
UNIVERSITY OF CALIFORNIA,
IRVINE

Supporting Progressive Query Processing and Scalable Data Enrichment for Real time
Analytic Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Dhrubajyoti Ghosh

Dissertation Committee:
Professor Sharad Mehrotra, Chair

Professor Michael J. Carey
Professor Chen Li

Professor Nalini Venkatasubramanian

2021

© 2021 Dhrubajyoti Ghosh

DEDICATION

To my beloved family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 Related Works 8

3 EnrichDB Data Model 14
3.1 Data Model . 14
3.2 Query Model . 20

3.2.1 Query Language . 20
3.2.2 Determinization-Based Query Semantics 21

4 EnrichDB System Implementation 26
4.1 Enriching Data During Query Processing . 29

4.1.1 Query Processing in EQLC . 31
4.1.2 Query Processing in EQTC . 34
4.1.3 Comparison between EQLC and EQTC 36

4.2 Progressive Query Processing . 38
4.2.1 Progressive Queries . 39
4.2.2 State Management . 42
4.2.3 Joint Enrichment and Query Execution 44

4.3 Experimental Evaluations . 56
4.3.1 Experimental Setup . 56
4.3.2 Experimental Results . 58

5 Optimizing Enrichment with Progressive Query Processing 65
5.1 Objective . 65
5.2 Overview of the Algorithm . 70

iii

5.3 Candidate Tuple Set Selection . 71
5.3.1 Choosing Thresholds for Each Relation. 72

5.4 Benefit Estimation . 74
5.4.1 Selection Queries . 75
5.4.2 Generalizing to Other Queries . 83

5.5 Enrichment Plan Selection . 85
5.6 Experimental Evaluation . 85

5.6.1 Experimental Setup . 86
5.6.2 Experimental Results . 88

6 Use Cases of the System 96
6.1 Social Media Analysis . 96
6.2 Multi Media Analysis . 99
6.3 IoT Application of Localization using WiFi data 101

7 Conclusions and Future Work 104
7.1 Conclusions . 104
7.2 Future Work . 105

Bibliography 107

Appendices 115
A Twitter Analysis Application on Spark . 115
B Proof of Theorem 5.2 . 122

iv

LIST OF FIGURES

Page

4.1 Query processing in EQLC approach. 27
4.2 Query processing in EQTC approach. 28
4.3 The join graph of R1, probe queries in EQLC , and the rewritten query in

EQTC for the query of Figure 4.4(a). 28
4.4 Original query, query tree, and the rewritten query tree in both EQLC and

EQTC . 30
4.5 Progressive Query Processing Strategy. 41
4.6 Updated probe query for R1. 47
4.7 The incremental query used by IVM in EQP

TC 50
4.8 Times in enrichment server and DBMS (Left bars=EQLC , Right bars=EQTC). 61
4.9 Progressive score achieved by queries in EQTC and EQLC 61
4.10 Progressiveness achieved in EQLC and EQTC for (a) Q2, (b) Q3, and (c) Q4. 62
4.11 Comparing different plan generation strategies in EQTC : (a) Q2, (b) Q3, (c)

Q4 (left to right). 63

5.1 Progressiveness Achieved. The dotted line shows a possible incremental strat-
egy producing query answers using server-side cursors. 86

5.2 Performance results of different plan generation strategies in EnrichDB. . . 89
5.3 Cost vs. Quality (a) synthetic(lhs) and (b) real (rhs) functions. 93
5.4 Comparing plan generation on synthetic data. (a) linear (b) logarithmic (c)

exponential correlations. 93
5.5 Time overhead. 94
5.6 Effect of epoch sizes (a) TTR 90% (lhs) (b) overhead (rhs). 94

6.1 EnrichDB web interface for submitting query. 97
6.2 Interface for visualizing progressively improving query results on image dataset.

. 97
6.3 EnrichDB web interface for submitting query on images. 100
6.4 Interface for visualizing progressively improving query results on image dataset.

. 101

v

LIST OF TABLES

Page

3.1 TweetData table in EnrichDB. Derived attributes are topic and sentiment,
and the values are their determinized representations. 15

3.2 State output for derived attributes. 15
3.3 PresenceData table in EnrichDB. Derived attribute is the location at-

tribute and the values are the determinized representations. 15
3.4 A part of DecisionTable. 19
3.5 TweetData table with 2 tuples and 1 derived attribute. 19
3.6 Possible World 1 (prob = 0.351). 19
3.7 PW2 (prob = 0.189). 19
3.8 PW3 (prob = 0.299). 19
3.9 PW4 (prob = 0.161). 19
3.10 Query Result of σtopic=soc(TweetData) following PW semantics. 19
3.11 TweetData table after determinization. 19
3.12 Query Result of σtopic=soc(TweetData) on determinized representation. 19
3.13 Truth table for evaluating complex conditions. 22

4.1 TweetData table where topic and sentiment are the derived attributes. . . 29
4.2 TweetDataState table (created for TweetData table). 43
4.3 PlanSpaceTable. 44
4.4 PlanTable. 44
4.5 Datasets used in experiments. 56
4.6 Query templates used. 57
4.7 Exp 1. Number of enrichments in EQLC and EQTC 58
4.8 Number of enrichments saved in EQTC compared to EQLC with varying se-

lectivity of precise condition (i.e., TweetTime between (t1, t2)) in query Q3. . 59
4.9 Latency of queries in EQLC and EQTC approaches (in seconds). 60

5.1 TweetData table where topic and sentiment are the derived attributes. . . 67
5.2 DecisionTable. 74
5.3 Datasets used in experiments. 86
5.4 Queries used. 88
5.5 Time without progressive query execution (in minutes). 91
5.6 Max. storage overhead. 92
5.7 Storage cost of state. 92
5.8 Impact of optimization. 92

vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor professor Sharad Mehrotra for
advising me during my journey as a Ph.D. student. Prof. Sharad has taught me to identify
new research problems, solve the problems in an innovative way, and express my thoughts
in the form of writing research papers. I am glad that I had the opportunity to work with
him and I am very grateful to him for his guidance.

I would like to thank all the members of my doctoral committee: Professor Michael Carey,
Professor Chen Li, and Professor Nalini Venkatasubramanian, for their time for reading my
thesis. I am very thankful to them for serving on my committee and providing me with
valuable feedback for my thesis.

I am grateful to all the collaborators with whom I have worked during my study in UCI.
I am very thankful to Peeyush Gupta, Shantanu Sharma, and Abdulrahman Alsaudi for
working together in the EnrichDB project. The technical collaborations and the discussions
during the project were very valuable to me and allowed me to improve my research and
development skills. Peeyush’s technical intellect on the system development were amazing
and I learned a lot of development experiences while working with him on the EnrichDB
project. Shantanu’s research skills helped me to develop and implement new research ideas
in this project. I learned a lot from him about writing research papers and describing and
solving complex problems related to the project.

I would like to thank all the professors who were part of the TIPPERS project and with whom
I have collaborated: Professor Sharad Mehrotra, Professor Nalini Venkatasubramanian, Pro-
fessor Alfred Kobsa, and Professor Xi He. I would like to thank all the team members with
whom I have worked and received valuable feedback in this project: Primal Pappachan,
Roberto Yus, Peeyush Gupta, Shantanu Sharma, Abdulrahman Alsaudi, Sameera Ghayyur,
Eun-Jeong Shin, Nisha Panwar, Yiming Lin, Guoxi Wang, and Georgios Bouloukakis. I
would like to extend my gratitude to other collaborators of the TIPPERS project: Professor
Chris Davison, Mamadou Diallo, Christopher Graves, Michael August, the team-members
of NIWC and the participants of Trident Warrior 2019 and 2020 demonstrations.

I would like to thank the PIs and team members of the Synergy project: Professor Amit
K. Roy-Chowdhury and Rameshwar Panda, for their collaboration with me. Their feedback
and computer vision code on the project were very valuable to me.

I would like to acknowledge the research agencies that have funded my research work at
UCI. The materials in this thesis are based on the research sponsored by DARPA under
Agreement No. FA8750-16-2-0021. Furthermore, this thesis was partially supported by NSF
Grants No. 1527536, 1545071, 2032525, and 2008993.

vii

VITA

Dhrubajyoti Ghosh

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, California

Master of Science in Mathematics and Computing 2013
Indian Institute of Technology, Kharagpur Kharagpur, India

Bachelor of Science in Mathematics and Computing 2012
Indian Institute of Technology, Kharagpur Kharagpur, India

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2021
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2014–2017
University of California, Irvine Irvine, California

viii

PUBLICATIONS

Prism: Private Verifiable Set Computation over Multi-
Owner Outsourced Databases

2021

Yin Li, Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, Nisha Panwar, and
Shantanu Sharma.

ACM SIGMOD

A Case for Enrichment in Data Management Systems 2021
Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, and Shantanu Sharma.

Under Submission

Implementing Enrichment in Data-Management Sys-
tems

2021

Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, and Shantanu Sharma.

Under Submission

Optimizing Progressive Quality Improvement for Query
Time Data Enrichment

2021

Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, and Shantanu Sharma.

Under Submission

PANDA: Partitioned data security on outsourced sen-
sitive and non-sensitive data

2020

Sharad Mehrotra, Shantanu Sharma, Jeffrey D. Ullman, Dhrubajyoti Ghosh, Peeyush
Gupta, and Anurag Mishra.

ACM Transactions on Management Information Systems

Transitioning from testbeds to ships: an experience
study in deploying the TIPPERS Internet of Things
platform to the US Navy

2020

Dave Archer, Michael A August, Georgios Bouloukakis, Christopher Davison, Mamadou
H Diallo, Dhrubajyoti Ghosh, Christopher T Graves, Michael Hay, Xi He, Peeter Laud,
Steve Lu, Ashwin Machanavajjhala, Sharad Mehrotra, Gerome Miklau, Alisa Pankova,
Shantanu Sharma, Nalini Venkatasubramanian, Guoxi Wang, and Roberto Yus.

The Journal of Defense Modeling and Simulation

IoT Expunge: Implementing Verifiable Retention of IoT
Data

2020

Nisha Panwar, Shantanu Sharma, Peeyush Gupta, Dhrubajyoti Ghosh, Sharad Mehro-
tra, and Nalini Venkatasubramanian.

ACM CODASPY

ix

SCARF: a scalable data management framework for
context-aware applications in smart environments

2019

Eun-Jeong Shin, Dhrubajyoti Ghosh, Sharad Mehrotra, and Nalini Venkatasubrama-
nian.

EAI MOBIQUITOUS

Towards Accuracy Aware Minimally Invasive Monitor-
ing (MiM)

2019

Sameera Ghayyur, Dhrubajyoti Ghosh, Xi He, and Sharad Mehrotra.

ACM CCS TPDP Workshop

SOFTWARE

TIPPERS middleware system https://tippersweb.ics.uci.edu/

A middleware system implemented in Java to provide semantic abstraction and scalable
data management solutions for developing IoT applications. The system is very easy to
use by providing several REST APIs for the end-users to develop application.

EnrichDB database system https://github.com/DB-repo/enrichdb

A database system that supports scalable enrichment of data using complex machine
learning functions. The system allows enrichment of data in various stages of data pro-
cessing pipeline, supports progressive query processing to hide latency of complex func-
tions, and implements state management to eliminate redundant execution of complex
enrichment functions.

x

https://tippersweb.ics.uci.edu/
https://github.com/DB-repo/enrichdb

ABSTRACT OF THE DISSERTATION

Supporting Progressive Query Processing and Scalable Data Enrichment for Real time
Analytic Applications

By

Dhrubajyoti Ghosh

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Sharad Mehrotra, Chair

In this thesis, we propose EnrichDB, a new DBMS technology designed for emerging do-

mains (e.g., social media analytics and sensor-driven smart spaces) that require incoming

data to be enriched using expensive machine learning/signal processing functions prior to

its usage. To support online processing, today, such enrichment is performed outside of the

database as a static data processing workflow prior to its ingestion to the database. Such a

strategy could result in a significant delay from the time when data arrives and when it is

enriched and ingested into the DBMS, especially when the enrichment complexity is high.

Also, enrichment at ingestion could result in wastage of resources if applications do not

use/require all data to be enriched. EnrichDB’s design represents a significant departure

from the above, where we explore seamless integration of data enrichment all through the

data processing pipeline — at ingestion, triggered based on events in the background, and

progressively during query processing. The cornerstone of EnrichDB is a powerful enrich-

ment data and query model that encapsulates enrichment as an operator inside a DBMS

enabling it to co-optimize enrichment with query processing. The first chapter of the thesis

describes this data model of the system.

In the second chapter of the thesis, we describe two implementations of the EnrichDB

xi

system. In the first implementation, we have taken a middleware-based approach where the

database management system is treated as a black-box and enrichment is performed in a

separate server, called the enrichment server. This is a simpler and portable implementation,

since a user can utilize any DBMS as the storage system for storing the underlying data

objects with a small code change. In the second implementation, we describe a layered

implementation on top of PostgreSQL, where we have used the extensibility features of

PostgreSQL to perform enrichment efficiently closer to the data where it resides. We used

user-defined functions, stored procedures, indexes, and incremental materialized views to

perform data enrichment and produce query results efficiently.

In the third part of my thesis, we present algorithms implemented in above systems that

can optimize enrichment with query processing. We have chosen the quality metric of F1-

measure as the quality of set-based queries. Improving query results gradually by choosing

online samples were explored in Online Approximate Query Processing systems. However,

such systems did not consider data enrichment to improve the quality of query results and the

underlying data was considered to be static. The goal of data enrichment in the EnrichDB

system is to enrich objects in a way that can produce good quality results as soon as possible,

formalized as progressive score. Experimental results on real world datasets and queries

show that the algorithm performs significantly better than the traditional sampling based

approaches.

xii

Chapter 1

Introduction

Organizations, today, have access to potentially limitless data sources in the form of web

data repositories, social media posts, and continuously generated sensory data [12]. Such

data is often low-level/raw and needs to be enriched to be useful for analysis. Functions

used to enrich data (referred to as enrichment functions in this thesis) could consist of

(a combination of) custom-compiled code, declarative queries, and/or expensive machine

learning (ML) techniques. Examples include mechanisms for sentiment analysis [103] over

social media posts, named entity extraction [21] in text, and sensor interpretation such as

face detection and face recognition [61, 83] from images, sensor data fusion [87], and data

cleaning tasks such as missing value imputation in relational data [64].

Data enrichment could be performed as a periodic offline process prior to loading the data

into the database for analysis. Such an offline approach to preparing data is indeed com-

mon practice in enterprise data processing pipelines. For instance, in the enterprise data

warehouses setting, data collected from diverse transactional databases running core or-

ganizational operations is periodically loaded into an enterprise-wide warehouse through a

extract-transform-load (ETL) process. The offline process, however, adds significant delay

1

between the time data arrives (or is created) to when it is available for analysis. This limits

the ability of organizations to analyze data in (near) real-time as it arrives. We illustrate the

challenge of executing expensive enrichment functions on large datasets based our experi-

ences in developing analytic applications that have served as a motivation behind developing

EnrichDB.

Motivating Example.

Consider an instrumented campus with 100 buildings and 50 WiFi access points and 10

surveillance cameras per building, resulting in a total of 5000 WiFi access points and 1000

surveillance cameras. Data produced from such devices (e.g., events generated at the access

points when mobile devices carried by individuals connect, images captured by cameras when

people enter/exit spaces) can be used to localize individuals within building at different

levels of granularity. Recent work by Lin et. al. [75] has shown that while coarse-level

region localization based on Wi-Fi connectivity can be achieved relatively efficiently, e.g.,

≈10ms/event, on a server with 64 core Intel Xeon CPU E5-4640 with 2.40GHz clock speed

and 128GB memory. ML techniques applied to the same data can help localize individuals at

room-level granularity, at the expense of ≈200ms/event on same server. Likewise, video data

with face detection & recognition (≈1s/image) could result in even higher accuracy. Now,

consider analytical applications that perform tasks such as computing average occupancy

level of a given location (meeting room), average time spent by people in the cafeteria

during lunch, and number of people a person came in contact with during a time interval.

Supporting such applications, require localizing people to appropriate rooms/regions based

on WiFi and/or camera data.

At rates of ≈1K WiFi events/sec and ≈100 images/sec, analyzing six months of data requires

enriching 15 billion WiFi events and 1.5 billion images. Complete enrichment of data would

require several years on a suitably large server, which is not feasible. Further, while coarse

WiFi-based localization could be performed at data ingestion, fine-grained localization (using

2

either WiFi or camera data) cannot be fully performed in its entirety (it would take ≈3

minutes of computation for one second of WiFi events generated, requiring a large server

farm). Such computations would be wasted if the analyst is satisfied by coarse localization

for most parts of the building and decides to restrict attention to only a small subset of

data (e.g., data from atrium) for finer analysis. EnrichDB is designed to support real-time

analysis in such scenarios when it is expensive/infeasible to enrich data in its entirety. �

In the enterprise context, such a challenge has been well recognized leading to the emergence

of Hybrid Transaction/Analytical Processing (HTAP) technology over the past decade [94,

80] that exploits modern hardware and columnar storage to support both transactional

and analytical capabilities in the same system. HTAP systems enable data analysis to be

performed in real-time as it arrives. Motivated by a similar requirement to reduce latency

between when data arrives/is created and when it is made available for analysis in data

processing pipelines that require data to be enriched prior to use, this thesis explores effective

ways to integrate data enrichment into query processing in databases.

Before we argue for the need for the integrated processing of data enrichment and query

processing, we note that one possibility to overcome the latency challenge would be to en-

rich the data as it arrives into the system at the time of ingestion. Systems (e.g., Spark

Streaming [118] often used for scalable ingestion) are capable of executing enrichment func-

tions on newly arriving data prior to its storage in a DBMS. Recently, in the context of an

open-source big data management system AsterixDB [3, 23], Wang et. al. [113] has explored

ways to optimize enrichment during ingestion by exploiting parallelism and batching of such

operations.

Enriching data at arrival, however, exhibits several limitations. The approach could lead to

significant avoidable overhead of redundantly enriching data if the analyst ends up using only

(a small) portion of the data. In some situations, when workloads are predictable, one could

potentially limit enrichment to only data that is expected to be used. However, accurate

3

prediction of the workload, especially when analyst may execute adhoc queries, can be very

difficult, as argued in several prior works [94, 49]. Furthermore, enriching data at ingestion

is only feasible if enrichment functions are computationally not resource intensive. If such

functions require running one or many relatively complex machine learning models (e.g.,

Multi-layer Perceptron, Random Forest) to interpret data, executing them during ingestion

would create a bottleneck. Complex ML models (e.g., for functions such as object detection,

face recognition, or other such extraction and data interpretation tasks), often take 100s of

millisecond per data item on modern processors. If we are to enrich all data as it arrives, it

would limit the system to ingestion rates of only 10s of event per second.1

In this thesis, we develop a query time approach of enrichment which provides us with sev-

eral benefits: (i) enrichment is performed only in the context of a query resulting in no

wasted enrichment, (ii) data is ingested without any enrichment leading to higher ingestion

performance, and (iii) scope for exploiting query semantics to reduce/eliminate expensive

enrichment tasks that do not influence the query results. Integrating enrichment with query

processing raises several key challenges: First, given a query, how do we determine which

data items/objects need to be enriched to answer the query correctly. Second, where should

such enrichment be performed — closer to the data at the database server possibly using

stored procedures and user defined functions (UDFs), or outside the database in the appli-

cation server. Both these options offer different advantages/disadvantages in terms of data

movement, restricting resource wastage for enrichment, and the scope for parallelism in ex-

ecuting data enrichment. Finally, while ability of the system to enrich data at query time

reduces the amount of work at ingestion, it potentially causes an increased query execution

time for the individual queries (since data required to answer the query has to be enriched

during query execution). Such an increased query latency may result in unacceptable query

performance.

1The challenge of running complex ML functions on data as it arrives, was discussed extensively in the curated session on
ML in databases in SIGMOD [84], leading to an observation that often organizations are forced to use simpler functions that
can be performed at ingestion, even though such a choice results in poorer quality.

4

Motivated by the above-mentioned limitations, in this thesis, we make the following contri-

butions:

• Integrating enrichment into query languages and semantics by extending the relational

data model to support enrichment functions.

• Incorporating enrichment into databases by implementation of a new system using

PostgreSQL DBMS.

• Overcoming latency in queries due to query-time enrichment by supporting progressive

approach of query processing.

The above contributions are implemented inside a new database management system, called

EnrichDB. Below, we describe the high-level design criteria of EnrichDB.

Semantic Abstraction. EnrichDB supports a declarative interface to specify and link

enrichment functions with higher-level observations that the functions generate from raw

data. Users may associate one or more such functions that differ in terms of quality (e.g.,

uncertainty in the enriched value) and cost (e.g., execution time of the function). In En-

richDB, developers do not need to deal with raw data directly — applications can be fully

written based on higher-level semantic observations derived from raw data using enrich-

ment functions. If the higher-level observation has not been derived through the enrichment

process prior to the execution of the application, such enrichment would be automatically

performed as part of query processing.

Transparency of Enrichment. In EnrichDB, the data enrichment process is transparent

to application programmers, who view the data at a semantically higher level of abstraction.

Programmers do not need to be concerned about what data needs to be enriched, using

which functions, and at what stage of data processing. EnrichDB maintains the state of

5

enrichment of objects, performs enrichment automatically based on the current state and

needs of applications, and updates the state appropriately.

Optimization of Enrichment. To mitigate the ingestion latency due to complex functions,

EnrichDB allows enrichment all through the data processing pipeline. Enrichment can be

performed at ingestion, triggered based on events, or during query processing. EnrichDB

makes sure that enrichment of objects is performed optimally. During query time enrichment,

EnrichDB exploits the query optimizer to prune away enrichment of objects that do not

influence the query results. The developer does not have to write any separate code to prune

such enrichment of objects. Furthermore, EnrichDB allows enrichment of data closer to

where the data resides resulting in a low data movement.

Progressive Computation. EnrichDB produces answers progressively, as it executes

enrichment functions as a part of query processing. A progressive query answering (motivated

by Approximate Query Processing systems [58] — provided progressive query answering for

aggregation queries) technique produces an initial set of answers that are improved over time

as data is further enriched.

The overview of the thesis chapters are as follows: In Chapter §2, we explore previous

works related to EnrichDB. In Chapter §3, we describe the data model of EnrichDB.

In Chapter §4, we develop and discuss the advantages/disadvantages of two distinct solu-

tions to support joint query processing and data enrichment: (i) a loosely coupled approach

(referred to as EQLC approach) that performs data enrichment at an external server from the

database server, denoted as enrichment server, and (ii) a tightly coupled approach (referred

to as EQTC approach) that exploits the mechanisms for pushing code to the database server

using stored procedures and UDFs to co-process enrichment and queries at the database.

In Chapter §5, we describe a mechanism for optimizing enrichment with progressive query

processing. We present the algorithm and the implementation details of the algorithm, using

6

the EQLC and EQTC approaches of implementation. In Chapter §6, we present several

use-cases of EnrichDB in the domains of social-media analysis, multimedia analysis, and

Internet-of-things (IoT) applications.

7

Chapter 2

Related Works

Data enrichment as described in Chapter 1, can be performed at data ingestion, or at

query processing time or adaptively both at ingestion and at query processing. Recently,

several industrial systems such as Apache Kafka [4], Storm [110], Spark [118], and Flink

[39] have explored ways of data enrichment at scale during ingestion. E.g., Apache Kafka

is a centralized data pipeline that aims to provide a unified, high-throughput, low-latency

platform for handling real-time data feeds. Kafka along with the stream processing systems

of Apache Spark or Apache Flink are often used to develop scalable ingestion framework.

The data feeds are enriched by the execution of Spark User Defined Functions (UDFs) before

ingesting it into a data warehouse system. Apache AsterixDB [3], an open-source big data

management system, supports efficient mechanisms for ingesting high velocity data using

data feeds [55]. In AsterixDB, the data feeds support enrichment of data at ingestion, by

allowing users to attach UDFs to the data ingestion pipeline. Wang et. al. [113] explored

ways to make such enrichment of data feeds faster by exploiting parallelism and batching of

such operations. While such systems can be used when simple functions (e.g., that do not

add significant latency) are executed at ingestion, they do not scale to situations when data

analysis requires execution of a suite of computationally expensive enrichment functions.

8

In certain application scenarios, data enrichment can be performed periodically as an offline

step. For instance, if data analysis does not need to be performed on the real time data as it

arrives, one can choose to enrich such data offline and add the enriched data to the database

when the insertion workload is not high. Analytical applications developed on top of data

warehouse systems [2, 6, 14, 8] are often built for such situations. For such applications,

the creator of a data warehouse, develops a well-defined ETL process, where the data is

transformed using transformation functions such as data cleaning functions and functions

for computing semantically higher level information.

A similar architecture is also possible for sensor-based applications where data from sensors

are collected and stored and then loaded into a data warehouse system with appropriate

enrichment at the non-peak time when the workload on the data warehouse is low. Such an

approach suffers from several limitations as follows: (i) analysis on data as it arrives may

not be available and (ii) ad-hoc queries cannot be answered unless they are enriched at the

data load time.

The need for performing analytics on the data as it arrives, has been well recognized over the

past decade and has been the driving force for the design of HTAP systems [94, 80]. Such

systems have innovated extensively at the storage layer of the DBMS. To support real-time

analytics for ad-hoc queries, these systems support columnar storage architectures, often

maintained in the main memory. Data stored in columnar format are highly compressed as

compared to the data stored in row format, since attribute values of same data types are

stored together and can be compressed effectively [18]. Furthermore, the columnar stores

exploit features of modern processors such as Single Instructions/Multiple Data (SIMD)

operations and vector processing to ensure that the HTAP system can compute aggregates

very efficiently in near-real time. This eliminates the need for pre-computing aggregates as

would have been required if analysis was to be performed over row stores [18]. The careful

design choices made by the HTAP systems, allowed them to support fast transactional

9

workloads with insertions and yet support near real-time analytics on the fast incoming

data at high velocity. While HTAP systems today have focused on the storage layer and

optimization of queries based on the new storage models, they have not considered supporting

expensive enrichment and transformation that might be necessary to prepare the data for

analysis, as is the case for the domains considered in this thesis. For instance, our example

of fine-grained localization cannot be done with the HTAP systems available today. We

believe that the technique we study in this thesis to scale enrichment can contribute to the

next generation of HTAP systems that in addition to supporting real aggregation/OLAP,

also support complex data enrichment.

Our work of query time data enrichment is also relevant to the data lake architectures. In

data lake architecture, the incoming data from various data sources are stored into a large

data lake system. The analysis/enrichment of the data is performed at the read/query time.

Data lake architectures [5, 15, 16] are often realized using a data warehouse system through

an extract-load-transform (ELT) pipeline, instead of the ETL process. But, to the best of

our knowledge, none of the ELT based systems have considered real-time data enrichment.

Our approach of hiding increased query-time latency (due to performing enrichment at query

time), is similar in motivation to the approximate query processing systems (AQP). Such

systems are studied in the context of large data volume where queries need to be answered

quickly at the expense of approximation of query results. The system provides an approxi-

mate answer with an error bound measured using a confidence interval. Such approximate

results allow an analyst to get a quick insight of the data for future analysis that need to be

performed on the data.

AQP systems can be categorized in two ways: (i) Offline AQP system [19, 92, 48, 41] and

(ii) Online AQP system [58, 119, 43, 116]. Offline AQP systems maintain a set of pre-

computed samples consisting of various column sets and size of samples. Given a query with

an error or latency bound, the system finds out and executes the query on the samples that

10

can produce results with the given latency or error bound for the query. In contrast, online

approximate processing systems compute such samples at the query execution time. Such

systems are more closely related to our work on EnrichDB. Although such systems try to

hide query latency due to large data volume, the challenge addressed in this thesis is about

reducing query latency due to the requirement of performing complex enrichment on the

data.

Our work in this thesis is also relevant to the works on query time data cleaning [54,

29, 99]. Several authors have shown that query context can be used to eliminate cleaning

of object blocks (residing on disk) that cannot satisfy the query predicates. Authors in [29]

have utilized an approximate statistic for the objects residing in each disk blocks. Such

statistics are used during the query processing to dictate the cleaning tasks. However, such

works considered cleaning functions to be deterministic and there were only one cleaning

function for each cleaning tasks as compared to the enrichment functions considered by us in

this thesis. Furthermore, such frameworks do not consider a progressive approach of query

processing when the cost of cleaning functions are high.

Several system architectures were introduced to implement application logic on top of an

existing database management systems. Some authors have employed a tightly coupled ap-

proach where application code (enrichment function code) is pushed down to the database

servers using user-defined-functions (UDFs) and stored procedures [13, 59, 111]. Further-

more, several authors took a loosely coupled approach where the application logic is imple-

mented inside a separate middleware system outside of the DBMS [92, 19, 34].

Progressive Approaches of Data Processing. Progressive and query-driven approaches

have been studied in the past in several domains: entity resolution [79, 89, 24, 25, 28, 29],

crowd sourced data processing tasks of filtering, sorting, ranking, clustering [91, 90, 30],

online schema matching [81, 96], probabilistic databases [45, 98, 101]. Progressive approach

of visualization to support interactive analysis of large-scale data was proposed by Jia et.

11

al. in [66]. Progressive approach of query processing along with enrichment have never been

studied in the past.

Enrichment in Smart Application Domains. Enrichment of lower level data to seman-

tically higher level data is required in various application domains of IoT and sensor-based

applications. Examples of such application domains are smart water infrastructure [56, 112],

smart city infrastructure [121, 60], smart healthcare [109], and advanced fire detection mech-

anisms [32]. Furthermore, enrichment of data is necessary for alerting/notification-based

applications that sends messages based on contextual conditions on sensor data [33, 102].

EnrichDB can benefit such application domains by ensuring that enrichment is performed

only in the context of queries. Furthermore, the progressive query processing mechanism of

EnrichDB can provide real-time responses to queries.

Systems for Supporting ML using Databases. EnrichDB is related to, but com-

plementary to the past research efforts of Apache MADlib [59], Bismarck [51], RioT [120],

SystemML [53], and SimSQL [38]. Such systems are designed to learn ML models inside or

on top of database systems. While such systems provide mechanisms to learn ML models

(which can be used as enrichment functions) from data stored in databases, they do not focus

on optimally enriching the data. EnrichDB focuses on optimally enriching the data that

achieves progressive improvement in the quality of query answers. Furthermore, some recent

systems address the problem of model selection and optimal query plans for ML inference

queries [69, 44]. However, such systems do not support progressive execution of queries with

enrichment as introduced by EnrichDB.

Expensive Predicate Optimization. These works optimize queries with expensive pred-

icates [40, 57, 31, 68, 78]. In [100], authors surveyed several strategies of optimizing

data flows that contain complex UDFs both in the context of relational databases and

Map/Reduce-style data processing frameworks. A subset of these problems (more relevant

to us) address optimization of multi-version predicates [73, 77, 67], where multiple versions

12

of predicates are created for an expensive predicate present in the queries. Less expensive

predicates are evaluated first to reduce the number of tuples that are used to evaluate the

expensive predicates. However, in these works, the expensive predicates were static and

deterministic task. In contrast, EnrichDB can perform enrichment using a general class of

deterministic and non-deterministic functions.

Delta Computation of Queries. Several authors in the past have proposed mechanisms

for efficiently updating materialized views in databases: DBToaster [71], LINVIEW [86], and

PostgreSQL IVM [9]. Furthermore, several intermittent query processing systems [106, 108,

107] were proposed in the past to support efficient ways of maintaining/computing delta

answers to queries, while minimizing resource consumption of CPU and memory. Efficient

delta computation has also been studied in data flow systems [85, 22, 82] that provide

efficient state management techniques to speed up delta processing. While EnrichDB

exploits delta computation of queries (it is built using IVM and could benefit from work

such as [106, 108, 107]), its focus is on incremental enrichment, which is complementary to

the above methods.

13

Chapter 3

EnrichDB Data Model

The cornerstone of EnrichDB is Enrichment Data and Query Model (EDQM) that in-

tegrates enrichment as a first-class operator in the database system. This data model is

designed based on the design criterias of semantic abstraction, transparency of enrichment,

scope for optimizing enrichment and progressive computation as described in Chapter §1.

3.1 Data Model

In EDQM, the data is modeled using relations where a relation can have two types of

attributes: (i) derived attributes that require enrichment and (ii) fixed attributes that do

not require enrichment. Each derived attribute is optionally associated with a domain size.

If the domain size is not specified, then that attribute is considered to have a value from a

continuous range. The command for specifying a relation in EnrichDB is shown below.

CREATE TABLE TweetData(tid char (8), userid

char (20), Tweet text , feature float[], topic

int derived :40, sentiment int derived:3,

14

tid UserID Tweet feature loc. TweetTime topic sentiment

t1 John Uploading pics on
Facebook.

[0.2, ..., 0.4] US 16:08 soc pos.

t2 Mark Listening. . . [0.5, ..., 0.3] US 16:48 ent. NULL
t3 Richard Iran’s . . . [0.6, ..., 0.4] UK 11:48 pol. neg.

Table 3.1: TweetData table in EnrichDB. Derived attributes are topic and sentiment,
and the values are their determinized representations.

tid topic sentiment

t1 soc:0.54, ent:0.46 pos:0.52, neu:0.48
t2 ent: 0.65, art: 0.35 pos:0.5,neu:0.5
t3 pol:0.8, art: 0.2 neu:0.3,neg:0.7

Table 3.2: State output for derived attributes.

tid semantic id observation time location

t1 125 10:04 room-1
t2 127 10:06 room-4
t3 128 10:07 room-8

Table 3.3: PresenceData table in EnrichDB. Derived attribute is the location attribute
and the values are the determinized representations.

TweetTime timestamp , location text);

An example of the table created for tweet data is shown in Table 3.1. The feature attribute

contains term frequency-inverse document frequency (tf-idf) vector [74] pre-extracted from

tweets. The value of a derived attribute is determined using one or more enrichment

functions associated with it. Another example of a table created in the context of an IoT

application of location monitoring is shown in Table 3.3. In the majority part of the thesis,

we are going to use the tweet analysis application as the driving use-case of EnrichDB. In

Chapter 6, we describe several other use cases of EnrichDB.

Enrichment functions. EDQM supports a general class of enrichment functions (fre-

quently used in real-world). The input to an enrichment function is a tuple and the output

is either a single value, multiple values, or a probability distribution, as described below.

15

We categorize enrichment functions based on the output cardinality: (i) single-valued : out-

putting a single value, e.g., a binary classifier [105], (ii) multi-valued : outputting a set of

values as a prediction, e.g., top-k classifiers [72], (iii) probabilistic: outputting a probabil-

ity distribution over the possible values of a label, e.g., probabilistic classifiers [42]. Also,

enrichment functions can be categorized based on the output domain size: (i) categorical :

predicts outputs from a finite set of possible values, e.g., sentiment of positive/negative, and

(ii) continuous : outputs a real number, e.g., a weather of 72.8°F.

An enrichment function is associated with two parameters: (i) cost : the average execution

time/tuple, and (ii) quality : a metric of the goodness (i.e., accuracy) of enrichment function

in determining the correct value of the derived attribute.

Training of enrichment functions. EDQM supports training procedures for enrichment

functions where a user needs to specify an input table storing the training data. Below, we

show an example of learning a machine learning model of Multi-Layer Perceptron (MLP)

using a training procedure of model train. This model is trained using data stored in

tweets train table and the name of the model is sentiment mlp. It uses attribute values

of feature as input to the model and outputs prediction for sentiment attribute. The

model-specific parameters are passed as a string in model params.

SELECT db.model_train(’tweets_train ’, ’sentiment_mlp ’,

’multi_layered_perceptron ’,’sentiment ’,

’feature ’, ’classification ’, model_params);

The cost and quality of enrichment functions can either be specified by the user or can

be determined automatically by using several methods, e.g., train/test split, k-fold cross-

validation, and leave-one-out cross-validation, during the training phase. The set of en-

richment functions for a derived attribute Ai are called function-family of Ai. (We

use calligraphic font for derived attributes.) Outputs of enrichment functions in

16

a function-family are combined using a combiner function . One can use weighted-

average, majority-voting, or stacking-based [115] combiner functions in EnrichDB. As

an example, shown below, the function-family of sentiment attribute is created using an

assign enrichment function function. It uses mlp classifier function with cost of 0.1

second/tuple and quality of 0.8 (measured in AUC).

SELECT db.assign_enrichment_function

(’sentiment_fmly ’,’TweetData ’, ’sentiment ’,

[’mlp_classifier ’,’sentiment_mlp ’ ,0.1 ,0.8]);

State of a Derived Attribute. Enrichment state or state of a derived attribute Ai in

tuple tk (denoted by state(tk.Ai)) is the information about enrichment functions that have

been executed on tk to derive Ai. The state has two components: state-bitmap that stores

the list of enrichment functions already executed on tk.Ai; and state-output that stores

the output of executed enrichment functions on tk.Ai. E.g., consider that there are four

enrichment functions f1, f2, f3, f4, and out of which f1, f3 have been executed on tk.Ai. Also,

assume that the domain of Ai contains three possible values: d1, d2, and d3. Thus, the

state-bitmap for tk.Ai contains 〈1010〉, i.e., only first and third functions are executed and

the state-output of tk.Ai contains: 〈[0.7, 0.3, 0], [], [0.8, 0.1, 0.1], []〉, i.e., the output of the first

and third enrichment functions (remaining arrays are left empty).

The state-output stores a list of probability distributions when the enrichment functions

are probabilistic classifiers, e.g., 〈[0.7, 0.3, 0], [], [0.8, 0.1, 0.1], []〉. For single-valued classifiers,

clustering functions, and regression functions the state-output attribute stores the actual

output of the function instead of a probability distribution, e.g., 〈[72.4], [], [76.8], []〉.

State of Tuples and Relations. The notion of state of derived attributes is generalized

to the state of tuples and relations in a straightforward way. The state of a tuple tk is

the concatenation of the state of all derived attributes of tk, e.g., the state of a tuple tk

17

of a relation R with three derived attributes Ap, Aq, and Ar is denoted by state(tk) =

〈state(tk.Ap)||state(tk.Aq)||state(tk.Ar)〉.

Relative Ordering of Enrichment Functions. In EDQM, the user can specify (or can

be learned by EnrichDB using a training dataset) the relative order in which enrichment

functions need to be executed. This order is specified using the state of tuples for each

derived attribute. Such relative ordering is important for ensembling different enrichment

functions to be executed on a tuple. This ordering is stored in a table called DecisionTable

(see Table 3.4).

This table, for each derived attribute of a relation, stores a map that — given the current

state of a tuple with respect to the attribute — specifies the next function that should be

executed to further enrich the attribute, as well as (optionally) the measure of benefit that

is expected to result.

In Table 3.4, each row stores a map containing (state bitmap, entropy range) as keys and

corresponding (next best function, benefit) pair as values. That is, given the state, the map

specifies the function resulting in the maximum reduction of uncertainty per unit cost along

with expected uncertainty reduction as a measure of benefit. For a probabilistic distribution

over a set of domain values D1, . . . , Dn with probabilities p1, . . . , pn, the uncertainty of a

tuple is often measured using entropy as follows:
∑n

i=1−pi log pi.

Consider the tuple t1 of TweetData table (see Table 3.1) and assume that the sentiment state

bitmap of t1 is [1, 0, 0] and the sentiment state output of t1 is [[0.94, 0.06, 0], [0, 0, 0], [0, 0, 0]].

The entropy of t1 is (−0.94 × log(0.94) − 0.06 × log(0.06)) = 0.32. From first row of Table

3.4, since entropy of t1 is in the range (0.25-0.5), the decision table specifies that the next

best function to execute on t1 is f3 and its benefit as 0.2.

18

Relation Attribute Map

TweetData sentiment 〈1, 0, 0〉, [0-0.25) : 〈f2, 0.1〉, 〈1, 0, 0〉, (0.25-0.5)
: 〈f3, 0.2〉, 〈1, 0, 0〉, (0.5-0.75) : 〈f2, 0.16〉,
〈1, 0, 0〉, (0.75-1] : 〈f2, 0.22〉

TweetData topic 〈0, 1, 0〉, [0-0.2) : 〈f4, 0.08〉, 〈0, 1, 0〉, (0.2-0.4)
: 〈f6, 0.11〉, 〈0, 1, 0〉, (0.4-0.6) : 〈f4, 0.18〉,
〈0, 1, 0〉, (0.6-0.8) : 〈f6, 0.24〉, 〈0, 1, 0〉, (0.8-1]:
〈f6, 0.26〉

Table 3.4: A part of DecisionTable.

tid topic

t1 soc:0.54,
ent:0.46

t2 art: 0.65,
soc: 0.35

Table 3.5: TweetData table with
2 tuples and 1 derived attribute.

tid topic

t1 soc
t2 art

Table 3.6: Possible
World 1 (prob = 0.351).

tid topic

t1 soc
t2 soc

Table 3.7: PW2
(prob = 0.189).

tid topic

t1 ent
t2 art

Table 3.8: PW3 (prob = 0.299).

tid topic

t1 ent
t2 soc

Table 3.9: PW4
(prob = 0.161).

tid probability

t1 0.54
t2 0.35

Table 3.10: Query Result
of σtopic=soc(TweetData)
following PW semantics.

tid topic

t1 soc
t2 art

Table 3.11: TweetData table after
determinization.

tid topic

t1 soc

Table 3.12: Query Result of
σtopic=soc(TweetData) on deter-
minized representation.

19

3.2 Query Model

This section describes the query language of EnrichDB (§3.2.1) and the query semantics

(§3.2.2) of EnrichDB.

3.2.1 Query Language

The query language of EnrichDB is an extended version of SQL. Queries in EnrichDB are

associated with mandatory query semantics (which are required to deal with probabilistic

values of derived attributes) and a (optional) quality parameter for the quality of the query

results.

Two types of query semantics for probabilistic data have been proposed: (i) possible world

(PW) semantics [62, 20] and (ii) determinization-based semantics [50]. In PW semantics,

all possible worlds are generated (implicitly/explicitly) from probabilistic representation (as

shown in Tables 3.6-3.9) and the query is executed in each world. The result consists of all

possible tuples along with a probability value which is the summation of probability of all the

worlds in which the tuple was present, as shown in Table 3.10. The determinization-based se-

mantics converts probabilistic representation to a single or a small set of deterministic worlds

as shown in Table 3.11. The query is executed in these worlds and a single deterministic

answer is produced as shown in Table 3.12. The rationale of choosing one semantics over

the other depends on the application scenarios. In some scenarios, an application can make

good decisions by just using the most probable answers, whereas for some applications, it

may require analysis of all possible answers along with their probability distribution. Due to

simplicity, we have implemented the determinization-based query semantics in EnrichDB

(the implementation of PW semantics is under development).

20

An example query in EnrichDB is shown below:

SELECT Tweet ,location ,TweetTime , topic ,

sentiment FROM TweetData WHERE sentiment=’pos’

AND topic=’soc. media’ AND TweetTime

BETWEEN(’16:00’,’18:00’) QUALITY 0.9

SEMANTICS DETERMINIZATION;

The QUALITY and SEMANTICS keywords specify the minimum quality requirement of query

result and the semantics of query evaluation respectively. The possible value of SEMANTICS

is either DETERMINIZATION or PROBABILISTIC.

3.2.2 Determinization-Based Query Semantics

In determinization-based query semantics, tuples of all participating relations in a query

are determinized first before evaluating the query. The process of converting a probabilistic

data representation, i.e., the output of probabilistic enrichment functions, to a deterministic

representation is referred to as the determinization process.

Consider a derived attribute Ai and a tuple tk. The value of tuple tk in attribute Ak

(i.e., tk.Ai) is determined using a determinization function (DET (.)) based on tuple’s state.

DET (state(tk.Ai)) returns a single or multiple values for tk.Ai or a NULL value, representing

a situation when state of the attribute does not provide enough evidence to assign any

value for tk.Ai. Determinization concept naturally extends to a tuple and a relation. The

determinized representation of a relation R is denoted by:

DET (R) = DET (state(ti.Aj)) | ∀ti ∈ R, ∀Aj of R.

Example. Consider a relation TweetData with two derived attributes topic and sentiment

(see Table 3.1) and assume state-output of derived attributes as shown in Table 3.2. Based

21

C1 T F P P P P U
C2 P P T F P U P

C1 ∧ C2 P F P F P U U
C1 ∨ C2 T P T P P P P
NOT C1 F T F F F F U

Table 3.13: Truth table for evaluating complex conditions.

on Table 3.2 and a top-1 determinization strategy, the determinized representation of topic

and sentiment are shown in Table 3.1. �

Since determinization of a tuple can result in either a set of values or NULL, evaluation logic

of different conditions needs to be defined. EnrichDB extends the traditional three-valued

logic used in relational operators, i.e., with truth values of T , F , and U into a four-valued

logic: true (T), false (F), possible (P), and unknown (U). Here, P represents that

the condition is possibly true based on the current state of enrichment, whereas U (as

in traditional setting) represents that the truth value is unknown, given the current level

of enrichment. Similar to SQL, the DBMS implementing this data model does not have to

return tuples that evaluate to unknown. However, the tuples evaluating to possible may

or may not be returned. E.g., the inclusion of such tuples in the answer could be based on

the maximization of the quality of the query. We next discuss how we assign truth values to

predicates/expressions.

Simple Predicates. Consider an expression Ai op am, where Ai is a derived attribute,

op is an operator, and am is a possible value of Ai. The operator op is one of the following

operators: 〈=, 6=, >, ≥, <, ≤〉. If the output of DET (state(tk.Ai)) is NULL, then the

expression evaluates to U . If DET (state(tk.Ai)) is a singleton set S and x ∈ S such that

x op am holds, then the expression evaluates to T ; otherwise, F . If DET (state(tk.Ai)) is

a multi-valued set (say S) and ∃x ∈ S such that x op am holds, then it is possible that tk

satisfies the expression, and hence, it evaluates to P . However, if 6 ∃x ∈ S for which x op am

22

holds, then the expression evaluates to F .

Consider an expression Ai op Aj , where Ai and Aj are two derived attributes of (possibly

different) relations and op is a comparison operator. If DET (state(tk.Ai)) or DET (state(tl.Aj))

is NULL, then the condition evaluates to U . If both DET (state(tk.Ai)) and DET (state(tl.Aj))

are singleton sets and for elements x ∈ DET (state(tk.Ai)) and y ∈ DET (state(tl.Aj)),

x op y holds, then the condition evaluates to T ; otherwise, F . In case one or both of

DET (state(tk.Ai)) and DET (state(tl.Aj)) are multi-valued sets and ∃x ∈ DET (state(tk.Ai))

and ∃y ∈ DET (state(tl.Aj)), such that x op y holds, then the condition evaluates to P ; oth-

erwise, F .

Complex Predicates. Complex predicates are formed using multiple comparison condi-

tions connected by Boolean operators (AND (∧), OR (∨), and NOT (¬)). Table 3.13 shows

the truth table for such logical operators. This table only shows entries when one of the two

expressions evaluates to P . When both expressions evaluate to either T , F , or U , we follow

the same evaluation logic as in standard SQL.

Aggregation. Aggregation functions on fixed attributes are evaluated as in SQL, while, on

a derived attribute, return a range of values [l, u], denoting the lower and upper bounds of

aggregated value. An aggregation function applied to all T tuples of a set produces the value

of lower bound l, while applied to all T and P tuples together produces the upper bound

u. The aggregation functions that are supported are as follows: count , sum, min, max ,

and avg .

Example 3.2.1. Consider a query that counts number of tweets with (sentiment =

positive) from TweetData of Table 3.1, and assume that the table contains 250 tuples of

which 100 tuples evaluate to T , while 20 of the remaining 150 tuples evaluate to P . Hence,

the condition evaluation logic returns a range of [100, 120]. Likewise, group-by aggregation

results in one such range per group.

23

Top-k Aggregation. EnrichDB first evaluates aggregation functions for each group-

by key (as described above), and their outputs are ranked using a ranking function. The

query result consists of a set of group-by keys with the top-k ranks. The purpose of the

ranking function is to return a minimal answer set A, such that the real top-k groups are

guaranteed to be part of A. EnrichDB sorts the group-by keys based on the lower bounds

in a descending order and selects the first n (where n ≥ k) group-by keys as the minimal

answer set A such that the upper bound of (n + 1)-th key is lower than the lower bound

of the n-th key. This ensures that the (n + 1)-th group-by key cannot be part of the top-k

answer set.

Consider a query that returns top-2 topics with the highest tweet counts from Table 3.1.

Suppose after applying count(), the topics had following bounds: social media: [100, 150],

entertainment: [110, 120], politics: [100, 115], and economy: [80, 95]. The answer of the

query will be {social media, entertainment, politics} that guarantees that the actual top-2

groups (i.e., social media and entertainment) are part of the answer. The group economy

will be excluded from the answer, since the upper bound of this group is 95, which is lower

than the lower bounds of groups inside the answers.

Queries Supported. We support any single-block select-project-join-aggregation query

in this data model. The selection and join conditions on derived attributes are evaluated

according to the four-valued logic described above of type (Ai op am) and of type (Ai op Aj),

respectively. The aggregation conditions and the top-k aggregation conditions are evaluated

after evaluation of the rest of the query as shown in Example 3.2.1.

Extending to More General Class of Queries. Extending four-valued logic for more

general class of queries such as Union, Intersection, Set-difference, Division, and

Nested queries on probabilistic data are complex. For Union queries, we can use the se-

mantics of UNION ALL as was used by the UADB [50] system. However, it is difficult to

quantify the quality of query result for such queries.

24

Query Semantics. Now, based on the definition of determinization function and the

predicate evaluation logic as described above, we define the query semantics as follows:

q(R1, R2, . . . , Rn) = q′(DET (R1),DET (R2), . . . ,DET (Rn))

Here, q(R1, R2, . . . Rn) is a query on relations R1, . . . , Rn, DET (Ri) is the determinized rep-

resentation of the ith relation. Query q is rewritten as q′ to be executed on the determinized

representations of relations using the four valued logic as described above.

25

Chapter 4

EnrichDB System Implementation

In this chapter, we implement a system that can support joint query processing and data

enrichment. We have developed this system to address the challenges of efficient enrichment

using database systems as highlighted in §1. The chapter first develops and discusses the

advantages/disadvantages of two distinct solutions to support joint query processing and data

enrichment: (i) a loosely coupled approach (referred to as EQLC approach) that performs

data enrichment at an external server from the database server, denoted as enrichment

server, and (ii) a tightly coupled approach (referred to as EQTC approach) that exploits

the mechanisms for pushing code to the database server using stored procedures and UDFs

to co-process enrichment and queries at the database. Both strategies attempt to minimize

the number of avoidable calls to the enrichment functions.

For a single query, EQTC is much faster than EQLC since EQTC performs enrichment closer

to the data, hence there is no network latency, and EQTC uses query context to eliminate

redundant enrichment of objects during the query time. However, the EQTC approach puts

higher load to the database server as compared to EQLC approach. EQLC is more amenable

for scale-out, i.e., more machines can be easily added as the enrichment servers to execute

26

Database Server

Query Generate Probe
Queries and

Fetch Objects
Enrich Objects

Result of
enrichment is

updated

Application Server

Execute
Query

Query
Result

Execute
Query on
Database

Figure 4.1: Query processing in EQLC approach.

enrichment in parallel. The EQTC approach can also be scaled out using parallel DBMSs

such as AsterixDB [23] and Greenplum database [7], however, linear scaling of complex

queries such as join queries with UDF is difficult.

This chapter, then, addresses the challenge of increased query latency, which arises due to

enrichment functions executed during query processing, and develop an iterative/progressive

approach to answer queries. Particularly, the approach exploits the fact that very often,

enrichment of data can be performed using multiple enrichment functions, each of which

may vary in their execution cost and quality of the output. Based on the query, simpler

(i.e., less costly), though possibly less accurate, models may be applied first, which can help

to generate an approximate answer. More accurate and expensive enrichment functions can

be used to refine such answers. once more accurate (though more expensive) models have

executed. Such an approach to hiding query latency for complex queries has been extensively

explored in approximate query processing [58, 97], where it is difficult to answer query in

real-time due to the size of data involved. We adopt the similar methodology of answering

queries approximately based on partially enriched data and progressively improving them as

data is enriched further.

27

Query
Query rewrite
using UDFs

Execute Query on the
Database

Application Server
Query
result

Query Execution and
and Enrichment

using UDFs

Query
result

Query
result

Database Server
Figure 4.2: Query processing in EQTC approach.

N1

N2

N3

(a): Join graph (Node N1 :
σ(R1.A1 is NULL ∨R1.A1=a1) ∧R1.A2=a2(R1),
Node N2 : R2,
and Node N3 :
σ(R3.A1 is NULL ∨R3.A1=a1) ∧R3.A5=a5(R3)).

Semi-join Programs for R1:
Step 1: Traversing the join graph from leaf-to-root

breadth-first manner and adding semi-join programs:
〈N2 nR2.A4=R3.A5 N3; 〉

Step 2:
Now, adding semi-join program between N1 and N2:

〈N2 nR2.A4=R3.A5 N3;
N1 nR1.A2=R2.A4 N2; 〉

The probe query generated for R1 by replacing the
definition of N1 and N2 in the above programs:
σR1.A2=a2∧(R1.A1 is NULL∨R1.A1=a1)(R1)nR1.A2=R2.A4[

R2 nR2.A4=R3.A5 (σ(R3.A5=a5)∧(R3.A1 is NULL∨R3.A1=a1)(R3))
]

(b): Semi-join programs and the probe query for R1.

SELECT * FROM R1, R2, R3 WHERE ωσ(R1.A1 = a1) AND R1.A2 = a2 AND
ω./(R1.A1 = R2.A3) AND R1.A2 = R2.A4 AND ωσ(R3.A1 = a1) AND R3.A5 = a5 AND

ω./(R3.A3 = R1.A3) AND R3.A5 = R2.A4

(c): Rewritten query in EQTC , where ωσ refers to rewrite logic of selections and ω./ refers
to the rewrite logic of joins as described in §4.1.2.

Figure 4.3: The join graph of R1, probe queries in EQLC , and the rewritten query in
EQTC for the query of Figure 4.4(a).

28

tid UserID Tweet feature location TweetTime topic sentiment

t1 John Uploading pics on Face-
book.

[0.2, ..., 0.4] US 16:08 social
media

positive

t2 Mark Feeling great and listen-
ing to music.

[0.5, ..., 0.3] US 16:48 ent. NULL

t3 Richard Sad about current pan-
demic.

[0.6, ..., 0.4] UK 11:48 NULL NULL

Table 4.1: TweetData table where topic and sentiment are the derived attributes.

4.1 Enriching Data During Query Processing

Without loss of generality, we assume that all relations contain an id attribute that uniquely

identifies the tuples present in them. E.g., in a relation storing tweets, a derived attribute

can be the tweet’s sentiment, which is derived by executing sentiment analysis functions

on the tweet. Likewise, in a relation storing images, the identity of person in images can be

the derived attribute, which is derived by face recognition techniques for identifying person

in an image.

In general, several functions, called enrichment function, could be used either independently

or in combination to determine the value of a derived attribute. If an enrichment function

is executed on a tuple, the derived attribute will take the value of the function output. If

the enrichment function is not executed so far, then the attribute value will be NULL. For

example, in Table 5.1, the values of two derived attributes topic and sentiment are NULL

in t3, since they are not enriched yet.

In this section, we assume that only one enrichment function is associated with each de-

rived attribute and outputs a single value from the domain of the derived attribute. This

simplification makes the state representation of derived attributes easier, where the state

corresponds to the set of enrichment functions that have been executed in the past and their

outputs. §4.2 presents a more general model, where several enrichment functions could be

associated with the derived attributes and the enrichment functions can output multiple

29

values or a probability distribution.

SELECT * FROM R1, R2, R3 WHERE R1.A1 = a1 AND R1.A2 = a2 AND R1.A1 = R2.A3

AND R1.A2 = R2.A4 AND R3.A1 = a1 AND R3.A5 = a5 AND R3.A3 = R1.A3 AND
R3.A5 = R2.A4

(a): Original query.
./

R3.A3=R1.A3∧
R3.A5=R2.A4

./
R1.A1=R2.A3∧R1.A2=R2.A4

σR1.A1=a1∧R1.A2=a2

R1

R2

σR3.A1=a1∧R3.A5=a5

R3

(b): Original query tree generated from the query in Figure 4.3(a).
./

R3.A3=R1.A3∧
R3.A5=R2.A4

./
R1.A1=R2.A3∧
R1.A2=R2.A4

σ(R1.A1 is NULL ∨
R1.A1=a1)
∧R1.A2=a2

R1

R2

σ(R3.A1 is NULL ∨
R3.A1=a1) ∧
R3.A5=a5

R3

(c): Rewritten query tree from the query tree of Figure 4.3(b).

Figure 4.4: Original query, query tree, and the rewritten query tree in both EQLC and
EQTC .

We consider two ways of implementing enrichment during query processing: (i) loosely-

coupled implementation (EQLC) that uses a separate enrichment engine (outside of databases)

and (ii) tightly-coupled implementation (EQTC) that uses database programming features

such as UDF to incorporate enrichment functions. Below, we discuss both such implemen-

tation approaches in details and illustrate using a query, as shown in Figure 4.3(a).

30

4.1.1 Query Processing in EQLC

EQLC executes enrichment at the enrichment server. Given a query q, EQLC generates a

set of probe queries, denoted by pq(Ri), one for each relation Ri in q. Probe queries

are executed at the DBMS to retrieve a set of tuples that need to be enriched to execute

q. These retrieved tuples by probe queries are enriched in the enrichment server, and

the corresponding modified (enriched) values are updated at the DBMS. Finally, query q is

executed at the DBMS.

The key step of EQLC is to generate probe queries that identify a “minimal” subset of

tuples (as small a subset as possible) for each Ri ∈ q that need to be enriched to execute

q. For each relation Ri (whose derived attribute is part of q), EQLC exploits the following

three strategies to identify such a minimal subset:

• Exploiting Prior Work: pq(Ri) filters out all tuples of Ri that have been enriched

earlier (e.g., as part of prior queries), and hence, their derived attribute values in the

database are not NULL. Such tuples do not need to be enriched again to execute q.

• Exploiting Selection Conditions on Fixed Attributes: pq(Ri) filters all tuples of Ri that

do not satisfy selection conditions over fixed attributes of Ri. E.g., for the query of

Figure 4.3(a), to identify the tuples of R1 that require enrichment, pq(R1) retrieves

only those tuples of R1 that satisfy the condition R1.A2 = a2.

• Exploiting Join Conditions on Fixed Attributes: pq(Ri) filters out all tuples of Ri that

would not join with any tuples in Rj, if there exists a join condition between Ri and Rj

in q based on fixed attributes. Such tuples of Ri would not influence the final answer

of q, and hence, do not need to be enriched. E.g., for the query of Figure 4.3(a), tuples

of relation R1 that do not match with any tuples of R3 based on the join condition of

R3.A1 = R1.A1 do not need to be enriched.

31

Probe Query Generation Steps

The steps for generating probe queries (based on above three strategies) are as follows:

[Step 1]: Query Tree Generation : An input query q is first converted into a corre-

sponding query tree, in which, selection conditions are pushed down as much as possible.

The conditions present in selection and join nodes are converted into a conjunctive normal

form (CNF), i.e., (C = C1 ∧ C2 ∧ . . . ∧ Cz). Each condition Ci ∈ C is characterized as either

a fixed condition (i.e., a condition containing only fixed attributes) or a derived condition

(i.e., a condition containing only derived or both fixed and derived attributes). For example,

Figure 4.3(b) shows the query tree generated from the query of Figure 4.3(a). In a CNF

condition: (R1.A1 = a1 ∧R1.A2 = a2), the condition (R1.A2 = a2) is a fixed condition while

(R1.A1 = a1) is derived.

[Step 2]: Rewrite of Selection Condition (σC(R)): Given a CNF condition C in a

selection node, for each derived condition Ci ∈ C over derived attribute(s) A1, . . . ,An, this

step finds only those tuples for which there exists an attribute Ai, i ∈ [1, . . . , n] that has not

been enriched before. This filtering is achieved by replacing Ci by
[
(
∨n
i=1Ai = NULL)∨Ci

]
.

The fixed conditions are kept identical. E.g., for the CNF expression of (R1.A1 = a1 ∧

R1.A2 = a2) in Figure 4.3(b), using this step, it is rewritten as: ((R1.A1 is NULL∨R1.A1 =

a1) ∧ R1.A2 = a2) in Figure 4.3(c). Note that only the first condition is modified as it is a

derived condition, while the second condition is kept the same as it is fixed.

[Step 3]: Generating Join Graph : This step and the next step 4 are performed to

exploit the join conditions on fixed attributes in a query to filter out tuples of Ri that do

not require enrichment. Given a query tree with selection conditions modified as in Step 2,

a join-graph is generated from the tree. The purpose of the join graph is to find out for a

relation Ri in the query: which join conditions (on fixed attribute) with other relations can

32

be utilized to reduce the number of tuples of Ri that require enrichment.

In join graph, the nodes correspond to reduced relations, i.e., relations with the selection

conditions applied on them. If there exists a join condition between the two relations in the

original query, an edge between two nodes is present and shows the join conditions between

two relations expressed in CNF form.

Next, from each edge of the join graph, all the derived join conditions are removed. If after

removing all derived conditions of a join node, the final condition becomes empty (i.e., all

the conjuncts were on derived attributes), then that edge is deleted from the graph, i.e.,

none of the join conditions between the two relations can be exploited to reduce the set of

tuples that require enrichment.1

E.g., in Figure 4.2(a), we present a join-graph for the query tree shown in Figure 4.3(c).

This graph contains three nodes: 〈N1, N2, N3〉, representing the reduced relations of 〈R1,

R2, R3〉, respectively, i.e., after applying the selection conditions on each relation. Here, the

edge between N1 and N2 represents the join condition of (R1.A2 = R2.A4) (after removing

the join condition on R1.A1 = R2.A3) from Figure 4.3(c)).

[Step 4]: Semi-join-based Reduction : Given the join graph as an input, for each node

Ni in the graph, this step generates a set of semi-join programs for Ni to reduce the number of

tuples of Ni that require enrichment. For Ni, semi-join programs are generated by exploiting

join conditions among nodes of the graph. For a node Ni, this step starts from node Ni in

the join graph and generates a spanning tree, denoted as ST (Ni), that contains all nodes

of the graph with minimum possible number of edges (using breadth-first traversal). From

ST (Ni), multiple semi-join programs are generated based on the join conditions in ST (Ni).

Semi-join programs for a node Ni are generated in a bottom-up manner from ST (Ni) starting

1If a query tree contains the operators of union, set difference, or cross product, then they are ignored, as such operators
cannot be utilized to reduce the number of tuples in probe queries apart from the join conditions.

33

from the child nodes and reaching upto Ni. For each node encountered in the path, a semi-

join program is generated. The nodes in ST (Ni) are traversed in a breadth-first order from

the leaf node to the root node. All the semi-join programs between the leaf node and their

immediate parent nodes are created first. This step is continued until all the paths from the

leaf node to the root node are consumed.

For example, ST (N1) for node N1, is a tree with root as the node N1, the node N2 as the

child of N1, and the node N3 as the child of N2 (same as the graph shown in Figure 4.2(a)).

In ST (N1) (Figure 4.2(a)), a semi-join between relations N2 and N3 is performed first to

identify the tuples of relation R2 (part of N2) that may result in the join output of R2 and

R3 (as shown in Figure 4.2(b) (top)). After this, a semi-join between R1 and the tuples of

R2 output from previous semi-join, is performed. Using these two semi-join programs, this

step can eliminate two types of tuples from R1: (i) the tuples of R1 that do not join with

any tuple of R2 and R3, and (ii) the tuples of R1 that may join with some tuples of R2 but

ultimately do not join with any tuple of R3. This step for semi-join reduction we used is

based on the seminal work on semi-join given in [35].

[Step 5]: Generating probe queries : Given the semi-join programs generated an input,

for each relation Ri ∈ q with predicates on derived attributes that require enrichment, this

step generates a probe query based on the semi-join programs and the selection conditions

on Ri in a straightforward manner. For example, in Figure 4.2(b) (bottom), we show the

probe query generated for R1, from the semi-join programs described in 4.2(b) (top) and

the selection conditions added to the query tree of Figure 4.3(c) for R1.

4.1.2 Query Processing in EQTC

In EQTC , a user query q is rewritten as query q′ that enriches appropriate tuples while

executing the query to generate answers to q. In EQTC , modified query q′ checks whether

34

each derived attributes Ai ∈ q has been enriched earlier. If not, it invokes readu UDF that

executes the enrichment function, updates the value of the derived attribute, and returns

the value. The readu is implemented as a generic function that takes as input the name of

the relation (e.g., ‘Ri’
2), the name of the derived attribute (e.g., ‘Aj’), the tuple identity,

and the identity of an enrichment function to execute.

Rewrite of Selection Condition : We rewrite each selection condition (R.Ai op ai) ∈ q

(where op is ≥, >, =, ≤, <, or 6=, and ai is a constant value) that contains a derived

attribute, by a modified selection condition denoted as ωσ(R.Ai op ai), as follows:

R.Ai op ai

∨
[
R.Ai is NULL ∧ readu(‘R’, ‘Ai’, R.id, fAi

.id) op ai
] (4.1)

Here, fAi .id refers to the identity of an enrichment function for Ai. In this rewritten con-

dition, if a tuple’s value in Ai is already enriched, then the original selection condition is

evaluated (i.e., R.Ai op ai). Otherwise, readu UDF is executed on the tuple to enrich the

attribute Ai first, and then the selection condition is executed. Note that readu UDF is only

invoked if the attribute value has not been enriched before.

Rewrite of Join Condition : We rewrite each join condition Rp.Ai op Rq.Aj ∈ q that

contains derived attributes Ai and Aj, by a modified join condition, denoted as ωσ(R.Ai op

ai), based on whether one (or both) of the derived attributes in the condition have previously

been enriched. If both the derived attribute values have been enriched, (Rp.Ai op Rq.Aj)

is executed with no modification. If one of the attributes (say Rp.Ai) is not enriched, then

Rp.Ai is replaced with a call to UDF readu on Rp.Ai in order to enrich the attribute as

part of checking the join condition. If both of the attributes (i.e., Rp.Ai and Rq.Aj) are not

enriched, then both attributes in the join condition are replaced by calls to the readu UDF.

2We use quotes to refer to the names of relations Ri and attributes Aj

35

The modified join condition of ω./(Rp.Ai op Rq.Aj) is shown below:

Rp.Ai op Rq.Aj /*Both Ai and Aj are enriched*/

∨
[
Rp.Ai is not NULL ∧Rq.Aj is NULL /* Only Ai is enriched */

∧ readu(‘Rq’, ‘Aj ’, Rq.id, fAj
.id,) op Rp.Ai

]
∨
[
Rp.Ai is NULL ∧Rq.Aj is not NULL /*Only Aj is enriched*/

∧ readu(‘Rp’, ‘Ai’, Rp.id, fAi
.id) op Rq.Aj

]
∨
[
Rp.Ai is NULL ∧Rq.Aj is NULL /* None of Ai or Aj are enriched*/

∧ readu(‘Rp’, ‘Ai’, Rp.id, fAi .id) op readu(‘Rq’, ‘Aj ’, Rq.id, fAj .id)
]

(4.2)

Figure 4.2(c) illustrates rewritten queries for the query of Figure 4.3(a) using modified se-

lection and join conditions as described above.

4.1.3 Comparison between EQLC and EQTC

There are several advantages and disadvantages of EQLC and EQTC approaches. Below, we

compare them on several criteria.

Load on the DBMS.

In EQLC , majority of query execution time is spent in the enrichment server as enrichment

is performed there. Hence, in EQLC , the load on DBMS is much lower than EQTC . The

DBMS in EQLC can support concurrent execution of larger number of queries than EQTC .

In contrast, in EQTC , most of query execution time is spent on the DBMS. This causes high

load on DBMS, making it a bottleneck when more queries arrive simultaneously.

Parallel computation. In EQLC , the enrichment tasks can be scaled out linearly very

easily by adding more machines to the enrichment server. In EQTC , the scope for parallel

36

query execution in a multi-node environment, depends on the functionality of the database

used for the implementation. If the database supports parallel query execution, then the

queries containing UDFs can be executed in parallel as supported by the parallel DBMSs

of AsterixDB [23] and Greenplum database [7]. However, linear scale out of such queries is

difficult as compared to the EQLC approach.

Data movement. The movement of data between the DBMS and the enrichment server

affects the query processing performance. In EQLC , the result of probe queries are trans-

mitted from the DBMS to the enrichment server, resulting in a large data movement. In

contrast, in EQTC , enrichment functions are executed using UDFs within the DBMS. Hence,

EQTC approach has much lower data movement than EQLC approach.

Wasteful enrichments. It is important to limit the number of wasteful enrichments as

much as possible during query processing. In EQTC (as discussed in §4.1.2), we rewrite

the query by using enrichment function UDFs. If a tuple does not satisfy a predicate in

the selection or join condition, then other predicates with enrichment function UDFs, are

not evaluated and the tuple is filtered out. EQLC approach, although limits the number

of wasteful enrichments using probe queries (§4.1.1), it is not able to leverage selection

and join conditions fully, potentially causing more wasteful enrichments. Hence, EQTC has

more potential in reducing wasteful enrichments during query execution. §5.6 will show this

comparison experimentally.

Portability. This is a functional criterion for comparing these two approaches. EQLC

approach can be developed in any programming language with appropriate interfaces for

accessing databases and it can use any relational or non-relational database systems. In

contrast, in EQTC approach, enrichment functions are executed as UDFs. Since syntax

for writing UDFs is database dependent, the enrichment functions developed as UDF of a

particular database system cannot be ported in another database system. Hence, the EQLC

approach is more portable than EQTC approach.

37

4.2 Progressive Query Processing

While EQLC and EQTC reduce redundant enrichment of data and scale to higher ingestion

rates (still supporting queries on data as it arrives), they result in an increased latency

of queries, since enrichment (of objects/tuples relevant to query) is done at query time.

To reduce query latency, this section explores ways to make EQLC and EQTC progressive

that iteratively refines the query results as more enrichments are performed. A progressive

approach allows data to be consumed by analysts right away and the analysts can stop

computation any time they are satisfied with the results [26, 89, 79]. Progressive query

processing has been extensively explored in approximate evaluation of aggregation queries

(AQP) [58, 88]. AQP supports progressive computation to hide query latency arising from

massive data sets on which the query is executed. In contrast, in this paper, the challenge

is to hide query latency arising from the execution of expensive enrichment functions.

To develop a progressive approach, we exploit the observation that ML models often exhibit

a tradeoff between cost and quality, wherein cheaper functions (i.e., with low execution cost)

produce prediction faster with low accuracy, as compared to more expensive functions (i.e.,

with high execution cost) that produce slower but high quality predictions. E.g., a random

forest classifier (RF) implemented using a small number of decision tree models is cheaper

but less accurate compared to a random forest classifier using high number of decision tree

(DT) models.3 Here, increased accuracy comes at increased complexity and, hence execution

time. E.g., in our experiments over Multi-PIE data [104], a DT classifier for classifying facial

expression in an image with tree depth of 5 takes ≈ 12 ms/image, whereas a DT classifier

with tree depth of 20 takes ≈ 35 ms/image while increasing the accuracy from 72% to 81%.

Such a tradeoff between cost and quality exhibited by enrichment functions helps supporting

3Similar tradeoff is exhibited by multi-layer perceptrons (where accuracy increases by additional layers and number of
perceptrons/layer, until the model over-fits training data [47]), k-NN classifiers (accuracy increases with increasing k), or DT
(accuracy increases with depth of tree).

38

progressive query answering. We can run cheap ML functions on (a subset of) data to

generate an initial answer and subsequently select additional data to enrich and/or enrich

the data already selected using more complex functions to refine the answers. Below, we

develop a progressive approach of enriching data and answering queries for both EQTC

and EQLC approaches. We begin by precisely defining the semantics of progressive query

processing and then describe the ways to achieve progressiveness in the two strategies of

EQTC and EQLC and denote them by the notation of EQP
TC and EQP

LC (i.e., progressive

versions). We use the notation of EQP to refer to both of them together, otherwise we

explicitly use the notation of EQP
TC or EQP

LC .

4.2.1 Progressive Queries

Before we describe how EQP are executed progressively, we first need to describe some nota-

tions. Note that for developing a progressive approach, we now permit multiple enrichment

functions to be associated with each derived attribute.4 Suppose A is a derived attribute

and {f1, f2, . . . , fn} is the set of enrichment functions associated with A. We refer to this

set of enrichment functions as a function-family of A. E.g., for sentiment derived at-

tribute in TweetData (Table 5.1), the function-family may consist of a decision tree (DT), a

k-nearest neighbor (KNN), multi-layered perceptron (MLP), or a support vector machines

(SVM) classifier.

At any instance of time, for a given tuple t and for a given derived attribute A of a relation,

multiple enrichment functions might have been executed, resulting in the value for A in t.

We refer to the set of functions in the function-family that have executed as the state of the

derived attribute (denoted as state(t.A)) in the tuple t. The state of a derived attribute

4Progressive approach is still possible when there is a single enrichment function associated with derived attributes since
the system can choose a subset of data to enrich progressively. However, it is much more effective when it is able to exploit the
tradeoffs between execution time and quality.

39

state(t.A) consists of two components: state-bitmap that stores a list of enrichment func-

tions that have been executed on t.A; and state-output that stores the output of executed

enrichment functions on t.A.

Each function-family is associated with a determinization function that finds the value

of A in t based on state(t.A). The determinization function (denoted by DET (∗)) could

use any ensemble technique [115, 76] for generating a value based on the classifiers executed

so far, e.g., it could use a most likely value, or a value based on majority consensus [76].

We treat the determinization function as a black-box and is independent of the specific

function used. Note that DET (state(t.A)) returns a single or a NULL value. NULL value

represents a situation when state of the attribute does not provide enough evidence to the

determinization function to assign any value for t.A. As more functions execute, the state

of A changes, DET (state(t.A)) computes a new value of A in t.

The notion of state of a derived attribute generalizes to that of the state of tuples, relations,

and database in a straightforward way. The state of a tuple t (or a relation R or a database

D) denoted by state(t) (or state(Ri) or state(D)) is the concatenation of the state of all

derived attributes of t (or the concatenation of the state of all tuples or the concatenation of

the state of all relations). Likewise, the concept of determinization also generalizes to that

of a tuple, a relation, and a database denoted by DET (state(t)), DET (Ri), and DET (D),

respectively.

We can now develop the concept of progressive query processing more concretely. The

complete strategy of progressive query processing is shown in Figure 4.5. In this strategy,

the query execution time is discretized into multiple epochs (denoted by {e0 , e1 , e2 , . . . , ez}),

where e0 is a special epoch where some data structures are setup.5 In each epoch ek, we

select a set of additional derived attribute instances and functions to execute to enrich those

5For simplicity, we will consider epochs {e1 , e2 , . . . , ez} to be fixed size in the remainder of the paper, though, the approach
does not require this to be the case.

40

Q
ua

lit
y

of

A
ns

w
er

time

Plan Enrich

Answer1

time
Q

ua
lit

y
of

A

ns
w

er

time

Q
ua

lit
y

of

A
ns

w
er

time

Improving answer quality over time

Plan Enrich Plan Enrich Plan Enrich

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Final answer when user
stopped the query
computation

Answer2 Answer3

Query

Process Process Process Process

Figure 4.5: Progressive Query Processing Strategy.

attributes. Let q be a query, and let R1, R2, . . . , Rn be the set of relations referred to in q.

Let state(D, ek) be the resulting state of the database based on all the enrichment functions

that have executed at (or before) epoch ek and, furthermore, let DET (state(D, ek)) be the

corresponding determinized representation of the database wherein all the derived attributes

take a value based on their states.

A progressive query execution in epoch ek returns the results of query executed over the

determinized representation of data at epoch ek, i.e., it returns q(DET (state(D, ek)), where

the determinized representation of D incorporates all the enrichment functions that have

executed so far. Note that answers of q differ from epoch ek−1 to ek, by changing the state

of the database by executing the enrichment functions in epoch ek.

Realizing progressive approach in EQP raises two related issues listed below that we address

in the rest of the section.

• Managing State. State represents the current state of enrichment of all tuples in the

database. By explicitly representing information about functions that have executed and

their outputs, we can eliminate repeated execution of expensive enrichment functions on

41

objects. Since the number of objects can be large, and moreover, outputs of enrichment

functions can be probability distribution (e.g., capturing probability of an object being a

specific value in an image and probability of a specific person being in an image), efficient

ways to represent state need to be devised.

• Incremental Execution of Enrichment and Queries. In order to execute enrichment

and queries in an incremental manner, the following problems need to be addressed: (i)

selection of objects and enrichment functions to enrich and (ii) maintaining query results

incrementally to avoid the overhead of computing query results from scratch. In the first

problem, we need to select a set of 〈object, enrichment function〉 pairs that improve the

quality of existing query result across different epochs. Sampling based approaches can

be used to select objects (similar to AQP systems [19, 92]) and enrichment functions, or a

benefit-based approach [52] can be used to optimize specific quality metric of results (e.g., Fα-

measure). In the second problem, a straightforward strategy to compute progressive answers

is to simply execute q at the end of each epoch ek over the determinized representation of the

database after modification of the state of database due to enrichment. Such an approach,

however, is wasteful, since the query is re-executed in each epoch without exploiting prior

work performed to evaluate the query in previous epochs. Instead, we explore a strategy

based on Incremental View Maintenance (IVM) [36, 86, 71] that are supported by several

database engines. Such a strategy, instead of processing the query again on the new state of

the data, computes answers as a delta answer over the previously reported query answers.

4.2.2 State Management

In EQP , the state of derived attributes of tuples for a relation R is stored as a separate

table, State(R). For each derived attribute, State(R) contains a bitmap and an output state

vector. Table 4.2 shows a state table for TweetData table (see Table 5.1) with two derived

42

tid Topic

BitMap

TopicOutput Sentiment

BitMap

Sentiment Output

t1 [1,0,0] [[0.18,0.64,0.05,...],[],[]] [1,0,0] [[0.94, 0.06,0], [], []]

t2 [1,0,1] [[0.5,0.2,0.1, ...],[],[0.1,0.6,0.1,
...]]

[1,0,1] [[0.2,0.6,0.2],[], [0.86,0.1,0.04]]

t3 [0,1,0] [[], [0.78,0.06,0.02, ...], []] [1,1,0] [[0.1,0.7,0.2], [0.2,0.8,0],[]]

Table 4.2: TweetDataState table (created for TweetData table).

attributes Topic and Sentiment. The bitmap contains a bit for each enrichment function

associated with the attribute, where a value of 1 means the function was already executed and

0 means it is yet to execute. TweetDataState table in Table 4.2 shows a bitmap for Topic

and Sentiment derived attributes. For topic attribute of tuple t2, enrichment functions

corresponding to bits 1 and 3 have been executed while the function corresponding to bit 2

is not yet executed. The output state is an array of results of the execution of enrichment

functions. In Table 4.2, both enrichment functions were probabilistic classifiers and their

outputs were probability distributions ([0.5, 0.2, 0.1, . . .] and [0.1, 0.6, 0.1, . . .], respectively)

over an ordered domain of values. Note that, the second element of TopicOutput for tuple

t2 is an empty array since the second enrichment function is not yet executed on it.

Compressed State Representation. If the domain size of a derived attribute is large,

the columns corresponding to its state output can be large. E.g., if domain size of topic in

TweetData is 40 and there are 3 enrichment functions, then TopicStateOutput column (see

Table 4.2) could contain 120 values in each row. Such a large domain could incur high storage

overhead and read/write cost of states. Instead, EQP uses a compressed representation for

state output when domain sizes are large. It sets a cutoff threshold and only stores the

domain values whose probability is above that threshold. Domain values are appropriately

mapped to integers using a dictionary encoding and the probabilities are stored as key-value

pairs. The compressed representation saves us from having to store large tails of. probability

distribution.6 A similar strategy of Uncertain Primary Indexing (UPI) is used in [70] to store

6Though, at times, it may require re-execution of enrichment functions, if the determinization process requires a probability
value from the corresponding enrichment function for the domain value that has been pruned out.

43

Rel. TID Attrs.

‘R1’ 1 ‘A1’, ‘A3’

. . .

‘R1’ 100 ‘A1’, ‘A3’

‘R2’ 1 ‘A2’

. . .

‘R3’ 200 ‘A1’, ‘A3’

Table 4.3: PlanSpaceTable.

Rel. TID Attr-FID

‘R1’ 2 〈‘A1’, f2.id〉, 〈‘A3’, f5.id〉
‘R1’ 3 〈‘A1’, f4〉, 〈‘A3’, f6.id〉
‘R2’ 1 〈‘A2’, f7.id〉
‘R3’ 2 〈‘A1’, f3.id〉, 〈‘A3’, f5.id〉

Table 4.4: PlanTable.

subset of tuples (with probability higher than a threshold) of a relation in a faster primary

index and remaining tuples in a slower secondary index. In both EQP
TC and EQP

LC , state

table is maintained in the database.

In EQP
LC , since enrichment is performed outside of the database to reduce number of database

updates every time an enrichment is performed, an in-memory cache for the state table is

maintained at the enrichment server. This cache only contains tuples that may need to be

enriched during query execution (i.e., the result of probe queries, as will be discussed in

§4.2.3) and the updates are pushed to the database at the end of the epoch. EQP
LC makes

sure that the same derived attribute of a tuple is never enriched using the same enrichment

function multiple times.

4.2.3 Joint Enrichment and Query Execution

In EQP , new enrichment of tuples are performed in each epoch, that requires query results

to be updated at the end of each epoch. Instead of re-executing the query to compute the

modified answers, an incremental query processing approach based on Incremental View

Maintenance (IVM) is used. Before we discuss how to exploit IVM to support incremental

processing, we briefly review the IVM technique below.

Incremental View Maintenance (IVM). Given a view corresponding to a query q, for

each table Ri ∈ q, IVM algebraically derives an incremental query ∆q, that is executed (e.g.,

44

using triggers as in [71]) whenever the base tables change. The ∆q query computes only the

delta changes of the materialized view q. Correctness of IVM is characterized by ensuring

that: [q(D+ ∆D) = q(D) + ∆q(D,∆D)], where D is an instantiation of a database, ∆D are

the updates to D, q(D) is the prior query results based on D, ∆q is the modified query that

is executed seeded based on ∆D, and the notation ‘+’ in the expression q(D) + ∆q(D,∆D)

refers to the way of combining answers of the two queries to generate the overall answer to

q over the modified data.

A comprehensive description of how ∆q can be algebraically derived from q appears in

[71, 36, 86]). Below, we provide few examples of how operators are transformed to provide

intuition. Let ∆R1 and ∆R2 be the set of tuples updated to relations R1 and R2, respectively.

• Let q = σC(R1) where C represents a set of selection conditions, then ∆q= σC(∆R1), i.e.,

the selection condition needs to be applied only on the updated tuples of R1.

• Let q= R1 ./ R2, then ∆q = (∆R1 ./ R2 + R1 ./ ∆R2), i.e., only the updated tuples of R1

needs to be joined with relation R2 and the updated tuples of R2 with R1.

• Let q = γg(R)), then ∆q = γg(∆R1), where γ is an aggregation function, g is a group by

attribute. In this scenario, the aggregation function γg needs to be applied directly on the

updated tuples.

IVM techniques have been integrated within several popular databases: PostgreSQL [9],

Oracle [11], and Amazon Redshift [10]. IVM implementations can be significantly efficient

than recomputing the original query. E.g., the rewritten selection query above requires only

selections to be performed on updated tuples (that may be few) as compared to having to

re-execute the selection over the entire table. Likewise, incremental computation of joins

and other operators may be significantly efficient compared to the naive implementation.

Systems such as [71], have shown ≈ 90 times improvement for certain queries in TPC-H

benchmark [17], in terms of the number of refreshes supported by IVM as compared to a full

refresh of materialized view after each update of base tables.

45

Incremental Processing. EQP exploits IVM to incrementally compute the modified query

answers because of enrichments performed on the data during an epoch. The query execution

consists of four steps discussed in the following subsections. Out of the four steps, the

query setup is performed once in the zero-th epoch e0 (this is a special epoch where only

query setup is performed) and all other steps are executed iteratively, i.e., once per epoch

(ei,where i ≥ 1).

4.2.3.1 Query Setup

During the query setup, EQP initializes a materialized view qv for the query q based on

the current state of the database. Results of qv are incrementally updated as more data is

enriched in future epochs.

In addition, during query setup, to determine the set of possible candidate enrichments to

be performed in future epochs, probe queries pq(Ri)
7 are executed for each relation Ri ∈ q.

The query pq(Ri) needs to be appropriately modified since simply checking if the value of a

derived attribute is not NULL, no longer suffices if a tuple is fully enriched. Instead, the probe

queries need to exploit the state of derived attributes to determine if the derived attribute

can be further enriched by exploiting other enrichment functions that have not been executed

yet on the attribute value. The test for whether for a given attribute an enrichment function

has not yet been executed (and hence the tuples can be further enriched) is performed by

checking if the sum of the bits in the array of AjStateBitmap column of a tuple is equal to

the length of the array in AjStateBitmap column.

Example 4.2.1. Considering the probe query of Figure 4.2(b) (bottom) for relation R1, the

modified probe query is presented in Figure 4.6. In the modified query, if sum of the bits

in the array of A1StateBitmap column of a tuple is not equal to the length of the array in

7Discussed in §4.1.1.

46

σR1.A2=a2∧(array sum(A1StateBitmap)!=
array length(A1StateBitmap))

(R1 ./ R1State) nR1.A2=R2.A4

[
R2 nR2.A4=R3.A5

(σ(R3.A5=a5)∧(array sum(A1StateBitmap)!=
array length(A1StateBitmap))

(R3 ./ R3State))
]

Figure 4.6: Updated probe query for R1.

A1StateBitmap column, then that tuple is not completely enriched and hence it is returned

in the probe query result.

PlanSpaceTable. The result of the probe queries are stored in a table entitled PlanSpaceTable

an example of which is shown in Table 4.3. This table stores a set of candidate tuples of

relations Ri ∈ q that are considered for enrichment to answer q. Rows in PlanSpaceTable

correspond to the name of the relation (Ri) included in q, the tuple ID, and the list of derived

attributes for which the tuple needs to be enriched for q (see Table 4.3).

4.2.3.2 Enrichment Planning

At the beginning of each epoch, based on the state of the tuples, EQP moves a set of tuples

from the PlanSpaceTable to a PlanTable for (potential) enrichment during this epoch. The

PlanTable contains three columns: RelationName, TID (tuple identifier), and Attr-FID

(stores a list of 〈 name of derived attribute, enrichment function identifier〉 pairs). For a

tuple and each derived attribute that require enrichment in PlanSpaceTable, an enrichment

function is chosen. The list of the derived attribute and enrichment function pairs are

stored in the Attr-FID column. A sample PlanTable based on selecting tuples from the

PlanSpaceTable in Table 4.3 is shown in Table 4.4.

In order to populate the PlanTable from PlanSpaceTable, we have to select a set of 〈tuple,

derived attribute, enrichment function〉 triplets for enrichment during a given epoch. Such

selection can be based on diverse criteria. Below, we describe a set of strategies that we will

compare in the experiments in §5.6.

47

• Sampling-based Function Ordered (SB(FO)) method, where a sample of tuples

and derived attributes are selected from PlanSpaceTable using simple random sam-

pling (i.e., each tuple has equal probability of being part of the sample) and for each

tuple in the sample, enrichment functions are chosen based on the order of quality
cost

that

were not executed on the tuple earlier, where quality of the function is measured us-

ing any classifier metrics such as accuracy and AUC score and cost is measured using

average execution time of the function per object.

• Sampling-based Object-Ordered (SB(OO)) method, where a sample of tuples

are chosen using simple random sampling, and each tuple is enriched completely using

all the available enrichment functions for all the derived attributes that are required

for q.

• Sampling-based Random Ordered (SB(RO)) method, where a sample of tuples

are selected using simple random sampling from PlanSpaceTable and for each tuple, a

derived attribute and an enrichment function is selected randomly that is not executed

on the tuple earlier (based on the state of tuple).

The cost of selected plan is the summation of the cost of enrichment functions part of

PlanTable. Note that for the plan to be valid (i.e., executable during the epoch), the

cost of selected plan must be smaller than epoch duration. Apart from above strategies,

other ways of selecting enrichment plan can also be devised, (e.g., one could use a query

cognizant approach that attempts to perform enrichments that improve quality of query

results optimally).

4.2.3.3 Computing Progressive Answers

To compute q progressively, we need to compute delta answers for qv based on the data mod-

ifications, resulted due to enrichment in the epoch. In EQP
LC , enrichments were performed

48

independently (at the enrichment server) and modified/updated attribute values of enriched

tuples in the base relations, triggered the recomputation of query answers.

Computing delta answers in EQP
TC is significantly more complex than in EQP

LC which we

discuss first.

Progressive Answering in EQP
LC : In EQP

LC , enrichments are performed independently

(at the enrichment server) and modified/updated attribute values of enriched tuples in the

base relations, triggered the recomputation of query answers. In EQP
LC , the IVM query qv

is simply the original query q. During each epoch ek, the 〈tuple, derived attribute, enrich-

ment function〉 pairs of PlanTable are executed, followed by the execution of appropriate

determinization function DET . The resulting updates are reflected in the database by re-

placing current values of the derived attributes of enriched tuples based on the functions

executed upto that time. Hence, the determinized representation of the database changes

from DET (state(D, ek−1)) to DET (state(D, ek)). Such an update, triggers IVM to update

the materialized view based on ∆D that consists of all changes that took place in ek (i.e.,[
DET (state(D, ek)) - DET (state(D, ek−1))

]
). Specifically, ∆q(DET (D, ek−1),DET (∆D))

is executed to compute q(DET (D, ek)), i.e., the query result of ek.

Progressive Answering in EQP
TC. Unlike EQP

LC where enrichments are performed sep-

arately at the enrichment server resulting in modifications to the base tables that triggers

a recomputation of qv, in EQP
TC , enrichment of tuples are performed within the query q as

part of the UDF execution. Thus, the incremental evaluation of query results has to be

triggered by updates to a different table. In particular, in EQP
TC , the query qv uses updates

to PlanTable, to support the incremental evaluation of the query results.

For this purpose, the query q is rewritten to use the PlanTable as follows: all relation

Ri ∈ q, that require enrichment, Ri is replaced by the expression: Ri ./Ri .TID=PlanTable.TID

(σRelName=‘Ri’(PlanTable)).

49

./
R1.A1=R2.A2

σR1.A1=a1

R1

σR2.A2=a2∧R2.A3=a3

R2

(a): Original query.

./
ωP./(R1.A1=R2A2)

ωPσ (R1.A1)) = a1

./
R1.id=PT1.T ID

R1 σRel=′R′1

PlanTable as PT1

ωPσ (R2.A2 = a2) ∧ ωPσ (R2.A3 = a3)

./
R2.id=PT2.T ID

R2 σRel=′R′2

PlanTable as PT2

(b): Query used in IVM for EQP
TC .

Figure 4.7: The incremental query used by IVM in EQP
TC .

Example 4.2.2. Consider the query of Figure 4.6(a). The tuples of both R1 and R2 require

enrichment because of the query conditions on attributes A1 and A2. In the rewritten query

of q to support incremental evaluation, both the relations are joined with PlanTable, as

shown in Figure 4.6(b) (other rewrites of selection and join conditions are denoted as ωPσ

and ωP./ will be clear in a later part of section).

The above rewrite triggers the incremental computation of the query result each time the

PlanTable is modified.

Example 4.2.3. Consider the query of Figure 4.6(a) and the rewritten query of Figure

4.6(b). Suppose in epoch ek, a 〈tuple, derived attribute, enrichment function〉 triplet is

added to the PlanTable where the tuple belongs to relation R1. The addition of this triplet

triggers a view update of the query shown in Figure 4.6(b) as PlanTable is part of the view

definition. �

While the approach to create qv by rewriting q using PlanTable results in desired incremental

50

updates, it suffers from a subtle complexity. Specifically, for a given tuple t, when enrichment

functions execute, the change in state table, results in a new determinized value for the

derived attribute t.Aj in R. If we update the current value of t.Aj in R, the change would

cause the refresh to the view to cascade resulting in a duplicate update to the results. To

see this, consider the following example.

Example 4.2.4. In Example 4.2.3, suppose a row 〈t,Ai, fj〉 where t ∈ R is added to

PlanTable in epoch ek. Hence, the incremental query execution is triggered. During the

execution of incremental query, enrichment function is executed on t and the condition of

(R.A1 = a1) is evaluated on it. As a result, the state of t and the determinized value of t.A1

is updated. Now, if we update the new attribute value of t in R, it will cause another trigger

to incremental query execution (as R is part of the qv), causing duplicate results. �

To prevent such a situation, we cannot update the value of attribute t.Aj directly during the

execution of qv. We instead store the value of determinized representation of t.Aj separately

as part of state table RiState. To do so, we extend the schema of RiState to include a new

field AjValue for each derived attribute in Ri.
8

Since we do not modify the value of derived attribute in place, we need to define additional

UDFs for qv to read the value of attribute Aj. Note that if Aj is modified (due to enrichment)

during the execution of the query, its value resides in the AjValue column of the RiState

table. Otherwise, if Aj is not modified in an epoch, its most recent value is available in Aj

column of table Ri. To enable qv to correctly retrieve the value of Aj, we define two UDFs

entitled CheckState and GetValue as described below.

CheckStateCheckStateCheckState UDF: The objective of this UDF is to check if a particular tuple was enriched

for a particular derived attribute present in the query. The input to the UDF is a relation

name, a derived attribute name, a tuple identity, and Attr-FID value retrieved from the

8RiState, thus, contains three fields: AjBitmap, AjOutput, and AjValue, for attribute Aj .

51

PlanTable for the corresponding tuple. Attr-FID column of PlanTable, is used to get the

enrichment function that needs to be executed. If that enrichment function was executed

before, then it returns true, otherwise false. Note that CheckState retrieves this information

from the state bitmap column of the derived attribute in the state table §4.2.2.

GetValueGetValueGetValue UDF: The purpose of GetValue UDF is to retrieve the latest value of a derived

attribute for a given tuple. GetValue takes as input a relation name (e.g., ‘R′i), attribute

name (e.g., ‘Aj’), and a tuple identity and returns the determinized value of Aj stored in

the AjValue column of RiState table.

Apart from the above two UDFs, we further need to appropriately modify the readu function

shown in §4.1.2 (that enriches derived attributes as a side effect of reading them) to account

for the way the state and data value are stored when multiple enrichment functions can be

associated with a derived attribute.

Modified readureadureadu UDF: Given a tuple, a derived attribute Aj, and an enrichment function,

the modified readu UDF executes the enrichment function on the tuple, updates the state,

and returns the determinized representation of the tuple for the derived attribute.

The modified readu function takes the following inputs: the name of the relation, the name

of the derived attribute, the tuple identity, and the list of 〈derived attribute, function ID〉

pairs (stored in Attr FID column of PlanTable). It executes the enrichment function on

the input tuple for the derived attribute (parsed from Attr FID), updates the state of the

tuple and returns the derived attribute value. In the state table, it updates the state bitmap,

state output, and attribute-value columns. The state-bitmap is updated by setting the bit

corresponding to the enrichment function executed on it. The state-output is updated by

the output of the executed enrichment function. The attribute-value column is updated

by the latest determinized representation of the derived attribute value of the tuple. The

determinized representation of the derived attribute is returned by the readu function.

52

Using readu UDF as shown above, we now describe how query qv is rewritten. Essentially,

the selection conditions are rewritten appropriately to check if the corresponding derived

attribute was enriched during the epoch from the state table (enrichment is only performed if

the enrichment function was not executed earlier). This check is performed using CheckState

and GetValue UDFs as defined earlier. The complete rewrite logic of a selection condition

(ωPσ (R.Ai op ai)) is presented below:

[
CheckState(‘R’, ‘Ai’, R.id,Attr FID) /* Ai is enriched.*/

∧GetValue(‘R’, ‘Ai’, R.id) op ai
]

∨
[
!CheckState(‘R’, ‘Ai’, R.id,Attr FID) /* Ai is not enriched.*/

∧ readu(‘R’, ‘Ai’, R.id,Attr FID) op ai
] (4.3)

In the above rewrite logic, the rewritten condition first checks if the tuple is already en-

riched or not for a given derived attribute Ai using the CheckState function. If it is al-

ready enriched, then the GetValue UDF is used to retrieve the latest attribute value of

the tuple and then the selection condition is executed. This rewrite logic is achieved by:[
CheckState(‘R’, ‘Ai’, R.id,Attr FID) ∧ GetValue(‘R’, ‘Ai’, R.id) op ai

]
. If a tuple is not

enriched before (i.e., CheckState UDF output is 0), then the readu UDF is executed to

enrich the tuple and finally the selection condition is executed based on the output of

readu UDF. It is achieved by the condition of
[
!CheckState(‘R’, ‘Ai’, R.id,Attr FID) ∧

readu(‘R’, ‘Ai’, R.id,Attr FID) op ai
]
.

53

The corresponding rewrite logic for join condition ωP./(Rp.Ai op Rq.Aj)) is shown below

(similar to rewrite logic of selection condition).

[
CheckState(‘Rp’, ‘Ai’, Rp.id,Attr FID)

∧ CheckState(‘Rq’, ‘Aj ’, Rq.id,Attr FID) /* Both of Ai and Aj are enriched*/

∧GetValue(‘Rp’, ‘Ai’, Rp.id) op GetValue(‘Rq’, ‘Aj ’, Rq.id)
]

∨
[
CheckState(‘Rp’, ‘Ai’, Rp.id,Attr FID)

∧ ! CheckState(‘Rq’, ‘Aj ’, Rq.id,Attr FID) /* Only Ai is enriched.*/

∧GetValue(‘Rp’, ‘Ai’, Rp.id) op readu(‘Rq’, ‘Aj ’, Rq.id,Attr FID)
]

∨
[
! CheckState(‘Rp’, ‘Ai’, Rp.id,Attr FID)

∧ CheckState(‘Rq’, ‘Aj ’, Rq.id,Attr FID) /* Only Aj is enriched.*/

∧ readu(‘Rp’, ‘Ai’, Rp.id,Attr FID) op GetValue(‘Rq’, ‘Aj ’, Rq.id)
]

∨
[
! CheckState(‘Rp’, ‘Ai’, Rp.id,Attr FID)

∧ ! CheckState(‘Rq’, ‘Aj ’, Rq.id,Attr FID) /* None of Ai and Aj are enriched.*/

∧ readu(‘Rp’, ‘Ai’, Rp.id,Attr FID) op readu(‘Rq’, ‘Aj ’, Rq.id,Attr FID)
]

(4.4)

In the above rewrite logic, given a join condition of (Rp.Ai op Rq.Aj), for a tuple pair, the

rewritten condition first checks if both the derived attributes were enriched (i.e., CheckState

returning true for both tuples). If they were, then the join condition is executed on the

output of the GetValue function as it returns the latest attribute value of the tuples. In

second and third condition of rewrite, only one tuple of the tuple pair is enriched. For the

tuple that was enriched before, the value was retrieved using GetValue UDF. The other tuple

is enriched first using the modified readu function and the join condition between the tuple

pair is executed. In the fourth condition of rewrite, both the tuples were not enriched in the

epoch. Hence, both the tuples were enriched using the modified readu function and the join

condition is executed.

54

Based on the query rewrite logic described above, now we rewrite the query of qv that

is used to incrementally maintain the result of query q. Considering the query shown in

Figure 4.6(a), the rewritten query of qv is shown in Figure 4.6(b). In the rewritten query,

the selection and join conditions are rewritten using the rewrite logic of ωσ and ω./ as we

described above.

The query of qv as described above contains the PlanTable. In an epoch ek, when a set

of 〈tuple,derived attribute, enrichment function〉 triplets are added to PlanTable, a re-

execution of query qv is triggered. During the execution of qv, the enrichment of triples in

the PlanTable take place and the state of the tuples are updated (i.e., using readu UDF),

and the IVM maintained using query qv is updated. Hence, the delta query used to compute

the delta changes to the query result of q at the end of each epoch ek is created using the

same query of qv.

4.2.3.4 Fetching Results

In EQP , users can fetch complete query results at the end of an epoch by querying the

IVM. If complete answer set is large, users can retrieve delta changes of answers, i.e., in-

serted/deleted/updated tuples from previous epoch. Current implementation allows users

to fetch delta answers only from last epoch. Fetching delta answers from any arbitrary

epoch using a cursor is complex (will be supported in future version), since the query pro-

cessing in EQP are not demand-driven, as in SQL databases. The refined answers due to

∆q(DET (D, ek−1),DET (∆D)), may result in retraction of previously returned tuples, or

addition of new tuples, or updates to the previously reported answers.

55

Relation #tuples Size(GB) Derived attributes Functions used

TweetData 11M 10.5
sentiment(3) GNB,KNN,SVM,MLP
topic(40) GNB,KNN,LDA,LR

MultiPie[104]100K 16.9 gender(2) DT,GNB,KNN,MLP
expression(5) DT, GNB, RF, KNN

Table 4.5: Datasets used in experiments.

4.3 Experimental Evaluations

This section evaluates the performances of both EQLC and EQTC approaches. Specifically,

we address the following questions:

• How does EQTC perform compared to EQLC approach in terms of savings in the

enrichment? Does exploiting query semantics during enrichment really pay off?

• How does progressive query processing help in reducing query response time for queries

with expensive UDFs compared to the traditional approaches of query processing?

• Which approach between EQTC and EQLC is well suited for supporting progressive

query processing? What are their advantages and limitations in terms of overheads?

• How do enrichment plan generation strategies affect progressive query processing? Are

there scopes for improvement?

4.3.1 Experimental Setup

Datasets. We used two datasets to evaluate the performances of EQLC and EQTC ap-

proaches: (i) TweetData collected using APIs with 11 million rows, two derived attributes:

〈sentiment and topic〉, and six fixed attributes: 〈tid, UserID, Tweet, feature, location,

and TweetTime〉 (ii) MultiPie [104] dataset with 100K facial images, two derived attributes:

56

ID Queries Application Query Type

Q1 SELECT * from MultiPie where gender=1 and CameraID < c1 Images Selection

Q2 SELECT * from MultiPie where gender = 1 and expression =
2 and CameraID < c1

Images Selection

Q3 SELECT tid, UserID, Tweet, location, TweetTime from Tweet-
Data where sentiment = s1 and topic = t1 and TweetTime
between(t1,t2)

Tweets Selection

Q4 SELECT * from TweetData T1, TweetData T2 where
T1.sentiment = T2.sentiment and T1.topic = T2.topic and
T1.TweetTime between(t1,t2) and T2.TweetTime between (t1,
t2)

Tweets Join

Q5 SELECT * from MultiPie M1, MultiPie M2 where
M1.expression = M2.expression and M1.gender = M2.gender
and M1.CameraID < c1 and M2.CameraID < c1

Images Join

Q6 SELECT * from MultiPie M1, MultiPie M2 where M1.gender
= M2.gender and M1.expression = 1 and M2.expression = 2
and M1.CameraID < c1 and M2.CameraID < c1

Images Join

Q7 SELECT * from TweetData T1, State S where T1.location
= S.city and S.state=‘California’ and T1.sentiment = 1 and
T1.TweetTime between(t1,t2)

Tweets Join

Q8 SELECT topic, count(*) from TweetData where
T1.TweetTime between(t1,t2) group by sentiment

Tweets Aggregation

Table 4.6: Query templates used.

〈gender and expression〉, and five fixed attributes: 〈ImageID, UserID, CameraID, Image,

and ImageTime〉 (see Table 4.5).

Enrichment Functions. We used the following probabilistic classifiers as enrichment func-

tions: Gaussian Näıve Bayes (GNB), Decision Tree (DT), Support Vector Machine (SVM),

K-Nearest Neighbor (KNN), Multi-Layered perceptron (MLP), Linear Discriminant Analysis

(LDA), Logistic Regression (LR), and Random Forest (RF). GNB classifier was calibrated

using isotonic-regression model [117] and remaining classifiers were calibrated using Platt’s

sigmoid model [93] during cross-validation to the output probability distribution.

Queries. Table 4.6 shows nine queries, where Q1-Q3 are selection queries, Q4-Q7 are join

queries, and Q8 is an aggregation query. At any instance of time in EQLC and in EQTC ,

only one query was executed at the servers.

57

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Baseline 100K 200K 22M 22M 200K 200K 11M 11M
EQLC 10K 20K 200K 200K 20K 20K 4K 100K
EQTC 10K 13705 164210 127550 12943 12340 4K 100K

Table 4.7: Exp 1. Number of enrichments in EQLC and EQTC .

4.3.2 Experimental Results

For the experiments, we setup the database on an AWS server with 16 core 2.50GHz Intel

Xeon CPU, 64GB RAM, and 1TB SSD. We used another AWS server with the same config-

uration as the enrichment server. The datasets were stored in two tables of a PostgreSQL

database (version 13). In EQTC , the enrichment functions were implemented as PostgreSQL

UDFs, and in EQLC , the enrichment functions were implemented as Python functions.

4.3.2.1 EQTCEQTCEQTC VS EQLCEQLCEQLC

To compare EQTC and EQLC using the criterias of §4.1.3, we used MLP for sentiment (6.26

ms/tweet), GNB for topic (7.82 ms/tweet), MLP for gender (32.6 ms/image), and RF for

expression attribute (28.7 ms/image).

Exp 1: Number of enrichments. Table 4.7 shows the total number of enrichments for

EQLC , EQTC , and the baseline approach that performs complete enrichment at the time

of data ingestion. Both EQTC and EQLC perform significantly well as compared to the

baseline approaches as enrichment is performed only in the context of the query leading

close to 90% savings in enrichment for all queries. Note that this number also depends on

the selectivity of the query as will be shown in the next experiment. Between EQTC and

EQLC , EQTC performs either same or much lower number of enrichments than EQLC since

EQTC exploits query semantics to remove redundant enrichments. In EQTC , for the queries

with multiple predicates (i.e., Q2-Q6) on derived attributes, the tuples that did not satisfy

one predicate were not enriched for the remaining derived attributes, that resulted in savings

58

Approach Selectivity of
TweetTime

topic ≤ 10 topic ≤ 20 topic ≤ 30 topic ≤ 40

Baseline 1% 22M 22M 22M 22M
EQLC 1% 20K 20K 20K 20K
EQTC 1% 11.4K 14.7K 15.4K 16.8K
Baseline 10% 22M 22M 22M 22M
EQLC 10% 200K 200K 200K 200K
EQTC 10% 100.1K 103.9K 104.6K 139K
Baseline 100% 22M 22M 22M 22M
EQLC 100% 22M 22M 22M 22M
EQTC 100% 11.16M 12.14M 13.6M 15.8M

Table 4.8: Number of enrichments saved in EQTC compared to EQLC with varying selectivity
of precise condition (i.e., TweetTime between (t1, t2)) in query Q3.

on enrichment. However, in Q1, Q7, and Q8, the number of enrichments were same for both

EQLC and EQTC , as Q1 and Q7 had a single predicate on derived attribute and Q8 was an

aggregation query with a selection condition on a fixed attribute. Hence, for these queries,

during query execution, EQTC did not have opportunity to eliminate redundant enrichment

based on predicates on derived attributes.

Number of enrichments with varying selectivity. We define selectivity as the ratio of

input-cardinality to the output-cardinality of a predicate. We used Q3 for this experiment

where we replace the predicate of (topic = t1) with the predicate of (topic ≤ k) where k is

varied from 10 to 40 to control the selectivity of topic predicate and varied the selectivity

of TweetTime predicate to control the number of tweets that may require enrichment. Table

4.8 shows the results, where we observe that when predicate selectivity increases (i.e., passes

fewer input tuples), the savings in terms of enrichment for both EQLC and EQTC is high

as compared to the baseline approach (as shown in the first three rows of the Table 4.8

with selectivity of 10%). The improvement in EQTC as compared to EQLC is that all the

tuples that do not satisfy the predicate of (topic ≤ k) are not further enriched for the

attribute of sentiment. When the selectivity increases to 100%, then EQLC performs the

same as the baseline approach. EQLC can still save more enrichments by exploiting query

semantics on the derived attribute. Therefore, for queries with high selectivity, both EQLC

59

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

EQLC 378.18 684 1291 1319.5 736 705 32.72 693

EQTC 306.7 572.73 944.68 905.3 627.51 582.37 28.17 612

Table 4.9: Latency of queries in EQLC and EQTC approaches (in seconds).

and EQLC performs much better compared to EQLC . Furthermore, from this experiment,

we can conclude that exploiting query semantics is quite useful to reduce enrichment cost.

Execution time/Server load. Table 4.9 shows the latency of queries Q1 to Q8 in

EQLC and EQTC , where latency is the average execution time of 50 queries generated from

each template of Table 4.6. E.g., we created 50 queries of Q2 by setting different values in

CameraID predicate. As expected, the latency in EQTC is much lower than EQLC , as the

total number of enrichments performed in EQTC is much lower than EQLC .

Figure 4.8 shows the execution time spent in enrichment server and DBMS for EQLC and

EQTC . In EQLC , the majority of the query execution time was spent at enrichment server,

whereas in EQTC , majority of the time was spent at DBMS. Also, it shows that total

execution time in EQLC is higher than EQTC , as EQLC enriches more tuples, as shown

in Table 4.7. The network latency is higher in EQLC , since the result of probe queries are

transmitted from DBMS to enrichment server. E.g., in Q2 and Q3, average network latencies

were 72 seconds and 37.1 seconds, respectively.

Since in EQTC , the majority of query execution time is spent in DBMS, it can become a bot-

tleneck when more queries execute concurrently. Furthermore, adding more machines does

not improve EQTC , since enrichment functions are executed at DBMS. A data partitioning-

based approach can be used to scale-out DBMS but it requires a distributed database and

expensive data partitioning. Hence, when query workload is low, one should use EQTC , and

then switch to EQLC when workload increases.

60

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

0
200
400
600
800

1000
1200
1400

Ex
ec

ut
io

n
Ti

m
e(

s)
 Time in enrichment server
 Time in database server

Figure 4.8: Times in enrichment server and
DBMS (Left bars=EQLC , Right bars=EQTC).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Queries

0.0
0.2
0.4
0.6
0.8
1.0

Ex
ec

ut
io

n
Ti

m
e(

s)

 Progressive score in TC
 Progressive score in LC

Figure 4.9: Progressive score achieved by
queries in EQTC and EQLC .

4.3.2.2 Progressiveness

This section considers all enrichment functions for the derived attributes as shown in Table

4.5. We present progressive quality improvement of queries Q1-Q8 in two ways: (i) plotting

the quality of query results with respect to time and (ii) quantifying the quality improvement

over time using a metric of progressive score, denoted by PS(). This metric was used in

previous literature to measure progressiveness [89, 26].

PS(Ans(q, E)) =
|E|∑
i=1

W (ei) · [Q(Ans(q, ei))−Q(Ans(q, ei−1))] (4.5)

where, (E = {e1 , e2 , . . . , ez}) are the epochs, W (ei) ∈ [0, 1] is the weight allotted to epoch

ei, W (ei) > W (ei−1)), Q is the quality of answers, and [Q(Ans(q, ei))−Q(Ans(q, ei−1))] is

the improvement in the quality of answers occurred in the epoch ei.

Exp 2: Progressiveness of different queries. Figure 4.10 evaluates EQP
LC and EQP

TC

approaches, in terms of progressive quality improvement achieved. Figures 4.10(a), 4.10(b),

and 4.10(c) show the results for queries Q2, Q3, and Q4, where the quality of answers is

61

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

EQ(TC) EQ(LC)

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

EQ(TC) EQ(LC)

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

EQ(TC) EQ(LC)

Figure 4.10: Progressiveness achieved in EQLC and EQTC for (a) Q2, (b) Q3, and (c) Q4.

measured using normalized F1 measure i.e., F1/Fmax
1 , where Fmax

1 is the maximum F1

measure achieved during query execution. The results of remaining queries and normalized

Jaccard’s similarity results are available in [1]. For aggregation query Q8, the quality

is measured using normalized root mean square error (RMSE). We plot normalized

measures as a function of time to emphasize the rate at which the quality of query results

are improved across different queries and datasets, instead of actual F1-measures. Actual F1-

measure varies across different queries based on the quality of classifiers chosen for enrichment

(e.g., maximum F1 measures for different queries were: for Q1 0.73, Q2 0.81, Q3 0.74, Q4

0.89, Q5 0.78, Q6 0.83, Q7 0.72). The minimum RMSE achieved for Q8 was 1.78 starting

with an RMSE of 46.18 in the first epoch. From Figures 4.10(a), 4.10(b), and 4.10(c), we

observe that both EQP
LC and EQP

TC achieve a high-quality improvement within the first

few epochs of query execution. The progressive scores achieved for queries (measured using

Equation 4.5) are presented in Figure 4.9. EQP
TC achieves a higher progressive score since

the number of redundant enrichments in EQP
TC is lower than EQP

LC . Comparing the latency

between Table 4.9 and Figure 4.10, we can conclude that the progressive approach of query

processing with enrichment can be very beneficial since, the progressive approach achieves

high-quality results within a few epochs, without the need for users to wait for complete

enrichment.

Exp 3: Effect of Different Plan Generation Strategies. Figure studies different plan

generation strategies (as described in §4.2.3.2) and their impact on progressiveness. Figure

4.11 plots progressive improvement of quality for three queries: Q2, Q3, and Q4. Figures

62

Figure 4.11: Comparing different plan generation strategies in EQTC : (a) Q2, (b) Q3, (c)
Q4 (left to right).

4.11(a), 4.11(b), and 4.11(c) show that SB(FO) performs the best and SB(OO) performs the

worst since function order chooses functions with highest quality per unit cost before other

functions. SB(RO) performs only marginally better than SB(OO).

4.3.2.3 System Overhead

We measure the overhead incurred by progressive query processing in both EQP
LC and EQP

TC

approaches.

Exp 4: Time overhead measures the amount of time spent in non-enrichment tasks (i.e.,

query setup, plan selection, delta computation, and state update) to compare against the

time involved in data enrichment. Particularly, across all epochs, the total time in query

setup, plan selection, delta answer computation, and state update took at most 3s, 4s, 5s,

and 17s, respectively, while the total time spent across all epochs in enrichment was 1000s.

This result shows that both EQP
LC and EQP

TC have low overhead in terms of non-enrichment

tasks performed during query processing.

Exp 5: Storage overhead measures the size of all temporary tables (PlanSpaceTable

and PlanTable), IVM, and the state tables used during query processing to compare against

the size of data tables. The maximum storage overheads of PlanSpaceTable, PlanTable,

and the IVM at any epoch for the queries of Q1-Q8 were 1.48 MB, 56 KB, and 1.2 MB

63

respectively. The state table sizes for TweetData and Multi-Pie were 2.4GB and 101MB,

respectively, that are much smaller than the data tables. Furthermore, using the state cutoff

(§4.2.2) strategy, state storage overhead was reduced significantly. For TweetData table, the

state overhead was reduced from 2.4 GB to 0.9 GB, due to large domain size (i.e., 40) of

topic derived attribute.

64

Chapter 5

Optimizing Enrichment with

Progressive Query Processing

In this chapter, we explore a mechanism of ordering 〈object, enrichment function〉 pairs

of an enrichment plan (as described in the previous chapter) that optimizes the quality

improvement of query results with respect to time. We use the same data model of Chapter 3

to describe the concepts in this chapter. The query execution model is the progressive

execution model defined by us in Chapter 4. Our experimental results show that our approach

achieves its goal of progressive improvement of quality of answers during query processing.

5.1 Objective

In Chapter 3, we described the data model of EnrichDB that follows an extended relational

data model. In this model, some attributes of a relation are fixed (do not require enrichment)

and the remaining attributes are derived (that require enrichment). Each derived attribute

is associated with a set of enrichment functions.

65

An enrichment function takes as input a tuple tk and a derived attribute Ai and outputs a

probability distribution over the tags ofAi. In the rest of the chapter we refer to a enrichment

function as a function. The functions for an attributeAi are denoted by F i = {f i1, f i2, . . . , f ik}.

Each function f ij is associated with a quality (denoted by qij) and a cost (denoted by cij). The

quality measures the accuracy of the function in enrichment the tag of a derived attribute.

The cost of a function represents the average execution cost of the function on a single tuple.

A query (denoted by q) is expressed using SQL as follows:

SELECT Tweet ,location ,TweetTime , topic ,

sentiment FROM TweetData WHERE sentiment=’positive ’

AND topic= ‘social media’ AND TweetTime

BETWEEN (‘16:00’ ,‘18:00’);

Listing 5.1: A query submitted to EnrichDB.

In the above query, one predicate is on fixed attribute (referred to as fixed predicate) and

two are on derived attributes (referred to as derived predicate). As described in Chapter 4,

given a query q, we generate a set of probe queries to fetch the minimum set of tuples

that require enrichment from each relations in q. The resulted tuples are fetched to the

application server in EQLC. The EQTC implementation does not fetch any tuples to the

application server, however the resultant tuple IDs of probe queries are used for generating

the tuples in PlanSpaceTable. Given the above query, the probe query for the TweetData

relation will be as follows:

SELECT Tweet ,location ,TweetTime , topic , sentiment FROM

TweetData WHERE TweetTime

BETWEEN (‘16:00’ ,‘18:00’);

Listing 5.2: The probe query executed in DBMS.

66

tid UserID Tweet feature loc. Time topic sentiment

t1 John Uploading pics... [0.2, ..., 0.4] US 16:08 social media positive

t2 Mark Feeling great... [0.5, ..., 0.3] US 16:48 entertainment NULL

t3 Richard Sad about current
pandemic.

[0.6, ..., 0.4] UK 11:48 NULL NULL

Table 5.1: TweetData table where topic and sentiment are the derived attributes.

In the following we briefly define the concept of epochs, quality metric of the query answer,

and our objective of data enrichment.

Epochs. The epochs are designated for the purpose of performing data enrichment over a

lesser number of tuples. Particularly, the query execution time is discretized into different

time slots, called epochs, in which data enrichment is performed. At the end of each epoch,

the query results are returned to the users. An epoch, denoted by ei, is identified by a

range of time. We assume that each epoch is of equal duration, and it is specified as the

epoch duration parameter of the query. Query answer returned at the end of epoch w is

referred to as Answ. Each query has a parameter, num epoch, that denotes the maximum

number of epochs for which the query will run. Query answer returned at the end of epoch

w is denoted as Answ. Note that, in a progressive query processing strategy, a query answer

returned to the user in an earlier epoch, may be retracted in a later epoch due to the result

of enrichment.

Measuring Quality. The quality of an answer represents how close the answer is is to

the ground truth of G. We use Fα-measure [95] and Jaccard’s similarity [65] as the quality

metric of a query answer as they are widely used. They combine two other set-based quality

metrics of precision and recall. Precision (Pre) is defined as the fraction of correct tuples in

Answ to the total number of tuples in Answ whereas recall (Rec) is defined as the fraction

of correct tuples in Answ to the total number of tuples in G. The Fα-measure and Jaccard

67

similarity are computed as follows:

Fα(Answ) =
(1 + α) · Pre(Answ) ·Rec(Answ)

(α · Pre(Answ) +Rec(Answ))

J (Answ) =
|Answ ∩G|
|Answ ∪G|

=
[1

Pre(Answ)
+

1

Pre(Answ)
− 1
] (5.1)

where Pre(Answ) = |Answ ∩G|/|Answ|, Rec(Answ) = |Answ ∩G|/|G|, and α ∈ [0, 1] is the

weight factor assigned to precision in calculating Fα-measure.

We assume that ground truth values G are not available for the tuples. Hence, our approach

measures quality of the answer set in an expected sense. Although, in experiments of §5.6,

we plot graphs using actual Fα measure of the answer calculated from available ground truth,

our approach never uses it for guiding the enrichment process. It performs enrichment that

optimizes the following expected quality measure in each epoch:

E(Pre) =

m∑
i=1
Pi

m
,E(Rec) =

m∑
i=1
Pi

n∑
j=1
Pj
, E(Fα(Answ)) =

(1 + α)
m∑
i=1
Pi

α
n∑
j=1
Pj +m

,

E(J (Answ)) =
[m
n∑
i=1
Pi

+

n∑
j=1
Pj

m∑
i=1
Pi
− 1
]

(5.2)

where, Pi represents the probability of a tuple ti to be a part of the real answer set G (i.e.,

query executed on ground truth), m is the cardinality of Answ, and n is the cardinality of

the probe query results (described in detail in §5.2). Based on the definition of Fα measure of

Equation 5.1, expected Fα measure is calculated by the weighted harmonic mean of precision

and recall as shown in Equation 5.2. In order to find Jaccard’s similarity between the answer

set returned (i.e., Answ) and the ground truth set (i.e., G), we utilize the metric of precision

and recall as shown Equation 5.1. The expected Jaccard’s similarity is presented in Equation

5.2.

68

Progressive Score. Since in EnrichDB, users may stop query evaluation at any instance

of time, performing enrichments that impact the answer quality as early as possible is desir-

able. EnrichDB’s effectiveness is measured using the following progressive score (similar

to other progressive approaches [89, 24, 27]):

PS(Ans(q, E)) =
|E|∑
i=1

W (ei) · [Qty(Ans(q, ei))−Qty(Ans(q, ei−1))] (5.3)

where E = {e1 , e2 , . . . , ek} is a set of epochs, W (ei) ∈ [0, 1] is the weight allotted to the epoch

ei, W (ei) > W (ei−1)), Q is the quality of answers, and [Q(Ans(q, ei))−Q(Ans(q, ei−1))] is

the improvement in the quality of answers occurred in epoch ei.

In Equation 5.3, we observe that the optimization of enrichment in each epoch, ensures that

the progressive score is optimized for the query. Since the improvements in qualities of epochs

are added in the progressive score (using a weighted summation), highest improvement in

quality for each epoch ensures that the maximum possible progressive score is achieved.

Maximize(PS(Ans(q ,E)))⇒

Maximize(Qty(Ans(q, ei))−Qty(Ans(q, ei−1)))

(5.4)

The quality Qty in Equation 5.3, for a set-based query answer can be measured using set-

based quality metrics: precision, recall, Fα-measure, or Jaccard similarity coefficient as de-

scribed earlier. The quality of an aggregation query can be measured using root-mean-square

error [63] or mean-absolute-error [114]. For the purpose of enrichment, aggregation queries

on derived attributes are treated as a set-based query where the aggregation function is

applied on the set of results obtained from the rest of the query evaluation. Estimating

69

Algorithm 1: Overall Algorithm.
Inputs: Query Q and the duration of each epoch epoch duration.
Outputs: An enrichment plan for each epoch that optimizes progressive score.

1 Function Optimize Enrichment() begin
2 CandidateSet ← ∅
3 Ans ← ∅
4 for each Ri ∈ Q do
5 pq(Ri)← GenerateProbeQuery(Q,Ri)
6 CandidateSet ← CandidateSet ∪ Execute(pq(Ri))

7 for each epoch ei do
8 curr cost ← 0, curr benefit ← 0
9 Thresholds ← ComputeThreshold(Q ,Ans)

10 CandidateSet ← PruneTuples(CandidateSet)
11 for all C ∈ CandidateSet do
12 C.benefit ← estimate benefit(Q,C)

13 SortBenefit/Cost(CandidateSet)

14 while curr cost ≤ epoch duration do
15 〈tuple, function〉 ← CandidateSet .pop()
16 ExecuteEnrichment(tuple, function)

17 Ans ← UpdateQueryResult(Q)

18 Return Ans

the above quality metrics for queries on probabilistic data is not straight-forward. In later

sections, we describe how to estimate these quality metrics.

Problem Statement. For a given query Q, where a set of 〈tuple, enrichment function〉

pairs that are not yet executed till the previous epochs of e1, e2, . . . , ew−1, the objective in

epoch ew is to maximize the improvement in quality as shown in Equation 5.4.

5.2 Overview of the Algorithm

The problem of optimizing progressive score for a query, is a budgeted Knapsack problem,

which is NP-hard [37]. We use a greedy approach for solving this problem. In each epoch,

this approach chooses a set of tuples for enrichment from each relation. For each tuple,

it chooses a derived attribute to enrich for which a condition (selection or join) is present

70

in query Q. Next, for each tuple and derived attribute pair, the algorithm chooses an

enrichment function that is based on reduction of uncertainty of the attribute value of the

tuple. Finally, the generated 〈tuple, attribute, enrichment function〉 triplets are ordered

based on their capability of improving the quality of the query result from previous epoch.

The complete algorithm for generating and executing an enrichment plan during query pro-

cessing is shown in Algorithm 1. In the zero-th epoch (Line 2-6), the approach first deter-

mines a minimal set of objects to enrich. Naive way all can be enriched. executes a set of

probe queries (will be described in detail later), one for each relation present in query, that

identifies a minimal subset of tuples from each relations that may require enrichment based

on the predicates on fixed attributes. The algorithm for probe query generation is presented

in the previous section of §4.1.1. The later epochs (i.e., e1, e2, . . . ez) consist of four steps:

candidate tuple set selection (Line 10), computing benefit of the chosen tuples and enrich-

ment functions (Line 11 - 12), selection and execution of an enrichment plan (Lines 13-16),

and generation of the query result (Line 17).

5.3 Candidate Tuple Set Selection

Given a (super)set of tuples that may need enrichment – (i.e., result of probe queries) – the

goal is to select the right set of tuples to enrich in each epoch. The result of probe queries

can still be large depending on the selectivity of the predicates on fixed attributes. The

system uses a greedy algorithm to choose tuples for enrichment, that did not contribute to

the answer set in the previous epoch. For this purpose, the algorithm determines a threshold

for each relation present in the query Q. The purpose of the threshold selection is two-fold:

(i) choosing an answer set to be returned to the user at the zero-th epoch and at the end of

each epoch based on enrichment performed and (ii) prune the tuples of each relation further

that are considered for enrichment, from the results of probe queries. Below, we describe

71

the threshold selection algorithm.

5.3.1 Choosing Thresholds for Each Relation.

The selection of the threshold for a relation at a particular epoch is based on the following

theorem.

Theorem 5.1. Let L be the list of tuples sorted in a decreasing order of their probability

values in satisfying the selection condition on derived attributes and let Lk be the list that

consists of the first k tuples in L. The expected quality of the possible subsets of L follows

a monotonically increasing pattern with respect to k, up to a certain value of k and beyond

that it decreases monotonically, i.e., it follows the pattern: E(Qty(L1)) < E(Qty(L2)) <

. . . < E(Qty(Lτ−1)) > E(Qty(Lτ)) > E(Qty(Lτ+1)) > . . . > E(Qty(L)).

Proof. We prove this theorem by using Fα-measure as the quality metric of the answer set.

We show that if E(Fα) measure of the answer decreases for the first time, due to the inclusion

of a particular tuple in answer set, then it keeps decreasing monotonically with the inclusion

of any further tuple.

Let us denote the E(Fα) measure of the answer set, if τ -th tuple is included in the answer set

as Fτ . Similarly, the E(Fα) measures corresponding to the inclusion of τ + 1-th and τ + 2-th

tuple are denoted as Fτ+1 and Fτ+2 respectively. We show that for a particular value of τ ,

if Fτ+1 < Fτ , then it implies Fτ+2 < Fτ+1.

Fτ =
(1 + α).k1

τ
.k1
k2

α · k1
τ

+ k1
k2

=
(1 + α) · k1

α · k2 + τ
, k1 =

τ∑
i=1

Pi, k2 =
n∑
i=1

Pi (5.5)

72

Similarly, the values of Fτ+1 and Fτ+2 are as follows:

Fτ+1 =
(1 + α)(k1 + Pτ+1)

(αk2 + τ + 1)
, Fτ+2 =

(1 + α)(k1+
Pτ+1 + Pτ+2)

(αk2 + τ + 2)
(5.6)

Fτ+1 < Fτ ⇒
(1 + α) · (k1 + Pτ+1)

(αk2 + τ + 1)
<

(1 + α) · k1

αk2 + τ

⇒ (k1 + Pτ+1)(αk2 + τ) < k1(αk2 + τ + 1)

⇒ αk1k2 + k1τ + αk2Pτ+1 + τPτ+1 < αk1k2 + k1τ + k1

(5.7)

Simplifying some more steps, we derive the following condition: (k1+Pτ+1+Pτ+2)
(αk2+τ+2)

< (k1+Pτ+1)
αk2+τ+1

,

i.e., Fτ+2 < Fτ+1.

Based on above theorem, our approach only adds the tuples that have probability higher

than the threshold probability to the answer set of an epoch. All the tuples with probability

lower than the threshold probability are considered for enrichment and hence, added to

the CandidateTuple set of the epoch. The reason behind this selection is formalized in the

following theorem.

Theorem 5.2. Enriching a tuple tk corresponding to a composite-tuple that was not part of

the answer set in the previous epoch (i.e., in Answ−1) ensures that the quality of the answer

set increases with respect to previous epoch. That is, E(Qty(Answ)) >= E(Qty(Answ−1))

irrespective of the outcome of enrichment.

Proof Sketch. For a tuple that was not part of any answer-tuple of the previous epoch

of (w − 1), the execution of a triple containing the tuple can cause either an increment or

decrement of its probability value of satisfying the selection conditions. In the scenario where

it increases, it can either become higher than the probability value of the threshold tuple of

73

Derived
Attribute

State Entropy Ranges Next Function ∆ Uncertainty

sentiment [1, 0, 0, 0] [0 - 0.1), [0.1-0.2),
· · · ,[0.8-0.9), [0.9-1]

f1
2 , f1

4 , · · · ,f1
3 , f1

3 -0.04, -0.10, · · · ,
-0.2, -0.26

sentiment [1, 1, 0, 0] [0 - 0.25), [0.25-0.5),
[0.5-0.75), [0.75-1]

f1
3 , f1

4 , · · · , f1
3 -0.03, -0.11,

-0.15,-0.18

· · · · · · · · · · · · · · ·
topic [1, 0, 0, 0] [0 - 0.25), [0.25-0.5),

[0.5-0.75), [0.75-1]
f2

2 , f2
4 , f2

4 ,f2
3 -0.04, -0.12,

-0.16, -0.22

topic [0, 0, 1, 1] [0 - 0.1), [0.1-0.2), · · · ,
[0.9-1]

f2
1 , f2

1 , · · · , f2
2 -0.02, -0.11, · · · ,

-0.28

Table 5.2: DecisionTable.

the previous epoch or stay lower than it. In both the cases, the quality of the answer (i.e.,

E(Qty(Answ)) measured using Equation 5.2) increases or remains the same with respect

to previous epoch (i.e., E(Qty(Answ−1))). Similarly, when the probability value of a tuple

decreases, the E(Qty(Answ)) value stays the same or it increases, depending on the amount

of decrement. The complete proof of this theorem is available in Appendix B.

5.4 Benefit Estimation

The algorithm chooses the 〈object, enrichment function〉 pairs as candidate set, based on

benefit, per unit cost. Benefit, discussed formally below, corresponds to expected improve-

ment in quality of the answers compared to the quality of results in the previous epoch.

We restrict the choice of objects to enrich to only those that are not in the answer set to

reduce complexity of repeatedly computing benefits for objects that have already appeared

in the answer. We do so, since the expected benefit by further enriching an object that

already appears in the answer is significantly lower compared to those that are not in the

answer. Later in the paper we will formally justify this decision and will, furthermore, show

performance improvement due to reduced overhead of computing benefit in the experiments.

Given the database state at the end of epoch ew−1, the query is executed on the database

74

to produce the result of Answ−1. The quality is measured for the answer set Answ−1. Let

fm be an enrichment function that is not yet executed on tuple tk in the previous epochs.

The benefit of executing function fm in epoch ew can be computed as the improvement in

the quality of the query result if we were to execute fm on tk in the current epoch of ew.

In particular, let State(D, ew−1) be the state of the database at the end of epoch ew−1 and

(state(D, ew−1) ⊕ (tk, fm)) be the expected state of the database after execution of fm on

tk. If the query Q is executed on this new state of the database, the resulting improvement

in the quality of the answer set from the previous epoch is used to measure the benefit of

enriching tk with fm. Specifically, the benefit of enrichment is defined as follows:

Benefit(tk,Al, fm) = E(Qty(Q(state(D, ew−1)⊕ (tk, fm))))−

E(Qty(Q(state(D, ew−1))))

(5.8)

where E(Qty(Q(state(D, ew−1) ⊕ (tk, fm)))) is the expected quality of the query answer if

the tuple tk is enriched using the enrichment function fm and E(Qty(Q(state(D, ew−1)))) is

the quality of the query result at the end of previous epoch.

Thus, to determine the benefit of enriching a tuple, we need to estimate (i) the quality of

the answer after epoch ew−1 and (ii) the expected quality of the answer set if that tuple is

enriched in the current epoch. Before we consider how we can estimate these two metrics

for general queries, we first describe how to estimate them for selection queries.

5.4.1 Selection Queries

The estimation of quality of the answer in the previous epoch is performed as follows:

75

Estimating Quality of Answer. The algorithm calculates the probability of the tuples

of a relation to be part of the query result. If the probability of the tuples that were part

of the answer in previous epoch were P1, P2, . . ., Pm, and the probability of the tuples

outside of the answer were Pm+1, Pm+2, . . ., Pn, then expected F1 measure of the answer

(i.e., using Equation 5.2) can be calculated as follows: E(Fα(Answ−1)) =
(1+α)

m∑
i=1
Pi

α
n∑
j=1
Pj+m

. In this

equation, precision is calculated by the summation of probabilities of tuples that are part

of the answer set and the size of the answer set. The recall is calculated by the ratio of

summation of probabilities of all tuples that are part of answer set to the probabilities of

all the tuples that are part of the probe query result. Using the harmonic mean of precision

and recall, the E(Fα(Answ−1)) of Answ−1 is E(Fα(Answ−1)) =
(1+α)

m∑
i=1
Pi

α
n∑
j=1
Pj+m

.

Example. Consider the selection query as shown in Code Listing 5.1 on TweetData table

(as in Table 5.1). Suppose at the end of epoch ew−1, the tuples t1 and t2 were part of the

query result. Since, t1 has a probability of 0.54 to satisfy the query condition on topic and a

probability of 0.94 to have a sentiment of positive, the combined probability of the tuple

satisfying the query is (0.54 × 0.94) = 0.51. Similarly, the probability of t2 to satisfy the

query is (0.65× 0.5) = 0.325. The expected precision of the answer is calculated as follows:

(0.51 + 0.32)/2 = 0.415. The recall calculation requires probability of the tuples that are

part of the answer as well as of the tuples that are outside of the answer. The probability of

tuple t3 to be part of the query result is (0.4× 0.7) = 0.28.

The algorithm for computing the benefit of executing a function that is not yet executed on

the tuple is presented in Algorithm 2. The input to the algorithm is a set of 〈tuple, derived

attribute, enrichment function〉 triples. Estimating the quality improvement after executing

an enrichment function on a tuple, the algorithm uses the information about the amount

of uncertainty reduction caused by the enrichment function. As a first step, the algorithm

computes the uncertainty of the tuple in epoch ew−1 (say Ew−1) in the derived attribute value

76

Algorithm 2: Benefit Calculation.
Inputs: A tuple of a relation, a derived attribute, the next best function for the tuple at
that state of the attribute.

Outputs: The benefit of the 〈tuple ti, derived attribute Aj , enrichment function fk〉
triplet.

1 Function Estimate Benefit() begin
2 PreviousQuality ← ComputeQuality(Answ−1)
3 PreviousEntropy ← ComputeEntropy(ti,Aj)
4 ExpectedEntropy ← (PreviousEntropy − ComputeDeltaEntropy(ti, fj))
5 SelectionProbability ← ComputeInverseOfEntropy(ExpectedEntropy)
6 ExpectedAnswerQuality ← ComputeQuality(SelectionProbability ,Answ−1)
7 Benefit(tl, fj)← (ExpectedAnswerQuality − PreviousQuality)
8 Return Benefit(tl, fj)

of the tuple and finds out the expected amount of uncertainty reduction that will be caused

by executing the next best enrichment function, say ∆w. From the new entropy value, the

expected probability of the tuple satisfying the query is computed using inverse equation of

entropy.

Ew−1 −∆w = −p · log(p)− (1− p) · log(1− p) (5.9)

Note that the above equation of inverse entropy for finding out probability values, has two

possible solutions. After the actual execution of enrichment function, the probability of the

tuple may increase or decrease as compared to the previous epoch. While estimating the

quality of the query result, we use the estimated probability of the tuple which is higher

than the current value, as that probability contributes to the quality of query result.

Example. Consider the state of tuple with tid = 2 in Table 4.2. Since the tuple’s state for

sentiment derived attribute is [1,1,0] (i.e., functions f i1 and f i2 already executed) and the

uncertainty is 0.92 (computed from the values in SentimentStateOutput),1 our approach

1Combining the output of functions using an average based combiner produce the following outputs:
[(0.3+0.5)/2, (0.4+0.3)/2, (0.3+0.2)/2], i.e., [0.4,0.35, 0.25]. Calculating entropy h(tk,Ap) using the equation
of h(tk,Ap) = −

∑
i pi · log(pi) , will produce the output of 0.92.

77

will retrieve the corresponding record from decision table using the entropy range of [0.75−1].

The next function to be executed on the tuple is f i4 and the expected decrease in entropy is

0.28. The new entropy of the tuple with respect to the derived attribute is (0.92− 0.28) =

0.64.

Estimating Improvement in Quality. Using the new probability value of the tuple if it

is enriched in the current epoch and considering that the probability of all the remaining

tuples remain the same, we compute the new quality of the answer set. The benefit of

enrichment of the tuple is measured by Equation 5.2 and Equation 5.8. While measuring

this quality, the algorithm needs to measure the new threshold probability to determine

which tuples remain in the answer and then compute the E(Fα)-measure of the answer set.

This way of computing benefit has a time complexity of O(n2log(n)) for a tuple, since the

algorithm needs to sort all the tuples based on their probability values (O(nlog(n))) and

then find out the threshold value using a linear scan (O(n)), where n is the number of tuples

in the relation. Hence, the time complexity of computing the benefit of a single tuple takes

(O(nlog(n) +n)) time. Hence, for computing the benefit of n tuples, the time complexity of

O(n(nlog(n)+n)), i.e., O(n2log(n)). We reduce the time complexity of this step by deriving

a new metric of RelativeBenefit to order the tuples in linear time. According to this metric,

if one tuple has higher relative benefit than another tuple, then the first tuple will always

have higher benefit according to Equation 5.8, irrespective of the probability values of the

tuple (in epoch ew−1 or in epoch ew) and whether such probabilities affect the threshold of

the answer.

Our approach calculates a RelativeBenefit value for each triple (tk, Al, fm) in epoch w as

follows:

RelativeBenefit(tk,Al, fm) =
Pk(Pk + ∆Pk)

cm
(5.10)

78

where Pk is the probability of the tuple satisfying the selection conditions and Pk + ∆Pk is

the new probability of tuple tk if it is enriched in the current epoch.

We derive the above metric of computing relative benefit that is independent of the previous

probability of a tuple, the expected amount of probability increment in the current epoch,

based on the following theorem.

Theorem 5.3. A triple (tk, Al, fm) has higher benefit than a triple of (tq, At, fv) in epoch

w irrespective of the values of Pk, Pq, ∆Pk and ∆Pq, if the following condition is satisfied:

γk ·
Pk(Pk + ∆Pk)

cm
> γq ·

Pq(Pq + ∆Pq)
cv

(5.11)

Proof. We prove this theorem as follows: for a given values of each Pk, Pq, ∆Pk and ∆Pq,

there can be four possible orders among them. They are as follows: (i) Pk > Pq and

∆Pk > ∆Pq, (ii) Pk > Pq and ∆Pk < ∆Pq, (iii) Pk < Pq and ∆Pk > ∆Pq, (iv) Pk

< Pq and ∆Pk < ∆Pq. In each of these orders, we determine the answer set by calculating

the new threshold probability value. Once the answer set is determined, the quality of the

answer set is calculated separately when the triple (tk, R
i
l, f

i
m) and the triple (tq, R

s
t , f

s
v) is

executed. We measure their improvement in F1 measure using Equation 5.2. By simplifying

the equation, it is observed that the first triple will have higher benefit than the second one

when the condition in Equation 5.11 is satisfied. Below, we show the derivation for each of

the scenarios described above.

Suppose m1 is the number of tuples that are part of Answ−1 and moves out of Answ as a

result of changing the probability of the tuple tk from Pk to P̂k, where m1 ≥ 0 (as shown in

Lemma 4). Furthermore, suppose m2 ≥ 0 is the number of tuples that are part of Answ−1

and moves out of Answ as a result of changing the probability of the tuple tq from Pq to P̂q.

79

The possible values of m1 and m2 can be as follows. Both m1 and m2 can be greater than

zero and m1 is greater than m2. Both of m1 and m2 can be greater than zero and m1 is less

than or equal to m2, or both m1 and m2 are equal to zero which implies that the number

of tuple in both Answ−1 and Answ are the same. Given these three cases, we make the

following observations about the benefit values of the triples in TSw.

Given three possible cases of m1 and m2, we consider the possible combinations (16 possible

combinations) of the values of Pk, Pq, ∆Pk, and ∆Pq and show if Equation 5.11 holds, then

the benefit of (tk, R
i
l, f

i
m) will be higher than the benefit of (tq, R

s
t , f

s
v). In the following we

provide the proof of these scenarios:

For ease of notation, we denote the threshold Pτw−1 of epoch w−1 as Pτ in this proof. Since,

E(Fα(Answ−1)) = (1+α)(P1+···+Pτ)
α(P1+P2+···+P|O|)+τ

, the notation can be simplified as X
Y+τ

. We denote the

value of Pk
cln

by νk and the value of Pq
csv

by νq.

Simplifying the expression of benefit the triples, benefit value of triple (tk, R
l
m, f ln) will be

higher than the triple (tq, R
s
t , f

s
v), when the following condition holds:

νk(

X − (1 + α) · (Pτ + Pτ−1 + ...Pτ−(m1−1))+
(1 + α) · (Pk + ∆Pk)

Y + (τ −m1) + α ·∆Pk
) >

νq(

X − (1 + α) · (Pτ + Pτ−1 + ...Pτ−(m2−1))+
(1 + α) · (Pq + ∆Pq)

Y + (τ −m2) + α ·∆Pq
)

(5.12)

Case 1: ∆Pk < ∆Pq, Pk + ∆Pk > Pq + ∆Pq, and m1 > m2.

Comparing both the denominators of Equation 5.12, we can see that (τ −m1) < (τ −m2)

and ∆Pk < ∆Pq. This implies that the denominator on the L.H.S. is smaller than the

denominator on the R.H.S. In the numerator of L.H.S., the value of (Pτ +Pτ−1 +...Pτ−(m1−1))

is higher than (Pτ + Pτ−1 + ...Pτ−(m2−1)) as m1 is higher than m2. Furthermore, if νk(Pk +

∆Pk) > νq(Pq +∆Pq) then the numerator of the L.H.S. will be higher than the numerator of

80

the R.H.S. Thus we conclude that Equation 5.12 is satisfied when condition νk(Pk + ∆Pk) >

νq(Pq + ∆Pq) is satisfied.

Case 2: ∆Pk > ∆Pq, Pk + ∆Pk > Pq + ∆Pq, and m1 > m2. In Equation 5.12, the value

of (Pτ + Pτ−1 + ...Pτ−(m1−1)) on the L.H.S is higher than (Pτ + Pτ−1 + ...Pτ−(m2−1)) as m1

is higher than m2. In the denominator, although the value of ∆Pk is higher than ∆Pq, the

total value of (τ −m1 + α ·∆Pk) is lower than (τ −m2 + α ·∆Pq) as both ∆Pk and ∆Pq

are less than one.

Case 3: ∆Pk > ∆Pq, Pk + ∆Pk < Pq + ∆Pq, and m1,m2 = 0. Let us compare the L.H.S

and R.H.S. of Equation 5.12. In the numerator, if the term of νk(Pk + ∆Pk) is higher than

the value of νq(Pq + ∆Pq), then the numerator of L.H.S will be higher than the numerator

of R.H.S. Hence, the value of the expression in the left-hand side will be higher.

Case 4: ∆Pk < ∆Pq, Pk + ∆Pk < Pq + ∆Pq, and m1,m2 = 0. In Equation 5.12, after

simplifying some steps further, we derive that the condition in which the L.H.S. will be higher

than the R.H.S. is as follows: νk(Pk + ∆Pk)∆Pq > νq(Pq + ∆Pq)∆Pk. According to the

assumption ∆Pq value is higher than the value of ∆Pk. This implies that, if the condition

νk(Pk + ∆Pk) > νq(Pq + ∆Pq) is satisfied, then L.H.S. will be higher than the R.H.S.

The above proofs will also hold for the scenarios where m1 = m2 and m1 > 0. Only difference

will be as follows: an additional constant term (i.e., Pτ + Pτ−1 + · · · + Pτ−(m1−1)) will be

added to the numerators of both the sides of Equation 5.12. The remaining steps will remain

the same as the proofs of Cases 1-4.

Case 5: ∆Pk < ∆Pq, Pk + ∆Pk > Pq + ∆Pq, and m1 < m2. Comparing both the

denominators of Equation 5.12, we can see that (τ − m1) < (τ − m2) and ∆Pk < ∆Pq.

This implies that the denominator of L.H.S. is lower than the denominator of R.H.S. In the

numerators, the value of (Pτ +Pτ−1 + ...Pτ−(m1−1)) is lower than (Pτ +Pτ−1 + ...Pτ−(m2−1))

81

as m1 is less than m2. This condition makes the numerator of L.H.S higher than R.H.S.

Furthermore, if νk(Pk + ∆Pk) > νq(Pq + ∆Pq) is satisfied then the numerator of L.H.S. is

higher than R.H.S.

Case 6: ∆Pk > ∆Pq, Pk + ∆Pk > Pq + ∆Pq, and m1 < m2. From Equation 5.12, we can

derive the following equation:

νk(X − (1 + α) · (Pτ + Pτ−1 + ...Pτ−(m1−1)) + (1 + α)·

(Pk + ∆Pk)) · (Y + (τ −m2) + α ·∆Pq) > νj(X−

(1 + α) · (Pτ + Pτ−1 + ...Pτ−(m2−1)) + (1 + α)·

(Pq + ∆Pq)) · (Y + (τ −m1) + α ·∆Pk)

(5.13)

In the above equation, the value of (Pτ + Pτ−1 + ...Pτ−(m1−1)) is lower than (Pτ + Pτ−1 +

...Pτ−(m2−1)) as m1 is smaller than m2. This favors the value in the left-hand side of the

equation. Furthermore, if the value of νk(Pk+∆Pk) is higher than the value of νq(Pq+∆Pq),

then the benefit of the first triple will be higher than the second triple.

Case 7: ∆Pk > ∆Pq, Pk + ∆Pk < Pq + ∆Pq, and m1 < m2. Comparing the L.H.S. of

Equation 5.13 with R.H.S. of the equation, we observe that if the value of νk(Pk + ∆Pk) is

higher than the value of (Pq + ∆Pq), then the whole expression of L.H.S. becomes higher

and hence Equation 5.12 is satisfied.

Case 8: ∆Pk < ∆Pq, Pk + ∆Pk < Pq + ∆Pq, and m1 < m2. Let us consider Equation

5.12 and compare the L.H.S. with the R.H.S. After simplifying them, we can derive that the

condition in which the left-hand side will be higher than the right-hand side is as follows:

νk(Pk + ∆Pk)∆Pq > νq(Pq + ∆Pq)∆Pk. According to the assumption of this case, ∆Pq

value is higher than the value of ∆Pk. This implies that, if the condition νk(Pk + ∆Pk) >

νq(Pq + ∆Pq) holds, then Equation 5.12 is satisfied and the benefit of first triple is higher

than the second triple.

82

The above proofs (i.e., the proofs of Cases 5-8) will also hold for the scenarios wherem1 > m2,

due to the symmetric nature of the assumptions. Based on the proofs of Cases 1-8, we

conclude that given two triples (tk, R
l
m, f ln) and (tq, R

s
t , f

s
v), if νk(Pk+∆Pk) > νq(Pq+∆Pq)

is satisfied then the first triple has higher benefit then the second triple.

5.4.2 Generalizing to Other Queries

To estimate benefit computation to general queries, we have to extend the model for both

estimating the expected quality of the query result in the previous epoch and also the benefit

of executing the next best function on tuples in the current epoch. Let us consider a query

Q with conditions on n relations of R1, R2, . . ., Rn. For each Ri, there could be selection

conditions on derived and fixed attributes and then there can be multiple join conditions

with other relations.

At any epoch, the tuples of Ri could be classified as one of the two types: (i) the tuples

who have met the selection condition on Ri, denoted by Rσ
i and (ii) the tuples who have not

met such conditions, denoted by R¬σi . Of the tuples that are in Rσ
i , we further classify such

tuples to be part of the answer set and not part of the answer set based on if there exists a

tuple in answer of the query so far. Initially, none of the tuples are part of the query answer.

We first define the probability of the tuple satisfying the selection conditions of the query.

This probability is based on the output of previous enrichment functions and their combined

output as described earlier for selection queries. Next, we estimate the size of the result-

tuples in the query result generated by a tuple that is in Rσ
i in the current epoch. We

estimate this value by computing the ratio of the result-tuple size by the tuples in Rσ
i to

the size of the query result in the previous epoch. This ratio signifies the average number of

83

result-tuples that are generated from a tuple in Rσ
i .

Also, for each result-tuple in the query answer A, we generate a probability of that result

tuple to be part of the ground truth result. This probability is based on the probability of

the tuple satisfying individual predicates of P1, P2, . . ., Pn, of the query. Each predicate can

be a selection condition or a join condition on the derived attributes. The computation of

probability for selection conditions is performed the same way as we described for selection

queries as described above. The computation of probability for a join condition is based on

choosing the highest probability in the distribution of the derived attribute value of the tuple.

By computing the probability of the tuples in the answer, we can compute the precision of

the query result by simply using Equation 5.2. Measuring recall is harder since it requires

the sum of probability of all the tuples that are part of the answer as well as that are not

part of it. The sum of probability of the tuples that are in the answer is computed the

same way as precision calculation. The sum for tuples outside of the answer is computed by

maintaining the sum of the selection probabilities of the tuples in Rσ
i and in R¬σi . The sum

of probabilities of all the tuples that were part of the answer and not part of the answer, is

simply the product of probability sums of the individual relations.

The tuples of a relation Ri that are enriched are chosen from the set of R¬σi . The benefit

computation has two components: (i) if a tuple is enriched with respect to a derived attribute

present in the selection condition, how much probability of the tuple will be improved and

(ii) if a tuple in R¬σi is pushed up the query tree, how many extra answer-tuples it will

produce with respect to the answer of previous epoch. The first step is performed the same

way as the selection queries as described previously in §5.4.1. The second step is performed

by calculating the total number of tuples that are in the answer set of ew−1 that contained

the tuples from the set of Rσ
i . This provides an estimated number of answer tuples that will

be added to the answer set of epoch ew.

84

5.5 Enrichment Plan Selection

This step chooses a set of 〈 tuple, enrichment function〉 pairs as the enrichment plan of

the epoch. The problem of selecting an enrichment plan is a budgeted Knapsack problem.

The algorithm needs to choose a set of 〈tuple, enrichment function〉 with highest summa-

tion of RelativeBenefit value and a total cost not exceeding the duration of the epoch. We

use a greedy approach to choose this enrihcment plan for an epoch. The 〈 tuple, enrich-

ment function〉 pairs generated, as described in the previous step, are sorted based on their

RelativeBenefit values.

Since, the pairs are ordered based on the RelativeBenefit metric as descirbed in the previous

section, total cost of an enrichment plan is less than or equal to epoch duration with the

maximum sum of benefit values among all possible subset of ranked tuples. This problem is

a budgeted Knapsack problem. We use a greedy approach to solve this problem. The triples

in TSw are sorted in decreasing order of their benefit values. Enrichment plan is chosen from

the sorted set starting from the triple with highest benefit. Once the running total cost of

the chosen triples exceeds epoch duration, the WSPT algorithm terminates, and the chosen

set is considered as the enrichment plan.

5.6 Experimental Evaluation

This section empirically evaluates our approach using three real datasets and real enrichment

functions for different derived attributes of the datasets. We implemented this approach in

EQTC implementation. In these experiments, we want to address following questions:

• How does the benefit-based approach perform as compared to the traditional sampling-

based approaches of enrichment plan generation?

85

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

(a): F1 measure.

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

(b): Jaccard’s similarity.

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

R
M

SE
 (S

ca
le

d)

Q8
Q9

(c): RMSE.

 Imagenet MultiPie Tweets Synthetic

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

iv
e

Sc
or

e

Q1

Q2

Q3

Q4
Q5

Q6

Q7Q8Q9

(d): Progressive Score.

Figure 5.1: Progressiveness Achieved. The dotted line shows a possible incremental strat-
egy producing query answers using server-side cursors.

Relation #tuples Size(GB) Derived attrs. Functions used

TweetData 11M 10.5
sentiment(3) GNB,KNN,SVM,MLP
topic(40) GNB,KNN,LDA,LR

ImageNet[46] 100K 19 ObjectClass(100) DT,GNB,RF,MLP
MultiPie[104] 100K 16.9 gender(2), expression(5) DT,GNB,KNN,MLP
SyntheticData 100M 35 A1(5) f1,f2, . . . , f10.

Table 5.3: Datasets used in experiments.

• What are the overhead of benefit-based approaches?

• How does the benefit-based approach perform when the data size, query selectivity,

number of enrichment functions are varied?

• How does the benefit-based approach perform when some of the previous enrichment

results are already cached?

5.6.1 Experimental Setup

Datasets. We used four datasets (see Table 5.3) to evaluate the performance of EnrichDB.

The datasets corresponded to:(i) TweetData collected using Twitter APIs containing 11

million rows (size = 10.5 GB) and derived attributes of sentiment (dom. size = 3) and

topic (dom. size =40), (ii) ImageNet [46] dataset consisting of 100K images of objects (size

= 19 GB) and derived attributes of ObjectClass (dom. size =100), (iii) MultiPie [104]

dataset contains 100K facial images (size = 16.9 GB) with derived attributes gender (dom.

86

size = 2) and expression (dom. size = 5), and (iv) a large synthetic dataset with 100M

tuples (size = 35 GB) with a derived attribute A1 (dom. size = 5) for evaluating the

scalability of EnrichDB.

Enrichment Functions. In the real datasets, we used the following probabilistic classifiers:

Gaussian Näıve Bayes (GNB), Decision Tree (DT), Support Vector Machine (SVM), k-

Nearest Neighbor (KNN), Multi-Layered perceptron (MLP), Linear Discriminant Analysis

(LDA), Logistic Regression (LR), and Random Forest (RF); as enrichment functions. The

GNB classifier was calibrated using isotonic-regression model [117] and all the other classifiers

were calibrated using Platt’s sigmoid model [93] during cross-validation. After calibration,

each classifier outputs a probability distribution. For the synthetic dataset, we used synthetic

functions each associated with varying levels of quality and cost. For synthetic functions,

quality 0.8 means predicting correct values 80% of the time. We used weighted average as

the combiner function, where weights are proportional to the quality of enrichment functions

learned based on the mechanism of §3.1.

Queries. As shown in Table 5.4, we selected nine queries, where Q1-Q4 are selection

queries, Q5 is a conjunctive query, Q6-Q7 are join queries, and Q8-Q9 are aggre-

gation queries with number of groups as 2 (low) and 100 (high) respectively. The epoch

size for all queries in all experiments (except Exp 5) was 20 seconds.

Plan Generation Strategies. For experiments, four different plan generation strategies

were used: (i) Benefit-based approach using Decision Table (BB(DT)): that selects a set

of 〈tuple, function〉 pairs with the highest benefit value based on the decision table. (ii)

Sample-based strategy with Object Order (SB(OO)): that randomly selects tuples from the

set of tuples satisfying predicates on fixed attributes. Selected tuples are completely en-

riched by executing all enrichment functions available for derived attributes present in the

query. (iii) Sample-based strategy with Function Order (SB(FO)): that selects enrichment

87

ID Query Application Query Type
Q1 SELECT * from ImageNet where ObjectClass=2

where ImageID between (20000,30000)
Image Selection

Q2 SELECT * from MultiPie where gender=1 and
CameraID < 12

Image Selection

Q3 SELECT tid, UserID, Tweet, location, Tweet-
Time from TweetData where sentiment = 1 and
TweetTime between(‘16:00’,‘18:00’)

Tweets Selection

Q4 SELECT * from SyntheticData whereA1=1 and
A2 < 100000

Synthetic Selection

Q5 SELECT * from MultiPie where gender = 1 and
expression =2 and CameraID < 12

Image Selection

Q6 SELECT * from TweetData T1, Tweet-
Data T2 where T1.sentiment = T2.sentiment
and T1.TweetTime between(‘16:00’,‘18:00’) and
T2.TweetTime between (‘16:00’,‘18:00’)

Tweets Join

Q7 SELECT * from TweetData T1, State S where
T1.location = S.city and S.state=’California’
and T1.sentiment = 1 and T1.TweetTime be-
tween(‘16:00’,‘18:00’)

Tweets Join

Q8 SELECT gender, count(*) from MultiPie where
CameraID < 12 group by gender

Image Aggregations

Q9 SELECT ObjectClass, count(*) from ImageNet
where ImageID between (20000,30000) group by
ObjectClass

Image Aggregations

Table 5.4: Queries used.

functions based on the decreasing order of their quality
cost

values, as described in §3.1. The

top-most function from the sorted enrichment functions is executed on all tuples (obtained

after checking the predicates on fixed attributes), before executing the next function. (iv)

Sample-based Random Order (SB(RO)): that selects both tuples and enrichment functions

randomly from a set of 〈tuple, function〉 pairs after checking predicates on fixed attributes.

5.6.2 Experimental Results

The experiments were performed on an AWS server with 16 core 2.50GHz Intel Xeon CPU,

64GB RAM, and 1TB SSD. Exp 1-2 are progressiveness experiments, Exp 3-4 are perfor-

mance experiments and Exp 5 is an experiment for query parameter selection.

88

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

iv
e

Sc
or

e

(a): Progressive Score.

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 F
1

 m
ea

su
re

(b): Imagenet (Q1).

0 200 400 600 800 1000
Time (Seconds)

(c): Multi Pie (Q2).

0 200 400 600 800 1000
Time (Seconds)

(d): Tweets (Q3).

0 200 400 600 800 1000
Time

(e): Synthetic (Q4).

0 200 400 600 800 1000
Time (Seconds)

(f): Conjunctive (Q5).

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 F
1

 m
ea

su
re

(g): Tweets Join (Q6).

0 200 400 600 800 1000
Time (Seconds)

(h): Static Table Join (Q7).

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

R
M

SE
 (S

ca
le

d)

(i): MultiPie (Q8).

0 200 400 600 800 1000
Time (Seconds)

0.0
0.2
0.4
0.6
0.8
1.0

R
M

SE
 (S

ca
le

d)

(j): ImageNet (Q9).

Figure 5.2: Performance results of different plan generation strategies in EnrichDB.

89

Exp 1: Progressiveness of different queries. Figure 5.1 evaluates EDB in terms of

progressive quality improvement achieved for different types of queries (Q1-Q9). For real

datasets, we used the BB(DT) method, whereas for synthetic dataset we used SB(FO) plan

generation method. Figure 5.1(a) shows the results for set based queries Q1-Q7, where

the quality of answers is measured using normalized F1 i.e., F1/Fmax
1 , where Fmax

1 is the

maximum F1 measure achieved during the query execution. The normalized Jaccard’s

similarity results are shown in Figure 5.1(b). For aggregation queries Q8 and Q9, the

quality is measured using normalized root mean square error (RMSE); Figure 5.1(c).

We plot normalized measures as a function of time to emphasize the rate at which EnrichDB

improves the quality of query results across different queries and datasets instead of the actual

F1-measures. Actual F1-measure varies across different queries (that belong to different

datasets) based on the quality of classifiers chosen for enrichment (e.g., the maximum F1

measures for different queries were: for Q1 0.54, Q2 0.78, Q3 0.56, Q4 1, Q5 0.4, Q6 0.58, Q7

0.52). From Figures 5.1(a) 5.1(b), and 5.1(c), we observe that EnrichDB achieves a high

quality improvement (95% of maximum F1 measure and 95% reduction of RMSE) within the

first few epochs of query execution. Also, EnrichDB performs much better than a possible

iterative strategy, where a database system chooses a tuple, completely enriches it, and if it

satisfies the query predicate, returns it as an answer to the user (shown as the dotted line

in Figure 5.1). Since for queries with blocking operators (joins and group-by aggregation

such as queries Q6-Q9) all tuples need to be enriched completely before evaluating join or

aggregation operators, such strategy cannot be devised.

Figure 5.1(d) shows the progressive score achieved for each query. Observe that EnrichDB

achieves a high progressive score for all queries as compared to the possible iterative strategy

(dotted line in Figure 5.1(d)). Table 5.5 shows the query execution time for Q1-Q9, when they

are executed after complete enrichment of tuples. Comparing Table 5.5 with Figure 5.1, we

observe that EnrichDB returns high quality results within a few epochs without requiring

users to wait for complete enrichment.

90

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Time 31 44.5 22.1 14 67.1 39.2 22.8 45.1 31.8

Table 5.5: Time without progressive query execution (in minutes).

Exp 2: Effect of Different Plan Generation Strategies. Figure 5.2 studies different

plan generation strategies and their impact on progressiveness. Figure 5.2(a) plots progres-

sive score of all nine queries Q1-Q9. Figures 5.1(a) - 5.1(j) show BB(DT) performs better

than sampling based approaches highlighting that the decision table learned by EnrichDB

using the validation dataset accurately represents the benefit of the chosen execution order

of enrichment functions. Among sample-based strategies, SB(FO) performs the best and

SB(OO) performs the worst since function order chooses functions with highest quality per

unit cost before other functions. SB(RO) performs only marginally better than SB(OO). In

the following experiments, we use BB(DT) as a plan generation strategy, except for synthetic

dataset for which we do not store benefit values.

Exp 3: System Overhead. This experiment measures the following two overheads in-

curred by EnrichDB:

(i) Time overhead : measures the amount of time spent in non-enrichment tasks (i.e.,

query setup, benefit calculation, plan selection, delta computation, and state update) to

compare against the time involved in data enrichment. Figure 5.5 shows that the time

overhead is significantly lower than the time spent in enrichment. Particularly, across all

epochs, the total time in query setup, benefit calculation, plan selection, delta computation,

and state update took at most 3s, 90s, 4s, 5s, 17s, respectively, while the total time spent

across all epochs in enrichment was 1000s. Majority of the time for benefit calculation

was spent in the first epoch due to the calculation of benefit of all tuples satisfying query

predicates on fixed attributes.

(ii) Storage overhead : measures the size of all temporary tables and IVM, used during

query processing to compare against the size of EnrichDB tables. The maximum storage

91

overheads of the benefit table, plan table, and IVM at any epoch for the queries of Q1-Q9

were 1.48 MB, 56 KB, and 1.2 MB respectively (see Table 5.6). Also, the combined size

of all metadata tables, (i.e., RelationMetadata, FunctionMetadata, FunctionFamily, and

DecisionTable) is less than 10 MB. These overheads are significantly lower than the size of

EnrichDB tables. The state table sizes for TweetData, Imagenet, Multi-Pie and Synthetic

datasets were 2.4GB, 6.8GB, 101MB and 246MB respectively (as shown in Table 5.7) which

are much smaller than the corresponding EnrichDB tables. Furthermore, using state cutoff

(§4.2.2) strategy, state storage overhead reduced significantly. For ImageNet the state cutoff

representation reduced the size of state table from 6.8 GB to 50 MB. For TweetData the

state overhead reduced from 2.4 GB to 0.9 GB. The improvement was more in ImageNet

because the ObjectClass had a larger domain of size 100 as compared to topic attribute

with domain size of 40.

Query PlanSpaceTable PlanTable IVM

Q1 536 kB 48 kB 168 kB

Q2 776 kB 56 kB 232 kB

Q3 816 kB 48 kB 1168 kB

Q4 840 kB 36 kB 216 kB

Q5 1488 kB 8.2 kB 48 kB

Q6 264 kB 56 kB 112 kB

Q7 824 kB 48 kB 126 kB

Q8 832 kB 48 kB 0.25 kB

Q9 528 kB 48 kB 12 kB

Table 5.6: Max. storage overhead.

Relation State overhead Overhead

after state

cutoff

TweetData 2.4 GB 936 MB

ImageNet 6.8 GB 50 MB

Multi-Pie 101 MB -

Synthetic 246 MB -

Table 5.7: Storage cost of state.

Query #rows in PlanSpaceTable #rows in PlanSpaceTable with optimization
Q1 100K 10,000
Q7 11M 50,000

Table 5.8: Impact of optimization.

Exp 4: Impact of Optimizations. §4.2.3.1 presents two re-rewrite optimizations to

reduce the complexity of plan generation step and enrichment. We selected Q1 (filter on

92

0.0 0.5 1.0 1.5 2.0
Cost

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

Linear
Exponential

Logarithmic

0.0 0.2 0.4 0.6 0.8 1.0
Cost

0.6

0.7

0.8

0.9

1.0

Q
ua

lit
y

ImageNet
Multipie

TweetData

Figure 14: Cost vs. Quality (a) synthetic(lhs) and (b) real (rhs) functions

17

Figure 5.3: Cost vs. Quality (a) synthetic(lhs) and (b) real (rhs) functions.

0 5 10 15 20 25 30 35 40
Number of Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

(F
1

M
ea

su
re

)

0 5 10 15 20 25 30 35 40
Number of Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

(F
1

M
ea

su
re

)

0 5 10 15 20 25 30 35 40
Number of Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

(F
1

M
ea

su
re

)

Figure 15: Comparing plan generation on synthetic data
(a) linear (b) logarithmic (c) exponential correlations.

18

Figure 5.4: Comparing plan generation on synthetic data. (a) linear (b) logarithmic (c)
exponential correlations.

fixed attribute) and Q7 (join on fixed attribute) to evaluate these optimizations. The results

are presented in Table 5.8, that shows that the tuples considered for enrichment were reduced

significantly due to these optimizations. Furthermore, due to the reduction of benefit table

size, the complexity of the enrichment plan generation phase reduced significantly.

Exp 5: Effect of Epoch Size. Figure 5.6(a) plots time to reach (TTR) 90% quality for Q2

with respect to epoch size. As epoch size reduces from 50 to 20, TTR reduces since smaller

epoch size causes more frequent plan generation resulting in accelerated improvement of

answer quality. Reducing epoch size further (i.e., 5 or 10) results in increase in TTR since

increased overhead of frequent plan generation begins to overshadow improvements in quality

achieved (Figure 5.6(a)). Figure 5.6(b) shows the overhead of plan generation as a function

of epoch size. The effect of epoch size to other queries (besides Q2) is similar.

Exp 6: Impact of enrichment function correlations. This experiment evaluates the

93

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

200
400
600
800

1000
1200

Ti
m

e
(s

)
Enrichment Overhead

Figure 5.5: Time overhead.

5 10 20 30 40 50
Epoch size

0

100

200

300

Ti
m

e
to

 re
ac

h
 9

0%
 q

ua
lit

y

5 10 20 30 40 50
Epoch size

0
20
40
60
80

100

%
ag

e
of

 ti
m

e

Enrichment Overhead

Figure 5.6: Effect of epoch sizes (a) TTR 90% (lhs)
(b) overhead (rhs).

impact of variations in cost and quality of different enrichment functions on the sample based

plan generation strategies (i.e., SB(OO), SB(FO), SB(RO)) of EnrichDB. Note that, we

do not experiment with BB(DT) strategy, since creating a decision table for the synthetic

functions would be artificial and hence would not provide much insight. For this experiment,

we used 10 synthetic functions that have the following correlations in their cost and quality

(shown in Figure 5.3): (i) linear correlation where the quality and cost of functions vary

linearly, (ii) exponential correlation where the quality increases exponentially with respect

to the cost (the enrichment functions used in TweetData follow such correlation), and (iii)

logarithmic correlation where quality increases logarithmically with respect to the cost (the

enrichment functions used in MultiPie and ImageNet dataset follow such correlation).

For each enrichment function correlation, we compared all SB plan generation strategies

(as described in Exp 1) on query Q4 using F1 measure (Figure 5.4). Since the function

with highest quality
cost

is always chosen first in SB (FO) strategy, it always outperforms both

SB(OO) and SB(RO). However, SB (RO) becomes almost as good as SB(FO), when the

correlation is linear (Figure 5.4(a)), since all enrichment functions have the same quality
cost

, when

the correlation is linear. SB (OO) performs worst as it executes all enrichment functions

(including functions with low quality
cost

), before enriching another tuple.

The correlations of the functions in real datasets are shown in Figure 5.3 (b). From Figures

5.2(b), 5.2(c), and 5.2(d) of Exp 2, we observe that the quality of answer for BB(DT)

improves very aggressively in MultiPie as compared to ImageNet and TweetData. The

94

reason is that the quality of functions used in MultiPie has highest positive curvature in

quality-cost graph as compared to ImageNet and TweetData functions.

95

Chapter 6

Use Cases of the System

User Interaction/Usability. Users interact with EnrichDB using a command line or a

web-application based interface. Users are able to (i) create a new table, (ii) specify derived

attributes that require enrichment, (iii) add data to the table, (iv) add new enrichment

functions and associate them with derived attributes, (v) use training feature to train new

ML models and use them in enrichment functions, (vi) pose queries on added data. Users are

able to visualize query results using EnrichDB web interface based on the type of queries

(set/aggregation). Query results are updated automatically at the end of each epoch. Newly

added tuples are highlighted using green boxes and the deleted tuples are highlighted using

red boxes in the interface. Furthermore, users will be able to pause, resume or stop an

ongoing query. We consider the data stored in EnrichDB to be append-only.

6.1 Social Media Analysis

Let us consider an application, where analysts are interested to find the reaction of the public

about the most recent presidential debate from tweets. We develop this application using

96

Figure 6.1: EnrichDB web interface for submitting query.

Figure 6.2: Interface for visualizing progressively improving query results on image dataset.

EnrichDB. To do so, analysts store the tweets after the end of the presidential debate in a

table TweetData. Here, analysts must train multiple machine learning models for detecting

the sentiment and topic of such tweets based on a past dataset (stored in TweetsTrain

table) that was collected during the previous presidential debates. Finally, analysts pose a

query on TweetData table to find out all tweets with positive sentiment and the topic of the

presidential debate. In order to achieve these functionalities, the steps that analysts must

take in EnrichDB are presented below. Note that EnrichDB-based implementation is

much simpler (≈12 lines of code) as compared to any loosely coupled implementation, where

enrichment is performed outside of DBMS and requires much more lines of code (≈130 lines,

as shown in Appendix A).

1 -- Creating a new table

2 CREATE TABLE TweetData(tid char (8),

3 userid char (20),Tweet text ,feature float[],

4 topic int derived :40, sentiment int

5 derived:3, Time timestamp ,location text);

97

6 -- Training ML Models

7 SELECT db.model_train(’TweetsTrain ’,

8 ’sentiment_dt ’, ’decision_tree ’,

9 ’sentiment ’, ’feature []’, model_params);

10 -- Associating functions with ‘sentiment ’

11 SELECT db.assign_enrichment_functions(

12 ’tweets ’,

13 [[’sentiment ’,1,’sentiment_dt ’ ,0.8,0.7],

14 [’sentiment ’,2,’sentiment_fo ’ ,0.9,0.8],

15 [’sentiment ’,3,’sentiment_mlp ’ ,0.9, 0.9]]);

16 -- Setting up decision table

17 SELECT db.learn_decision_table(’TweetData ’,

18 ’sentiment ’,’TweetValidationSet ’);

19 --Adding data

20 SELECT db.enriched_insert

21 (’INSERT INTO TweetData (id, tweet_object ,

22 topic ,sentiment ,timestamp ,location) VALUES

23 (1,’’is very happy for my friend ’’,NULL ,

24 NULL ,"2021 -02 -06 12:29:06" ," L0")’);

25 -- Executing Queries

26 CALL db.exec_driver_udf(’SELECT id ,

27 tweet_object ,location ,timestamp , sentiment ,

28 topic FROM TweetData WHERE sentiment = 0

29 AND topic = 2 AND id < 10000’, 20, 0.9);

In the following, we describe the implementation of the above application using Spark.

98

6.2 Multi Media Analysis

In this scenario, we use two image datasets: (i) Imagenet dataset containing images from

1000 image categories and (ii) Multi-PIE dataset containing face images of people. We

have implemented multiple enrichment functions to derive the object type from Imagenet

dataset and to derive gender and expression of people from Multi-Pie dataset. In this

application, users will pose queries to find out images of smiling males or finding images of

sharks on these datasets. Figure 6.3 shows the web interface for submitting a query on image

data (same as earlier, only the drop down menu for the visualization needs to modified to

“Images”). Furthermore, Figure 6.4 shows the web-interface for visualizing the results on

Multi-PIE dataset.

1 -- Creating a new table

2 CREATE TABLE ImageData(id int precise ,

3 image_blob bytea precise ,

4 feature float[] precise ,

5 gender int imprecise:2,

6 expression int precise ,

7 age int precise ,

8 timestamp timestamp precise ,

9 location text precise ,

10 cameraid int precise);

11

12 -- Training ML Models

13 SELECT db.model_train(’ImagesTrain ’,

14 ’gender_dt_model ’, ’decision_tree ’,

15 ’gender ’, ’feature []’, model_params);

16

99

Figure 6.3: EnrichDB web interface for submitting query on images.

17 -- Associating functions with derived attribute ‘gender ’

18 SELECT db.assign_enrichment_functions(

19 ’ImageData ’,

20 [[’gender ’, ’1’, ’gender_dt_model ’, ’0.80’, ’0.7’, ’’],

21 [’gender ’, ’2’, ’gender_mlp_model ’, ’0.84’, ’0.78’, ’’],

22 [’gender ’, ’3’, ’gender_knn_model ’, ’0.98’, ’0.9’, ’’]]);

23

24 -- Setting up decision table

25 SELECT db.learn_decision_table(’ImageData ’,

26 ’gender ’,’ImageDataValidation ’);

27

28 --Adding data

29 SELECT db.enriched_insert(’INSERT INTO ImageData (id ,feature ,gender ,

timestamp ,location ,cameraid) VALUES (1, ’’

{0.014 ,0.0 ,0.006 ,0.003 ,0.94 ,0.0023 ,0.0071} ’’, NULL , ’’2020 -02 -04

16:28:47.261182 ’’, ’’L0’’, 0)’);

30

31 -- Executing Queries

32 CALL db.progressive_exec_driver_udf(’SELECT images.id as image_id ,

images.timestamp as image_time , images.gender as image_gender

33 @FROM images @WHERE images.gender = 0’, 20, 5);

100

Figure 6.4: Interface for visualizing progressively improving query results on image dataset.

6.3 IoT Application of Localization using WiFi data

In this application, we use the connectivity data of users’ mobile devices with WiFi access

points installed inside a building. Such connectivity data is used to localize individuals

in the building at different levels of granularity (region and room level) and accuracy [75].

We have implemented five enrichment functions for localization based on the LOCATER

algorithms, proposed in [75]. Each of the algorithms have different cost quality tradeoff

where the cheapest function has lowest accuracy, and the most expensive function has highest

accuracy. In this application, analysts pose queries to (i) find out the location of users (in

floor level and region level) with respect to time and (ii) find out the occupancy of the floors

and regions of the building at each time instants within two time intervals. The analyst

needs to submit the query, provide an epoch duration, type of query (for visualization), and

an optional maximum number of epochs till which the query needs to be executed. In the

following we describe the complete application logic implemented using EnrichDB.

1 -- Creating a new table

101

2 CREATE TABLE PresenceData(

3 id int precise ,

4 semantic_id int precise ,

5 observationtime timestamp precise ,

6 location int imprecise :10);

7

8 -- Training ML Models

9 SELECT db.model_train(’PresenceTrain ’,

10 ’location_dt_model ’, ’decision_tree ’,

11 ’location ’, ’feature []’, model_params);

12

13 -- Associating functions with derived attribute ‘gender ’

14 SELECT db.assign_enrichment_functions(

15 ’PresenceTrain ’,

16 [[’location ’, ’1’, ’location_dt_model ’, ’0.80’, ’0.7’, ’’],

17 [’location ’, ’2’, ’location_mlp_model ’, ’0.84’, ’0.78’, ’’],

18 [’location ’, ’3’, ’location_knn_model ’, ’0.98’, ’0.9’, ’’]]);

19

20 -- Setting up decision table

21 SELECT db.learn_decision_table(’PresenceData ’,

22 ’location ’,’PresenceDataValidation ’);

23

24 --Adding data

25 select db.enriched_insert(’INSERT INTO presence (id , semantic_id ,

observationtime , location) VALUES (1, 40, ’’2020 -02 -04 16:28:47 ’

’, NULL)’)

26

27 -- Executing Queries

102

28 call db.progressive_groupby_exec_driver_udf(’SELECT PresenceData.

timestamp as time_ , count(PresenceData.id) as count_ , count(

PresenceData.location) as count_1

29 FROM PresenceData WHERE PresenceData.observationtime < ’’2020 -02 -01

08:00:00 ’’ AND PresenceData.observationtime < ’’2020 -02 -01

17:00:00 ’’ GROUP BY PresenceData.observationtime ’, 10, 1000);

103

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we proposed EnrichDB — a new system for supporting data enrichment

inside a single data management system. The cornerstone of EnrichDB is a powerful en-

richment data model that encapsulates enrichment as an operator inside a DBMS enabling it

to co-optimize enrichment with query processing. EnrichDB data model provides seman-

tic abstraction and transparency of enrichment that allows application developers to write

application logic using semantically higher level data. Furthermore, developers do not have

to be concerned about how EnrichDB enriches the underlying data while developing their

application logic.

In the second chapter, we described the implementation of EnrichDB system, developed

using a loosely-coupled and a tightly-coupled approach. The loosely-coupled architecture

provides scope for parallelism of the enrichment process by using multiple servers as enrich-

ment server instead of one. In contrast, the loosely coupled approach is very beneficial in

terms of exploiting query context to eliminate redundant enrichment of objects. We have

104

experimentally shown that such an approach can save large amount of enrichment of ob-

jects. Furthermore, we showed that both the approaches can support progressive approach

of query processing. In this approach, initially, approximate results are returned that are

improved over time as more relevant data is enriched. While the system is implemented

using a tightly couple approach (i.e., EQTC) and a loosely coupled approach (i.e., EQLC),

exploring additional optimizations that are possible at the storage layer and modifying query

processing layer of DBMS, are interesting future directions for us.

In the third chapter, we described a mechanism for optimizing enrichment with progressive

query processing. We presented the algorithm and its implementation using the EQLC and

EQTC approaches. We showed that EnrichDB achieves very high quality query result within

the first few epochs of query execution. Both EQLC and EQTC had very low overhead in

terms of the time spent in non-enrichment tasks and the storage overhead of the temporary

tables and data structures used during query processing.

7.2 Future Work

There are several directions in which EnrichDB can be extended as described below.

Support for Partial Execution of Enrichment Functions. In EnrichDB, we have

assumed that enrichment functions execute atomically. However, with the development of

deep neural networks such as convolutional neural networks, execution of an enrichment

function on a single tuple can be very expensive. In such scenarios, partial execution of

enrichment functions (i.e., execution of only a part of neural net) can be used to get a

quick insight on the tuple’s derived attribute value. Supporting such partial execution of

enrichment functions will require a different way of state management and query processing

in EnrichDB and is an interesting direction of future work.

105

Support for Continuous Queries. In EnrichDB, we have supported adhoc queries that

require enrichment of the underlying data. Supporting scalable enrichment for continuous

queries is an interesting direction of future work. Furthermore, optimizing such enrichment

tasks with query processing of continuous queries, is another direction of future work. E.g.,

considering a continuous query with sliding window-based semantics, the benefit of enriching

a tuple in a window, can be beneficial for answering queries in multiple windows.

Support for Progressive Training of Enrichment Functions. In EnrichDB, we have

considered that the training of the enrichment functions is performed before any queries

are posed. However, often in real life scenarios, machine learning models need to be re-

trained on the live data when the accuracy of machine learning models fall below a certain

accuracy. During progressive query processing, enabling EnrichDB to trigger such training

mechanisms based on the result of latest query answers, can be an interesting direction of

future work.

Optimization of Multiple Queries. In this thesis, we have considered that optimization

of enrichment is performed only in the context of a single query, executed at the EnrichDB

server. However, optimizing system resources to support enrichment for multiple application

queries running concurrently, is an interesting direction of future work.

Extending EnrichDB to General Class of Sensor-Driven Smart Applications. In

the current use-cases of EnrichDB, we have tested it in the domains of social-media anal-

ysis, multimedia analysis, and occupancy analysis of users in an IoT application. Extending

EnrichDB to more general class of applications that support smart-water infrastructure,

smart-cities, advanced healthcare facilities, or detection of wildfire progression on a real-time

basis can be an interesting direction of future work. Enrichment functions in such scenarios

can be based on time series analysis of sensor data in various time windows, execution of

various simulation codes, or pattern recognition of user’s behaviour in the past.

106

Bibliography

[1] EnrichDB code. https://github.com/DB-repo/enrichdb.

[2] Amazon Redshift. https://aws.amazon.com/redshift/.

[3] Apache asterixdb. https://asterixdb.apache.org/.

[4] Apache kafka. https://kafka.apache.org/23/documentation/streams/.

[5] Etl vs elt: 5 critical differences. https://www.xplenty.com/blog/etl-vs-elt/#elt.

[6] Google bigquery data warehouse. https://cloud.google.com/bigquery.

[7] Greenplum database. https://greenplum.org/.

[8] Ibm db2. https://www.ibm.com/analytics/db2.

[9] Incremental view maintenance development for postgresql.
https://github.com/sraoss/pgsql-ivm.

[10] Incremental view maintenance for amazon redshift.
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-
command.html.

[11] Incremental view maintenance for oracle database.
https://docs.oracle.com/cd/B19306 01/server.102/b14200/statements 6002.html.

[12] Internet live stats. http://www.internetlivestats.com.

[13] Sap hana core data services (cds). https://help.sap.

com/viewer/09b6623836854766b682356393c6c416/2.0.02/en-US/

b710731496cf43b7ba76e15a928f1a80.html.

[14] Snowflake data warehouse. https://www.snowflake.com/workloads/

data-warehouse-modernization/.

[15] Top 10 elt tools. https://hevodata.com/learn/best-elt-tools.

[16] Top 10 elt tools. https://hevodata.com/.

107

https://github.com/DB-repo/enrichdb
https://aws.amazon.com/redshift/
https://asterixdb.apache.org/
https://kafka.apache.org/23/documentation/streams/
https://www.xplenty.com/blog/etl-vs-elt/#elt
https://greenplum.org/
https://www.ibm.com/analytics/db2
http://www.internetlivestats.com
https://help.sap.com/viewer/09b6623836854766b682356393c6c416/2.0.02/en-US/b710731496cf43b7ba76e15a928f1a80.html
https://help.sap.com/viewer/09b6623836854766b682356393c6c416/2.0.02/en-US/b710731496cf43b7ba76e15a928f1a80.html
https://help.sap.com/viewer/09b6623836854766b682356393c6c416/2.0.02/en-US/b710731496cf43b7ba76e15a928f1a80.html
https://www.snowflake.com/workloads/data-warehouse-modernization/
https://www.snowflake.com/workloads/data-warehouse-modernization/
https://hevodata.com/learn/best-elt-tools
https://hevodata.com/

[17] Transaction processing performance council. tpc-h specification. http://www.tpc.

org/tpch/.

[18] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The design and im-
plementation of modern column-oriented database systems. Found. Trends Databases,
5(3):197–280, 2013.

[19] S. Agarwal et al. Blinkdb: Queries with bounded errors and bounded response times
on very large data. EuroSys ’13.

[20] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,
and J. Widom. Trio: A system for data, uncertainty, and lineage. In VLDB, pages
1151–1154. ACM, 2006.

[21] S. Agrawal et al. Scalable ad-hoc entity extraction from text collections. Proc. VLDB
Endow., 1(1):945–957, Aug. 2008.

[22] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792–1803,
2015.

[23] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen,
and T. Westmann. Asterixdb: A scalable, open source BDMS. Proc. VLDB Endow.,
7(14):1905–1916, 2014.

[24] Y. Altowim et al. Progressive approach to relational entity resolution. VLDB’14.

[25] Y. Altowim et al. Progresser: Adaptive progressive approach to relational entity
resolution. ACM Trans. Knowl. Discov. Data, 12(3), Mar. 2018.

[26] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational
entity resolution. Proc. VLDB Endow., 7(11):999–1010, 2014.

[27] Y. Altowim and S. Mehrotra. Parallel progressive approach to entity resolution using
mapreduce. In ICDE, pages 909–920. IEEE Computer Society, 2017.

[28] H. Altwaijry et al. Query-driven approach to entity resolution. PVLDB, 2013.

[29] H. Altwaijry et al. QuERy: A framework for integrating entity resolution with query
processing. PVLDB, 9(3):120–131, 2015.

[30] Y. Amsterdamer et al. Crowd mining. In SIGMOD 2013, pages 241–252, 2013.

[31] R. Avnur et al. Eddies: Continuously adaptive query processing. SIGMOD 2000.

108

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

[32] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra, I. D. Moscholios,
and N. Venkatasubramanian. Firedex: a prioritized iot data exchange middleware for
emergency response. In Middleware, pages 279–292. ACM, 2018.

[33] K. E. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy, D. Hoff-
man, M. Makai, J. Stamatakis, and N. Venkatasubramanian. SCALE: safe commu-
nity awareness and ale rting leveraging the internet of things. IEEE Commun. Mag.,
53(12):27–34, 2015.

[34] L. Berg, T. Ziegler, C. Binnig, and U. Röhm. Progressivedb: Progressive data analytics
as a middleware. Proc. VLDB Endow., 12(12):1814–1817, Aug. 2019.

[35] P. A. Bernstein and D. W. Chiu. Using semi-joins to solve relational queries. J. ACM,
28(1):25–40, 1981.

[36] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized
views. SIGMOD Rec., 15(2):61–71, June 1986.

[37] P. Brucker. Scheduling Algorithms. Springer Publishing Company, 2010.

[38] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. M. Jermaine. Simu-
lation of database-valued markov chains using simsql. In SIGMOD Conference, pages
637–648. ACM, 2013.

[39] P. Carbone et al. Apache flink™: Stream and batch processing in a single engine. IEEE
Data Eng. Bull., 38:28–38, 2015.

[40] S. Chaudhuri et al. Optimization of queries with user-defined predicates. TODS ’99.

[41] S. Chaudhuri et al. Optimized stratified sampling for approximate query processing.
ACM Trans. Database Syst., 32(2):9, 2007.

[42] W. Cheng, E. Hüllermeier, and K. J. Dembczynski. Bayes optimal multilabel classifi-
cation via probabilistic classifier chains. In ICML, pages 279–286, 2010.

[43] T. Condie et al. Mapreduce online. pages 313–328. USENIX NSDI, 2010.

[44] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica.
Clipper: A low-latency online prediction serving system. In NSDI, pages 613–627.
USENIX Association, 2017.

[45] N. Dalvi et al. Efficient query evaluation on probabilistic databases. VLDB ’07.

[46] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255. IEEE Computer Society, 2009.

[47] T. G. Dietterich. Overfitting and undercomputing in machine learning. ACM Comput.
Surv., 27(3):326–327, 1995.

109

[48] B. Ding et al. Sample + seek: Approximating aggregates with distribution precision
guarantee. In SIGMOD Conference, pages 679–694. ACM, 2016.

[49] F. Färber, May, et al. The sap hana database–an architecture overview. IEEE Data
Eng. Bull., 35(1):28–33, 2012.

[50] S. Feng et al. Uncertainty annotated databases - A lightweight approach
for approximating certain answers. In SIGMOD, 2019.

[51] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for in-rdbms
analytics. In SIGMOD Conference, pages 325–336. ACM, 2012.

[52] D. Ghosh et al. Progressive evaluation of queries over untagged data.
CoRR, abs/1805.12033, 2018.

[53] A. Ghoting, R. Krishnamurthy, E. P. D. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml: Declarative machine learning
on mapreduce. In ICDE, pages 231–242. IEEE Computer Society, 2011.

[54] S. Giannakopoulou, M. Karpathiotakis, and A. Ailamaki. Cleaning denial constraint
violations through relaxation. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 805–815, New York, NY, USA,
2020. Association for Computing Machinery.

[55] R. Grover and M. J. Carey. Data ingestion in asterixdb. In EDBT, pages 605–616.
OpenProceedings.org, 2015.

[56] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Aquascale - exploring resilience
of community water infrastructures. In Middleware Demos/Posters, pages 7–8. ACM,
2019.

[57] J. M. Hellerstein et al. Predicate migration: Optimizing queries with expensive predi-
cates. SIGMOD, 1993.

[58] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. SIGMOD Rec.,
26(2):171–182, June 1997.

[59] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.
Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The madlib analytics library or MAD
skills, the SQL. Proc. VLDB Endow., 5(12):1700–1711, 2012.

[60] Y. Hsieh, H. Hong, P. Tsai, Y. Wang, Q. Zhu, M. Y. S. Uddin, N. Venkatasubramanian,
and C. Hsu. Managed edge computing on internet-of-things devices for smart city
applications. In NOMS, pages 1–2. IEEE, 2018.

[61] R.-L. Hsu et al. Face detection in color images. IEEE Tran. on Pattern Analysis and
Machine Intelligence, 2002.

[62] J. Huang, L. Antova, C. Koch, and D. Olteanu. Maybms: a probabilistic database
management system. In SIGMOD Conference, pages 1071–1074. ACM, 2009.

110

[63] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679 – 688, 2006.

[64] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and dedupli-
cation. Found. Trends Databases, 5(4):281–393, 2015.

[65] P. JACCARD. Etude comparative de la distribution florale dans une portion des alpes
et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[66] J. Jia, C. Li, and M. J. Carey. Drum: A rhythmic approach to interactive analytics
on large data. In IEEE BigData, pages 636–645. IEEE Computer Society, 2017.

[67] M. Joglekar et al. Exploiting correlations for expensive predicate evaluation. SIGMOD
’15, New York, NY, USA, 2015. ACM.

[68] K. Karanasos et al. Dynamically optimizing queries over large scale data platforms.
SIGMOD, 2014.

[69] K. Karanasos, M. Interlandi, F. Psallidas, R. Sen, K. Park, I. Popivanov, D. Xin,
S. Nakandala, S. Krishnan, M. Weimer, Y. Yu, R. Ramakrishnan, and C. Curino.
Extending relational query processing with ML inference. In CIDR. www.cidrdb.org,
2020.

[70] H. Kimura, S. Madden, and S. B. Zdonik. UPI: A primary index for uncertain
databases. Proc. VLDB Endow., 3(1):630–637, 2010.

[71] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha.
Dbtoaster: higher-order delta processing for dynamic, frequently fresh views. VLDB
J., 23(2):253–278, 2014.

[72] M. Lapin et al. Top-k multiclass SVM. In NIPS 2015.

[73] I. Lazaridis et al. Optimization of multi-version expensive predicates. SIGMOD’07.

[74] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets, 2nd Ed.
Cambridge University Press, 2014.

[75] Y. Lin, D. Jian, R. Yus, G. Bouloukakis, A. Chio, S. Mehrotra, and N. Venkatasubra-
manian. Locater: Cleaning wifi connectivity datasets for semantic localization.

[76] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inf. Comput.,
1994.

[77] Y. Lu et al. Accelerating machine learning inference with probabilistic predicates.
SIGMOD ’18, New York, NY, USA, 2018. ACM.

[78] V. Markl et al. Robust query processing through progressive optimization. SIGMOD
’04.

[79] D. Marmaros et al. Pay-as-you-go entity resolution. IEEE TKDE, 2013.

111

[80] N. May et al. Sap hana–the evolution of an in-memory dbms from pure olap processing
towards mixed workloads. BTW 2017.

[81] R. McCann et al. Matching schemas in online communities: A web 2.0 approach. In
ICDE, pages 110–119, April 2008.

[82] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In CIDR.
www.cidrdb.org, 2013.

[83] K. Mikolajczyk et al. Human detection based on a probabilistic assembly of robust
part detectors. In ECCV 2004.

[84] U. F. Minhas and A. Kumar. SIGMOD 2021 curated session: Data management for
ML. https://2021.sigmod.org/program/program_tuesday.shtml.

[85] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a
timely dataflow system. In SOSP, pages 439–455. ACM, 2013.

[86] M. Nikolic, M. Elseidy, and C. Koch. LINVIEW: incremental view maintenance for
complex analytical queries. In SIGMOD Conference, pages 253–264. ACM, 2014.

[87] R. Olfati-Saber et al. Consensus filters for sensor networks and distributed sensor
fusion. CDC ’05, Dec 2005.

[88] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large
mapreduce jobs. Proc. VLDB Endow., 4(11):1135–1145, 2011.

[89] T. Papenbrock et al. Progressive duplicate detection. IEEE TKDE, 2015.

[90] A. Parameswaran et al. Crowdscreen: Algorithms for filtering data with humans.

[91] A. Parameswaran et al. Optimal crowd-powered rating and filtering algorithms. Proc.
VLDB Endow., 7(9):685–696, May 2014.

[92] Y. Park et al. Verdictdb: Universalizing approximate query processing. SIGMOD’18.

[93] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS.

[94] H. Plattner. The impact of columnar in-memory databases on enterprise systems.
Proc. VLDB Endow., 7(13):1722–1729, 2014.

[95] D. Powers et al. Evaluation: From precision, recall and f-measure to roc, informedness,
markedness and correlation. J. Mach. Learn. Technol, 2:2229–3981, 01 2011.

[96] E. Rahm et al. A survey of approaches to automatic schema matching. VLDB ’01.

[97] V. Raman and J. M. Hellerstein. Partial results for online query processing. In SIG-
MOD Conference, pages 275–286. ACM, 2002.

[98] C. Re et al. Efficient top-k query evaluation on probabilistic data. In ICDE 2007.

112

https://2021.sigmod.org/program/program_tuesday.shtml

[99] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference. Proc. VLDB Endow., 10(11):1190–1201, 2017.

[100] A. Rheinländer, U. Leser, and G. Graefe. Optimization of complex dataflows with
user-defined functions. ACM Comput. Surv., 50(3):38:1–38:39, 2017.

[101] P. Sen et al. Representing and querying correlated tuples in probabilistic databases.
In ICDE ’07.

[102] E. Shin, D. Ghosh, S. Mehrotra, and N. Venkatasubramanian. SCARF: a scalable
data management framework for context-aware applications in smart environments.
In MobiQuitous, pages 358–367. ACM, 2019.

[103] N. F. F. D. Silva et al. A survey and comparative study of tweet sentiment analysis
via semi-supervised learning. ACM Comput. Surv., 2016.

[104] T. Sim et al. The cmu pose, illumination, and expression (pie) database. In Int. Conf.
on Automatic Face Gesture Recognition, 2002.

[105] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural Process. Lett., 9(3):293–300, 1999.

[106] D. Tang, Z. Shang, A. J. Elmore, S. Krishnan, and M. J. Franklin. Intermittent query
processing. Proc. VLDB Endow., 12(11):1427–1441, 2019.

[107] D. Tang, Z. Shang, A. J. Elmore, S. Krishnan, and M. J. Franklin. Crocodiledb in
action: Resource-efficient query execution by exploiting time slackness. Proc. VLDB
Endow., 13(12):2937–2940, 2020.

[108] D. Tang, Z. Shang, A. J. Elmore, S. Krishnan, and M. J. Franklin. Thrifty query
execution via incrementability. In SIGMOD Conference, pages 1241–1256. ACM, 2020.

[109] S. Tian, W. Yang, J. M. L. Grange, P. Wang, W. Huang, and Z. Ye. Smart healthcare:
making medical care more intelligent. Global Health Journal, 3(3):62–65, 2019.

[110] A. Toshniwal et al. Storm@twitter. SIGMOD ’14.

[111] M. Vagac and M. Melicherćık. Improving image processing performance using database
user-defined functions. In ICAISC (1), volume 9119 of Lecture Notes in Computer
Science, pages 789–799. Springer, 2015.

[112] P. Venkateswaran, M. A. Suresh, and N. Venkatasubramanian. Augmenting in-situ
with mobile sensing for adaptive monitoring of water distribution networks. In ICCPS,
pages 151–162. ACM, 2019.

[113] X. Wang and M. J. Carey. An idea: An ingestion framework for data enrichment in
asterixdb. VLDB ’19.

113

[114] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (mae) over
the root mean square error (rmse) in assessing average model performance. Climate
research, 30(1):79–82, 2005.

[115] D. H. Wolpert. Stacked generalization. Neural Networks, 1992.

[116] S. Wu et al. Continuous sampling for online aggregation over multiple queries. In
SIGMOD Conference, pages 651–662. ACM, 2010.

[117] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass
probability estimates. KDD, 2002.

[118] M. Zaharia et al. Discretized streams: A fault-tolerant model for scalable stream
processing, 2012.

[119] K. Zeng et al. G-OLA: generalized on-line aggregation for interactive analysis on big
data. In SIGMOD Conference, pages 913–918. ACM, 2015.

[120] Y. Zhang, W. Zhang, and J. Yang. I/o-efficient statistical computing with RIOT. In
ICDE, pages 1157–1160. IEEE Computer Society, 2010.

[121] Q. Zhu, M. Y. S. Uddin, Z. Qin, and N. Venkatasubramanian. Data collection and up-
load under dynamicity in smart community internet-of-things deployments. Pervasive
Mob. Comput., 42:166–186, 2017.

114

Appendices

A Twitter Analysis Application on Spark

The codebase for the twitter analysis application implemented using Spark is shown below.

import time

import re

import sys

import numpy as np

import pickle

import pyspark

from pyspark import SQLContext

from pyspark.sql.types import StructType , StructField , IntegerType ,

FloatType , StringType , ArrayType

from pyspark.sql.functions import udf

from pyspark.sql import Row

from pyspark.sql.functions import col

from pyspark.sql import SparkSession

from pyspark import SparkContext

from pyspark import SparkConf

import pyspark.sql.functions as F

115

sys.path.insert(0, ’/home/ubuntu/functions/backend/load’)

url = ’jdbc:postgresql :// localhost :5432? user=postgres&password=

postgres ’

table = ’tweets ’

conf = SparkConf ()

conf.setMaster("local [*]")

conf.setAppName(’pyspark ’)

properties = {

’user’: ’postgres ’,

’password ’: ’postgres ’,

’driver ’: ’org.postgresql.Driver ’,

’spark.jars’:’org.postgresql:postgresql :42.2.12 ’

}

sc = pyspark.SparkContext.getOrCreate ()

spark = SparkSession.builder.appName("Python Spark SQL").config("

spark.jars","/home/ubuntu/java/postgresql -42.2.18. jar").

getOrCreate ()

df = spark.read.format("jdbc").option("url", "jdbc:postgresql ://

localhost :5432/ test").option("dbtable", "tweets").option("user",

"postgres").option("password", "postgres").load()

116

clf_dt = pickle.load(open(’/home/ubuntu/tweet_clfs/

tweet_dt_sentiment_calibrated.p’, ’rb’))

clf_gnb = pickle.load(open(’home/ubuntu/tweet_clfs/

tweet_gnb_sentiment_calibrated.p’, ’rb’))

clf_lda = pickle.load(open(’home/ubuntu/tweet_clfs/

tweet_lda_sentiment_calibrated.p’, ’rb’))

clf_mlp = pickle.load(open(’home/ubuntu/tweet_clfs/

tweet_mlp_sentiment_calibrated.p’, ’rb’))

def execute_mlp(rl):

gProb = clf_mlp.predict_proba(rl)

return gProb [0]

def execute_dt(rl):

gProb = clf_dt.predict_proba(rl)

return gProb [0]

def execute_gnb(rl):

cProb = clf_gnb.predict_proba(rl)

return cProb [0]

def execute_lda(rl):

gProb = clf_lda.predict_proba(rl)

return gProb [0]

def execute_svm(rl):

gProb = clf_svm.predict_proba(rl)

return gProb [0]

117

def generateCombinedProbability(functionBitmap , probability2dArr):

output_arr = [0] * len(probability2dArr [0])

num_possible_tag = len(probability2dArr [0])

weights = [1,2, 3 ,6]

for i in range(num_possible_tag):

sum_val = 0.0

count_val = 0

for j in range(len(functionBitmap)):

if functionBitmap[j] == 1:

sum_val += weights[j]* probability2dArr[j][i]

count_val += weights[j]

if count_val > 0:

output_arr[i] = 1.0 * (sum_val / count_val)

else:

output_arr[i] = 0

return output_arr

def _response(input_features):

fcname = ’tweet_sentiment_all ’

response = None

proba = None

if fcname == ’tweet_sentiment_all ’:

bitmap = [1,1,1,1]

118

prob2DArray =[]

features = input_features

proba = execute_dt ([features [:1000]])

prob2DArray.append(proba)

proba = execute_gnb ([features [:1000]])

prob2DArray.append(proba)

proba = execute_lda ([features [:1000]])

prob2DArray.append(proba)

proba = execute_mlp ([features [:1000]])

prob2DArray.append(proba)

output = generateCombinedProbability(bitmap , prob2DArray)

proba = output

response = 0

res = [round(v,6) for v in output]

max_val = max(res)

label = res.index(max_val)

return label

if __name__ == "__main__":

start_id = 50000

end_id = 60000

119

_select_sql = "(select t1.id,t1.tweet ,t1.feature , t2.sentiment

from tweets t1 , tweets_full t2 where t1.id = t2.id and t1.id >"

+ str(start_id)+ " and t1.id <" + str(end_id) + " and t2.id >"

+ str(start_id) +" and t2.id <" + str(end_id) + ") as my_table"

df_select = spark.read.jdbc(url="jdbc:postgresql :// localhost

:5432/ test",table=_select_sql ,properties=properties)

df_select.show()

truth_list = df_select.select(’sentiment ’).rdd.flatMap(lambda x:

x).collect ()

all_f1 = []

for i in range(len(truth_list)):

if truth_list[i] == 1:

truth +=1

prev_recall =0

max_time = 50

ep_size = 10

quality_requirement = 0.9

for i in range(max_time):

t1 = time.time()

start_id = 0 + i * epoch_size

end_id = start_id + epoch_size

_select_sql = "(select t1.id,t1.tweet ,t1.feature , t2.

sentiment from tweets t1, tweets_full t2 where t1.id = t2.id and

t1.id >" + str(start_id)+ " and t1.id <" + str(end_id) + " and

t2.id >" + str(start_id) +" and t2.id <" + str(end_id) + ") as

my_table"

df_select = spark.read.jdbc(url="jdbc:postgresql :// localhost

:5432/ test",table=_select_sql ,properties=properties)

120

df_select.show()

output_udf_float = udf(_response , IntegerType ())

df4 = df_select.withColumn(’exec’,output_udf_float(’feature ’

).alias(’exec_output ’))

df4.show()

query_res = df4.select(’exec’).rdd.flatMap(lambda x: x).

collect ()

count = 0

correct = 0

for j in range(len(pred_list)):

if query_res[j] == 1:

count +=1

if query_res[j] == truth_list[j + i*ep_size] and

pred_list[j] == 1:

correct +=1

prec = correct *1.0/ count

recall = correct* 1.0 /truth

total_recall = prev_recall + recall

prev_recall = total_recall

if (prec + total_recall) != 0:

f1 = 2* prec * total_recall / (prec + total_recall)

else:

f1 = 0

all_f1.append(f1)

if f1 >= quality_requirement:

break

query_res.show()

121

B Proof of Theorem 5.2

Lemma 1. If the probability of a tuple tk ∈ Answ−1 increases in epoch w, then the threshold

Pwτ remains the same as Pw−1
τ or increases (some tuples which were part of Answ−1 can move

out of Answ). In both cases, the E(Fα) measure of the answer set increases from E(Fα) of

Answ−1.

The threshold of epoch w (i.e., Pwτ) satisfies the following two conditions:

Pwτ >
P1 + P2 + ...Pτ−1

τ − 1 + k2

(B.1)

Pwτ+1 <
P1 + P2 + ...Pτ

τ + k2

(B.2)

where k2 is defined as Equation 5.5. Suppose the selection probability of a tuple ti ∈ Answ−1

increased in epoch w from Pi to Pi + ∆. Depending on the value of ∆, if threshold remained

the same, then E(Fα) measure of the answer set (as shown in Equation 5.5) increases as the

denominator increases. If threshold changes, then it only increases with respect to Pw−1
τ .

This in turn ensures that E(Fα) measure is higher than epoch w−1 as it starts to drop from

an earlier tuple. In the following part of the proof, we denote the threshold probability of

Pw−1
τ by the notation Pm and the probability of Pw−1

τ+1 to be Pm+1.

122

In the new epoch, considering the new probability value of ti, the following condition holds:

Pm >
(P1 + P2 + ..+ Pi + ∆ +Pm−1)

(m− 1 + k + ∆)
, where, k =

N∑
j=1

Pj

⇒ Pm(m− 1 + k + ∆) > (P1 + P2 + ..+ Pi + ∆ +Pm−1)

⇒ Pm(m− 1 + k) + ∆Pm > P1 + P2 + ...+ Pm−1 + ∆

⇒ Pm(m+ k)− (P1 + P2 + ...+ Pm−1) > ∆(1− Pm)

(B.3)

From Equation B.2, we get that Pm(m− 1 + k)− (P1 +P2 + ...+Pm−1) > 0. Equation B.3

can be simplified as follows:

∆(1− Pm) < Pm(m+ k)− (P1 + P2 + ...+ Pm−1)

⇒ ∆ <
Pm(m+ k)− (P1 + P2 + ...+ Pm−1)

1− Pm

(B.4)

Hence, the threshold remains constant as long as ∆ value is less than
Pm(m+k)−

m−1∑
i=1
Pi

1−Pm , other-

wise it will be increased. In both these cases, the numerator of E(Fα)-measure of Equation

5.2 increases resulting in the increment of the F1 measure of the answer set.

Lemma 2. If the selection probability value of tk ∈ Answ−1 decreases in epoch w but still

remains higher than Pw−1
τ , then the threshold Pwτ remains the same as Pw−1

τ or decreases.

This implies that the tuples which were already part of Answ−1 will still remain in Answ and

some new tuples might be added to Answ. In both the cases, the E(Fα) measure of Answ is

lower than E(Fα) of Answ−1.

Suppose the probability of a tuple ti decreases from Pi to Pi − ∆. According to Equation

B.1, if the tuple tm is still the threshold tuple in the new epoch, then the following condition

123

must hold:

Pm >
(P1 + P2 + ...Pm−1 −∆)

(m− 1 + k −∆)
(B.5)

The right-hand side of the above inequality (P1+P2+...Pm−1−∆)
(m−1+k−∆)

is reduced from the previous

epoch, i.e., (P1+P2+...Pm−1)
(m−1+k)

, this inequality will always hold. This implies that no further

tuples are included in the answer set but the joint probability value of one of the existing

tuple is reduced. This reduces the E(F1) measure of the answer set as the value in the

numerator is reduced from the previous epoch.

Lemma 3. If the selection probability value of a tuple ti ∈ Answ−1 decreases in epoch w and

becomes less than Pw−1
τ , then the threshold Pwτ can increase or decrease. In both the cases,

the E(Fα) measure of Answ is lower than E(Fα) of Answ−1.

Suppose the selection probability of tuple ti is reduced from Pi to Pi−∆ in the new epoch.

The new probability Pi−∆ is lower than the previous threshold probability of epoch w− 1.

Suppose tm was the threshold tuple, hence, Pm was higher than (P1+P2+...Pm−1)
(m−1+k)

(according

to Equation B.1). Let us denote the numerator by X and the denominator by Y .

Since ti moved out of the answer set, the new numerator will be X−Pi and new denominator

will be Y −1−∆. So the new value in the right-hand side of inequality B.1 becomes X−Pi
Y−1−∆

. If

the value X−Pi
Y−1−∆

becomes greater than X
Y

, then the inequality B.1 will not hold and threshold

value will be increased. This condition arises when ∆ value is more than Pi
Pm − 1. Note that

Pi
Pm is more than 1, since Pi > Pm as the tuple with probability Pm was the last tuple in the

answer set. This implies that the threshold either remains the same and one of the previous

tuples moved out of the answer set. The numerator in Equation 5.2 decreases resulting in

the reduction of E(F1) measure.

Based on above lemmas we conclude that, given a tuple ti ∈ Answ−1, the E(Fα) measure of

Answ will increase with respect to Answ−1 only if the selection probability of ti increases in

124

epoch w.

Lemma 4. If the selection probability value of ti 6∈ Answ−1 increases in epoch w and becomes

higher than Pw−1
τ , then the threshold Pwτ remains the same as Pw−1

τ or increases (i.e., some

tuples which were part of Answ−1, might move out of Answ). In both the cases, the E(Fα)

of Answ will be higher than E(Fα) of Answ−1.

Let tm be the threshold tuple of epoch (w − 1). Hence, Pm was higher than (P1+P2+...Pm−1)
(m−1+k)

,

according to Equation B.1. Let us denote this fraction by X
Y

. Suppose the selection prob-

ability value of a tuple ti 6∈ Answ−1, increases from Pi to Pi + ∆ in epoch w. Hence, in

epoch w, the right-hand side of Equation B.1 will be updated to X+Pk
Y+1+∆

. If this new value is

more than previous value of X
Y

, and Pm is less than this new value, then the tuple tm moves

out of the answer set. Now we show that, in both cases, where threshold remains same or

gets increased, F1 measure of the answer set will increase. First we consider the case where

threshold is increased.

Suppose tm was the threshold tuple in previous epoch (i.e., epoch (w-1)), and in epoch w it

moved out of the answer set due to the inclusion of tuple tk. This implies that in epoch w−1,

the answer set consisted of the objects with probability values (P1,P2, ...Pm−1,Pm) and in

epoch w, the answer set became (P1,P2, ...(Pk + ∆), ...Pm−1). The E(F1) measure of epoch

i− 1 will be (1+α)(P1+P2...Pm)
α(P1+P2+...PN)+m

, and let us denote this fraction by X
Y

. The new F1 measure of

epoch w will be (1+α)(P1+P2...+Pk+∆+...Pm−1)
α(P1+P2+...PN)+m+∆

, which can be written as X+(Pk+∆)−Pm
Y+∆

.

As tuple tm was the threshold in epoch w− 1, the Equation B.1 holds for tuple tm as shown

below.

Pm >
(P1 + P2 + ...Pm−1)

(m− 1 + (P1 + P2 + ...PN))

⇒ Pm >
(X − Pm)

(Y − 1)
, ⇒ Pm >

X

Y

(B.6)

125

In epoch w−1, if tuple tm was not part of the answer set, which implies that in epoch w−1,

the following condition was true:

Pm <
(P1 + P2 + ...Pm−1 + Pk + ∆)

(m− 1 + (P1 + P2 + ...PN) + ∆)

⇒ Pm <
(X − Pm + (Pk + ∆))

(Y − 1 + ∆)
, ⇒ Pm <

X + Pk + ∆

Y + ∆

(B.7)

Using Equations B.6 and B.7 and simplifying the expression of F1 measures (Equation 5.2)

of epoch w and w − 1, we can show that E(F1) measure of epoch w is higher than E(F1)

measure of epoch w − 1.

Lemma 5. If the selection probability value of tk 6∈ Answ−1 increases in epoch w but does

not become higher than Pw−1
τ , then the threshold Pwτ remains the same as Pw−1

τ or decreases.

In both the cases, the E(Fα) of Answ will remain the same as that of Answ−1.

Let tm be the threshold object of the answer set in the previous epoch. This implies that Pm

is greater than (P1+P2+...Pm−1)
(m−1+k)

, according to Equation B.1. Let us denote this fraction by X
Y

.

Let us consider an object ok which was outside of the answer set at the end of epoch w− 1.

Let the joint probability value of tuple tk is increased from Pk to Pk + ∆ in epoch w. In

the new right-hand side of Equation B.1, numerator stays the same as previous epoch, as no

extra tuples were added to the answer set, whereas the denominator is increased from Y to

Y + ∆. Hence, the new right-hand side X
Y+∆

becomes smaller than the previous right-hand

side value of X
Y

, which implies that the tuple tm will remain in the answer set.

Let us consider the condition of threshold, related to tuple tm+1 (Equation B.2). In epoch

w − 1, the following condition was true for object om+1: Pm+1 < (P1+P2+...Pm)
(m+k)

, where,

k =
N∑
i=1

Pi. Let us consider the numerator and denominator as X and Y respectively. In new

epoch (i.e., epoch w), the denominator Y will be increased as the joint probability of object

126

Pk is increased from Pk to Pk+∆. This implies that the right-hand side X
Y+∆

became smaller

as compared to the previous value of X
Y

. We can conclude that there is a possibility that

tm+1 can become part of the answer set if Pm+1 becomes more than the value of X
Y+∆

. This

implies that the threshold will remain the same or it will include more objects to the answer

set. If the answer set remains the same then the E(F1) remains the same as there is no new

addition. If the answer set includes more tuples then the expression of E(F1) measure of the

answer set increases.

Lemma 6. If the selection probability value of tk 6∈ Answ−1 decreases in epoch w, then the

threshold Pwτ remains the same as Pw−1
τ or increases. In these cases, the E(Fα) measure of

Answ is higher than or equal to the E(Fα) measure of Answ−1.

Let tm be the threshold tuple of epoch w− 1. The value of Pm was higher than the value of

(P1+P2+...Pm−1)
(m−1+k)

, according to Equation B.1. Let us denote it by X
Y

. Let tk be the tuple which

was not in the answer set in epoch (w−1) and the probability value of this tuple is decreased

from Pk to Pk − ∆. In the new right-hand side of Equation B.1, the numerator stays the

same as no extra tuple was added to the answer set, the denominator is reduced from Y to

Y −∆. The new value of right-hand side X
Y−∆

increases from the previous right-hand side

X
Y

. This implies that there is a possibility that the tuple tm moves out of the answer set in

the new epoch. If the answer set remains the same, then in the expression of E(F1) measure

of the answer set (i.e., Equation 5.2), the denominator reduces. The numerator remains the

same as the answer set remains the same. If it cause the tuple tm to be out of the answer set

in epoch ew, then the numerator reduces but at the same time denominator reduces by larger

amount as the size of the answer set is decreased. From the expression of E(F1) measure,

we observe that it increases the E(F1) measure of the answer.

From Lemmas 4, 5, and 6, given a tuple tk 6∈ Answ−1, we conclude that the E(Fα) measure

of Answ increases or remains the same with respect to Answ−1 but it never decreases.

127

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Related Works
	EnrichDB Data Model
	Data Model
	Query Model
	Query Language
	Determinization-Based Query Semantics

	EnrichDB System Implementation
	Enriching Data During Query Processing
	Query Processing in EQLC
	Query Processing in EQTC
	Comparison between EQLC and EQTC

	Progressive Query Processing
	Progressive Queries
	State Management
	Joint Enrichment and Query Execution

	Experimental Evaluations
	Experimental Setup
	Experimental Results

	 Optimizing Enrichment with Progressive Query Processing
	Objective
	Overview of the Algorithm
	Candidate Tuple Set Selection
	Choosing Thresholds for Each Relation.

	Benefit Estimation
	Selection Queries
	Generalizing to Other Queries

	Enrichment Plan Selection
	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Use Cases of the System
	Social Media Analysis
	Multi Media Analysis
	IoT Application of Localization using WiFi data

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Twitter Analysis Application on Spark
	Proof of Theorem 5.2

