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Actual Performance in Commercial Office Buildings

Rongxin Yina,∗, Jingjing Liua, Mary Ann Piettea, Jiarong Xieb, Marco
Pritonia, Armando Casillasa, Lili Yua, Peter Schwartza

aLawrence Berkeley National Laboratory, Berkeley, California, USA
bSchool of Architecture, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract

Commercial building energy benchmarking has been used as a mechanism
to evaluate energy use of a single building over time, relative to other simi-
lar buildings, or to simulations of a reference building conforming to various
energy standards. Lack of empirical demand flexibility data and consistent
flexibility metrics has limited the ability to compare demand flexibility per-
formance with estimated demand flexibility in buildings. In this study, we
collected demand response performance data for a total of 831 demand re-
sponse events from 192 sites as a first step to build such a building demand
flexibility dataset, and propose a standard core data schema to consolidate
field data from different sources. We also performed parametric simulations of
a control strategy called “global temperature adjustment” using commercial
office prototype building models. We then compared the simulated demand
flexibility performance against the actual data for offices with global tem-
perature adjustment strategy implemented. During demand response events
with an average outside air temperature of 34◦C (range 23◦C-42◦C), the mea-
sured demand decrease intensity of the demand flexibility metrics were 6.1
watts per square meter (W/m2), 10.0 W/m2, 11.1 W/m2, 7.1 W/m2, and
4.7 W/m2 for small, small-medium, medium, medium-large, and large office
buildings, respectively. Compared to the measured data in medium- and
large-size buildings, the simulated demand decrease intensity was 0.7 W/m2

(17%) lower on average. The discrepancy between simulated and measured
peak demand intensities fell within one standard deviation of the mean mea-
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sured data. The comparison results validate the credibility of simulations in
capturing real building data for assessing the technical potential of building
demand flexibility.

Keywords: demand flexibility, commercial office building, cross validation,
control strategy, global temperature adjustment, field-testing, prototype
building model

Nomenclature

AC Air conditioner

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning
Engineers

BAS Building automation systems

CAV Constant air volume

CDD Cooling degree days

COP Coefficient of performance

CZ Climate zone

DDI Demand decrease intensity

DDP Demand decrease percentage

DER Distributed energy resources

DF Demand flexibility

DII Demand increase intensity

DOE Department of Energy

DR Demand response

EE Energy efficiency

FERC Federal Energy Regulatory Commission
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GEB Grid-interactive efficient buildings

GTA Global temperature adjustment

HVAC Heating, ventilation and air-conditioning

IMF Input marco file

MELs Miscellaneous electric loads

OAT Outside air temperature

RTU Rooftop unit

TCLs Thermostatically controlled loads

TES Thermal energy storage

VAV Variable air volume

VFD Variable frequency drive
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1. Introduction1

Demand flexibility is a relatively new term used to categorize different2

ways of managing demand-side loads to provide demand-side flexibility and3

grid interactivity. The recent national roadmap for Grid-Interactive Effi-4

cient Buildings (GEB) [1] provides a definition: “demand flexibility, also5

sometimes referred to as load flexibility, is the capability provided by on-6

site distributed energy resources (DERs) to reduce, shed, shift, modulate, or7

generate electricity.” DERs include energy efficiency, energy storage, demand8

response, electric vehicles, grid-interactive efficient buildings, combined heat9

and power, and renewable energy such as solar photovoltaics. In the past10

few decades, the electricity market has begun to consider demand-side re-11

sources as valuable assets for meeting capacity needs, improving reliability,12

reducing wholesale and retail costs, and supporting grids with higher levels13

of renewable energy distributed generation. More recently, increased levels14

of renewable energy have begun to create instances of oversupply, more often15

during low-load, shoulder seasons — the months between the winter heating16

and summer cooling seasons. These instances of oversupply can cause unsta-17

ble grid conditions and negative energy prices on the wholesale market, and18

are usually met with energy curtailment. As a result, manipulating demand19

(shape, shift, shed, and shimmy) to participate in various programs in the20

electricity market has seen increased interest from grid operators and regula-21

tors [2]. A notable example of demand flexibility includes demand response22

(DR), which has traditionally been defined as load shedding or shifting by23

consumers in response to higher electricity prices or grid supply shortages,24

usually during extreme hot or cold weather events. The U.S. Federal Energy25

Regulatory Commission (FERC) has defined DR as “Changes in electric us-26

age by demand-side resources from their normal consumption patterns in27

response to changes in the price of electricity over time, or to incentive pay-28

ments designed to induce lower electricity use at times of high wholesale29

market prices or when system reliability is jeopardized” [3]. Since 2008, fed-30

eral policy has progressively introduced demand response as a dispatchable31

resource that, in contrast to other resources, is able to participate in orga-32

nized energy markets [3]. For DR participation in the U.S. wholesale markets,33

the potential peak demand in 2011 peaked at 32,488 megawatts (MW) and34

reached 30,788 MW in 2019, accounting for approximately 5.3%-7.0% of the35

peak demand [4]. From 2012 to 2020, potential peak demand savings from36

retail demand response programs in the United States increased by approxi-37
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mately 2,517 MW, or 8.8%, from 28,503 MW to approximately 31,020 MW.38

In 2019, utilities reported over 15,000 MW of potential peak demand sav-39

ings from the residential and commercial customer class, roughly 51% of the40

reported total retail potential peak demand savings [4].41

As one form of demand flexibility in buildings, DR has been playing a42

significant role in reducing peak demand for residential and commercial cus-43

tomers. In particular, thermostatically controlled loads (TCLs) have been44

the primary flexible demand resource in buildings. Thermostat setpoint ad-45

justment is a common DR control strategy that utilizes the building thermal46

mass to reduce the building cooling load in summer. Since the 1990s, simu-47

lations and laboratory tests have demonstrated the use of building thermal48

mass to reduce peak demand for cooling loads (10% to 40%) [5, 6, 7, 8, 9].49

Furthermore, optimal zonal temperature strategy (such as a linear, step, or50

exponential reset of thermostat temperature setpoint) can reduce the peak51

demand about 25% to 45% and still deliver acceptable occupant thermal52

comfort [10, 11]. Similar simulation studies have shown that a simple zonal53

temperature adjustment strategy can reduce chiller power use 80%-100% (10-54

23 W/m2) during peak hours [12]. Considering a linear relationship between55

zone temperatures and cooling loads, the near-optimal setpoint trajectory56

from the simplified inverse building model reduced peak cooling power by57

an average of 31.6% over the four test days [13]. The same approach was58

deployed in three representative small, medium, and large commercial build-59

ings, reducing peak cooling loads by 33%, 42%, and 51%, respectively. Based60

on the simplified building model, the estimated peak cooling load reduc-61

tion ranges from 22 W/m2 to 32 W/m2 [14]. In the same medium-size of-62

fice building, researchers conducted a follow-up simulation using EnergyPlus63

to evaluate the effect of nighttime and morning pre-cooling on the follow-64

ing day’s peak demand shed [15]. Simulation results show that increasing65

the zone temperature setpoint by 2.2◦C (4◦F) can reduce chiller electricity66

consumption by about 33%. A recent study [16] developed a novel split67

air-conditioner (AC) load model for both constant-speed and variable-speed68

compressors. The 2◦C (3.6◦F) thermostat reset control strategy achieves an69

average AC load shed of 0.2 kW per household, which is about 25% of the air70

conditioner’s rated power demand. A large-scale parametric simulation was71

used in a global sensitivity study of demand response in medium-sized office72

buildings to identify critical building design factors impacting the demand73

flexibility performance of new constructions[17]. Results indicated that de-74

sign internal loads, internal thermal mass, the chiller plant sizing factor and75

5



coefficient of performance are ranked as critical parameters for achieving sig-76

nificant potential in demand flexibility. It is worth noting that most of the77

cited studies conducted field tests or simulations on hot days, and the results78

may not reflect the effects of humidity on the DR performance.79

The aforementioned simulated and experimental results show that build-80

ing thermal loads can be shifted or reduced to provide demand flexibility81

with appropriate control strategies, which have inspired many follow-up sim-82

ulations [18, 19, 20, 21], laboratory [22, 23] and field tests [16, 24, 25, 26, 27],83

and pilot studies [28, 29, 30, 31] on the potential of building demand flexibil-84

ity (DF). Each method (simulation, laboratory/field testing) deployed in the85

above studies has unique advantages from different aspects of interest of DF86

influential factors, magnitudes, and variations. In general, simulation can87

evaluate the impact of different influential factors on the DF performance88

while maintaining the consistency of the remaining model inputs. On the89

other hand, field-testing can be used to quantify the actual DF performance90

while considering the characteristics of the building itself. By contrast, lab-91

oratory testing can explore DF performance by using different aspects in92

the testbed setup. A recent study [32] conducted a comprehensive review93

of methods for quantifying energy flexibility in residential buildings. It con-94

cluded that 85% of the reviewed studies were simulations, only about 10% of95

the reviewed studies involved actual measurements in the quantification, and96

the rest deployed both simulations and measurements. Another review pa-97

per presented several open-source building energy management datasets for98

the use of reinforcement learning and data-driven modeling, while there was99

very limited information about demand flexibility performance [33]. In the100

context of parametric analysis of DF performance, simulations can be used101

to estimate DF characteristics for different building types, vintages, and cli-102

mate conditions through parametric/sensitivity analysis [18, 19]. Existing103

large datasets are available to help estimate flexibility across the national104

building stock [20, 34, 35]. Several previous simulation studies have used105

EnergyPlus to perform large-scale parametric simulations of demand flexi-106

bility strategies such as global temperature adjustment (GTA) in commercial107

buildings [21, 11], while also analyzing its relation to time of day and outdoor108

weather conditions such as outside air temperature (OAT). A national-level109

assessment study analyzed the demand response potential for seven types110

of small commercial buildings in different vintages and climates, including111

various control strategies such as pre-cooling, shading, and lighting power112

reduction [34]. A similar simulation study utilized both residential and com-113
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mercial prototype building models to project the baseline annual electricity114

consumption and net peak demand for U.S. buildings by 2030 [35]. By incor-115

porating the best possible energy efficiency and flexibility measures, it was116

estimated that up to 800 TWh of annual electricity usage and 208 GW of117

daily net summer peak demand could potentially be avoided. It is important118

to note that the accuracy of the bottom-level modeling of demand flexibility119

is critical to deploying this building-grid resource in the future.A promising120

approach was presented to deploy automatic calibration of urban building121

energy models by learning building characteristics and energy performance122

from a building energy database [36]. In contrast to the use of physical en-123

ergy models in this area, a recent study delpoyed a data-driven simulation124

apporach to evaluate the performance of demand-driven control strategies at125

the district scale [37]. It was found that when building occupancy decreases126

by 25% to 75%, there’s a 5% to 15% reduction in space cooling demand at127

the campus scale. A similar study employed a data-driven model for model128

predictive control of large-scale HVAC systems in providing demand flexi-129

bility [38]. It can be expected that large demand flexibility datasets will130

be needed for use in data-driven modeling approaches. Despite the broad131

scope of these analyses, the models on which they are based have not been132

validated against sufficient field data. To some extent, their applicability to133

actual building stock is limited.134

From the perspective of DF measurement and verification, there are some135

similarities in the DR performance quantification metrics framework, such as136

demand reduction units (W/m2) or the percentage demand reduction (%) for137

the entire building or cooling load. A recent study [39] conducted an in-depth138

review of data-driven key performance indicators (KPIs) for building energy139

flexibility. These KPIs, which include metrics for load shedding and shifting140

at the building level, are commonly used in energy flexibility quantification141

using a baseline model. As highlighted in a recent review study [40], most142

building codes and standards primarily focus on energy performance, with143

limited emphasis on energy flexibility metrics. To fill this gap, in our recent144

companion paper [41], we defined a set of metrics for both “load shed” (Shed)145

and “load shift” (Shift), providing single-event metrics with an associated set146

of metric attributes. While some of the evaluation metrics used in these stud-147

ies align, overall there is a need for a standard data schema to document,148

organize, and standardize DR performance-related data. Such a standard149

data schema can be used to integrate these datasets and compare DR per-150

formance by building type, vintage, and climate location. In addition, the151
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literature lacks standard field datasets to compare model simulations against152

measurements or benchmarking flexibility performance against similar build-153

ings. Local utility companies and aggregators manage sizable portfolios of154

buildings that participate in different grid services, but the data they process155

are not public.156

The above summary identified several research gaps within the field of157

building demand flexibility, including: (1) lack of standard data schemes for158

compiling simulation and field test datasets, (2) lack of sufficient empirical159

demand flexibility data, and (3) limited in-depth analysis of the difference be-160

tween simulated and measured DF performance. In this study, we attempted161

to leverage past research and field/pilot studies from nearly 200 commercial162

buildings as a basis for addressing these gaps. The main contributions of the163

paper are the following:164

• We propose a standard data schema for integrating the field demand165

response performance data to build a commercial building demand flex-166

ibility database.167

• We compare the field DF dataset of hundreds of buildings by building168

type, vintage, and climate to help identify performance characteristics.169

• We compare simulated DF results with field data to justify the use170

of prototype models in the assessment of DF potential for commercial171

buildings, and provide a set of recommendations for DF modeling in172

small, medium, and large offices.173

The rest of this paper is organized as follows: Section 2 describes the174

methods deployed in this study, including field data schema standardization175

and prototype model simulations. Including an exploratory data screening176

and analysis in section 3, we present a data schema for defining common177

building characteristics and demand flexibility performance metrics in com-178

mercial buildings. In section 4, we discuss the use of this demand flexibility179

dataset and present a use case by comparing the prototype building model180

simulations against similar field-testing buildings. Last, we provide an in-181

depth discussion about the discrepancy between the simulated and field DF182

performance dataset.183
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2. Methodology184

As the first attempt to build such a building demand flexibility dataset, it185

was essential to develop a standard data schema consistent with DF metrics186

framework [41] by leveraging existing field studies. The goal was to facili-187

tate more field studies into this dataset with the standard data schema, and188

to improve the availability and consistency of these data across buildings189

and markets and among stakeholders. This data schema contains informa-190

tion about the physical characteristics, location, and DF performance of the191

building and serves as the core data schema of a commercial building demand192

flexibility database.Similar to the modeling methods used in previous studies193

[11, 20, 21], we propose to use the commercial prototype building models [42]194

for assessing the DF characteristics by different building types, vintages, and195

climates.196

2.1. Streamlining field data collection with standard data schemas197

Comprehensive building field-testing datasets are valuable; however, col-198

lecting, cleaning, and incorporating them into standard datasets is very chal-199

lenging. It is necessary to design a standard data schema to describe basic200

information about building and DF performance characteristics, especially201

for compiling data from various data sources. Figure 1 illustrates the pro-202

posed entity–relationship data schema for compiling all collected data into203

a database. The data were categorized into four primary groups: building204

information, DF measures, program events, and DF performance metrics.205

Note that the focus of this data schema is to catalog information for demand206

flexibility in commercial buildings. Details about the components defined in207

the data schema are discussed in section 3.208

2.2. Prototype model simulations209

In this study, we conducted parametric simulations of the common strat-210

egy “global temperature adjustment” for small, medium, and large prototype211

office buildings in two climates, as shown in Table 1. As defined in [43], GTA212

is a strategy that allows building operators to adjust the space temperature213

setpoints for an entire facility. The reasons for our focus on office sites that214

implement only the GTA control strategy include: (1) GTA is the most com-215

monly used DF strategy in office buildings, and (2) the different combinations216

of DF control strategies for each building present a significant challenge of217
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Figure 1: Proposed common data schema for building demand flexibility

modeling capability when using prototype building models. Three DF met-218

rics were calculated for each DF simulation run: (1) DDI (demand decrease219

intensity: W/m2, which is calculated as the amount of demand shed per220

building floor area), (2) DII (demand increase intensity [optional for “shift”221

service]: W/m2, which is calculated as the amount of demand increase per222

building floor area), and (3) DDP (demand decrease percentage: %, which223

is calculated as the percent of load shed over the whole building power base-224

line). Those metrics are the most frequently used energy and demand related225

metrics in field studies [41]. With respect to the location, two climate zones226

are selected from the 19 climate zones for the U.S. as defined in the ASHRAE227

Standard 169-2013. The selection of these building types, vintages, and cli-228

mates was based on the available field sites’ characteristics.229

By comparing prototype model simulation results with the collected field230

data, we expected to gain insight into the validity and limitation of the231

prototype simulation approach for the estimation of DF potential, such as232

large scale simulations [20, 21, 11]. Figure 2 depicts the simulation data233

flow of DF modeling using two kinds of parametric methods for a large scale234

of prototype model simulations and a cross-comparison framework between235

simulation, laboratory testing, and field data. We used EP-Macro to param-236
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Table 1: Summary of DF simulations for comparison with field datasets

Building
Types

Building
Vintages

Climates DF
Control
Strate-
gies

Simulation
Period

DF
Metrics

Small Office
(511 m2),
Medium
Office
(4,980 m2),
and Large
Office
(46,338 m2)

Pre-1980,
1980-2004,
90.1-2004

3B
(warm-
dry), 3C
(warm-
marine)

GTA Full year
(one DR
event
per
week-
day)

DDI,
DII,
DDP

eterize the IMF (input macro file) files for the pre-1980 prototype building237

models and used the OpenStudio [44] platform to generate each simulation238

model with built-in measures of demand flexibility for the post-1980 proto-239

type building models. Then we adopted the proposed DF metrics framework240

[41] to calculate the DF performance metrics and attributes for each simu-241

lation case by following a DF metrics calculation procedure. Note that we242

compared performance in terms of magnitude (e.g., demand decrease inten-243

sity W/m2) and variation (e.g., building type, vintage, and climate) rather244

than detailed model calibration for each building.245

On the other hand, the DF metrics used in each field-testing study vary by246

their aspects of interest in understanding the DF performance. In the recent247

work, we defined a set of DF performance metrics for various grid service248

products (e.g., shed and shift) [45, 41]. However, it is quite a challenge to249

standardize the field performance data into the same set of metrics with250

limited access to the raw field data. Therefore, we propose the use of DDI251

(Demand Decrease Intensity, W/m2) as the DF metric in the comparison of252

prototype simulation results against the field data.253
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Figure 2: Cross-comparison framework between simulation, laboratory test, and field data
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3. Field-testing Data Summary254

For the field data presented in this study, most of the effort was spent255

on data cleaning and mapping to a common data schema because of the256

inconsistent DF performance metrics reported in previous studies. Through257

an extensive literature review and engagement with one utility in California258

and individual customers, we collected DR performance data for a total of259

831 DR event days from 192 sites. Following the standard core data schema,260

minimum data requirements for each site include: (1) building characteristics,261

such as building type, vintage, floor area, location (either zip code or climate262

zone), and heating, ventilation and air-conditioning (HVAC) system type;263

(2) DF strategies, such as end-use and control sequence; (3) demand-related264

approaches, such as peak demand kW , intensity W/m2, or peak demand265

reduction kW ; and (4) event-related approaches such as event start and end266

date/time, as well as weather data during the event hours.267

Table 2: Collected DF performance datasets as of August 2022

Data Source Number
of Sites

Number
of DR
events

Reference

Lab studies (2003-2015) 101 447 [28, 29, 30, 46, 47, 48, 19,
49, 50, 51, 52, 53, 54, 55]

Utility company 68 257 Anonymized data
Other published reports/papers 19 109 [5, 7, 10, 56, 57, 58, 26, 59,

60, 61, 22, 62]
Customers 4 18 Anonymized data
All 192 831 See above

3.1. Site Description268

With respect to field building characteristics, Figure 3 presents a sum-269

mary of field sites by building type, vintage, and ASHRAE climate zone.270

Over 90% of office sites are located in warm climate zone (CZ) 3B (warm-271

dry) and 3C (warm-marine). Except for one site in CZ 5A (cold-humid),272

the rest of the sites are in mixed climates 4A (mixed humid) and 4C (mixed273
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marine). In this study, our primary focus is on the 97 offices, of which ap-274

proximately 20% were built before 1980, 73% were constructed between 1980275

and 2004, and the remaining 7% were built after 2004.276

Figure 3: Summary of field demonstration sites by vintage and climate

As shown in Figure 4, about 95% of field sites have a variable air volume277

(VAV) system as their air distribution system. Large office buildings with a278

floor area of about 10,000 m2 and above choose air-cooled or water-cooled279

chillers as the cold source equipment. For small-medium and medium-size of-280

fice buildings with a floor area between approximately 1,000 m2 and 10,000281

m2, packaged rooftop units or air-cooled chillers are their favored cooling282

equipment. Single- or multiple-zone rooftop units are an ideal and cost-283

effective HVAC option for small buildings. The reason for HVAC system284

characterization here is that DF performance can vary widely between two285

different HVAC system types, such as packaged rooftop units with constant286

air volume (CAV) or VAV systems. In the case of a VAV system, thermostat287

setpoint adjustment can reduce the VAV terminal’s airflow rate to the mini-288

mum airflow setpoint. This is the most effective because it reduces the load289

of all associated air handling and cooling equipment, while keeping the zone290

temperature within the thermostat’s control.291

Figure 5 shows the ranking of field site peak demand intensity (left) and292

a box plot by vintages and climates (right). Here’s the breakdown of office293

buildings by vintage and climate: 18 sites in “1980-2004, 3B”, 50 sites in294

“1980-2004, 3C”, 14 sites in “Pre-1980, 3C”, 7 sites in “Post-2004, 3C”, and295

14



Figure 4: Summary of HVAC type by site floor area (left) and percentage of sites per
HVAC type (right)

3 sites in “Pre-1980, 4A”. Among offices located in the same climate zone296

3C, newer buildings (represented by 50 sites from the ’1980-2004’ period and297

only 7 sites from the ’post-2004’ period) exhibit a higher average peak de-298

mand intensity than those constructed before 1980. This observation was a299

bit unexpected, as newer buildings are more compliant with building energy300

efficiency codes. Possible reasons could be that: (1) newer buildings have301

installed more plug loads, such as computers and servers; (2) older buildings302

may have had efficiency retrofits installed in recent years; and (3) in addition303

to the huge amount of glass used in the new office building (steel-framed),304

most older buildings built before the 1980s have a mass/concrete envelope305

with a significant amount of building thermal mass to reduce high tempera-306

ture fluctuations during heat waves. This observation is consistent with the307

commercial buildings energy consumption survey data [63]. For buildings308

constructed in the similar period, warmer climate (climate zone 3B and 3C)309

results in a relatively high peak demand intensity of building HVAC load310

in comparison with mixed humid climate zone 4A. When compared to the311

office building peak demand intensity in climate zone 3B and 3C, they are312

relatively lower by 24-30%. A possible reason for this difference is that cli-313

mate zones 3B (2500 < CDD10°C < 3500) and 3C (CDD10°C − 2500) have314

higher cooling degree days (CDD) than the mixed-humid climate zone 4A315

(CDD10°C < 2500). However, as we only have data from three sites located316

in Climate Zone 4A, a fair comparison can’t be achieved. Consequently, sites317

located in Zone 4A are excluded from the following comparative analysis of318

DF performance.319

15



Figure 5: Summary of field demonstration office sites by peak demand intensity

3.2. DR strategies, events and performance320

As described in the collected field data, DR related information includes:321

(1) DR control strategies, (2) DR events (event start date time and end date322

time, or duration), and (3) DR performance (kW shed) per event for each323

site. For DR control strategies implemented in commercial office buildings,324

there are several major groups of control strategies by end-use sectors, includ-325

ing building envelope, HVAC system and plant, lighting, water heater, and326

plug loads. In this study, we mainly focused on the performance of control327

strategies such as HVAC, and lighting in the commercial office sector. Table328

3 presents a summary of DF control strategies for each specific strategy de-329

ployed in field-tested commercial office buildings. The top three DF control330

strategies are HVAC-A1 (global temperature adjustment [cooling - raise zone331

temperature by 2◦F-6◦F]), HVAC-P3 (cycle on/off compressors by 30%, 50%,332

and 100%), and LTG-A1 (Dimming control [continuous and step 20%-60%]).333

Furthermore, approximately 12% of field sites have implemented pre-cooling334

using building thermal mass along with HVAC-A1 control sequence. Reduc-335

ing static pressure is another common control sequence in HVAC systems336

with constant airflow distribution, or combined with the HVAC-A1 control337

sequence for additional fan power savings. A detailed summary of DF con-338

trol strategies are reported in Appendix A, Table A.1. We created a unique339

identifier for each control strategy in the data schema, which can also be340

extended with new control strategies. More details on commercial building341

control strategies and recommended control sequences for demand response342

can be found in a previous study [43].343

Figure 6 shows the DR performance of office sites sorted by floor area in344
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Table 3: Summary of DF control strategies in commercial office buildings (note: some
buildings implement more than one DF control strategy)

Strategy Group Strategy Subgroup Strategy Id Count of Sites

Building Envelope Thermal Mass BE-A1 16

HVAC-A1 62
HVAC-A3 22
HVAC-A6 15

Air Distribution

HVAC-A4 5
HVAC-P3 19
HVAC-P2 5

HVAC

Plant
HVAC-P1 3

Lighting Interior Lighting LTG-A1 19

MELs (miscellaneous electric loads) MELs MEL-A1 2

participating DR events, with DDI ranging from 0 to 32 W/m2 (0-3 W/ft2).345

On average, the DDI of DF metrics are 6.1 W/m2, 10.0 W/m2, 11.1 W/m2,346

7.1 W/m2, and 4.7 W/m2 for small (≤465 m2), small-medium (>465 m2 and347

≤2,323 m2), medium (>2,323 m2 and ≤4,645 m2), medium-large (>4,645 m2
348

and ≤9,290 m2), and large office buildings (>9,290 m2), respectively. It is349

clear that the DR performance of small and medium office buildings exhibits350

greater variability compared to that of large office buildings. Large office351

buildings have the lowest DDI magnitude among small to medium, medium352

to large, and large office buildings. Given the different DR performance353

characteristics between small and large office buildings, it can guide us to354

classify these buildings by different event durations to take full advantage of355

their maximum DR potential.356

For the data schema of DF performance metrics, the other important357

field is the baseline model option for quantifying the load change during the358

event. Common baseline model options include an average baseline with359

or without the morning adjustment (3/10, 5/10, and 10/10), a weather-360

matching baseline, a weather regression baseline, and more [64]. The average361

baseline is calculated from either 3, 5, or 10 days with the highest average362

load during the event period. These days are selected from the previous363

10 days of good data (excluding weekends, holidays, a DR event day, and364

any operation off day). Additionally, The morning adjustment is a ratio of365

(a) the average load of the first three of four hours before the event to (b)366

the average load of the same hours from the selected baseline days. The367
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Figure 6: Summary of DR performance by sites with GTA strategy implemented

adjustment factor is limited to ±20% of the customer baseline.368
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4. Results369

4.1. Comparing the simulation results against the field data370

Figure 7 shows the comparison of office building peak demand intensity371

by size and climate. In the plot, the field data has error bars with 95%372

confidence intervals. It can be seen that small offices have a wider range of373

peak demand intensities than medium and large offices. For offices in climate374

3B, differences between simulated and measured peak demand intensity range375

from -41% to 31%. In contrast, the difference is relatively small for offices376

in climate 3C, ranging from 4% to 22%. On the other hand, for all office377

buildings in climates 3B and 3C, the difference between the simulated and378

measured peak demand intensities is less than one standard deviation.379

Figure 7: Comparison of office building peak demand intensity by size, vintage, and climate

4.1.1. Comparison by the vintage and climate380

As described in section 3.2, global temperature adjustment (GTA) as a381

standalone strategy or combined with pre-cooling (pre-cooling+GTA) is the382

primary focus of this comparison study, as this control strategy can serve383

as load shed and shift service, respectively. Therefore, office sites with GTA384

only were selected for a fair comparative analysis with prototype building385

simulation results in this study. On the other hand, the DF metrics used in386

each field-testing study vary by their aspects of interest in understanding the387

DF performance. In the recent work [45], we defined a set of DF performance388

metrics for various grid service products (e.g., shed and shift). However, it is389

quite a challenge to standardize the field performance data into the same set390

of metrics with limited access to the field raw data. Therefore, we propose391

the use of DDI (Demand Decrease Intensity, W/m2) as the DF metric in the392

benchmarking of prototype simulation results against the field data.393
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Figure 8 shows a comparison of DR performance between field tests and394

simulations for small offices (HVAC type: Packaged Rooftop Unit [RTU]) in395

ASHRAE climate zone 3C. It is worth noting that we only compared the396

DR performance of sites located in climate zone 3B, as small office sites in397

other climates are very limited (only one small office in climate zone 3B398

implemented the GTA). On the other hand, we selected simulated DR per-399

formance on days with a maximum daily OAT above 29.4◦C [85◦F] to align400

with field-test DR events. On average per event, the DDI ranged from 4.3401

W/m2 to 16.1 W/m2. Three sites participated in more than five events over402

the summer, while the participation of the remaining four sites was unclear403

(only the average DDI was provided). In comparison with the average DDI404

across all sites, the simulated average DDI was 1.6 W/m2 higher than the405

measured value, which is approximately 120% of the average DDI of the406

seven available sites.407

Figure 8: Comparison of DF performance in small offices in ASHRAE climate zone 3C (7
sites, 21 events)

Figure 9 shows a comparison of DR performance between field tests and408

simulations for medium to large offices (HVAC type: Packaged RTU + VAV)409

in ASHRAE climate zones 3B (left) and 3C (right). We used the post-1980410

prototype medium-size office building model for the comparison and sim-411

ulated the GTA control strategy for the entire year. This plot compares412

simulated DDI values with field data under the same range of weather con-413

ditions (daily peak OAT). The 12 medium-large office buildings located in414

climate zone 3B exhibited a wide range of DDI performance, with an av-415

erage DDI of 4.5 W/m2 over 80 events. Only two field sites outperformed416

the prototype simulation model (Avg. DDI 9.6 W/m2) by approximately 3.1417

W/m2 on average. For sites 1-4, the estimated DDI by the validated simula-418
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tion model was still 1-4.8 W/m2 higher than the measured data on average419

[19]. From the 15-min whole building meter data, the load profile did not420

show significant load shedding upon the activation of DR control sequences.421

For medium and medium-large offices in climate zone 3C, both the measured422

and simulated DDI metrics showed relative smaller variations by events. The423

simulated average DDI is 1.2 W/m2 lower than the measured value, which424

is approximately 80% of the average DDI of the seven available sites. In425

summary, it is a big challenge to identify abnormal DR performance with-426

out additional data such as building automation system (BAS) trend logs427

and sub-metering data. However, it drives us to collect more field datasets428

to create an outlier to identify and remove abnormal DR performance data429

points.430

(a) (b)

Figure 9: Comparison of DF performance in medium and medium-large offices in ASHRAE
climate zone 3B (left: 12 sites, 86 events) and 3C (right: 7 sites, 63 events

)

Figure 10 shows a comparison of DR performance between field tests431

and simulations for large offices in ASHRAE climate zones 3B (left) and432

3C (right). Although the only three sites located in the climate zone 3B433

are marked as large offices, the HVAC type is the air-cooled chiller with434

VAV system. Instead of using large office simulation results, we compared435

the results with field data in climate zone 3B using the same medium office436

building model described above. All the sites located in climate zone 3C437

have water-cooled chillers as their cooling plant. This is the same as in the438

prototype large office building model. It should be noted that the coeffi-439

cient of performance (COP) of water-cooled chillers (5.2-6.3) is much higher440

than that of typical packaged rooftop direct expansion (DX) units found in441

medium offices (COP 2.8-3.4). As a result, each watt of cooling load reduc-442

21



tion in large offices translates into a smaller kilowatt demand shed, despite443

the additional demand shed from accessory equipment like pumps and cool-444

ing towers. The average DDI per field site was about 2-7 W/m2. In contrast,445

the simulated DDI was 17% (0.7 W/m2) lower than the measured value, on446

average. For large offices located in climate 3B, the simulated DDI was 16%447

(1.3 W/m2) higher than the measured value. The results of this comparison448

provide evidence for the use of prototype building models in DR performance449

evaluation, especially in large-scale deployments.450

(a) (b)

Figure 10: Comparison of DF performance in large offices in ASHRAE climate zones 3B
(left: 3 sites, 25 events) and 3C (right: 10 sites, 111 events)

4.2. In-depth analysis of simulation results451

Figure 11 shows the results across three representative vintages (1980-452

2004 (existing buildings constructed in or after 1980), 90.1-2004 [65], and453

90.1-2013 [66]) for small, medium, and large office buildings located in the454

climate zone 3B. The medium office has the greatest DDI (6-10 W/m2),455

followed by the small office (3-8 W/m2), and then the large office (about456

3 W/m2), in that order. The magnitude of DDI decreases with advanced457

EE measures in newer vintage models, especially for thermally driven loads458

such as HVAC. A previous study [21] reported similar comparison results of459

load flexibility between different vintage models. The main reason is the re-460

duced HVAC cooling load from energy efficient upgrades in building envelope,461

HVAC system, and plant.462

To answer differences of DR performance shown in Figure 11 across build-463

ing types, we conducted an in-depth analysis of GTA impact on the building464

cooling load.465
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Figure 11: DDI from 2.2◦C (4◦F) GTA in office buildings (3B climate zone) by building
size and vintage

4.2.1. Comparison between medium- and large-size offices466

Using our expertise gained from past simulation and field-testing expe-467

rience, as well as literature reviews, we concluded that there are two main468

factors that contribute to the lower per-floor-area shed in large office build-469

ings compared to medium office buildings. First, the cooling system efficiency470

is significantly higher in large offices with water-cooled chillers (coefficient of471

performance [COP] 5.2-6.3) compared with the packaged rooftop direct ex-472

pansion (DX) units in medium offices (COP 2.8-3.4). Therefore, each watt of473

cooling load reduction translates to a smaller kilowatt demand shed in large474

offices. The second reason is that core zones take a larger proportion of the475

total floor area in large offices (40%) compared to medium offices (29%), and476

cooling load reduction from GTA is significantly smaller in core zones com-477

pared to perimeter zones in general. One additional nuance here is that the478

core zone load shed in medium offices (3 floors) is larger than that in large479

offices (12 floors) due to the fewer number of floors in comparison, because480

core zones on the top and bottom floors are not truly isolated from thermal481

conduction with the outdoor environment.482

Figure 12 shows that for both medium and large offices, the VAV dampers483

in the core zones stayed at their minimum positions during the entire GTA484

period, which means raising the GTA ceiling would not increase load shed;485

to the contrary, VAV dampers in perimeter zones gradually open above the486

minimum positions after about an hour into the GTA period, making ad-487
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ditional load shed possible with deeper GTA. The blue and orange lines in488

Figure 12 represent the average VAV damper positions for the VAV in the489

perimeter and core zones during the 12 hottest weekdays of the year. The490

solid and dashed lines represent the VAV damper positions for the baseline491

and “shift” event modes (e.g., “10 am-2 pm precooling”+“2 pm-6 pm shed”).492

The profile of the core zone VAV damper keeps consistent with internal heat493

gains from occupants, lighting, and plug loads. In contrast, the zone VAV494

dampers in the perimeter areas receive additional effects from the outside495

weather, especially higher solar heat gain and OAT during peak hours. As496

a result, the large perimeter area offers a greater potential of cooling load497

reduction from the GTA control strategy. Compared to less core zone area498

in medium offices, the overall per-floor-area cooling load reduction is signifi-499

cantly smaller in large offices. Therefore, a relatively accurate representation500

of the perimeter/core zoning is recommended for DF modeling of buildings501

with VAV systems.502

Figure 12: VAV Damper positions in perimeter and core zones under GTA and pre-
cooling+GTA in 90.1-2004 medium and large offices in the 3B climate zone (average
during the 12 hottest weekdays)

4.2.2. Comparison between small- and medium-size offices503

As mentioned in Figure 11, the DDI from 2.2◦C (4◦F) GTA is lower in504

small offices compared to medium offices on a per floor area basis. There are505

many factors that come into play; however, the primary reason for this is506

that the supply fans in small offices are running at constant speed, whereas507

medium offices use variable speed fans driven by variable frequency drives508

(VFDs). As shown in Figure 13, the blue and orange lines represent the509

cooling and fan power densities on hot days that may dispatch DF events,510

24



respectively; the solid and dashed lines represent the power curves for the511

baseline and “shift” event modes (e.g., “10 am-2 pm precooling”+”2 pm-512

6 pm shed”). Figure 13 (b) shows that in medium offices, the demand shed513

from supply fans during the 2-6 pm GTA was about 30% of the total demand514

shed. In small offices, there was no demand shed from the supply fans, as515

shown in Figure 13 (a).516

Other significant factors that drive the differences between small and517

medium offices include: (1) the smaller window-to-wall ratios in small offices518

and (2) the minimum cooling effects with the VAV systems in medium offices.519

These two factors drive results in opposite directions: factor 1 decreases shed520

ability, while factor 2 increases shed ability in small offices relative to medium521

office. However, the constant speed fan is the most important determinant522

factor that results in DDI difference between small- and medium-size offices,523

as discussed above.524

Figure 13: Comparing HVAC demand changes from pre-cooling 1.1◦C (2◦F) + 2.2◦C (4◦F)
GTA in 90.1-2004 small and medium offices in the 3B climate zone (average during the 12
hottest weekdays)
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5. Discussions525

5.1. Core data model/schema for compiling DF datasets from various sources526

During the field data collection/mapping/cleaning process, there were527

far more challenges than initially anticipated. First, the publicly available528

datasets about building demand flexibility are very limited. Second, each529

study proposes DF performance metrics according to their interests and re-530

search goals, which results in inconsistent DF performance metrics reported531

across all field studies. Third, only very limited site-specific information,532

such as vintage, is available in published reports or papers. Fourth, not all533

field sites participate in actual DR program events. Last, events with differ-534

ent start times and durations posed challenges for the consolidation of those535

datasets for comparative analysis.536

A common data schema is essential for compiling data from different data537

sources. Besides the proposed data schema depicted in Figure 1, it is worth538

noting that it is necessary to have controlled floor area as a sub-attribute of539

building floor area, as the DF control strategy may only be implemented for540

a portion of the site. Among other categories, DF related information such541

as control strategies and performance metrics are data fields that are unique542

from existing databases of building energy use [67]. A set of DF performance543

metrics with a specified baseline model option is acceptable as a simplified544

core data model defined here. To develop baseline models for quantifying the545

DF performance, it is suggested that users collect the interval meter data546

for cooling or heating seasons (based on seasonal events or at least 30-45547

weekdays prior to the first event day [64]; even a shorter period of two weeks548

prior to the event day may be enough [68]). In collaboration with colleagues549

[21], we summarized a list of common DF control strategies in commercial550

buildings (see Appendix A). This table can be expanded easily with a new551

strategy ID for a specific DF control sequence based on the standard data552

format.553

5.2. DF performance influence factors554

As we know from our literature review, there are multiple factors that555

affect DF performance in commercial buildings, including building type and556

size, building geometry and envelope, HVAC system/plant type and capac-557

ity, internal heat gains, building operation schedule, etc. In practice, field558

measurements show greater variability in similar buildings under the same559
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climatic conditions. However, buildings of the same type and size show simi-560

lar DF performance by orders of magnitude, regardless of other factors. The561

field data shows that small & medium and large office buildings have the562

highest and lowest DDI magnitudes. The simulated results show the same563

pattern of DDI for small, medium, and large offices in the same climate.564

In theory, the potential of DF from HVAC end use is determined by the565

amount of HVAC heating/cooling loads, which indicates that the DF po-566

tential of the same building in different climate zones is very similar under567

the same weather conditions. As described in subsection 4.2, several recom-568

mendations are made for the use of prototype building models in demand569

flexibility analysis, including: (1) a relatively accurate representation of the570

perimeter/core zoning in medium and large offices, and (2) a precise HVAC571

controller for the GTA control strategy and cycling RTUs on and off in small572

and medium offices.573

5.3. Comparison between the measured and simulated DF performance datasets574

The comparison results suggest that the proposed DF simulation frame-575

work can give a reasonable estimate of the magnitude of the mean demand576

decrease intensity, although the field measured data show a larger variabil-577

ity across different event days and sites. We have very limited site-specific578

information to understand what led to these differences. However, several579

factors could have led to greater variability in the field data calculated met-580

rics. These include but are not limited to:581

1. Selection of the baseline method and its accuracy. In simulation, base-582

line is not an issue because consistent building operation can be easily583

achieved by running the model with the DF strategies disabled. How-584

ever, with actual buildings, baselines are far more complex because the585

building’s operation without shedding load on the exact same event586

day cannot be recreated in reality but only emulated with modeling587

methods. For example, the common ”average” baseline method may588

not represent a good reference when the building’s load variability and589

weather sensitivity are high and the previous week’s weather has been590

greatly different.591

2. Significant differences among the sites. In the DF simulation frame-592

work, the DOE reference prototype models require various inputs re-593

lated to building vintage, climate location, and DF strategy details.594

There are variations in an actual building’s geometry, construction,595
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window-to-wall ratio, thermal mass, internal load, occupancy, HVAC596

system configuration, efficiency and control settings, and many other597

building characteristics. These discrepancies between the prototype598

simulation model and a specific actual building can also lead to signif-599

icant differences in the results. Another reason is that the associated600

typical meteorological year data (TMY) weather files with prototype601

building models may not fully capture the microclimate conditions ex-602

perienced at the field sites.603

3. Uncertainties in the DF control sequences. It was observed that the604

same DF strategy performed well for the same site on some event days,605

but worse on other days. It is difficult to diagnose the unpredictable606

operational behavior in the DF performance due to lack of building607

operation trend logs. For example, might changes in schedules, occu-608

pancy, or setpoints explain the variability? Or did the building operator609

change the actual setpoint from the plan due to occupant complaints?610

By contrast, in a lab environment, the uncertainties mentioned above611

can be minimized or removed, and the impacts from uncertainties can612

be evaluated and quantified by conducting sensitivity analysis in both613

simulation and lab testing.614

4. Another observation of DF performance in the small office building is615

that the simulated cooling power profile is relatively smooth over the616

hours of operation. By contrast, there are significant power fluctua-617

tions due to the compressor cycling of packaged constant volume RTUs618

with either single or two stage compressors, especially for small offices619

with only one or two packaged RTUs. A field study [47] presents an ex-620

ample of power fluctuations for a small office with constant air volume621

packaged RTU system. Another contributing factor is the relatively622

light thermal mass inherent in small offices. It may cause a high de-623

gree of fluctuation in DF performance, especially on event days with624

varying weather conditions. In addition to insufficient thermal mass625

in small offices, the performance fluctuations may also be caused by626

leaking ducts or undersized HVAC equipment. To achieve a relatively627

consistent load shed performance, one alternative method involves co-628

ordinating the on/off cycles of each RTU in a periodic order. However,629

this control strategy requires multiple RTUs on a single site and may630

not maintain the indoor temperature at the desired level. In terms of631

load participation in the electricity market, larger office buildings are632

well-suited for longer grid event participation, providing consistent DR633
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performance due to the substantial amount of thermal mass from the634

building envelope and interior furnishings. In contrast, smaller office635

buildings can contribute their maximum DR capacity by participat-636

ing in short-term grid events. On the other hand, the aggregation of637

small office buildings can offer a relatively cost-effective and consistent638

DR performance, despite unsynchronized variability in each individual639

building.640
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6. Conclusions and Future Work641

In this study, we collected DR performance data for a total of 831 DR642

event days from 192 sites as a first step to build a building demand flexibility643

dataset. We proposed a standard core data model/schema to merge the field644

DF data from different sources. For the comparison study, our primary focus645

is on the 97 offices, of which approximately 20% were built before 1980, 73%646

were constructed between 1980 and 2004, and the remaining 7% were built647

after 2004. In the second part, we compared the actual performance of 62648

office sites (which only implemented GTA) in terms of one DF metric (de-649

mand decrease intensity, W/m2), so we were able to draw several conclusions650

from the data available to date:651

• Demand flexibility by building size. The DDI of DF metrics were 6.1652

W/m2, 10.0W/m2, 11.1 W/m2, 7.1 W/m2, and 4.7 W/m2 for small,653

small-medium, medium, medium-large, and large office buildings, re-654

spectively. For medium- and large-size buildings, the simulated DDI655

was 17% (0.7 W/m2) lower than the measured value, on average. For656

large offices located in the 3B climate zone, the simulated DDI was 16%657

(1.3W/m2) higher than the measured value. In general, medium-sized658

offices can provide the highest DDI with a consistent performance over659

extended event hours. Large office buildings can independently provide660

high load shedding kW in the building-to-grid service participation.661

Small-size offices can shed their loads for a short-term event period.662

Aggregation in small offices can achieve DF performance similar to663

medium-size offices in terms of kW capacity and consistency.664

• Demand flexibility by building vintage and climate. Specifically, the665

simulated average DDI was 1.6 W/m2 higher than the measured value666

in small offices (1980-2004, climate zone 3C), approximating 120% of667

the average DDI. In climate zone 3C, medium to medium-large offices668

exhibited smaller variations in both measured and simulated DDI met-669

rics. The simulated average DDI was 1.2 W/m2 less than the measured670

value, representing about 80% of the average DDI across available sites.671

Medium-large office buildings (1980-2004, climate zone 3B) exhibited672

diverse DDI performance, averaging 4.5 W/m2 across 80 events. Only673

two sites outperformed the prototype simulation model’s average DDI674

of 9.6W/m2, by about 3.1W/m2. For large office buildings (1980-2004,675

climate zone 3C), the average DDI per field site was about 2-7 W/m2.676
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The simulated DDI was, on average, 17% (0.7 W/m2) lower than the677

measured value. In contrast, for large offices located in climate zone678

3B, the simulated DDI was 16% (1.3W/m2) higher than the measured679

value.680

• Climate impacts on peak demand and demand flexibility. Medium-681

large office buildings located in climate zone 3B exhibited a wider range682

of DDI performance in comparison with the DF performance in climate683

zone 3C. In comparing simulated and measured peak demand intensity684

for offices in a warm and dry climate, discrepancies ranged from -41%685

to 31%. In contrast, the difference was relatively small for offices in686

climate zone 3C (warm and marine), ranging from 4% to 22%. On687

the other hand, for all office buildings in climate zones 3B and 3C, the688

difference between the simulated and measured peak demand intensities689

was less than one standard deviation. Another observation is that small690

offices exhibited a similarly high DDI in the relatively mild climates of691

3C, while all field-test event days had a maximum daily OAT above692

29.4◦C [85◦F]. This suggests that the DF performance on hot days in693

cold climates can serve as a reference for similar buildings in the same694

weather conditions in hot climates.695

• Differences of DF performance across building types. Simulation re-696

sults indicate that the magnitude of DDI decreases with advanced EE697

measures in newer vintage models, especially for thermally driven loads698

such as HVAC. Additionally, we drew several specific conclusions: (a)699

High-efficiency HVAC systems and plants lead to a smaller kilowatt700

demand shed for the same amount of cooling load reduction; (b) an ac-701

curate representation of the perimeter/core zoning is recommended for702

DF modeling of buildings with VAV systems; (c) The air-side HVAC703

system type (e.g., CAV vs. VAV) is the most crucial determinant of704

the DDI difference between small- and medium-size offices.705

• Regarding the utilization of flexible loads as a grid resource, large office706

buildings are suitable for longer grid event participation while provid-707

ing consistent DR performance, due to the large amount of thermal708

mass from the building envelope and interior furnishings. In contrast,709

small office buildings can participate in short-term grid events while710

contributing their largest DR capacity. On the other hand, the ag-711

gregation of small office buildings can provide relatively cost-effective,712
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consistent, and high DR performance, with unsynchronized variability713

in each individual buildings.714

Data collection efforts in the building demand flexibility area still have715

a long way to go. Despite the current data limitations in this study, it is716

the first attempt to compile actual DF data from field-testing sites. This717

dataset can be used to compare DF performance across different building718

types, vintages, and climates for identifying DF performance influence fac-719

tors, or to groups of similar buildings for benchmarking. Additionally, a720

comparison between the measured and simulated DF performance data can721

help increase the credibility of DF potential estimates, particularly with re-722

spect to the large-scale analysis. With respect to the simulation of building723

demand flexibility, a few factors have been overlooked in previous simulation724

studies, such as internal thermal mass level, perimeter/core zoning, HVAC725

system/plant sizing, and COP.726

There are several gaps in the publicly available datasets that can limit the727

scope of analysis and innovation in this area. Notable gaps include but not728

limit to: (1) incomplete data (e.g., customer demographics, control strate-729

gies, and programs), (2) inconsistent data formats and metrics, (3) insuffi-730

cient temporal resolution of DF related dataset. Actually, there are available731

field DF performance datasets under various DR programs managed by each732

utility and system operators across the national electricity market. It is ex-733

pected that this data schema can be used by stakeholders such as utilities,734

aggregators, facility managers, DR program managers, and policymakers to735

compare a building’s DF performance against similar buildings, identify DF736

opportunities, and estimate DF potential. Furthermore, we expect to iden-737

tify the drivers of the discrepancy between the field dataset and the simulated738

DF results. The next step of this work is to promote the need for a national739

building demand flexibility performance database between stakeholders, with740

the goal of building electrification/decarbonization.741
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Appendix A. DF control strategies750

Table A.1 summarizes the recommended DF control sequences in com-751

mercial buildings by each group of DF control strategies.752
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Table A.1: Summary of DF control strategies in commercial buildings

End-use Category Subcategory DF Control Strategy
Level of Response
Low (1) Medium (2) High (3)

Building envelope
Exterior/interior wall and internal thermal mass

Passive thermal mass storage (start
HVAC system earlier than normal
operation for pre-cooling)

2 hours 4 hours 6 hours

Active thermal mass storage (pre-
cooling phase change materials by
2-6ºF)

2ºF 4ºF 6ºF

Night flushing/economizer (pre-
cooling)

N/A N/A N/A

Smart windows
Blind control to reduce the cooling
load while maintaining the daylight
level

N/A N/A N/A

Electrochromic - control thermal
performance to reduce the cooling
load while maintaining the daylight
level

N/A N/A N/A

HVAC Systems
VAV

Global temperature adjustment
(cooling - raise zone temperature
by 2ºF-6ºF)

2ºF 4ºF 6ºF

Global temperature adjustment
(heating - Decrease thermostat
heating setpoint by 2ºF-4ºF)

2ºF 3ºF 4ºF

Duct static pressure decrease from
1.5” to 1.0”

1.4” 1.2” 1.0”

Supply air temperature increased
from 55ºF to 65ºF

2ºF 6ºF 10ºF

Limit AHU cooling valve position to
70%

90% 80% 70%

Limit VFD fans and pumps speed
to 70%

90% 80% 70%

CAV
Supply air temperature increased
from 55ºF to 65ºF

N/A N/A N/A

Lock cooling valve position at the
AHU

90% 80% 70%

HVAC Plant
Water/air-cooled chiller

Chilled water temperature reset (in-
crease 5ºF)

2ºF 4ºF 6ºF

Chiller demand limit to 50%-90% 90% 70% 50%
Packaged RTU Cycle on/off compressors by 30%,

50% and 100%
30% 50% 100%

Partial TES sys-
tem

Shut off 1/3 or 1/2 of multiple
chillers

N/A 1/3 1/2

Lighting
Interior lighting

Dimming control (continuous and
step 20%-60%)

20% 40% 60%

Switch on/off N/A N/A 100%
Task lighting Switch on/off N/A N/A 100%

Water Heater

Electric
Setpoint adjustment (Decrease wa-
ter temperature setpoint by 5-15ºF
from 120ºF)

5ºF 10ºF 15ºF

Setpoint adjustment (Decrease wa-
ter temperature setpoint by 5ºF-
15ºF from 120ºF) with preheat (in-
crease water temperature by 10ºF)

5ºF 10ºF 15ºF

Switch on/off N/A N/A 100%

Heat pump
Setpoint adjustment (Decrease wa-
ter temperature setpoint by 5ºF-
15ºF from 120ºF)

5ºF 10ºF 15ºF

Reduce deadband for heat pump to
1ºF

1ºF 1ºF 1ºF

Limit heat pump duty cycling (0-
100%)

30% 20% 10%

MELs (miscel-
laneous electric
loads)

Non-critical pro-
cess load

Stand-by equipment load reduction N/A N/A 100%
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