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Abstract

Motivation: A heterogeneous network topology possessing abundant interactions between bio-

medical entities has yet to be utilized in similarity-based methods for predicting drug–target associ-

ations based on the array of varying features of drugs and their targets. Deep learning reveals fea-

tures of vertices of a large network that can be adapted in accommodating the similarity-based

solutions to provide a flexible method of drug–target prediction.

Results: We propose a similarity-based drug–target prediction method that enhances existing as-

sociation discovery methods by using a topology-based similarity measure. DeepWalk, a deep

learning method, is adopted in this study to calculate the similarities within Linked Tripartite

Network (LTN), a heterogeneous network generated from biomedical linked datasets. This pro-

posed method shows promising results for drug–target association prediction: 98.96% AUC ROC

score with a 10-fold cross-validation and 99.25% AUC ROC score with a Monte Carlo cross-

validation with LTN. By utilizing DeepWalk, we demonstrate that: (i) this method outperforms other

existing topology-based similarity computation methods, (ii) the performance is better for tripartite

than with bipartite networks and (iii) the measure of similarity using network topology outperforms

the ones derived from chemical structure (drugs) or genomic sequence (targets). Our proposed

methodology proves to be capable of providing a promising solution for drug–target prediction

based on topological similarity with a heterogeneous network, and may be readily re-purposed

and adapted in the existing of similarity-based methodologies.

Availability and Implementation: The proposed method has been developed in JAVA and it is

available, along with the data at the following URL: https://github.com/zongnansu1982/drug-target-

prediction.

Contact: nazong@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drugs may interact with molecular targets to potentially treat a

plethora of diseases. Therefore, drug–target predictions play an im-

portant role in drug discovery and drug repurposing. Due to the

costly biochemical experimentation (in vitro) of drug–target discov-

ery, the pharmaceutical industry tends to focus on solely identifying

particular families of ‘druggable’ proteins and developing chemical

compounds that bring desired effects on them (Yıldırım et al.,

2007). Researchers investigate only a few complete pharmacological

profiles of desired target proteins and these small molecules are

rarely systematically screened (Vogt and Mestres, 2010). Although

target-specific drugs are traditionally favored in research, the
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pharmaceutical industry is now exploring poly-pharmacology and

the repurposing of existing drugs, as seen in cases of anticancer

drugs imatinib (Gleevec) and sunitinib (Sutent) (or, thalidomide, sil-

denafil, bupropion and fluoxetine) (Cheng et al., 2012; Yıldırım

et al., 2007). The comprehensive understanding of drug–target asso-

ciations, however, is relatively limited compared to the large number

of chemical compounds and proteins discovered; this gap in know-

ledge is a strong incentive to predict associations between existing

drugs and its targets (Ding et al., 2014; Yamanishi et al., 2008).

Computational (in silico) methods can complement and guide

these laborious and costly experiments. Early attempts of computa-

tional prediction, using docking simulations (Cheng et al., 2007)

and text mining methods (Zhu et al., 2005), are neither scalable nor

adequate to handle the proteins missing 3-dimentional structure in-

formation. Also, mining an ever growing and complex scientific lit-

erature database containing redundant protein and gene names

presents a challenge. To overcome these limitations, researchers

have adopted diverse machine learning methods, such as classifica-

tion methods (Ding et al., 2014), and rule-based inference methods

(Cheng et al., 2012; Yamanishi et al., 2008) to predict drug–target s

associations. Similarity measures are fundamental to these method-

ologies. For example, the similarity measures of drug–drug and tar-

get–target pairs can be utilized for the weighting of potential

associations (Cheng et al., 2012; Yamanishi et al., 2008), or to gen-

erate distinct kernel functions to train the different classification

models (Bleakley and Yamanishi, 2009; Jacob and Vert, 2008; van

Laarhoven et al., 2011; Xia et al., 2010). Associating two compo-

nents provides solutions for practical scenarios by finding the best

combinations (Perlman et al., 2011; Yamanishi et al., 2010); leading

to flexible solutions in drug–target prediction. In particular, the

chemical structure (Yamanishi et al., 2008), pharmacological fea-

tures (Yamanishi et al., 2010), genomic sequence (Bleakley and

Yamanishi, 2009; Jacob and Vert, 2008; Yamanishi et al., 2008)

may all be used for the similarity measure.

Recent studies show that the abundant topological interactions

between biomedical entities in heterogeneous networks appear to be

valuable for assisting in predictions (Chen et al., 2012a, b; Cheng

et al., 2012; Palma et al., 2014; Wang et al., 2013). However, these

topology-based methods are incapable of computing the topological

similarities between biological entities; they cannot be reused and

adapted in the existing similarity-based methods. Deep learning

methods provide a solution for extracting features of vertices in a

large network and can be adapted to compute topological similar-

ities of two vertices (Perozzi et al., 2014; Tang et al., 2015).

Therefore, adopting deep learning methods for topological similarity

measure provides tremendous value in drug–target prediction by

reusing and adapting the existing similarity-based methods.

Here, we propose a similarity-based drug–target prediction

method that adopts a deep learning algorithm, DeepWalk (Perozzi

et al., 2014), to calculate the similarities for drug–drug and target–tar-

get pairs based on the topology of a heterogeneous network named

Tripartite Linked Network (TLN), derived from the existing linked

open datasets in biomedical domain (a.k.a., biomedical linked data in

this article) (Bizer et al., 2009). The resulting similarity measure is

used to infer drug–target association based on the ‘guilt-by-associ-

ation’ principle (Bass et al., 2013) that uses drug–drug and target–tar-

get similarities as the input for drug–target prediction (Fig. 1). We

benchmark DeepWalk to seven similarity computation methods (Bass

et al., 2013; Tang et al., 2015) based on the bipartite and tripartite

networks (drug, disease and target network), as well as two methods

based on chemical structure and the genomic sequence (Bass et al.,

2013; Ding et al., 2014; Yamanishi et al., 2008). Specifically, we have

evaluated our method for the following benchmarks: (i) performance

of a deep learning method compared to other topology-based similar-

ity methods, (ii) value of multipartite (tripartite) network over bipart-

ite networks and (iii) performance of topology-based similarity

method over the ones relying on chemical structure and genomic se-

quence. The proposed method shows promising results in the drug–

target association prediction, e.g. 98.96% AUC ROC score with a

10-fold cross-validation and 99.25% AUC ROC score with a Monte

Carlo cross-validation. The proposed method is proven to be capable

of providing a flexible solution for drug–target prediction based on a

heterogeneous network and can be easily reused and adapted in the

excising similarity-based methods.

2 Materials and methods

2.1 Pipeline of similarity-based drug–target prediction

with heterogeneous network
The drug–target prediction method we propose is based on the top-

ology of multipartite network of the existing drugs and protein tar-

gets. The association discovery pipeline can be separated into three

steps: (i) Data preparation and benchmarking, (ii) similarity learning

and (iii) association discovery. First, a multipartite network that

contains the topological interactions of the existing drugs and tar-

gets is constructed with the biomedical linked data (Fig. 2). Then,

the similarity scores of the drug–drug and target–target pairs are

learned based on the topology of the network. Finally, new drug–

target associations are discovered and evaluated based on these

similarities.

2.2 Data preparation and benchmarking
This study utilized information of the various drugs, targets and dis-

eases to form a tripartite network called Linked Tripartite Network

(LTN), with the drugs, targets and diseases as the vertices and the

Drug 1

Drug 2

Target A

Target B

Target C

Drug-Drug Similarity Space

? Target-Target Similarity Space

?

Fig. 1. Drug–target prediction based on ‘guilt-by-association’ principle. Two

inputs are used: (1) the solid lines are the existing drug–target associations

used as known knowledge, and (2) the dashed lines are calculated with simi-

larity measures for drug–drug and target–target pairs. The output is the pre-

dicted associations represented with the dash lines. The ‘guilt-by-association’

principle postulates that if a vertex with unknown property shares a similar

interaction profile with a vertex with known property, the former may also

share the same property with the latter

Fig. 2. Pipeline of the drug–target association discovery
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drug–target, drug–disease and disease–target associations as the

edges.

We obtained the drugs, targets and drug–target associations

from DrugBank (Wishart et al., 2008) which ascertains data-rich

molecular biology content found in curated sequence databases, me-

dicinal chemistry textbooks and chemical reference handbooks, and

validates the collected data with the journal articles and textbooks.

We used DrugBank (version 3, generated in 2011) downloaded from

(http://wifo5-03.informatik.uni-mannheim.de/drugbank/) to extract

a bipartite network, which contained 4553 targets, 4408 drugs and

12 045 drug–target associations.

To form the LTN, we extracted the diseases, drug–disease and

disease-gene associations from a human disease network (Goh et al.,

2007) named Diseasome (http://wifo5-03.informatik.uni-man

nheim.de/diseasome/), and merged these associations with the bi-

partite network we obtained from DrugBank. The disease–target as-

sociation was created by mapping targets of DrugBank to the genes

of the disease-gene associations in Diseasome based on Bio2rdf

(Belleau et al., 2008), Uniprot (Consortium, 2008), HGNC (Povey

et al., 2001) and OMIM (Hamosh et al., 2005). We obtained a LTN

consisting of 1452 diseases, 8201 drug–disease and 1684 disease–

target associations (Table 1).

2.3 Similarity learning
DeepWalk (Perozzi et al., 2014), a deep learning method, vector-

izes the vertices (e.g. drugs and targets) in the network for similar-

ity computation. This method obtains the local latent information

of topology based on truncated random walks and maximizes the

probability of a next vertex vi given the previous vertices in these

walks. Two components are inherent in DeepWalk: (i) for each

vertex vi, c times of random walks with length t are conducted

with vi as the starting vertex, and (ii) for each walk, the SkipGram

(Mikolov et al., 2013) algorithm updates the vertex repre-

sentation. SkipGram maximizes the co-occurrence probability

among the vertices within a window w using the assumption as

follows,

Pr

�
vi�w; . . . ; viþwgnviU við Þf

�
¼

Yiþw

j¼j�w;j6¼i

PrðvjjU við ÞÞ; (1)

where U is the latent topological representation associated with each

vertex vi. U is modeled with a jVj � d matrix, where jVj is the car-

dinality of vertex set V, and d is the dimension user in-

put. PrðvjjU við ÞÞ is approximated with Hierarchial Softmax (Mnih

and Hinton, 2008) by assigning the vertices to the leaves of a

Huffman tree, and Pr vjU við Þ
� �

can be computed as,

Pr vjU við Þ
� �

¼
YlogjVjd e

l¼1

1=ð1þ e�U við Þ�WðblÞÞ; (2)

where bl 2 ðb0;b1; . . . ;b logjVjd e) and WðblÞ is the representation as-

signed to the vertex bl’s parent. ðb0; b1; . . . ; b logjVjd e) is a sequence of

tree vertices to identify the vertex vj, where b0 ¼ root and

b logjVjd e ¼ vj.

The similarity of two vertices u and v is calculated as follows,

sim u; vð Þ ¼

Pd
k¼1

ukvkffiffiffiffiffiffiffiffiffiffiffiffiPd
k¼1

u2
k

s ffiffiffiffiffiffiffiffiffiffiffiffiPd
k¼1

v2
k

s ; (3)

where d is the dimension, and ui, vi are the components of vector u

and v respectively.

In practice, the DeepWalk method is obtained from deeplear-

ning4j library (http://deeplearning4j.org/).

2.4 Association discovering
We adapted two popular rule-based inference methods (Cheng

et al., 2012; Yamanishi et al., 2008), drug-based similarity inference

(DBSI) and target-based similarity inference (TBSI), to discover the

drug–target associations with the similarities obtained in Section

2.3.

DBSI predicts a drug–target association sðdi; tjÞ if a drug di is

similar with a drug that has an existing association with a target tj.

For a pair of ðdi; tjÞ, a confidence score of the pair is calculated as,

confidenceDBSI di; tj

� �
¼

Pn
l¼1;l 6¼i

simðdi;dlÞal;j

Pn
l¼1;l 6¼i

simðdi; dlÞ
; (4)

where simðdi;dlÞ is the similarity between di and dl, and al;j ¼ 1 if

there is an existing association between dl and tj otherwise al;j ¼ 0 .

Similarly, TBSI predicts a drug–target association sðdi; tjÞ if a

drug di is associated with a target that has a similar target tj. For a

pair of ðdi; tjÞ, a confidence score of the pair is calculated as,

confidenceTBSI di; tj

� �
¼

Pm
l¼1;l 6¼j

simðtj; tlÞai;l

Pm
l¼1;l 6¼j

simðtj; tlÞ
; (5)

where simðtj; tlÞ is the similarity between tj and tl, and ai;l ¼ 1 if

there is an existing association between di and tl otherwise ai;l ¼ 0.

Operationally, for a drug di or a target tj as the input query, the

DBSI and TBSI confidences are normalized as,

nomarlizedConfidenceDBSI di;tj

� �
¼

confidenceDBSI di;tj

� �
�Maxðdi;�Þ

Max di;�ð Þ�Minðdi;�Þ
(6)

nomarlizedConfidenceTBSI di;tj

� �
¼

confidenceTBSI di;tj

� �
�Maxð�;tjÞ

Max �;tj

� �
�Minð�;tjÞ

;

(7)

where Maxðdi;�Þ is the maximum confidence and Minðdi;�Þ is the

minimum confidence for di, and Maxð�;tjÞ is the maximum confi-

dence and Minð�;tjÞ is the minimum confidence for tj.

Table 1. Statistics for the Linked Tripartite Network (LTN)

Name Statistics

# Target (DrugBank) 4553

# Drugs (DrugBank) 4408

# Disease (Diseasome) 1452

# Drug–target associations (DrugBank) 12 045

# Drug–disease associations (Diseasome) 8201

# Disease–target associations (Diseasome) 1684

Average degree of drugs (bipartite network) 2.73

Average degree of targets (bipartite network) 2.65

Average degree of drugs (tripartite network) 4.59

Average degree of targets (tripartite network) 3.02

Average degree of diseases (tripartite network) 6.61
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2.5 Validation and evaluation metrics
We evaluated the predictions using three kinds of validation meth-

ods based on internal and external references in each test, and re-

ported Area Under the Receiver Operating Characteristic Curve and

Recovered Fraction as the evaluation metrics.

To perform the internal validation, we implemented a 10-fold

cross-validation (Wang et al., 2013), where conventionally a dataset

is partitioned into 10 subsets: one subset used for testing and nine

subsets for training across multiple iterations. We needed to restrict

the evaluation and benchmarking of our method to the similarity

measure itself, and eliminate the impact of the inference-based

method (TBSI or DBSI). For this reason, we ensured that the random

partition of associations for generating the test set did not create iso-

lated vertices in the training set that hindered the performance of

DBSI and TBSI. Thus, we first randomly extracted a set of associ-

ations Ar, making sure that no isolated vertices are created. We then

derived Ac, which is the complement of Ar in the association space.

The associations Ac were randomly partitioned into 10 subsets

fA1; . . . :;A10g. Note that each subset of Ac may contain isolated

vertices. In each test of ten, a subset Ai was used as a gold standard

for testing while the nine remaining subsets of Ac as well as Ar were

used as the training set. We also performed a Monte Carlo valid-

ation (Seal et al., 2015), where the set of associations Ac were ran-

domly partitioned into two parties, A1 with the cardinality of M

and A2, and A1 used as gold standard predictions for the test and

the rest subsets A2 and Ar were used as the training set. For the val-

idation with the external reference, we used the whole dataset as our

training set and validated the predictions with the newly discovered

drug–target associations. In practice, a recent version of DrugBank

downloaded from Bio2rdf (release 4, published in 2015, http://down

load.bio2rdf.org/release/4/) was used as the external reference. The

targets in release 4 used different IDs from the DrugBank version 3,

so we mapped them based on the uniprot IDs, which were kept the

same in the two versions. Additionally, we removed the associations

connected with the drugs or targets that did not exist in the

DrugBank version 3 and used only the remaining new associations

as the gold standard.

We calculated Area Under the Receiver Operating Characteristic

Curve (AUC) and Recovered Fraction (RF) (Cheng et al., 2012; Seal

et al., 2015), to assess the quality of the predicted associations. The

AUC was obtained with the rankings of the true positives in a pre-

diction list. We computed AUC with the ROC JAVA library (https://

github.com/kboyd/Roc). RF in top N was obtained from

RFN ¼ 1
m

Pm
i¼1

hi

li
, where hi was the number of true positive predicted

associations in ith query and li was the number of missing associ-

ations in the gold standard.

3 Results

3.1 Comparison with topology-based similarity meas-

ures in bipartite network
In this analysis, we implemented DeepWalk using both DBSI and

TBSI association discovery models in association with the topology-

based similarity measures using the bipartite network for the drug–

target prediction. We computed six association indices used for simi-

larity computation in bipartite networks (Bass et al., 2013), which

were Jaccard, Simpson, Geometric, Cosine, Pearson Correlation

Coefficient (PCC) and Hypergeometric, and compared them with

the DeepWalk results.

DeepWalk performed similarly to the other similarity measures

in ten-fold validation (Fig. 3a, DBSI: 84.23% and TBSI: 85.75%)

with the internal reference and demonstrated a slightly better per-

formance with the external reference (Fig. 3b, DBSI: 83.86% and

TBSI: 82.94%). The traditional similarity methods were almost in-

distinguishable in both validations except PCC (DBSI: 65.08% and

TBSI: 69.63% in the ten-fold validation, DBSI: 57.53% and TBSI:

69.74% in the external validation).

We measured the top K percentage (5, 10, 15, 20, 30) and top N

(10, 20, 50, 100, 500, 1000) predicted associations in the two valid-

ations. DeepWalk performed the best when the top K percentage of

predicted associations were considered (Supplementary Table S1).

For example, RFs of DeepWalk increase from 65.90% to 81.23%

with DBSI, and from 72.75% to 83.32% with TBSI, through consid-

eration of the top 5% and 30% predicted associations in the ten-

fold validation. We also noticed that DeepWalk performed best

when the top 500 and 1000 predicted associations were considered

(e.g. 72.87% and 78.65% with DBSI and TBSI in top 1000 in the

ten-fold validation); other methods performed best with top 10, 20,

50, 100 predicted associations (Supplementary Table S2).

3.2 Comparing the use of tripartite and bipartite

network
The previous analysis used only a bipartite network. In order to de-

termine whether the utilization of the additional disease–drug and

disease–target associations improved the drug–target predictions,

we compared the use of bipartite and tripartite networks. To bench-

mark this performance, we also compared DeepWalk to two
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Fig. 3. Comparison of average AUC scores in two validations over bipartite net-

work. DeepWalk is represented with a dotted bar while the others are repre-

sented with the horizontal lined bars. The Jaccard, Simpson, Geometric,

Cosine measure shared Y-type vertices (targets or drugs) between two X-type

nodes (drugs or targets) and the individual degree of these vertices. Pearson

Correlation Coefficient (PCC) and Hypergeometric are statistic-based methods.

Based on the degree and the total number of Y-type vertices in the bipartite

network, the two methods employ the probability distributions to measure the

likelihood of observing a certain overlap between the interaction of two X-type

vertices. The hyper-parameter of DeepWalk was determined by a grid search

over the parameter ranges specified in (Perozzi et al., 2014) (number of walks

c ¼ f40� 400; step ¼ 40g, learning rate a ¼ f0:01; 0:05; 0:09g, dimension

d ¼ f100; 150; 200g, window size w ¼ f5; 10g, walk length t ¼ f40g). (a) 10-

fold cross-validation, (b) External resource validation
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methods that could be applied to both bi- and tripartite networks,

SimRank (Jeh and Widom, 2002) and Line (Tang et al., 2015).

SimRank computes vertex similarity with the structural context in a

network based on a graph-theoretic mode and is applicable in any

domain with object-to-object relationships. Line is a graph embed-

ding method that represents the vertices in a network into a low-

dimensional vector space. Line utilizes two kinds of network struc-

tures, local and global, to capture the first-order proximity

(observed links) and second-order proximity (shared neighborhood

structures) between the vertices. In the comparison, we used two

variants of Line obtained from (https://github.com/tangjianpku/

LINE), Line (1st) and Line (2nd), which utilizes first-order and

second-order proximity respectively.

DeepWalk performed better than Line and SimRank in both types

of validations with both DBSI and TBSI association models (Fig. 4).

Interestingly, the use of tripartite networks affected Line(2nd) perform-

ance. In contrast, tripartite networks improved DeepWalk’s perform-

ance: from 84.23% to 87.83% with DBSI and from 85.75% to

90.31% with TBSI in the ten-fold validation (Fig. 4a); from 83.86% to

86.41% with DBSI and from 82.94% to 86.23% with TSBI in the ex-

ternal source validation (Fig. 4b). Using tripartite networks in

DeepWalk outperformed all the topological similarity-based methods

with the bipartite networks in Section 3.1. Line(1st) achieved its best

performance with tripartite network using the TBSI model

(AUC¼84.54%) in ten-fold cross-validation and using the DBSI

model (AUC¼83.19%) in external validation). Despite slightly under-

performing DeepWalk, SimRank attained comparable AUC scores for

the bipartite network and the tripartite network (with TBSI). SimRank

achieved its best results with tripartite network using the TBSI model

(AUC¼88.19% in ten-fold cross-validation and 84.85% in external

validation). We observed that DeepWalk achieved the best RF scores in

all top K (except 5%) percentage and top N (500 and above) predicted

associations (Supplementary Tables S3 and S4).

Not all drugs or targets could be associated with diseases in

LTN. Therefore, in order to determine the respective influence of

drug–disease and disease–target associations in the tripartite net-

work, we partitioned the network into two main components: (i)

fully connected, and (ii) partially connected component, to generate

training and test sets of associations (Fig. 5). We were able to there-

fore distinguish the drug–target associations in the fully connected

component (referred to as FDTA) and in the partially connected

component (referred to as PDTA).

We compared the use of tripartite and bipartite network

for the prediction on FDTA and PDTA using the same

methods mentioned in Section 3.1. The same settings

(c ¼ 40; a ¼ 0:01; d ¼ 100; w ¼ 5; t ¼ 40) are used for this ex-

periment and the following ones to conduct a consistent analysis for

DeepWalk. We observed that the use tripartite networks offer the

largest improvement in prediction of drugs and targets that were

associated with the diseases (Fig. 6). Specifically, in the 10-fold val-

idation, AUC scores of the FDTA were improved from 89.28% to

98.96% using the DBSI model, and from 88.14% to 98.19% using

the TBSI model (Fig. 6a). In the external source validation, scores

were improved from 83.52% to 91.16% using the DBSI model, and

from 80.68% to 91.51% using the TBSI model (Fig. 6b). While a

fully connected network is not required for DeepWalk, the perform-

ance on a partially connected network is roughly 17% lower. As sus-

pected, the AUC scores of the PDTA were hardly improved by using

tripartite network, which indicated that the addition of new associ-

ations (drug–disease and disease–target) only improved the predic-

tions of drugs and targets directly associated with diseases.

Supplementary Tables S5 and S6 show improvement of RF scores.

The similarity measure was the key factor for prediction. The pur-

pose of the similarity measures for DBSI and TBSI models is to make

the drug–drug and target–target pairs, to infer drug–target associ-

ations by obtaining high similarity scores for drug–target associations

that are true and low similarity scores for drug–target associations

that are false. Therefore, to further scrutinize the similarity measure

on drug–drug and target–target pairs, two types of pairs were ana-

lyzed based on the contribution to DBSI (for drug–drug Fig. 7) and

TBSI (for target–target Fig. 8) models in prediction: (i) positive pairs,

which similarity is used to predict true drug–target associations, and

(ii) negative pairs, which lack of similarity is used to confirm false

drug–target associations. Figures 7 and 8 show how the similarity of

the positive and negative pairs distribute for predicting FDTA and

PDTA validated with the external source. We observed a notable im-

provement of the similarity calculations for FDTA by switching the

input data from bipartite to tripartite network (Figs 7a and 8a), and

minor changes were seen for PDTA (Figs 7b and 8b). The similarity
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Fig. 4. Comparison of average AUC scores of DeepWalk, Line and SimRank over

bipartite and tripartite networks using both TBSI and DBSI association models.

AUC scores on bipartite network are represented with the dotted bars while tri-

partite with the horizontal lined bars. Similar to DeepWalk, a grid search is

applied to obtain the best results over the parameter ranges for SimRank (damp-

ing factor C ¼ f0:6� 0:85; step ¼ 0:05g, iteration iter ¼ f5g) and Line (learning

rate q0 ¼ f0:025; 0:05g, d ¼ f100; 150; 200g, sampling size s ¼ f100 milliong).
(a) 10-fold cross-validation, (b) External resource validation

Drugs 1

Drugs 2

Targets 1

Targets 2

Diseases 2

Diseases 1
Partially Connected
Component

Fully Connected
Component

Partially 
Connected 
Component

Fully 
Connected 
Component

Total

Vertices

Drugs 3067 1341 4408
Targets 4040 513 4553
Diseases 1390 62 1452

Edges

Drug-Target 4844 2154 6998
Drug-Disease 63 7969 8032
Disease-Target 0 1684 1684

Fig. 5. Partition of the tripartite network to generate fully connected and par-

tially connected drug–target associations (FDTA and PDTA respectively). The

fully connected component contains the targets (target 2), diseases (diseases

2) and drugs (drugs 2) that are fully connected with each other. The partially

connected component contains the rest of the vertices (target 1, drug 1 and

disease 1) that only associated by drug–target and drug–disease relations.

The statistics of each component are indicated in the table. In practice, FDTA

and PDTA are generated with the Supplementary Pseudocode 1
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distribution of the positive target–target pairs in the FDTA had a

more remarkable improvement by using the tripartite network than

with the drug–drug pairs, which was consistent with the experimental

results that TBSI performed better than DBSI in Figure 6b. We also

showed that using tripartite network did not improve the similarity

computations for the negative pairs for both FDTA (Fig. 7c and d)

and PDTA predictions (Fig. 8c and d).

3.3 Influence of the number of available associations

(i.e. data richness)
Testing the influence of the data richness (i.e. number of associations

in LTN) required performing a Monte Carlo cross-validation, where

M drug–target associations (100, 200, 300, 400, 500, 600, 700, 800,

900, 1000) were randomly removed from the bipartite and tripartite

networks as validation data and the remained data were used for train-

ing, respectively. Both AUC scores of the bipartite and tripartite net-

works decreased as more associations were removed—bipartite

network suffered more than tripartite network (Fig. 9). For example,

the AUC score of DBSI dropped around 10% by removing 100

(89.23%) to 1000 (79.47%) associations in the bipartite network, but

only dropped about 1% by removing 100 (99.25%) to 1000 (98.35%)

associations in the tripartite network. Similar phenomena were

observed with the RF scores from Supplementary Table S7 as well.

To further understand and evaluate these associations affecting

the predictions within the tripartite network, we removed associations

of LTN to simulate the different biomedical linked data for testing

how the proposed method would perform for these datasets. The

three types of associations: drug–target, drug–disease and disease–tar-

get, existed in the LTN. The drug–target associations contributed

both to the similarity computation and association discovery methods

(i.e. DBSI and TBSI), while the drug–disease and disease–target associ-

ations contributed only to the similarity computation. Based on the

characteristics of the three types of associations, we designed three

types of removal strategies: (i) ‘drug–target removed’: removing drug–

target associations while preserving all the vertices connected, thus

without creating isolated drug vertices (which would have an effect

for DBSI) or isolated target vertices (which would have an effect for

TBSI). (ii) ‘disease conserved’ which removed drug–disease or dis-

ease–target associations without isolating disease from the drugs and

targets; (iii) ‘disease-related removed’ which removed drug–disease or

disease–target associations without consideration of keeping diseases

connected after the removal. We randomly removed P percentage of

associations based on the three types of removal strategies, and

trained DeepWalk with the remaining associations and validated the

results with the external resources.

Figure 10 shows that the quality of the predictions of disease-

related removed drops the most as the number of removed
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Fig. 6. Comparison of average AUC scores of DeepWalk for predicting FDTA

and PDTA in Figure 5. AUC scores for FDTA are represented with the dotted

bars while PDTA with horizontal lined bars. DeepWalk settings were (c¼40,

a¼0.01, d¼100, w¼5, t¼40). (a) 10-fold cross-validation, (b) External resource

validation

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045(a) (b)

(c) (d)

0 0.5 1

pe
rc

en
ta

ge
 o

f 
pa

ir
s

similarity

Bi Tri

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.5 1

pe
rc

en
ta

ge
 o

f 
pa

ir
s

similarity

Bi Tri

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1pe
rc

en
ta

ge
 o

f 
as

so
ci

at
io

ns

similarity

Bi Tri

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1

pe
rc

en
ta

ge
 o

f 
as

so
ci

at
io

ns

similarity

Bi Tri

Fig. 7. Similarity distribution of positive and negative types of drug–drug pairs.

(a) Positive-FDTA, (b) Positive-PDTA, (c) Negative-FDTA, (d) Negative-PDTA
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(a) Positive-FDTA, (b) Positive-PDTA, (c) Negative-FDTA, (d) Negative-PDTA
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associations increases, since the removal affects both the similarity

computation and association discovery methods. Without hurting

the discovery method, ‘disease conserved’ has a sharper drop than

‘drug–target removed’, which indicates that the enrichment of the

drug–target bipartite network (by importing drug–disease and dis-

ease–target associations without evolving the network to tripartite)

results in better predictions than importing drug–target associations.

The results shown in Supplementary Table S8 also support this

conclusion.

3.4 Topology-based V.S. Chemical structure- or

genomic sequence-based
We compared topology-based DeepWalk to chemical structure- and

genomic sequence-based methods across four experiments (Ding

et al., 2014; Yamanishi et al., 2008), predicting drug–target associ-

ation for four kinds of targets: ‘Enzyme’, ‘GPCR’, ‘Ion channels’ and

‘Nuclear receptor’. Importantly, and to keep the comparison fair to

all methods, we limited the evaluation to the subset of fully connected

drug–target associations (FDTA) which drugs and targets have avail-

able chemical structure and genomics information, respectively.

Figure 11 illustrates that DeepWalk, using topology of the tripar-

tite networks for similarity computations, outperforms the other

two methods based on chemical structure and genomic sequence in

terms of AUC. The AUC scores are improved by using DeepWalk in

experiments. For example, for ‘Enzyme’, the prediction based on

DBSI are improved by 31.1% (97.1 for DeepWalk and 66.0% by

ChemialStc), and the predictions based on TBSI are improved by

17.9% (96.2% for DeepWalk and 78.3% by GenomicSqs). The best

predictions are all obtained with DeepWalkþDBSI (97.1 for ‘en-

zyme’, 94.4 for ‘GCPR’, 96.1 for ‘ion channel’ and 96.5 for ‘nuclear

receptor’). The comparison of RF scores leads to consistent results

(Supplementary Table S9).

4 Discussion

Despite successful exploitation of the topology of tripartite networks

through the application of DeepWalk for similarity computation in

drug–target prediction, there were a couple noted limitations. The

proposed method can predict the associations between the drugs and

targets that exist within the network, but may not predict new drugs

or targets in some practice use scenarios. Secondly, compared to

DeepWalk, the traditional topology-based method, SimRank, shows

potential for top N predictions (see Supplementary Table S3 and S4),

which can serve as an alternative method for these prediction efforts.

In addition to the disease information used in this study, the bio-

medical linked data may also provide other topological information

between drugs and targets that could be used for prediction, such as

side effects (Campillos et al., 2008) or drug classification systems

(Perlman et al., 2011). However, the use of a more complex net-

work may lead to new issues, such as the effect of the pathway lengths

or even the size and shape of networks (Yu et al., 2016), which can be

caused by data mapping/integration in the network construction.

The method we presented here is somewhat monotonous, where it

only considers the diseases in the network and is still not comprehen-

sive enough to capture all the characteristics of drugs or targets that

may not be represented on a network. Considering these features,

such as chemical structure, pharmacology (Yamanishi et al., 2010)

and genomic sequence, may potentially improve the prediction results

and may facilitate this methodology to be applied in predicting new

drugs or targets. Future studies could propose a hybrid similarity

measure that includes both topological and non-topological features.

In conclusion, the method proposed here assembles the similarity

measure with the rule-based inference methods, DBSI and TBSI, for

drug–target prediction. It is flexible, and DBSI and TBSI can be

replaced by certain kernel functions based classification models

(Bleakley and Yamanishi, 2009; Jacob and Vert, 2008; van

Laarhoven et al., 2011; Xia et al., 2010). Therefore, the deep learn-

ing methods for similarity measures can be associated with alter-

native classification models, which may lead to an improved

performance overall in the future.
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