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Abstract 

The practice of using covariates in experimental designs has become controversial. 

Traditionally touted by statisticians as a useful method to soak up noise in a dependent variable 

and boost power, the practice recently has been recast in a negative light because of Type I error 

inflation. But in order to make informed decisions about research practices like this one, 

researchers need to know more about the actual size of their benefits and costs. In a series of 

simulations, we compared the Type I error rates and power of two analytic practices that 

researchers might use when confronted with an unanticipated, independent covariate. In the 

baseline practice, a researcher only analyzes the effect of the manipulation on the dependent 

variable; in the flexible-covariate practice, she analyzes both the effect of the manipulation on 

the dependent variable and the effect adjusting for the unanticipated covariate. We show that the 

flexible-covariate (vs. baseline) practice inflates Type I error by a small amount, and that it 

boosts power substantially under certain circumstances. The flexible-covariate practice tends to 

be most beneficial when the covariate is strongly correlated with the dependent variable in the 

population, and when the experimental design would have been only moderately powered (40%–

60%) without including the covariate in the analysis. We offer concrete recommendations for 

when and how to use independent covariates in experimental designs, and contextualize our 

findings within the movement toward quantifying tradeoffs in choosing among research practices 

and optimizing the choice of practice within a given research context. 

 

Keywords: covariate; false positives; power; tradeoff; exploratory analysis 
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Using independent covariates in experimental designs:  

Quantifying the trade-off between power boost and Type I error inflation  

Traditionally, statisticians have promoted the covariate as a useful tool for soaking up 

extra noise in a dependent variable, thereby boosting the statistical power of an experiment (e.g., 

Cohen, 1988; Maxwell & Delaney, 1990). More recently, however, this practice has been recast 

in a negative light because the flexible inclusion of a covariate in an analysis can lead to Type I 

error inflation (e.g., Simmons, Nelson, & Simonsohn, 2011; Simonsohn, Nelson, & Simmons, 

2014). Thus, covariates—once cast as power-boosting heroes of experimental research—have 

been reimagined as error-inflating villains. These contrasting perspectives have led to 

considerable confusion as researchers attempt to distill these (often nuanced) statistical 

discussions into concrete and straightforward guidelines for best practices. Indeed, a quick skim 

of various articles and chapters on research practices can find covariates both touted for their 

power-boosting capabilities and frowned upon for their error-inflating potential within the same 

paper (e.g., Asendorpf et al., 2013; Ledgerwood, Soderberg, & Sparks, 2017).
1
 

One easy way to reconcile these contrasting narratives is simply to advocate including a 

covariate in the analysis of experimental data if and only if the covariate is specified a priori—

for instance, in a pre-analysis plan (see Ledgerwood et al., 2017; Simonsohn et al., 2014). By 

choosing a covariate ahead of time and analyzing the data only with the covariate included, a 

                                                           
1
 Of course, there are two different reasons why a researcher might use a covariate (see Supplemental Materials for a 

detailed discussion). In the first—the focus of this article—a researcher includes a covariate measured before an 

experimental manipulation in order to soak up some of the noise in her dependent variable. That is, the covariate is 

independent from the manipulation, and it accounts for a portion of the variance in the dependent variable that is due 

to stable individual differences. In the second, a researcher includes a covariate measured after an experimental 

manipulation, or measured in a nonexperimental study, in an attempt to control for a potential confound; in such 

cases, the purpose of the covariate is not reducing unexplained variance in the dependent variable but rather 

accounting for some portion of the explained variance. We focus here on the first context; a host of other issues are 

relevant for the second context and have been discussed in detail elsewhere (e.g., Westfall & Yarkoni, 2016; 

Yzerbyt, Muller, & Judd, 2004).  
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researcher can avoid Type I error inflation while still realizing any power-boosting benefits of 

including a covariate in their analysis. This a priori approach to including a covariate therefore 

represents an ideal strategy for researchers to use in order to maximize what they can learn from 

their data. 

But of course, even the most careful planning cannot foresee every possible 

circumstance, and in the real and inevitably messy world of everyday research, the possibility of 

including a covariate in a design is sometimes unanticipated. A researcher may run an 

experiment, analyze her data, and only then realize that she could have included a particularly 

promising covariate that a colleague assessed at the beginning of the semester. Consider a 

scenario that mirrors one we have often seen in our own labs: A social psychologist conducts an 

experiment to test the effect of a social comparison manipulation on self-esteem, finds a non-

significant effect, and then presents the “failed” study at a lab meeting to ask for advice on next 

steps. A student might then suggest: Why not include extraversion, which was measured in the 

departmental prescreen, as a covariate in the analysis to boost power, since extraversion 

correlates relatively strongly with self-esteem (Robins, Tracy, Trzesniewski, Potter, & Gosling, 

2001) and is therefore likely to soak up a substantial amount of noise in the dependent variable 

of interest? When researchers stumble upon a promising covariate unexpectedly like this, should 

they ever consider using it in the hope of boosting power and learning more from their already 

collected data? Or should they shun unexpected covariates entirely, to avoid rampant Type I 

error inflation? 

To answer these questions, we need to know more about (a) how beneficial is the 

research practice of including a promising but unplanned covariate for boosting power, as well as 

(b) how costly is this practice for Type I error. Like many other research practices, flexibly 
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analyzing one’s experimental data both with and without a covariate poses a trade-off (Brewer & 

Crano, 2014; Finkel, Eastwick, & Reis, in press; Ledgerwood & Shrout, 2011): in this case, 

between boosting statistical power on the one hand and increasing the likelihood of a false 

positive on the other. If researchers are to make thoughtful and well-informed choices about their 

research practices—and to engage in empirically grounded discussions and debates about the 

merits and drawbacks of various approaches—we need to start quantifying these kinds of trade-

offs and exploring the conditions under which they are bigger or smaller (Miller & Ulrich, 2016).  

In this article, we assume that most researchers share the goal of maximizing what they 

can learn from their data—an aim that has long been recognized as involving a balancing act 

between minimizing Type I error on the one hand and maximizing statistical power on the other 

(Keppel & Wickens, 2004; Lakens & Evers, 2014; Ledgerwood, 2014). We set out to evaluate 

various approaches to using covariates that researchers might consider in terms of their 

usefulness in helping researchers to achieve that goal (see Table 1 for a preview of our 

recommendations). In addition to considering the a priori research practice noted above, we 

conducted a series of simulations to quantify the power boost and Type I error inflation produced 

by flexibly including a single, promising covariate when analyzing experimental data. We also 

explore and discuss a range of other possible approaches a researcher might take when 

confronting an unanticipated covariate, including flexibly including multiple covariates and 

flexibly testing interactions between a covariate and the key independent variable of interest. We 

conclude with concrete recommendations for researchers wishing to make informed decisions 

about tradeoffs when selecting among possible approaches to learning from their data.  
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Table 1 

Possible Approaches to Using Independent Covariates When Analyzing Experimental Data 

Research Practice  Recommendation 

Baseline: When confronted with a single, unanticipated, 

promising covariate after conducting the primary analysis, 

ignore it. Stick to the original analysis plan. 

 

Recommended if your priority 

is minimizing Type I error 

regardless of power 

Flexible covariate: When confronted with a single, 

unanticipated, promising covariate after conducting the 

primary analysis, flexibly include it in a second analysis. 

 

Recommended if you want to 

balance Type I error and power 

considerations. 

Kitchen sink: When a primary analysis doesn’t reach 

significance, try a series of data-dependent tests (e.g., 

multiple covariates, including the interaction between the 

covariate and the IV) until something reaches significance. 

 Not recommended 

A priori: Before conducting a study, carefully choose a 

promising covariate and record a pre-analysis plan. 
 

Recommended and ideal: 

Boosts power without inflating 

Type I error 

 

The Current Research 

A simple and straightforward way to quantify the effect of a given research practice on 

both Type I error rate and power is by using Monte Carlo simulations. Simulations allow us to 

create datasets that are sampled from a known population model. We can then analyze these 

datasets using different analytic practices to see how often a given practice incorrectly detects an 

effect when none is present (which tells us the practice’s Type I error rate) and correctly detects 

an effect when one is present (which tells us the practice’s statistical power) in the known 

population model. In our simulations, we focused on a simple two-group experimental design in 

which a researcher wants to test the effect of their manipulation, X, on their dependent variable, 

Y. We also simulated a covariate, C, that was independent from X in the population, reflecting 

the scenario of interest where a covariate is measured before the manipulation in an experiment. 
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We then compared the Type I error rate and power produced by the first two research 

practices listed in Table 1. In both cases, we imagine that a researcher tests the effect of X on Y, 

and then only later discovers that it would be possible to include a promising covariate in the 

analysis.
2
 In the first, baseline research practice, the researcher forgoes including the covariate 

because it was not specified a priori and only infers the presence of an effect if the initial test of 

X on Y is significant at p < .05. In the second, flexible-covariate practice, the researcher 

conducts both the initial analysis without the covariate and then also a second analysis with the 

covariate included, and infers the presence of an effect if either the initial test of X on Y and/or 

the subsequent test of X on Y adjusting for C is significant at p < .05.
3
 We assessed both the 

degree of Type I error inflation and the power boost produced by the second research practice 

(vs. the first) across varying levels of (1) sample size, (2) the true effect size of X on Y, and (3) 

the true correlation between C and Y in the population. 

Method 

We describe our simulations in detail in the Supplemental Materials; here, we simply 

highlight the key elements of our approach. We generated random samples of data consistent 

with a two-condition experiment involving a manipulated variable X, a measured dependent 

variable Y, and a measured covariate C. Across these simulations, we systematically varied three 

factors: (1) The total sample size of the simulated experiment (from N = 40 to 200 in increments 
                                                           
2
 Again, if a researcher can identify a promising covariate ahead of time, he can maximize power while holding 

Type I error rate at 5% by setting and recording a pre-analysis plan to conduct a single test of the effect of interest 

with the covariate included. This is clearly the ideal strategy, as noted in Table 1, and we return to highlight this 

point in the General Discussion. But here, we are interested in quantifying the tradeoffs that may confront 

researchers in the messy real world, where sometimes the possibility of including a promising covariate does not 

occur to a researcher until after he has already conducted his study and analyzed his results. 
3
 This simulated strategy of conducting both tests and inferring an effect if either is significant may sound slightly 

different from the sequential strategy described earlier, in which a researcher tests the effect of X on Y and then 

pursues one of two courses of action depending on the significance of this initial test: (1) if the initial test is 

significant, she infers the presence of an effect, or (2) if the initial test is not significant, she continues on to test the 

effect of X on Y adjusting for C and infers an effect if this second test is significant. Note, however, that they are 

mathematically equivalent. 
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of 40); (2) the true effect size of X on Y (d = 0 to 0.80 in increments of .10); and (3) the true 

correlation between C and Y ( = 0 to .6 in increments of .10). We then analyzed each dataset 

using the two research practices described above: a baseline practice (a single analysis testing 

whether X affects Y) and a flexible-covariate practice (one analysis testing whether X affects Y 

and one analysis testing whether X affects Y when C is included as a covariate; this practice 

produces a significant result if either or both analyses are significant).  

The Type I error is given by the percentage of simulated samples in which a given 

research practice returns a significant result (p < .05) when there is no effect of X on Y in the 

population (d = 0). Power is provided by the percentage of simulated samples in which a given 

research practice returns a significant result (p < .05) when there is a true effect of X on Y in the 

population (d > 0). We calculated two values of interest in order to compare them across the 

various simulations: Type I error inflation, referring to the increase in the Type I error rate 

produced by using the flexible-covariate (vs. baseline) practice, and power boost, referring to the 

increase in power produced by using the flexible-covariate (vs. baseline) practice.  
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Figure 1. Type I error rate and power produced by the baseline and flexible-covariate practices 

as a function of the total sample size (N), the true effect size of X on Y (d), and the true 

correlation between C and Y in the population (). The Y-axis represents the probability of 

finding a significant result, which is marked by solid lines for the baseline practice and dotted 

lines for the flexible-covariate practice across sample size and effect size. The dotted and solid 

lines reflect Type I error rate when d = 0 (left panel), and power when d > 0 (right panel). The 

width of the shaded band between the solid line and the dotted line for each color represents the 

extent to which the covariate (vs. baseline) practice inflates Type I error (left panel) and boosts 

power (right panel). Whereas Type I error inflates slightly as  increases, power receives a boost 

that becomes substantially larger as  increases. (For more details, see Supplemental Materials.) 
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Results 

Figure 1 illustrates the trade-off between Type I error inflation and power boost across 

varying levels of sample size, true effect size of X on Y, and true correlation between C and Y in 

the population. Unsurprisingly, the flexible-covariate (vs. baseline) practice resulted in Type I 

error inflation, which increased as the true correlation between C and Y increased. However, this 

inflation was relatively small: Even when C and Y correlated as high as  = .6 in the population, 

the Type I error inflation produced by the flexible-covariate practice remained below 3% (i.e., an 

error rate below 8%), regardless of sample size. When C and Y correlated at .4 (akin to the 

correlation between neuroticism and subjective well-being or extraversion and self-esteem; 

DeNeve & Cooper, 1998; Robins et al., 2001), Type I error inflation was only around 2%.  

Power, on the other hand, increased—often substantially—under the flexible-covariate 

practice. The extent of power boost depended on the true correlation between C and Y, as well as 

the baseline power (a function of sample size and the effect size of X on Y). As the true 

correlation between C and Y increased, power boost increased. As baseline power increased 

(because of an increase in sample size and/or a larger effect of X on Y), power boost increased, 

reaching a peak at moderate levels of baseline power, and then decreasing again as statistical 

power approached its ceiling (see Figure 2). Thus, using the flexible-covariate practice should 

generally give researchers the greatest power boost when their experiment would have been only 

moderately powered (e.g., 40%–60%) without the covariate.  
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Figure 2. Power boost from using the flexible-covariate (vs. baseline) practice as a function of 

baseline power, shown across a range of true correlations between C and Y in the population. 

Each dot indicates one population that we simulated (i.e., one combination of the three factors 

we varied in our study design: sample size, true effect size of X on Y, and true correlation 

between C and Y in the population). Quadratic regressions between baseline power and power 

boost are fitted for each level of , and regression lines and 95% confidence intervals are plotted. 

Power boost peaks at moderate levels (around 40%–60%) of baseline power and drops off on 

either side of the mid-range. 

 

To demonstrate the trade-off more concretely, we zoom in on one typical scenario as an 

example (Table 2). When the true effect size of X on Y is d = 0.4 (approximately the average 

reported effect size in social-personality psychology; Richard et al., 2003; Fraley & Vazire, 

2014) and the true correlation between C and Y in the population is  = .4, the flexible-covariate 
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practice produces Type I error inflations of around 2%, while yielding sizable power boosts. In 

Table 2, we illustrate the practical impact of this research practice by converting power boost to 

number of additional participants needed to achieve comparable levels of power with the 

baseline practice. For example, with a sample size of N = 160, flexibly including a covariate 

results in a power boost of around 10%, which is equivalent to running 44 more participants. 

 

Table 2 

 

Type I Error Inflation and Power Boost Produced by the Flexible-Covariate (vs. Baseline) 

Practice at d = 0.4 and  = .4. 

 

Total Sample Size (N) 
Type I Error 

Inflation 
Power Boost 

Number of Additional Participants Needed 

for Comparable Power Boost (N) 

40 2%   6% 14 

80 2% 10% 26 

120 2% 10% 32 

160 2% 10% 44 

200 2%   8% 50 

Note. The numbers of additional participants needed to achieve a comparable power boost were 

calculated as the difference between the total sample size in the first column and the minimum 

sample size required by the baseline practice to reach or exceed the (boosted) power of the 

flexible-covariate practice, as computed in G*Power. 

 

 

Other Potential Approaches for Unanticipated Covariates 

Flexibly including both C and the X*C interaction. Readers might reasonably wonder 

how our results compare to those of Simmons, Nelson and Simonsohn (2011), who suggested 

that including a covariate in an analysis is a form of “researcher degrees of freedom” (p. 1359) 

that can result in a potentially dramatic inflation of Type I error rate. In their simulation studies, 

Simmons and colleagues examined the Type I error rate for a research practice in which a 

researcher tests (1) the effect of X on Y, (2) the effect of X on Y controlling for C, (3) the 

interactive effect of X and C on Y, and (4) the effect of X on Y controlling for both C and the 
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interaction between X and C; the researcher then reports a finding if any of these four tests 

reaches significance. We conducted additional simulations examining this four-part approach 

across the various sample sizes, true effect sizes of X on Y, and true correlations between C and 

Y included in our design. Consistent with the illustrative findings reported by Simmons et al. 

(2011), we found that this practice substantially inflated Type I error rates across the conditions 

in our design, such that Type I error regularly exceeded 10% (see Supplemental Materials for 

further details). In contrast, the power boost provided by the Simmons et al. approach was 

similar to that of the flexible-covariate practice we tested in our original simulations. For 

example, in the research scenario described in the preceding paragraph (where N = 160, d = 0.4, 

 = .4), using the Simmons et al. practice (vs. the baseline practice) would provide a power boost 

of around 11%, while more than doubling the Type I error rate (from 5% to 12%). In 

comparison, using our flexible-covariate (vs. baseline) practice would provide a power boost of 

around 10%, while inflating Type I error rate by only 2% (from 5% to 7%). In other words, 

allowing C to interact with X and reporting any significant effect substantially inflates Type I 

error beyond the flexible-covariate practice we tested in our main simulations, without providing 

a substantial boost to power. We therefore recommend against using the four-part practice.
4
 

Flexibly including multiple covariates. What happens to Type I error rate and power 

when researchers consider flexibly including more than one covariate in their analysis? For 

example, in the scenario we described at the beginning of this paper, a researcher wonders 

                                                           
4
 If researchers wish to test the homogeneity of regression assumption (see e.g., Cohen, Cohen, West, & Aiken, 

2003, pp. 350–351) before relying on the results of an ANCOVA model, we recommend that upon encountering a 

promising but unanticipated covariate, they set and record the following exploratory analysis plan: (1) Run an 

ANCOVA testing the effect of X on Y adjusting for C and the X*C interaction. If the X*C interaction is significant, 

stop. Do not use the flexible covariate strategy, and do not interpret the X*C interaction as meaningful (there is a 

relatively high chance that it is a false positive). If the X*C interaction is not significant, proceed to: (2) Run an 

ANCOVA testing the effect of X on Y adjusting for C (i.e., the flexible-covariate strategy) and follow the 

recommendations outlined in the Discussion below. 
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whether to flexibly include a single, especially promising covariate—extraversion—in an 

analysis testing the effect of social comparison information on self-esteem because large datasets 

suggest a fairly strong correlation between extraversion (the potential covariate) and self-esteem 

(the dependent variable). But what would happen if instead of carefully choosing this one 

particularly promising covariate, a researcher instead adopted a “kitchen sink” approach and 

decided to flexibly include each of the other Big Five factors as a covariate as well? Although it 

might be tempting for researchers to flexibly include an entire battery of potential covariates in 

their analysis, hoping to find one or another that will produce a favorable p-value, we discourage 

this kitchen-sink approach because it can inflate Type I error rates well beyond the carefully 

chosen flexible-covariate practice described in our main simulations. This happens because a 

kitchen-sink practice substantially increases the number of significance tests that are conducted 

on the data.  

We conducted a series of additional simulations to illustrate this problem. In these 

simulations, the baseline practice again involved a single analysis testing whether X affects Y; 

the kitchen-sink practice, on the other hand, included six tests: one analysis testing the effect of 

X on Y, and five additional analyses testing the effect of X on Y when controlling for each of 

five potential covariates (analogous to a scenario in which a researcher systematically tests 

whether any of the Big 5 factors “works” to produce a significant effect of X on Y). The extent 

of Type I error inflation in such a scenario depends on how strongly each of the covariates 

correlates with Y, and it can get quite a bit higher than the original flexible-covariate practice we 

simulated above. For example, when two of the five covariates strongly correlated with Y ( = 

.4) while the other three covariates correlated more weakly with Y ( = .2), using the kitchen-

sink practice inflated the Type I error rate to 10%. The inflation became even worse as the 
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correlations between the five covariates and Y grew stronger: For example, the Type I error rate 

could reach as high as 16% when C1–C5 each correlated with Y at  = .5.
5
  

The Type I error rate produced by a kitchen-sink approach also depends on how many 

flexible tests are considered (e.g., is each covariate tested one at a time or does the researcher 

also include them in pairs, trios, fours, and/or all together? Are any or all of the possible 

covariates allowed to interact with X?). In general, as the number of possible tests increases, so 

too does the Type I error rate. Thus, the Type I error rate associated with using a kitchen-sink 

approach in the real world becomes nearly impossible to estimate because of the many potential 

researcher decisions and population parameters that can affect it.
6
 This means that when 

considering whether to adopt a kitchen-sink practice, researchers cannot make informed 

decisions about the likely tradeoff between Type I error inflation and power boost, because so 

many unknown parameters can influence the tradeoff in this context. We therefore recommend 

against flexibly including multiple covariates in an analysis, both because doing so can 

substantially inflate Type I error rates (as illustrated by the scenarios examined above), and 

because researchers will not have a good sense of the tradeoffs they are making between Type I 

error inflation and power boost. 

Using the observed correlation in the sample to decide whether to flexibly include a 

single, promising covariate. Flexibly including a single, unanticipated covariate in an analysis 

                                                           
5
 In these examples, the sample size was set at N = 200, and the intercorrelations among the five covariates were set 

as .1 or below. Varying the sample size or the covariate intercorrelations (e.g., setting them to be the same as those 

observed in a recent meta-analysis of the Big Five intercorrelations; van der Linden, Nijenhuis, & Bakker, 2010) did 

not substantially change the pattern of Type I error rates (difference within 1%). 
6
 The kitchen-sink strategy we considered, for instance, can produce at least 9 (effect size of X on Y: Cohen’s d = 0–

0.80 in increments of .10) × 5 (total sample size: N = 40–200 in increments of 40) × 7
5
 (magnitude of correlation 

between each C and Y:  = 0–.6 in increments of .10) × 7
10

 (magnitude of correlation between any two Cs:  = 0–.6 

in increments of .10) ≈ 2.56 × 10
14

 potential conditions, even when we do not consider additional variations on the 

strategy (e.g., including two or three covariates at a time). Given the astronomical number of potential conditions, it 

would be exceedingly difficult for a researcher to gauge the likely tradeoffs involved in adopting a kitchen-sink 

strategy for a particular study by estimating all the relevant population parameters. 



QUANTIFYING TRADEOFFS IN COVARIATE USE 16 

seems to produce a relatively reasonable tradeoff between Type I error inflation and power 

boost, compared to the even more flexible practices described above. But could we improve 

upon the single flexible-covariate practice by somehow retaining the power boost it provides 

while minimizing Type I error rate inflation? Given that greater power boost tends to occur at 

higher correlations between C and Y in the population, researchers might intuitively expect that 

they can simultaneously maximize their power boost and reduce Type I error inflation if they 

decide, upon first encountering an unanticipated but promising covariate, to only include it in 

their analysis if the covariate correlates with Y at above a certain level in their sample. For 

instance, the researcher in our example scenario may decide to only include extraversion as a 

covariate if it correlates with self-esteem at or above r = .3. In other words, could researchers use 

the sample correlation between C and Y to figure out which color curve in Figure 2 they are 

likely to be on, and then only use the flexible-covariate practice if they are on one of the higher 

curves? 

However, additional simulations suggested that this approach does not improve the 

tradeoff between error inflation and power boost. Because correlations tend to fluctuate wildly 

when using the sample sizes typically employed in social psychology studies (N < 250; 

Schönbrodt & Perugini, 2013), testing the correlation between C and Y in a small sample will 

give researchers unreliable estimates of the true correlation in the population. Since the extent of 

both Type I error inflation and power boost depends on the correlation between C and Y in the 

population, not the correlation observed in the sample, referring to the sample correlation gives 

researchers a poor estimate of the tradeoff they face in reality. As a result, using the observed 

correlation between C and Y to decide whether to flexibly include a covariate does not improve 

the tradeoff between Type I error inflation and power boost (see Supplemental Materials for 
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details). Thus, we recommend against trying to use the observed correlation between C and Y 

within a small (N < 250) sample as a decision rule for whether to include an unanticipated 

covariate in an analysis—it does not improve the Type I error inflation/power-boost tradeoff, and 

may mislead researchers into thinking they have a more precise estimate of that tradeoff than 

they really do. 

Adjusting alpha to offset Type I error inflation. Finally, one might wonder whether 

reducing the alpha level for the flexible test of X on Y adjusting for C could allow researchers to 

hold their ultimate Type I error rate at 5% while still capitalizing on at least part of the power 

boost observed in our simulations. However, this approach confronts the same challenge we 

encountered above: In the real world, researchers do not know the actual population parameters 

that characterize their study (we can specify the true population correlations and effect sizes in a 

simulation, but in reality, of course, these numbers are unknown). Because the extent of Type I 

error inflation depends on these population parameters, it is impossible to know precisely what 

level of adjusted alpha would keep Type I error rate at exactly 5% when the population 

parameters are unknown. If researchers adopt an adjusted alpha value that holds the Type I error 

rate at or below 5% across a range of possible population parameters, this adjusted value will be 

too conservative under some conditions. Therefore, this approach results in a considerable loss of 

power—for instance, additional simulations showed that if researchers were to adopt an adjusted 

alpha value of .033, they would lose a substantial amount of the power boost provided by the 

flexible-covariate practice; in some conditions, researchers would even lose power relative to the 

baseline practice because the adjusted alpha value is too conservative (see Supplemental 

Materials for details). Therefore, for researchers who wish to prioritize holding their Type I error 

rate at 5% for a particular experiment, we advise against using the flexible-covariate practice 
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with an adjusted alpha level. Instead, our recommendation for these contexts is for researchers to 

use the baseline practice (i.e., ignore the unanticipated covariate)—or to consider using the 

flexible-covariate practice as an exploratory analysis, acknowledging that it will slightly inflate 

Type I error for the current experiment, and to follow it up with a confirmatory replication study. 

Discussion 

Our results suggest that flexibly including a single, unanticipated covariate in an analysis 

can both slightly inflate Type I error and substantially boost power. Across a range of plausible 

sample sizes, true effect sizes of X on Y, and population correlations between C and Y, the Type 

I error rate produced by a flexible-covariate practice remained below 8%. Meanwhile, the power 

boost from the flexible-covariate practice was highest when the population correlation between C 

and Y was moderate to high, and when an experiment was moderately powered. 

We hope that illuminating these tradeoffs enables researchers to make informed decisions 

about whether and when to consider using a flexible-covariate approach based on the relative 

importance of minimizing Type I error and maximizing power in a given research context. For 

instance, in contexts where data collection is easy and false positives are costly, researchers may 

wish to prioritize minimizing their Type I error rate. In such contexts, the Type I error inflation 

produced by the flexible-covariate practice may not be worth the boost to power, and researchers 

may choose instead to rerun their study with the promising covariate recorded ahead of time in a 

pre-analysis plan. On the other hand, in contexts where data collection is difficult and false 

negatives are costly, researchers may wish to prioritize increasing their power. In these contexts, 

the flexible-covariate practice may be worth considering as a tool for maximizing what 

researchers can learn from the data they have already collected.  
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We encourage researchers to weigh these tradeoffs for themselves, based on their own 

priorities and their own particular research context. With that caveat, we can offer some concrete 

recommendations for when and how to use independent covariates (i.e., covariates measured 

before the manipulation in experimental designs) that we think will be generally applicable to 

many researchers in many contexts: 

1. Whenever possible, carefully choose a promising covariate ahead of time. If 

researchers (a) identify a covariate that is likely to correlate strongly with the 

dependent variable in the population, and (b) record their planned analysis ahead 

of time in a pre-analysis plan, they can gain a substantial power boost while 

preserving a 5% Type I error rate. This approach allows researchers to take 

advantage of the covariate’s ability to soak up noise in the DV while entirely 

avoiding the Type I error inflation that results from data-dependent analytic 

decisions.  

2. When confronted with a serendipitous, unplanned covariate:  

a) Consider adjusting for the covariate in the test of X on Y if it is likely to 

correlate strongly with the DV in the population. Rely on large datasets or meta-

analyses that do a good job of accounting for publication bias
7
 whenever possible 

for evidence of strong correlations. Avoid relying on the observed correlation 

within the experimental dataset itself, since estimates can fluctuate widely from 

                                                           
7
 For example, look for meta-analyses that use selection methods to assess how robust the results are to different 

forms of publication bias (McShane, Böckenholt, & Hansen, 2016), or meta-analyses that incorporate large amounts 

of unpublished data (e.g., Eastwick, Luchies, Finkel, & Hunt, 2014), or meta-analyses that include data from many 

studies in which the result of interest to the meta-analysis was not the focal hypothesis test of the original paper 

(e.g., Emery & Levine, in press). 
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the true population parameter in smaller samples (Schönbrodt & Perugini, 2013; 

see Supplemental Materials). 

b) Decide whether the cost of inflating Type I error is worth the benefit of 

the potential power boost. A flexible-covariate practice will be especially helpful 

when a study is only moderately powered and when it is difficult or impossible to 

collect more data. 

c) Consider registering your carefully chosen covariate before conducting 

the flexible-covariate analysis by downloading the simple form provided at this 

link: https://osf.io/pqk35. Registering your covariate before including it in the 

analysis may be helpful for reassuring editors, reviewers, and readers that you 

conducted one and only one flexible analysis. 

d) Always transparently report all tests conducted and clearly label a 

flexible-covariate analysis as exploratory. Researchers should always be 

transparent about the number and nature of the tests conducted. Since a flexible-

covariate practice is by definition data-dependent, it should be clearly labeled as 

such and followed up with a replication before researchers assign high confidence 

to the results (van’t Veer & Giner-Sorolla, 2016; Ledgerwood et al., in press). We 

offer a suggested template for reporting the flexible-covariate practice in Figure 3. 

3. When confronted with a scenario not modeled here: Consider conducting your 

own simulations to model the tradeoffs involved in the specific scenario that you 

confront (e.g., encountering two promising but unanticipated covariates and 

conducting one flexible analysis that includes both), using the simulations 

reported here as a template (syntax available at osf.io/5d6hn).  
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Figure 3. Suggested Template for Reporting the Use of the Flexible-Covariate Practice in the 

Methods Section of a Manuscript. 

 

Correspondingly, we also offer some notes of caution: 

1. The recommendations above apply only to experimental designs when the 

covariate is measured before the manipulation. Our simulations and 

recommendations assume X and C are independent in the population and do not 

generalize to other contexts. 

2. Avoid testing the interaction between X and C or flexibly including more than 

one covariate. As the number of tests increases, Type I error rate can increase 

substantially. For example, Simmons et al. (2011) found (and we replicated in 

additional simulations) that flexibly testing the effect of (1) X on Y, (2) X on Y 

adjusting for C, (3) the effect of X on Y adjusting for C and the X*C interaction, 

and (4) the interactive effect of X and C on Y can inflate Type I error rates to 

11.7%. In contrast, in our simulations, flexibly including a single, carefully 

chosen covariate when testing the effect of X on Y inflated Type I error rates to 

only 6–8%, while offering a power boost comparable to that of Simmons et al.’s 

four-part approach.  

3. Resist the temptation to toss a covariate into an analysis “just to see if it 

helps,” without a compelling reason to expect a strong correlation between C and 

     Extraversion as an Exploratory Covariate. Following the recommendations of Wang et al. (2017), we 

included an unanticipated covariate: After conducting our planned analysis, we learned that a measure of 

extraversion was available, which theoretically should correlate with our dependent variable at around  = .4 

(Robins, Tracy, Trzesniewski, Potter, & Gosling, 2001). In our results section, we report both the original, 

planned test as well as this exploratory, flexible-covariate analysis. The flexible-covariate strategy offers a 

tradeoff between a slightly increased Type I error rate and a substantial boost to power, and we reasoned that 

this tradeoff was worth making in this context to maximize what we can learn from this study. 
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Y. A weakly correlated covariate will barely boost power, but can inflate Type I 

error—a poor trade-off to make. 

 

By quantifying the trade-off between Type I error inflation and power boost associated 

with including an unanticipated covariate in an analysis, we respond to recent calls for 

understanding how researchers can optimize their choice of research practices (Finkel et al., in 

press; Ledgerwood, 2016; Miller & Ulrich, 2016), and provide recommendations for when and 

how to use independent covariates in experimental designs. Covariates are not simply error-

inflating villains or power-boosting heroes—rather, our simulations show they have both benefits 

and costs. Researchers can weigh these trade-offs to make informed choices about optimal 

practices to use in their own research. We hope this paper can help researchers make thoughtful 

decisions about how to plan their experiments ahead of time as well as how to cope with 

unanticipated situations (i.e., stumbling upon a promising but unexpected covariate), thereby 

maximizing the informational value of their research. 
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