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Generalized Divisors and Biliaison

Robin Hartshorne

Abstract. We extend the theory of generalized divisors so as to work on any scheme X

satisfying the condition S2 of Serre. We define a generalized notion of Gorenstein biliaison
for schemes in projective space. With this we give a new proof in a stronger form of the
theorem of Gaeta, that standard determinantal schemes are in the Gorenstein biliaison class
of a complete intersection.

We also show, for schemes of codimension three in P
n, that the relation of Gorenstein

biliaison is equivalent to the relation of even strict Gorenstein liaison.

0. Introduction

In this paper we generalize further the theory of generalized divisors introduced in [5] by
partially removing the Gorenstein hypotheses. This, we feel, puts the theory in its natural
state of generality. The main difference is that instead of requiring the sheaves of ideals
defining a generalized divisor to be reflexive, we require only the condition S2 of Serre. If
a scheme X satisfies G1 and S1, then a coherent sheaf is reflexive if and only if it satisfies
S2 [5, 1.9]. Here we show that if X satisfies S1 only, then a coherent sheaf satisfies S2 if
and only if it is ω-reflexive: this means that the natural map F → Hom(Hom(F , ω), ω) is
an isomorphism, where ω is the canonical sheaf. With this weaker condition we are able to
establish a theory of generalized divisors on schemes X satisfying only the condition S2.

We apply this theory to define a notion of generalized biliaison for schemes in projective
space. Let D be a (generalized) divisor on an ACM scheme X in P

n
k . If D′ ∼ D + mH ,

meaning D′ is linearly equivalent to D plus m times the hyperplane section H of X, we say
D′ is obtained by an elementary biliaison from D. We call biliaison the equivalence relation
generated by the elementary biliaisons.

If we do biliaisons using only complete intersection schemes X in P
n, the resulting notion

of biliaisons is equivalent to even complete intersection liaison (CI-liaison) [5, 4.4]. If we do
biliaisons using an ACM scheme X satisfying G0, we will show (3.5) that any such biliaison
(called G-biliaison) is an even Gorenstein liaison. We do not know if the converse is true.
If we use arbitrary ACM schemes X, we obtain a notion of biliaison that is possibly more
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2 ROBIN HARTSHORNE

general than G-biliaison. Note that even this more general type of biliaison preserves the
Rao modules up to shift (3.2).

As an application we give a new proof (4.1) of the theorem of KMMNP–Gaeta [10, Sec.
3] using biliaisons. I would like to thank Marta Casanellas for explaining the old proof and
helping to discover the new proof given here.

Examining the proof of (3.5) we see that the Gorenstein linkages there are all of a special
kind: they use only arithmetically Gorenstein schemes of the form M + mH on some ACM
scheme satisfying G0 (cf. 3.3). These we call strict Gorenstein linkages, and so (3.5) actually
tells us that every G-biliaison is an even strict Gorenstein liaison. In section 5 we prove a
partial converse: Every even strict Gorenstein liaison of codimension 3 subschemes of P

n is
a Gorenstein biliaison (5.1).

1. ω-Reflexive modules

We will need some well-known results about the canonical module, or dualizing module
as it is sometimes called, of a ring or scheme. We restrict our attention to equidimensional
embeddable noetherian rings and schemes. For a ring A, this means that it is a quotient of
a regular ring. For a scheme X, it means that it can be embedded as a closed subscheme of
a regular scheme. This includes all quasiprojective schemes over a field, which will be our
most common application.

An equidimensional embeddable ring or scheme always has a canonical module or sheaf
unique up to isomorphism. It is finitely generated (resp. coherent). Its formation commutes
with localization, and with completion of a local ring. If the ring A is a quotient of a
regular ring P , and r is the difference of dimensions, then the canonical module ω of A
can be obtained as ω = Extr

P (A, P ), and similarly for a closed subscheme X of a regular
scheme P . If A is a Cohen–Macaulay ring, then ω is a Cohen–Macaulay module of the
same dimension as A, and for any maximal Cohen–Macaulay module M , the natural map
M → HomA(HomA(M, ω), ω) is an isomorphism. For references see [9] for the case of
Cohen–Macaulay rings; [3, II.7] for the case of projective schemes; and see also [1].

We will expand these results somewhat by weakening their hypotheses to suit our sit-
uation. We define a module M over a ring A (as above) to be ω-reflexive if the natural
map M → HomA(HomA(M, ω), ω) is an isomorphism. Sometimes we will denote by Mω the
module HomA(M, ω), and call it the ω-dual of M .

Lemma 1.1. If A is a local ring of dimension 0, every finitely generated module M is
ω-reflexive.

Proof. Since A is Cohen–Macaulay, this follows from [9, 6.1]. It also follows from the local
duality theorem, which says in this case that Mω is the dual of H0

m
(M) = M , so that Mωω

is the double dual, which is isomorphic to M .

Lemma 1.2. For any local ring A, the module ωA satisfies the condition S1 of Serre.
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Proof. Write A as a quotient of a regular local ring P of codimension r. Then ωA =
Extr

P (A, P ). By reason of dimension and local duality on P , the functor Extr
P (·, P ) is con-

travariant and left-exact on A modules. If dim A = 0, there is nothing to prove. If dimA ≥ 1,
let x ∈ mA be an element such that dim A/xA < dim A. Then from the sequence

A
x
→ A → A/xA → 0

we obtain

0 = Extr
P (A/xA, P ) → ωA

x
→ ωA.

Thus ωA has depth 1. Since formation of ω commutes with localization, we conclude that
ωA satisfies S1.

Lemma 1.3. If a local ring A satisfies S1, then ωA satisfies S2.

Proof. Write A as a quotient of a regular local ring P of codimension r, as before. Let
x ∈ mA be a non-zero-divisor so that B = A/xA has dimension one less. Then from the
exact sequence

0 → A
x
→ A → B → 0

and (1.2) we obtain

0 → ωA
x
→ ωA → Extr+1

p (B, P ) = ωB.

Since ωB satisfies S1 by (1.2), we see that if dim A ≥ 2, then ωA has depth ≥ 2. Hence ωA

satisfies S2.

Lemma 1.4. Let A be a one-dimensional local Cohen–Macaulay ring. Then a finitely
generated module M is ω-reflexive if and only if it has depth 1.

Proof. Since ω has depth 1 (1.2) so does the ω-dual of any module. If M is reflexive, it is
the ω-dual of Mω and so has depth 1. The converse is [9, 6.1].

Proposition 1.5. Let A be a local ring satisfying S1. A finitely generated module M is
ω-reflexive if and only if it satisfies S2.

Proof. First we show that the ω-dual of any module N will satisfy S2. Write N as a cokernel
of a map of free modules

L1 → L0 → N → 0.

Taking ω-duals and the image of the second map, we obtain

0 → Nω → Lω
0 → K → 0

where K is a submodule of Lω
1 . Now Lω

0 and Lω
1 are direct sums of copies of ω, so satisfy S2

by (1.3). Hence K satisfies S1, and then from the exact sequence it follows that Nω satisfies
S2. In particular, any ω-reflexive module satisfies S2.
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Conversely, suppose M satisfies S2. The map α : M → Mωω is an isomorphism in
codimension 0, by (1.1), so the kernel of α must have support of codimension ≥ 1. Since M
satisfies S1, there is no kernel. Thus we can write

0 → M
α
→ Mωω → R → 0.

Now, since α is an isomorphism in codimension 1, by (1.4), the module R must have support
of codimension ≥ 2. Since both M and Mωω satisfy S2, this is impossible (cf. proof of [5,
1.9]) so R = 0 and α is an isomorphism.

Corollary 1.6. Let A satisfy S1. The ω-dual of any module is ω-reflexive.

Proof. This follows from the first step of the proof of (1.5).

Corollary 1.7. If A itself satisfies S2, then the natural map A → HomA(ω, ω) is an iso-
morphism.

Remark 1.8. Using the same arguments as in [5, 1.11,1.12] we see that if F is a coherent
sheaf satisfying S2 on a scheme X satisfying S1, then F is normal in the sense of Barth
[4, 1.6], namely for any open set U and any closed subset Y ⊆ U of codimension ≥ 2, the
restriction map F(U) → F(U − Y ) is bijective. In fact this condition characterizes S2, if we
assume S1.

If F is a coherent sheaf satisfying S1 only, then it is easy to see that the set Y of points
of X where it does not satisfy S2 is a closed subset of codimension ≥ 2, and that the double
ω-dual Fωω can be identified with j∗(F|X−Y ) where j : X − Y → X is the inclusion. Thus
the double ω-dual can be regarded as the S2-ification of the sheaf.

It also follows naturally that for Y ⊆ X closed of codimension ≥ 2, the category of
coherent sheaves satisfying S2 on X is equivalent by restriction to the analogous category
on X − Y .

Remark 1.9. To see the connection between the properties reflexive and ω-reflexive, note
that the proof of [5, 1.9] shows that a reflexive module over a ring A satisfying S2 also
satisfies S2. So we see that if A satisfies S2, then a reflexive module is also ω-reflexive.
The converse is not true without the G1 hypothesis. For example, if X is the union of the
three coordinate axes in A

3, a scheme that satisfies G0 but not G1, the canonical sheaf ω is
ω-reflexive by (1.4), but is easily seen not to be reflexive. On the other hand, the proof of
[5, 1.9] does show that if X satisfies S2, and F satisfies S2 and is reflexive in codimension
≤ 1, then F is reflexive.

2. Generalized divisors

Let X be a noetherian, equidimensional, embeddable scheme satisfying the condition S2

of Serre. We develop the theory of generalized divisors as in [5, §2], noting the differences
in our more general setting.
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Let KX be the sheaf of total quotient rings on X [5, 2.1]. A fractional ideal is a subsheaf
I ⊆ KX that is a coherent sheaf of OX-modules. It is nondegenerate if for each generic point
η ∈ X, Iη = KX,η.

Definition. Let X be a scheme (as above) satisfying S2. A generalized divisor on X is a
nondegenerate fractional ideal I satisfying the condition S2 as a sheaf of OX -modules. It is
effective if I ⊆ OX . We say the generalized divisor I is principal if I = (f) for some global
section f ∈ KX . We say it is Cartier if I is an invertible OX-module. We say it is almost
Cartier if there exists a closed subset Z ⊆ X of codimension ≥ 2 so that I|X−Z is Cartier.
We say it is reflexive if I is a reflexive OX -module.

Note that I is Cartier if and only if it is locally principal [5, 2.3]. Note that an almost
Cartier divisor is reflexive (1.9) and that the sheaf I being reflexive implies the condition
S2.

Proposition 2.1. With X satisfying S2, as above, the effective generalized divisors are in
one-to-one correspondence with closed subschemes Y ⊆ X of pure codimension one with no
embedded points.

Proof. Let Y be a closed subscheme of X, defined by a sheaf of ideals I, so that we have
an exact sequence

0 → I → OX → OY → 0.

To say that I is nondegenerate is equivalent to saying Y has codimension ≥ 1. Since X
satisfies S2, to say that I satisfies S2 is equivalent to saying that every associated prime of
Y has codimension 1 (cf. [5, 1.10]), i.e., that Y is of pure codimension 1 with no embedded
points.

Definition. For any coherent sheaf F of OX-modules, let us denote F∼ its double ω-dual,
so that F∼ satisfies S2, where ω is the canonical sheaf on X (1.8). If I ⊆ KX is a fractional
ideal, then naturally I∼ is also a fractional ideal, and will satisfy S2. We may often denote
a generalized divisor I by a letter D, and call I the ideal of D. Given two (generalized)
divisors D1 and D2, with corresponding ideal sheaves I1, I2, we define the sum D1+D2 by the
fractional ideal (I1 · I2)

∼. We define the negative −D by (I−1)∼, where I−1 = Hom(I,OX).
We denote the divisor with ideal I = OX by 0.

Proposition 2.2. Let X satisfy S2.

(a) Addition of divisors is associative and commutative.
(b) D + 0 = D for all D.
(c) −(−D) = D if and only if D is reflexive.
(d) D + (−D) = 0 if and only if D is almost Cartier.
(e) If D is any divisor, and E is almost Cartier, then −(D + E) = (−D) + (−E).
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Proof. (a) and (b) are obvious. (c) follows from the fact I−1 ∼= I∨ as OX-modules [5, 2.2].
For (d) we follow the proof of [5, 2.5], noting that at a point of codimension 1, every ideal
is ω-reflexive (1.4), so that the condition says I · I−1 = OX , which implies I reflexive there
[5, 2.3]. For (e) it is the same proof as [5, 2.5].

Corollary 2.3. The set of almost Cartier divisors forms a group, containing the subgroups
of Cartier divisors and of principal divisors. This group acts on the set of all divisors.

Definition. We say two divisors are linearly equivalent if one is obtained from the other by
adding a principal divisor. We denote the equivalence classes by the group Pic X = Cartier
divisors mod linear equivalence; the group APic X = almost Cartier divisors mod linear
equivalence, and the set GPic X = generalized divisors mod linear equivalence.

Proposition 2.4. Two divisors D1 and D2 are linearly equivalent if and only if their ideal
sheaves I1 and I2 are isomorphic as OX-modules. Every coherent OX-module that satisfies
S2 and is locally free of rank 1 at every generic point of X is isomorphic to the ideal of some
divisor.

Proof. Indeed, an isomorphism ϕ : I1 → I2 of sheaves of OX -modules extends to I1⊗KX →
I2⊗KX . Each of these is isomorphic to KX , so the map is given by multiplication by a global
section f ∈ KX . If F is coherent satisfying S2 and locally free of rank 1 at every generic
point, then F ⊗KX

∼= KX and the natural map F → F⊗KX makes F into a nondegenerate
fractional ideal.

Warning 2.5. The usual theory of the sheaf L(D) = I−1 associated to a divisor D [5, 2.8]
does not extend to divisors that may not be reflexive. However, we can get an analogue of
[5, 2.10] using the sheaf M(D) = Hom(I, ω). Note that M(D) is ω-reflexive by (1.6) and
therefore satisfies S2.

Proposition 2.6. Let X be a Cohen–Macaulay scheme with canonical sheaf ω, and for any
divisor D, corresponding to an ideal sheaf I, let M(D) = Hom(I, ω). If D is an effective
divisor, denoting also by D the associated closed subscheme, there are two natural exact
sequences

0 → I → OX → OD → 0

and
0 → ωX → M(D) → ωD → 0.

Proof. The first is the defining sequence of D. The second is obtained by applying
Hom(·, ωX) to the first and noting (since X is Cohen–Macaulay) that ωD

∼= Ext1OX
(OD, ωX).

Definition–Remark 2.7. Even though X has a canonical sheaf ωX , it may not have a
canonical divisor. By canonical divisor we mean a generalized divisor K whose ideal satisfies
I−1

K
∼= ωX . Since the ideal of any divisor is locally free at the generic points, the existence
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of a canonical divisor implies that X satisfies G0. In this case we see also that ωX must
be reflexive, by [5, 1.8]. Since there are schemes satisfying G0 and S2 on which ω is not
reflexive (1.9), we conclude that G0 and S2 are not sufficient conditions for the existence of
a canonical divisor.

However, if X satisfies G0 and S2, then ωX is locally free of rank 1 at every generic
point, so is isomorphic to a fractional ideal. We choose and fix an embedding ωX ⊆ KX ,
and call the corresponding divisor MX the anticanonical divisor. As a divisor it depends on
the choice of embedding ωX ⊆ KX , but is unique up to linear equivalence. If X satisfies
in addition G1, then ω is invertible in codimension 1, so we can define a canonical divisor
K = −M , which will be an almost Cartier divisor.

Definition. For any two divisors D1, D2, we define D1(−D2) to be the divisor whose sheaf
of ideals is Hom(I2, I1)

∼. In general, this operation may not be well-behaved, but we do
have the following.

Proposition 2.8. The operation D1(−D2) has the following properties.

(a) 0(−D2) = −D2 and D1(−0) = D1.
(b) If E is almost Cartier, (D1 + E)(−D2) = D1(−(D2 − E)) = D1(−D2) + E.
(c) In particular, if either D1 or D2 is almost Cartier, then D1(−D2) = D1 + (−D2).
(d) If X satisfies G0, and D1 ∼ M + E, where M is the anticanonical divisor and E is

almost Cartier, then D1(−D1(−D2)) = D2 for any D2.

Proof. (a), (b), (c) are immediate, since an almost Cartier divisor is invertible in codimen-
sion 1, and equality of divisors can be tested in codimension 1. (d) corresponds to the fact
that any divisor has an ideal sheaf satisfying S2, and hence is ω-reflexive (1.5).

Remark 2.9. We take this opportunity to point out an error in [5, 2.9]. Assuming that
X satisfies G1 and S2 as in that paper, it is true that every nondegenerate section s ∈
Γ(X,L(D)) gives rise to an effective divisor D′ in the complete linear system |D|, and all
D′ arise in this way. Two sections s1 and s2 give rise to the same divisor D′ if and only if
they differ by an isomorphism of L(D). If D is almost Cartier, the isomorphisms of L(D)
are given by sections of Γ(X,O∗

X) as stated there. So in the familiar case of X integral
projective, Γ(X,O∗

X) = k∗ and |D| is simply the projective space associated to the vector
space Γ(X,L(D)).

Suppose, however, that D is not almost Cartier. Then there may be more isomorphisms
of L(D) and the statement of [5, 2.9] is not correct. For example, let X = L1 ∪ L2 be
the union of two lines in P

2 meeting at a point P , and let D be the divisor P . Then one
can verify that dim Γ(X,L(D)) = 2, and Isom(L,L) = k∗ ⊕ k∗, so that the complete linear
system |D| consists just of the single divisor D, as we expect. (Cf. [5, 3.3] for a relevant
calculation.)

How does this discussion extend to the case of the present paper, where X is only assumed
to satisfy S2? We cannot use the sheaf L(D). Instead, for each effective divisor D′ ∼ D,
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we take ω-duals of ID′ ⊆ OX to get ωX ⊆ Hom(ID′ , ωX) ∼= M(D), and this gives a section
s of the sheaf N (D) = Hom(ωX ,M(D)). Conversely, nondegenerate sections of N (D)
give effective divisors D′ ∼ D by reversing the process. The ambiguity of s is again in
Isom(N (D),N (D)) ∼= Isom(ID, ID).

3. Biliaison

In this section we generalize the notion of biliaison introduced in [5, §4] and [11, §5.4].
Note that the word biliaison is not a synonym for even liaison. We also generalize the results
of [10, §5] so as to remove the G1 hypotheses. In fact, it was the attempt to put those results
in a more natural context that led to this paper.

Definition. Let V1 and V2 be equidimensional closed subschemes of dimension r of P
n
k . We

say that V2 is obtained by an elementary biliaison of height h from V1 if there exists an ACM
scheme X in P

n, of dimension r + 1, containing V1 and V2, and so that V2 ∼ V1 + hH as
generalized divisors on X, where H denotes the hyperplane class. The equivalence relation
generated by elementary biliaisons will be called biliaison.

If we restrict the schemes X in the definition all to be complete intersection schemes, we
will speak of CI-biliaison. If we restrict the schemes X to be ACM schemes satisfying G0,
will speak of Gorenstein biliaison or G-biliaison.

Remark 3.1. As was shown in [5, 4.4] the relation of CI-biliaison is equivalent to even
CI-liaison in the usual sense.

Proposition 3.2. Suppose V2 is obtained from V1 by an elementary biliaison of height h on
X, with dim V1 = dim V2 = r.

a) Then reciprocally, V1 is obtained from V2 by an elementary biliaison of height −h.
b) The higher Rao modules M i

V = H i
∗(IV,Pn) are related as follows:

M i
V2

∼= M i
V1

(−h) for 1 ≤ i ≤ r.

c) The Hilbert polynomials are related by

χ(OV2
(m)) = χ(OX(m)) − χ(OX(m − h)) + χ(OV1

(m − h)).

Proof. a) If V2 ∼ V1 + hH then V1 ∼ V2 − hH .
b) and c) have the same proof as [5, 4.5] since only the ACM property of X was used

there.

Lemma 3.3. Let X be an ACM scheme satisfying G0 in P
n. Let Y ⊆ X be an effective

divisor, Y ∼ M +mH, where M is the anticanonical divisor and H is the hyperplane divisor.
Then Y is an arithmetically Gorenstein (AG) scheme in P

n.

Proof. Let X be of dimension r + 1 so that Y is of dimension r. To show that Y is AG is
equivalent to showing that Y is ACM and ωY

∼= OY (ℓ) for some ℓ ∈ Z.
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First to show Y is ACM, we must show H i
∗(IY,Pn) = 0 for 1 ≤ i ≤ r. From the exact

sequence

0 → IX,Pn → IY,Pn → IY,X → 0

and the fact that X is ACM, so that H i
∗(IX,Pn) = 0 for 1 ≤ i ≤ r+1, it is equivalent to show

H i
∗(IY,X) = 0 for 1 ≤ i ≤ r. Now Y ∼ M +mH by hypothesis, so IY,X

∼= ωX(−m). By Serre
duality on X, H i

∗(ωX(−m)) is dual to Hr+1−i
∗ (OX(m)). These latter are 0 for 1 ≤ i ≤ r since

X is ACM. Hence Y is ACM.
To study the canonical sheaf ωY , we use the second exact sequence of (2.6), namely

0 → ωX → M(Y ) → ωY → 0.

Now since IY
∼= ωX(−m), we have ωX

∼= IY (m) and M(Y ) = Hom(IY , ωX) ∼= OX(m).
Thus ωY

∼= OY (m) and Y is arithmetically Gorenstein.

Remark 3.4. An algebraic version of this result was given in [10, 5.2], and a geometric
version with the added hypothesis G1 in [10, 5.4].

Definition. Two subschemes V1 and V2 of P
n, equidimensional of the same dimension

and without embedded components are linked by a scheme Y if Y contains V1 and V2 and
IVi,Y

∼= Hom(OVj
,OY ) for i, j = 1, 2, i 6= j. If Y is a complete intersection, it is called a CI-

linkage; if Y is arithmetically Gorenstein, it is a Gorenstein linkage. If Y is an arithmetically
Gorenstein scheme of the form M + mH on some ACM scheme X satisfying G0 (as in (3.3)
above), then we will say it is a strict Gorenstein linkage. (This is a slight generalization of
the terminology of [6, §1], where we required that X should satisfy G1.)

The equivalence relation generated by CI-linkages is CI-liaison, by Gorenstein linkages,
Gorenstein liaison, and by strict Gorenstein linkages, strict Gorenstein liaison. If the liaison
can be accomplished by an even number of linkages, then it is an even CI-liaison (resp.
Gorenstein liaison, resp. strict Gorenstein liaison).

Theorem 3.5. Suppose that V2 is obtained from V1 by an elementary biliaison on an ACM
scheme X satisfying G0. Then V2 can be obtained from V1 by two strict Gorenstein linkages.

Proof. The proof is almost the same as [5, 4.3], transposed into our context. We assume
that V2 ∼ V1 + hH . Thus there is a principal divisor (f) such that V2 = V1 + hH + (f).
Taking M to be the anticanonical divisor and using (2.8), we can write

M(−V1) = M(−V2) + hH + (f).

Now by [5, 2.11], which still holds in our case, we can find an effective Cartier divisor
E ∼ mH such that W = E + M(−V1) = (M + E)(−V1) is effective. Now let Y = M + E.
Then Y is an effective divisor that is arithmetically Gorenstein by (3.4), and I claim that V1

and W are Gorenstein linked by Y . Indeed, the same argument as in the proof of [5, 4.1]
shows that IW,Y

∼= Hom(OV1
,OY ). Since by (2.8) we also have V1 = (M + E)(−W ), we

obtain the reverse isomorphism IV1,Y
∼= Hom(OW ,OY ), so V1 and W are linked by Y .
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We also have W = E +M(−V2)+hH +(f), so if we let Y ′ = E +M +hH +(f), then Y ′

will also be an effective divisor that is an arithmetically Gorenstein scheme, and as above,
we see that W and V2 are linked by Y ′. Thus V2 is obtained from V1 by two strict Gorenstein
linkages.

Corollary 3.6. Every Gorenstein biliaison is an even strict Gorenstein liaison.

Remark 3.7. This theorem was proved for a trivial elementary biliaison V2 = V1 + hH
(with no linear equivalence) in [10, 5.10], and with the extra hypothesis G1 in [10, 5.14].

Remark 3.8. In section 5 below we will prove a converse to this theorem in codimension 3.

Example 3.9. Let P be a point in P
3, and let X be the union of three non-coplanar lines

through P . Then X satisfies G0 but not G1. If H is a hyperplane section of X containing
P , then V = P + H is the divisor defined by the square of the ideal of P . Thus P and V
are related by one G-biliaison, and hence are evenly G linked. Cf. [10, 4.1], where this was
proved by a different method.

4. The theorem of Gaeta

To illustrate the theory of biliaison, we give a new proof the theorem of KMMNP–Gaeta
[10, 3.6]. The statement given there is that every standard determinantal scheme is glicci.
We prove a slightly stronger result.

Theorem 4.1. Every standard determinantal scheme in P
n can be obtained from a linear

variety by a finite number of ascending Gorenstein biliaisons. In particular, it is glicci by
(3.3).

Proof. We follow the terminology and notation of [10, 3.6]. Let V ⊆ P
n be a standard

determinantal scheme, i.e., a scheme of codimension c+1 whose ideal IV is generated by the
t × t minors of a t × (t + c) homogeneous matrix A for some t > 0. Let B be the matrix
obtained by omitting the last column of A. Then V is contained in the determinantal scheme
S defined by the t×t minors of B. By Step I of the proof of [10, 3.6], S is good determinantal.
Hence it is generically a complete intersection [10, 3.2], and so satisfies G0.

Let A′ be the matrix obtained by omitting the last row of B. Then V ′, defined by the
(t−1)×(t−1) minors of A′, is also contained in S. We will show that V ∼ V ′+mH on S for
some m > 0, so that V is obtained by an ascending elementary Gorenstein biliaison from V ′.
Continuing in this manner, after a finite number of G-biliaisons, we reduce to the case t = 1,
when V is a complete intersection. From these one can perform descending CI-biliaisons to
a linear variety.

Let R be the homogeneous coordinate ring of P
n, and let RS = R/IS be the homogeneous

coordinate ring of S. The ideal of V in S is generated by the images in RS of the t×t minors
of A that include the last column. The t × t minors that do not include the last column
are just the generators of IS. On the other hand, the ideal of V ′ in S is generated by
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the images of the (t − 1) × (t − 1) minors of A′. So there is a one-to-one correspondence
between generators N of V in S and generators N ′ of V ′ in S, obtained by omitting the last
row and column of the corresponding t × t matrix. We will show that the quotient N/N ′

of corresponding generators is an element of H0(KS(m)), independent of the choice of N ,
where KS is the sheaf of total quotient rings of S, and m is the difference in degrees of N
and N ′. This will show that IV,S

∼= IV ′,S(−m), and so we have the desired biliaison. Note
that m is the degree of the element in the lower right-hand corner of the original matrix A.

To show that N/N ′ is independent of the choice of N(mod IS), it will be sufficient to
compare two such that differ by one column only. So let M be a t × t minor of B, let N1

be obtained by deleting the first column of M and adding the last column of A; let N2 be
obtained by deleting the second column of M and adding the last column of A. Then N1

and N2 are two generators of IV , and the corresponding generators N ′
1, N

′
2 of IV ′ are just Mt1

and Mt2, where Mij denotes the minor of M obtained by deleting the ith row and the jth

column. We need to show that N1/N
′
1 = N2/N

′
2 mod IS. By making general row and column

operations on A at the beginning, we may assume that all the N ′
i are non-zero-divisors in

RS. So we must show that N1N
′
2 − N2N

′
1 ∈ IS.

Let the last column of A be u1, . . . , ut. We will expand N1 and N2 along this last column.
The coefficient of ut in N1N

′
2 − N2N

′
1 is just N ′

1N
′
2 − N ′

2N
′
1 = 0. For i 6= t, the coefficient

of ui is Mi1Mt2 − Mi2Mt1. The proof is then completed by the following identity among
determinants, since M ∈ IS.

Lemma 4.2. Let M be a t× t matrix, let Mij denote the minor obtained by deleting the ith

row and the jth column; let Mik,jl denote the minor obtained by deleting the ith and kth rows
and the jth and lth columns. Then the determinants satisfy

Mij · Mkl − Mil · Mkj = ±Mij,kl · M.

Proof. [12, p. 132ff].

Example 4.3. The 4 × 4 minors of a general 4 × 6 matrix of linear forms in P
4 define an

irreducible smooth curve C of degree 20 and genus 26 which, according to the theorem, can
be obtained by ascending Gorenstein biliaisons from a line. However these curves are not
general in the Hilbert scheme, and it is known that a general smooth curve of degree 20 and
genus 26 is ACM, but cannot be obtained by ascending biliaisons from a line. It is unknown
whether it is glicci [6, 3.9].

5. Strict Gorenstein liaison

The main result of this section is a converse to (3.6) in codimension 3.

Theorem 5.1. For subschemes of codimension 3 in P
n (equidimensional and without em-

bedded components), any even strict Gorenstein liaison is a Gorenstein biliaison.
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Proof. Suppose V and V ′ of codimension 3 in P
n are related by even strict Gorenstein

liaison. Then there is a sequence

V = V0, V1, V2, . . . , V2k = V ′

for some k, where each Vi is related to Vi+1 by a strict Gorenstein linkage. By composition of
biliaisons, it will be sufficient to treat the case k = 1, i.e., when there is just one intermediary
scheme Z, and V to Z is a strict Gorenstein linkage by Y of the form M + mH on an ACM
scheme X satisfying G0, and Z to V ′ similarly is linked by a Y ′ of the form M ′ + m′H ′ on
an ACM scheme X ′ satisfying G0.

Since X and X ′ are both ACM of codimension 2 in P
n, they are in the same CI-biliaison

class, by the classical Gaeta’s theorem [11, 6.1.4]. Thus we can apply Lemma 5.2 (below)
and find a chain

X = X0, X1, . . . , Xr = X ′

of ACM schemes satisfying G0 and each containing Z, such that each Xi is directly CI-linked
to Xi+1, and Xi and Xi+1 have no common components.

Now for each i = 1, . . . , r, let Di = Xi−1 ∩ Xi. By Lemma 5.3 (below), Di is an AG
scheme of the form M + mH on Xi−1 and on Xi. Since the Xi all contain Z, so do the Di.
For each i = 1, . . . , r, let Wi be the scheme linked to Z by Di. We consider the chain of
strict Gorenstein linkages

V = W0, Z, W1, Z, W2, Z, . . . , Wr, Z, V ′ = Wr+1.

Here, for each i = 0, . . . , r, the two links Wi, Z, Wi+1 are both strict Gorenstein links on the
same ACM scheme Xi. Now, as in the proof of [5, 4.1] we see that Wi being linked to Z by
M + mH on Xi is equivalent to saying Z ∼ (M + mH)(−Wi) on Xi. Similarly, Z linked to
Wi+1 by M + m′H on Xi says Wi+1 ∼ (M + m′H)(−Z). Substituting the first expression
for Z in the second expression for Wi+1, we find using (2.8) that Wi+1 ∼ Wi + (m′ − m)H
on Xi, which is a single Gorenstein biliaison.

Thus V is joined to V ′ by the chain of Gorenstein biliaisons

V = W0, W1, . . . , Wr, Wr+1 = V ′.

Lemma 5.2. Suppose given X, X ′ locally Cohen–Macaulay subschemes of codimension 2 in
P

n, both satisfying G0, and both containing a given closed subscheme Z of codimension at
least 3 in P

n, and with X, X ′ in the same CI-liaison class in P
n. Then there exists a chain

X = X0, X1, . . . , Xr = X ′

of locally Cohen–Macaulay subschemes of P
n, each containing Z, such that each Xi+1 is

obtained by a single geometric CI-linkage from Xi. In particular, Xi and Xi+1 will have no
common components, so each will be generically locally complete intersection and therefore
will satisfy G0.

Proof. Note first that the hypothesis G0 implies that X and X ′ are generically locally
complete intersection, since they are in codimension 2. If X to X ′ is an odd liaison, we can
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make a single general geometric liaison from X ′ to a new X ′′ also containing Z, and thus
reduce to the case of an even liaison. Then, since X and X ′ are in the same even liaison
class, by Rao’s theorem, they have N -type resolutions with stably equivalent sheaves Ni up
to twist. By adding dissocié sheaves, we can write N -type resolutions

0 → L → N → IX(a) → 0
0 → L′ → N → IX′(a′) → 0

with the same locally free sheaf N in the middle, and L,L′ dissocié.
Now we will follow the plan of the proof of [2, 3.1] to obtain a chain

X = X0, X2, X4, . . . , X2k = X ′

of locally Cohen–Macaulay subschemes containing Z, such that for each i, X2i and X2i+2 have
no common components and are related by a single elementary CI-biliaison on a hypersurface
Si.

Write L = ⊕Li with Li invertible, i = 1, . . . , t. Since X is generically locally complete
intersection, the rank of the map

L(ξ) → N (ξ)

is t − 1 for each generic point ξ of X. Thus, reordering if necessary, we define F by

0 →
⊕

i≥2

Li → N → F → 0

and F will be torsion-free of rank 2, and locally free at each generic point ξ of X. Now
choose b ≫ 0 so that IZ ⊗N (b) is generated by global sections and take s1 ∈ H0(IZ ⊗N (b))
a sufficiently general section. Let Y1 be defined by

0 → O(−b)
s1→ F → IY1

(a1) → 0.

Then Y1 contains Z, and Y1 has no component in common with X, and Y1 is obtained from
X by a single CI-biliaison [2, 3.3]. Furthermore, we can lift s1 to N in such a way that
s1(ξ1) 6= 0 in N (ξ1) for each generic point of Y1. In terms of N we now have

0 → O(−b) ⊕
⊕

i≥2

Li → N → IY1
(a1) → 0.

We repeat this process with each Li in turn, obtaining a sequence of biliaisons X, Y1, Y2, . . . , Yt,
each one containing Z and having no components in common with its neighbors.

We do the same thing with X ′, obtaining a similar sequence X ′, Y ′
1 , . . . , Y

′
t . Then we

observe that one can take the same b in both cases, and since the sections s1, . . . , st, s
′
1, . . . , s

′
t

are all sufficiently general, we can take si = s′i for each i, and thus Yt = Y ′
t . This connects X

and X ′ by biliaisons, all containing Z. Now just relabel Yi and Y ′
i as X2j to get the sequence

of biliaison above.
To conclude, let X2 and X4 for example be a biliaison on a hypersurface S, where X2, X4

both contain Z and have no common component. Then X2 and X4 are both generically
Cartier divisors on S. When we link them both to a divisor X3 on S, as in the proof of
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(3.5), we can take X3 to have no component in common with X2 and X4, and by adding a
complete intersection on S containing Z if necessary, we may assume X3 contains Z. Thus
the sequence of biliaisons connecting X and X ′ can be filled in to a sequence of geometric
liaisons as required.

Lemma 5.3. Let X1, X2 be ACM schemes in P
n that have no common component and

are directly linked by an AG scheme S. Then D = X1 ∩ X2 is arithmetically Gorenstein;
moreover, it is of the form M + ℓH on each of X1, X2, where ℓ is the integer for which
ωS

∼= OS(ℓ).

Proof (cf. [11, 4.2.1]). The fact that D is ACM follows from the exact sequence

0 → OS → OX1
⊕OX2

→ OD → 0.

Since S is AG, its dualizing sheaf ωS is isomorphic to OS(ℓ) for some ℓ ∈ Z. Because of
the linkage, IX1,S

∼= Hom(OX2
,OS). Note that IX1,S = ID,X2

by a standard isomorphism
theorem for ideals. Since ωX2

= Hom(OX2
, ωS), we find that ID,X2

∼= ωX2
(−ℓ). This says

D ∼ M + ℓH on X2. The same argument shows that D ∼ M + ℓH on X1 also.

6. Conclusion

If we reflect on the outstanding problem whether every ACM subscheme of P
n is glicci,

we can appreciate the usefulness of the extended notion of generalized divisors in this paper.
It has allowed us to prove the theorem of KMMNP–Gaeta in a strengthened form, namely
that any standard determinantal scheme in P

n can be obtained by ascending Gorenstein
biliaisons from a linear space. This also makes clear the special nature of determinantal
schemes, since there are known examples of other ACM schemes that cannot be obtained by
ascending Gorenstein biliaisons from a linear space, even though it is still unknown whether
they are glicci or not (for curves in P

4, see [6, 3.9], and for points in P
3 see [8, 7.2]).

We also observe that in most known proofs that some class of ACM schemes is glicci
(such as the theorem of KMMNP–Gaeta discussed here) the proof could be accomplished
using Gorenstein biliaisons, hence using only strict Gorenstein liaisons. Since there are AG
schemes in P

n not of the special form M +mH on some ACM scheme of one dimension higher
(for curves in P

4, see [7, 3.6, 3.11] and for points in P
3 see [8, 3.4, 6.8]), this suggests that it

would be worthwhile to investigate more deeply what kind of G-liaisons can be accomplished
using AG schemes not of this special form.
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