Title
A case of a patient with stage III familial hidradenitis suppurativa treated with 3 courses of infliximab and died of metastatic squamous cell carcinoma.

Permalink
https://escholarship.org/uc/item/4hz964w9

Journal
Dermatology Online Journal, 20(3)

Author
Scheinfeld, Noah

Publication Date
2014

DOI
10.5070/D3203021764

Copyright Information
Copyright 2014 by the author(s). This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/
Letter

A case of a patient with stage III familial hidradenitis suppurativa treated with 3 courses of infliximab and died of metastatic squamous cell carcinoma.

Noah Scheinfeld

Dermatology Online Journal 20 (3): 17

Assistant Clinical Professor of Dermatology Weil Cornell Medical College

Correspondence:
Noah Scheinfeld
150 West 55th Street
New York NY 10019
Scheinfeld@earthlink.net

Abstract

Although rare, severe hidradenitis suppurativa (HS) of the anal, perianal, gluteal, thigh, and groin regions can evolve into squamous cell carcinoma (SCC). This usually does not occur until the HS has been present for more than 20 years. Malignant degeneration of HS in the axilla has not been reported. SCC has developed in dissecting cellulitis, acne conglobata, and pilonidal cysts (other members of the follicular tetrad). Whereas the male to female ratio of HS is 1:3, SCC in HS has a male to female ratio of 5:1. The reasons behind malignant degeneration in HS are complex and might differ from the malignant degeneration causing Marjolin ulcers. It likely involves the presence of human papilloma virus (HPV) in affected areas (a rarity in the axilla), and impaired defensins, which combat HPV, in the skin of Hurley Stage III HS. In familial HS, the odds of developing SCC are likely greater because of independent loss-of-function mutations in the γ-secretase multiprotein complex, which regulates the Notch signaling pathway. Compromise of the Notch signaling pathway can undermine immune function and increase the risk of neoplastic development. Coincident SCC with use of tumor necrosis factor α blockers has been reported. I report a patient with long standing Hurley Stage III, familial HS, who developed metastatic SCC after 3 courses of infliximab and expired 11 months after the infliximab was started.

A 47-year-old male presented with progressive HS since early adulthood. His stage III hidradenitis suppurativa (HS) involved his groin, legs buttocks, and perineal areas. Interestingly, his HS was familial; one daughter also suffered from HS. A pilonidal cyst had been excised in the past. He suffered from hypertension for which he took ramipril, 2.5 mg per day. He did not admit to smoking. He had undergone numerous surgeries and courses of clindamycin with rifampin and clindamycin with minocycline. He used pregablin among other stronger medications for pain control. He had also taken isotretinoin years before without substantial long-term benefit. The various treatments were palliative but the HS always returned. He expressed that the pain from his HS was not bearable. He decided in consultations with his doctors to try infliximab owing to the positive clinical data for its efficacy in HS. He took 3 courses of infliximab 500mg, each of which was followed by surgical debridement of the perineal and anal areas. At the 3rd surgical debridement his physician noted the presence of squamous cell carcinoma (SCC) on July 28, 2008. The infliximab was stopped. However, the patient developed the patient underwent scanning soon after that showed soon after that the SCC had metastasized. He expired in June of 2009.

Discussion

Cancer and the follicular occlusion tetrad

All members of the follicular occlusion tetrad: dissecting cellulitis (DC) [1], acne conglobata(AC) [2,3], hidradenitis suppurativa(HS) [4], and pilonidal cysts(PC) [5] can exhibit involved sites with evolution into squamous cell carcinoma. DC, which is likely the rarest member of the tetrad of four has only one report of degeneration into SCC.;AC has two reports; pilonidal cysts and HS have many reports of SCC developing. A 2011 report [4] noted 64 cases of SCC arising in HS; more reports have been published since that time.
As dermatologists we are familiar with the concept that skin subject to chronic inflammation can develop squamous cell cancers called Marjolin's ulcers (often arising in burn patients) [6]. It is unclear if Marjolin's ulcer, which seems to arise most commonly on the leg, can provide us with data to understand why HS evolves into SCC because the inflammation involved in the two is different. Other areas of chronic inflammation, such as fistulas and chronic inflammation of Crohn disease can evolve into squamous cell carcinoma [7]. Several cases have noted Marjolin's ulcers arising in HS, but it is not clear whether it is simply HS degenerating into SCC or a true Marjolin's ulcer [8]. The development of cancer in HS and MU appear different; MU may require a certain kind of tissue damage to start the skin on its march to malignant degeneration. HS, on the other hand, likely needs more than simple inflammation to transform into SCC as I will try and demonstrate.

In the 2011 review by Nunes [4], it is interesting to note that the number of cases of SCC arising in HS differ among sites. Of 64 patients with HS who developed SCC, the gluteal area was involved in 25 of 64 patients (39%), the perianal area in 20 (31%), the perineal area in 14 (22%), the thigh in seven (11%), the groin in one, and the trunk in one (2%); no SCCs were noted in the axilla. Another similar study only noted HS complicated by SCC in the groin, anal, perianal, and buttocks areas [9]. On the same note, although skin tags are common in the axilla, warts are not. Only one case of a wart arising in the axilla, which arose on an axillary skin tag was noted in the literature [10]. Skin tag are extremely common in the axilla while warts are not, scalp wart occur but are less common then genital warts explaining perhaps why a case of DC turned into an SCC.

This leads us to ask if the presence of human papilloma virus (HPV) combined with the defective cutaneous cellular immunity and chronic inflammation of HS are synergistic in the promotion of SCC in the groin, anus, and perianal areas.

Furthermore, one epidemiological study noted that women are more likely to develop HS and are more likely to have axillary and upper anterior torso involvement, whereas men are more likely to have perineal or perianal disease. The ratio of females to males of having HS is likely about 3:1. [11] The male:female ratio of SCC arising in HS was 5:1 [4].

In addition, in one study found that 54.9% (140/255) of HS patients smoke; HS patients also smoke more than case controls, which also might make more them susceptible SCC development [11].

Observations on SCC arising in HS [4]

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-standing disease affecting large anatomic areas and treated with multiple minor surgical interventions performed over many months or years</td>
<td>The male:female ratio was 5:1.</td>
</tr>
<tr>
<td>SCC does not seem to arise in HS of the axilla</td>
<td></td>
</tr>
<tr>
<td>Duration of HS before the cancer was diagnosed ranged from 2 to 50 years and predominantly from 20 to 30 years.</td>
<td>The size of the neoplastic region varied from 2.5 to 25 cm in diameter and in many patients it was reported as "large."</td>
</tr>
<tr>
<td>SCC occurs in Hurley Stage II or even more likely Hurley Stage III HS.</td>
<td></td>
</tr>
</tbody>
</table>

I would like to theorize that the combination of HS and presence of human papilloma virus (HPV) underlies, in part, the development of SCC in HS. Lavogiez et al [9] examined 217 patients with HS between 1993 and 2008 and found 10 cases of SCC, He detected HPV DNA using two highly sensitive and specific recently developed assays using a specific multiplex PCR combined with DNA microarray primer extension. The assays were combined in a single chip in order to detect 19 mucosal high-risk and potential high-risk HPV types (16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 82) and 25 cutaneous HPV types from genus β (5, 8, 9, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 36, 37, 47, 49, 51, 52, 75, 76, 80, 92, 93 and 96). Lavogiez et al slightly modified the testing, with respect to the previous version, replacing the PCR forward primer for HPV-16 E7. In addition new oligonucleotides were added to the chip in order to detect 15 α-HPV low-risk (6, 11, 34, 40, 42, 43, 44, 54,
Humans express two types of defensins, α- and β-defensins [14], which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids. In addition, inhibition of viral fusion and post-entry neutralization are defensin functions. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. Copy number variation of the antimicrobial-gene, defensin beta 4, is associated with susceptibility to cervical cancer [15].

Defensins are important in keeping HPV in check. It has been shown that healthy control subjects and other anti-pathogenic peptides, which are important in fighting HPV[13]. Hoffman et al [12] studied 36 patients with HS and 57 healthy control subjects and showed that human β-defensin-3 expression is induced in lesional HS skin on transcriptional and protein levels. However, this up-regulation was not detectable in patients with severe HS (Hurley grade III). In contrast, messenger RNA expression of ribonuclease 7 was significantly diminished in lesional HS skin specimens irrespective of HS severity. Deficient constitutive production of ribonuclease 7 and, in severe HS, reduced human β-defensin-3 induction may contribute to impaired immunity within the hair follicle and thereby boost HS inflammation and severity.

Similarly, Dréno et al [13] noted that innate immunity markers (toll-like receptors 2, 3, 4, 7, and 9; intercellular adhesion molecule 1; interleukin [IL] 6 and 10; tumor necrosis factor; α melanocyte stimulating hormone; transforming growth factor β; β-defensin 2) showed abnormal expression. Dréno et al observed significantly decreased expression (P < .001) of all the innate immunity markers studied except IL-10 in nonlesional and lesional HS skin. The downregulation of innate markers was significantly stronger in lesional HS skin compared with normal skin, except for tumor necrosis factor.

I think there are several more pieces to the puzzle of why SCC develops in HS. The skin of stage III HS lacks defensins [12] and other anti-pathogenic peptides, which are important in fighting HPV[13]. Hoffman et al [12] studied 36 patients with HS and 57 healthy control subjects and showed that human β-defensin-3 expression is induced in lesional HS skin on transcriptional and protein levels. However, this up-regulation was not detectable in patients with severe HS (Hurley grade III). In contrast, messenger RNA expression of ribonuclease 7 was significantly diminished in lesional HS skin specimens irrespective of HS severity. Deficient constitutive production of ribonuclease 7 and, in severe HS, reduced human β-defensin-3 induction may contribute to impaired immunity within the hair follicle and thereby boost HS inflammation and severity.

Defensins are important in keeping HPV in check. Humans express two types of defensins, α- and β-defensins [14], which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids. In addition, inhibition of viral fusion and post-entry neutralization are defensin functions. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Copy number variation of the antimicrobial-gene, defensin beta 4, is associated with susceptibility to cervical cancer [15].
References

