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Abstract

Geanakoplos [14] defined a notion of bargaining set, and proved that his
bargaining set is approximately competitive in large finite transferable udlity (TU)
exchange economies with smooth preferences. Shapley and Shubik [20] shcved that the
Aumann-Davis-Maschler bargaining set is approximately competitive in replica sequences
of TU exchange economies with smooth preferences. We extend Geanakopios’ result to
nontransferable utility (NTU) exchange economies without smooth preferences, and we
extend the Shapley and Shubik result to non-replica sequences of NTU exchange
economies with smooth preferences.

Robert M. Anderson

Department of Economics and Department of Mathematics
University of California at Berkeley;

Department of Economics

Johns Hopkins University




1 Introduction

The bargaining set was originally defined by Aumann and Maschler [6]. Sev-
eral different definitions have been subsequently proposed; the most fre-
quently used definition was proposed by Davis and Maschler [8]. In the
exchange economy context we consider here, the core consists of all alloca-
tions such that no coalition can propose an alternative set of trades which is
feasible for the coalition on its own and which makes all of its members bet-
ter off. All definitions of the bargaining set restrict the ability of coalitions
to block (“object to”) an allocation, by taking into account the possibility
that a second coalition might propose yet another set of trades (“counterob-
ject”) and thereby cause some members to defect from the first coalition. In
the Aumann-Maschler and Davis-Maschler definitions, the original objection
is proposed by a “leader;” any counterobjecting coalition must exclude this
leader.

Geanakoplos [14] considered sequences of TU exchange economies with
smooth preferences. He modified the Davis-Maschler definition so that the
“leader” was a group of agents containing a fixed (but small) fraction of the
aumber of agents in the economy; thus, as the number of agents grew along
the sequence of economies, the number of individuals in the “leader” grew
proportionately. He showed that this Geanakoplos bargaining set becomes
asymptotically competitive as the number of agents grows; the proof, which
uses Nonstandard Analysis, is quite lengthy.

In Section 3, we present two theorems showing that the Geanakoplos
bargaining set is approximately competitive in large finite NTU exchange
economies. In addition to dropping the assumption of transferable utility,
we weaken certain other assumptions (notably smoothness of preferences)
required in Geanakoplos [14]. The first theorem (Theorem 3.4) requires as-
sumptions similar to those needed for certain core convergence results {see
Anderson [4]); no rate of convergence is established. The hypotheses of the
second theorem (Theorem 3.6} are incomparable to those of the first. The
main additional hypothesis in the second theorem is that a positive fraction
of the agents have uniformly bounded marginal rates of substitution; uniform
integrability of endowments, which is required in the first theorem, is weak-
ened to the assumption that the largest endowment, divided by the number
of agents, goes to zero. The second theorem includes a rate of convergence
arbitrarily close to the inverse of the number of agents. Both theorems are




derived from Proposition 3.10.

Mas-Colell [19] considered exchange economies with a continuum of agents
but without transferable utility or smooth preferences. He proposed a defi-
nition of the bargaining set which does not involve the concept of a leader.
Under hypotheses similar to those of Aumann’s core equivalence theorem, he
showed that the Mas-Colell bargaining set coincides with the set of Walrasian
allocations. Since models with a continuum of agents are thought of as ideal-
izations of large economies, it seemed reasonable to expect that Mas-Colell’s
bargaining set would become approximately competitive in sequences of finite
exchange as the number of agents increased. However, Anderson, Trockel and
Zhou [5] show that Mas-Colell’s bargaining set need not be approximately
competitive in large finite exchange economies.

The proof of our main Proposition 3.10 is an adaptation of Mas-Colell’s
equivalence proof. The error terms that arise from substituting the Shapley-
Folkman Theorem for Richter’'s Theorem can be absorbed in the Geanakoplos
leaders’ consumption at the objection, but they are sufficient to destroy the
Mas-Colell objection.

Finally, we apply our convergence argnment to sequences of economies
with smooth preferences. Anderson [3], Kiui [16] and Geller [15] have pre-
viously shown that economies with smooth preferences exhibit faster core
convergence rates than non-smooth economies. In the bargaining set con-
text, the rate of convergence is expressed in terms of the size of the compet-
itive gap and the size of the leader set. The faster convergence afforded by
smoothness allows us to restrict the leader set to be a single individual, and
thereby obtain a convergence theorem for the Aumann-Davis-Maschler bar- -
gaining set. Shapley and Shubik [20} had previously shown that the Aumann-
Davis-Maschler bargaining set converges in replica sequences of TU exchange
economies with smooth preferences. We generalize the Shapley-Shubik result
to nonreplica sequences of NTU exchange economies with smooth preferences
and uniformly bounded endowments. The Aumann-Davis-Maschler bargain-
ing set differs from the Mas-Colell bargaining set only by the designation of a
single individual as the leader of an objection. The nonconvergence example
for the Mas-Colell bargaining set in Anderson, Trockel and Zhou [5] occurs
in a replica sequence of TU economies with smooth preferences; in the exam-
ple, the measure of the set of all individually rational Pareto optimal equal
treatment allocations which are not in the Mas-Colell bargaining set tends
to zero. It is remarkable that the designation of a single leader should make
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such a profound difference in the resulting bargaining set.

Smoothness of preferences is a strong assumption because it requires that
indifference surfaces not cut the boundary of the consumption set; in partic-
ular, it implies that at every Walrasian equilibrium, all agents with positive
income consume positive amounts of all goods. It may be possible to weaken
smoothness to a linkedness condition, as in Cheng [7], Propositions 7.4.12
and 7.4.16 of Mas-Colell {18], and Kim [16].

2 Preliminaries

We begin with some notation and definitions which will be used throughout.
Suppose z,y € R¥, B C R*. z' denotes the ith component of z; x > y means
' > 9 forall 4; 2 >y means z > y and = # ¥; = 3> y means z* > 3 for all
i el = S5, 27 lelleo = max{jal],---, 2"} RE = {z € R : 2 > 0);
RE. ={zr e R*:z > 0}. Ift € R, |t] denotes the greatest integer less
than or equal to t.

A preference is a binary relation »~ on Ri satisfying the following condi-
tions:

1. continuity: {{r,y) € RE, :z > y} is open;

2. tramsitivity: if z > y and y > z, then z » z;

3. negative transitivity: if 2 ¥ y and y ¥ 2z, then x ¥ 2; and
4. irreflexivity: z ¥ .

Let P denote the set of preferences. If =€ P, definex ~ y if ¢ ¥ y and
y¥ x,z = yifx>yorxz~ y Notethat the indifference relation x ~ 3 is
defined from the underlying strict preference relation x > v, and is not one
of the primitives of the specification of the economy. For some purposes, we
will need additional assumptions on preferences:

5. (a) strong monotonicity: z >y = 2 > y; or
(b) 1 strong monotonicity on RE,: 2>y € Ri, = 2>y
it. weak monotonicity on Rﬁ_: T>Y=T Y

iii. boundary condition: if y € RE, {z e RE : y ¥ 2} C RE;
and




iv. semismoothness: if z € Ri 4, there is an open ball B with
B > 1 such that x lies on the boundary of B; let p,, denote
the supremum of the radii of such balls.

6. strong convexity: if x # y, then either %9 > T Or %9 - .

Let
Pro = {€ P : =~ satisfies 5a}

Py = {~€ P : > satisfies 5} (1)

P,. = {~€ P : > satisfies 6}.

A set P C Py, is said to be equisemismooth if, for every compact K C Rf“H,
inf{p..: z€ K, =€ P} >0

An exchange economy is a map x : A — P x RE, where A is a finite
set. For o € A, let >, denote the preference of a (i.e. the projection of x(a)
onto P) and e(a) the initial endowment of @ (i.e. the projection of x(a) onto
RY). An allocation is a map f : A — RE such that 3 ,c4 f(a) = Y.caela);
let A(x) denote the set of allocations of the economy x. A coalition is a
non-empty subset of A.

A price p is an element of RX with ||p|l; = 1. A denotes the set of prices,
A’ ={peA:p>»0} Ifpe A let Dpa) ={z € Rt : p-z <
p-e(a),y oz =>p-y>p-e(a)}. Let M7 = max{[le(ar) +... + e(dm)]lco :
ai,. ..,y are distinct elements of A}.

Given z € RE, (>,¢) € P x RE, and p € A, define é(p,z, (>, ¢)) =
lp - {x — e}l +|inf{p- (y — ) : y » x}|. Note that, if > is continuous and
p > 0, then ¢(p, z, (>, e)) = 0 implies that x is in the demand set at price p
of an agent with characteristics (-, e). ¢ gives a quantitative measurement
of the extent to which z fails to satisfy the definition of demand. By a
slight abuse of notation, we let ¢{p, f,a) = &{p, f(a), (-, e(a))) if f is an
allocation, and ¢(p, z,a) = ¢(p, z, (>4, e(a))) if z € RE. Given f € A(x),
the average competitive gap of f is defined to be ﬁ Yaca (0, f, 0).




3 Convergence of the Geanakoplos Bargain-
ing Set

The Davis-Maschler definition {and implicitly, the Aumann-Maschler defini-
tion) of the bargaining set require that an objection be put forward by a
leader, an individual who proposes the objection. A counterobjecting coali-
tion is then required to exclude the leader. Geanakoplos modified this defi-
nition to require that an objection be proposed by a group of leaders, none
of whom can be included in a counterobjecting coalition. If § € [0,1}, a
d-objection is one in which the number of leaders is at most §|A|. Formally,
we have the following definition:

Definition 3.1 (Geanakoplos) Let x : A — P x RE be an exchange
economy, f an allocation. {S,U, g) is a §-objection to f if § is a coalition,
UcSs, %l <6,9:8 > RE, Tocsgle) < Taesefa), and

g(a) =, f(a) for all ¢ € S with strict preference for at least one a.  (2)

(T, k) is a counterobjection to (S,U, ¢) if T is-a coalition, TNU =0, h: T —
Riﬂl—’ EaET h’(a‘) S EaET e(a)ﬂ and

o = { 90 e Ts ®)

with strict preference for at least one agent a. A é-objection is justified if

there is no counterobjection. f is in the §-bargaining set, denoted Bjs(x), if
every d-objection to f has a counterobjection.t

We will present two main convergence theorems; the hypotheses of the the-
orems are incomparable, while the conclusions of the second theorem are
stronger than the conclusions of the first. In the first (Theorem 3.4), prefer-
ences are assumed to be strongly monotone and tight, i.e. for every ¢ > 0,

11t may be natural to impose additional restrictions on counterobjections. Zhou [22]
has proposed adding three restrictions: TnS #£ & T ¢ S; and § ¢ T. The third of
these conditions is automatically satisfied provided U # @. Note that imposing additional
restrictions on counterobjections makes it easier to propose a justified objection, and thus
makes the bargaining set smaller. Thus, the convergence results in this paper would still
apply if Zhou's additional restrictions were imposed.



Then

Z fala) = D(pn;a

a€A,

< Z 1/ (a) pma)ll - (11)

aEA,.

| nl
oo

Suppose x. satisfies

6. endowments are uniformly bounded, i.e.

sup{llen(a)]lcc : @ € An, n € N} < 00;5. (12}

Then Equation (9) (under Assumptions 1, 2, § and 6) and Equation (11)
(under Assumptions 1, 2, 4, 5 and 6) hold for all sequences 6, such that
S| An| — oo.

Definition 3.5 We say that a set P C Py, exhibits bounded marginal rates
of substitution if

JaV =€ PVz,y,z € RE ||zl < allylli.z +y—2z€RE
(13)
—z+y—z> T

Note that if P exhibits bounded marginal rates of substitution, there exists
a compact set K such that P C K C Ppo.

Theorem 3.6 Suppose
Xn ¢ An = Pro X RE (14)
is a sequence of economies satisfying the follounng conditions:

1. |A,| — o0

2.
sup -l T €0l < o0 (15)
n aCA,
and A
max{||e(a)]e : @ € Ay} 0 (16)
|Ar|
and



3. there exists 0 > 0 and a set P C Py, exhibiting bounded marginal rates
of substitution such that for all i

{a € A, : »,€ P, e(a) > o}
| An|

> 0. (17)

Then there exists §, — 0 and a compact set D C AY such that for all
fn € Bs, (xn) there exists p, € D such that

L{pn, fa)
— = (. 18
Al (19
Suppose x,, satisfies Assumptions 1, 2, and 3, and in addition

4. for all p > 0, there is a compact set K C Ppo N Py such that

Hoe A, ~,€ K}
| An]

>1-p. (19)

Then fn(a) — D{pn,a) converges to 0 in measure, i.e.

[{a € An : || fn{a) = Dpn, @)l > €}

Ve >0
| An

0. (20)

Suppose x, satisfies Assumptions 1, 2, and 3, and in addition

5. endowments are uniformly bounded, 1.e.

sup{ilen{0}]lec : @ € Apn, n € N} < 005, (21)

Then Equation (18) holds for all sequences 6, such that 8,14, — co. More-
over, given any sequence J, — oo, there exists &, — 0 such that

L(pn,fn) Jn
< .
[An] T 1A

vf'n. € Bﬁn(Xn) Hpn € D (22)

We need first to prove two lemmas.




Lemma 3.7 Suppose there is a compact set K C (Pmo U Pss) x RE, a se-
quence p, € A with p, — p € A\ AY, and a sequence of characteristics
(>n,€n) € K such that infp, - e, > 0. Then

inf{||zllec : z € D(pn, > n,en)} — 0 (23)
as n — 00.

Proof: If the conclusion is false, we can find a subsequence such that
=€ (Pmo U Pss), € — ¢ € RE| and there exists z, € D(py, =n, €n)
with z,, — z € Rﬁ_.

p'x':,f;li_)ngopn'xnénﬁ_{gopn'en:p'e>0- (24)
If there exists y with p-y < p-e and y > z, then there exists z with
p-z<p-eand z > z. For n sufficiently large, p, -z < p, - €, and z >, zy,

which contradicts the assumption that z, € D{p,, >, e,). Therefore, z €
D(p, =, e). We consider three cases:

1. H ~€ Ppo, then D(p, ~,e) = 0, since p € A\ AY, contradiction.

2. f »€ Py, and z € Ri +» then strong monotonicity on Rﬁ_ . and p €
A\ AY implies x & D(p, =, e), contradiction.

3. i =€ P, and z € RX \ RE_, note there exists y € Rk, such that
p-y = p-e. By the boundary condition, ¥ > z, contradiction.

Since all three cases lead to a contradiction, the proof is complete. m

Lemma 3.8 Suppose w € RE, B, C RE — w and
inf{l|z|le : z € B} — oc. (25)

Then
inf{||z||w : = € con B,} — oo. (26)

Proof: If not, then we may (by taking a subsequence) find M € R and
z, € con B, with ||z,llee € M. By Caratheodory’s Theorem, for each
n, there exist convex coefficients Ang,..., A and zn; € Bo(0 < 7 < k)
such that Zf:o Aipi = T,. Given any y € Rﬁ and ¥1,...,Ym € Rﬁ_ with
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Y=+ Ym 3 (Wlloo + o+ Jmlloo) < Holloo < ftnlloo + -+ -+ tmlloo-
Therefore,
”xn + w”oo 2 %Ei’c:[} Ai“mni + w”oc:

2 %min{“"ﬂno+w|iooa---1||$nk+wHOO} (27)

> +min{|lz + w||w : T € Bp} — .
m

Definition 3.9 Suppose x : A — P x R% and f € Bs(x). Let m = ||A4|6].
Ifae Aandpe A, define

I{p,a)=inf{p-z:2 =, f(a)}
L(p, f,a) = L{p,a) = max{p - e(a) — I(p, a), 0}
L(p)(z L{p, ) = 2ecA L(p,a)

Alpy={a€ A:|{b€ A: L(p,b) > L(p,a)}| < m} (28)

Blp)={a€ A:|[{be A: L(p,b) > L(p,a)}| < m}

Clp,a) = D(p, (~a, (I(p, 0), - -, I(p; 0))))

where D is the demand as defined in section 2. Thus, I(p, a) is the minimum
income needed for a to achieve the utility level of f(a). L(p,a) is a’s income
loss at the price vector p, i.e. the amount of income a could forego while still
achieving the utility level of f(a); L({p) is the aggregate income loss over all
agents. B(p) is the set of agents with the m biggest income losses (including
agents tied for the mth biggest loss if there is a tie), while A(p) is the set of
agents with the m biggest losses, excluding agents tied for the dth biggest
loss.® Furthermore, A{p) C B(p) with equality unless the mth and m + 1st

SMore precisely, fix t € Ry and let § = {a € A : L(p,a) = ¢}, T = {a € A :
Lip,a) > t}. Then S C B{p) it [T| < m and SNB{p) =0 iff |T| > m. § C A(p) iff
ITUS|<mand SNA(p) =0iff [TUS| > m. Notice that SN A{p) £ 0 < § C A(p) and
SAB(p) 8+ S C Blp).
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(e) We show that v, is upper hemicontinuous on A? for each a € A.
Suppose p € AP, Then there exists a neighborhood V of p and
o > 0 such that g € V = min{p*,---p*} > a. If (¢,2) € 7.(q) for
someg € V,wehavet € {0,1}, gz < O0and z > — ¥, cae(a). Ac-
cordingly, there is a compact set K containing UgevYa(q). There-
fore, it suffices to show that +, has closed graph at p. Accordingly,
suppose that p, — P, (tn,Tn) € Ya(Pn), and (t,,z,) — z. Note
that if « & B(p), then a & B{p,) for n sufficiently large; and if
a € A(p), then a € A(p,) for n sufficiently large.

i. I f(a) =. D(p,a), then f(a) >, D(pa, ) for sufficiently large
n.
A If ¢ &€ B(p), then o & B(p,) for n sufficiently large, so

Ya(Pr) = {(0,0)} = %(p)-

B. Ifa € B{p)\ A(p), then v,{p,) is defined by either the first,
second, or third line of Equation (29), 80 v.(pn) C Ya(p)
for all sufficiently large n.

C. If a € A(p), then a € A{p,) for all sufficiently large n, so
'Ya(pn) = {(1, U)} = 7(p)..

ii. If f(a) ~a D(p,a), there are three subcases to consider:

A. If a & B(p), then a & B(p,) for n sufficiently large. Ac-
cordingly, 7.(p,) is defined by the first, fourth, or sev-
enth line of Equation (29). Since demand is upper hemi-
continuous, lim sup v,(p.) C 7.(p) in all three cases, so
(t,2) € v(p). °

B. If a € B(p) \ A(p), 7Ya(pn) could be defined by any of the
nine cases in Equation (29). However, lim sup D(p,,a) C
D(p,a). Moreover, I(p,,a) — I(p,a) = p - e(a) since
f(a) ~, D(p,a), so limsup C(p,,a) C D(p,a). From this,
it follows that lim sup v,(p,) C 7v.(p).

C. If a € A(p), then ¢ € A(p,) for n sufficiently large, so
Yo(ps) is defined by the third, sixth or ninth line of Equa-
tion (29). As in item 1(e)iiB, limsup C(pn,a) C D(p,a),
50 lim sup Ya(pn) C 7a(P).

5Given a sequence of sets C,, C R*, limsup C,, = {z € R* : there is a subsequence n;
and ¢; € C,, such that ¢; — z}.
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iti. If D(p,a) >, f(a), then D(p,,a) =, f(a) for all n sufficiently
large. :

A If o & B(p), then ¢ ¢ B(p,) for all sufficiently large
7, 80 Yo{p,) and ~,(p) are both defined by the seventh
line of Equation (29). Since D is upper hemicontinuous,
lmsup va(pa) C 7alp).

B. If a € B(p) \ A(p), then v,(p,) is defined by the seventh,
eighth, or ninth line of Equation {29). Since D and C are
upper hemicontinuous, lim sup v,(p,} C 7.(p).

C. If a € A(p), then a € A(p,) for all sufficiently large
n, SO Ya(pn) and 4,(p) are both defined by the ninth
line of Equation (29). Since € is upper hemicontinuous,
lim sup Ya(pr) C va(p).

(f) We will show that ['(p) is upper hemicontinuous as a function
of p € A% Suppose p, — p € A and z, € I'(p,). Observe
that pn -, < 0 and z, > — 3,4 ¢(a), so there is a compact set
containing all z, for n sufficiently large. Thus, it is sufficient to
show that :

Zn, — ¢ = z € I'(p). (37)

By Caratheodory’s Theorem, there exist convex coefficients A,;(0 <
i < k), and z,;, € RF with {m,2,;) € I'(p,) such that z, =
% 0 AniTn;. Consequently, there exist (fniq,ZTnia) € Yo{pn) such
that
M=) tnia ad Zn; = Y Tnia- (38)
aEA aEA
By taking a subsequence, we may assume without loss of gener-
ality that A — Agiy thie — f0ia;, 80d Znig — Zoia 88 7 — 00.
Since (toia: Toia) € Ya(p) for each i € {1,...,k} and each a € A;
IOTEOVer, D .c 4 tnie = ™ for each ¢ and a. Therefore, letting

k
Lo = Z Ao Z Lia, (39)
=0

eEA

we see that 2o € IV(p) and zy = lim,_.., #,. This shows that [ is
upper hemicontinuous on A°.

15




(g) Suppose p, — p € A\ A®. We will show that either Equation
(33) is satisfied or -

min{||z||le : z € T'{(pa)} — o0. (40)

Let (m,xn) € T(pn). Then m = 3 catne a0d Ty, = X gc 4 Tna With
(tnmxna) E 70-( n)
i. Choose a sequence a, with t,,, = 0 and

L{pn,an) = L(py,, a) for all ¢ with t,, = 0. (41)

A. If there is a subsequence p,, such that L(p,,.a.,) — 0,
then

L(pni) = zaEA L(pni ) a’)

< Yocatnal(pny a) + (JA] ~ m)L(pn;, an,)
(42)
< Pacatnapn (@) + [AlL(pn;, an,)
M+l

for n sufficiently large, which establishes Equation (33).
B. If there exists p > 0 such that L{p,, ¢,,) > p for all n, then
Dn-e(an) = pfor all n. Since L(p,,a,) > 0, D(p,,an) =a,
fla,); since thq, =0, Tne, € D(pn,a,) —e(a,). Since =,
comes from the finite family {>,: a € A} C (Pmo U Pss)

and py, - elan) > p, min{||z||e : 2 € D(pn,a,)} — oo by
Lemma 3.7. Since in addition z,, > —e(a) for all a € A,

min{|jz/|e : (m, ) € T(pa)} — o0 (43)
Then
min{}lz||e : z € IV(pn)} — (44}
by Lemma 3.8.

ii. Suppose Equation (35) is satisfied. Find P which exhibits
bounded marginal rates of substitution (with constant a} and
T > 8, ¢ >0, such that

Vi Hae A: e(a|)A|> o, ,€ P}| S

3T. (45)
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Let .
M = 75l Zeeaelo)ly

Spn={a€A:p, ela)>%, (46)

||f(a’)||1 < M: tna = 0, € P}

A. We claim that JiSTnIl > 7. To see this, note that there exists
in such that p7 > 1. Then
1S.] > |{a € A:ela)” >0, =,€ P}H
—H{ae A:|fla)lh = M} — {a € A:tna =1}

15 7@l
> 37| A} — Lezeea IO _

> 37|A| — ﬂﬁﬂ —7|A| = 7|4

(47)
B. For n sufficiently large, there exists 4, such that
; a
< g 48
Pn  kaM (48)
Let
Yo = (0,...,0,aM,0,...0), (49)

where the non-zero entry occurs in the (i,,)** component.
Then

22 [2)
n Y S| = ) oM = —. 50
Py “‘(kaM)a % (50)

If a e Sn’ yn = f(a‘) +yn - f(a’) >_f1 f(a')v Since ”yn”l =
aM > alif(a)||;. Therefore, if a € S,, D(pn,a) =, fla)
and tn, = 0, 80 Tpa € D(ps,a) — e(a). Therefore,

T = EaeA Tnao Z EaESn Tng — EaEA\Sn 6((1)
(51)
= 2 acs, (Tne +e(a)) — Locaela).
Observe that

” 2 aeS, Tne + e(a)”oo

> A inf{|lz)ls : & € D(pn, >, ), Pr-e> &, >€ p(} |
52) -
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(b)

50
”ﬁxn”cﬂ

> rinf{llzfle 2 € D(pn,>-— €), Pn-€> ¢, =€ P}

” 4] 2oacA e(a)||oo
(53)
which tends to infinity by Lemma 3.7. Therefore,
min {N’JI :(m,z) € T(p,)} — o0, (54)
mm{”dr’ (m,z) € I'(p,)} — o0 (55)

by Lemma 3.8. Note that the rate depends only on o, 7,
P, and 5l Soca o(a) o
Recall that

M) ={z—(p-2,---,p-2): 2 € '(p)}. (56)

The following properties of I'” follow from the corresponding prop-
erties of I':

i. If z € I'"(p), then p-z = 0.

ii. I"(p) is nonempty and convex-valued for all p € A
ili. I"(p) is upper hemicontinuous as a function of p € A°.

iv. If pp —p€ A\ A? then min{||z]|e : z € T"(pn)} — 0.
Therefore, by Theorem 8 on page 722 of Debreu [9], there exists
p € AY such that 0 € I''(p). But then there exists x € I'(p) such
that z = (—s,...,—s) for some s > 0.
Suppose Equation (35) holds. By item 1(g)ii, there is a positive
constant C (depending only on o, 7, P and ﬁ” >aea €(a)]|s) such
that if C, < C, then z € I"(p) implies ||Z]jc > || Zaca e(@)]]oo-
But if p is chosen as in item 1h, there exists z € I'(p) with x < 0.

Since z 2 — 2 .caela), |2l < || Taea e{a}]|oo, contradiction.
Hence, C, > C.
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. Let A =sup{s: (—s,...,—8) € (p)}, 2 = (—=},...,=A), n = |A|.®
We claim that n
L(p) < Pz (57)

By the definition of z, there exists A’ such that (X,..., ) € I'(p) and
p-z<p- (N, N)= XN, By the definition of I'(p) (Equation 31),
(N,...,X) €con {z € R*: (m,z) € T(p)}. (58)

Therefore, there exists (m,z) € I'(p) such that p-z > p-(N,..., X} =
N > p-z. There exist (t,,Z.) € Ya(p) such that (m,z) = Toealta, Ta).
Ift, =0, then z, € (D{p,a) U{0}), s0 p- 2, = 0. We will show that,
whenever {, = 1, p- 2, = —L(p,a). Suppose £, = 1.

(a) If D(p,a) >, f(a), then z, € C(p,a) — e(a) and thus p-z, =
I{p,a) —p- e(a) = ~L(p,a}.

{(b) If f(a) ~4 D(p,a), then z, € (D(p,a) — e(a)}U {0}, 50 p- 2z, =
0= —L(p,a).

(c) If fla) =4 D(p,a), then 2, =0,50 p- 2, =0 = —L(p,a).
Number the agents in A so that
'L(pﬁa'l) EL(p,CEg) _.>.. EL(p7an) (59)

If B(p)\ A(p) # 0, let L be the common value of L(p,a) for a €
B(p) \ Alp).

p-2<pt=—Tacatal(p,0) = = [Locar L(p, a) + (m — |A(D)|) L]

= — 37 L(p,a;) < 2 L(p),

(60)
so L{p) < —Zp- 2.
. We claim there exists (¢,z) € ['(p) with 0 < ¢ < m such that
NEHL LY ias.
< X 2. 1

80ne can show that z € I'(p), but we will only use the fact that z € I"(p).
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Since >, € ProUPss, »a, is weakly monotonic on RE:; by
Lemma 2.1 of Anderson, Trockel and Zhou [5], g(ag) >,
f(ao)-

Therefore (S, U, g) is a 6-objection to f.

ii. Suppose (T, h) is a counterobjection to (S, U, g), so TnU = .
Then

h{a} =4 g(a) € D(p,q)
=p-hla) >p-e(a) foraeTn(S\{a})

h(ao) =aq 9lao) € D(p,ag) ~

=p-hlap) >p-e(a)ifaeT (77)

ha) =, fla) =o D(p,a)
=p-hla)>p-ela)forae T\ S,

with strict inequality for at least one a € T. Accordingly,

p-y ha)y=>p-hla)>> p-elay=p- > e(a). (78)

acT acT ‘acT acT

Since p € A, this contradicts 3,7 h{a) < et ela).

Thus, (S,U, g) is a $-objection to f with no counterobjection, and
f & Bs(x), a contradiction.

5. Combining steps 3 and 4, we conclude that there exists i such that

) Mk+1
PAR— (79)
P
But z = (=A,...,=}), s0
Mk+1 Mk+1
2> | ——e X ) (80)
( Cp Cy
Therefore,
Mk+1
x> X 81
P2z (81)
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0 )
nMX+1

mCp,
by Equation (57), establishing Equation (34) and completing the proof.

L{p) < (82)

"
Proof of Theorem 3.4: Suppose that Assumptions 1, 2 and 3 hold. Since

|An| — oo, % — 0. Since the endowment map is uniformly integrable,

—& 0, (83)

Therefore, we can choose 4, — 0 sufficiently slowly that

k+1

———Ln—” — {. (84)

6| An| — o0 and A

Notice further that if Assumption 6 is satisfied, then Equation (84) is satisfied
for any sequence &, such that 6,|4,] — co.
Suppose we are given 0, such that Equation (84) is satisfied and f, €

Bén (X'n-) *

1. If 6, # 0, we can choose 8§, < &, such that §, — 0 and Equation
(84) is still satisfied. Since 8], < &, Bs,(xn) C By (xn), 50 fn € Bs:.
Therefore, we can assume without loss of generality that §,, — 0. Since
the endowments are uniformly integrable,

bnlAnll
Mfl4nl

] — 0. (85)

2. Let p, be chosen with respect to f, as in Proposition 3.10. We say
L(pn, fa,-) converges to 0 in measure if

Vp >0 HaEAn: L(pmfnaa)>p}| R

A 0. (86)

There are two cases to consider:
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(a) If L(pn, fn, ) does converge to 0 in measure, then since L(p,, fn,a) <
Pr-en(a) < |len(a)]lo i8 uniformly integrable, L(p,, fn, ) converges
to 0 in mean, i.e.

E:aeAn-L(pn,fﬁ,a)
| An|

- {, (87)

which establishes Equation (9).

(b) If L(pn, fn, -) does not converge to 0 in measure, we will use Propo-
sition 3.10 to derive a contradiction. There exists p > 0 such that

{a € Aw : L(pn, fr, a) > p}|
| Al

> 4p (83)

for infinitely many n; by taking a subsequence, we may assume
without loss of generality that Equation (88) holds for all n. From
Proposition 3.10, we are in one of two cases:

1.
L(p f2) (Mlén'f*ﬂ'f 1)
2n) o [ xa -0 89)
| 45| |An (
by Equation (85); but this implies Equation (86), contradic-
tiom.
i M+
L
gt (L) (ME)
|An| HAnlbn) J \ G,
where
0eT(pn). (91)
If we knew that C,, were bounded away from 0, Equations
(84) and (90) would imply Equation (87), which in turn im-

plies Equation (86), a contradiction. Thus, we shall show
that C,, is bounded away from 0. If not, we may (by taking
a further subsequence) assume without loss of generality that
pn — p € A\ AL If ([6:]4s]], 20) € T(p,), there exist t,,

and z,, such that
Tp= Y Tna (92)
a€An
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where (tne, Tna) € Ya(Prn) and Yoea, tne < 6n|A,|. Since the
endowments are uniformly integrable, there exists M such
that for all n,
1 .
mll > en(a)llw < M, (93)

a€EAn

80 that .
a € A, |lenfa)lo < 5
focd Jo@ln By, gy

There is a compact set K C P, such that the following
inequalities hold for sufficiently large n:

|{e€An: L{pn,fa,0)>p}|
ljnl G2PH > Ap

{0€AR: > €K} >1-—

|4n] P
Ha€An: [len (@)l 52} ®5)
A v loe
jGGAFA:fE.u=0t > 1 _ p.
Therefore, if
Sp=1{a € An: L{pn, fa,0) > p, >.€ K, (96)
len(@Mloo < %iatna = 0},
then 5|
A > p. (97)

For all @ € 8y, Zna € D(pn,a) — en(a) and p, - ¢,(a) >
L(pny frya) > p, so min{||zplee : ¢ € Sp} — 00 as n — oo
by Lemma 3.7. Since
1
| Al

3N a2 —ﬁ > eqla) (98)

a€AR\Sn aEAn

which is bounded, ||z,}lee — o0. Thus,

inf{}|z]|oc : (|6a|Anll, z) € T'(pn))} — 0. (99)
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By Lemma 3.8, inf{||z|laz € T"(p,)} — oo, which shows'
that 0 & I''(p,), a contradiction. :

3. Step 2 established Equation (9). Now suppose Assumptions 1, 2, 3 and
4 hold. The proof” of Lemma 4 of Anderson [2] shows that there is a
compact set D C A such that, for any sequence {f,,pn) € A{xn) x A"
satisfying Equation (9), {p, : n € N} C D.

4. Now suppose that Assumptions 1, 2, 4 and 5 hold. The proof of Theo-
rem 3 of Anderson [2] shows that for any sequence (f,., pn) € A(xn)x D
satisfying Equation (9), (f., p.) satisfies Equation (11).

n
Proof of Theorem 3.6:

1. Suppose that assumptions 1-3 hold. Since

max{fle(a)llw : 0 € Au}

|Ax|

M>lcc+1

|Ax|

Therefore, we can choose 9, — 0 sufficiently slowly that
Mk—;—l

[ IA 1

Notice further that if Assumption 5 is satisfied, then Equation (102)

holds for any sequence &, such that é,|A,| — co.

— 0, (100)

- 0. o (101)

— 0. (102)

2. Suppose we are given 6, such that Equation (102) is satisfied and f,, €
Bs, (xn). As in the Proof of Theorem 3.4, we can assume without loss
of generality that §, — 0. Therefore, for n sufficiently large, we have

6n<-‘3’-. Let 7 = Z.

" The statement of Lemma 4 assumes that preferences come from a equiconvex fam-
ily. In the proof, equiconvexity is only applied to pairs of vectors of the form z and
z+(1,0,...,0) toshow there is a ball of radius bounded away from 0 around z+(3,0,...,0)
which is preferred to z; a compact family of monotone preferences directly implies the
existence of such a balll Lemma 4 also requires that there exist v > 0 such that

H%Zﬁﬂ > ~, but this is implied by Assumptions 2 and 4.
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3. By Proposition 3.10, because ¢ = 37, we may choose p, such that

0€T"(p,) and
L(pmfn) 1 M)icjl
< () (8) 103

where C,, is bounded below by a positive constant depending only on
o, P, and 351l Zaca, e(a)||o. This shows that ﬂ% — 0.

4. Suppose Assumptions 1, 2, 3, and 4 hold. The proof of Theorem 3
of Anderson [2] shows that for any sequence (f,p.) € A(xn) X D
satisfying Equation (18), (f,, p.) satisfies Equation (20).

5. Suppose Assumptions 1, 2, 3 and 5 hold and J, — oo. We can assume
without loss of generality that ET{Z_I — 0. Let

k+1
M

bn = T

(104)
Since ME*! is bounded, C,, is bounded away from 0, and J, — oo, it

follows that &, — 0, and 6,]A,| — oo. It follows from Equation (103)

that
L(pn:fn) < Jn
Al 7 A

(105)

4 Convergence of the Aumann-Davis-Maschler
Bargaining Set

Definition 4.1 Suppose ¥ : A — P x Rﬁ is an exchange economy. The
Aumann-Davis-Maschler bargaining set, denoted Bapm{x), is the Geanako-
plos bargaining set in which the set of leaders is required to consist of a single
individual,

Bapm(x) = B (X). (106)

Al
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Remark 4.2 Aumann, Davis and Maschler actually require that an objec-
tion be proposed egainst a single person, who is then required to belong to
the counterobjecting coalition. Since Definition 4.1 permits more potential
counterobjections, it makes it harder to mount a justified objection, and thus
results in a larger bargaining set than the original Aumann-Davis-Maschler
definition. Thus, our convergence result inplies convergence of the Aumann-
Davis-Maschler bargaining set, as originally defined.

Remark 4.3 Some comment on the relationship between the Aumann-Davis-
Maschler and Geanakoplos bargaining sets is in order.

1. In a game with an atomless measure space of agents, an individual
player makes no difference to the game. Hence, if one interprets the
leader as a single individual, there is no difference between the Mas-
Colell and Aumann-Davis-Maschler bargaining sets in atomless games.
This motivated Geanakoplos to consider leader sets of small positive
measure as the appropriate extension of the Aumann-Davis-Maschler
bargaining set to continuum games. However, in the nonstandard hy-
perfinite games considered by Geanakoplos (as well, of course, in large
finite games), an individual leader makes sense. What is surprising
is that, given smooth preferences, an individual leader makes a differ-
ence. In the light of the nonconvergence example for the Mas-Colell
bargaining set in Anderson, Trockel and Zhou [5], which satisfies all
the assumptions of Theorem 4.4, we see that allowing a single leader
can shrink the bargaining set from essentially. every individually ra-
tional Pareto optimal allocation to a set of allocations which are ap-
proximately competitive. There appears to be no way to capture the
importance of a single leader in a continuum model.

2. The leaders in an Aumann-Davis-Maschler or Geanakoplog objection
play a coordinating role. An allocation not in the core may yet emerge
from a bargairing process because a coalition which can object to it
does not form, either because the members of the coaltion are unaware
that it is feasible for them to object, or because the members of the
coalition cannot agree on how to divide the surplus available to them
from objecting. A leader’s lot is not a happy one. In the proof of
convergence of the Aumann-Davis-Maschler and Geanakoplog bargain-
ing sets, the leaders achieve the same utility at the objection g as at
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the prevailing allocation f. By sacrificing their interests in dividing
the surplus to be gained by objecting, the leaders enhance the welfare
of the remaining members of the objecting coalition, thus immunizing
these non-leaders from the blandishments of a counterobjection. More-
over, the leaders precommit not to join a counterobjection, even if it
would be in their interests to do so; in effect, like the signers of the
American Declaration of Independence, the leaders pledge their “lives,
fortunes and sacred honors” to the principle that the prevailing allo-
cation is unfair. This creates a serious free rider problem; each player
in the potential objecting coalition would prefer to have other people
assume the leadership role. Given the dubious benefits of becoming a
leader, a justified objection with a few leaders (or better yet, just one

- leader) seems inherently more likely to form than one requiring many
leaders, even if the many leaders represent a small fraction of the popu-
lation. Any unmodeled benefit of leadership (such as popular acclaim)
will likely be greater to each leader if the number of leaders is small,
Moreover, a large group of leaders, even if they are willing to sacrifice
their interests for the common good, may have trouble coordinating
on an allocation of goods to the non-leader members of the objecting
coalition. For these reasons, the Geanakoplos bargaining set may be
too small as a positive solution concept for the bargaining problem, and
establishing convergence of the Aumann-Davis-Maschler bargaining set
is desirable. ’

Theorem 4.4 Suppose

Xn b An — Py X Rﬁ. (107)

1§ a sequence of economies satisfying the following conditions:
1. 1A, — oo;
2. endowments are uniformly bounded, i.e.

sup max ||e(a)]lee < 00; (108)
neN ¢€4n

and
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3. there 15 a compact equisemismooth set P C P,y and a compact set
K c R, such that

Ha € A, : ».€ P,ey(a) € K}
| An|

— 1. (109)

Then there is a compact set D C A° such that for all fn € Bapp(xn) 3p, € D

such that L( f )
pn; n

Ml L. 110

AL (110)

Suppose Xy satisfies Assumptions 1 and 2, and in addition

4. Assumption 3 holds for some compact set K C Py N Pe.

Then

Y £4(@) = Do a)|| < = 3 |1fal@) = D(py )], — 0. (111)
|An[ acA, oo 1An|aEAn
Proof:

1. First, we show that given f, € Bapa(xn), we can find p, € A® such
that Equation (110) holds.

(a) By Proposition 3.10, there exists p, € A” such that either
i.
L(pmfn) M;n“{’"l
Al 7 [An]
by Assumptions 1 and 2; or
i. 0€I"{(p,).

Thus, for the purpose of establishing Equation (110), we can as-
sume without loss of generality that 0 € T"(p,,) for all n.

b) Let §, = —. Follow item 2 of the proof of Theorem 3.4, sub-
{An]

k41
stituting Pss for Pp.,; since —l%flﬂm need not tend to zero, this

does not produce a contradiction, but it does show that there is a
compact set D C A° such that p, € D.

—0 (112)
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(¢) Since

[{a€An:(~u en(aNEP x K}

nl

— 0, we may find r, such that

T 0
(113)

Tn — {6 € Ay i (-4,e0(0)) € P X K} — oo.

By Assumption 2, % — 0. If there exists g, € A® such that
H{a € A, 1 D(gn,a) »a fa{a)}| < 7, then

L(gn, fn) = Mg
< D g, (114)
|A,| | An|

Hence, we can assume without loss of generality that
vneN Yge A |{a € A, : D(pn,a) =q fula)} > . (115)

By item 3 of the proof of Proposition 3.10, there exists (t,,z,) €
I'(p,) with ¢, € {0,1} such that

M’“"‘l ME+HL
S — ), (116)

Ty < 2p+ {22 :
e (Cpn, ’Cpn

where z, lies on the negative diagonal and L%—‘—;%‘-) iy -
Note that p, - 2, > —M, , 50 0 > 2z, > —(My,,..., M} ). A

slight rearrangement of the argument (in particular, in item 3c)
shows that

Mk-;—l Mk:+1
ZEnEZn— Az 3" X2 ): (117)
( Cpn CPn
50 k+1
M
17nlleo < ll2nlloo + ~2—. (118)
Pn
Therefore,
k+1
sup [|znflee < sup M, + —X— < 0. (119)
neN neN cpn
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(e) Since (tn,=n) € ['(p,), there exists g, : A, — R and ¢, : A —
{0,1} such that ¥ ,ca_ gn(a) — en(a) = z, and 3 ,cq, ta(a) = 1.
Let S, = {a € Ay, : gu(a) # e(a)}, and 3,(a) = {y e RE 1 y =,
gn(a)} for a € S, and T, = T,cs 4n(a). Ttem 4 of the proof of
Proposition 3.10 shows that there is no y in I, with y < 0.

(f) |Sn| > 7. Let
Sn={a €8, (~a,en(a)) € P x K, t,(a) = 0}. (120)
Then
1Sl > 70— [{a € An : (masea(a)) P x K} ~1— 0o (121)
Lemma 3.6 of Anderson [3] shows that

[ ? |z’

2 0esn Praga(e) 2 Lacs, Prugn(a)

PncZn > — (122)
If a € Sn, gu(a) = D(pn,a) =, ea(a), and p, - gula) < py, - ea(a),
s0 gn(a) €

{yeRt:3>cPIecKyre,

Wlleo < 5UD, Gy sup{ 20 : = € K}} (123)

which is a compact subset of Ri +» since P is a compact subset of
P,s and K is a compact subset of Ri + Since P is equisemismooth,
there exists a > 0 such that p, gy > a for all a € S, 80
Dn - Zn — 0, 80 9—%’%‘:’%’3 — 0, establishing Equation (110).

2. Assumption (3) implies that liminf, o Tﬁlﬂzﬂe 4, en(a) > 0. The
proof® of Lemma 4 of Anderson [2] shows that there is a compact set

D c AP such that, for any sequence (f,,p,) € A(xn) x A® satisfying
Equation (9), {p,:n € N} C D.

3. The proof of Theorem 3 of Anderson [2] shows that for any sequence

(fn,Pn) € A(xn) % D satisfying Equation (110), (f.,p,) satisfies Equa-
tion (111).

8See footnote 7 for further details.
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