14-7 and Fig. 14-8 show examples of electrical characteristics of an organic 

semiconductor FET [250]. Fig. 14-7, the “output curve”, shows ID(VSD) curves VG=0 to -60V. ID 

increases with VSD in the linear regime and saturates to a constant ID in the saturation regime. 

Fig. 14-8 inset, the “transfer curve”, shows ID as a function of VG for a fixed VSD=80V. The main 

panel shows √ID and a linear fit for extracting the mobility in the saturation regime. Mobility is 

calculated by taking a linear fit to √ID vs VG and substituting its slope for 
d√ID,sat

dVG
. Although 

mobility can be extracted either from the linear regime or the saturation regime, it is more 

common to use the saturation regime as it yields higher currents for ease of measurement. 

The FET configuration is the most common mobility measurement technique for thin films of 

organic semiconductors. However, the FET measures the in-plane mobility of the film. For solar 

cells, high out-of-plane mobility is more important than the in-plane mobility. Out-of-plane 

mobility measurement techniques have been developed for single crystals, such as the 

measurement of space-charge limited current at high voltage bias [247]. The mobility is 

extracted by fitting to   

J = const μ
V2

L3
 

Eq. 12-6 

Another method is to induce carriers on the top surface of the material with a pulse of light and 

measuring the transient electrical response, called “time of flight” measurement. Given the 

thickness of the sample, the mobility of the photo-induced carriers can be extracted from the 

decay time of the transient signal [251].  

 
Fig. 12-2 Electrical conductivity classification of materials.  

From Encyclopedia Britannica [248].  
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Space-charge limited current and time of flight measurements on thin films of organic 

semiconductors are complicated for thicknesses ~100nm. The top and bottom electrode 

separation is small and the surface to bulk ratio carrier photogeneration is reduced. Current 

extraction by linearly increasing voltage (CELIV) has been developed to serve as a suitable 

technique in evaluating the out-of-plane mobility for organic thin films [251]. CELIV applies a 

voltage bias across the top and bottom of the film and increases the voltage linearly in time. The 

transient response of the current is recorded, while the voltage is ramped up. By analyzing the 

features in the current transient response, the mobility is extracted. For materials of low 

conductivity, a pulse of light before the voltage ramp is applied to excite some carriers in “photo-

CELIV”. Although CELIV has been well-established, FET measurement remains the most 

common characterization of organic semiconductor mobility. 
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13 Solids of organic molecules 

Organic semiconductors are organic molecules, which contain conjugated bonds. When a 

chain of carbon atoms are bonded together, such that bonds alternate between double bonds and 

single bonds, the electron orbitals hybridize into conjugated bonds. The conjugated bonds allow 

electron delocalization throughout the chain. Such delocalization within the individual organic 

molecule raises the question whether delocalized electron transport is possible across a 

crystalline lattice of organic molecules. As demonstrated by polyacetylene [11] and fullerenes 

[64], organic materials, previously thought to be only insulators, can become metals and even 

superconductors. For technological applications, it is important to explore whether organic 

molecules could be made into semiconductors with properties comparable to silicon, which 

supports the electronics industry today. Organic semiconductors are attractive for their 

compatibility with low cost manufacturing methods (e.g. inkjet printing [252]). The organic 

semiconductors can be dissolved in a solvent and simply printed on to a flexible substrate to 

allow rapid low cost production of flexible electronics. Subsequent research have revealed that 

they are indeed promising materials for electronic device applications [253].  

Organic semiconductors are classified into small molecules and polymers [254] (see Fig. 13-1 

and Fig. 13-2). Small molecules are a group of covalently bonded carbon atoms, with one 

molecule consisting of ~10 carbon atoms and other elements. A polymer consists of many small 

molecules that are covalently bonded together, such that the small molecules repeatedly appear 

in a linear chain. In the development of organic semiconductors for electronic device application, 

various small molecules and polymers have been designed and synthesized. To assess each new 

material’s viability for electronic devices, a new material is often assembled in a field effect 

transistor configuration and the charge carrier mobility is extracted as a figure of merit. 
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Fig. 13-1 Examples of organic small molecules.  

Fig. 3, Facchetti [254]. Small molecule semiconductors.  
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Fig. 13-2 Examples of organic polymers.  
Fig. 6, Facchetti [254]. Polymer semiconductors. For each polymer, only one unit is shown. 

As indicated by the brackets subscripted by n, it is assumed that the polymer unit repeats to 

form a long covalently linked chain. 
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13.1 Single crystals 

Molecules shown in Fig. 13-1, such as pentacene (P5) and rubrene, are grown into large single 

crystals by physical vapor transport (see section 4.1.1). Although the study of fragile single 

crystals does not directly translate to progress in flexible electronics, high quality organic 

crystals have been studied for understanding fundamental transport mechanisms in van der 

Waals bonded crystals. High mobility was obtained when the crystal was suspended over a 

trench of PDMS and vacuum was used as the gate dielectric [255]. As the transport in organic 

FET is strongly localized to the interface between the crystal and the gate dielectric, mobility is 

significantly degraded by surface traps at the interface. In the “vacuum-gap” configuration, 

sample conductivity degraded even when the hot-cathode vacuum gauge was turned on [255]. 

Typical mobilities in organic single crystals are in ~1cm2/Vs range, exemplified by 2.2cm2/Vs 

in pentacene, but rubrene has an exceptionally high mobility of 20cm2/Vs [256]. Rubrene is the 

most extensively studied organic crystal in terms of electrical transport. With very weak 

interaction between the molecules, it is expected that charge carrier transport occurs via 

thermally activated hopping. Interestingly, R(T) of rubrene suggests the possibility of 

delocalized transport [257]. In addition, transport anisotropy in the a,b crystallographic plane has 

been observed [255]. According to the Ioffe-Regel criterion, the mean free path needs to be 

greater than the inter-molecular distances for delocalized transport [258]. As organic single 

crystals are below this limit but closely approach it, transport mechanisms in organic single 

crystals remain a fascinating topic of fundamental interest [255]. 

To prevent confusion, while reading the literature, it should be noted that there exists reports 

of gate induced superconductivity and quantum Hall effect in pentacene, which were 

subsequently revealed to be based on invalid data [259,260]. 
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13.2 Small molecule thin films 

For flexible electronics applications, thin films of organic semiconductors have been 

extensively studied. However, thin film mobilities were initially an order of magnitude lower 

than their single crystal counterparts. Films prepared by solution processing, such as spin 

coating, had even lower mobilities. For comparison, the mobility of single crystal pentacene is 

2.2cm2/Vs [256]; vacuum deposited thin film pentacene is 0.62cm2/Vs; spin-coated pentacene is 

0.001cm2/Vs [261]. Most of the promising organic semiconductors from single crystal studies 

have low solubility in solvents and do not form high quality films, when solution processed. New 

organic molecules have been designed and synthesized to be highly soluble in solvents. For 

example, pentacene has been functionalized to 6,13-bis(triisopropylsilylethynyl) (TIPS)-

pentacene (labeled as P5-TIPSA Fig. 13-1), which yields spin-coated films with mobilities of 

1.2cm2/Vs [262]. 

In addition to disorder effects, the mobility in organic semiconductors are significantly 

dependent on how the molecules stack with each other, as demonstrated by a study on 

sexithiophene thin films [263]. Sexithiophene (labeled as 6T in Fig. 13-1), functionalized by 

side-chains at different positions (Fig. 13-3a,b) assemble in different molecular arrangements, as 

characterized by X-ray diffraction. The mobility varies greatly from <10-7cm2/Vs in ’-

dihexyl-substituted sexithiophene (Fig. 13-3a) to 0.05cm2/Vs in -dihexyl-substituted 

sexithiophene (Fig. 13-3b), with an intermediate mobility of 0.002cm2/Vs in the unfunctionalized 

sexithiophene. Each of the thiophene “pentagons” in the molecule have  orbitals, similar to 

graphene [264]. When the pentagons are allowed to stack face-to-face in a “ stacking” manner, 

the orbital overlap is maximized and most favorable for charge carrier transport. In the case of 

functionalized sexithiophene, X-ray diffraction showed that the molecules in the highest mobility 

film are stacked in the plane of the transport direction, as illustrated in Fig. 13-3c. 

Subsequently, stacking has been an important component in the design of organic molecules 

for electronics applications. Organic small molecule semiconductors have undergone dramatic 

improvement. Mobility in newly developed materials have climbed up to 43cm2/Vs (with an 

average of 25cm2/Vs over 80 devices) [265]. 

  



259 

 

 
 

 
Fig. 13-3 -stacking of sexithiophene.  

Fig. 3, Garnier et al. [263]. a) ’-dihexyl-substituted sexithiophene. Diagram for compound 

(II), Garnier et. al. [263] b) -dihexyl substituted sexithiophene. Diagram for compound 

(III), Garnier et. al.  [263] c) Schematic of -dihexyl substituted sexithiophene self-

assembly on a substrate based on X-ray diffraction characterization. The  stacking 

extending in parallel to the substrate plane explains the higher in-plane mobility for -

dihexyl substituted sexithiophene compared to unfunctionalized and ’-dihexyl-substituted  

sexithiophene. 
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13.3 Polymer 

In parallel with small molecules, polymers have been developed for use in flexible electronics. 

Similar to small molecules, polymer semiconductors have progressed significantly from 

~0.01cm2/Vs to 23.7cm2/Vs [266]. Unlike the well-defined regular arrangement in a crystalline 

domain of small molecules, the “spaghetti-like” form of the polymers, do not enable them to 

form well-ordered crystalline films. However, the polymers still form aggregates with 

orientational order. Mobility is enhanced if the orientational order is such that it promotes -

stacking along the direction of transport [250,267]. Despite studies, which demonstrate the 

robustness of small molecule films to mechanical deformation [268], polymer films have been 

claimed to possess generally superior mechanical properties for integration into flexible 

substrates. As polymers are already prevalent in flexible material manufacturing in non-

electronic applications, polymer semiconductors could be more readily incorporated into the 

current manufacturing processes. In particular, the rheological properties of polymers containing 

solvents can be controlled by synthetically adjusting the molecular weight of the polymer. 

The development of high mobility polymers have been essential for organic photovoltaics 

research. The Frenkel excitons [269] in organic solar cells only dissociate at the interface of 

donor and acceptor molecules. Given the excitons travel ~10nm before it decays, an 

interpenetrating network of donor and acceptor materials are required to maximize charge 

separation. The bulk heterojunction [270] realizes such a structure by utilizing the polymer phase 

segregation of the acceptor/donor mixture, as illustrated in Fig. 13-6a. High mobility polymers 

are needed in solar cells for efficient charge carrier extraction. Novel polymers are often 

characterized simultaneously as solar cells and transistors. For solar cells, there is an added 

requirement that the polymers have a suitable bandgap for efficiently absorbing the solar 

spectrum.  
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13.4 Organic Nanowires 

Organic nanowires have emerged as a material, which could exhibit the best of both worlds 

from small molecules and polymers. Some small molecules self-assemble into nanowires with 

typical diameters of 0.2-1m and lengths exceeding 50m (Fig. 13-4) [271]. Organic nanowires 

are created both in solution and from vapor phase. Each nanowires consists of small molecules in 

a crystalline order and the nanowires are easily suspended in solution for solution processing. 

Delicate changes to the constituent small molecule’s optoelectronic property, such as the 

bandgap by synthetic chemistry can be used to manipulate the optoelectronic properties of the 

resulting nanowire. Driven by  stacking, the small molecules assemble anisotropically into 

nanowires. The  orbital overlap is the greatest along the nanowire growth direction leading to 

favored charge carrier transport along the nanowire growth direction. Mobility in 

hexathiapentacene nanowire (Fig. 13-4b) is 0.27cm2/Vs, which is six times higher than its thin 

film form [271]. By functionalizing the small molecule, its self-assembly behavior, in particular 

the resulting nanowire diameter can be controlled. Hexabenzocoronene has been functionalized 

with hydrophobic groups on one side and hydrophilic groups on the other. In a non-aqueous 

solvent, the molecules assemble chirally into a tube to place the hydrophobic part on the outside 

and the hydrophilic part on the inside of the tube. Well-controlled assembly creates Ø20nm 

nanotubes with aspect ratio >1000 (Fig. 13-5) [52]. 

In polymer solar cells (Fig. 13-6a), the charge carriers created at the donor/acceptor interface 

must go through a percolation path through the random network of polymer domains to reach the 

electrodes. The carrier extraction can be performed more efficiently if the donor and acceptor 

domains formed well-ordered structures, which provide direct paths to the electrodes, as shown 

schematically in Fig. 13-6b. Hence, a vertically aligned array of high mobility organic 

nanowires, which are backfilled with a complimentary material, would dramatically improve the 

carrier extraction efficiency. 
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Fig. 13-4 Examples of organic nanowires.  
a) Fig. 12a, Briseno et al. [271]. Copper phthalocyanine nanowires grown by physical vapor 

transport. Nanowires of different diameters are obtained by varying the carrier gas flow 

during synthesis. b) Fig. 4b, Briseno et al. [271]. TEM image of hexathiapentacene organic 

nanowires grown from solution. Inset: molecular diagram of hexathiapentacene.  

 

Fig. 13-5 Helically assembled molecular nanotube.  
a) Fig 2a, Jin et al. [52]. Schematic of helically assembled nanotube of organic small 

molecules. b) Fig. 6b, Jin et al. [52]. TEM image of helically assembled nanotube.  
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Fig. 13-6 Schematic of organic solar cell architecture.  
a) Commonly employed bulk heterojunction structure, in which domains of the acceptor 

material exists within a matrix of the donor material due to polymer phase segregation. The 

charge carriers created at the donor/acceptor interface go through a percolation path to the 

charge collectors. b) Proposed structure, in which an array of vertically aligned nanowires of 

the donor material is backfilled with the acceptor material. The charge carriers have a direct 

path to the charge collectors. 
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14 DPP-TPA organic nanowire 

We found that diketopyrrolopyrrole-triphenylamine (DPP-TPA, see Fig. 14-1a) to self-

assemble into nanowires. As DPP-TPA has a well matched bandgap to the solar spectrum [53], 

DPP-TPA nanowires would be a good candidate for incorporation into solar cells. In hindsight, 

DPP-TPA was a good candidate for obtaining high carrier mobility, as the recent high mobility 

polymers contain the DPP core [272,273]. 

The experiments in this section were carried out, when I was a jointly funded graduate student 

between the Fréchet group and Zettl group. The organic molecules are synthesized by Olivia 

Lee, a graduate student in the Fréchet group. Jill Millstone, a post-doctoral researcher in the 

Fréchet group, assisted me with the synthesis of nanowires. The electrical characterization was 

carried out with Claudia Piliego, a post-doctoral researcher in the Fréchet group. 

 
 

  

 
Fig. 14-1 Organic molecules for nanowire formation.  
Molecules synthesized by Olivia Lee. All three molecules are composed of the central core 

diketopyrrolopyrrole (DPP) and end-groups a) triphenylamine (TPA), b) benzo[1,2-b;4,5-

b’]dithiophene (BDT) and c) pyrene. The molecules have bandgaps suitable for efficient 

absorption of the solar spectrum [53]. 

a) b) c)

DPP-TPA DPP-BDT DPP-BDT
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14.1 Nanowire formation 

DPP-TPA nanowires are formed by dissolving the DPP-TPA in a good solvent (chloroform) 

and mixing the solution with a poor solvent (ethanol). Quantitatively, 3 drops of 5mg/mol of 

DPP-TPA in chloroform are added into 5mL of ethanol, while stirring. After 20 minutes, large 

“cotton-like” aggregates appear in solution. As shown in the SEM image (Fig. 14-2a), the 

aggregates are made of nanowires. The longest nanowires are >100m long and Ø~1.8-0.11m 

(see Fig. 14-2b). 

As exciton diffusion lengths are ~10nm, it is desirable to obtain nanowires with narrower 

diameters. If the concentration of the DPP-TPA solution is reduced, thinner nanowire could 

emerge since there are less materials near the nucleation centers. However, a nanowire growth 

attempt with 0.5mg/mL of DPP-TPA in chloroform yields particles instead of nanowires (see 

Fig. 14-3a). A closer look at the particles (Fig. 14-3b) shows a row of them starting to join into a 

wire. The nanowire formation process could be complicated. If the DPP-TPA first forms 

particles that subsequently join into wires, the lower limit on the minimum nanowire diameter is 

set by the size of the particle. While we have not found any compelling evidence beyond Fig. 

14-3, the nanowire formation mechanism could be investigated further by dynamic light 

scattering measurement during nanowire formation. Alternatively, organic nanowires could be 

grown by vapor transport (see section 4.1.1) but DPP-TPA appears to decompose under the heat 

before it could sublime. 

Nanowire formation with other molecules based on DPP are explored [53] (see Fig. 14-1). 

DPP with benzo[1,2-b;4,5-b’]dithiophene (DPP-BDT) and  DPP with pyrene (DPP-Py) are used 

for nanowire formation with the same conditions as DPP-TPA. However, DPP-BDT and DPP-Py 

yielded fibrous aggregates that are mostly amorphous (see Fig. 14-4a, Fig. 14-5a). The 

solubilities of DPP-BDT and DPP-Py in ethanol are different from DPP-TPA and excess 

material precipitates as amorphous aggregates under the same condition. When the solution 

concentration is reduced from 5mg/mL to 0.5mg/mL, DPP-BDT yields nanowires (Fig. 14-4b) 

and DPP-Py yields dark rods of ~5m (Fig. 14-5b). The short aspect ratios of DPP-Py is 

surprising as the sterics of DPP-Py would make it more susceptible to one dimensional stacking 

than DPP-TPA. The pyrene components in DPP-Py has been shown to  stack in DPP-Py 

crystallography [53]. In contrast, the TPA components in DPP-TPA are believed to hinder  

stacking with its additional rotational degree of freedom. 
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Fig. 14-2 DPP-TPA nanowires.  
SEM image of DPP-TPA nanowires (from 5mg/mL DPP-TPA in chloroform) a) Bundles of 

nanowires. b) Magnified image of a nanowire. 
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Fig. 14-3 DPP-TPA nanoparticles.  
SEM image of DPP-TPA nanoparticles (from 0.5mg/mL DPP-TPA in chloroform) a) 

Collection of nanoparticles. b) Magnified image of a line of nanoparticles. 
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Fig. 14-4 DPP-BDT nanowires.  
SEM image of DPP-BDT nanowire from a) 5mg/mL and b) 0.5mg/mL solution in 

chloroform.  
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Fig. 14-5 DPP-Py nanowires.  
SEM image of DPP-Py nanowire formation from a) 5mg/mL and b) 0.5mg/mL solution in 

chloroform.  
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14.2 Nanowire FET 

Charge carrier mobility in DPP-TPA nanowires are measured in a FET configuration (see 

Chapter 12). DPP-TPA nanowires are deposited by spin-coating onto a Si/SiO2 substrate with 

300nm of SiO2 and gold electrodes fabricated by photolithography. The substrate is treated with 

UV-ozone prior to nanowire deposition to aid the adhesion of the nanowires on the chip. The 

silicon is doped to serve as the gate electrode and the SiO2 functions as a gate dielectric. The 

gold electrodes serve as source and drain contacts that make bottom contact to the nanowire. Fig. 

14-6a shows a nanowire FET, with the lightly shaded part corresponding to the gold electrodes. 

On the left, a piece of nanowire bridges across the electrodes, bends back and bridges across it 

again. On the right, another nanowire lays vertically but closer inspection reveals that it does not 

bridge across the source drain electrodes. 

The device shown in Fig. 14-6a is prepared in a glovebox and rapidly transferred to a vacuum 

probe station and measured at P<10-5torr to minimize air exposure. Such precautions are 

necessary, since most organic semiconductors suffer from degradation in air within 5-10min. 

While in vacuum, the device is characterized with an Agilent 4155C semiconductor analyzer. 

The output curves in Fig. 14-7 shows the conductivity across the source-drain electrodes 

increases with the application of a negative gate voltage. With a positive gate voltage VG=10V, 

ID is negligible. Hence DPP-TPA nanowires exhibit p-type semiconducting behavior. 

Fig. 14-8 shows the transfer curve, measured while keeping the source-drain voltage in the 

saturation regime VSD=80V, and sweeping the gate voltage for VG=10 to -80V. The inset shows 

the drain current at each gate voltage. As ID~VG
2 (Eq. 12-4) in the saturation regime, √ID(VG) is 

plotted in the main panel with the black line corresponding to a linear fit. √ID does not increase 

until VG>VT=-13V due to some impurities at the interface, which unintentionally dopes the 

material. To calculate mobility, C=13x10-9F and L=10m are extracted from the substrate 

geometry. A closer look at the nanowire after electrical characterization (Fig. 14-6b,c) shows the 

two portions bridging the source and drain have widths 667nm and 485nm, hence 

W=0.667+0.485=1.152m. Using Eq. 12-5, the hole mobility is h =7.2x10-3cm2/Vs. For the thin 

film of DPP-TPA cast from solution, the hole mobility measured by Claudia Piliego is 

h=6.5x10-3cm2/Vs. The DPP-TPA nanowire does not have a significantly higher mobility than 

its thin film form. The thin film mobility is reached after a series of device parameter 

optimization (e.g. annealing conditions). It is possible that the mobility in nanowire devices will 

increase significantly with optimized device fabrication. 

Another point to be improved is the electrical contact to the sample. The increase at VG~VT 

should be sharper in the ideal case. The curvature indicates the presence of energy barriers at the 

source and drain contacts. Contact resistance is likely a significant problem, since most of the 

devices that appear to have nanowires across them did not show any electrical response. The 

contact resistance would be improved by selecting a metal of appropriate work function and 

evaporating contacts on top of the nanowire instead of bottom contacts. However, DPP-TPA 

nanowires are unsuitable for patterning contacts with EBL (see section 9.1), as the solutions for 

chemical processing react with it and electron beams render the material insulating. We propose 

placing a shadow mask on top of the nanowire with good control over the placement location and 

evaporating contacts through the shadow mask. 
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Fig. 14-6 DPP-TPA nanowire FET.  
SEM image of DPP-TPA nanowire FET after measurement. a) View of whole nanowire FET 

device. The nanowire on the right half of the image does not bridge the contacts b, c) 

Magnified image of the two locations where the nanowire bridges the contacts. 
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Fig. 14-7 Output curves of DPP-TPA nanowire FET.  

Series of I(V) curves across the source-drain contacts for VG=10 to -60V. 
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Fig. 14-8 Transfer curve of DPP-TPA nanowire FET.  
Inset: drain current for VG=10 to -80V for fixed VSD=80V. Main panel: square root of the 

drain current vs VG. Line is a fit to extract mobility (Eq. 12-5). 
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15 Rubrene crystals for molecular interface studies 

In organic photovoltaics, the interface between the acceptor and donor molecules is essential 

for charge separation. In particular, C60 has been identified as an outstanding acceptor molecule, 

capable of making charge separation much more efficient compared to other acceptors. Central 

to understanding the photophysics and device physics of organic solar cells was the “two-layer” 

solar cell by Tang [274], composed of a layer of acceptor molecules evaporated on top of a thin 

film of donor molecules. This simple, well-defined structure was a model system for 

fundamental experiments [274]. I propose to use rubrene as the donor material in a bilayer solar 

cell to serve as a similar “clean” model system. Compared to the PcCu (Fig. 13-1,”PcCu”) thin 

films used by Tang, the charge transport and exciton diffusion in a single crystal of rubrene is not 

masked by disorder. Hence, the exciton dynamics and charge separation at the interface could be 

probed more extensively through the photoconductivity of a rubrene crystal based solar cell. For 

rubrene, charge transport is extensively characterized and the exciton diffusion has been well 

studied [275]. 

Although C60 is often used as an acceptor in solar cells for its efficient charge separation [276], 

it does not absorb strongly for visible light [277]. The power conversion efficiency will 

significantly improve if we find an acceptor molecule, which strongly absorbs in visible light and 

enables charge separation as effectively as C60. Rubrene crystals could provide a platform to 

characterize the exciton and charge carrier dynamics at the interface with novel acceptors 

developed by the Fréchet group [278]. The fundamental understanding could provide hints for 

the design of subsequent iterations of molecules.  

To assess the viability of my proposal, the photoconductivity of C60/rubrene is characterized. 

Single crystal rubrene (see section 4.3) is contacted with graphite paint and 10nm of C60 is 

evaporated on the region between the contacts. The sample is rapidly transferred from the 

evaporator to a glovebox to minimize exposure to air. The sample is characterized by a probe 

station built inside the glovebox. I(V) curves are measured in the dark and under illumination 

with a halogen light bulb. As shown in Fig. 15-1, the rubrene crystal shows some enhancement 

in conductivity with illumination. The sample photoresponse is negligible at zero bias and shows 

a weak photoresponse at high bias. The I(V) curves are repeatable and no hysteresis is observed 

for change in voltage. Fig. 15-2 shows the conductivity of the sample increases after C60 

deposition. Since the dark conductivity increases, it is likely the rubrene is annealed during the 

unintentional heating effect of the evaporation process. The conductivity enhancement from light 

is still weak for the C60/rubrene sample and it is difficult to distinguish from the rubrene 

photoconductivity. It is possible that the bulk conductivity in rubrene is too high and dominates 

over the conduction by carriers created at the interface. Since rubrene crystals used are ~10m, 

thinner crystals can be obtained by tuning the crystal synthesis parameters.  
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Although C60 is compatible with vapor deposition, most molecules for solar cells are not. They 

are primarily designed for deposition from solution, which is the most attractive route to low cost 

flexible electronics. The rubrene crystal should be compatible with the deposition of novel 

acceptor molecules as well. However, the solvents for dissolving the acceptor molecule usually 

dissolve the rubrene as well. Phenyl-C61-butyric acid methyl ester (PCBM), is a functionalized 

form of C60 to make it easily soluble in organic solvents. When PCBM in chlorobenzene is spun 

on rubrene at 2000rpm for 40s, the rubrene completely dissolves in the chlorobenzene. To 

minimize the exposure to chlorobenzene, the PCBM solution is deposited on the rubrene after it 

is fully accelerated to 2000rpm. However, the deposition does not yield a PCBM film of 

substantial thickness. 

 

 

 
Fig. 15-1 I(V) curves of rubrene crystal.  
Before C60 deposition. Measurement with no light (solid line) and under halogen light bulb 

illumination (dashed line) are shown. 
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Fig. 15-2 I(V) curves of rubrene crystal+C60.  
Measurement with no light (black, solid line), under halogen light bulb illumination (dashed 

line) and rubrene before C60 deposition (thin, red line) are shown. 



277 

 

Conclusion 
Transition metal chalcogenides are the most promising system for the study of collective 

ground states at the 2D and 1D limit. In particular, the mechanical exfoliation is effective for 

quasi-1D MX3 materials and calls for further exploration. The TMC possess collective ground 

states in the bulk and the effect of low dimensionality can be tracked as the thickness is gradually 

reduced to the atomic low dimensional limit. Currently, it appears that both superconductivity 

(see Chapter 5) and CDW (see section 6.1) are suppressed at the atomic 2D and 1D limit. This is 

counter-intuitive for CDW since it is driven by low-dimensional features of a system. It is still 

unclear if this is a general trend across materials. One counter-example is the enhancement of Tc 

from 8K in bulk to 100K in monolayer FeSe on SrTiO3. There is still no conclusive evidence 

whether this effect is due to the interaction with the substrate or not. The report of CDW 

enhancement in monolayer NbSe2 [48] is in direct conflict with our observations [49]. In our 

study, the transition temperature remains largely unchanged at the monolayer limit for NbSe2. 

For NbSe3, the transition temperature also did not change significantly change with confinement 

but the CDW state was greatly suppressed [96]. The CDW state seems to completely disappear 

in NbSe3 nanoribbons thinner than 25nm, before reaching the atomic 1D limit. This observation 

was made with the use of narrowband noise, enabled by the sliding CDW. For materials with 

sliding CDW, this will continue to be a useful tool for characterizing the CDW order parameter. 

When using narrowband noise measurements at the nanoscale, it must be controlled against 

increasing dominance of surface effects with reduction in sample size. 

While mechanical exfoliation would provide much insight at the ~10nm scale, it is unclear 

whether the single chain limit could be reached with this method. 2D monolayers are identified 

because most of them have lateral dimensions of ~10m. In contrast, 1D single chains would 

only be a few atoms wide, which is too narrow to see. It is likely that the analogy with 2D 

materials break down at that point and more advanced techniques to locate and contact the single 

chains are needed. Alternatively, the growth of MX3 inside BNNT seems more promising (see 

section 6.3). The growth is limited to only a few parallel chains due to the size of the BNNT 

inner space. The BNNT acts as both a template and protective sheath for the MX3. The drawback 

of the MX3/BNNT is that it would be difficult to compare with the electronic properties of the 

bulk. The maximum number of chains is set by the nanotube inner diameter and often 

confinement effects cause materials to adopt different structures than in an open environment. 

Hence the MX3/BNNT approach resembles the method of creating and studying a unique 1D 

nanomaterial, seen with carbon nanomaterials. 

The electromechanical measurements of carbon nanomaterials were technically more 

challenging than transport measurements but still seem achievable with the use of appropriate 

techniques from micromachining. The carbon nanotube resonator (see Chapter 10) and graphene 

straining platform (see Chapter 11) are promising because both field emission and strain fields 

are enhanced as we scale down the sample size. In this respect, it is unclear how well the 

contactless measurement setup (see Chapter 7) scales down to the nanoscale. While such an 

analog to the “cm” scale is much desired at the nanoscale, simulations indicate that higher 

frequencies are required when the setup is scaled down. It is possible that the actual analog of 

contactless measurements are terahertz measurements [279].   

The self-assembly of organic molecules into nanowires is attractive for its simple synthesis 

method. It can be obtained in solution at room temperature. However, extensive optimization is 

needed to yield nanowires of narrow diameter and high mobility. While organic molecules offer 
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tunable control of self-assembly properties, the sensitivity of self-assembly dynamics to 

functional groups complicates the search for the optimum molecular structure. In addition, it 

seems difficult to achieve delocalized transport with only  orbital overlap. Even organic 

semiconductors with the highest charge carrier mobility are at the border between delocalized 

and hopping transport. However, this may be complimented by introducing dopants (e.g. alkali 

metals, iodine) to increase the carrier density (see section 3.2.3).    

Finally, experimental work with three classes of materials (i.e. TMC, carbon nanomaterials 

and organic semiconductors) highlighted the importance of chemical stability. When looking at 

the historical evolution of successful low-dimensional materials, it is easy to overlook the 

importance of chemical stability. However, initial efforts to handle monolayer TMC similarly to 

graphene was hindered by degradation in air for many materials. For organic molecules, the rich 

variation in functional groups would offer a great library of low dimensional nanostructures but 

their sensitivity to temperature, chemicals and radiation render them incompatible with many of 

the nanofabrication techniques developed for carbon nanomaterials. It is tempting to regard 

carbon nanomaterials as an anomalously successful case due to their robustness against 

temperature, chemicals and mechanical forces. However, innovative techniques to protect other 

materials have expanded the library of 2D materials and similar developments are anticipated for 

1D materials.   
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