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ABSTRACT

The world we live in is nonlinear. Fortunately, there are several mathematical
methods to linearize a system. However, a multitude of nonlinear systems exists that
cannot be fully linearized; such as economical, ecological, and biological systems.
Linear or linearized systems are desired due to their predictable characteristics. On
the other hand, nonlinear systems are unpredictable and considered stochastic. Is
it possible to predict the unpredictable? Yes it is possible, to a degree. However,
traditional or integer based mathematics do not suffice. Utilizing fractional calculus
(FC) as a mathematical tool, one is able to describe nonlinearity in a system; with
the assumption that there is memory or fractal properties embedded in the system.
The Hurst exponent (H), also known as the Hurst parameter, is used to determine
the intensity of memory in a system. The range of the Hurst is H ∈ (0, 1). Memory,
also referred to as long range dependence (LRD), is the inverse power law decay of
statistical correlation over lag time; memory is present when 0.5 < H < 1. Herein,
the Hurst exponent is used to identify LRD in thermal pixels; classify between
normal heart rate variability (HRV) and arrhythmic HRV; and detect mental stress
using HRV from human subjects.
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Chapter 1

INTRODUCTION

1.1 Motivation

The notion of integers, meaning whole, is ingrained in our everyday lives.
Examples of integer order can be as simple as currency or as complex as a computer.
One could view currency as being fractional since a $1 bill can be broken into
change, however, a penny cannot be divide into smaller increments. As I type my
thesis on my computer, each key pressed sends a voltage to the central processing
unit (CPU) that is read in binary, which is integer order, to determine the output
of each key. One could argue that calculators can compute fractional numbers by
computing the square root of an irrational or prime number. While that may be
true to a degree, calculators use a series of linear approximations, which is based on
integer, to determine those fractional numbers. This bring us to the fundamental
topic of mathematics, specifically integer order calculus; invented independently by
Isaac Newton and Gottfried Wilhelm Leibniz. Since the 17th century, integer order
calculus has provided a framework to analyze the real world using approximations.
However, approximations may lead to information loss within a signal, system, etc.

1.1.1 Fractional Calculus

A french mathematician by the name of Guillaume de l’Hôpital questioned
what if the order of the derivative was non-integer. In September 30th, 1695
l’Hôpital wrote a letter to Leibniz asking him about the nth-derivative of a lin-
ear function f(x) = x, where the derivative can be written as Dnx

Dxn
[1]. Specifically,

l’Hôpital asked what would the result be if n = 1
2
? Leibniz replied [1], “An apparent

paradox, from which one day useful consequences will be drawn.” As a result of that
conversation, fractional calculus (FC) was born.

The world is stochastic, nonlinear, and complex which is hard to model [2].
Conventional methods to model randomness, such as Brownian motion, do not al-
ways suffice due to hidden fractal properties [3]. Typically masqueraded by non-
linearity, fractals are often coupled with useful statistical information. In the mid
1900s, Paul Lev́y utilized the Riemann-Liouville fractional integral [4],

aD
−α
t [f(t)] =

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, (1.1)
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to informally define fractional Brownian motion (fBm). After some revisions, a
formalized fBm is defined as [2],

BH(t) = BH(0) +
1

Γ(α)

{∫ 0

−∞

d(s)

(t− s)1−α − (−s)1−α
+

∫ t

0

d(s)

(t− s)1−α

}
, (1.2)

where

α = H +
1

2
. (1.3)

In Eq. 1.2, increments may or may not be independent of each other. The scaling
exponent (H), captures the statistical complexity of the fractal process or system.
In Chapter 3 the scaling exponent, also referred to as the Hurst exponent or Hurst
parameter, is revisited and explained in a detail.

1.2 Contributions

This section highlights three major contributions made: Hurst map, slid-
ing window optimization, and classification index. In all three contributions, the
Hurst estimator plays a central role. In the Hurst map, the Hurst exponent (H)
is estimated using an array of thermal infrared (TIR) data from each individual
pixel for a whole TIR image to detect long range dependence (LRD) and display its
morphology. Although the sliding window technique itself is not necessarily novel,
the optimization of the sliding window using a surface plot to quantitatively deter-
mine an optimal window and slide combination is presented here. Lastly, utilizing
the Hurst exponent as a classification index to determine whether a person has a
cardiac arrhythmia or not.

1.2.1 Hurst Map

There are 307,200 pixels in an image from a 640× 480 pixel resolution. Due
to computational limits, only every 20 pixels were analyzed. A total of 825 pixels
were selected to be analyzed. The TIR data with respect to time for each selected
pixel is then analyzed using a Hurst estimator [5], in this case, the diffusion entropy.
The estimated Hurst exponent for each pixel is then placed into the same location
as the pixel element used to estimate that respective Hurst exponent. A generalized
illustration of the Hurst map with respect to pixels location is shown in Fig. 1.1.

Finally, a surface plot, or Hurst map, is created from these Hurst exponents.
The Hurst map is a novel technique in displaying LRD or statistical persistency for
individual pixels as well as the location of those persistencies. If there are statistical
persistency bias present, then there is potential in exploiting those statistical char-
acteristics for cleaning up noise in TIR images. This technique, Hurst mapping, is
utilized in Chapter 4 to determine if LRD is present and their location relative to
the pixel matrix.
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Figure 1.1: Generalized illustration of the Hurst map.

1.2.2 Sliding Window Optimization

A novel technique to optimize a sliding window is presented. The concept of
a sliding window was inspired by previous research [4] and will be explained first.
Subsequently, the algorithmic framework of the sliding window is given in detail.
Lastly, a generalized procedure of optimizing a sliding window is described in detail.
This sliding window optimization procedure was utilized in Chapters 5 and 6 for
heart rate variability (HRV) analysis, but can be applied to any type of data for
truncation purposes.

1.2.2.1 Sliding Window Concept

The sliding window consists of one tangible component called the window
and moves dynamically by increments of the slide length. The window component
is a truncated segment of data from which the Hurst exponent is estimated from.
The slide is the movement of the window, with respect to time. Both window length
(wt) and slide length (st) are units of time in minutes.

In the initial step, the window is constructed with the boundary starting at
the first data point and extending to the length of wt of the data. Once the window
is constructed, the data inside the window is truncated. The truncated data is used
to estimate the first Hurst exponent. See Fig. 1.2, part A, for illustration of this
initial step.
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In the following step, an iterative truncation, the defined window then shifts
by the length indicated by st and the new truncated segment of HRV data of length
wt is used to compute the next Hurst exponent; see Fig. 1.2, part B, for illustration
of this first slide.

This iterative truncation is then repeated until the constructed window at-
tempts to truncate a portion of the HRV data in which wt is greater in length. The
remaining HRV data less than the window length will be neglected. A generalized
illustration of the sliding window is shown in Fig. 1.2.

In this thesis the sliding window is only utilized relative to time. However,
that does not mean the sliding window is limited to only time. It is paramount to
understand that this sliding window is extremely modular. The sliding window can
be modified to work relative to data points instead of time. Herein, time is the unit
of choice for potential applicational purposes in the medical field. Note that there
is an extreme difference between 60 data points as opposed to an arbituary amount
of data points in a 60 second time span.

Figure 1.2: Generalized illustration of the sliding window.
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1.2.2.2 Sliding Window Algorithmic Framework

Let i represent the number of iterations such that {iI : I ∈ N}. The number
of iterations I is defined as,

I =

⌈
N − wt
st

⌉
, (1.4)

where N is total length of sample in minutes. Now consider the following initial
conditions, when i = 1 for the window:

wstart(1) = 0, (1.5)

wend(1) = wt. (1.6)

After the initial condition, when i > 1, consider the following equations:

wstart(i) = wstart(i− 1) + st, (1.7)

wend(i) = wend(i− 1) + st. (1.8)

As previously mentioned, window length must always be greater than the
slide length; st ≤ wt. If this condition is not met, it will result in neglected data per
iteration when calculating the Hurst exponent. Explicitly, the difference between
st and wt is the amount of HRV data neglected per iteration. The resulting Hurst
sliding window data series is defined as,

H(i) = H[x(t)]wend
wstart

, (1.9)

where H[ ] is a function of the Hurst estimator. A variety of Hurst estimators are
described in depth in Chapter 3.

1.2.2.3 Sliding Window Optimization Protocol

The sliding window is a practical algorithmic framework in which it can detect
changes in a signal or system via data truncation or partition. At every slide, the
window outputs a sliding window variable (SWV ) which can be implemented in
real time for real world applications such a periodic health monitoring.

However, the parameters of the sliding window, wt and st, would vary from
application to application. Herein, a novel technique to optimize a sliding window is
presented. The sliding window optimization procedure is described in a generalize
manner such that it remains modular and can be modified based on a variety of
research requirements or parameters. This optimization technique is utilized in
Chapter 5 and 6.
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A generalized protocol to help optimize the sliding window algorithmic frame-
work is explained as follows:

1. For all wt of interest and st such that st ≤ wt, calculate the SWV of interest,
e.g. Hurst exponent.

� Each sample in the dataset should contain a cell array.

� Cell array should be window by slide length dimension.

� Each cell in the cell array should contain a vector containing SWV s that
were calculated based on wt and st.

2. Calculate optimizing parameter (OP ) using SWV vector in each cell. A po-
tential OP can be a statistical variable such as mean, variance, or etc.

� Each sample in the dataset should now contain a matrix with the same
dimensions as the cell array in the first step.

� Each matrix element should now be an OP ; e.g. the mean, variance, or
RMSE of the SWV vector.

3. Using all samples, average the OP with respect to wt and st.

� There should only be one matrix containing.

� Each matrix element is an averaged OP with respect to wt and st.

4. Graph 3D plot with respect to wt, st, and averaged OP .

� The z-axis should always be the averaged OP in order to clearly view
surface morphology.

� Review surface to determine if an optimal combination of wt and st clearly
exists. For example, if the z-axis is variance, the optimal combination of
wt and st should be the lowest region on the 3D surface plot.

� One can choose to stop at this step and decide on an optimal combination
of wt and st.

5. Trace over 3D plot with maximum or minimum value of averaged OP with
respect to each wt.

� Depending on what the averaged OP is, such as mean, variance, or
RMSE, determines whether a maximum or minimum value trace is war-
ranted. For example, if the OP is variance, then one would wish to
perform a minimum trace to obtain lowest variability combinatory pairs
of wt and st.
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6. Heuristically pick optimal combination of wt and st on dataset.

� Use the following heuristic guideline:

(a) Review from starting with smallest wt available in trace line.

(b) If OP trace line converges to optimal OP value, then select smallest
wt closest to that optimal OP value.

(c) Always select smallest st, not smallest wt; to maximize sliding win-
dow output.

1.2.3 Classification Index

Previous research [4,6,7] have utilized the Hurst exponent as a classification
index as well. In Chapter 5, six Hurst estimators were evaluated for accuracy in
differentiating between normal sinus rhythm and arrhythmia. All Hurst estimators
computed a higher Hurst exponent for normal sinus rhythm samples and lower Hurst
exponent for arrhythmia. This is due to the innate presence of LRD in physiological
signals. An arrhythmia, or irregular heartbeat, compromises the presence of LRD
since an arrhythmia introduces stochastic characteristics to the HRV. Ultimately, the
diffusion entropy method proved to be most accurate, see Chapter 5. Thus making
the Hurst exponent a relatively viable classification index for cardiac arrhythmia.

1.3 Thesis Outline

This thesis is comprised of seven chapters. Herein, Chapter 1, an introduction
to the thesis is given. Comprehensive background information regarding HRV and
TIR imaging is given in Chapter 2. In Chapter 3, the mathematical concepts are
explained and in particular the notion of LRD is highlighted. In Chapter 4, the
presence of LRD in TIR imaging is established using the Hurst exponent to analyze
individual temporal pixel data. In Chapter 5, LRD characterization is utilized to
differentiate between normal HRV and arrhythmic HRV via Hurst exponent. In
Chapter 6, the Hurst exponent is used to determine mental stress from drivers.
Note that the Hurst exponent is utilized as a classification index for arrhythmia and
stress in Chapter 5 and 6, respectively. Finally, Chapter 7 summarizes key research
findings and discusses future research.

In addition, there is a tri-sectional appendix located at the end of the thesis.
Detail explanations of experimental protocols utilized are given in Appendix A.
Appendix B contains all sample data from Chapter 4, 5, and 6. Finally, all in-
house code written by my intern (Monica Barbadillo) and myself (Marwin Ko) was
compiled into Appendix C.
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Chapter 2

BACKGROUND

2.1 Thermal Infrared Imaging

In the 1800s, a scientist by the name of Sir William Herschel hypothesized
that different colors refracted from sunlight may have varying temperatures [8]. To
test his hypothesis, Herschel directed sunlight via glass prism to construct a color
spectrum where each color was measured in temperature. The empirical results
showed that the temperatures of the colors were higher than that of the control. An
increasing temperature gradient existed from violet to red. Curiosity struck Herschel
and lead to him questioning beyond the red portion of the color spectrum. After
empirical review, Herschel discovered that the region beyond the red portion was the
hottest; he had discovered an invisible form of light called infrared or radiation [8,9].
Similar to other colors of the spectrum, infrared is also reflected, refracted, and
absorbed.

In the 1950s, a company named AGA began development of infrared camera
technology. By the 1960s, AGA sold commericalized infrared cameras. Today,
infrared cameras are utilized for, but not limited to, military [10], biomedical [11],
and industrial applications [12]. Specific applications include night vision, non-
invasive body tissue analysis, and detecting hot spots in wild fires.

Consider the human eye, it utilizes visible light energy that is bounced off
from objects to visualize the world. The reflected light energy is then focused
through the cornea then arrives at the retina. The retina is responsible for receiving
light energy, processing it, and then sending the image to the brain. An infrared
camera is similar to the human eye in regards to processing the image.

Infrared cameras can be divided into two, passive and active [13]. A detailed
explaination of passive infrared cameras will be given since a passive thermal infrared
(TIR) camera was utilized in experiments in Chapter 4. A passive TIR camera
detects emitted heat energy radiation from objects and does not require light as
opposed to a human eye [9]. The emitted radiation is then focused with the lense to
the infrared sensor array, also known as a focal plane array (FPA) [9, 14]; the TIR
camera counter part of the eye’s retina. The FPA coverts the energy into an image.
As for active TIR cameras, near IR-radiation is emitted and utilizes the reflection of
the self-emitted IR-radiation to process images; this is a more intense TIR imaging
technique [13].
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2.2 Heart Rate Variability

The ultimate biological source of energy is adenosine triphosphate (ATP).
Vital biological functions such as metabolism, skeletal muscle movement, cardiac
muscle contraction, and deoxyribonucleic acid (DNA) synthesis all rely on the use
or consumption of ATP. Without ATP, we would not be able to metabolize food,
physically move, circulate blood throughout the body, and conduct cellular divi-
sion. The body produces over 90% of its ATP using proton gradients at a cellular
level [15]. This proton gradient drives an oxidation and reduction reaction. The
oxidation reaction requires carbon fuel and oxygen which are obtained from eating
and breathing, respectively. While the reduction reaction only requires a proton,
hydrogen phosphate group, and adenosine diphosphate (ADP) to make ATP [15].

It is imperative to note that the oxygen molecule is used up and becomes
carbon dioxide. As a consequence, the carbon dioxide must be expelled and the
oxygen must be replaced. The circulatory system is responsible for supplying oxygen
throughout the body. The driving force of the circulatory system is a double pump
organ known as the heart [16].

2.2.1 Heart Anatomy

The heart consists of four chambers [16]: left and right atrium, left and
right ventricle; and four valves: tricuspid valve (TV), pulmonary valve (PV), mitral
valve (MV), and aortic valve (AV). Collectively, the TV and MV are known as the
atrioventricular valve (AVV). In addition, the pairing of PV and AV are known as
the semilunar valves (SLV).

The right atrium and ventricle, connected by the TV, assist in pumping
deoxygenated blood through the PV to the lungs where the blood gets reoxygenated.
The left atrium and ventricle, connected via MV, pump the newly oxygenated blood
through the AV, the largest artery in the body, to the rest of the body via smaller
arteries [16]. See Fig. 2.1 for a generalized illustration of the heart anatomy and
blood circulation.

2.2.2 Heart Physiology

In this section, the heart is broken down into two subsections. The sub-
section, Cardiac Pump Cycle, discusses the mechanical steps of pumping of blood
using the heart. The following subsection, Cardiac Electrical Cycle, discusses the
electrical conduction pathway of the heart. Ultimately, the electrical cycle or con-
duction dictates the cardiac output. Therefore, comprehension of the mechanical
and electrical elements of the heart is paramount to understanding how electrocar-
diogram (ECG) readings are directly related to general heart health and heart rate
variability (HRV).
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2.2.2.1 Cardiac Pump Cycle

One heartbeat can be broken down into 4 phases: 2 diastole and 2 systole [16].
In this subsection when ventricle or ventricular are mentioned, both left and right
ventricle are being discussed. The first phase consists of filling the ventricle with
blood. In the second phase, the AVV close and isovolumetric ventricular contrac-
tion occurs. Subsequently the SLV open and then ventricular ejection of the blood
takes place. Finally, both AVV and SLV are closed and isovolumetric ventricular
relaxation transpires [16].

The phases of a cardiac cycle is as follows:

1. Opening of AVV → Ventricular filling

2. Closing of AVV → Isovolumetric ventricular contraction

3. Opening of SLV → Ventricular ejection

4. Closing of SLV → Isovolumetric ventricular relaxation

Figure 2.1: Engineering illustration of the circulatory system.
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2.2.2.2 Cardiac Electrical Cycle

The genesis of any normal heartbeat begins with the electrical signal gener-
ated from the sinoatrial node (SAN) also known as the pacemaker. The pacemaker
is located in the within the wall of the right atrium. Once an signal is generated
from the packemaker, the signal propagates throughout the atrial myocytes in both
left and right atriums. At the cross section of all four chambers the signal arrives at
the atrioventricular node (AVN). The AVN then relays the electrical signal to the
bundle of His which split into the left bundle branch and right bundle branch. This
electrical signal continues to propagate through the left bundle branch and right
bundle branch down to the apex of the heart. Finally, at the apex, the Purkinje
fibers relay the electrical signal to the ventricular myocardium [16].

2.2.3 Electrocardiogram

In the early 1900s, a Dutch physiologist by the name of Willem Einthoven
recorded the first ECG reading using a string galvanometer. Current medical prac-
tices use ECGs as a standard clinical tool to measure electrical activity of a patient’s
heart [16]. There are several artifacts that are examined when reviewing an ECG
recording. These artifacts include the P-wave, Q-wave, R-wave, S-wave, and T-
wave [16,17].

Figure 2.2: ECG morphology of one cardiac cycle.
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2.2.3.1 Morphology & Artifacts

Precedent to the P-wave, the SAN sends out an electrical signal. The P-wave
indicates atrial depolarization or atrial contraction. During the Q-wave, R-wave, and
S-wave ventricular depolarization takes place which results in blood being pumped
to the lungs and body; the grouping of these three waves are typically called the QRS
complex. It is important to note that the R-wave is utilized to calculate the heart
rate in various cardio based machines such as treadmills and ellipticals. Finally,
ventricular relaxation occurs which is signified by the T-wave [16, 17]. Significant
mechanical function and electrical conduction at each ECG artifact are highlighted
in Table 2.1.

Table 2.1: Electrocardiogram Artifacts I
Artifact Mechanical Electrical
P-wave atrial contraction atrial depolarization
Q-wave - depolarization of interventricular septum
R-wave ventricular contraction ventricular depolarization of main mass
S-wave ventricular contraction ventricular depolarization completed
T-wave ventricular relaxation ventricular repolarization

One can extract more information using the segments between existing arti-
facts. The PR segment, QRS complex, QT segment, and RR-interval are used for
cardiac health evaluation in the medical field [16,17].

The duration of the PR segment indicates the conduction time through the
AVN. The conduction time of the AVN must be faster than the frequency at which
the SAN sends a signal in order for the SAN and AVN to continue working in
concert [16, 17]. Or else signal aliasing, so to speak, in the heart would result in
cardiac arrhythmia or death depending on the severity.

The QRS complex marks the initial to complete depolarization of the ven-
tricles which narrates the electrical conduction speed of the ventricles. The QT
segment signifies a time approximation of ventricular depolarization; i.e. the dura-
tion of a heartbeat. The shorter the QT segment, the faster the heart rate and vice
versa. See Table 2.2 for tabulated information.

Table 2.2: Electrocardiogram Artifacts II
Artifact Electrical Conduction

PR segment through the AVN
QRS complex inital ventricular depolarization
QT segment overall ventricular depolarization
RR interval heartbeat to heartbeat
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2.2.3.2 RR-interval

The RR-interval indicates the approximate time in between each heartbeat
[17]. A single RR-interval quantitatively defined as,

RRn = Ri+1 −Ri (2.1)

where n is the RR-interval index and i is the R-wave index. An illustration of a
single RR-interval is shown in Fig. 2.1

The compilation of RR-intervals creates a time series which is indicative of
heart health. This RR-interval time series is the quantitative definition of HRV and
is defined as,

RRint = RR1, RR2, RR3, ...RRN−1 (2.2)

where N is the total number of R-waves. In Chapter 5 and Chapter 6, these RR-
interval time series are referred to as HRV.

Figure 2.3: Generalized illustration of the RR-interval.
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Chapter 3

MATHEMATICAL PRELIMINARIES

3.1 Self-similarity

Objects that contain irregular and fragmented patterns cannot be described
by traditional geometry. Such objects are said to have a fractal geometry and often
referred to as fractals [18]. Many fractal objects contain some degree of self-similarity
[3, 19]. Self-similarity refers to spatial or temporal invariance in distribution under
a suitable change of scale [20]. One can also think of self-similarity as a property
where the whole or global portion has the same shape as one or more local portions.
The broccoli shown in Fig. 3.1 is an example of spatial self-similarity. It shows
how the global portion has a similar shape as its smaller components; it is literally
similar to itself. Note that each smaller component of the broccoli is derived from
the piece to its respective adjacent left side.

Figure 3.1: Example of geometric self-similarity: broccoli.

Self-similarity is not only seen spatially, but also temporally. Similar to
fractals, the Weierstrass function, defined as

∑∞
k=0[a

kcos(2πbkx)], exhibits self-
similarity. In Fig. 3.2, the Weierstrass function is graphed and a portion is magnified
to help illustrate self-similarity and scale invariance.
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Figure 3.2: Example of temporal self-similarity: Weierstrass function.

Furthermore, one can think of a self-similar signal as a fractional Brownian
motion (fBm) [3]. Assuming that the fBm is truly self-similar, local properties are
reflected in global properties. These local and global properties are denoted as the
fractional dimension (D) and Hurst exponent (H), respectively [21,22]. This results
in the celebrated relationship,D = n+ 1−H, where n is number of dimensions for a
self-similar surface [21,22]. In the case for a time series [22], n = 1, which simplifies
to D = 2 − H. However, in other cases where the time series is not self-similar
the fractional dimension and Hurst are independent of each other [21–23]. A formal
definition of fBm is given by [2],

BH(t) = BH(0) +
1

Γ(α)

{∫ 0

−∞

d(s)

(t− s)1−α − (−s)1−α
+

∫ t

0

d(s)

(t− s)1−α

}
, (3.1)

where

α = H +
1

2
. (3.2)

In Eq. 3.1, increments may or may not be independent of each other. The
scaling exponent (H), captures the statistical complexity of the fractal process or
system. The scaling exponent, also referred to as the Hurst exponent or Hurst
parameter.

In this thesis, only temporal self-similarity will be discussed. The notion of
self-similarity is key to understanding the underlying mathematical concept of the
phenomenon known as long range dependence (LRD) [20].
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3.2 Long Range Dependence

In the early to mid 1900s, a hydrologist by name Harold Edwin Hurst devel-
oped the notion of LRD to help determine optimal dam sizing for the Nile river [24].
Eventually the utilization of LRD was not only found in hydrology, but in other
fields of study such as economics [25] and biology [26]. Multiple mathematical defi-
nitions of LRD exist. Two commonly used definitions of LRD are explained in the
proceeding sections where LRD will be defined in terms of autocorrelation function
(ACF) and spectral density in time and frequency domain, respectively [27,28].

3.2.1 Autocorrelation Function

Consider the following self-similar time series, {xt : t ∈ N} with length of T .
Let the ACF, ρ(k), with lag (k) of our time series (xt) to be defined as [27],

ρ(k) =
E[(yt − µ)(yt+k − µ)]

σ2
, (3.3)

where µ, σ2, and E[ ] is the mean, variance, and expected value, respectively. In
the case that,

k=∞∑
k=−∞

ρ(k), (3.4)

diverges, the time series is considered to be LRD. This divergence is illustrated by
an ACF with a power law like decay and heavy tailness. Consequently, the ACF
can be characterized by the following relationship,

ρ(k) ∼ Ck−α, (3.5)

where C > 0, k is ACF lag, and α ∈ (0, 1); note that the symbol ∼ stands for
asymptotically equal. The power law index is given by [27],

α = 2− 2H. (3.6)

Therefore, the ACF behaves like an inverse power law which implies a slower loss of
memory or correlation compared to exponential decay [26]. Ultimately, resulting in
the celebrated relationship between α and Hurst exponent (H),

H = 1− α

2
. (3.7)

where α ∈ (0, 1) and H ∈ (0, 1). With respect to the time domain, one can think
of LRD as a high degree of correlation between distantly separated data points,
measured using high lags of the ACF [27].
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3.2.1.1 Correlation

Simulated fractional Gaussian noise (fGn) with a data length of 4096, σ2 =
0.2, and H ∈ 0.1, 0.5, 0.9 is used to illustrate anti-persistent, Wiener, and persistent
processes or signals. The statistical importance of LRD lies within the ACF. A
signal with LRD in it will have an ACF that decays like an inverse power law and is
characterized by heavy tailedness as shown in Fig. 3.5. In a signal, LRD is present
when H ∈ (0.5, 1). The intensity of LRD will vary based on the Hurst exponent.
In theory, LRD is most intense when H = 1 and decreases in intensity as the Hurst
exponent tends towards 0.5 but not being equal to 0.5. See Table 3.1 for statistical
properties of the Hurst exponent [27].

Table 3.1: Statistical Properties of Hurst Exponent
Hurst Statistical Correlation Long Range Dependence?

0 ≤ H < 0.5 Negatively correlated no
H = 0.5 none/stochastic no

0.5 < H ≥ 1.0 positively correlated yes

3.2.1.2 Anti-persistent Process (0 < H < 0.5)

Hurst exponent under 0.5 is considered be anti-persistent. An anti-persistent
process can be thought of as a process that does not follow any particular trend.
The autocorrelation graph in Figure 3.3 illustrates equally distributed correlation
above and below zero. As the Hurst exponent tends towards zero, the intensity of
anti-persistency increases and vice versa [27,28].

Figure 3.3: Raw data and sample autocorrelation of simulated fGn, H = 0.1
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3.2.1.3 Wiener Process (H = 0.5)

At exactly H = 0.5, the signal is considered a completely random or Wiener
process. The random distribution of correlation as shown in the autocorrelation
graph in Figure 3.4 verifies that this signal is indeed a Wiener process [29].

Figure 3.4: Raw data and sample autocorrelation of simulated fGn, H = 0.5

3.2.1.4 Persistent Process (0.5 < H < 1)

When the Hurst exponent is H ∈ (0.5, 1), it is considered a long range depen-
dent or persistent process. It is crucial to note that the higher the Hurst exponent
is, the higher the intensity of LRD is present in the signal. Conversely, if a Hurst
exponent value is tending toward 0.5 from the persistent side, then persistent char-
acteristics begin to fade and conform to more of a stochastic nature [27,28].

Figure 3.5: Raw data and sample autocorrelation of simulated fGn, H = 0.9
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3.2.2 Spectral Density

Assuming that ACF definition holds true, the LRD can be defined in the
frequency domain by evaluating the spectral density, f(λ), of both variance (σ2)
and ACF, ρ(k), [27, 28]. This is given by the following equation,

f(λ) =
σ2

2π

∞∑
k=−∞

ρ(k)eikλ, (3.8)

where λ and i is frequency and
√
−1, respectively. The following relationship exists

if time series is LRD [27],
f(λ) C|λ|−β, (3.9)

as λ → 0 where C > 0 and some real β ∈ (0, 1). The power law index is given
by β = 2H − 1. Consequently, the relationship between the β exponent and Hurst
exponent (H) is described as such,

H =
1 + β

2
. (3.10)

where β ∈ (0, 1) and H ∈ (0, 1). Herein, LRD manifests as a significant level of
power at frequencies close to zero in the frequency domain [27].

3.3 Hurst Estimators

The Hurst exponent (H), also known as the Hurst parameter, is a quantitative
index that measures the level of LRD present in a self-similar signal; where H ∈
[0, 1]. Statistical properties of LRD are not present when H ∈ [0, 0.5]. In the case
that H ∈ (0.5, 1], some level of intensity of LRD is present [24]. It is important to
note that larger values of the Hurst exponent when H ∈ (0.5, 1] results in a higher
intensity of LRD present in the signal [28,30].

Numerous methods exist to estimate the Hurst exponent which can be used
to characterize LRD [5, 24, 28, 30]. Herein, six Hurst estimators are utilized: aggre-
gated variance method, absolute value method, difference variance method, diffusion
entropy method, Peng’s method, and rescaled range method. The performance of
each method varies with respect to accuracy and robustness [30,31]. This is due to
the difference in mathematical approach that each method is centered upon. For
example, the aggregated variance method is based on a dispersional analysis [32]
while Peng’s method uses fractional Brownian motion [24]. In addition, some meth-
ods offer specific analytical strengths and weaknesses, for example, the difference
variance method is able to detect common non-stationary processes, however, it
also introduces additional fluctuation while estimating the Hurst exponent [24].

All Hurst estimators were used in Chapter 5 to help determine the most
optimal Hurst estimator for differentiating between normal and abnormal heart rate
variability. In Chapter 4 and Chapter 6, only the diffusion entropy method is used
due to it’s ability to work with smaller data sets [33].
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3.3.1 Data Aggregation Technique

A multitude of Hurst estimators utilize data partitioning techniques known
as the data aggregation [24]. In this thesis, all Hurst estimators with the exception
of diffusion entropy method use data aggregation. The diffusion entropy method
uses a different method of partitioning the data for analysis; this is explained in the
Diffusion Entropy Analysis section of this chapter.

This aggregation procedure is indicative of the self-similarity concept. The
global or overall data is proportionally partitioned off into smaller segments. The
Hurst estimators analyze these smaller data segments and compares the statistical
characteristics between segments to determine quantitative similarity.

Herein, a simple explanation of how to aggregate data into an aggregated data
series is given. Consider the time series, {Xt : t ∈ N} with length of T . Divide the
time series into [T/m] units of block size (m) with block index (k) amount of units
such that k = 1, 2, 3, ..., [T/m]. In Fig. 3.6, each row is considered an aggregated
series. The aggregated series is formally defined as [24,30,32],

X
(m)
k =

km∑
i=(k−1)m+1

X(i). (3.11)

Figure 3.6: Generalized illustration of data aggregation.
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3.3.2 Aggregated Variance Method

The aggregated variance method begins with aggregating the orginal time
series {Xt : t ∈ N} with length of T . Each block of the aggregated series, X

(m)
k , is

then averaged by dividing by the block size (m). This aggregated series is defined
as such [5, 24,30,32],

X
(m)
k =

1

m

km∑
i=(k−1)m+1

X(i), (3.12)

where block index (k) is k = 1, 2, 3, ..., [T/m]. Sample variance of the aggregated
series is defined in Eq. (3.13).

aggvar(i) = V̂ ar(X(m)) =

 1

T/m

[T/m]∑
k=1

(
X

(m)
k

)2−
 1

T/m

[T/m]∑
k=1

X
(m)
k

2

(3.13)

When the sample number is large enough as m → ∞, we obtain the following
equation, v̂ar(X(m)) ∼ σ2mβ; where σ is the scale parameter and β = 2H − 2 < 0
[5,24,30,32]. This results in the following mathematical corollary seen in Eq. (3.14).

H = 1− β

2
(3.14)

Figure 3.7: Log-log plot of aggregated variances.
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3.3.3 Absolute Value Method

Similar to the aggregated variance method, the absolute value method par-
titions or aggregates the data exactly shown in Eq. (3.12). However, instead of
calculating the sample variance, the sum of the absolute values of the aggregated
series, X

(m)
k , is taken and then averaged by max block index (k), or [T/m] of that

series. The absolute value method is defined by the following [5, 24, 30],

absval(i) =
1

T/m

T/m∑
k=1

|X(m)
k (k)|. (3.15)

If the data is found to have LRD characteristics, then the slope of the log-log
plot should be α = H − 1 < 0. As a result of this corollary, the Hurst exponent can
be calculated using,

H = 1 + α. (3.16)

Figure 3.8: Log-log plot of absolute values.
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3.3.4 Difference Variance Method

The difference variance method is known to identify common types of non-
stationary processes. This includes non-stationary processes that contain slow de-
caying trends as well as large shifts in mean [34]. Similar to the aggregated variance
method, the data is aggregated as shown in Eq. (3.12) and the sample variance,

V̂ ar(X(m)), of the aggregated series is computed as well. Next, the differences be-
tween tandem sample variances are calculated like [5, 24,30],

Z(i) = [X(2)−X(1), X(3)−X(2), ..., X(T )−X(T − 1)]. (3.17)

This differencing between adjacent variances is the foundation of the difference vari-
ance method and can be concisely written as,

diffvar(i) = V̂ arX(mi+1) − V̂ arX(mi), (3.18)

where values of m, {mi, i ≥ 1} that are equidistant on a log scale such that
mi+1/mi = C. The constant (C) is contingent on the length of the time series [24].
The log log plot will have a slope β = 2H − 2 < 0, same as the aggregated variance
method. Thus resulting in the Hurst equation which is defined as [24],

H = 1− β

2
. (3.19)

Figure 3.9: Log-log plot of difference variances.
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3.3.5 Diffusion Entropy Analysis

The diffusion entropy analysis method is able to effectively estimate the Hurst
exponent, also known as the scaling exponent, for data that may contain detrending
characteristics [30]. The existence of the Hurst exponent implies the existence of a
probability density function (PDF), p(x, t), which is defined as [5, 30,33]:

p(x, t) =

(
1

tH

)
F
( x
tH

)
(3.20)

where the H is the PDF scaling exponent. The imperative equation to determine
PDF scaling exponent reads:

S(τ) = A+Hτ, (3.21)

where

S(t) = −
∫ ∞
−∞

p(x, t)ln[p(x, t)]dx, (3.22)

A ≡ −
∫ ∞
−∞

F (y)ln[F (y)]dy, (3.23)

and
τ = ln(t). (3.24)

In this method the slope of the semi-log plot, log of diffusion entropy trajectories
over the aggregated levels, is the equal to the Hurst exponent.

Figure 3.10: Semi-log plot of diffusion entropy trajectories.
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3.3.6 Peng’s Method

Peng’s method is also known as the variance of residual method. In this
method the data is aggregated as shown in Eq. (3.11). For each block the partial
sums are calculated and then a least-squares line, a + bt, is fitted to the partial
sums [5, 24,30].

1

m

m∑
t=1

(Y (t)− a− bt)2 (3.25)

The calculated sample variance of the residuals is proportional to m2H . The
slope of the least squares line is defined as [5, 24, 30],

β = 2H, (3.26)

which gives us the following relationship,

H =
β

2
. (3.27)

Figure 3.11: Log-log plot of residual variances.
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3.3.7 Rescaled Range Method

In mid 1900s, Harold Edwin Hurst introduced a technique called the rescaled
range method, popularly known as the R/S method. The data is aggregated as
shown in Eq. (3.11). The maximum residual and minimum residual are subtracted
from each other, for each block, to create the residual range, R(n), [5, 24,30,35],

R(n) = Maxk

k∑
i=1

(xi − x̄n)−Mink

k∑
i=1

(xi − x̄n). (3.28)

The standard deviation, S(n), of each block is computed and is defined as,

S(n) =

√√√√ 1

n

n∑
i=1

(xi − x̄)2. (3.29)

The expected value, E [ ], of the rescaled range, [R(n)/S(n)], yields,

E

[
R(n)

S(n)

]
= CnH , (3.30)

as n → ∞; where C is a constant and n is the number of data points in the time
series. The Hurst exponent is defined in terms of an asymptotic characteristic of
the rescaled range as a function of the time span for a given time series [5, 24,30].

Figure 3.12: Log-log plot of rescaled range.
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Chapter 4

LONG RANGE DEPENDENCE DETECTION USING
HURST MAPPING TECHNIQUE IN THERMAL

INFRARED IMAGING FOR POTENTIAL
NONUNIFORM CORRECTION ALGORITHM

4.1 Introduction

Both the human eye and thermal infrared (TIR) cameras utilize electromag-
netic radiation to visualize images, however, the human eye can only view within
the visible light spectrum while TIR cameras can detect heat energy radiation which
is not visible by the human eye [36]. Heat energy radiation is electromagnetic radi-
ation with a lower frequency and longer wavelength [8, 9]. Similar to the retina in
an eye, the TIR cameras uses focal plane array (FPA) to generate an image. The
FPA is composed of an array of infrared sensors [14].

Unfortunately, the image processing quality of the sensor array or FPA is af-
fected by spatial nonuniformity which manifests as image noise [14,37]. This results
some pixels may become darker or brighter. There exists two types of nonuniformity
correction (NUC) techniques known as calibration-based [38] and scene-based [39].
The calibration-based technique uses a calibration target, usually a blackbody ra-
diation source. A con to this technique is that the camera cannot be in use in the
duration of the calibration. On the other hand, the second type of NUC known
as scene-based can be used without stopping the camera’s operation using algo-
rithms to filter noise [37]. A variety of these algorithms use temperature changes to
compute a reference point for all pixel.

Herein, a novel technqiue called Hurst mapping is utilized to detect long
range dependence (LRD) in a selection of 825 pixel equally distributed, by every
20 pixels, over a 640 × 480 pixel array. The Hurst exponent (H) can quantify the
present of LRD in a signal or time series. If a strong presence of LRD is found
in these pixels, then the statistical features may be exploited for NUC purposes
as a scene-based type technique [39–41]. Statistical features of LRD include power
law decay of correlation, stable variance and mean over time. Essentially LRD can
characterize the image noise for filtering purposes. The purpose of this chapter to
detect if any LRD is present in the TIR images and illustrate the topology of the
Hurst map over the pixel array. No filtering algorithms are present in this thesis.
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4.2 Data Acquistion

The thermal pixel data was collected and processed in the Mechatronics, Em-
bedded Systems, & Automation (MESA) Laboratory at the University of California,
Merced (UCM). See Appendix A for further details.

4.3 Experimental Methods

Details on equipment, protocol, and the mapping technique are discussed or
referenced in this section.

4.3.1 Equipment

Three main components were utilized in this project: TIR camera, reflectance
reference target, and thermal couples with amplifier. The TIR camera used was
a 9640 P-Series made by Infrared Cameras Incorporated (ICI). Specifications of
this TIR camera include −40oC to 200oC temperature range, ±1oC accuracy, and
640 × 480 pixel array. The reflectance reference target used was a white colored
calibrated diffuse reflectance target made by Labsphere. The reflectance reference
target is made out of fluoropolymer and has a nominal reflectance value of 99%.
K-type thermal couples with a MAX31850K amplifier breakout board were used
to measure ambient temperature also referred to as ground truthing temperature.
This setup has a thermocouple accuracy of eight least significant bits (LSBs) for
temperatures ranging from −200oC to 70oC with a 0.25oC resolution.

4.3.2 Protocol

An extremely detailed protocol of how to set up this experiment is explained
in Appendix A. See Fig. 4.1 for an illustration of the TIR experimental layout.

Figure 4.1: Thermal infrared imaging experimental layout.
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4.3.3 Hurst Mapping Technique

This novel analytical framework called the Hurst map is explained in depth
in Chapter 1, Section 2. Essentially, a Hurst exponent is calculated using Hurst
estimator with respect to each pixel to construct a Hurst matrix for each TIR
image. This Hurst matrix is then 3D plotted. The same technique is utilized to
create variances maps, where the variance of each pixel is calculated instead of the
Hurst exponent.

4.4 Results & Discussion

A total of eight TIR image samples were collected via experiments. Each
image contains 825 pixels where individual pixels contained 1800 temperature data
points. However, a rigid dichotomy between the transient and steady state is found
in all image samples; see Fig. 4.2 for raw pixel data of Image #1. Therefore the
data was processed using two different data sizes, 1800 and 1600. All 1800 data
points were analyzed in the Transient and Steady State Section. In the Steady
State Section, 1600 data points were analyzed which accounts for truncation of the
initial 400 seconds or 6.5 minutes. Please note that the sample, TIR Image #1, is
utilized as the sample model through this section. See Appendix B for graphical
results of the rest of the image samples.

Figure 4.2: Raw thermal pixel data.

29



4.4.1 Transient & Steady State

All Hurst maps show a strong presence of LRD such that, H > 0.8, when
analyzing all data. In general the correlating variance maps show an inversely
proportional relationship with the Hurst exponent. Some image samples exhibited
larger Hurst exponents along the perimeter of the image. However, the general
morphology in the center of the Hurst maps did not show any particular trends or
patterns. It is interesting to note that in Image #6, the morphology is flat in the
center and that two edges of the image contain a bias of higher Hurst exponents. In
addition, all variance maps displayed a blanket-like shape where the highest points
are centralized and the lowest points are in all four corners; see Fig. 4.3.

Figure 4.3: Hurst map and variance map of total pixel data.

4.4.2 Steady State

The steady state pixel data exhibited significantly higher Hurst exponents.
All sample images displayed a clear bias of larger Hurst exponents along the edges
of the image as shown in Fig. 4.4. It was also observed that the Hurst exponents
were lowest in the center of the image. It is interesting to note that Image #6 is
the only image that did not change drastically in Hurst map morphology but still
increased in Hurst exponent value; especially along two edges of the image. As for
the variance maps, the variances were typically lower by half in most samples with
the exception of Image #6. After further review, the raw pixel data in Image #6
displayed a very short transient period.
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Figure 4.4: Hurst map and variance map of steady state pixel data.

4.5 Conclusion

The results highlight the strong presence of LRD within each selected pixel.
All pixels, 100%, in both total and steady state analysis had a H > 0.8. When
analyzing only steady state data, it was clearly seen that the lowest variances cor-
related to highest Hurst values especially along the pixel index X. This goes hand
in hand with the statistical significance of LRD; the variances increase slowly as
lag time increase, thus preserving memory in the thermal data. Knowing that LRD
exists in these thermal images, one can exploit fractal properties from them. For
example, a fractional order filter could be tuned to clean up the noise in each pixel
or groups of pixels in a region. Another suggestion is using the presence of LRD for
calibration purposes. The presence of LRD in the thermal pixels may decay over
long periods of time without calibration and could help inform the user as well as
optimize calibration scheduling.
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Chapter 5

ARRHYTHMIA DETECTION FROM HEART RATE
VARIABILITY USING HURST ESTIMATORS

5.1 Introduction

Heart rate and arterial blood pressure are common diagnostic measurements
collected in the medical field. Unfortunately, these physiological signals are limited
in their effectiveness in detecting temperate ailments such as cardiac arrhythmia
which can be life threatening [16]. Cardiac arrhythmia is defined as a change in
electrical activity within the heart which manifests as irregular heartbeats. Typi-
cally arrhythmias are harmless since they can be innervated by physical or mental
activity. When a person experiences a transition in physical activity such as walk-
ing to running, the heart is subjected to a transient state which can be perceived
as an arrthymia. Arrhythmic evaluation is not typically incorporated into general
diagnostic measurements due to its commonly harmless nature. In extreme cases,
arrhythmia can be induced by damaged cardiac tissue or abnormal cardiac anatomy
which may lead to a stroke or heart attack [16]. Current methods to detect arrhyth-
mias include electrocardiogram (ECG) readings and analysis [42].

The Hurst exponent, H ∈ (0, 1), may be indicative of cardiac health [7,43]. It
is known that physiological signals contain fractal properties that are associated with
long range dependence (LRD) where H ∈ (0.5, 1) [26, 44, 45]. In previous studies,
the Hurst has been utilized as an index for a multitude of applications in various
disciplines [4, 6, 7]. For instance, electroencephalogram signals were analyzed using
a Hurst estimator to determine discrepancies in LRD at different stages of sleep [4].

In this study, six Hurst estimators are individually implemented into three
algorithmic frameworks to analyze heart rate variability (HRV) for the purpose
of cardiac arrhythmia dection. The three algorithmic frameworks are called total
time series estimation (TSE), cumulative window estimation (CWE), and sliding
window estimation (SWE) which are used for data partitioning. These algorithmic
frameworks were influenced by previous studies [4,34,46]. The six Hurst estimators
utilized are called aggregated variance, absolute value, difference variance, diffusion
entropy, Peng, and rescaled range [5,24]. Herein, it is proposed that utilizing Hurst
estimators, as an additional diagnostic tool may provide an indication of cardiac
arrhythmia [26,47,48].
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5.2 Data Acquisition

The HRV data was obtained from PhysioNet, an online resource that offers a
collection of recorded physiological signals [49]. Specifically the normal and abnor-
mal HRV data were collected from the MIT-BIH Normal Sinus Rhythm (NSRDB)
and MIT-BIH Arrhythmia (ADB) database, respectively. Both databases utilized
a lead II ECG configuration for measuring cardiac electrical activity. The ECG
readings were reviewed by cardiologists who manually annotated each heartbeat.

Samples

In the NSRDB there are 18 samples with an approximate recording time of
24 hours; one sample was omitted due to data acquisition complications. Therefore,
only 17 NSRDB samples were utilized. In addition, the samples in the NSRDB were
truncated such that each sample had a total recording time of 30 minutes. In the
ADB, there are 48 samples with a recording time of 30 minutes. See Table 5.1 for
database information given by PhysioNet [49].

Table 5.1: Arrhythmia & Normal HRV Database Information
Database Sample # Duration (typical) Signals

mitdb 48 30 minutes ECG (2 leads)
nsrdb 18 24 hours ECG (2 leads)

5.3 Experimental Methods

Previous studies [4,34,46] have estimated the Hurst exponent on data that has
been partitioned using different algorithmic frameworks. The Hurst estimators [5]
are applied to the algorithmic frameworks titled TSE, CWE, and SWE. In TSE
the entire HRV time series of each sample is used to estimate the Hurst exponent.
This is a common use of Hurst estimator(s) and is found in previous research, such
as hydrological studies in the Nile River to determine optimal dam sizing [24]. As
for the CWE, the Hurst exponent is estimated at the first minute proceeded by an
incremental growth of the HRV data by one minute until the entire data is analyzed.
This approach is motivated by studies [34,46] that have presented an estimation of
the Hurst exponent for different incremental sizes of data; as shown in video data
traffic studies where Moving Picture Expert Group (MPEG) sequences were used
to estimate the Hurst exponent for different data sizes with respect to time. In the
last algorithmic framework, SWE, the HRV data is truncated with a window (wt)
and moves with a slide (st) of time length of t. The Hurst exponent is estimated
for each truncated segment. A study in electroencephalogram signals utilized a
sliding window method to estimate the Hurst exponent in different parts of the
sleep cycle [4].
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5.3.1 Total Time Series Estimation

The Hurst exponent (H) is estimated at 30 minutes for both normal and
abnormal HRV data. This method is expressed in the following equation,

Hsample = H
[
x(t)

]30
0
, (5.1)

where H[ ] is a generalized Hurst method, x(t) is the HRV time series, and Hsample

represents the Hurst exponent for a human sample.

5.3.2 Cumulative Window Estimation

A cumulative growing window is used to estimate a Hurst exponent series.
The initial window size is one minute and grows by an increment of one minute until
a cumulative window size of 30 minutes is achieved. At each incremental growth, a
Hurst exponent is estimated. The Peng and rescaled range methods were not able
to compute at one minute for the initial window, therefore both of these methods
begin at two minutes. The box periodogram varied in initial window size as well.
The approximate initial window size is five and six minutes for normal and abnormal
HRV data, respectively. To preserve consistency for the box periodogram, the initial
window is established at six minutes; thus neglecting the first five minutes of HRV
data. The following equation represents the cumulative window estimation,

Hsample(t) = H
[
x(t)

]t
0

(5.2)

as t = 1, 2, 3, ...30. Where H[ ] is a generalized Hurst method, x(t) is the HRV time
series, and Hsample(t) represents a series of estimated Hurst exponents for human
sample.

5.3.3 Sliding Window Estimation

The sliding window and how it is optimized is explained in detail in Chapter
1, Section 2. The optimizing parameter (OP ) used was the variance of the sliding
window variable (SWV ), which is the Hurst, for each respective combination of wt
and st. The variance was selected as the OP to minimize variability in SWV . An
orthogonal view of the 3D plot with a optimized trace of st with respect to wt for all
Hurst methods are shown in in Fig. 5.1. Please note that the difference variance,
Peng, and rescaled range methods were unable to calculate at (wt = 1, st = 1). In
addition, the diffusion entropy method was unable to for wt < 3 and their respective
slides.

Using the trace line as a guide, the optimal wt and st were chosen heuristically.
Once again, refer to Chapter 1, Section 2 for the heuristic guideline to ultimately
choose optimal slide and window length. The optimal combination of wt and st for
all methods are tabulated into Table 5.2. Experimental results from these optimal
SWE parameters are shown in the SWE Subsection in the Results Section.
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Figure 5.1: Orthogonal view of 3D trace line plot.

35



Table 5.2: Optimal Window (wt) & Slide (st) for All Hurst Estimators
Window Size wt Slide Size st

Aggregated Variance 7 minutes 1 minutes
Absolute Value 7 minutes 1 minutes

Difference Variance 7 minutes 4 minutes
Diffusion Entropy 7 minutes 3 minutes

Peng 6 minutes 3 minutes
Rescaled Range 5 minutes 3 minutes

5.4 Results & Discussion

The analysis of the results in this section are influenced by statistical findings,
graphical tendencies, and a parameter called LRD%. The LRD% is defined as
sample percentage of normal or abnormal HRV data that strictly display LRD where
H > 0.5. For example, the Hurst series calculated for a given sample using the CWE
or SWE must all have H > 0.5 in order to contribute to the LRD%.

5.4.1 Total Time Series Estimation

All methods display extremely high percentage of LRD for the bilateral HRV
data; see Table 5.3. The difference variance method exhibited lower LRD% com-
pared to the other methods, but also displays the largest drop in LRD% for the
abnormal HRV data. However, a histogram of TSE processed HRV data suggests
that the difference variance method is arguably the least effective next to the Peng
method in differentiating between normal and abnormal HRV; see Fig. 5.2. There
is a noticable segregation with some index aliasing between bilateral HRV data in
the aggregated variance, absolute value, and rescaled range; these are not viable
methods. The diffusion entropy histogram presents a significantly segregated index
between bilateral HRV data; where 100% of abnormal indices fall below H = 1.25
and 94.12% of normal indices are found above H = 1.25. Ultimately, the diffusion
entropy has proven to be the most viable method at differentiating between normal
and abnormal HRV in the TSE approach.

Table 5.3: Total Time Series Estimation: LRD%
LRDnormal LRDabnormal

Aggregated Variance 100% 97.92%
Absolute Value 100% 97.92%

Difference Variance 94.12% 70.83%
Diffusion Entropy 100% 97.92%

Peng 100% 97.92%
Rescaled Range 100% 97.92%
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Figure 5.2: Histogram of all Hurst methods using TSE; bin size is 0.05.
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5.4.2 Cumulative Window Estimation

Compared to the TSE approach, all methods show significant decreases in
LRD% for abnormal HRV data. A dichotomy of high and low LRD% for normal and
abnormal HRV data, respectively, is blatantly shown in Table 5.4. All methods with
the exception of the difference variance, pose as a potentially useful index because
of their dichotomous LRD% between normal and abnormal. In Fig. 5.3, one normal
and abnormal HRV sample were compared using CWE for all methods. Results
reflect that of the results from the TSE; this is no surprise since the CWE trends
up to the overall Hurst exponents estimated in TSE.

Table 5.4: Cumulative Window Estimation: LRD%
LRD normal LRD abnormal

Aggregated Variance 88.24% 41.67%
Absolute Value 100% 50%
Difference Variance 29.41% 6.25%
Diffusion Entropy 100% 62.50%
Peng 100% 35.42%
Rescaled Range 94.12% 58.33%

5.4.3 Sliding Window Estimation

The HRV data was processed using the optimized SWE parameters in Table
5.2. The same samples employed for CWE in Fig. 5.3 are used to compare all
methods using the SWE; see 5.4. Only the Peng and rescaled range exhibited
a significant dichotomy between normal and abnormal in regards to LRD%. Upon
review of the Hurst series, all methods were able to differentiate, to a degree, between
HRV data. Unfortunately, there is a crossover between normal and abnormal indices
which compromises the purpose of the index; to differentiate between normal and
abnormal HRV. See Appendix B for complete sample results.

Table 5.5: Sliding Window Estimation: LRD%
LRD normal LRD abnormal

Aggregated Variance 88.24% 60.42%
Absolute Value 88.24% 64.58%
Difference Variance 47.06% 14.58%
Diffusion Entropy 100% 83.33%
Peng 88.24% 39.58%
Rescaled Range 100% 52.08%
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Figure 5.3: Normal and abnormal HRV comparison using CWE.
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Figure 5.4: Normal and abnormal HRV comparison using SWE.
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5.5 Conclusion

In this study, three approaches using seven Hurst estimation methods to
differentiate between normal and abnormal HRV were evaluated. Bilateral results
indicate that most HRV data exhibit LRD in all approaches. This implies that
both normal HRV and abnormal HRV both have a persistent characteristic. It is
paramount to note that the normal HRV typically expressed higher Hursts, indicat-
ing that normal HRV has a higher persistency than that of abnormal HRV.

The TSE approach reinforces the concept of LRD being an innate charac-
teristic in physiological signals. Furthermore, the lower Hurst exponent seen in the
abnormal HRV data is a direct result of the stochastic characteristics embedded in
arrhythmias, irregular heartbeats. These stochastic characteristics compromise and
reduce the presence LRD found, hence the Hurst exponent is lower in abnormal
HRV. A weak division between normal and abnormal HRV Hurst distributions is
apparent in the TSE histogram shown in the results section. The diffusion entropy
method is the only method that significantly exhibits segregation between normal
and abnormal Hurst indices. If we utilize H = 1.25 as an index partition in the dif-
fusion entropy method, then 94.12% of normal and 100% of abnormal remain above
and below this index partition, respectively. It would be worth wild to investigate
the slight index overlap since mild or non-severe arrhythmias may have an index
similar to normal HRV.

The CWE approach provides little insight on top of the TSE. This is due to
the fact that the CWE trends or estimates the eventually Hust index sound in TSE.
However, the CWE was able to exacerbate the anti-persistency, where H < 0.5,
in the abnormal HRV. This shows that some sort of data partitioning is useful in
analyzing the differences between normal and abnormal HRV.

The SWE approach did not exhibit any dichotomy of LRD between normal
and abnormal HRV. Heuristically, the diffusion entropy seemed to be the best cardiac
index. The raw SWE data, found in Appendix B, exhibited a varying degree of index
overlap in regards to all methods. Further research on optimal slide and window
length would have to be done to truly determine the effectiveness of this approach.

In the end, most methods were unable to significantly distinguish between
normal and arrhythmic HRV completely; some normal subjects exhibited lower
Hurst exponent values than that of arrhythmic subjects and vice versa. After an-
alyzing the RR-interval of the normal and arrhythmic subjects, there are some
arrhythmic subjects that have a lesser or more extreme case of cardiac arrythmia.
This may have contributed to index aliasing between normal and abnormal HRV.
In this study, repeatedly found through all approaches that normal HRV contains a
higher intensity of LRD than that of abnormal HRV. The diffusion entropy method
utilized in conjunction with the TSE approach is best at differentiating between
normal and abnormal HRV.
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Chapter 6

STRESS DETECTION FROM HEART RATE
VARIABILITY USING DIFFUSION ENTROPY

6.1 Introduction

The biological description of stress is defined as when factors, called stressors,
act on an organism and cause the body to move away from homeostasis [16,50,51].
When exposed to a stressor, the human body reacts by activating the autonomic ner-
vous system (ANS) [51]. Consequently hormones such as adrenaline and epinephrine
are released, catalyzing arterial vasconstriction which increases blood pressure, mus-
cle tension and heart rate variability (HRV) [51, 52]. Principally, stress is a physio-
logical response to physical or mental provocation [52].

Current methods of stress detection utilize single or multiple physiological
signals such as galvanic skin conductance [53], blood pressure [54], muscle tension
[55], respiratory activity [56], and HRV using electrocardiogram (ECG) [50,57–59].

These methods require continuous retrieval of information, from invasive or
noninvasively placed sensors, over a period of time in order to differentiate be-
tween normal and stress-induced activity. There are also psychological approaches
to stress assessment that involve interviewing or questionnaires. Unfortunately,
these processes are limited by the individuals ability to accurately recall their stress
symptoms and thus is not the most reliable practice.

Ultimately, stress does not always manifest in an intuitive manner such as
increases in blood pressure or heart rate that can be detected by medical devices or
recalled by an individual. However, fractal properties in these physiological signals
[47] can be exploited to detect stress. In previous physiological studies, fractional
calculus has been used to model [60, 61], classify [6, 42], and analyze [48, 62] fractal
properties.

The term HRV refers to the regulation of the sinoatrial node, the natural
pacemaker of the heart, through the sympathetic and parasympathetic branches
of the ANS [51]. HRV exhibits self-similar properties as shown in prior studies
[6, 43,45,63]. Typically self-similar processes exhibit long range dependence (LRD)
characteristics [30]. It is known that physiological signals, such as HRV, have LRD
present [45, 47, 52]. Utilizing the correlation between the ANS and HRV activity in
conjunction with LRD characteristics, it is possible to analyze HRV to measure the
level of mental stress.
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Herein, we use diffusion entropy analysis to exploit inherent fractal proper-
ties of HRV to detect mental stress of automobile drivers [59]. The HRV data was
acquired from an online database called PhysioNet [49]. Sections of the HRV time
series that are purely rest and purely stress were evaluated using the diffusion en-
tropy analysis to estimate the Hurst exponent to set a Hurst baseline, which will
be referred to as Hurst sectional estimation (HSE). Once a HSE is calculated, the
sliding window approach is utilized to estimate the Hurst exponent of truncated
portions of the HRV time series for stress detection.

6.2 Data Acquisition

The HRV data analyzed in this paper were obtained from the Stress Recog-
nition in Automobile Drivers (SRAD) database which was found on PhysioNet; an
online resource that offers a multitude of recorded physiological signals [49]. Herein,
HRV data analyzed were derived from the ECG samples in the SRAD database.
The ECG electrodes were placed in a modified lead II configuration [59].

Data Processing

It is important to note that the SRAD database only provides raw ECG. In
order to procure a HRV time series, one must obtain the time index of the each
R-peak which is generally the highest peaks in the ECG then subtract neighboring
R-peaks in a chronological order to extract the RR-intervals, also known as HRV.
An online R-peak detector [64] was used to obtain the time index of the R-peaks
which was reviewed and edited by one of the authors. The R-peaks were then
differenced in tandem, which yields the HRV data. This protocol is explained in
depth in Appendix A.

Samples

The SRAD database offered 17 HRV samples of which only 13 were utilized
in this study. Four samples were omitted due to processing issues for two samples,
one partitioned sample, and a duplicate sample. Each sample drove a set route for
approximately 50 to 90 minutes [49]. All samples were at rest, i.e. parked, for the
first and last 15 minutes of the experiment [59]. The rest and drive sections are
partitioned and analyzed using the diffusion entropy method.

Table 6.1: Stress Database Information
Database Sample # Duration (typical) Signals

drivedb 17 60-90 minutes ECG, EMG, GSR, resp
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6.3 Experimental Methods

There exists numerous methods to estimate the Hurst exponent, also known
as the Hurst parameter. The HRV data is analyzed using diffusion entropy analysis.
The diffusion entropy analysis method is able to effectively estimate the Hurst ex-
ponent for data that may contain detrending characteristics [30]. The quantitative
definition of the diffusion entropy method is discussed in Chapter 3, Section 3. It is
important to note that diffusion entropy analysis was chosen over all other methods
due to its ability to analyze smaller amounts of data [33]. The ability to work with
smaller data is crucial for algorithmic frame work of the sliding window approached
utilized.

6.3.1 Hurst Sectional Estimation

The HRV time series data used in this study was partitioned into three sec-
tions: first rest (R1), drive (D), and last rest (R2). For a given time (t) in minutes
with length (N), t = 1, 2, 3.....N . Now consider x(t) as the HRV time series where
x(t) = x1, x2, x3...xN . As mentioned before, the first and last rest sections are each
15 minutes. The drive section is a variable length dependent on how long each par-
ticipant took to drive through the route in each sample. The HSE is expressed in
the following equations: Eq.(6.1), Eq.(6.2), and Eq.(6.3).

xR1(t) = x(t)150 (6.1)

xD(t) = x(t)N−1515 (6.2)

xR2(t) = x(t)NN−15 (6.3)

The equations Eq.(6.4), Eq.(6.5), and Eq.(6.6) result from taking the Hurst of each
section: first rest (R1), drive (D), and last rest (R2); which are referred to as the
HSEs in the results and discussion section. Hurst estimation using the diffusion
entropy method is denoted as H[].

HR1 = H[x(t)]150 (6.4)

HD = H[x(t)]N−1515 (6.5)

HR2 = H[x(t)]NN−15 (6.6)
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6.3.2 Sliding Window

The sliding window and how it is optimized is explained in detail in Chapter
1, Section 2. The optimizing parameter (OP ) used was the root mean squared
error (RMSE) of the sliding window variable (SWV ), which is the Hurst, for each
respective combination of wt and st. The RMSE was selected as the OP to minimize
error between SWV and the HSEs. An orthogonal view of the 3D plot with a
optimized trace of st with respect to wt for first rest, drive, and last rest using
diffusion entropy is shown in in Fig. 6.1, Fig. 6.2, and Fig. 6.3. Using the trace
line as a guide, the optimal wt and st were chosen heuristically. The optimal trace
line converged at appoximately wt = 6min in first rest, drive, and last rest with
st values of 6, 4, and 5 minutes; respectively. The combinatory sliding window
parameters (wt = 6, st = 4), (wt = 6, st = 5), and(wt = 6, st = 6) were all taken
into consideration and their sliding window data are in Appendix B. The optimal
sliding window parameters wt = 6 and all st = 4 were chosen because the smallest
st is desired to promote more data analysis and output.

RMSE =

√√√√ 1

N

N∑
i=1

(xi − xi)2 (6.7)

Figure 6.1: 3D plot of optimal trace line for first rest (R1).
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Figure 6.2: 3D plot of optimal trace line for drive (D).

Figure 6.3: 3D plot of optimal trace line for last rest (R2).
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6.4 Results & Discussion

The HSE and sliding window approaches are analyzed. The HSE data is
tabulated for first rest (R1), drive (D), and last rest (R2) for all 13 samples. The
tabulated data is presented in a graph with respect to each sample and a boxplot
with respect to each section as shown in Fig. 6.5 and Fig. 6.4. As for the sliding
window approach, the parameters used for the sliding window were wt = 6 and
st = 4. Subject #13 is the only sliding window sample displayed in Fig. 6.6; see
Appendix B for all sliding window results.

6.4.1 Hurst Sectional Estimation Analysis

The Hurst exponent was highest during the drive section of the dataset for
approximately 61% of samples, shown in Table 6.2; HD was higher than both HR1

and HR2. The box plot of the sectional Hurst exponents shown in Fig. 6.4 suggest
that there exists a slight differentiation between rest and stress conditions. Unfor-
tunately, the rest and stress Hurst dichotomy does not exist within this stress HRV
dataset. This highlights the difficulty of indexing stress from samples. The Hurst
exponent is found to be high due to the innate LRD found in physiological signals.
Consequently, this makes it difficult to utilize the Hurst exponent to detect stress.
Especially since mental stress does not alway manifest in a physical manner such as
increased heart rate. Only three samples, had a HD < HR1 and HR2. Two separate
samples had a case where the Hurst exponent continuously decreased and increased
such that HR1 < HD < HR2 and HR1 > HD > HR2, respectively.

Table 6.2: Hurst Sectional Estimation
Driver # HR1 HD HR2

1 0.99 0.88 0.77
2 0.77 0.92 0.84
3 0.76 0.82 0.61
4 0.86 0.98 0.83
5 0.88 1.03 0.96
6 0.96 1.11 0.95
7 1.06 0.97 0.99
8 0.92 1.02 0.80
9 1.01 0.88 0.91
10 0.88 0.86 0.88
11 0.89 0.95 0.92
12 0.76 0.89 0.96
13 0.94 1.14 0.65
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Figure 6.4: Hurst sectional estimation plot.

Figure 6.5: Hurst sectional estimation boxplot.
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6.4.2 Sliding Window Analysis

The optimized parameters used for the sliding window were wt = 6 and all
st = 4. Two observations were utilized in analyzing the sliding window results. One
of the observations was the proximity of slide values compared to their sectional
values. Heuristically, it was seen that in approximately half the data the slide
values were relatively close to sectional values. The other observation was slide
morphology over all three sections. More often than not, it was seen that the drive
section contained more stochastic characteristics compared to the rest sections. See
Fig. 6.6 for sliding window result from one subject.

Figure 6.6: Sample of sliding window displayed as blue dots. The HSEs are shown
as blue horizontal bars.

6.5 Conclusion

HRV has been examined in both rest and mental stress states. The rest HSEs
were generally lower than stress HSE, approximately 61% of the time. The HSE
is potentially a practical algorithmic framework with the assumption that the user
would complete a diagnostic survey so that the heart monitoring sensors can record
resting HRV and stress HRV. However, the potential of the sliding window algorith-
mic framework is questionable due to the large combinatory amount of window and
slide lengths. The findings of this paper suggest that wt = and st = 4 may poten-
tially be the optimal window and slide length parameters. Ultimately, more samples
will be required to assess the quality of the sliding window algorithmic framework
and to properly determine optimal window and slide length.

49



Chapter 7

SUMMARY & FUTURE RESEARCH

The characterization of long range dependence (LRD) for signal processing
is the recurring theme in this thesis. The notion and mathematical significance of
LRD is highlighted in Chapter 3. Hurst estimators were utilized to identify LRD,
classify arrhythmia, and detect stress in Chapter 4, 5, and 6, respectively. A brief
summary and future research direction are given below for the research project based
Chapters 4, 5, and 6.

Research presented in Chapter 4 established the strong presence of LRD in
thermal infrared (TIR) imaging. Steady state analysis clearly showed a Hurst bias
running along pixel index X which suggests that specific regions of the image should
be filter differently that the rest of the pixels. Ultimately, the statistical features of
LRD in each pixel may be exploited to potentially filter out temporal noise in TIR
images and well as calibrational purposes. Utilizing LRD found in pixels, further
investigation could be done to monitor individual pixel health or detect dead pixels.

Research presented in Chapter 5 strongly suggests that the quantification of
LRD presence in heart rate variability (HRV) via Hurst exponent estimation can
be utilized for cardiac arrhythmia detection. Samples with normal HRV typically
displayed higher Hurst exponent values since LRD is an innate characteristic of phys-
iological signals. On the other hand, samples with arrhythmias generally exhibited
smaller Hurst exponents. Results show that most methods are able to differentiate
between normal and arrhythmic HRV with the exception of the difference variance
method. Potentially the Hurst exponent can be used as an arrhythmia classification
index for extreme cases of cardiac arrhythmia. One possible future research direc-
tion of this project is to engineer a device that can process HRV data and calculate
one’s Hurst exponent for cardiac health monitoring. A simple control diagram of
a Hurst health monitoring device is shown in Fig. 7.1 . The input for this device
is a person’s cardiac output. Also, the sensor was left ambiguous since it could
be as complex as an electrocardiogram or as simple as optical monitoring which
uses a light emitting diode (LED). I envision the end goal of this project assisting
physicians monitor elderly patients heart health via telemedicine, where the Hurst
exponent is utilized as a classification index of heart health.

An attempt at mental stress detection using LRD characterization is pre-
sented in Chapter 6. However, physiological signals such as HRV naturally have
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a strong LRD presence. As a result, distinction between mental stress and rest
HRV in terms of Hurst exponent were not completely clear. More mental stress
HRV data would be required to determine whether LRD characterization can be
utilized in stress detection or not. Perhaps, the sliding window is not the proper
algorithmic framework to use. More samples are required in order to determine
any research significant on this project. The online database used, physioNet, only
offered 17 samples of which only 13 were utilized in the end due to complications in
preliminary HRV signal processing, poor ECG readings, and an omitted duplicate
sample. A suggestion for further research on this topic would be to obtain more
samples under mental stress conditions. If possible, my personal suggestion would
be to collect 20-30 HRV samples from samples who experience a rest condition and
transition into performing a difficult mental task such as navigating an unmanned
aerial vehicle (UAV) through a mission.

Figure 7.1: Control diagram of Hurst cardiac health monitoring system.
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Appendix A

PROTOCOLS

A.1 Thermal Imaging Protocol

1. Setup Equipment

� Place camera on stand such that lense is parallel to ground.

� Place reflectance reference target underneath camera such that only the
reflectance reference target is seen by the camera.

� Double check camera view via camera monitor to ensure that only re-
flectance reference target is being viewed.

� Place thermal couples on each opposite ends of the reflectance reference
target material

� Double check room thermostat to make sure temperature is set at 74oC.
If not, set temperature to 74oC and wait until room acclimates; then
proceed.

2. Collect Images

� Camera runs at a sample rate of 0.5Hz and takes pictures for approxi-
mately two hours. Only the first hour of data is utilized for data analysis.

3. Upload & Process Images.

� Upload images to computer.

� Use software called IR Flash, provided by ICI, to convert images to
comma separated values (CSV) files.

4. Process Images

� Create Hurst map using diffusion entropy analysis from every 20 pixel
for each image sample; 825 pixels were analyzed per image sample.

� See appendix C for MATLAB code to process TIR data into Hurst and
Variance Maps.
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A.2 PhysioNet Protocol

This is a protocol for downloading and processing data from physioNet for
specifically electrocardiogram (ECG) derived heart rate variability time series [49].

PhysioBank: Data Selection

Find physiological data that you are interested in. An archive of physiological
databases, physioBank, is available at www.physionet.org/physiobank/database/.

PhysioToolkit: MATLAB Toolbox

Go to http://www.physionet.org/physiotools/matlab/wfdb-app-matlab/ and
it will show you how to download the physioNet toolbox for MATLAB. See below
for a quick procedure to download toolbox.

1. Go into folder or directory you wish to install toolbox

2. Copy and pase the following code into the command window:

1 [old path]=which('rdsamp');
2 if(¬isempty(old path)) rmpath(old path(1:end-8)); end
3 wfdb url='http://physionet.org/physiotools/matlab/ ...

wfdb-app-matlab/wfdb-app-toolbox-0-9-9.zip';
4 [filestr,status] = ...

urlwrite(wfdb url,'wfdb-app-toolbox-0-9-9.zip');
5 unzip('wfdb-app-toolbox-0-9-9.zip');
6 cd wfdb-app-toolbox-0-9-9;cd mcode
7 addpath(pwd);savepath

3. There should now be folder labeled as ”wfdb-app-toolbox-0-9-9” with a sub-
folder labeled ”mcode”. Go into the subfolder ”mcode” click on ”rdsamp.m”.
Inside ”rdsamp.m” there are instructions on how to read samples from all
databases found in physioBank. This is where you can read and save the data
of interest.

4. A file called ”rdann.m” should be utilized to further process the data by ex-
tracting annotation data; see inside ”rdann.m” for instructions for usage. This
is where the beat annotations can be acquired.

MATLAB: Signal Processing HRV from ECG

Once the beat annotations are obtained. You can utilize the MATLAB func-
tion ”diff(X)” where X is the beat annotations for one sample. This will take the
differences between adjacent elements of X resulting in the time interval between
each beat also known as heart rate variability (HRV).
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A.3 Electrocardiogram derived Heart Rate Variability

This is a protocol for deriving heart rate variability (HRV) from electrocar-
diogram (ECG) given by PhysioNet [49] using an online MATLAB QRS dector [64]:
mathworks.com/matlabcentral/fileexchange/45404-ecg-q-r-s-wave-online-detector.

Obtain ECG from PhysioNet

Download ECG data from PhysioNet as mentioned in Appendix B, Section
A.2. You can also download from other websites or run your own experiments to
obtain ECG data. High quality ECG data will help drastically reduce time in the
ensuing steps. Avoid low quality ECG data.

Save R-peaks using QRS Dector

The example code below converts EKG data [64], with a sample rate of 496
Hz, into R-peak time index data and saves it as an excel sheet. In addition, a graph
of the processed and annotated EKG is saved.

1 load(data) % contains EKG data
2 EKGDouble = double(EKG); % converts EKG data
3 SampleRate = 496; % sample rate: 496 Hz
4 ViewableTime = length(EKGDouble)/SampleRate;
5 [R i,R amp] = peakdetect(EKGDouble,SampleRate,ViewableTime);
6 R Peak Time = (R i./SampleRate)'; % sample index --> time index
7 savefig('Processed EKG graph.fig');
8 filename = ['Drive R Peak Time.xls'];
9 xlswrite(filename, R Peak Time);

Review & Edit R-peaks

First, review the ECG section found in Chapter 2, Section 2.2.5 to under-
stand the generalized ECG morphology. Afterwards, you can begin to evaluate the
accuracy of the data once you have your excel sheet of R-peaks, with respect to
time in seconds. This is done by simultaneously checking data from the excel sheet
visually and the R-peaks from the graph by using the ”data cursor”. If the R-peaks
are annotated incorrectly on the graphs, you will manually correct them to the best
of your knowledge.

Heart Rate Variability

Once the R-peaks are reviewed and finlized, utilize the MATLAB function
”diff(X)” where X is the beat annotations for one sample. This will take the dif-
ferences between adjacent elements of X resulting in the time interval between each
beat also known as heart rate variability (HRV).
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Appendix B

DATA

Figure B.1: TIR - Raw Pixel Data
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Figure B.2: TIR - Hurst Maps - Total Data
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Figure B.3: TIR - Hurst Maps - Steady State Data
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Figure B.4: TIR - Variance Maps - Total Data
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Figure B.5: TIR - Variance Maps - Steady State Data
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Figure B.6: Cardiac Index - CWE - Aggregated Variance - Normal HRV
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Figure B.7: Cardiac Index - CWE - Aggregated Variance - Abnormal HRV I
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Figure B.8: Cardiac Index - CWE - Aggregated Variance - Abnormal HRV II
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Figure B.9: Cardiac Index - CWE - Absolute Value - Normal HRV

69



Figure B.10: Cardiac Index - CWE - Absolute Value - Abnormal HRV I
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Figure B.11: Cardiac Index - CWE - Absolute Value - Abnormal HRV II
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Figure B.12: Cardiac Index - CWE - Difference Variance - Normal HRV
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Figure B.13: Cardiac Index - CWE - Difference Variance - Abnormal HRV I
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Figure B.14: Cardiac Index - CWE - Difference Variance - Abnormal HRV II
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Figure B.15: Cardiac Index - CWE - Diffusion Entropy - Normal HRV
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Figure B.16: Cardiac Index - CWE - Diffusion Entropy - Abnormal HRV I
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Figure B.17: Cardiac Index - CWE - Diffusion Entropy - Abnormal HRV II
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Figure B.18: Cardiac Index - CWE - Peng - Normal HRV
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Figure B.19: Cardiac Index - CWE - Peng - Abnormal HRV I
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Figure B.20: Cardiac Index - CWE - Peng - Abnormal HRV II
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Figure B.21: Cardiac Index - CWE - Rescaled Range - Normal HRV
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Figure B.22: Cardiac Index - CWE - Rescaled Range - Abnormal HRV I
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Figure B.23: Cardiac Index - CWE - Rescaled Range - Abnormal HRV II
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Figure B.24: Cardiac Index - SWE Aggregated Variance - Normal HRV
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Figure B.25: Cardiac Index - SWE Aggregated Variance - Abnormal HRV I
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Figure B.26: Cardiac Index - SWE Aggregated Variance - Abnormal HRV II
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Figure B.27: Cardiac Index - SWE - Absolute Value - Normal HRV
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Figure B.28: Cardiac Index - SWE - Absolute Value - Abnormal HRV I
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Figure B.29: Cardiac Index - SWE - Absolute Value - Abnormal HRV II
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Figure B.30: Cardiac Index - SWE - Difference Variance - Normal HRV
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Figure B.31: Cardiac Index - SWE - Difference Variance - Abnormal HRV I
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Figure B.32: Cardiac Index - SWE - Difference Variance - Abnormal HRV II
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Figure B.33: Cardiac Index - SWE - Diffusion Entropy - Normal HRV
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Figure B.34: Cardiac Index - SWE - Diffusion Entropy - Abnormal HRV I
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Figure B.35: Cardiac Index - SWE - Diffusion Entropy - Abnormal HRV II
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Figure B.36: Cardiac Index - SWE - Peng - Normal HRV
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Figure B.37: Cardiac Index - SWE - Peng - Abnormal HRV I
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Figure B.38: Cardiac Index - SWE - Peng - Abnormal HRV II
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Figure B.39: Cardiac Index - SWE - Rescaled Range - Normal HRV
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Figure B.40: Cardiac Index - SWE - Rescaled Range - Abnormal HRV I
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Figure B.41: Cardiac Index - SWE - Rescaled Range - Abnormal HRV II
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Figure B.42: Stress Detection - Diffusion Entropy - (wt = 6min, st = 4min)
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Figure B.43: Stress Detection - Diffusion Entropy - (wt = 6min, st = 5min)
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Figure B.44: Stress Detection - Diffusion Entropy - (wt = 6min, st = 6min)
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Appendix C

CODE

C.1 Thermal Infrared - Pixel Data Acquistion

1 %% TIR PIXEL DATA ACQUISTION
2 % Author: Marwin Ko & Monica Barbadillo
3 % Version 1.0, 08/31/2015
4 % mko3@ucmerced.edu
5 clc; clear;
6

7 %% SET UP VARIABLES
8 quote = '"'; sep = ','; escape = '\n';
9 files = dir('*.csv'); TI = 1800;

10

11 %% LOAD SELECTED PIXEL MATRIX
12 load('pixels 20x20.mat')
13

14 %% OPEN TEXT FILE
15 for j = 1:825
16 for k = 1:1:TI
17 cName = files(k).name;
18 [numbers, text] = swallow csv(cName,quote,sep,escape);
19 pixels(k,j) = numbers(pix 20x20(j,1), pix 20x20(j,2));
20 end
21 end
22

23 %% SELECTED (20X20) PIXEL MATRIX
24 %{
25 clc; clear;
26 row = (0:20:480); %24+1
27 col = (0:20:640); %32+1
28 i = 1;
29 for r = 1:25
30 for c = 1:33
31 pix 20x20(i,1) = row(r); pix 20x20(i,2) = col(c);
32 i = i + 1;
33 end
34 end
35 pix 20x20(pix 20x20==0)=1; save('pixels 20x20','pix 20x20');
36 %}
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C.2 Thermal Infrared - Mapping

1 %% CREATE TIR HURST/MEAN/VARIANCE/MAPS
2 % Author: Marwin Ko & Monica Barbadillo
3 % Version 1.0, 08/31/2015
4 % mko3@ucmerced.edu
5 clc; clear; tic;
6

7 %% LOAD SELECTED PIXEL MATRIX
8 load('pixels 20x20.mat'); chosen pix = pix 20x20;
9

10 %% TOTAL DATA HURST
11 for i = 1
12 load(['PIXEL20X20 ',num2str(i),'.mat']); pix = pixels;
13 h map = zeros(825,1); u map = zeros(825,1);
14 v map = zeros(825,1); temp column = zeros(1800,1);
15

16 for j = 1:825
17 temp column = pix(:,j);
18

19 % create maps
20 h = Dentropy(temp column); h map(j,1) = h;
21 u = mean(temp column); u map(j,1) = u;
22 v = var(temp column); v map(j,1) = v;
23 end
24

25 % order: [ROW, COLUMN, HURST, MEAN, VARIANCE]
26 pixels map = [chosen pix, h map, u map, v map];
27

28 % eliminate initial 200 data points
29 pix ss = pixels(201:1800,:);
30

31 h map ss = zeros(825,1); u map ss = zeros(825,1);
32 v map ss = zeros(825,1); temp column ss = zeros(1600,1);
33

34 for k = 1:825
35 temp column ss = pix ss(:,k);
36

37 % create maps
38 h = Dentropy(temp column ss); h map ss(k,1) = h;
39 u = mean(temp column ss); u map ss(k,1) = u;
40 v = var(temp column ss); v map ss(k,1) = v;
41 end
42

43 pixels map ss = [chosen pix, h map ss, u map ss, v map ss];
44 save(['PIXEL MAPS ',num2str(i)],'pixels map','pixels map ss');
45

46 end
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C.3 Cumulative Window Estimation

1 %% Cumulative Window Estimation (CWE) - function file
2 % Author: Marwin Ko & Monica Barbadillo
3 % Version 1.0, 08/31/2015
4 % mko3@ucmerced.edu
5 function [H normal, H abnormal] = ...

CWE(normalData,abnormalData,method)
6 opt = 1; isplot = 0;
7

8 %% MINUTE ARRAY
9 minute = 30;

10 for m = 1:minute
11 mins(m,1) = m;
12 end
13

14 %% SELECTR START TIME
15 % Diffusion Entropy start @ 3min (aka skips first 2 mins)
16 % Peng & Rescaled Range start @ 2min (aka skips first 1 min)
17 de = strcmp('dentropy',method); rs = strcmp('RS',method);
18 pg = strcmp('peng',method);
19 if de == 1
20 start = 3;
21 else if rs == 1
22 start = 2;
23 else if pg == 1
24 start = 2;
25 else
26 start = 1;
27 end
28 end
29 end
30

31 %% NORMAL
32 for m = start:1:minute
33 for i = 1:1:17
34 load([normalData,num2str(i)])
35 [¬,RR interval seg] = ...

RRtime segment(RR time,RR interval,mins(m,1));
36 if de == 1
37 H normal(m,i) = Dentropy(RR interval seg);
38 else
39 H normal(m,i) = ...

hurst estimate(RR interval seg,method,isplot);
40 end
41 end
42 end
43
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44 %% ABNORMAL
45 for m = start:1:minute
46 for j = 1:1:48
47 load([abnormalData, num2str(j)])
48 [¬,RR interval seg] = RRtime segment(RR time,RR interval, ...

mins(m,1));
49 if de == 1
50 H abnormal(m,j) = Dentropy(RR interval seg);
51 else
52 H abnormal(m,j) = ...

hurst estimate(RR interval seg,method,isplot);
53 end
54 end
55 end
56 end

C.4 Sliding window Optimization

1 %% Sliding Window Optimization
2 % Author: Marwin Ko
3 % Version 1.0, 08/31/2015
4 % mko3@ucmerced.edu
5 clear; clc;
6 method = {'aggvar'; 'absval';'diffvar'; 'dentropy'; 'peng'; 'RS';};
7 tit = {'Aggregated Variance';'Absolute Value';...
8 'Difference Variance';'Diffusion Entropy';'Peng';'Rescaled Range'};
9

10 %% FIND OPTIMAL WINDOW & SLIDE LENGTH(S)
11 z = input('Enter Method#: '); load(['A3 avgVar2 ',method{z}]);
12 avg var(avg var==0) = NaN; data = avg var'; MIN = min(data);
13 for i = 2:1:10
14 [s,w] = find(data==min(data(:,i))); slide(i)=s; window(i)=w;
15 end
16 MIN(isnan(MIN))= 0; optWindow = [window',slide',MIN'];
17

18 %% PLOT OPTIMAL TRAJECTORY
19 figure;
20 for z = 1:1:6
21 load(['A3 optSlideTrace ',method{z}]);
22 load(['A3 avgVar2 ',method{z}]); avg var(isnan(avg var))= 0;
23 optWindow(optWindow==0)= NaN; w = optWindow(:,1);
24 s = optWindow(:,2); v = optWindow(:,3);
25 subplot(3,2,z); plot = surf(avg var); hold on; grid on;
26 plot3(s,w,v,'-k'); plot3(s,w,v,'r.'); alpha(.4); colorbar;
27 zlabel('Average Variance'); ylabel('Window Length (min)');
28 title(['\bf',tit{z}]); xlabel('Slide Length (min)'); hold off;
29 end
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C.5 Sliding Window Estimation

1 %% Sliding Window Estimation (SWE) - function file
2 % Author: Marwin Ko & Monica Barbadillo
3 % Version 1.0, 08/31/2015
4 % mko3@ucmerced.edu
5 function hMatrix = SWE(data,window,slide,method)
6 opt = 1; isplot = 0; load(data);
7

8 %% PARTITION HRV DATA
9 [RR t seg,RR int seg] = RRtime segment(RR time,RR interval, 30);

10 last = RR t seg(length(RR t seg)); mins = int64(last/60);
11 iterations = ceil((mins-window)/slide); start=0; endd=window;
12 points = zeros(mins,1); hMatrix = zeros(iterations,2);
13

14 % calculate all minutes (number of points per minute)
15 for m = 1:mins
16 [¬,RR interval seg] = RRtime segment(RR time,RR interval, m);
17 [points(m,1),n] = size(RR interval seg);
18 end
19 [¬,RR interval seg] = RRtime segment(RR time,RR interval, endd);
20 windowMatrix = RR interval seg(1:end, 1);
21

22 %% HURST ESTIMATION
23 de = strcmp('dentropy',method); i = 1;
24 if de == 1
25 hMatrix(i,2) = Dentropy(windowMatrix);
26 else
27 hMatrix(i,2) = hurst estimate(windowMatrix,method,isplot);
28 end
29 hMatrix(i,1) = endd; start = start+slide; endd = endd+slide;
30 for i = 2:iterations
31 [¬,RR interval seg] = RRtime segment(RR time,RR interval, endd);
32 s = points(start,1); windowMatrix = RR interval seg(s:end, 1);
33 if de == 1
34 hMatrix(i,2) = Dentropy(windowMatrix);
35 else
36 hMatrix(i,2) = ...

hurst estimate(windowMatrix,method,isplot);
37 end
38 hMatrix(i,1) = endd;
39 if (endd+slide)>mins
40 break;
41 else
42 start = start+slide; endd = endd+slide;
43 end
44 end
45 end
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