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Notation

Rn n-dimensional Euclidean space

R The set of all real numbers

R≥0 The set of all nonnegative real numbers

R>0 The set of all positive real numbers

Z The set of all integers

N The set of all positive integers including zero, i.e., {0, 1, 2, · · · }

B The closed unit ball, of appropriate dimension, in the Euclidean norm

I The identity matrix, of appropriate dimension

⌊x⌋ The floor of x ∈ R is ⌊x⌋ = max{m ∈ Z : m ≤ x}

⌈x⌉ The ceiling of x ∈ R is ⌈x⌉ = min{m ∈ Z : m ≥ x}

(v, w) Given vectors v ∈ Rn and w ∈ Rn, we write [v⊤, w⊤]⊤ as (v, w)

⟨v, w⟩ The inner product of vectors v ∈ Rn and w ∈ Rn, namely, v⊤w

|v| The Euclidean vector norm |v| =
√
v⊤v and the associated induced matrix

norm

|v|∞ The infinity vector norm |v|∞ = maxi |vi| for v = [v1, v2, · · · , vn]⊤

eig(A) The set of all eigenvalues of a square matrix A

λmin(A) The minimum eigenvalue of A is λmin(A) = min{λ/2 : λ ∈ eig(A+ A⊤)}

λmax(A) The maximum eigenvalue of A is λmax(A) = max{λ/2 : λ ∈ eig(A+A⊤)}

tr(A) The trace of a matrix A ∈ Rn×n is tr(A) =
∑n

i=1 aii

vii



cond(A) The condition number of an invertible matrix A is cond(A) = |A−1||A|

|A|F The Frobenius matrix norm |A|F =
√

tr(A⊤A)

|x|S The distance of a point x ∈ Rn to a set S ⊂ Rn, i.e., |x|S = infy∈S |y− x|

clS The closure of a set S

int S The interior of a set S

S \ U The set difference between S and U is S \ U = {x ∈ S : x ̸∈ U}

supS The supremum of a set S ⊂ R is the smallest y ∈ R such that x ≤ y for

all x ∈ S

ess sup f The essential supremum of a measurable function f : M → R, where

M is a measure space, is the smallest c ∈ R such that the set {x ∈M :

f(x) > c} has measure zero

∥f∥∞ The infinity norm of a function f :M → Rn is ess sup{|f(x)| : x ∈M}

L∞ A function f : M → R is a class-L∞ function, also written f ∈ L∞, if

ess sup f is finite

K∞ A function f : R≥0 → R≥0 is a class-K∞ function, also written f ∈ K∞,

if f is zero at zero, continuous, and strictly increasing, and unbounded

KL A function β : R≥0×R≥0 → R≥0 is a class-KL function, also written β ∈

KL, if β is nondecreasing in its first argument, nonincreasing in its second

argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0

for each r ∈ R≥0

domH The domain of H : Rm → Rn is domH = {x ∈ Rm : H(x) ̸= ∅}

rgeH The range of H : Rm → Rn is rgeH = {y ∈ Rn : ∃x ∈ Rm s.t. y =H(x)}

gphH The graph of H : Rm → Rn is gphH = {(x, y) ∈ Rm×Rn : y =H(x)}
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Abstract

Parameter Estimation for Hybrid Dynamical Systems

by

Ryan S. Johnson

Estimating the unknown parameters of a system is critical in many engineer-

ing applications, such as the control of power electronics, motion planning for

autonomous cars, flight controllers for aircraft, and rendezvous and docking con-

trollers for spacecraft. While modern continuous-time and discrete-time estimation

algorithms have found widespread use throughout engineering, the recent rise of

hybrid modeling paradigms highlights their limitations. Hybrid systems are charac-

terized by state variables that may evolve continuously (flow) and, at times, evolve

discretely (jump). When applied to hybrid systems, the parameter estimation error

for purely continuous-time or purely discrete-time estimation algorithms may fail

to converge to zero. Motivated by these shortcomings, this dissertation focuses on

developing novel parameter estimation algorithms for hybrid dynamical systems.

The first algorithm, developed using hybrid systems tools, is inspired by the

continuous-time and discrete-time gradient descent algorithms. Our proposed

hybrid parameter estimation algorithm operates during both the flows and jumps

of a hybrid system, and guarantees convergence of the parameter estimate to

the true value under a notion of hybrid persistence of excitation that relaxes the

classical continuous-time and discrete-time persistence of excitation conditions.

Key properties of the algorithm are established, including exponential stability,

convergence rate, and robustness to measurement noise.

The second algorithm is inspired by the recently proposed integral concurrent

learning algorithm. Our proposed hybrid algorithm selectively stores measurements

xiv



of the inputs and outputs of a hybrid system during flows and jumps. The algorithm

guarantees convergence of the parameter estimate to the true value if the stored

data satisfies a (hybrid) richness condition. Key properties of the algorithm are

established, including exponential stability, convergence rate, and robustness to

measurement noise.

The third algorithm uses hybrid systems tools to estimate in finite-time the

unknown parameters of a class of continuous-time systems. Our proposed hybrid

algorithm ensures convergence of the parameter estimate to the true value when

the system inputs are exciting over only a finite interval of time. As a result, the

algorithm can also be employed to estimate unknown parameters of hybrid systems

if the inputs are sufficiently exciting over a single interval of flow. Key properties

of the algorithm are established, including time to convergence and robustness to

measurement noise.

The fourth algorithm estimates unknown parameters for hybrid systems whose

jump times are known only approximately. By solving an optimization problem to

estimate the jump times of the system, our proposed algorithm ensures convergence

of the parameter estimate to the true value, except possibly during the intervals

wherein the detection of jumps is delayed. Key properties of the algorithm are

established, including stability and robustness to perturbations.

The contributions of this dissertation are not limited to the theory of parameter

estimation for hybrid systems, as they have implications in adaptive control

algorithms for practically relevant engineering control systems. For such systems,

we develop methods for the design of algorithms that learn and adapt using real-

time data to cope with unknown parameters and features in the environment, to

enable autonomous systems to perform near optimal conditions, with robustness.

Numerical results validate the findings.
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Chapter 1

Introduction and Motivation

1.1 Overview of the Work

The estimation of unknown parameters in dynamical systems has been an

active research area for years [54]. Parameter estimation algorithms typically

rely on exploiting information about the structure of the system along with the

available input and output signals to compute online an estimate of the unknown

parameters. One of the most popular estimation problems is recursive linear

regression, for which the estimation scheme is often based on the gradient descent

algorithm [37, 54]. For dynamical systems, control strategies leveraging estimation

algorithms, such as model-reference adaptive control, are used in many engineering

applications [19, 20].

More recently, there has been a growing interest in hybrid dynamical systems.

Much work has been done on parameter estimation and system identification for

specific sub-classes of hybrid systems, such as switched systems [21, 26, 42, 43]

and piecewise-affine systems [4, 8]. However, these systems exhibit nonsmooth but

continuous evolution of the state variables, rather than jumps in the state variables.

Hence, such results are not applicable to a general class of hybrid systems.
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In this dissertation, we develop algorithms for estimating unknown parameters

in a general class of hybrid dynamical systems. These algorithms leverage informa-

tion provided during both the flows and jumps of a hybrid system to adapt the

parameter estimate. Using hybrid systems tools [22, 45], we establish the stability

and robustness properties induced by our proposed algorithms.

1.2 Properties of Time-Varying Hybrid Systems

The parameter estimation algorithms that we develop in this dissertation result

in the parameter estimate having (hybrid) time-varying dynamics. Thus, in order

to analyze the properties induced by these algorithms, we first establish properties

induced by a general class of time-varying hybrid systems.

1.2.1 Related Work

Much work has been done on analyzing the properties induced by time-varying

continuous-time and discrete-time systems [3, 31, 57, 63]. Recently, for hybrid

systems, the paper [48] studied a general class of hybrid systems in order to establish

the stability properties induced by an algorithm for hybrid linear regression.

1.2.2 Contributions

The main contributions of the forthcoming Chapter 3 are as follows.

1. Exponential stability under hybrid persistence of excitation: In Section 3.2,

inspired by [48], we establish that a general class of time varying hybrid

systems induces global pre-exponential stability of a closed set under a notion

of hybrid persistence of excitation (PE).

2



2. Input-to-state stability under hybrid persistence of excitation: In Section 3.3,

we study the robustness properties of a general class of hybrid systems

that includes hybrid disturbances. We construct an input-to-state stability

(ISS) Lyapunov function by extending ISS results for continuous-time and

discrete-time systems [9, 12, 31, 53, 52, 25].

1.3 Parameter Estimation for Hybrid Systems via

Hybrid Gradient Descent

1.3.1 Motivation

While continuous-time and discrete-time estimation algorithms have seen

widespread use throughout engineering, the recent rise of hybrid modeling paradigms

highlights their limitations. Indeed, when employed to estimate the parameters of

a hybrid system, the parameter estimation error for such algorithms may fail to

converge to zero. Denoting the vector of parameters to be estimated as θ, and the

estimate of θ as θ̂, Figure 1.1 shows the estimation error θ̃ := θ − θ̂ that results

from employing a continuous-time and a discrete-time estimation algorithm to

estimate unknown parameters in a hybrid system (see the example in Section 4.5.1

for details).1 The estimation error for both the continuous-time and discrete-time

algorithm fails to converge to zero, as shown in blue and green, respectively. This

finding motivates developing the hybrid parameter estimation algorithm that we

propose in Chapter 4, which successfully estimates θ by leveraging the information

available during both flows and jumps, as shown in orange in Figure 1.1.
1Code at https://github.com/HybridSystemsLab/HybridGD_Motivation

3
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Figure 1.1: The projection onto t of the norm of the parameter estimation error
for continuous-time and discrete-time estimation algorithms, and our proposed
hybrid algorithm. The continuous-time and discrete-time algorithms produce
nonzero steady-state error, whereas the error for our algorithm converges to zero.

1.3.2 Related Work

Many extensions to the classical gradient descent (GD) algorithm [37] have

been proposed. The method of stochastic gradient descent [44] was proposed to

reduce the computational burden associated with evaluating the gradient for large

datasets. Accelerated gradient algorithms such as the heavy ball method [41] and

Nesterov’s accelerated gradient algorithm [38] have been proposed to improve the

convergence speed compared to the classical gradient algorithm.

Parameter estimation for hybrid systems has been studied in several recent

works. The paper [48] proposed a hybrid algorithm for estimating unknown

parameters in linear regression models whose input and output signals are hybrid.

The authors established global exponential convergence of the parameter estimate

under a notion of hybrid persistence of excitation. The paper [60] develops a

discretized hybrid algorithm for hybrid linear regression with sampled hybrid

signals. A notion of hybrid PE is exploited in the recent work [47] to establish

uniform exponential stability for a general class of time-varying hybrid dynamical

4



systems and estimation problems. Our recent paper [27] proposed a hybrid

algorithm for estimating unknown parameters in a class of hybrid systems with

linear dynamics.

1.3.3 Contributions

The main contributions of the forthcoming Chapter 4 are as follows.

1. A hybrid algorithm for estimating unknown parameters: In Section 4.2, we

propose a hybrid algorithm capable of leveraging information during flows

and jumps of a hybrid system to adapt the parameter estimate. In particular,

we augment the state vector of the estimation algorithm with components

that allow us to express the unknown parameter vector in terms of a hybrid

linear regression model plus an exponentially convergent term. We then adapt

the parameter estimate during flows and jumps using dynamics inspired by

the continuous-time and discrete-time gradient descent algorithms.

2. Estimation under hybrid persistence of excitation: In Section 4.3, we show

that the error dynamics of our proposed estimation algorithm belong to

the class of hybrid systems studied in Section 3.2. We establish that our

proposed algorithm guarantees exponential convergence of the parameter

estimate to the true value under a notion of hybrid persistence of excitation.

3. Estimator robustness to measurement noise: In Section 4.4, we establish that

our proposed algorithm is ISS with respect to bounded hybrid noise on the

measurements of the plant state.
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1.4 Parameter Estimation for Hybrid Systems us-

ing Data

1.4.1 Motivation

While the hybrid PE condition that we impose in Chapter 4 relaxes the classical

continuous-time and discrete-time PE conditions, it is possible to further relax

this hybrid PE condition by using stored data. For example, Figure 1.2 shows

the parameter estimation error that results from employing the hybrid algorithm

proposed in Chapter 4, denoted by hybrid GD, to a system whose input and output

signals do not satisfy hybrid PE (see the example in Section 5.7.1 for details).2

The estimation error for the hybrid GD algorithms fails to converge to zero, as

shown in blue in Figure 1.2. This finding motivates developing the hybrid ICL

algorithm that we propose in Chapter 5, which successfully estimates the unknown

parameters by leveraging stored data alongside current measurements to adapt

the parameter estimate, as shown in green in Figure 1.2.

1.4.2 Related Work

The concurrent learning algorithm was first proposed in [14] to estimate un-

known parameters in linear regression models. The algorithm uses stored data

alongside current measurements to ensure convergence of the parameter estimate

to the true value under relaxed excitation conditions. The concurrent learning

approach was extended to estimate unknown parameters of time-invariant linear

dynamical systems in [36], provided that the derivative of the state vector is

known. If the state derivative is not available, smoothing techniques such as

those in [15] can be used to generate estimates of the state derivatives. In such
2Code at https://github.com/HybridSystemsLab/HybridICL_Motivation
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Figure 1.2: The projection onto t of the estimation error for the hybrid GD
algorithm proposed in Chapter 4 and the hybrid ICL algorithm proposed in
Chapter 5. The hybrid GD algorithm produces nonzero steady state error, whereas
the error for our hybrid ICL algorithm converges to zero.

cases, the purging algorithm proposed in [30] can be applied to remove erroneous

data recorded prior to convergence of the state derivate estimate. The integral

concurrent learning (ICL) algorithm, which is the inspiration for our proposed

hybrid ICL algorithm, is proposed in [40] in order to estimate unknown parameters

for a class of continuous-time systems without requiring knowledge of the derivative

of the state vector. For hybrid systems, our recent work [28] proposed a hybrid

concurrent learning algorithm for hybrid linear regression.

1.4.3 Contributions

The main contributions of the forthcoming Chapter 5 are as follows.

1. A hybrid algorithm for estimating unknown parameters using data: In Sec-

tion 5.2, we propose an algorithm for estimating unknown parameters in

hybrid dynamical systems. The algorithm integrates the input and output

signals of the plant during flows, and sums the signals at jumps, in order

to express the unknown parameter vector in terms of hybrid linear regres-

7



sion models. We sample and store the resulting signals during flows and

jumps, and use the stored data alongside current measurements to adapt

the parameter estimate using dynamics inspired by the continuous-time ICL

algorithm.

2. Estimation without hybrid persistence of excitation: In Section 5.3, we show

that the dynamics of our proposed hybrid ICL algorithm belong to the class

of hybrid systems studied in Section 3.2. We establish that our proposed

algorithm guarantees exponential convergence of the parameter estimate to

the true value when the stored data satisfied a (hybrid) richness condition.

3. Estimator robustness to measurement noise: In Section 5.4, we establish that

our hybrid ICL algorithm is ISS with respect to bounded hybrid noise on

the measurements of the plant state.

4. A hybrid algorithm for finite-time estimation of unknown parameters using

data: In Section 5.5, we show that, by augmenting the dynamics of our

proposed hybrid ICL algorithm, the stored data can be used to achieve

finite-time convergence of the parameter estimate to the true value if the

stored data satisfies a richness condition.

5. Algorithms for selecting data for storage during flows and jumps: In Sec-

tion 5.6, we propose algorithms for selecting data for storage during flows

and jumps of a hybrid system. Data is stored with the objective of satisfying

the richness conditions established in Sections 5.4 and 5.5.
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1.5 Finite-Time Parameter Estimation

1.5.1 Motivation

Classical estimation algorithms such as gradient descent typically guarantee

convergence of the estimation error to zero only under a stringent condition of

persistence of excitation [31, 37]. The PE condition is often difficult to verify

online since it requires the regressor to be sufficiently exciting for all future time.

For certain problems, PE can be assured by adding perturbations to an external

reference input [10, 11]. However, enforcing PE through an exogenous reference is

not always feasible, and such approaches may degrade control performance. These

findings motivate developing the hybrid estimation algorithm that we propose

in Chapter 6, which ensures finite-time convergence of the parameter estimate

to the true value when the regressor is exciting over only a finite time interval.

Moreover, such an estimation algorithm can also be employed to estimate unknown

parameters of hybrid systems when the regressor is sufficiently exciting over a

single interval of flow.

1.5.2 Related Work

The parameter estimation algorithm we propose in Chapter 6 is related to

the ones in [23, 29, 49] – all results provide a finite-time estimator using a hybrid

systems framework. The work [49] deals with a linear regression model while we

deal with a dynamical model. The approaches in [23] and our recent work [29] rely

on a persistence of excitation condition to ensure convergence of the parameter

estimate to the true value. In contrast, the algorithm that we propose in Chapter 6

guarantees finite-time convergence of the parameter estimate to the true value

when the regressor is exciting over only a finite time interval.
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1.5.3 Contributions

The main contributions of the forthcoming Chapter 6 are as follows.

1. A hybrid algorithm for finite-time parameter estimation: In Section 6.2, we

propose a hybrid algorithm for estimating unknown parameters in finite time.

In particular, we augment the state vector of the estimation algorithm with

components that allow us to express the unknown parameter vector in terms

of a linear regression model. We design the algorithm to jump only when

the regressor is sufficiently exciting, and we reset the parameter estimate

at jumps so that, after each jump, the estimate of the unknown parameter

vector is equal to the true parameter vector.

2. Estimation under finite excitation: In Section 6.3, we show that our proposed

algorithm guarantees convergence of the parameter estimate to the true value

when the regressor is exciting over only a finite interval of time.

3. Estimator robustness to measurement noise: In Section 6.4, we show that

our proposed algorithm is ISS with respect to noise on the measurements of

the plant state when the regressor is persistently exciting. Next, we show

that, if the regressor is exciting over only a finite time interval, then the

parameter estimation error for our algorithm is bounded by a function of

the integral of the measurement noise.
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1.6 Parameter Estimation for Hybrid Systems with

Approximately Known Jump Times

1.6.1 Motivation

The parameter estimation algorithms that we propose in Chapters 4 and 5

assume that jumps in the plant state are detected instantaneously, which allows

jumps of the estimators to be aligned with jumps in the plant state. In such

cases, under sufficient excitation conditions, these estimation algorithms ensure

convergence of the parameter estimation error to zero as shown in blue in Figure 1.3

(see the example in Section 7.5 for details).3 However, in practice, the detection of

jumps in the plant state is often delayed due to sensing, signal transmission, and

computation delays. Moreover, if estimation algorithms such as those in Chapters 4

and 5 are employed in the presence of delays in the detection of jumps in the

plant state, the estimation error may fail to converge to zero, as shown in green in

Figure 1.3. This finding motivates developing a method of estimating unknown

parameters in hybrid systems whose jump times are known only approximately.

1.6.2 Related Work

The recent work [35] proposes an algorithm for system identification of a class

of hybrid systems with linear dynamics and unknown jump times. The authors

impose a global Lipschitz continuity condition during flows. We avoid imposing

such a condition in Chapter 7 by instead assuming that the jump times of the

plant are approximately known. Hybrid systems with approximately known jump

times were also studied in the recent works [7, 6] in the context of designing state
3Code at https://github.com/HybridSystemsLab/ApproximatelyKnownJumpTimes_Boun

cingBall
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Figure 1.3: The projection onto t of the estimation error for the hybrid GD
algorithm proposed in Chapter 4 with no delay in jump detection (blue) and a
delay of up to 0.2 seconds (green). When detection of jumps in the plant state is
delayed, the parameter estimate for the hybrid GD algorithm fails to converge.

observers.

1.6.3 Contributions

The main contributions of the forthcoming Chapter 7 are as follows.

1. A hybrid algorithm for estimating unknown parameters: In Section 7.2, we

propose a method of modifying a hybrid estimation algorithm that is designed

to jump coincident with jumps in the plant state – such as the algorithms

proposed in Chapters 4 and 5 – to allow such algorithms to operate under

delays in the detection of jumps in the plant state. Our proposed algorithm

operates by storing samples of the plant state, and solving an optimization

problem to estimate the jump times of the plant state.

2. Estimation stability analysis: In Section 7.3, we prove that the estimation

algorithm that results from our proposed modification preserves the stability

properties induced by the unmodified version, except possibly during the

12



delays in detection of jumps in the plant state.

3. Estimator robustness analysis : In Section 7.4, we establish that our proposed

estimation algorithm is robust to vanishing state perturbations.
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Chapter 2

Preliminaries

In this chapter, we present the hybrid systems framework and its basic properties.

We then present the classical continuous-time and discrete-time gradient descent

algorithms, and the continuous-time integral concurrent learning algorithm. Finally,

we define excitation conditions from the literature.

2.1 Hybrid Systems

In this dissertation, we use the hybrid systems framework in [22, 45] to de-

sign our proposed algorithms since such a framework allows for the combination

of continuous-time and discrete-time behavior. A hybrid system H has data

(C,F,D,G) and is defined as [22, Definition 2.2]

H =

 ẋ = F (x) x ∈ C

x+ = G(x) x ∈ D,
(2.1)

where x ∈ Rn is the state, F : C → Rn is the flow map defining the continuous

dynamics, and C ⊂ Rn defines the flow set on which flow is permitted. The

mapping G : D → Rn is the jump map defining the law resetting x at jumps, and

D ⊂ Rn is the jump set on which jumps are permitted.
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A solution x to H is a hybrid arc [45] that is parameterized by (t, j) ∈ R≥0×N,

where t is the elapsed ordinary time and j is the number of jumps that have

occurred. The domain of x, denoted by domx ⊂ R≥0×N, is a hybrid time domain,

in the sense that for every (T, J) ∈ domx, there exists a nondecreasing sequence

{tj}J+1
j=0 with t0 = 0 such that

domx ∩ ([0, T ]× {0, 1, . . . , J}) =
J⋃
j=0

([tj, tj+1]× {j}) .

The operations supt domx and supj domx return the supremum of the t and j coor-

dinates, respectively, of points in domx. The length of domx is length(domx) :=

supt domx+ supj domx. A hybrid arc x is said to be

• nontrivial if domx contains more than one point;

• complete if domx is unbounded;

• continuous if nontrivial and domx ⊂ R≥0 × {0};

• eventually continuous if J := supj domx < ∞ and domx ∩ (R≥0 × {J})

contains at least two points;

• discrete if nontrivial and domx ⊂ {0} × N;

• eventually discrete if T := supt domx <∞ and domx ∩ ({T} × N) contains

at least two points;

• Zeno if it is complete and supt domx <∞.

We denote the supremum norm of a hybrid arc x from (0, 0) to (t, j) ∈ domx as

∥x∥(t,j) := max

{
esssup

(s,k)∈domx\Υ(domx),
(s,k)≤(t,j)

|x(s,k)|, sup
(s,k)∈Υ(domx),

(s,k)≤(t,j)

|x(s,k)|
}
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where
Υ(domx) := {(t, j) ∈ domx : (t, j + 1) ∈ domx}. (2.2)

We employ the following notion of solutions to a hybrid system [22].

Definition 2.1: A hybrid arc x is a solution to a hybrid system H as in (2.1) if

x(0, 0) ∈ cl(C) ∪D and

• for all j ∈ N such that Ij := {t : (t, j) ∈ domx} has nonempty interior,

x(t, j) ∈ C for all t ∈ intIj,

ẋ(t, j) = F (x(t, j)) for almost all t ∈ Ij;

• for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D,

x(t, j + 1) = G(x(t, j)).

A solution x to H is called maximal if it cannot be extended – that is, if there does

not exist another solution x′ to H such that domx is a proper subset of domx′

and x(t, j) = x′(t, j) for all (t, j) ∈ domx.

The following definitions and results will be used in the analysis of the hy-

brid closed-loop systems that are obtained with the proposed hybrid estimation

algorithms [22, 45].

Definition 2.2: A hybrid system H is said to satisfy the hybrid basic conditions if

its data (C,F,D,G) is such that

1. C and D are closed subsets of Rn;

2. F : Rn → Rn is outer semicontinuous and locally bounded relative to C,

C ⊂ domF , and F (x) is convex for every x ∈ C;
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3. G : Rn → Rn is outer semicontinuous and locally bounded relative to D, and

D ⊂ domG.

Theorem 2.3: [22, Theorem 6.30] If a hybrid system H satisfies Definition 2.2, then

it is well-posed as in [22, Definition 6.29].

Definition 2.4: The tangent cone to a set S ⊂ Rn at at point x ∈ Rn, denoted by

TS(x), is the set of all vectors w ∈ Rn for which there exist xi ∈ S, τi > 0 with

x→ xi, τi ↘ 0, and
w = lim

i→∞

xi − x

τi
.

Proposition 2.5: [22, Proposition 6.10] Let H = (C,F,D,G) satisfy the hybrid

basic conditions in Definition 2.2. Take an arbitrary ζ ∈ C ∪D. If ζ ∈ D or

(VC) there exists a neighborhood U of ζ such that for every x ∈ U ∩ C,

F (x) ∩ TC(x) ̸= ∅,

then there exists a nontrivial solution x to H with x(0, 0) = ζ. If (VC) holds for

every ζ ∈ C \D, then there exists a nontrivial solution to H from every initial

point in C ∪D, and every maximal solution x to H satisfies exactly one of the

following conditions:

(a) x is complete;

(b) domx is bounded and the interval IJ , where J = supj domϕ has nonempty

interior and t 7→ x(t, J) is a maximal solution to ẋ = F (x), in fact

limt→T |x(t, J)| = ∞, where T = supt domx;

(c) x(T, J) ̸∈ C ∪D, where (T, J) = sup domx.
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Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.

Definition 2.6: Given a set S ⊂ Rn, a hybrid system H is pre-forward complete

from S if every maximal solution x to H from x(0, 0) ∈ S is either bounded or

complete.

We employ the following notion of closeness for two hybrid arcs [22, 45].

Definition 2.7: Given τ, ε > 0, two hybrid arcs x1 and x2 are (τ, ε)-close if

1. for all (t, j) ∈ domx1 with t+ j ≤ τ , there exists s such that (s, j) ∈ domϕ2

and |t− s| < ε, and
|x1(t, j)− x2(s, j)| < ε;

2. for all (t, j) ∈ domx2 with t+ j ≤ τ , there exists s such that (s, j) ∈ domϕ1

and |t− s| < ε, and
|x2(t, j)− x1(s, j)| < ε.

Inspired by [5], we define a j-reparameterization of a hybrid arc as follows.4

Definition 2.8: Given a hybrid arc x, a hybrid arc xr is a j-reparameterization of

x if there exists a function η : N → N such that

η(0) = 0, η(j + 1)− η(j) ∈ {0, 1} ∀j ∈ N

and

xr(t, η(j)) = x(t, j) ∀(t, j) ∈ domx.

We employ the following notions of stability [22, 45].
4Note that j-reparameterization in [5] adds trivial jumps to a hybrid arc. In contrast,

j-reparameterization is used in this dissertation to remove trivial jumps from a hybrid arc.
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Definition 2.9: Given a hybrid system H with data as in (2.1), a nonempty closed

set A ⊂ Rn is said to be globally pre-exponentially stable5 for H if there exist

κ, λ > 0 such that each solution x to H satisfies

|x(t, j)|A ≤ κe−λ(t+j)|x(0, 0)|A ∀(t, j)∈domx.

Definition 2.10: Given a hybrid system H with data as in (2.1), a nonempty closed

set A ⊂ Rn is said to be semiglobally pre-exponentially stable for H if, for each

compact set K ⊂ Rn, there exist κ, λ > 0 such that each solution x to H from

x(0, 0) ∈ K satisfies

|x(t, j)|A ≤ κe−λ(t+j)|x(0, 0)|A ∀(t, j)∈domx.

Definition 2.11: Given a hybrid system H with data as in (2.1), a nonempty closed

set A ⊂ Rn is said to be semiglobally KL pre-asymptotically stable for H if for

each compact set K ⊂ Rn, there exists a function β ∈ KL such that each solution

x to H from x(0, 0) ∈ K satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀(t, j)∈domx.

2.2 Gradient Descent Algorithms

2.2.1 Continuous-Time Gradient Descent

Consider a continuous-time linear regression model

y(t) = θ⊤ϕ(t) ∀t ≥ 0 (2.3)
5The term “pre-exponential,” as opposed to “exponential,” indicates the possibility of a

maximal solution that is not complete. This allows for separating the conditions for completeness
from the conditions for stability and attractivity.
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where t 7→ y(t) ∈ R is the measured output, t 7→ ϕ(t) ∈ Rp is the known regressor,

θ ∈ Rp is an unknown vector of constant parameters, and p ∈ N.

The classical gradient descent algorithm [37] estimates the vector θ via an

estimator of the form
ŷ(t) = θ̂(t)⊤ϕ(t)

where t 7→ ŷ(t) ∈ R is the estimated output and t 7→ θ̂(t) ∈ Rp is the estimate of

the unknown parameter θ. The error between the measured and the estimated

outputs is
e(t) := y(t)− ŷ(t) = θ̃(t)⊤ϕ(t)

where θ̃ := θ− θ̂ is the parameter estimation error. The gradient algorithm assigns

dynamics to θ̂ so that it converges to θ based on measurements of y and ϕ. To do

so, the following cost function is introduced:

J(e) :=
1

2
e2.

Then, θ̂ has dynamics

˙̂
θ = −γ∇θ̂J(e) = γϕ(t)(y(t)− ϕ(t)⊤θ̂) (2.4)

where γ > 0 is a design parameter that modifies the adaptation rate.

2.2.2 Discrete-Time Gradient Descent

Consider a discrete-time linear regression model

y(j) = θ⊤ϕ(j) ∀j ∈ N (2.5)

where j 7→ y(j) ∈ Rn the measured output, j 7→ ϕ(j) ∈ Rp is the known regressor,

and θ ∈ Rp is an unknown vector of constant parameters.
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By following a similar derivation as in the continuous-time case, the classical

discrete-time gradient descent algorithm [54] is

θ̂(j + 1) = θ̂(j) +
ϕ(j)

γ + |ϕ(j)|2
(
y(j)− ϕ(j)⊤θ̂(j)

)
(2.6)

where γ > 0 is a design parameter that modifies the adaptation rate.

2.3 Integral Concurrent Learning

Consider the continuous-time system

ẋ = f(x, u(t)) + ϕ(t)θ ∀t ≥ 0 (2.7)

where x ∈ Rn is the known state vector, u ∈ Rm is the known input, t 7→ ϕ(t) ∈

Rn×p is the known regressor, (x, u) 7→ f(x, u) is a known continuous function,

θ ∈ Rp is a vector of unknown constant parameters, and n,m, p ∈ N.

The integral concurrent learning algorithm was proposed in the recent paper

[40] to estimate θ in (2.7). We first explain the ICL approach in words before

formally defining the algorithm. Given t 7→ x(t), t 7→ u(t), and t 7→ ϕ(t) satisfying

(2.7), the ICL algorithm computes signals t 7→ Y(t) and t 7→ Φ(t) such that Y,

Φ, and θ are related via a linear regression model; that is, Y(t) = Φ(t)θ for all

t ≥ 0. Next, samples of the signals Y and Φ are stored, and the stored data is

used alongside current measurement to adapt the parameter estimate. Samples

are selected to ensure that the parameter estimation error converges to zero.

Given t 7→ x(t), t 7→ u(t), and t 7→ ϕ(t) defined on R≥0, the ICL algorithm is

implemented as follows. Over each time interval of length Λ > 0, where Λ is a
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design parameter, we integrate f and ϕ, and compute the change in x as

X (t) := x(t)− x(max{t− Λ, 0})

F(t) :=

∫ t

max{t−Λ,0}
f(x(s), u(s))ds

Φ(t) :=

∫ t

max{t−Λ,0}
ϕ(t)ds

(2.8)

for all t ≥ 0. Since θ is constant, it follows from the Fundamental Theorem of

Calculus that

X (t) = F(t) + Φ(t)θ ∀t ≥ 0.

By defining Y(t) := X (t)−F(t), we obtain

Y(t) = Φ(t)θ ∀t ≥ 0. (2.9)

Though perhaps not intuitive, the definitions in (2.8) conveniently lead to this

linear regression model.

Next, we sample t 7→ Y(t) and t 7→ Φ(t) at time instants {t̃i}S(t)i=1 satisfying

0 ≤ t̃1 < t̃2 < · · · ≤ t, where t 7→ S(t) indicates a time-dependent number of

samples, which is to be designed. Samples are stored in the time-varying matrices

Y (t) :=
[
Y1(t), Y2(t), · · · , YN(t)

]
∈ Rn×N

Z(t) :=
[
Z1(t), Z2(t), · · · , ZN(t)

]
∈ Rn×p×N

where N ∈ N \ {0} is a design parameter satisfying N ≥
⌈
p/n
⌉

that represents the

maximum number of samples that can be stored. The elements of Y and Z are

initially empty (zero), and are populated by the samples of Y and Φ, respectively.

In [40], samples are stored in empty elements or, if no empty element is available,

by replacing the data in the element that maximizes the minimum eigenvalue of
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∑N
ℓ=1 Z

⊤
ℓ Zℓ. Thus, the elements of Y and Z are piecewise constant right-continuous

signals that change only at the sample times. Moreover, since θ is constant, it

follows from (2.9) that, for all t ∈ R≥0,6

Yℓ(t) = Zℓ(t)θ ∀ ℓ ∈ {1, 2, · · · , p}. (2.10)

The ICL algorithm [40] for θ̂ is

˙̂
θ = Γϕ(t)⊤(x(t)− x̂(t)) + ρΓ

N∑
ℓ=1

Zℓ(t)
⊤(Yℓ(t)− Zℓ(t)θ̂) (2.11)

where Γ ∈ Rp×p and ρ ∈ R>0 are positive definite design parameters and t 7→ x̂(t)

is a filtered version of the plant state x, generated by

˙̂x = f(x(t), u(t)) + ϕ(t)θ̂(t) +K(x(t)− x̂) (2.12)

where K ∈ Rn×n is a positive definite design parameter. In [40], samples are

chosen so that
∑N

ℓ=1 Z
⊤
ℓ Zℓ is uniformly positive definite, which ensures exponential

convergence of θ̂ to θ.

2.4 Excitation Conditions

We employ the following notion of persistence of excitation [37].

Definition 2.12: A bounded signal ϕ : R≥0 → Rp is persistently exciting if there

exist constants T, µ > 0 such that, for all t0 ≥ 0,

∫ t0+T

t0

ϕ(t)ϕ(t)⊤dt ≥ µI. (2.13)

6Note that the index ℓ in (2.10) increments over the second dimension – that is, the columns –
of Y , but increments over the third dimension of Z. We refer to the third dimension of Z as the
“layers” of Z.
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We employ the following notion of excitation over a finite interval [37].

Definition 2.13: Given t0 ≥ 0 and T > 0, a bounded signal ϕ : R≥0 → Rp is

exciting over the finite interval [t0, t0 + T ] if there exists µ > 0 such that

∫ t0+T

t0

ϕ(t)ϕ(t)⊤dt ≥ µI. (2.14)

Similarly, in discrete-time, we rely on the following notions of excitation [54].

Definition 2.14: A bounded signal ϕ : N → Rp is persistently exciting if there exist

J ∈ N \ {0} and µ > 0 such that, for all j0 ∈ N,

j0+J∑
j=j0

ϕ(j)ϕ(j)⊤ ≥ µI. (2.15)

Definition 2.15: Given j0 ∈ N and J ∈ N \ {0}, a bounded signal ϕ : N → Rp is

exciting over the finite interval {j0, j0 + 1, · · · , j0 + J} if there exists µ > 0 such

that
j0+J∑
j=j0

ϕ(j)ϕ(j)⊤ ≥ µI. (2.16)

Although the notions of excitation above are defined for vector signals, they

can be extended to apply for matrix signals as well [37, 31].
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Chapter 3

Properties of Time-Varying Hybrid

Systems

In this chapter, we establish stability and robustness properties induced by a

class of time-varying hybrid systems. These results will be used in subsequent chap-

ters to prove the properties induced by our proposed hybrid parameter estimation

algorithms.

3.1 Hybrid Model

Given A : E → Rp×p and B : E → Rp×p, where E := domA = domB is a

hybrid time domain7 and p ∈ N, consider the hybrid system, denoted by H0, with
7Note that A and B are defined on a hybrid time domain, but they are not necessarily hybrid

arcs. That is, they do not need to be locally absolutely continuous during flows – see [22] for
details.
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state ξ := (ϑ, τ, k) ∈ X := Rp × E and dynamics

H0 :




ϑ̇

τ̇

k̇

 =


−A(τ, k)ϑ

1

0

 =: F0 ξ ∈ C0


ϑ+

τ+

k+

 =


ϑ−B(τ, k)ϑ

τ

k + 1

 =: G0 ξ ∈ D0

(3.1)

The flow and jump sets of H0 are defined so that the system flows when A flows,

and jumps when B jumps. Namely,

C0 := cl(X \D0), D0 := {ξ ∈ X : (τ, k + 1) ∈ E } . (3.2)

The state components τ and k correspond to t and j, respectively, from the hybrid

time domain E. Including τ and k in ξ allows A and B to be part of the definitions

of F0 and G0, rather than modeled as inputs to H0. Thus, we can express H0

as an autonomous hybrid system, which allows us to leverage recent results on

stability and robustness properties for such systems [22, 45].

3.2 Stability Analysis

In this section, we establish sufficient conditions on A and B that ensure the

hybrid system H0 induces global pre-exponential stability of the set

A := {ξ ∈ X : ϑ = 0 } . (3.3)

Global pre-exponential stability of A implies that, for each solution ξ to H0, the

distance from ξ to the set A is bounded above by an exponentially decreasing

function of the initial condition – see Definition 2.9. As a consequence, for each

complete solution ξ to H0, the state component ϑ converges exponentially to zero.
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We impose on A and B the following structural properties, which are similar

to those imposed in the design of continuous-time and discrete-time gradient

algorithms.

Assumption 3.1: Given A,B : E → Rp×p, where E := domA = domB is a hybrid

time domain, suppose that A and B are symmetric, positive definite, and bounded

as follows:

1. A(t, j) = A(t, j)⊤ ≥ 0 for all (t, j) ∈ E;

2. B(t, j) = B(t, j)⊤ ≥ 0 for all (t, j) ∈ Υ(E);

3. there exists aM > 0 such that ess sup {|A(t, j)| : (t, j) ∈ E} ≤ aM ;

4. |B(t, j)| < 1 for all (t, j) ∈ Υ(E),

with Υ as in (2.2).

We impose the following hybrid PE condition [48], which is inspired by the

continuous-time and discrete-time PE conditions (see Section 2.4).

Assumption 3.2: Given A,B : E → Rp×p, where E := domA = domB is a hybrid

time domain, there exist ∆, µ0 ∈ R>0 such that, for each (t′, j′), (t∗, j∗) ∈ E

satisfying8

∆ ≤ (t∗ − t′) + (j∗ − j′) < ∆+ 1, (3.4)

the following holds:

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
A(s, j)ds+

1

2

j∗−1∑
j=j′

B(tj+1, j) ≥ µ0I (3.5)

where tJ+1 := T , with J := supj E and T := suptE.

8The hybrid time instants (t′, j′) and (t∗, j∗) are the beginning and the end, respectively, of a
hybrid time interval with length satisfying (3.4), over which (3.5) holds.
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Inspired by [48], we establish sufficient conditions that ensure the hybrid system

H0 induces global pre-exponential stability of the set A in (3.3).

Theorem 3.3: Given the hybrid system H0 in (3.1), suppose that Assumptions 3.1

and 3.2 hold. Then, each solution ξ to H0 satisfies

|ξ(t, j)|A ≤ κ0e
−λ0(t+j−s−k)|ξ(s, k)|A (3.6)

for all (t, j), (s, k) ∈ dom ξ satisfying t+ j ≥ s+ k, where

κ0 :=

√
1

1− σ
, λ0 := − ln(1− σ)

2(∆ + 1)
,

σ :=
2µ0(

1 +
√

(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2)
)2 (3.7)

with aM from Assumptions 3.1 and µ0,∆ from Assumption 3.2.

Proof. This proof is in Appendix A.

3.3 Robustness Analysis

In this section, we study the robustness properties induced by H0 with respect

to bounded hybrid disturbances on the state component ϑ. Given A,B : E → Rp×p,

consider disturbances dc : E → Rp and dd : E → Rp added to the dynamics of ϑ

during flows and jumps, respectively. We denote the hybrid system H0 in (3.1)

under the effect of these disturbances as H, with state ξ = (x, τ, k) ∈ X and

dynamics

H :




ϑ̇

τ̇

k̇

 =


−A(τ, k)ϑ+ dc(τ, k)

1

0

 =: F ξ ∈ C


ϑ+

τ+

k+

 =


ϑ−B(τ, k)ϑ+ dd(τ, k)

τ

k + 1

 =: G ξ ∈ D

(3.8)
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where C := C0 and D := D0, with C0, D0 as in (3.2).

To analyze the robustness properties induced by H, we first require the following

result for the hybrid system H0 in (3.1).

Lemma 3.4: Given the hybrid system H0 in (3.1), suppose that Assumptions 3.1

and 3.2 hold and let the hybrid time domain E come from these assumptions.

Then, for each qM ≥ qm > 0 and each symmetric matrix function Q : E → Rp×p

satisfying
qmI ≤ Q(t, j) ≤ qMI ∀(t, j) ∈ E, (3.9)

there exists a symmetric matrix function P : E → Rp×p satisfying

pmI ≤ P (t, j) ≤ pMI ∀(t, j) ∈ E, (3.10)

where

pm := qm, pM := qm +
qMκ

2
0

2λ0
+
qMκ

2
0e

2λ0

e2λ0 − 1
, (3.11)

with κ0 and λ0 from Theorem 3.3. Moreover, for each j ∈ N and for almost all

t ∈ Ij := {t : (t, j) ∈ E}, (t, j) 7→ P (t, j) satisfies

d

dt
P (t, j)− P (t, j)A(t, j)− A(t, j)⊤P (t, j) ≤ −Q(t, j) (3.12)

and, for all (t, j) ∈ Υ(E), with Υ as in (2.2),

(I −B(t, j))⊤P (t, j + 1)(I −B(t, j))− P (t, j) ≤ −Q(t, j). (3.13)

Proof. This proof is in Appendix B.1.

Then, we establish the following ISS result for H.

29



Theorem 3.5: Given the hybrid system H in (3.8), let Assumptions 3.1 and 3.2

hold. Then, for each qM ≥ qm > 0 and each ζ ∈ (0, 1), each solution ξ to H

satisfies
|ξ(t, j)|A ≤ β(|ξ(0, 0)|A, t+ j) + ρ|d|(t,j) (3.14)

for all (t, j) ∈ dom ξ, where

d(t, j) :=

dc(t, j) if (t, j) ∈ E \Υ(E)

dd(t, j) if (t, j) ∈ Υ(E)
(3.15)

and

β(s, r) :=

√
pM
pm

e−ωrs, ρ :=

√
2p3M
qmpmζ

(
2pM
qm

+ 1

)
ω :=

1

2
min

{
qm
2pM

(1− ζ),− ln

(
1− qm

2pM
(1− ζ)

)}
,

with κ0, λ0, σ as in Theorem 3.3, pm, pM as in Lemma 3.4, Υ as in (2.2), and

aM , µ0,∆ from Assumptions 3.1 and 3.2.

Proof. The proof is in Appendix B.2.

When the disturbances dc and dd converge exponentially to zero, we establish

the following result for H.

Theorem 3.6: Given the hybrid system H in (3.8), suppose that Assumptions 3.1

and 3.2 hold, and that there exist a, b > 0 such that d in (3.15) satisfies

|d(t, j)| ≤ ae−b(t+j)|d(0, 0)| (3.16)

for all (t, j) ∈ E. Then, for each qM ≥ qm > 0 and each ζ ∈ (0, 1), each solution ξ

to H satisfies

|ξ(t, j)|A ≤ κe−λ(t+j)
(
|ξ(0, 0)|A + |d(0, 0)|

)
(3.17)
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for all (t, j) ∈ dom ξ, where

κ := 2max

{
pM
pm

, aρ

√
pM
pm

}
, λ :=

1

2
min {ω, b} (3.18)

with κ0, λ0, σ as in Theorem 3.3, pm, pM as in Lemma 3.4, ρ, ω as in Theorem 3.5,

Υ as in (2.2), and aM , µ0,∆ from Assumptions 3.1 and 3.2.

Proof. This proof is in Appendix B.3.
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Chapter 4

Parameter Estimation for Hybrid

Systems via Hybrid Gradient

Descent

In this chapter, we propose a parameter estimation algorithm for a class of

hybrid dynamical systems. The algorithm leverages the information provided

during both the flows and jumps of the hybrid system, and updates the parameter

estimate with dynamics inspired by the continuous-time and discrete-time gradient

descent algorithms in Section 2.2.

4.1 Problem Statement

Motivated by the limitations of the continuous-time and discrete-time estimation

algorithms highlighted in Section 1.3.1, we develop a hybrid algorithm for estimating

parameters in hybrid dynamical systems of the form

ẋ = fc(x, u(t, j)) + ϕc(t, j)θ (x, u(t, j)) ∈ CP

x+ = gd(x, u(t, j)) + ϕd(t, j)θ (x, u(t, j)) ∈ DP ,
(4.1)
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where x ∈ Rn is the known state vector and (x, u) 7→ fc(x, u) ∈ Rn and (x, u) 7→

gd(x, u) ∈ Rn are known continuous functions. The regressors (t, j) 7→ ϕc(t, j) ∈

Rn×p and (t, j) 7→ ϕd(t, j) ∈ Rn×p and the input (t, j) 7→ u(t, j) ∈ Rm are known,

and are defined on hybrid time domains as described in Section 2.1, but are not

necessarily hybrid arcs.Note that ϕc plays no role in the dynamics of (4.1) at jumps

and ϕd plays no role in the dynamics of (4.1) during flows.

Our goal is to estimate the parameter vector θ in (4.1). Since ϕc and ϕd may

exhibit both flows and jumps, it is important to update the parameter estimate

θ̂ continuously whenever ϕc flows, and discretely each time ϕd jumps, which is

possible when jumps are detected instantaneously. Hence, we propose to estimate

θ using a hybrid algorithm, denoted Hg, of the form

Hg :

 ξ̇ = Fg(ξ) ξ ∈ Cg

ξ+ = Gg(ξ) ξ ∈ Dg,
(4.2)

with data designed to solve the following problem.

Problem 4.1: Design the data (Cg, Fg, Dg, Gg) of Hg in (4.2) and determine

conditions on ϕc and ϕd that ensure the parameter estimate θ̂ converges to the

unknown parameter vector θ in (4.1).

Next, we present our solution to this estimation problem.

4.2 Problem Solution

Given ϕc, ϕd : E → Rn×p and u : E → Rm, where E := domϕc = domϕd =

domu is a hybrid time domain, we define the state ξ of Hg as ξ := (x, θ̂, ψ, η, τ, k) ∈

Xg := Rn × Rp × Rn×p × Rn × E, where x is the state of the plant in (4.1), θ̂ is

the estimate of θ, and ψ, η are auxiliary state variables. The state components
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τ and k have dynamics such that they evolve as t and j, respectively, from the

hybrid time domain E. Including τ and k in ξ allows ϕc, ϕd, and u to be part of

the definitions of Fg and Gg, rather than modeled as inputs to Hg. Thus, we can

express Hg as an autonomous hybrid system, which allows us to leverage recent

results on stability and robustness properties [22, 45].

The flow and jump sets of Hg are defined so that the algorithm flows when ϕc

flows, and jumps when ϕd jumps. Since domϕc = domϕd = E,

Cg := cl(Xg \Dg) , Dg := {ξ ∈Xg : (τ,k+1)∈E}. (4.3)

Remark 4.2: We assume for simplicity that the plant state x has the same hybrid

time domain as ϕc, ϕd, and u. As a result, the flow set CP and jump set DP of the

plant are not part of the construction of Hg. Our algorithm can be extended to

the case where x, ϕc, ϕd, and u have different hybrid time domains by considering

the flow and jump sets in (4.1). In this case, we can reparameterize the domains

of ϕc, ϕd, and u to express x, ϕc, ϕd, and u on a common hybrid time domain. See,

e.g., [5].

4.2.1 Parameter Estimation During Flows

During flows of Hg, we transform the flow map of (4.1) into a form similar to

a linear regression model using the state variables ψ and η, with dynamics [39]

ψ̇ = −λcψ + ϕc(τ, k)

η̇ = −λc(x+ η)− fc(x, u(τ, k)),
(4.4)

where λc > 0 is a design parameter. Defining ε := x+ η − ψθ and y := x+ η, it

follows that ψ and ε are related via

y = ψθ + ε. (4.5)
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Since θ is constant, differentiating ε along trajectories of (4.1), (4.4) yields ε̇ = −λcε

during flows. Thus, ε converges exponentially to zero during flows. Moreover, we

have the following equivalences:

ε → 0 ⇐⇒ x+ η → ψθ ⇐⇒ y → ψθ.

Hence, y, ψ, and θ are related via a linear regression model plus an exponentially

convergent term.

During flows, we update θ̂ continuously with dynamics inspired by the continuous-

time gradient algorithm in (2.4). Namely,

˙̂
θ = γcψ

⊤(y − ψθ̂), (4.6)

where γc > 0 is a design parameter. Hence, the flow map for Hg in (4.2) is

Fg(ξ) :=



fc(x, u(τ, k)) + ϕc(τ, k)θ

γcψ
⊤(y − ψθ̂)

−λcψ + ϕc(τ, k)

−λc(x+ η)− fc(x, u(τ, k))

1

0


∀ξ ∈ Cg.

4.2.2 Parameter Estimation at Jumps

At jumps of Hg, using similar reasoning as during flows, we update θ̂ discretely

using a reset map inspired by the discrete-time gradient algorithm in (2.6). Namely,

at each (τ, k) ∈ E such that (τ, k + 1) ∈ E,

θ̂(τ, k + 1) = θ̂(τ, k) +
ψ(τ, k + 1)⊤

γd + |ψ(τ, k + 1)|2
(y(τ, k + 1)− ψ(τ, k + 1)θ̂(τ, k)) (4.7)

with
ψ(τ, k + 1) = (1− λd)ψ(τ, k) + ϕd(τ, k)

η(τ, k + 1) = (1− λd)(x(τ, k) + η(τ, k))− gd(x(τ, k), u(τ, k))

y(τ, k + 1) = x(τ, j + 1) + η(τ, k + 1),

(4.8)

where γd > 0, λd ∈ (0, 2) are design parameters.
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Remark 4.3: To compute the update law for θ̂ in (4.7), we require measurements

of x for two consecutive hybrid time instants, (τ, k) and (τ, k + 1). Moreover, two

computational steps are required to update θ̂ at time (τ, k) ∈ E. The first step

computes ψ(τ, k + 1), η(τ, k + 1), and y(τ, k + 1) in (4.8), and the second step

computes θ̂(τ, j + 1) in (4.7). For simplicity, we omit the first computational step

in (4.7).

For readability, we denote ψ(τ, k + 1) as ψ+, η(τ, k + 1) as η+, and y(τ, k + 1)

as y+. Then, the jump map for Hg in (4.2) is

Gg(ξ) :=



gd(x, u(τ, k)) + ϕd(τ, k)θ

θ̂ + ψ+⊤

γd+|ψ+|2 (y
+ − ψ+θ̂)

(1− λd)ψ + ϕd(τ, k)

(1− λd)(x+ η)− gd(x, u(τ, k))

τ

k + 1


∀ξ ∈ Dg. (4.9)

Remark 4.4: For simplicity, the hybrid algorithm Hg in (4.2) is expressed such

that jumps in the parameter estimate coincide with jumps in x. This results in

Hg being noncausal since measurements of x+ are not available until after a jump.

We can remove the simplification at the price of letting the algorithm jump twice

for each jump in x, as follows. Immediately before a jump in x, the algorithm

jumps once to reset the values of ψ, η, and k per the jump map (4.9). Immediately

after a jump in x, the algorithm jumps a second time to update the parameter

estimate using the current value of x. A logic variable ensures that, after the

second jump, the algorithm flows or jumps in accordance with the hybrid time

domain E. Since θ in (4.1) is constant, the stability properties induced by Hg in

(4.2) are equivalent to the stability properties induced by the causal modification,

after we reparameterize the domain of solutions to Hg to match the domain of
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solutions to the causal system. Hence, for simplicity, we focus our analysis on

(4.2).

4.3 Stability Analysis

In this section, we establish sufficient conditions that that ensure the hybrid

system Hg in (4.2) induces semiglobal pre-exponential stability of the set

Ag :=
{
ξ ∈ Xg : θ̂ = θ, ε = 0

}
, (4.10)

where
ε := x+ η − ψθ. (4.11)

Semiglobal pre-exponential stability of Ag implies that, given any compact set of

initial conditions, for each solution ξ to Hg from such compact set, the distance

from ξ to the set Ag is bounded above by an exponentially decreasing function of

the initial condition – see Definition 2.10. As a consequence, for each complete

solution ξ to Hg, the parameter estimate θ̂ converges exponentially to θ, and ε

converges exponentially to zero.

We impose the following assumptions.

Assumption 4.5: Given ϕc, ϕd : E → Rn×p, where E := domϕc = domϕd is

a hybrid time domain, there exists ϕM > 0 such that |ϕc(t, j)|F ≤ ϕM for all

(t, j) ∈ E and |ϕd(t, j)|F ≤ ϕM for all (t, j) ∈ Υ(E), with Υ as in (2.2).

Assumption 4.6: Given γc, λc, γd > 0, λd ∈ (0, 2), and ϕc, ϕd : E → Rn×p, where

E := domϕc = domϕd is a hybrid time domain, there exist ∆, µ ∈ R>0 such that,

for all (t′, j′), (t∗, j∗) ∈ E satisfying

∆ ≤ (t∗ − t′) + (j∗ − j′) < ∆+ 1, (4.12)
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the following hybrid PE condition holds:

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
ψ(s, j)⊤ψ(s, j)ds

+

j∗−1∑
j=j′

ψ(tj+1, j + 1)⊤ψ(tj+1, j + 1) ≥ µI

(4.13)

where {tj}Jj=0 is the sequence defining E as in Section 2.1, tJ+1 := T , with

J := supj E and T := suptE, and (t, j) 7→ ψ(t, j) is generated by (4.2).

Theorem 4.7: Given the hybrid system Hg in (4.2), γc, λc, γd > 0, and λd ∈ (0, 2),

suppose that Assumptions 4.5 and 4.6 hold. Then, for each ψ0 ≥ 0, qM ≥ qm > 0,

and each ζ ∈ (0, 1), each solution ξ to Hg from ξ(0, 0) ∈ X0 := {ξ ∈ Xg : |ψ|F ≤ ψ0}

satisfies
|ξ(t, j)|Ag ≤ κge

−λg(t+j)|ξ(0, 0)|Ag (4.14)

38



for all (t, j) ∈ dom ξ, where κg :=
√
3κ, λg := min{λ, b}, and

κ := 2max

{
pM
pm

, aρ

√
pM
pm

}
, λ :=

1

2
min {ω, b} ,

a := max

{
γcψM ,

1

2
√
γd

}
,

b :=
1

2
min {λc, − ln (1− λd(2− λd))} ,

pm := qm, pM := qm +
qMκ

2
0

2λ0
+
qMκ

2
0e

2λ0

e2λ0 − 1
,

ρ :=

√
2p3M
qmpmζ

(
2pM
qm

+ 1

)
,

ω :=
1

2
min

{
qm
2pM

(1− ζ), − ln

(
1− qm

2pM
(1− ζ)

)}
,

κ0 :=

√
1

1− σ
, λ0 := − ln(1− σ)

2(∆ + 1)
,

σ :=
2µ0(

1 +
√

(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2)
)2 ,

µ0 :=

{
γc,

1

2(γd + ψ2
M)

}
µ, aM := γcψ

2
M ,

ψM := ψ0 +max

{
1

λc
,

√
2λd(2− λd) + 16

λd(2− λd)

}
ϕM .

Theorem 4.7 states that, if |ϕc|F and |ϕd|F are uniformly bounded above and

the hybrid PE condition (4.13) is satisfied, then the set Ag in (4.10) is semiglobally

pre-exponentially stable for Hg. The hybrid PE condition (4.13) reduces to the

continuous-time PE condition (2.13) if ψ is continuous, and reduces to the discrete-

time PE condition (2.13) if ψ is discrete. Hence, in such cases, we recover the

results established in [37, 54].9

9In fact, if ψ is continuous and ϕc, d
dtϕc ∈ L∞, then it follows from [50, Lemma 2.6.7] that

the ψ component of each solution ξ to Hg from X0 is PE as in (2.13) if ϕc is PE. Given such
ϕc, the excitation parameters for ψ – µ and T in (2.13) – depend on the initial condition of ψ.
However, since ξ(0, 0) ∈ X0, the initial condition of ψ lies in a compact set, and therefore we
can find these parameters independent of the initial condition. If ψ is discrete, then a similar
persistence of excitation property holds for ψ if ϕd is PE as in (2.15).
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4.3.1 Proof of Theorem 4.7

To prove Theorem 4.7, we use that the error dynamics of Hg belong to the

class of hybrid systems studied in Chapter 3. We denote the hybrid system

resulting from expressing Hg in error coordinates θ̃ := θ − θ̂ as H̃g, with state

ξ = (x, θ̃, ψ, η, τ, k) ∈ Xg and dynamics

H̃g :

 ξ̇ = F̃g(ξ) ξ ∈ C̃g

ξ+ = G̃g(ξ) ξ ∈ D̃g,
(4.15)

where C̃g := Cg and D̃g := Dg, with Cg, Dg in (4.3), and

F̃g(ξ) :=



fc(x, u(τ, k)) + ϕc(τ, k)θ

−γcψ⊤ψθ̃ − γcψ
⊤ε

−λcψ + ϕc(τ, k)

−λc(x+ η)− fc(x, u(τ, k))

1

0


∀ξ ∈ C̃g

G̃g(ξ) :=



gd(x, u(τ, k)) + ϕd(τ, k)θ

θ̃ − ψ+⊤ψ+

γd+|ψ+|2 θ̃ −
ψ+⊤

γd+|ψ+|2 ε
+

(1− λd)ψ + ϕd(τ, k)

(1− λd)(x+ η)− gd(x, u(τ, k))

τ

k + 1


∀ξ ∈ D̃g,

with ε as in (4.11) and ε+ = x+ + η+−ψ+θ, where x+ gives the plant state x after

a jump per (4.1).

The hybrid system H in (3.8) reduces to H̃g in (4.15) when ϑ = θ̃, and

A(τ, k) = γcψ(τ, k)
⊤ψ(τ, k) (4.16a)

dc(τ, k) = −γcψ(τ, k)⊤ε(τ, k) (4.16b)
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for all (τ, k) ∈ E, and10

B(τ, k) =
ψ(τ, k + 1)⊤ψ(τ, k + 1)

γd + |ψ(τ, k + 1)|2
(4.16c)

dd(τ, k) = − ψ(τ, k + 1)⊤

γd + |ψ(τ, k + 1)|2
ε(τ, k + 1) (4.16d)

for all (τ, k) ∈ Υ(E), with Υ as in (2.2), where ε = x + η − ψθ is a hybrid

disturbance, and x, η, ψ are generated by the dynamics in (4.15).

Then, to prove Theorem 4.7, we require the following results for H̃g.

Lemma 4.8: Given the hybrid system H̃g in (4.15), for each λc > 0, λd ∈ (0, 2), and

each solution ξ = (x, θ̃, ψ, η, τ, k) to H̃g, (t, j) 7→ ε(t, j) := x(t, j)+η(t, j)−ψ(t, j)θ

in (4.11) satisfies

|ε(t, j)| ≤ e−b(t+j)|ε(0, 0)| ∀(t, j) ∈ dom ξ, (4.17)

where b := 1
2
min {2λc, − ln (1− λd(2− λd))}.

Proof. This proof is in Appendix C.1.

Lemma 4.9: Given the hybrid system H̃g in (4.15), suppose that Assumption 4.5

holds and let ϕM > 0 come from that assumption. Then, for each ψ0 ≥ 0, λc > 0,

λd ∈ (0, 2), the ψ component of each solution ξ to H̃g from ξ(0, 0) ∈ X0 := {ξ ∈

Xg : |ψ|F ≤ ψ0} satisfies

|ψ(t, j)| ≤ ψM (4.18)

for all (t, j) ∈ dom ξ, where

ψM := ψ0 +max

{
1

λc
,

√
2λd(2− λd) + 16

λd(2− λd)

}
ϕM .

10Note that B is evaluated only at jump times in (3.8), and B(τ, k) in (4.16c) is well defined
for all (τ, k) ∈ E such that (τ, k + 1) ∈ E. Furthermore, the expression for dd in (4.16d) includes
the value of the disturbance ε after a jump, which results in a noncausal algorithm – see Remark
4.4.
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Proof. This proof is in Appendix C.2.

We now have all the ingredients to prove Theorem 4.7.

Proof of Theorem 4.7: To prove Theorem 4.7, we show that the error dynamics

of Hg – that is, H̃g in (4.15) – satisfy the conditions of Theorem 3.6 with A,B, dc, dd

in (4.16). Beginning with Assumption 3.1, since A, B in (4.16) are symmetric and

γc, γd > 0, it follows that they are positive semidefinite. Hence, items 1 and 2 of

Assumption 3.1 hold. Next, we show that items 3 and 4 of Assumption 3.1 hold.

Since, by Assumption 4.5, the conditions of Lemma 4.9 are satisfied, it follows

that, for each solution ξ to H̃g from X0, the ψ component of ξ satisfies (4.18).

Thus, |A(t, j)| ≤ γc|ψ(t, j)|2 ≤ γcψ
2
M for all (t, j) ∈ E, with ψM from Lemma 4.9,

and |B(t, j)| = |ψ(t,j+1)|2
γd+|ψ(t,j)|2 < 1 for all (t, j) ∈ Υ(E). Hence, items 3 and 4 of

Assumption 3.1 hold with aM in Theorem 4.7.

Next, using Lemma 4.9 and Assumption 4.6, we show that Assumption 3.2

holds with A, B in (4.16). Substituting A, B into (3.5), we have that, for all

(t′, j′), (t∗, j∗) ∈ E satisfying (4.12),

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
γcψ(s, j)

⊤ψ(s, j)ds

+
1

2

j∗−1∑
j=j′

ψ(tj+1, j + 1)⊤ψ(tj+1, j + 1)

γd + |ψ(tj+1, j + 1)|2

≥ min

{
γc,

1

2(γd + ψ2
M)

}
µI.

Hence, Assumption 3.2 holds with µ0 and ∆ from Theorem 4.7.

Finally, we show that (3.16) is satisfied with d in (3.15) and dc, dd in (4.16). By

Assumption 4.5, it follows from Lemmas 4.8 and 4.9 that, for each solution ξ to H̃g

from X0, |dc(t, j)| ≤ γc|ψ(t, j)||ε(t, j)| ≤ γcψMe−b(t+j)|ε(0, 0)| for all (t, j) ∈ dom ξ,

with ψM from Lemma 4.9 and b from Lemma 4.8. Furthermore, using that
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|ψ(t,j+1)|
γd+|ψ(t,j+1)|2 ≤ 1

2
√
γd

for all (t, j) ∈ Υ(dom ξ), we have that |dd(t, j)| ≤ 1
2
√
γd
|ε(t, j +

1)| ≤ 1
2
√
γd
e−b(t+j+1)|ε(0, 0)| ≤ 1

2
√
γd
e−b(t+j)|ε(0, 0)| for all (t, j) ∈ Υ(dom ξ). Thus,

we conclude that (3.16) holds with a and b from Theorem 4.7 and |d(0, 0)| = |ε(0, 0)|.

Hence, the conditions of Theorem 3.6 hold and, from the equivalence between

the data of H̃g in (4.15) and H in (3.8) with A,B, dc, dd in (4.16),11 we have from

Theorem 3.6 that the θ̃ component of each solution ξ to H̃g from X0 satisfies

|θ̃(t, j)| ≤ κe−λ(t+j)
(
|θ̃(0, 0)|+ |ε(0, 0)|

)
(4.19)

for all (t, j) ∈ dom ξ, with κ, λ in (3.18), and pm, pM , ρ, ω from Theorem 4.7.

To conclude the proof, using the definition of Ag in (4.10), we rewrite |ξ|Ag for

all (t, j) ∈ dom ξ as |ξ(t, j)|Ag =
√

|θ̃(t, j)|2 + |ε(t, j)|2. Substituting the bounds

in (4.17) and (4.19) and using that κ ≥ 1 and, for any α, β ∈ R, αβ ≤ 1
2
(α2 + β2),

we conclude that, for all (t, j) ∈ dom ξ,

|ξ(t, j)|Ag ≤
√
3κe−min{λ,b}(t+j)

√
|θ̃(0, 0)|2 + |ε(0, 0)|2.

Hence, (4.14) holds with κg, λg as in Theorem 4.7.

4.4 Robustness Analysis

In this section, we study the robustness properties induced by Hg with respect

to bounded (hybrid) noise on the state measurements.

Given ϕc, ϕd : E → Rn×p and u : E → Rm, where E := domϕc = domϕd =

domu is a hybrid time domain, consider additive noise ν : E → Rn in the

measurements of the plant state x in (4.1).12 We denote the hybrid system
11In other words, by substituting A,B, dc, dd in (4.16) into (3.8) and treating ψ as a given

hybrid signal and ε as hybrid disturbance satisfying (4.15), we obtain a hybrid system with
dynamics that are equivalent to H̃g in (4.15).

12By definition of a solution pair, the measurement noise ν has the same hybrid time domain
as x, ϕc, ϕd, and u.
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H in (4.2) under the effect of the measurement noise ν as Hν , with state ξ =

(x, θ̂, ψ, η, τ, k) ∈ Xg and dynamics

Hν :

 ξ̇ = Fν(ξ) ξ ∈ Cν

ξ+ = Gν(ξ) ξ ∈ Dν

(4.20)

where

Fν(ξ) :=



fc(x,u(τ,k))+ϕc(τ,k)θ

γcψ
⊤(yν−ψθ̂)

−λcψ+ϕc(τ,k)

−λc(x+ν(τ,k)+η)−fc(x+ν(τ,k),u(τ,k))
1

0



Gν(ξ) :=



gd(x,u(τ,k))+ϕd(τ,k)θ

θ̂+ ψ+⊤

γd+|ψ+|2(y
+
ν −ψ+θ̂)

(1−λd)ψ+ϕd(τ,k)

(1−λd)(x+ν(τ,k)+η)−gd(x+ν(τ,k),u(τ,k))
τ

k+1


where Cν := Cg, Dν := Dg, with Cg, Dg in (4.3), and we define yν := x+ν(τ, k)+η

and y+ν := x+ + ν(τ, k + 1) + η+, where x+ gives the plant state x after a jump

per (4.1).

For analyzing the effect of the noise, we make the following Lipschitz continuity

assumption.

Assumption 4.10: Given the hybrid plant in (4.1), there exist Lc, Ld > 0 such that,

for all x1, x2 ∈ Rn and all u ∈ Rm,

|fc(x1, u)− fc(x2, u)| ≤ Lc|x1 − x2|,

|gd(x1, u)− gd(x2, u)| ≤ Ld|x1 − x2|.
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We now establish our main robustness result stating conditions that ensure Ag

in (4.10) is ISS for Hν .

Theorem 4.11: Given the hybrid system Hν in (4.20), γc, λc, γd > 0, and λd ∈

(0, 2), suppose that Assumptions 4.5, 4.6, and 4.10 hold. Then, for each ψ0 ≥ 0,

qM ≥ qm > 0, and each ζ ∈ (0, 1), each solution ξ to Hν from ξ(0, 0) ∈ X0 satisfies

|ξ(t, j)|Ag ≤ κνe
−λν(t+j)|ξ(0, 0)|Ag + ρνdν(t, j) (4.21)

for all (t, j) ∈ dom ξ, where

κν :=

√
2pM
pm

, λν := min{ω, λε}, ρν :=
√
2max{ρ, ρε}

λε :=
1

2
min

{
λc(1− ζ),− ln

(
1− λd

2
(2− λd)(1− ζ)

)}
ρε := max

{
2

λc
√
ζ
,

√
2λd(2− λd) + 16

λd(2− λd)
√
ζ

}
with ρ, ω from Theorem 3.5, pm, pM from Theorem 4.7, dν(t, j) :=√

∥d∥2(t,j) + ∥dε∥2(t,j), with d as in (3.15) and

dε(t, j) :=

αc(t, j) if (t, j) ∈ E \Υ(E)

αd(t, j) if (t, j) ∈ Υ(E),
(4.22)

where, for all (t, j) ∈ E,

dc(t, j) := −γcψ(t, j)⊤(ε(t, j) + ν(t, j)) (4.23a)

αc(t, j) := −λcν(t, j) + fc(x(t, j), u(t, j)) (4.23b)

− fc(x(t, j) + ν(t, j), u(t, j))

and, for all (t, j) ∈ Υ(E),

dd(t, j) := − ψ(t, j + 1)⊤

γd + |ψ(t, j + 1)|2
(
ε(t, j + 1) (4.23c)

+ ν(t, j + 1)
)
,

αd(t, j) := (1− λd)ν(t, j) + gd(x(t, j), u(t, j)) (4.23d)

− gd(x(t, j) + ν(t, j), u(t, j))
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with ε as in (4.11). Moreover, for all (t, j) ∈ E,

|dc(t, j)| ≤ γcψM
(
e−λε(t+j)|ε(0, 0)|

+(ρεmax{λc + Lc, 1− λd + Ld}+ 1)|ν(t, j)|
)

|αc(t, j)| ≤ (λc + Lc)|ν(t, j)|

and for all (t, j) ∈ Υ(E),

|dd(t, j)| ≤
1

2
√
γd

(
e−λε(t+j+1)|ε(0, 0)|

+(ρεmax{λc+Lc,1−λd+Ld}+1)|ν(t,j+1)|
)

|αd(t, j)| ≤ (1− λd + Ld)|ν(t, j)|

with ψM from Assumption 4.5, Lc, Ld from Assumption 4.10, and ε(0, 0) =

x(0, 0) + η(0, 0)− ψ(0, 0)θ.

To prove Theorem 4.11, we require the following result.

Lemma 4.12: Given the hybrid system Hν in (4.20), suppose that Assumption 4.10

holds. Then, for each λc > 0, λd ∈ (0, 2), ζ ∈ (0, 1), and each solution ξ =

(x, θ̂, ψ, η, τ, k) to Hν, (t, j) 7→ ε(t, j) := x(t, j) + η(t, j) − ψ(t, j)θ in (4.11)

satisfies, for all (t, j) ∈ dom ξ,

|ε(t, j)| ≤ e−λε(t+j)|ε(0, 0)|+ ρε∥dε∥(t,j) (4.24)

with λε, ρε > 0 and (t, j) 7→ dε(t, j) from Theorem 4.11.

Proof. This proof is given in Appendix C.3.

We now have all the ingredients to prove Theorem 4.11.

Proof of Theorem 4.11: Using the same arguments as in the proof of

Theorem 4.7, we conclude that, by Assumptions 4.5 and 4.6, the conditions of
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Theorem 3.5 are satisfied with µ0 and aM from Theorem 4.7. It can be shown

that, under Assumption 4.10, the hybrid system that is obtained by expressing Hν

in error coordinates is equivalent to H in (3.8) with A,B in (4.16) and dc, dd in

(4.23). Hence, it follows from Theorem 3.5 that, for each solution ξ to Hν from

X0, the parameter estimation error θ̃ = θ − θ̂ satisfies, for all (t, j) ∈ dom ξ,

|θ̃(t, j)| ≤
√
pM
pm

e−ω(t+j)|θ̃(0, 0)|+ ρ∥d∥(t,j), (4.25)

with (t, j) 7→ d(t, j) as in (3.15) and ρ, ω from Theorem 3.5, with pm, pM substituted

by pm, pM from Theorem 4.7.

Using the definition of Ag in (4.10), we rewrite |ξ|Ag for all (t, j) ∈ dom ξ

as |ξ(t, j)|Ag =
√

|θ̃(t, j)|2 + |ε(t, j)|2. Since, by Assumption 4.10, the condi-

tions of Lemma 4.12 are satisfied, we substitute the bounds in (4.24) and (4.25).

Using that, for any α, β ∈ R, αβ ≤ 1
2
(α2 + β2), we obtain |ξ(t, j)|Ag ≤√

2pM
pm

e−min{ω,λε}(t+j)|ξ(0, 0)|Ag +
√
2max{ρ, ρε}

√
∥d∥2(t,j) + ∥dε∥2(t,j) for all (t, j) ∈

dom ξ. Hence, (4.21) holds.

To conclude the proof, we upper bound dc, dd, αc, and αd for all (t, j) ∈ dom ξ.

The bounds for αc and αd in Theorem 4.11 follow directly from Assumption 4.10

and the definitions of αc and αd in (4.23). Moreover, since, by Assumptions 4.5

and 4.10, the conditions of Lemmas 4.9 and 4.12 are satisfied, we have from (4.23)

that, for each solution ξ to Hν from X0,

|dc(t,j)|≤γc|ψ(t,j)|(|ε(t,j)|+ |ν(t,j)|)

≤γcψM(e−λε(t+j)|ε(0,0)|

+(ρεmax{λc+Lc,1−λd+Ld}+1)|ν(t,j)|)

for all (t, j) ∈ dom ξ, with λε and ρε from Theorem 4.11, where the last inequality

follows from (4.24) the definition of dε in (4.22). Next, using that |ψ(t,j+1)|
γd+|ψ(t,j+1)|2 ≤
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1
2
√
γd

for all (t, j) ∈ Υ(dom ξ), we have that, for all (t, j) ∈ Υ(dom ξ),

|dd(t, j)| ≤
1

2
√
γd

(
ε(t, j + 1) + ν(t, j + 1)

)
≤ 1

2
√
γd

(e−λε(t+j+1)|ε(0, 0)|

+(ρεmax{λc+Lc,1−λd+Ld}+1)|ν(t,j+1)|).

Remark 4.13: A similar ISS result as in Theorem 4.11 can be developed without

Assumption 4.10 by constraining the range of the plant state x and the input u to

a compact set. Under such conditions, it follows from the continuity of fc and gd

that dc, dd, αc, αd in (4.23) can be upper bounded by functions of only ν. Then,

ISS follows from similar arguments as in the proof of Theorem 4.11.

4.5 Numerical Examples

4.5.1 Comparison with Continuous-Time and Discrete-Time

Gradient Descent

Consider the hybrid arcs ϕc, ϕd : E → R2×2 with hybrid time domain

E =
∞⋃
k=0

(
[2πk, π(2k + 2)]× {k}

)
. (4.26)

The values of ϕc and ϕd are

ϕc(t, j) =

[
sin(t) 0

0 0

]
, ϕd(t, j) =

[
1 2

2 4

]
for all (t, j) ∈ E. For such ϕc and ϕd, consider a hybrid system as in (2.1) with an

added input13 u : E → R, state x = (x1, x2) ∈ R2, and dynamics

ẋ = ϕc(t, j)θ (x, u(t, j)) ∈ CP

x+ = ϕd(t, j)θ (x, u(t, j)) ∈ DP ,
(4.27)

13See [45] for details on hybrid systems with inputs.

48



where θ = [1 1]⊤ is a vector of unknown parameters. The flow and jump sets are

CP = (R2×R) \Dp and DP = {(x, u) ∈ R2×R : u ≥ 2π}, respectively. The input

u(t, j) = t− 2πj for all (t, j) ∈ E is a sawtooth function that periodically ramps

to a value of 2π and then resets to zero.14

Given a solution x to (4.27) from x(0, 0) ∈ (3, 6), we wish to estimate the

parameter vector θ. To do so, we first separately analyze the flows and jumps of

the input and output signals. We define the continuous-time signals

x̄c(t) :=

[
4− cos(t)

6

]
, ϕ̄c(t) :=

[
sin(t) 0

0 0

]

for all t ≥ 0, which are obtained by neglecting the resets of x and ϕc, respectively,

at jumps. The signals x̄c and ϕ̄c are solutions to the continuous-time system

˙̄xc(t) = ϕ̄c(t)θ for all t ≥ 0. Next, we define the discrete-time signals

x̄d(j) :=

[
3

6

]
, ϕd(j) :=

[
1 2

2 4

]

for all j ∈ N, which are obtained by neglecting the evolution of x and ϕd, respec-

tively, during flows. The signals x̄d and ϕ̄d are solutions to the discrete-time system

x̄d(j) = ϕ̄d(j)θ for all j ∈ N. Finally, using the transformations in Section 4.2,

we express x̄c and x̄d as the outputs of linear regressions models and apply the

continuous-time and discrete-time estimation algorithms (4.6) and (4.7), respec-

tively, to estimate the unknown parameter θ. Both algorithms fail to converge, as

shown in blue and green in Figure 1.1.

To see why the continuous-time algorithm fails to converge, note that for ϕ̄c,

the value of t 7→ ψ(t) in (4.4) is

ψ(t) = e−λctψ(0) +

∫ t

0

e−λc(t−s)ϕ̄c(s)ds

14With CP , DP , and u given below (4.27), the hybrid time domain of each maximal solution
to the hybrid system in (4.27) is equal to the hybrid time domain E of ϕc and ϕd.
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for all t ≥ 0. Since e−λctψ(0) converges exponentially to zero and the second

column of ϕ̄c is zero, it follows that t 7→ ψ(t) does not satisfy the continuous-time

PE condition (2.13) for any T > 0. Similarly for ϕ̄d, the value of j 7→ ψ(j) in (4.8)

is

ψ(j) = (1− λd)
jψ(0) +

j−1∑
i=0

(1− λd)
(j−i−1)ϕ̄d(i)

for all j ∈ N. Since (1−λd)jψ(0) converges exponentially to zero and ϕ̄d is constant

and not full rank, it follows that j 7→ ψ(j) does not satisfy the discrete-time PE

condition (2.15) for any J ∈ N \ {0}.

We now employ Hg in (4.2) to estimate θ in (4.27). The system (4.27) can

be written as (4.1) by setting fc, gd in (4.1) to zero. The algorithm is simulated

for γc = 1, λc = 0.1, γd = 1, and λd = 0.5 alongside the continuous-time and

discrete-time estimation algorithms from Section 2.2 with the same parameters,

where applicable. To illustrate the robustness of our algorithm, we also simulate

Hg with additive noise (t, j) 7→ ν(t, j) = sin(2t) in the measurements of x. It can

be shown that the solution component ψ satisfies the hybrid PE condition (4.13)

with ∆ = 2π + 1 and µ = 5.1.

The simulation is performed from two separate initial conditions: one with

ε(0, 0) = 0 and one with ε(0, 0) ̸= 0. In particular, x(0, 0) = (3, 6), θ̂(0, 0) = (0, 0),

and

1. ψ(0, 0) = 0, η(0, 0) = −(3, 6) =⇒ ε(0, 0) = (0, 0)

2. ψ(0, 0) = 0, η(0, 0) = −(1.5, 3) =⇒ ε(0, 0) = (1.5, 3)

producing the results in Figure 4.1. When no noise is present, |ξ|Ag converges

exponentially to zero in accordance with Theorem 4.7, as shown in blue for the

case with ε(0, 0) = 0 and in green for the case with ε(0, 0) ̸= 0. When noise is
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present, |ξ|Ag remains bounded in accordance with Theorem 4.11, as shown in

orange in Figure 4.1.

Figure 4.1: The projection onto t of |ξ|Ag for Hg.

4.5.2 Spacecraft Bias Torque Estimation

Consider the problem of estimating a constant disturbance torque applied

to a spacecraft, controlled by reaction wheels (RW) and reaction control system

(RCS) thrusters. Such bias torques may arise in practice due to aerodynamic

effects, gravity gradients, or solar radiation pressure differentials. For simplicity,

we consider the dynamics of a spacecraft rotating about only a single principle axis

of inertia, although our approach can be extended to three-axis rotation. In the

following, we derive the closed-loop dynamics of the spacecraft when controlled

by RW and RCS thrusters separately, and then combine the results into a single

hybrid model.

The dynamics of a spacecraft rotating along a principle axis of inertia under

the effect of RW are [51]
Jsz̈ = −JwΩ̇ + θ, (4.28)
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where z ∈ R is the known pointing angle of the spacecraft, Ω ∈ R is the known

rotational velocity of the RW, Js > 0 is the known spacecraft moment of inertia,

Jw > 0 is the known RW moment of inertia, and θ ∈ R is an unknown bias torque.

Suppose RW control the attitude to a pointing angle, zdes ∈ R. The dynamics

of the reaction wheel are [51]
JwΩ̇ = α(t), (4.29)

where t 7→ α(t) ∈ R is the RW motor torque that is designed to maintain the

spacecraft pointing angle. Substituting (4.29) into (4.28), we obtain

Jsz̈ = −α(t) + θ. (4.30)

When the bias torque is nonzero, the industry-standard proportional-derivative

(PD) control scheme for the RW motor fails to yield zero pointing error in steady-

state. In this case, a feedfoward term is added that compensates for the effect of

the bias torque using an estimate of the bias, denoted by θ̂ [51]. Hence, the RW

torque is
− α(t) = KP (zdes − z(t))−KDż(t)− θ̂(t), (4.31)

whereKP , KD > 0 are design parameters. From (4.29), (4.30), (4.31), the dynamics

of the closed-loop system are

z̈ =
−α(t) + θ

Js
, Ω̇ =

α(t)

Jw
. (4.32)

The spacecraft pointing angle can be maintained only if an equivalent RW torque

is delivered to counteract the bias torque. If the bias torque is nonzero, the angular

velocity of the RW constantly increases in order to counteract the disturbance

and the RW motor eventually reaches its maximum angular velocity. In order to

avoid the RW motor from becoming saturated, “momentum dumping” is applied

to decrease the angular velocity of the RW [51]. This procedure involves firing the
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RCS thrusters to generate a torque that is compensated by the attitude controller

by actions that cause the RW to reduce their angular momentum.

The dynamics of a spacecraft rotating along a principle axis of inertia under

the effect of RCS thrusters are [51]

Jsz̈ =M + θ, (4.33)

where M ∈ R is the known RCS thruster torque. For simplicity, we assume that

the velocity of the RW is constant for the duration of each thruster firing. As a

result, the RW dynamics do not play a role in (4.33).

Suppose that, at time t ≥ 0, the thrusters are fired for δ > 0 seconds. Integrating

(4.33) over the time interval [t, t + δ] yields ż(t + δ) = ż(t) + δ
Js
(M + θ). If the

thruster firing duration δ is negligibly small compared to the other time scales of

the system, which is appropriate due to the slow spacecraft attitude maneuvering,

we model the thruster firing as an instantaneous jump in the angular velocity of

the spacecraft, given by

ż+ = ż +
δ

Js
(M + θ). (4.34)

To avoid chatter, a timer, denoted by τs, is used to briefly inhibit the RCS thrusters

after each thruster firing. Each time the thrusters are fired, the timer is reset to

zero.

By combining the expression in (4.32) and (4.34), we express the closed-

loop dynamics of the spacecraft as a hybrid system as in (4.1). Given an input

u := (zdes, θ̂), where zdes ∈ R is the desired constant spacecraft pointing angle

and θ̂ ∈ R is an estimate of the unknown bias torque, the hybrid model of the
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spacecraft has state x = (z, ż,Ω, τs) ∈ R4 and data

fc(x, u(t, j)) :=


ż

− 1
Js
α(x, u(t, j))

1
Jw
α(x, u(t, j))

1

 , ϕc(t, j) :=

0
1
Js

0

0



gd(x, u(t, j)) :=


z

ż + δ
Js
M

Ω

0

 , ϕd(t, j) :=


0
δ
Js

0

0


where α(x, u(t, j)) := −KP (zdes − z) +KDż + θ̂(t, j). The flow and jump sets of

the hybrid spacecraft model implement the momentum dumping procedure. The

system jumps each time the angular velocity of the RW exceeds a design parameter

Ωmax > 0 and the timer τs exceeds a design parameter τ ∗ > 0, and flows otherwise,

as

CP := {x ∈ R4 : Ω ≤ Ωmax} ∪ {x ∈ R4 : τs ≤ τ ∗}

DP := {x ∈ R4 : Ω ≥ Ωmax, τs ≥ τ ∗}.

We employ Hg to estimate the unknown bias torque. The closed-loop system is

simulated15 with initial conditions x(0, 0) = (0, 0, 0, 0), θ̂(0, 0) = 0, ψ(0, 0) = 0,

and η(0, 0) = −x(0, 0). The hybrid spacecraft model has parameters zdes = 0 rad,

Ωmax = 10000 RPM, Js = 5000 kg-m2, Jw = 0.1 kg-m2, M = −10 N-m, δ = 9.5 sec,

τ ∗ = 10 sec, Kp = 10, Kd = 1200, and with an unknown bias torque of θ = 0.005

N-m. Our algorithm Hg has parameters γc = 0.0012, λc = 0.001, γd = 0.01, and

λd = 0.5. With the initial conditions and design parameters given above, it can be

shown numerically that the conditions of Theorem 4.7 hold.

The bias torque estimation error from Hg converges exponentially to zero in

accordance with Theorem 4.7, as shown in Figure 4.2. The spacecraft pointing
15Code at https://github.com/HybridSystemsLab/HybridGD_SpacecraftBiasTorque
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Figure 4.2: The projection onto t of the bias torque estimation error for Hg.

angle error and RW angular velocity are shown in the top and bottom plots,

respectively, in Figure 4.3, where the control performance resulting from our

hybrid algorithm is compared against an industry-standard PID control scheme

that is tuned to achieve a similar pointing error convergence rate during flows.

For the PID controller, we inhibit accumulation of the integrator during each

thruster firing, otherwise the spacecraft pointing angle fails to converge to the

set point. With the exception of the transients caused by the thruster firings,

the pointing error converges to zero for both controllers. However, our hybrid

algorithm converges faster due to our estimator’s ability to leverage information

during both flows and jumps to estimate the unknown bias torque.
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Figure 4.3: The projection onto t of the spacecraft pointing angle error (top)
and the RW angular velocity (bottom).
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Chapter 5

Parameter Estimation for Hybrid

Systems using Data

Inspired by the integral concurrent learning algorithm in Section 2.3, in this

chapter we propose a hybrid algorithm to estimate unknown parameters for a class

of hybrid dynamical systems. The algorithm stores measurements during flows

and jumps of the hybrid system in order to satisfy a (hybrid) richness condition

that guarantees convergence of the parameter estimate to the true value.

5.1 Problem Statement

Inspired by the continuous-time integral concurrent learning algorithm [40], we

develop a hybrid algorithm for estimating parameters of hybrid dynamical systems

as in (4.1), recalled below:

ẋ = fc(x, u(t, j)) + ϕc(t, j)θ (x, u(t, j)) ∈ CP

x+ = gd(x, u(t, j)) + ϕd(t, j)θ (x, u(t, j)) ∈ DP

(5.1)

where x ∈ Rn is the known state vector, (t, j) 7→ u(t, j) ∈ Rm is the known input,

and (t, j) 7→ ϕc(t, j) ∈ Rn×p and (t, j) 7→ ϕd(t, j) ∈ Rn×p are known regressors,
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(x, u) 7→ fc(x, u) and (x, u) 7→ gd(x, u) are known continuous functions, θ ∈ Rp

is a vector of unknown constant parameters, and n,m, p ∈ N. The flow set is

CP ⊂ Rn ×Rm and the jump set is DP ⊂ Rn ×Rm. The regressors ϕc and ϕd and

the input u are defined on hybrid time domains as described in Section 2.1, but

are not necessarily hybrid arcs.16

Our goal is to estimate the parameter vector θ in (5.1). Since ϕc and ϕd may

exhibit both flows and jumps, it is important to update the parameter estimate θ̂

continuously whenever ϕc flows, and to update θ̂ discretely each time ϕd jumps,

which is possible when jumps are detected instantaneously. Hence, we propose to

estimate θ using a hybrid algorithm, denoted H, of the form

H :

 ξ̇ = F (ξ) ξ ∈ C

ξ+ = G(ξ) ξ ∈ D
(5.2)

with data designed to solve the following problem.

Problem 5.1: Design the data (C,F,D,G) of H in (5.2) and determine conditions

that ensure the parameter estimate θ̂ converges to the unknown parameter vector

θ in (5.1).

Next, we present our solution to this estimation problem.

5.2 Problem Solution

Our proposed hybrid ICL algorithm is inspired by the continuous-time ICL

algorithm. We begin by explaining the approach in words before formally defining

the algorithm. Let (t, j) 7→ ϕc(t, j), (t, j) 7→ ϕd(t, j), and (t, j) 7→ u(t, j) be hybrid

signals satisfying (5.1) for all (t, j) ∈ E := domϕc = domϕd = domu. During
16In other words, ϕc, ϕd, and u do not need to be locally absolutely continuous during flows —

see [45] for details.
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flows, we compute signals (t, j) 7→ Yc(t, j) and (t, j) 7→ Φc(t, j) such that Yc,

Φc, and θ are related via a linear regression model; that is, Yc(t, j) = Φc(t, j)θ

for all (t, j) ∈ E. Similarly, at jumps, we compute signals (t, j) 7→ Yd(t, j) and

(t, j) 7→ Φd(t, j) such that Yd, Φd, and θ are related via a linear regression model;

that is, Yd(t, j) = Φd(t, j)θ for all (t, j) ∈ E. Next, samples of the signals Yc, Φc,

Yd, and Φd are stored, and the stored data is used alongside current measurement

to adapt the parameter estimate. Samples are selected to ensure that the parameter

estimation error converges to zero.

Given ϕc, ϕd : E → Rn×p and u : E → Rm, where E := domϕc = domϕd =

domu is a hybrid time domain, we define the state ξ of H as ξ = (x, θ̂, τ, k) ∈

X := Rn × Rp × E, where x is the state of the plant in (5.1), θ̂ is the estimate of

θ, and τ and k correspond to t and j, respectively, from the hybrid time domain

E. Including τ and k in ξ allows ϕc, ϕd, and u to be part of the definitions of

F and G, rather than modeled as inputs to H. Thus, we can express H as an

autonomous hybrid system, which allows us to leverage recent results on stability

and robustness properties [22, 45]. The flow and jump sets of H are defined so that

H flows when ϕc flows and jumps when ϕd jumps. Since E := domϕc = domϕd,

C := cl
(
X \D

)
, D := {ξ ∈ X : (τ, k + 1) ∈ E}. (5.3)

Remark 5.2: We assume for simplicity that the plant state x in (5.1) has the same

hybrid time domain as ϕc, ϕd, and u. As a result, the flow set CP and jump set

DP of the plant are not part of the construction of H. Our algorithm can be

extended to the case where x, ϕc, ϕd, and u have different hybrid time domains by

considering CP and DP in (5.1). In this case, we can reparameterize the domains

of ϕc, ϕd, and u to express x, ϕc, ϕd, and u on a common hybrid time domain. See,

e.g., [5].
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To implement our proposed hybrid ICL algorithm, we first define the symbols

t ∈ R≥0 and j ∈ N. Given a design parameter Λ > 0, for each (t, j) ∈ E:

• t(t, j) gives the largest t′ ∈ R≥0 such that there exists j′ ∈ N such that

(t′, j′) ∈ E and the hybrid time interval E ∩ ([t′, t]× {j′, j′ + 1, · · · , j}) has

length greater than or equal to Λ. If no such t′ exists, then t = 0.

• j(t, j) gives the largest j′ ∈ N such that there exists t′ ∈ R≥0 such that

(t′, j′) ∈ E and the hybrid time interval E ∩ ([t′, t]× {j′, j′ + 1, · · · , j}) has

length greater than or equal to Λ. If no such j′ exists, then j = 0.

Formally, t and j are defined as follows. Given (t, j) ∈ E, if t+ j < Λ, then t := 0

and j := 0; and if t+ j ≥ Λ, then

t(t, j) := sup{t′ ∈ R≥0 : ∃j′ ∈ N s.t. (t′, j′) ∈ E, t′ + j′ ≤ t+ j − Λ},

j(t, j) := sup{j′ ∈ N : ∃t′ ∈ R≥0 s.t. (t′, j′) ∈ E, t′ + j′ ≤ t+ j − Λ}.
(5.4)

For simplicity of notation, we subsequently omit the arguments of t and j.

5.2.1 Parameter Estimation during Flows

Following the approach outlined in Section 2.3, during flows of each solution to

H, we compute signals (t, j) 7→ Yc(t, j) and (t, j) 7→ Φc(t, j) such that Yc, Φc, and

θ are related via a linear regression model. For each (t, j) ∈ E, we integrate fc

and ϕc during flows and compute the change in x due to flow over the preceding

hybrid time interval of length Λ as

Xc(t, j) :=

j∑
i=j

x(min{t, ti+1}, i)− x(max{t, ti}, i)

Fc(t, j) :=

j∑
i=j

∫ min{t,ti+1}

max{t,ti}
fc(x(s, i), u(s, i))ds

Φc(t, j) :=

j∑
i=j

∫ min{t,ti+1}

max{t,ti}
ϕc(s, i)ds

(5.5)
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for all (t, j) ∈ E, where {tj}Jj=0 is the sequence defining E as in Section 2.1, and

tJ+1 := T , with J := supj E and T := suptE. Since θ is constant, it follows from

(5.1) that

Xc(t, j) = Fc(t, j) + Φc(t, j)θ ∀(t, j) ∈ E. (5.6)

Then, by defining Yc(t, j) := Xc(t, j)−Fc(t, j) we rewrite (5.6) as a hybrid linear

regression model, namely,

Yc(t, j) = Φc(t, j)θ ∀(t, j) ∈ E (5.7)

We sample Yc and Φc at hybrid time instants {(t̃i, j̃i)}Sc(t,j)
i=1 satisfying 0 ≤ t̃1 <

t̃2 < · · · ≤ t, where (t, j) 7→ Sc(t, j) indicates a time-dependent number of samples,

which is to be designed. To store the samples, we define, for all (t, j) ∈ E, the

history stacks

Yc(t, j) :=
[
Yc,1(t, j), Yc,2(t, j), · · · , Yc,Nc(t, j)

]
∈ Rn×Nc

Zc(t, j) :=
[
Zc,1(t, j), Zc,2(t, j), · · · , Zc,Nc(t, j)

]
∈ Rn×p×Nc

(5.8)

where Nc ∈ N \ {0} is a design parameter satisfying Nc ≥
⌈
p/n
⌉

that represents

the maximum number of samples that can be stored during flows. The elements

of Yc and Zc are initially empty (zero), and are populated by the samples of Yc

and Φc, respectively. Thus, during flows, the elements of Yc and Zc are piecewise

constant right-continuous signals, with values changing only at the sample times

and, for all (t,j)∈E,

Yc,ℓ(t, j) = Zc,ℓ(t, j)θ ∀ ℓ ∈ {1, 2, · · · , Nc}. (5.9)

During flows, we update the parameter estimate continuously with dynamics

inspired by the continuous-time ICL algorithm in (2.11). However, in contrast
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to (2.11), we do not use a filtered version of the plant state to inject current

measurements into the dynamics of the parameter estimate. Instead, current

measurements are injected by employing a gradient descent estimation scheme

[48] on the hybrid signals Yc and Φc in (5.7). This modification allows us to show

exponential convergence of θ̂ to θ in the hybrid case. By employing a gradient

descent scheme to estimate θ in (5.7), we obtain the estimator dynamics

˙̂
θ = γcΦc(τ, k)

⊤(Yc(τ, k)− Φc(τ, k)θ̂)

where γc > 0 is a design parameter. Then, as in (2.11), we add a term that

captures the information stored in Zc and Yc, and obtain

˙̂
θ = γcΦc(τ, k)

⊤(Yc(τ, k)− Φc(τ, k)θ̂)

+ ρc

Nc∑
ℓ=1

(
Zc,ℓ(τ, k)

⊤(Yc,ℓ(τ, k)− Zc,ℓ(τ, k)θ̂)
)
=: αc(ξ)

(5.10)

where ρc > 0 is a design parameter. Hence, the flow map of H in (5.2) is

F (ξ) :=


fc(x, u(τ, k)) + ϕc(τ, k)θ

αc(ξ)

1

0

 ∀ξ ∈ C. (5.11)

5.2.2 Parameter Estimation at Jumps

Each time a solution to H jumps, we compute signals (t, j) 7→ Yd(t, j) and

(t, j) 7→ Φd(t, j) such that Yd, Φd, and θ are related via a linear regression model.

For each (t, j) ∈ E, we sum gd and ϕd before each jump, and sum x after each
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jump, over the preceding hybrid time interval of length Λ as

Xd(t, j) :=

j−1∑
i=j

x(ti+1, i+ 1)

Gd(t, j) :=
j−1∑
i=j

gd(x(ti+1, i), u(ti+1, i))

Φd(t, j) :=

j−1∑
i=j

ϕd(ti+1, i)

(5.12)

for all (t, j) ∈ E. Since θ is constant, it follows from (5.1) that

Xd(t, j) = Gd(t, j) + Φd(t, j)θ ∀(t, j) ∈ E (5.13)

Then, by defining Yd(t, j) := Xd(t, j)−Gd(t, j), we rewrite (5.13) as a hybrid linear

regression model, namely,

Yd(t, j) = Φd(t, j)θ ∀(t, j) ∈ E. (5.14)

We sample Yd and Φd after the jump at hybrid time instants {(tj̃i+1, j̃i+1)}Sd(t,j)
i=1

satisfying 0 ≤ j̃1 < j̃2 < · · · ≤ j, where (t, j) 7→ Sd(t, j) indicates a time-dependent

number of samples, which is to be designed. To store the samples, we define, for

all (t, j) ∈ E, the history stacks

Yd(t, j) :=
[
Yd,1(t, j), Yd,2(t, j), · · · , Yd,Nd

(t, j)
]
∈ Rn×Nd

Zd(t, j) :=
[
Zd,1(t, j), Zd,2(t, j), · · · , Zd,Nd

(t, j)
]
∈ Rn×p×Nd

(5.15)

where Nd ∈ N \ {0} is a design parameter satisfying Nd ≥
⌈
p/n
⌉

that represents

the maximum number of samples that can be stored at jumps. The elements of

Yd and Zd are initially empty, and are populated by the samples of Yc and Φc,
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respectively. Thus, the elements of Yd and Zd change only after jumps associated

with the sample times and, for all (t, j) ∈ E,

Yd,ℓ(t, j) = Zd,ℓ(t, j)θ ∀ ℓ ∈ {1, 2, · · · , Nd}. (5.16)

We update the parameter estimate θ̂ discretely at jumps. To incorporate

current measurements, we employ a discrete-time gradient descent estimation

scheme [54] to estimate θ in (5.14). Namely,

θ̂+ = θ̂ + Γ
Φd(τ, k + 1)⊤(Yd(τ, k + 1)− Φd(τ, k + 1)θ̂)

γd + |Φd(τ, k + 1)|2

where γd > 0 and Γ ∈ (0, 1/2] are design parameters. Then, as during flows, we add

a term that captures the information stored in Zd and Yd, to obtain

θ̂+ = θ̂ + Γ
Φd(τ, k + 1)⊤(Yd(τ, k + 1)− Φd(τ, k + 1)θ̂)

γd + |Φd(τ, k + 1)|2

+ Γ

∑Nd

ℓ=1

(
Zd,ℓ(τ, k + 1)⊤

(
Yd,ℓ(τ, k + 1)− Zd,ℓ(τ, k + 1)θ̂

))
ρd +

∑Nd

ℓ=1 |Zd,ℓ(τ, k + 1)|2
=: αd(ξ)

(5.17)

where ρd > 0 is a design parameter. Hence, the jump map of H in (5.2) is

G(ξ) :=


gd(x, u(τ, k)) + ϕd(τ, k)θ

αd(ξ)

τ

k + 1

 ∀ξ ∈ D. (5.18)

Remark 5.3: For simplicity, H in (5.2) is expressed such that jumps in the parameter

estimate coincide with jumps in x. This construction results in H being noncausal

since, due to the definition of Xd in (5.12), the term Yd(τ, k + 1) in (5.17) depends

on the value of x(τ, k + 1) – that is, the value of x after the jump at hybrid time

(τ, k). We can remove this simplification at the price of letting the algorithm jump
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twice for each jump in x, as follows. Immediately before a jump in x, the algorithm

computes Gd and Φd in (5.12), and jumps to increment the value of k to k + 1.

Immediately after a jump in x, the algorithm computes Xd in (5.12) and jumps a

second time to update the parameter estimate as in (5.17). A logic variable ensures

that, after the second jump, the algorithm flows or jumps in accordance with

the hybrid time domain E. Since θ in (5.1) is constant, the stability properties

induced by H in (5.2) are equivalent to the stability properties induced by the

causal modification, after we reparameterize the domain of solutions to H to match

the domain of solutions to the causal system. Hence, for simplicity, we focus our

analysis on (5.2).

5.3 Stability Analysis

We now establish sufficient conditions that ensure our proposed estimation

algorithm induces global pre-exponential stability17 of the set

A :=
{
ξ ∈ X : θ̂ = θ

}
. (5.19)

Global pre-exponential stability of A implies that, for each solution ξ to H, the

distance from ξ to the set A is bounded above by an exponentially decreasing

function of the initial condition – see Definition 2.9. As a consequence, for each

complete solution ξ to H, the parameter estimate θ̂ converges exponentially to θ.

Convergence of θ̂ to θ is achieved when the parameter estimation error θ̃ = θ− θ̂

converges to zero. In such error coordinates, using (5.7) and (5.9), the dynamics
17Since each solution ξ to H inherits the hybrid time domain of ϕc, ϕd, and u, the use of

“pre-exponential,” as opposed to “exponential,” stability means that these signals do not need
to be complete. Note that the continuous-time ICL algorithm in [40] assumes completeness of
maximal solutions.
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of the parameter estimate in (5.10) become

˙̃θ = −γcΦc(τ, k)
⊤Φc(τ, k)θ̃ − ρcZc(τ, k)θ̃ (5.20)

where

Zc(τ, k) :=
Nc∑
ℓ=1

Zc,ℓ(τ, k)
⊤Zc,ℓ(τ, k) ∈ Rp×p. (5.21)

Furthermore, using (5.14) and (5.16), the reset map for the parameter estimate in

(5.17) becomes

θ̃+ = θ̃ − Γ
Φd(τ, k + 1)⊤Φd(τ, k + 1)

γd + |Φd(τ, k + 1)|2
θ̃ − Γ

Zd(τ, k + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(τ, k + 1)|2
θ̃ (5.22)

where

Zd(τ, k) :=

Nd∑
ℓ=1

Zd,ℓ(τ, k)
⊤Zd,ℓ(τ, k) ∈ Rp×p. (5.23)

We impose the following boundedness condition on ϕc and ϕd, whose values

are collected in Φc and Φd in (5.5) and (5.12), respectively.

Assumption 5.4: Given ϕc, ϕd : E → Rn×p, where E := domϕc = domϕd is a

hybrid time domain, there exists ϕM > 0 such that |ϕc(t, j)| ≤ ϕM for all (t, j) ∈ E

and |ϕd(t, j)| ≤ ϕM for all (t, j) ∈ Υ(E), with Υ as in (2.2).

Moreover, we impose the following hybrid persistence of excitation condition.

Assumption 5.5: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, Zc : E → Rn×p×Nc ,

and Zd : E → Rn×p×Nd , where E := domϕc = domϕd = domZc = domZd is a

hybrid time domain, there exist ∆, µ > 0 such that, for all (t′, j′), (t∗, j∗) ∈ E

satisfying

∆ ≤ (t∗ − t′) + (j∗ − j′) < ∆+ 1, (5.24)
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the following condition holds:

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}

(
Φc(s, j)

⊤Φc(s, j) + Zc(s, j)
)
ds

+

j∗−1∑
j=j′

(
Φd(tj+1, j + 1)⊤Φd(tj+1, j + 1) + Zd(tj+1, j + 1)

)
≥ µI

(5.25)

with Φc as in (5.5), Φd as in (5.12), Zc as in (5.21), and Zd as in (5.23), where

{tj}Jj=0 is the sequence defining E as in Section 2.1 and tJ+1 := T , with J := supj E

and T := suptE.

Remark 5.6: The excitation condition in Assumption 5.5 is similar to the hybrid

persistence of excitation condition in Assumption 4.6. However, in contrast to

Assumption 4.6, which imposes the excitation condition on only ϕc and ϕd (via

the solution component ψ), Assumption 5.5 incorporates the information provided

by ϕc and ϕd (via Φc and Φd, respectively) and from the history stacks Zc and Zd.

Hence, it is possible that Assumption 5.5 holds when ϕc and ϕd are not hybrid PE

in the sense of Assumption 4.6. An example of such a case is given in Section 5.7.

We now establish conditions that ensure H induces global pre-exponential

stability of A.

Theorem 5.7: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, u : E → Rm,

Zc : E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and Yd : E → Rn×Nd

defining the hybrid system H in (5.2), where E := domϕc = domϕd = domu =

domZc = domZd = domYc = domYd is a hybrid time domain, suppose that

Assumptions 5.4 and 5.5 hold. Then, for each γc, γd, ρc, ρd > 0 and each Γ ∈ (0, 1/2],

the parameter estimation error (t, j) 7→ θ̃(t, j) := θ − θ̂(t, j) for each solution ξ to

H satisfies

|θ̃(t, j)| ≤ κe−λ(t+j)|θ̃(0, 0)| (5.26)

67



for all (t, j) ∈ dom ξ, where

κ :=

√
1

1− σ
, λ :=

1

2(∆ + 1)
ln

(
1

1− σ

)
σ :=

2µ0(
1 +

√
(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2)

)2 , (5.27)

and

µ0 := µmin

{
γc, ρc,

Γ

2(γd + (Λ + 1)2ϕ2
M)

,
Γ

2(ρd +Nd(Λ + 1)2ϕ2
M)

}
aM := (γc + ρcNc)(Λ + 1)2ϕ2

M

(5.28)

with ϕM from Assumption 5.4 and ∆, µ from Assumption 5.5.

5.3.1 Proof of Theorem 5.7

To prove Theorem 5.7, we use that the error dynamics of H belong to the

class of hybrid systems studied in Chapter 3. Using (5.20) and (5.22), the hybrid

system, denoted by H̃, resulting from expressing H in error coordinates θ̃ = θ − θ̂

has state ξ := (θ̃, τ, k) ∈ X̃ := Rp × E and dynamics

H̃ :

 ξ̇ = F̃ (ξ) ξ ∈ C̃

ξ+ = G̃(ξ) ξ ∈ D̃,
(5.29)

where C̃ := C and D̃ := D, with C, D in (5.3), and

F̃ (ξ) :=


−γcΦc(τ, k)

⊤Φc(τ, k)θ̃ − ρcZc(τ, k)θ̃

1

0

 ∀ξ ∈ C̃

G̃(ξ) :=


θ̃ − ΓΦd(τ,k+1)⊤Φd(τ,k+1)

γd+|Φd(τ,k+1)|2 θ̃ − Γ Zd(τ,k+1)

ρd+
∑Nd

ℓ=1 |Zd,ℓ(τ,k+1)|2
θ̃

τ

k + 1

 ∀ξ ∈ D̃.

68



The hybrid system H in (3.1) reduces to H̃ in (5.29) when ϑ = θ̃,

A(τ, k) := γcΦc(τ, k)
⊤Φc(τ, k) + ρcZc(τ, k) (5.30a)

for all (τ, k) ∈ E, and

B(τ, k) := Γ
Φd(τ, k + 1)⊤Φd(τ, k + 1)

γd + |Φd(τ, k + 1)|2
+ Γ

Zd(τ, k + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(τ, k + 1)|2
(5.30b)

for all (τ, k) ∈ Υ(E), with Υ as in (2.2). Hence, we use Theorem 3.3 to prove

Theorem 5.7.

Proof of Theorem 5.7: To prove Theorem 5.7, we show that, under the conditions

of Theorem 5.7, A,B in (5.30) satisfy Assumptions 3.1 and 3.2. Beginning with

Assumption 3.1, the matrix functions A,B in (5.30) are symmetric by construction

since Zc in (5.21) and Zd in (5.23) are symmetric and, since γc, γd, ρc, ρd > 0 and

Γ ∈ (0, 1/2], it follows that A,B are positive semidefinite. Hence, items 1 and 2 of

Assumption 3.1 hold. Next, we show that items 3 and 4 of Assumption 3.1 hold.

Since, by Assumption 5.4, |ϕc(t, j)| ≤ ϕM for all (t, j) ∈ E, it follows from the

definition of Φc in (5.5) that

|Φc(t, j)| ≤
j∑
i=j

∫ min{t,ti+1}

max{t,ti}
|ϕc(s, i)|ds ≤ (Λ + 1)ϕM (5.31)

for all (t, j) ∈ dom ξ, where the last inequality follows from the fact that, by the

definition of t and j in (5.4), (t− t) + (j − j) ≤ Λ + 1 for all (t, j) ∈ dom ξ, and

thus

j∑
i=j

(
min{t, ti+1} −max{t, ti}

)
= min{t, tj+1} −max{t, tj}

= t− t ≤ Λ + 1 (5.32)
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for all (t, j) ∈ dom ξ. Finally, since Zc in (5.8) stores samples of Φc, it follows that

|Zc,ℓ(t, j)| ≤ |Φc(t, j)| ≤ (Λ + 1)ϕM (5.33)

for all ℓ ∈ {1, 2, · · · , Nc} and all (t, j) ∈ dom ξ. Then, from (5.31) and the

definition of Zc in (5.21), we have

|Zc(t, j)| ≤
Nc∑
ℓ=1

|Zc,ℓ(t, j)|2 ≤ Nc(Λ + 1)2ϕ2
M (5.34)

for all (t, j) ∈ dom ξ. Hence, from (5.31) and (5.34), it follows that

|A(t, j)| ≤ γc|Φc(t, j)|2 + ρc|Zc(t, j)|

≤ γc(Λ + 1)2ϕ2
M + ρcNc(Λ + 1)2ϕ2

M

for all (t, j) ∈ E. Thus, item 3 of Assumption 3.1 holds with aM in (5.28).

Moreover, since γd, ρd > 0 and Γ ∈ (0, 1/2], it follows that

|B(t, j)| ≤ Γ
|Φd(t, j + 1)|2

γd + |Φd(t, j + 1)|2
+ Γ

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2

ρd +
∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2
< 1

for all (t, j) ∈ Υ(E). Thus, item 4 of Assumption 3.1 holds.

To complete the proof, we show that Assumption 3.2 holds. Substituting A,B
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in (5.30) into (3.5), we have that, for all (t′, j′), (t∗, j∗) ∈ E satisfying (5.24),

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}

(
γcΦc(s, j)

⊤Φc(s, j) + ρcZc(s, j)

)
ds

+
1

2

j∗−1∑
j=j′

(
Γ
Φd(tj+1, j + 1)⊤Φd(tj+1, j + 1)

γd + |Φd(tj+1, j + 1)|2
+ Γ

Zd(tj+1, j + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(tj+1, j + 1)|2

)
≥ min

{
γc, ρc,

Γ

2(γd + (Λ + 1)2ϕ2
M)

,
Γ

2(ρd +Nd(Λ + 1)2ϕ2
M)

}
×
( j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}

(
Φc(s, j)

⊤Φc(s, j) + Zc(s, j)
)
ds

+

j∗−1∑
j=j′

(
Φd(tj+1, j + 1)⊤Φd(tj+1, j + 1) + Zd(tj+1, j + 1)

))
≥ µmin

{
γc, ρc,

Γ

2(γd + (Λ + 1)2ϕ2
M)

,
Γ

2(ρd +Nd(Λ + 1)2ϕ2
M)

}
> 0

with µ > 0 from Assumption 5.5. Thus, Assumption 3.2 holds with ∆, µ0 from

Theorem 5.7, and the conditions of Theorem 3.3 are satisfied. Then, from the

equivalence between |θ̃| and |ξ|A, namely, since A in (5.19) is the set of points

{ξ ∈ X : θ̂ = θ}, the result follows from Theorem 3.3.

5.3.2 Point-wise Excitation Conditions

Theorem 5.7 provides conditions on Φc, Φd, Zc, and Zd that ensure H induces

global pre-exponential stability of A. However, Assumption 5.5 may be difficult to

verify online since (5.25) requires integrating Φc and Zc, and summing Φd and Zd,

over each hybrid time interval in E with length satisfying (5.24). Hence, in this

section, we establish point-wise conditions on the history stacks Zc and Zd that

ensure global pre-exponential stability of A for H.

For our analysis, we partition hybrid time into two phases. During the initial

phase, insufficient data has been collected to satisfy a richness condition on the
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history stacks. In Theorem 5.10, we show that the parameter estimate remains

bounded for all hybrid time despite the lack of persistently exciting data. Next,

we assume that after a finite period of hybrid time, the system transitions to the

second phase where the history stacks are sufficiently rich and, in Theorem 5.11,

we show that θ̂ converges exponentially to θ. To guarantee that the transition

to the second phase occurs in finite hybrid time, we require the history stacks to

satisfy the following assumption.

Assumption 5.8: Given Λ > 0, Nc, Nd ∈ N, Zc : E → Rn×p×Nc , and Zd : E →

Rn×p×Nd , where E := domZc = domZd is a hybrid time domain, there exist

∆ > 1, Ω > 0, and (to, jo) ∈ E such that, for all (t′, j′), (t∗, j∗) ∈ E satisfying

t∗ + j∗ ≥ t′ + j′ ≥ to + jo and

(t∗ − t′) + (j∗ − j′) ≥ ∆ (5.35)

the following holds:

min{t∗ − t′, j∗ − j′} ≥ Ω. (5.36)

Furthermore, there exist µo > 0 such that, for all (t, j) ∈ E satisfying t+j ≥ to+jo,

Zc(t, j) + Zd(t, j) ≥ µoI (5.37)

and

Zc(t, j) ≥ Zc(to, jo), Zd(t, j) ≥ Zd(to, jo), (5.38)

with Zc as in (5.21) and Zd as in (5.23).

Remark 5.9: The inequalities in (5.35) and (5.36) mean that each hybrid time

interval in E with length greater than or equal to ∆ contains at least Ω seconds of
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flow, and jumps at least ⌈Ω⌉ times. Note that (5.36) implies that Zc and Zd are

neither continuous, eventually continuous, discrete, eventually discrete, or Zeno.

The inequality in (5.37) means that the sum of Zc and Zd is uniformly positive

definite, and (5.38) means that the minimum eigenvalues values of Zc and Zd are

non-decreasing.

When there is insufficient data to satisfy Assumption 5.8, we have the following

result.

Theorem 5.10: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, u : E → Rm, Zc :

E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and Yd : E → Rn×Nd defining

the hybrid system H in (5.2), where E := domϕc = domϕd = domu = domZc =

domZd = domYc = domYd is a hybrid time domain, for each γc, γd, ρc, ρd > 0,

Γ ∈ (0, 1/2], the parameter estimation error (t, j) 7→ θ̃(t, j) := θ − θ̂(t, j) for each

solution ξ to H satisfies

|θ̃(t, j)| ≤ |θ̃(0, 0)| ∀(t, j) ∈ dom ξ. (5.39)

Proof. Consider the Lyapunov function

V (ξ) :=
1

2
θ̃⊤θ̃ ∀ξ ∈ C ∪D (5.40)

where θ̃ = θ − θ̂. From (5.20), we have that, for all ξ ∈ C,

⟨∇V (ξ), F (ξ)⟩ = −γcθ̃⊤Φc(τ, k)
⊤Φc(τ, k)θ̃ − ρcθ̃

⊤Zc(τ, k)θ̃ ≤ 0 (5.41)

where the inequality follows from the fact that Zc is positive semidefinite and

γc, ρc > 0. Next, from (5.22), for all ξ ∈ D,

V (G(ξ))− V (ξ) ≤− Γ

2
θ̃⊤

Φd(τ, k + 1)⊤Φd(τ, k + 1)

γd + |Φd(τ, k + 1)|2
θ̃

− Γ

2
θ̃⊤

Zd(τ, k + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(τ, k + 1)|2
θ̃ ≤ 0

(5.42)
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where the inequalities follow from the fact that Zd is positive semidefinite, γd, ρd > 0,

and Γ ∈ (0, 1/2]. Hence, for each solution ξ to H, by integration using the bounds

above, we conclude that

V (ξ(t, j)) ≤ V (ξ(0, 0))

for all (t, j) ∈ dom ξ. Using the definition of V in (5.40), we obtain (5.39).

When the history stacks are sufficiently rich as in Assumption 5.8, we establish

the following stability result.

Theorem 5.11: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, u : E → Rm,

Zc : E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and Yd : E → Rn×Nd

defining the hybrid system H in (5.2), where E := domϕc = domϕd = domu =

domZc = domZd = domYc = domYd is a hybrid time domain, suppose that

Assumptions 5.4 and 5.8 hold and let ∆,Ω > 0 and (to, jo) ∈ E come from

Assumption 5.8. Then, for each γc, γd, ρc, ρd > 0, Γ ∈ (0, 1/2], the parameter

estimation error (t, j) 7→ θ̃(t, j) := θ − θ̂(t, j) for each solution ξ to H satisfies

|θ̃(t, j)| ≤ κe−λ(t+j−to−jo)|θ̃(to, jo)|

for all (t, j) ∈ dom ξ satisfying t ≥ to and j ≥ jo, with κ, λ from Theorem 5.7 and

µ in (5.27) substituted by µ := Ωµo.

Proof. To prove Theorem 5.11, we show that the conditions of Theorem 5.7 hold

for all (t, j) ∈ E satisfying t ≥ to and j ≥ jo. Beginning with Assumption 5.5, we

evaluate the left-hand side of (5.25) and obtain that, for all (t′, j′), (t∗, j∗) ∈ E
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satisfying t∗ + j∗ ≥ t′ + j′ ≥ to + jo and (5.35),

j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}

(
Φc(s, j)

⊤Φc(s, j) + Zc(s, j)
)
ds

+

j∗−1∑
j=j′

(
Φc(tj+1, j + 1)⊤Φc(tj+1, j + 1) + Zd(tj+1, j + 1)

)

≥
j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
Zc(s, j)ds+

j∗−1∑
j=j′

Zd(tj+1, j + 1)

≥ (t∗ − t′)Zc(to, jo) + (j∗ − j′)Zd(to, jo)

≥ min{t∗ − t′, j∗ − j′}(Zc(to, jo) + Zd(to, jo))

≥ Ωµo

where the second line follows from (5.38) and the last line follows from (5.36) and

(5.37). Hence, Assumption 5.5 holds with µ := Ωµo. Then, since Assumption 5.4

holds, it follows that the conditions of Theorem 5.7 are satisfied for all (t, j) ∈ E

satisfying t + j ≥ to + jo, and the result follows from (5.26) with κ and λ from

Theorem 5.7.

We can remove the constraints (5.35) and (5.36) on the hybrid time domain E

at the price of requiring Zc and Zd to each be uniformly positive definite, as in

the following result.

Theorem 5.12: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, u : E → Rm,

Zc : E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and Yd : E → Rn×Nd

defining the hybrid system H in (5.2), where E := domϕc = domϕd = domu =

domZc = domZd = domYc = domYd is a hybrid time domain, suppose that

Assumption 5.4 holds. Furthermore, suppose that there exist µc, µd > 0 and

(to, jo) ∈ E such that, for all (t, j) ∈ E satisfying t+ j ≥ to + jo,

Zc(t, j) ≥ µcI (5.43a)

Zd(t, j) ≥ µdI (5.43b)
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with Zc as in (5.21) and Zd as in (5.23). Then, for each γc, γd, ρc, ρd > 0, Γ ∈

(0, 1/2], the parameter estimation error (t, j) 7→ θ̃(t, j) := θ−θ̂(t, j) for each solution

ξ to H satisfies

|θ̃(t, j)| ≤ e−λ0(t+j−to−jo)|θ̃(to, jo)| (5.44)

for all (t, j) ∈ dom ξ satisfying t+ j ≥ to + jo, where

λ0 := min

{
ρcµc, −1

2
ln

(
1− Γµd

ρd +Nd(Λ + 1)2ϕ2
M

)}
, (5.45)

with ϕM from Assumption 5.4.

Proof. Consider the Lyapunov function

V (ξ) :=
1

2
θ̃⊤θ̃ ∀ξ ∈ C ∪D (5.46)

where θ̃ = θ− θ̂. From (5.20), we have that, for all ξ ∈ C such that τ + k ≥ to+ jo,

⟨∇V (ξ), F (ξ)⟩ ≤ −ρcθ̃⊤Zc(τ, k)θ̃ ≤ −2ρcµcV (ξ) (5.47)

where the second inequality follows from (5.43a) and the fact that ρc > 0. Next,

from (5.22), we have that, for all ξ ∈ D such that τ + k ≥ to + jo,

V (G(ξ))− V (ξ) ≤ −Γ

2
θ̃⊤

Zd(τ, k + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(τ, k + 1)|2
θ̃

≤ − Γµd
ρd +Nd(Λ + 1)2ϕ2

M

V (ξ)

(5.48)

where the second inequality follows from (5.43b) and the fact that ρd > 0 and

Γ ∈ (0, 1/2]. Combining the expressions in (5.47) and (5.48), we obtain

⟨∇V (ξ), F (ξ)⟩ ≤ −2ρcµcV (ξ) ∀ξ ∈ C ∩ S

V (G(ξ))− V (ξ) ≤ − Γµd
ρd +Nd(Λ + 1)2ϕ2

M

V (ξ) ∀ξ ∈ D ∩ S
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where S :=
{
ξ ∈ C ∪ D : τ + k ≥ to + jo

}
. Hence, for each solution ξ to H,

by integration using the bounds above, we conclude that, for all (t, j) ∈ dom ξ

satisfying t+ j ≥ to + jo,

V (ξ(t, j)) ≤ exp

{(
− 2ρcµc(t− to)

+ ln

(
1− Γµd

ρd +Nd(Λ + 1)2ϕ2
M

)
(j − jo)

)}
V (ξ(to, jo))

Using the definition of V in (5.46), we conclude that (5.44) holds with λ0 in

(5.45).

5.4 Robustness Analysis

In this section, we study the robustness properties induced by our proposed

algorithm with respect to bounded hybrid noise on measurements of the plant

state.

Given ϕc, ϕd : E → Rn×p and u : E → Rm, where E := domϕc = domϕd =

domu is a hybrid time domain, consider additive noise ν : E → Rn in the

measurements of the plant state x in (5.1).18 We employ H in (5.2) to estimate the

unknown parameter θ in (5.1). The measurement noise ν affects the dynamics of

the parameter estimate as follows. Let X ′
c and F ′

c denote Xc and Fc, respectively,

in (5.5) under the effect of the measurement noise ν. Hence, X ′
c is

X ′
c(t, j) := Xc(t, j) +

j∑
i=j

ν(min{t, ti+1}, i)− ν(max{t, ti}, i)

18By definition of a solution pair, the measurement noise ν has the same hybrid time domain
as x, ϕc, ϕd, and u.

77



and F ′
c is

F ′
c(t, j) :=

j∑
i=j

∫ min{t,ti+1}

max{t,ti}
fc(x(s, i) + ν(s, i), u(s, i))ds

= Fc(t, j) +

j∑
i=j

∫ min{t,ti+1}

max{t,ti}

(
fc(x(s, i) + ν(s, i), u(s, i))− fc(x(s, i), u(s, i))

)
ds

for all (t, j) ∈ E. Denoting Y ′
c as the term Yc in (5.7) under the effect of the

measurement noise, it follows that

Y ′
c(t, j) := X ′

c(t, j)−F ′
c(t, j) = Yc(t, j) + Vc(t, j) (5.49)

where

Vc(t, j) :=
j∑
i=j

ν(min{t, ti+1}, i)− ν(max{t, ti}, i) (5.50)

−
j∑
i=j

∫ min{t,ti+1}

max{t,ti}

(
fc(x(s, i) + ν(s, i), u(s, i))− fc(x(s, i), u(s, i))

)
ds.

for all (t, j) ∈ E. As in Section 5.2, the hybrid signals Y ′
c and Φc are sampled

and stored during flows. We denote the matrix used to store the samples of Y ′
c as

(t, j) 7→ Y ′
c (t, j) ∈ Rn×Nc . From (5.49), it follows that the columns of Y ′

c , denoted

by Y ′
c,ℓ for all ℓ ∈ {1, 2, · · · , Nc}, can be decomposed into “nominal” and “noise”

terms as

Y ′
c,ℓ(t, j) = Yc,ℓ(t, j) + Vc,ℓ(t, j) (5.51)

for all (t, j) ∈ E, where Y c
ℓ excludes the effect of the measurement noise, and Vc,ℓ

gives the effect of the measurement noise – that is, the value of (t, j) 7→ Vc(t, j)

when a sample of Y ′
c was stored in Y ′

c,ℓ.
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Using (5.49) and (5.51), the flow map for θ̂ in (5.10) becomes

˙̂
θ = γcΦc(t, j)

⊤(Yc(t, j)− Φc(t, j)θ̂)

+ ρc

Nc∑
ℓ=1

(
Zc,ℓ(t, j)

⊤(Yc,ℓ(t, j)− Zc,ℓ(t, j)θ̂)
)

+ γcΦc(t, j)
⊤Vc(t, j) + ρc

Nc∑
ℓ=1

Zc,ℓ(t, j)
⊤Vc,ℓ(t, j)

= αc(ξ)− dc(t, j),

with αc as in (5.10) and, for all (t, j) ∈ E,

dc(t, j) := −γcΦc(t, j)
⊤Vc(t, j)− ρc

Nc∑
ℓ=1

Zc,ℓ(t, j)
⊤Vc,ℓ(t, j). (5.52)

Next, let X ′
d and G ′

d denote Xd and Gd, respectively, in (5.12) under the effect

of the measurement noise ν. Hence, X ′
d is

X ′
d(t, j) := Xd(t, j) +

j−1∑
i=j

ν(ti+1, i+ 1)

and G ′
d is

G ′
d(t, j) :=

j−1∑
i=j

gd(x(ti+1, i) + ν(ti+1, i), u(ti+1, i))

= Gd(t, j) +
j−1∑
i=j

(
gd(x(ti+1, i) + ν(ti+1, i), u(ti+1, i))− gd(x(ti+1, i), u(ti+1, i))

)

for all (t, j) ∈ E. Denoting Y ′
d as the term Yd in (5.14) under the effect of the

measurement noise, it follows that

Y ′
d(t, j) := X ′

d(t, j)− G ′
d(t, j) = Yd(t, j) + Vd(t, j) (5.53)
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where

Vd(t, j) :=
j−1∑
i=j

ν(ti+1, i+ 1) (5.54)

−
j−1∑
i=j

(
gd(x(ti+1, i) + ν(ti+1, i), u(ti+1, i))− gd(x(ti+1, i), u(ti+1, i))

)

for all (t, j) ∈ E. As in Section 5.2, the hybrid signals Y ′
d and Φd are sampled

and stored at jumps. We denote the matrix used to store the samples of Y ′
d as

(t, j) 7→ Y ′
d(t, j) ∈ Rn×Nd . From (5.53), it follows that the columns of Y ′

d , denoted

by Y ′
d,ℓ for all ℓ ∈ {1, 2, · · · , Nd}, can be decomposed into “nominal” and “noise”

terms as

Y ′
d,ℓ(t, j) = Yd,ℓ(t, j) + Vd,ℓ(t, j) (5.55)

for all (t, j) ∈ E, where Yd,ℓ excludes the effect of the measurement noise, and Vd,ℓ

gives the effect of the measurement noise – that is, the value of (t, j) 7→ Vd(t, j)

when a sample of Y ′
d was stored in Y ′

d,ℓ.

Using (5.53) and (5.55), the jump map for θ̂ in (5.17) becomes

θ̂+ = θ̂ + Γ
Φd(t, j + 1)⊤(Yd(t, j + 1)− Φd(t, j + 1)θ̂)

γd + |Φd(t, j + 1)|2

+ Γ

∑Nd

ℓ=1

(
Zd,ℓ(t, j + 1)⊤

(
Yd,ℓ(t, j + 1)− Zd,ℓ(t, j + 1)θ̂

))
ρd +

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2

+ Γ
Φd(t, j + 1)⊤Vd(t, j + 1)

γd + |Φd(t, j + 1)|2
+ Γ

∑Nd

ℓ=1 Zd,ℓ(t, j + 1)⊤Vd,ℓ(t, j + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2

= αd(ξ)− dd(t, j),

with αd as in (5.17) and, for all (t, j) ∈ Υ(E),

dd(t, j) :=− Γ
Φd(t, j + 1)⊤Vd(t, j + 1)

γd + |Φd(t, j + 1)|2
(5.56)

− Γ

∑Nd

ℓ=1 Zd,ℓ(t, j + 1)⊤Vd,ℓ(t, j + 1)

ρd +
∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2
.
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We denote the hybrid system H under the effect of the state measurements

noise ν as Hν , with state ξ := (x, θ̂, τ, k) ∈ X := Rn × Rp × E, and dynamics

Hν :



ξ̇ =


fc(x, u(τ, k)) + ϕc(τ, k)θ

αc(ξ)− dc(τ, k)

1

0

 =: Fν(ξ) ξ ∈ Cν

ξ+ =


gd(x, u(τ, k)) + ϕd(τ, k)θ

αd(ξ)− dd(τ, k)

τ

k + 1

 =: Gν(ξ) ξ ∈ Dν

(5.57)

where Cν := C and Dν := D, with C and D as in (5.3).

To enable analysis on the noise effect, we make the following Lipschitz continuity

assumption.

Assumption 5.13: Given the hybrid plant in (5.1), there exist Lc, Ld > 0 such that,

for all x1, x2 ∈ Rn and all u ∈ Rm,

|fc(x1, u)− fc(x2, u)| ≤ Lc|x1 − x2|,

|gd(x1, u)− gd(x2, u)| ≤ Ld|x1 − x2|.

Then, we establish the following input-to-state stability result for Hν .

Theorem 5.14: Given Λ > 0, Nc, Nd ∈ N, ϕc, ϕd : E → Rn×p, u : E → Rm,

ν : E → Rn, Zc : E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and

Yd : E → Rn×Nd defining the hybrid system Hν in (5.57), where E := domϕc =

domϕd = domu = dom ν = domZc = domZd = domYc = domYd is a hybrid

time domain, suppose that Assumptions 5.4, 5.5, and 5.13 hold. Then, for each

γc, γd, ρc, ρd > 0, Γ ∈ (0, 1/2], qM ≥ qm > 0, ζ ∈ (0, 1), the parameter estimation

error (t, j) 7→ θ̃(t, j) := θ − θ̂(t, j) for each solution ξ to Hν satisfies

|θ̃(t, j)| ≤ β(|θ̃(0, 0)|, t+ j) + α∥d∥(t,j) (5.58)
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for all (t, j) ∈ dom ξ, where

β(s, r) :=

√
pM
pm

e−ωrs, α :=

√
2p3M
qmpmζ

(
2pM
qm

+ 1

)

d(t, j) :=

dc(t, j) if (t, j) ∈ E \Υ(E)

dd(t, j) if (t, j) ∈ Υ(E)

with dc as in (5.52), dd as in (5.56), Υ as in (2.2), and

ω :=
1

2
min

{
qm
2pM

(1− ζ),− ln

(
1− qm

2pM
(1− ζ)

)}
pm := qm, pM := qm +

qMκ
2

2λ
+
qMκ

2e2λ

e2λ − 1

where κ and λ are defined in Theorem 5.7. Moreover, for all (t, j) ∈ E,

|dc(t, j)| ≤ (γc + ρcNc)ϕM
(
2(Λ + 1)(Λ + 2) + Lc(Λ + 1)2

)
∥ν∥(t,j) (5.59)

and, for all (t, j) ∈ Υ(E),

|dd(t, j)| ≤
Γ(1 + Ld)(Λ + 1)

2

(
1

√
γd

+

√
Nd

ρd

)
∥ν∥(t,j+1) (5.60)

with Lc and Ld from Assumption 5.13.

Proof. Using the same arguments as in the proof of Theorem 5.7, we conclude

that, by Assumptions 5.4 and 5.5, the conditions of Theorem 3.5 are satisfied with

υ, ∆, and aM from Assumptions 5.4 and 5.5. It can be shown that the hybrid

system that is obtained by expressing Hν in error coordinates is equivalent to H

in (3.8) with A,B in (5.30) and dc in (5.52), and dd in (5.56). Hence, it follows

from Theorem 3.5 that, for each solution ξ to Hν , the parameter estimation error

θ̃ satisfies (3.14) for all (t, j) ∈ dom ξ, with (t, j) 7→ d(t, j) as in (3.15) and ρ, ω

from Theorem 3.5, with pm, pM substituted by pm, pM from Theorem 5.14.
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To complete the proof, we show that the bounds on dc and dd in (5.59) and

(5.60) hold. To bound dc, we use that, from (5.50),

|Vc(t, j)| ≤
j∑
i=j

2∥ν∥(t,j) +
j∑
i=j

∫ min{t,ti+1}

max{t,ti}
Lc∥ν∥(t,j)ds

≤ (Λ + 2)2∥ν∥(t,j) + (Λ + 1)Lc∥ν∥(t,j) (5.61)

for all (t, j) ∈ E, with Lc from Assumption 5.13, where the inequality follows from

(5.32) and the fact that, by the definition of t and j in (5.4), (t− t)+(j−j) ≤ Λ+1

for all (t, j) ∈ dom ξ, and thus j − j + 1 ≤ Λ + 2. Moreover, since Vc,ℓ gives the

value of Vc when samples of Y ′
c are stored in column ℓ of Y ′

c , it follows from (5.61)

that

|Vc,ℓ(t, j)| ≤ |Vc(t, j)| ≤ (Λ + 2)2∥ν∥(t,j) + (Λ + 1)Lc∥ν∥(t,j)

for all (t, j) ∈ dom ξ and all ℓ ∈ {1, 2, · · ·Nc}. Then, we have from (5.52), (5.31),

and (5.33) that, for all (t, j) ∈ E,

|dc(t, j)| ≤ γc|Φc(t, j)||Vc(t, j)|+ ρc

Nc∑
ℓ=1

|Zc,ℓ(t, j)||Vc,ℓ(t, j)|

≤ γcϕM
(
2(Λ + 1)(Λ + 2) + Lc(Λ + 1)2

)
∥ν∥(t,j)

+ ρc

Nc∑
ℓ=1

ϕM
(
2(Λ + 1)(Λ + 2) + Lc(Λ + 1)2

)
∥ν∥(t,j)

≤ (γc + ρcNc)ϕM
(
2(Λ + 1)(Λ + 2) + Lc(Λ + 1)2

)
∥ν∥(t,j)

Hence, (5.59) holds.

To bound dd, we use that

|Φd(t, j + 1)|
γd + |Φd(t, j + 1)|2

≤ 1

2
√
γd
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for all (t, j) ∈ Υ(E) and, from (5.54),

|Vd(t, j)| ≤
j−1∑
i=j

∥ν∥(t,j+1) +

j−1∑
i=j

Ld∥ν∥(t,j) ≤ (1 + Ld)(Λ + 1)∥ν∥(t,j+1)

for all (t, j) ∈ E, with Ld from Assumption 5.13, where the inequality follows from

the fact that, by the definition of t and j in (5.4), (t− t) + (j − j) ≤ Λ + 1 for all

(t, j) ∈ dom ξ, and thus j − j ≤ Λ + 1. Moreover, since Vd,ℓ gives the value of Vd

when samples of Y ′
d are stored in column ℓ of Y ′

d , it follows that

|Vd,ℓ(t, j)| ≤ |Vd(t, j)| ≤ (1 + Ld)(Λ + 1)∥ν∥(t,j+1)

for all (t, j) ∈ Υ(E) and all ℓ ∈ {1, 2, · · ·Nd}. Furthermore, from the Cauchy-

Schwarz inequality,∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|
ρd +

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2
≤

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|
ρd +

1
Nd

(∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|
)2

≤ Nd

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|
ρdNd +

(∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|
)2

≤ Nd

2
√
ρdNd

=
1

2

√
Nd

ρd
.

Thus, we have from (5.56) that, for all (t, j) ∈ Υ(E),

|dd(t, j)| ≤ Γ
|Φd(t, j + 1)||Vd(t, j + 1)|

γd + |Φd(t, j + 1)|2
+ Γ

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)||Vd,ℓ(t, j + 1)|
ρd +

∑Nd

ℓ=1 |Zd,ℓ(t, j + 1)|2

≤ Γ(1 + Ld)(Λ + 1)

2
√
γd

∥ν∥(t,j+1) +
Γ(1 + Ld)(Λ + 1)

2

√
Nd

ρd
∥ν∥(t,j+1).

Hence, (5.60) holds.

Remark 5.15: Using similar arguments as in the proof of Theorem 5.14, ISS

results can also be established for Hν under the point-wise excitation conditions

in Theorems 5.11 and 5.12.
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5.5 Finite-Time Parameter Estimation

In this section we show that, by augmenting the dynamics of H in (5.2), the

data stored in Zc and Zd can be used to achieve finite-time convergence of the

parameter estimate to the true value.

Given Yc : E → Rn×Nc and Zc : E → Rn×p×Nc satisfying (5.9), and Yd : E →

Rn×Nd and Zd : E → Rn×p×Nd satisfying (5.16), we pre-multiply (5.9) by Zc,ℓ⊤ to

obtain

Zc,ℓ(t, j)
⊤Yc,ℓ(t, j) = Zc,ℓ(t, j)

⊤Zc,ℓ(t, j)θ

for all (t, j) ∈ E and all ℓ ∈ {1, 2, · · · , Nc}. Similarly, we pre-multiply (5.16) by

Zd,ℓ
⊤ to obtain

Zd,ℓ(t, j)
⊤Yd,ℓ(t, j) = Zd,ℓ(t, j)

⊤Zd,ℓ(t, j)θ

for all (t, j) ∈ E and all ℓ ∈ {1, 2, · · · , Nd}. Since the expressions above hold for

all (t, j) ∈ E, we sum them to obtain

Nc∑
ℓ=1

Zc,ℓ(t, j)
⊤Yc,ℓ(t, j) +

Nd∑
ℓ=1

Zd,ℓ(t, j)
⊤Yd,ℓ(t, j)

=

( Nc∑
ℓ=1

Zc,ℓ(t, j)
⊤Zc,ℓ(t, j) +

Nd∑
ℓ=1

Zd,ℓ(t, j)
⊤Zd,ℓ(t, j)

)
θ

=
(
Zc(t, j) + Zd(t, j)

)
θ

for all (t, j) ∈ E, with Zc as in (5.21) and Zd as in (5.23). Then, by defining

W(t, j) :=
Nc∑
ℓ=1

Z⊤
c,ℓ(t, j)Yc,ℓ(t, j) +

Nd∑
ℓ=1

Z⊤
d,ℓ(t, j)Yd,ℓ(t, j)

Z(t, j) := Zc(t, j) + Zd(t, j)

(5.62)
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it follows that

W(t, j) = Z(t, j)θ ∀(t, j) ∈ E.

Hence, if there exists (t, j) ∈ E such that Z(t, j) is invertible, the value of θ is

θ = Z(t, j)−1W(t, j). (5.63)

Motivated by the analysis above, we modify our hybrid ICL algorithm in (5.2)

to estimate θ in finite-time by including an additional jump set and associated

jump maps. The new jump maps compute θ as in (5.63), and the new jump set

ensures that the inverse of Z is well defined. We denote this hybrid algorithm as

HFT, with state ξ = (x, θ̂, τ, k) ∈ X and dynamics

ξ̇ = FFT(ξ) ξ ∈ CFT

ξ+ = GFT(ξ) ξ ∈ DFT

(5.64)

where

FFT(ξ) :=


fc(x, u(τ, k)) + ϕc(τ, k)θ

αc(ξ)

1

0

 (5.65)

GFT(ξ) :=




gd(x, u(τ, k)) + ϕd(τ, k)θ

αd(ξ)

τ

k + 1

 =: G1
FT(ξ) ξ ∈ D1

FT \D2
FT


gd(x, u(τ, k)) + ϕd(τ, k)θ

Z(τ, k)−1W(τ, k)

τ

k + 1

 =: G2
FT(ξ) ξ ∈ D1

FT ∩D2
FT


x

Z(τ, k)−1W(τ, k)

τ

k

 =: G3
FT(ξ) ξ ∈ D2

FT \D1
FT
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with f as in (5.10), g as in (5.17), DFT := D1
FT ∪D2

FT, and

CFT := cl
(
X \DFT

)
D1

FT := {ξ ∈ X : (τ, k + 1) ∈ E}

D2
FT := {ξ ∈ X : cond(Z(τ, k)) ≤ σ}

where cond(Z(τ, k)) := |Z(τ, k)−1||Z(τ, k)| gives the condition number of the

matrix Z(τ, k), and σ ∈ [1,∞) is a design parameter.

The jump set D2
FT and the design parameter σ ensure that the inverse of Z is

well defined at jumps per the jump maps G2
FT and G3

FT. Each time HFT jumps

based on the jump maps G2
FT or G3

FT, the history stacks Zc, Yc, Zd, and Yd are

reset to zero, thereby ensuring that HFT subsequently flows or jumps in accordance

with the hybrid time domain E.

We establish the following result stating conditions that ensure each complete

solution ξ to H converges in finite-time to the set A.

Theorem 5.16: Given Λ > 0, Nc, Nd ∈ N, σ ∈ [1,∞), ϕc, ϕd : E → Rn×p, u : E →

Rm, Zc : E → Rn×p×Nc, Zd : E → Rn×p×Nd, Yc : E → Rn×Nc, and Yd : E → Rn×Nd

defining the hybrid system HFT in (5.64), where E := domϕc = domϕd = domu =

domZc = domZd = domYc = domYd is a hybrid time domain, suppose that there

exists (t∗, j∗) ∈ E such that cond(Z(t∗, j∗)) ≤ σ, with Z as in (5.62). Then,

for each γc, γd, ρc, ρd > 0 and each Γ ∈ (0, 1/2], the parameter estimation error

(t, j) 7→ θ̃(t, j) := θ − θ̂(t, j) for each solution ξ to HFT satisfies

|θ̃(t, j)| ≤ |θ̃(0, 0)| (5.66)

for all (t, j) ∈ dom ξ, and the parameter estimate satisfies

|θ̂(t, j)| = θ (5.67)

for all (t, j) ∈ dom ξ satisfying t ≥ t∗ and j ≥ j∗ + 1.
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Proof. Consider the Lyapunov function

V (ξ) :=
1

2
θ̃⊤θ̃ ∀ξ ∈ CFT ∪DFT (5.68)

where θ̃ = θ − θ̂. Using the same arguments as in the proof of Theorem 5.10, we

conclude that, for all ξ ∈ CFT,

⟨∇V (ξ), FFT(ξ)⟩ ≤ 0 (5.69)

and for all ξ ∈ D1
FT \D2

FT,

V (G1
FT(ξ))− V (ξ) ≤ 0. (5.70)

Hence, from the definition of V in (5.69), it follows that |ξ|A is nonincreasing

during flows, and at jumps from D1
FT \D2

FT.

To complete the proof, pick a maximal solution ξ to HFT. By assumption, there

exists (t∗, j∗) ∈ dom ξ such that cond(Z(t∗, j∗)) ≤ σ and thus ξ(t∗, j∗) ∈ D2
FT.

Since ξ is maximal, the solution jumps per the jump map GFT in (5.65) and it

follows from (5.63) that

θ̂(t∗, j∗ + 1) = θ. (5.71)

Then, from the bounds in (5.69) and (5.70) and from the definition of V in (5.69),

it follows that θ̂(t, j) = θ for all (t, j) ∈ dom ξ such that t ≥ t∗ and j ≥ j∗ + 1.

Hence (5.67) holds. Finally, in view of (5.69), (5.70), and (5.71) we conclude that

(5.66) holds.

5.6 Data Recording

In this section, we propose algorithms to select data for storage during flows

and jumps, with the objective of satisfying the conditions of Theorem 5.11 and

Theorem 5.12. In particular,
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1. (5.38) means that the minimum eigenvalues of Zc and Zd are non-decreasing;

2. (5.43) means that Zc and Zd are uniformly positive definite;

3. (5.37) means that Zc + Zd is uniformly positive definite.

From the proof of Theorem 5.12, we have that the convergence rate of the param-

eter estimate is proportional to λmin(Zc) during flows, and λmin(Zd)/(ρd+λmax(Zd))

at jumps. Hence, we store data with the primary objective of maximizing λmin(Zc)

during flows, and maximizing λmin(Zd)/(ρd + λmax(Zd)) at jumps. However, in

contrast to [16, 18], we do not assume that the data can be sampled so that Zc

and Zd are full rank – see Remark 5.6. In such cases, we select data for storage

with the secondary objective of maximizing λmin(Zc + Zd).

Our proposed data recording algorithms are inspired by [16, 18]. In words,

the algorithms select data for storage based on the following criteria. Given

measurements of Φc and Yc during flows,

1. if Zc has empty (zero) layers19 and Φc is nonzero, then Φc is stored in an

empty layer of Zc;

2. if Zc is full rank and Φc increases λmin(Zc), then Φc is stored in the layer of

Zc that maximizes λmin(Zc);

3. if Zc is not full rank and Φc increases the rank(Zc), then Φc is stored in the

layer of Zc that maximizes rank(Zc);

4. if Zc is not full rank and Φc increases λmin(Zc +Zd), then Φc is stored in the

layer of Zc that maximizes λmin(Zc + Zd);

5. if none of the items above are satisfied, Φc is not stored.
19Recall that we refer to the third dimension of Zc as the “layers” of Zc.
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Whenever Φc is stored in a layer of Zc, the current value of the hybrid signal Yc

is stored in the corresponding column of Yc. Similar criteria are applied to select

measurements for storage at jumps. We implement this logic using Algorithm 2

during flows and Algorithm 3 at jumps – see Appendix D.

5.7 Numerical Examples

5.7.1 Comparison with Hybrid Gradient Descent

Consider the hybrid signals ϕc, ϕd : E → R2×2 with hybrid time domain

E =
∞⋃
k=0

( [
2πk, π(2k + 2)

]
× {k}

)
(5.72)

The values of ϕc and ϕd are

ϕc(t, j) = e−j

[
sin(t) 0

0 0

]
, ϕd(t, j) =

[
1 2

2 4

]
(5.73)

for all (t, j) ∈ E. For the given hybrid signals ϕc and ϕd, consider a hybrid system

as in (2.1) with an added input u : E → R, and with state x = (x1, x2) ∈ R2 and

dynamics
ẋ = ϕc(t, j)θ (x, u(t, j)) ∈ CP

x+ = ϕd(t, j)θ (x, u(t, j)) ∈ DP

(5.74)

where θ = [1 1]⊤ is a vector of unknown parameters. The flow and jump sets are

CP = {(x, u) ∈ R2 × R : u ≤ 2π}

DP = {(x, u) ∈ R2 × R : u ≥ 2π}

and the input is u(t, j) = t− 2πj for all (t, j) ∈ E. Hence, u is a sawtooth function

that periodically ramps to a value of 2π and then resets to zero.20

20With CP , DP , and u given below (5.74), the hybrid time domain of each maximal solution
x to the hybrid system in (5.74) is equal to the hybrid time domain of ϕc and ϕd in (5.72).
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Suppose our goal is to estimate θ. We first apply the hybrid parameter

estimation algorithm proposed in Chapter 4, which we refer to as hybrid GD.

The parameter estimation error for the hybrid GD algorithm, shown in blue in

Figure 1.2, fails to converge to zero since ϕc and ϕd do not satisfy the hybrid

PE condition in Assumption 4.6. To see why this condition is not satisfied, note

that, for the given hybrid arcs in (5.73), ϕd(t, j) is constant and singular for all

(t, j) ∈ E and ϕc(t, j) goes to zero as j goes to infinity. On the other hand, by

leveraging stored data alongside current measurements to adapt the parameter

estimate, our proposed hybrid ICL algorithm successfully estimate θ as shown in

green in Figure 1.2.

5.7.2 Finite-time Estimation for the Bouncing Ball

Consider the problem of estimating the acceleration due to gravity and the

restitution coefficient for a bouncing ball. The ball has state x := (x1, x2) ∈ R2,

where x1 is the height above the ground and x2 is the vertical velocity. The

bouncing ball has dynamics [22, Example 1.1]

ẋ =

[
x2

−γ

]
x ∈ CP

x+ =

[
0

−λx2

]
x ∈ DP

where γ > 0 is the acceleration due to gravity, λ ∈ (0, 1] is the restitution coefficient,

CP := {x ∈ R2 : x1 ≥ 0}, and DP := {x ∈ R2 : x1 = 0, x2 ≤ 0}. The problem

of estimating γ and λ for the bouncing ball can be written as the problem of
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estimating θ for the system in (5.1), where θ = (γ, λ) and

fc(x) =

[
x2

0

]
, ϕc(t) =

[
0 0

−1 0

]

gd(x) =

[
0

0

]
, ϕd(t) =

[
0 0

0 −x2(t)

]
.

We simulate the bouncing ball with γ = 9.81 and initial condition x(0, 0) =

(4.91, 0). The trajectory of the state component x1 when λ = 1 is shown in blue

in Figure 5.1, and the trajectory when λ = 0.7 is shown in green in Figure 5.1.

Note that the bouncing ball exhibits Zeno behavior when λ = 0.7. That is, the

number of jumps in domx goes to infinity while the amount of flow remains finite.

We employ our proposed hybrid ICL algorithm H in (5.2) to estimate θ, with

design parameters γc = ρc = 0.1, γd = ρd = 10, Γ = 0.5, Nc = Nd = 1, and

Λ = 3, and initial condition θ̂(0, 0) = (0, 0). When λ = 1, it can be shown that

Assumptions 5.4 and 5.5 are satisfied. Thus, θ̂ converges exponentially to θ in

accordance with Theorem 5.7, as shown in Figure 5.2.21

Figure 5.1: The projection onto t of x1 for the bouncing ball with λ = 1 and
λ = 0.7.

21Code at https://github.com/HybridSystemsLab/HybridICL_BouncingBall
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Figure 5.2: The projection onto t of the parameter estimation error for H with
λ = 1.

Next, consider the case when λ = 0.7. For all (t, j) ∈ E satisfying t+ j > Λ,

Zc and Zd have values

Zc(t, j) =

[
3.91 0

0 0

]
, Zd(t, j) =

[
0 0

0 96.2

]
.

Hence, Zc(t, j) + Zd(t, j) is uniformly positive definite for all (t, j) ∈ E satisfying

t + j > Λ. However, Assumption 5.5 is not satisfied since the duration of each

interval of flow in E goes to zero as the number of jumps goes to infinity. Similarly,

while Zc and Zd satisfy (5.37) and (5.38), Assumption 5.8 does not hold since the

hybrid time domain E fails to satisfy (5.36). In this case, the parameter estimate

θ̂ for H fails to converge to θ as shown in blue in Figure 5.3. We now employ

our proposed finite-time estimation algorithm HFT in (5.64) to estimate θ, with

the same design parameters and initial conditions as H, and with σ = 25. It

can be shown that Z in (5.62) satisfies cond(Z(2, 1)) ≤ σ. Hence, the conditions

of Theorem 5.16 hold with (t∗, j∗) = (2, 1). The parameter estimate for HFT

converges in finite-time to θ in accordance with Theorem 5.16, as shown in green

in Figure 5.3.
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Figure 5.3: The projection onto t of the parameter estimation error for H and
HFT with λ = 0.7.
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Chapter 6

Finite-Time Parameter Estimation

In this chapter, we propose a hybrid parameter estimation algorithm for finite-

time estimation of unknown parameters for a class of continuous-time systems.

The algorithm guarantees convergence of the parameter estimate to the true value

when the system input signals are exciting over only a finite interval of time.

6.1 Problem Statement

Consider a continuous-time system of the form

ẋ = f(x, u(t)) + ϕ(t)θ (6.1)

where x ∈ Rn is the known state vector, t 7→ u(t) ∈ Rr is the known input,

t 7→ ϕ(t) ∈ Rn×p is the known regressor, (x, u) 7→ f(x, u) ∈ Rn is a known

continuous function, θ ∈ Rp is a vector of unknown constant parameters, and

n, r, p ∈ N.

We propose to estimate θ using a hybrid algorithm, denoted by H as in (2.1),

with data designed to solve the following problem.
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Problem 6.1: Design the data (C,F,D,G) of H and determine conditions on

ϕ that ensure the parameter estimate θ̂ converges in finite time to the unknown

parameter vector θ in (6.1).

6.2 Problem Solution

Given t 7→ ϕ(t) ∈ Rn×p and t 7→ u(t) ∈ Rr, we define the state ξ of H as

ξ = (x, θ̂, ψ, η,Φ, Q,m, τ) ∈ X := Rn×Rp×Rn×p×Rn×Rp×p×Rp×p×Rp×R≥0,

where x is the state of the plant in (6.1), θ̂ is the estimate of θ, and ψ, η,Φ, Q,m

are auxiliary state variables. The state component τ has dynamics such that it

evolves as ordinary time t. Including τ in ξ allows ϕ and u to be part of the

definitions of F and G, rather than modeled as inputs to H. Thus, we can express

H as an autonomous hybrid system, which allows us to leverage recent results on

stability and robustness properties for such systems [22, 45].

The dynamics of H are designed so that, each time H jumps, the parameter

estimate θ̂ is equal to θ after the jump. To explain this construction, we begin by

defining the dynamics of ξ during flows. In particular, during flows, we convert

the plant dynamics (6.1) into a form similar to a linear regression model using the

state variables ψ and η with dynamics [39]

ψ̇ = −λψ + ϕ(t)

η̇ = −λ(x+ η)− f(x, u(t))
(6.2)

where λ > 0 is a design parameter. Defining

ε := x+ η − ψθ, y := x+ η (6.3)

it follows that ψ and ε are related via

y = ψθ + ε. (6.4)
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Since θ is constant, differentiating ε along trajectories of (6.1), (6.2) yields ε̇ = −λε.

Thus, ε converges exponentially to zero during flows. Moreover, we have the

following series of equivalences: ε → 0 ⇐⇒ x + η → ψθ ⇐⇒ y → ψθ.

Hence, y, ψ, and θ are related via a linear regression model plus an exponentially

convergent term. We estimate θ using the classical gradient descent algorithm [37],

namely,
˙̂
θ = γψ⊤(y − ψθ̂)

where γ > 0 is a design parameter. Defining the parameter estimation error as

θ̃ := θ − θ̂, we obtain the error dynamics

˙̃θ = −γψ⊤(ψθ̃ + ε). (6.5)

Let (t, j) 7→ ξ(t, j) be a solution to H – hence, defined on a hybrid time domain

– and consider the initial interval of flow I0 := {t : (t, 0) ∈ dom ξ}, with initial

conditions θ̂(0, 0) = m(0, 0), ψ(0, 0) = 0, η(0, 0) = −x(0, 0), and Φ(0, 0) = I. From

such initial conditions, we have

θ̃(t, 0) = Φ(t, 0)θ̃(0, 0)− γ

∫ t

0

Φ(s, 0)ψ⊤(s, 0)ε(s, 0)ds

= Φ(t, 0)θ̃(0, 0) (6.6)

for all t ∈ I0, where Φ is the state transition matrix for (6.5), generated by

Φ̇ = −γψ⊤ψΦ

and the second equality in (6.6) follows from the fact that, since ε(0, 0) = x(0, 0) +

η(0, 0)− ψ(0, 0)θ = 0 and ε̇ = −λε, ε(t, 0) = 0 for all t ∈ I0.

Then, if there exists a time t1 ∈ I0 such that the matrix Φ(t1, 0)−I is invertible,

we reset θ̂ to the value of the function

R(ξ) := K1(ξ)θ̂ +K2(ξ)m (6.7)
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where

K1(ξ) := −
(
Φ− I

)−1
, K2(ξ) := I −K1(ξ) (6.8)

and m is a memory state that stores the initial condition of θ̂. For readability, we

define m̃ := θ −m and omit the argument ξ of K1 and K2. Then, after the reset

at hybrid time (t1, 0), we obtain

θ̂(t1, 1) = R(ξ(t1, 0)) = K1θ̂(t1, 0) +K2m(t1, 0)

= K1(θ − θ̃(t1, 0)) +K2(θ − m̃(t1, 0))

= −K1(θ̃(t1, 0)− m̃(t1, 0))− m̃(t1, 0) + (K1 +K2)θ

= −K1(Φ(t1, 0)θ̃(0, 0)− m̃(0, 0))− m̃(t1, 0) + θ

= −K1(Φ(t1, 0)− I)m̃(0, 0)− m̃(0, 0) + θ

= m̃(0, 0)− m̃(0, 0) + θ

= θ

(6.9)

where the fourth line follows from (6.6), (6.8), and the fact that m(t, 0) = m(0, 0) =

θ̂(0, 0) for all t ∈ I0, and the fifth line follows from the fact that θ̃(0, 0) = m̃(0, 0).

Hence, we have finite-time convergence of θ̂ to θ.

In Theorem 6.6 below, we establish that if the integral of ψ⊤ψ is positive

definite, then there exists a time t1 ∈ I0 such that Φ(t1, 0)− I is invertible. Hence,

the dynamics of the solution component Q are defined to compute this integral

online, as
Q̇ = ψ⊤ψ.

The data of H is defined to implement the estimation scheme outlined above.
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Hence, H has state ξ = (x, θ̂, ψ, η,Φ, Q,m, τ) ∈ X and dynamics

H :



ξ̇ =



f(x, u(τ)) + ϕ(τ)θ

γψ⊤(x+ η − ψθ̂)

−λψ + ϕ(τ)

−λ(x+ η)− f(x, u(τ))

−γψ⊤ψΦ

ψ⊤ψ

0

1


=: F (ξ) ξ ∈ C

ξ+ = (x,R(ξ), 0,−x, I, 0, R(ξ), τ) =: G(ξ) ξ ∈ D

(6.10)

with R as in (6.7) and

C := {ξ ∈ X : λmin(Q) ≤ α}

D := {ξ ∈ X : λmin(Q) ≥ α}
(6.11)

where α > 0 is a design parameter.

The jump map G in (6.10) computes θ as in (6.9) by resetting θ̂ to the value

of R in (6.7). The state components ψ and η are reset as ψ+ = 0 and η+ = −x

which, from (6.3), implies that ε+ = x+ + η+ − ψ+θ = 0. The state component Φ

is reset to the identity, which ensures that, during flows, Φ is the state transition

matrix for the estimation error system (6.5). The state component Q is reset to

zero, which ensures that Q gives the value of the integral of ψ⊤ψ during each

interval of flow. The state component m is reset to the value of R so that m stores

the value of θ̂ after the jump. The flow and jump sets of H in (6.11) are defined

so that the algorithm jumps only when the minimum eigenvalue of Q is greater

than the design parameter α.

Remark 6.2: The jump map G of H in (6.10) requires computation of the inverse

of Φ− I to evaluate the function R – see (6.7) and (6.8). Similarly, the estimation
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algorithms proposed in [23, 48, 29] all compute a matrix inverse in order to achieve

finite-time convergence of the parameter estimate to the true value. However, in

contrast to (6.10), the algorithms in [23, 48, 29] use the determinant to evaluate

whether the matrix inverse is well defined, which may result in the matrix being

numerically ill-conditioned for inversion. For example, given d > 0, consider the

matrix

M :=

√
d

3a− a2

[
1 + (1− a)2 4− 3a

4− 3a 4 + (2− a)2

]

where a ∈ (0, 3). For any such a, the determinant of M is equal to d, but the

condition number of M , that is, cond(M), grows unbounded as a approaches 0 or

3. Recall that the condition number measures how sensitive matrix inversion is to

numerical errors. This fact motivates using a method other than the determinant

to evaluate whether a matrix is invertible. For H in (6.10), we impose a lower

bound on the minimum eigenvalue of the solution component Q in the jump set,

which allows us to upper-bound the condition number of Φ − I at jumps – see

Theorem 6.6 for details.

6.3 Stability Analysis

We now establish our main convergence result stating conditions ensuring that

each maximal solution ξ to H with initial conditions in a closed set converges in

finite time to the set
A :=

{
ξ ∈ X : θ̂ = θ

}
. (6.12)

We impose the following boundedness condition on ϕ.

Assumption 6.3: Given t 7→ ϕ(t) ∈ Rn×p, there exists ϕM > 0 such that |ϕ(t)|F ≤

ϕM for all t ≥ 0.

100



Furthermore, we impose the following excitation condition over a finite time

interval.

Assumption 6.4: Given t 7→ ϕ(t) ∈ Rn×p and λ > 0, there exist t′ ≥ 0 and T, µ > 0

such that ∫ t′+T

t′
Ψ(s, t′)⊤Ψ(s, t′)ds ≥ µI (6.13)

where
Ψ(s, t′) :=

∫ s

t′
e−λ(s−v)ϕ(v)dv. (6.14)

Remark 6.5: The excitation condition in Assumption 6.4 relaxes the classical persis-

tence of excitation condition [37], which requires t 7→ ϕ(t) to satisfy
∫ t+T
t

ϕ(s)⊤ϕ(s)ds ≥

µI for all t ≥ 0. In contrast, Assumption 6.4 imposes (6.13) over only a finite time

interval [t′, t′ + T ], for some t′ ≥ 0 and T > 0.

Theorem 6.6: Given the hybrid system H in (6.10) and λ, α > 0, suppose that

Assumptions 6.3 and 6.4 hold with t′ ≥ 0, T, ϕM > 0, and µ ≥ α. Then, for each

γ > 0, the parameter estimation error (t, j) 7→ θ̃(t, j) := θ− θ̂(t, j) for each solution

ξ to H from ξ(0, 0) ∈ X0 := {ξ ∈ X : θ̂ = m, ψ = 0, η = −x, Φ = I, Q = 0, τ = 0}

satisfies
|θ̃(t, j)| ≤ |θ̃(0, 0)| (6.15)

for all (t, j) ∈ dom ξ, and the parameter estimate satisfies

θ̂(t, j) = θ (6.16)

for all (t, j) ∈ dom ξ satisfying t ≥ t′ + T and j ≥ 1. Moreover, for each maximal

solution ξ to H, the condition number of Φ− I immediately before the first jump

at hybrid time (t1, 0) satisfies

cond(Φ(t1, 0)− I) ≤ 1 + σ(γ, α)

1− σ(γ, α)
(6.17)
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where t1 ∈ (0, t′ + T ] and

σ(γ, α) :=

√
1− 2γα

(1 + γψ2
MT )

2
, ψM :=

ϕM
λ
. (6.18)

Remark 6.7: In practice, the integral in (6.13) does not need to be computed a

priori in order to implement our proposed estimation scheme. This is due to the

fact that, for each solution ξ to H from ξ(0, 0) ∈ X0, the value of the solution

component ψ is ψ(t, 0) = Ψ(t, 0) for all t ∈ I0 := {t : (t, 0) ∈ dom ξ}, with Ψ as in

(6.14). Thus, the value of solution component Q is Q(t, 0) =
∫ t
0
Ψ(s, 0)⊤Ψ(s, 0)ds

for all t ∈ I0, and the jump set D in (6.11) triggers a jump only once Q(t, 0) ≥ αI.

Hence, H jumps opportunistically when reconstruction of θ is possible through

the conditions imposed in Assumptions 6.3 and 6.4.

6.3.1 Proof of Theorem 6.6

To prove Theorem 6.6, we require the following results.

Lemma 6.8: Given t 7→ ϕ(t) ∈ Rn×p, suppose that Assumption 6.3 holds with

ϕM > 0. Then, for each t′ ≥ 0 and each λ > 0, the solution ψ : [t′,∞) → Rn×p to

the system

ψ̇ = −λψ + ϕ(t), ψ(t′) = 0 (6.19)

satisfies
|ψ(t)| ≤ ϕM

λ
=: ψM ∀t ≥ t′. (6.20)

Proof. Consider the Lyapunov function

W (ψ) :=
1

2
tr(ψ⊤ψ) =

1

2
|ψ|2F ∀ψ ∈ Rn×p. (6.21)
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Differentiating W along solutions to (6.19), we obtain

Ẇ (ψ) =
1

2
tr(ψ̇⊤ψ + ψ⊤ψ̇)

= tr(−λψ⊤ψ + ψ⊤ϕ(t))

= −2λW (ψ) + tr(ψ⊤ϕ(t))

where the second equality follows from the flow map for ψ in (6.10), and the third

equality follows from the definition of W in (6.21). Applying the Cauchy-Schwarz

inequality on tr(ψ⊤ϕ(t)) yields

Ẇ (ψ) ≤ −2λW (ψ) +
√
2W (ψ)|ϕ(t)|F.

Hence,
Ẇ (ψ) ≤ 0 ∀ψ ∈ Rn×p : W (ψ) ≥ 1

2λ2
|ϕ(t)|2F.

Let ψ be the solution to (6.19). By integration using the bounds above, we conclude

that
W (ψ(t)) ≤ W (ψ(t′)) +

1

2λ2
ϕ2
M =

1

2λ2
ϕ2
M

for all t ≥ t′, where the first inequality follows from Assumption 6.3, and the last

equality follows from the fact that ψ(t′) = 0. Using the definition of W in (6.21),

we obtain

|ψ(t)| ≤ |ψ(t)|F =
√
2W (ψ(t)) ≤

√
2
ϕ2
M

2λ2
=
ϕM
λ

for all t ≥ t′. Hence, (6.20) holds.

Lemma 6.9: Given t 7→ ϕ(t) ∈ Rn×p, consider the system

ϑ̇ = −γψ⊤ψϑ (6.22a)

ψ̇ = −λψ + ϕ(t), ψ(t′) = 0 (6.22b)

103



where γ, λ > 0 and t′ ≥ 0, and let Ω : R≥0 × R≥0 → Rp×p be the state transition

matrix of (6.22a). Then, for each t′, t ≥ 0 and each γ, λ > 0,

|Ω(t′ + t, t′)| ≤ 1. (6.23)

Moreover, given λ, α > 0, suppose that Assumptions 6.3 and 6.4 hold with t′ ≥ 0,

T, ϕM > 0, and µ ≥ α. Then,

|Ω(t′ + T, t′)| ≤ σ(γ, α) < 1 (6.24)

where

σ(γ, α) :=

√
1− 2γα

(1 + γψ2
MT )

2
(6.25)

with ψM as in (6.20). Additionally, the matrix Ω(t′ + T, t′)− I is invertible and

satisfies
|(Ω(t′ + T, t′)− I)−1| ≤ 1

1− σ(γ, α)
(6.26)

and the condition number of Ω(t′ + T, t′)− I satisfies

cond(Ω(t′ + T, t′)− I) ≤ 1 + σ(γ, α)

1− σ(γ, α)
. (6.27)

Remark 6.10: The property σ(γ, α) < 1 follows from the fact that, since As-

sumption 6.4 holds with µ ≥ α, for each solution (ϑ, ψ) to (6.22), αI ≤ µI ≤∫ t′+T
t′

ψ(s)⊤ψ(s)ds ≤ ψ2
MTI, with ψM as in (6.20). Thus,

0 <
2γα

(1 + γψ2
MT )

2
≤ 2γψ2

MT

(1 + γψ2
MT )

2
≤ 1

2
.

To prove Lemma 6.9, we first recall the following result from [24].

Lemma 6.11: Given a matrix A ∈ Rp×p, if |A| < 1 then I − A is invertible and

|(I − A)−1| ≤ (1− |A|)−1.
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Proof of Lemma 6.9: Consider the following Lyapunov function:

V (ϑ) :=
1

2γ
ϑ⊤ϑ ∀ϑ ∈ Rp. (6.28)

We first show that (6.23) holds. Differentiating V along trajectories of (6.22), we

obtain
V̇ (ϑ) = −ϑ⊤ψ⊤ψϑ = −

∣∣ψϑ∣∣2 ≤ 0. (6.29)

Let (ϑ, ψ) be the solution to (6.22). By integration using the bound above, it

follows that
V (ϑ(t′ + t)) ≤ V (ϑ(t′)) ∀t′, t ≥ 0.

Using the definition of V in (6.28), we obtain that |ϑ(t′ + t)| ≤ |ϑ(t′)| for all

t′, t ≥ 0, which we rewrite as

|Ω(t′ + t, t′)ϑ(t′)| ≤ |ϑ(t′)| ∀t′, t ≥ 0

which, if |ϑ(t′)| ≠ 0, implies that

|Ω(t′ + t, t′)ϑ(t′)|
|ϑ(t′)|

≤ 1.

Since this inequality holds for any ϑ(t′) ∈ Rp \ {0}, it follows that

|Ω(t′ + t, t′)| = sup
s∈Rp\{0}

|Ω(t′ + t, t′)s|
|s|

≤ 1

for all t′, t ≥ 0. Hence, (6.23) holds.

To show that (6.24) holds, we follow an approach inspired by [48]. Since

Assumption 6.4 holds with t′ ≥ 0, T > 0, and µ ≥ α, we integrate V between
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times t′ and t′ + T , using (6.29), to obtain the following:

V (ϑ(t′ + T ))− V (ϑ(t′))

= −
∫ t′+T

t′
|ψ(s)ϑ(s)|2 ds

= −
∫ t′+T

t′

∣∣∣∣ψ(s)(ϑ(t′)− γ

∫ s

t′
ψ⊤(u)ψ(u)ϑ(u)du

)∣∣∣∣2 ds
≤ − ϱ

1 + ϱ

∫ t′+T

t′
|ψ(s)ϑ(t′)|2 ds+ ϱ

∫ t′+T

t′

∣∣∣∣γψ(s)∫ s

t′
ψ⊤(u)ψ(u)ϑ(u)du

∣∣∣∣2 ds
≤ − ϱα

1 + ϱ

∣∣ϑ(t′)∣∣2 + ϱγ2ψ4
MT

2

∫ t′+T

t′
|ψ(u)ϑ(u)|2 du

≤ −2γϱα

1 + ϱ
V (ϑ(t′))− ϱγ2ψ4

MT
2
(
V (ϑ(t′ + T ))− V (ϑ(t′))

)
where the second equality comes from the fact that the solution t 7→ ϑ(t) to (6.22a)

is ϑ(t) = ϑ(t′) − γ
∫ t
t′
ψ⊤(u)ψ(u)ϑ(u)du for all t ≥ t′ ≥ 0, the first inequality

follows from the fact that, for any a, b ∈ R and any ϱ > 0, (a− b)2 ≥ ϱ
1+ϱ

a2 − ϱb2,

the second inequality comes from (6.20), from the triangle and Cauchy-Schwartz

inequalities, from the fact that Assumption 6.4 holds with µ ≥ α, and from the fact

that ψ(t) = Ψ(t, t′) for all t ≥ t′, with Ψ as in (6.14). Finally, the last inequality

follows from the definition of V in (6.28). Hence, we have that

V (ϑ(t′ + T )) ≤ (1− β)V (ϑ(t′))

where
β :=

2ϱγα

(1 + ϱ)(1 + ϱγ2ψ4
MT

2)
.

By choosing ϱ = 1
γψ2

MT
, we obtain

β =
2γα

(1 + γψ2
MT )

2

and, since Assumption 6.4 holds with µ ≥ α, it follows that

αI ≤ µI ≤
∫ t′+T

t′
ψ(s)⊤ψ(s)ds ≤ Tψ2

MI
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and thus β ∈ (0, 1). Using the definition of V in (6.28), it follows that |ϑ(t′+T )| ≤
√
1− β|ϑ(t′)|, which we rewrite as

|Ω(t′ + T, t′)ϑ(t′)| ≤
√

1− β|ϑ(t′)|

which, if |ϑ(t′)| ≠ 0, implies that

|Ω(t′ + T, t′)ϑ(t′)|
|ϑ(t′)|

≤
√
1− β.

Since this inequality holds for any ϑ(t′) ∈ Rp \ {0}, it follows that

|Ω(t′ + T, t′)| = sup
s∈Rp\{0}

|Ω(t′ + T, t′)s|
|s|

≤
√
1− β < 1

where the last inequality follows from the fact that β ∈ (0, 1). Hence, (6.24) holds

and, in view of Lemma 6.11, the matrix I − Ω(t′ + T, t′) is invertible, and thus

Ω(t′ + T, t′)− I is invertible.

To upper bound the condition number of Ω(t′ + T, t′) − I, we first use the

triangle inequality to obtain

|Ω(t′ + T, t′)− I| ≤ |Ω(t′ + T, t′)|+ |I| ≤ σ(γ, α) + 1. (6.30)

Next, since |Ω(t′ + T, t′)| ≤ σ(γ, α) < 1, it follows from Lemma 6.11 that

|(Ω(t′ + T, t′)− I)−1| = |(I − (Ω(t′ + T, t′))−1|

≤ 1

1− |Ω(t′ + T, t′)|
≤ 1

1− σ(γ, α)
. (6.31)

Hence, (6.26) holds. Combining the expressions in (6.30) and (6.31), we conclude

that (6.27) holds.

107



Lemma 6.12: Given the hybrid system H in (6.10), for each λ, γ > 0 and each

solution ξ to H from ξ(0, 0) ∈ X0, (t, j) 7→ ε(t, j) in (6.3) satisfies

ε(t, j) = 0 ∀(t, j) ∈ dom ξ. (6.32)

The proof of Lemma 6.12 is immediate since, for each solution ξ to H from

ξ(0, 0) ∈ X0, ε(0, 0) = 0 and, from (6.10), ε̇ = −λε during flows, and ε+ = 0 at

jumps.

We now have all the ingredients to prove Theorem 6.6.

Proof of Theorem 6.6: Let ξ = (x, θ̂, ψ, η,Φ, Q,m, τ) be a maximal solution to

H in (6.10) from ξ(0, 0) ∈ X0 and consider the following function:

V (t, j) :=
1

2
θ̃(t, j)⊤θ̃(t, j) =

1

2
|ξ(t, j)|2A ∀(t, j) ∈ dom ξ (6.33)

where θ̃ = θ − θ̂ is the parameter estimation error. Since ξ(0, 0) ∈ X0, it follows

from Lemma 6.12 that ε(t, j) = 0 for all (t, j) ∈ dom ξ. Hence, we have from (6.5)

that

d

dt
V (t, 0) = −γθ̃(t, 0)⊤ψ(t, 0)⊤ψ(t, 0)θ̃(t, 0)

= −γ|ψ(t, 0)θ̃(t, 0)|2 ≤ 0 (6.34)

for almost all t ∈ I0 := {t : (t, 0) ∈ dom ξ}. Thus, V is nonincreasing during the

first interval of flow in ξ.

Next, we show that ξ converges in finite time to A. Since ξ(0, 0) ∈ X0, it follows

that Φ(0, 0) = I and, thus, (6.6) holds for all t ∈ I0. Moreover, since ψ(0, 0) = 0,

it follows from the third component of the flow map F in (6.10) that

ψ(t, 0) =

∫ t

0

e−λ(t−s)ϕ(s)ds = Ψ(t, 0)
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for all t ∈ I0, with Ψ as in (6.14). Using that Q(0, 0) = 0, it follows from (6.10)

that
Q(t, 0) =

∫ t

0

ψ(s, 0)⊤ψ(s, 0)ds =

∫ t

0

Ψ(s, 0)⊤Ψ(s, 0)ds

for all t ∈ I0. Then, since Assumption 6.4 holds with µ ≥ α, it follows that there

exists t1 ∈ (0, t′ + T ] such that (t1, 0) ∈ dom ξ and

Q(t1, 0) =

∫ t1

0

Ψ(s, 0)⊤Ψ(s, 0)ds ≥ αI (6.35)

and thus ξ(t1, 0) ∈ D. Since ξ is maximal, the solution jumps at hybrid time (t1, 0)

and, after the jump according to the jump map G in (6.10), we have from (6.9)

that
θ̂(t1, 1) = θ (6.36)

From the definition of A in (6.12), we have ξ(t1, 1) ∈ A. Furthermore, since

ξ(t1, 0) ∈ D and ξ(t1, 1) = G(ξ(t1, 0)), it follows that ξ(t1, 1) ∈ G(D), and thus

ξ(t1, 1) ∈ A ∩G(D).

We now show that each solution to H from A∩G(D) cannot leave A via flows

or jumps. Let ξ∗ = (x∗, θ̂∗, ψ∗, η∗,Φ∗, Q∗,m∗, τ ∗) be a maximal solution to H from

ξ∗(0, 0) ∈ A ∩G(D) and recall the function V in (6.33). Since A ∩G(D) ⊂ X0, it

follows from Lemma 6.12 that ε∗(t, j) = x∗(t, j) + η∗(t, j) − ψ∗(t, j)θ = 0 for all

(t, j) ∈ dom ξ∗. Hence, we have from (6.5) that, for all j ∈ N and almost all t ∈ Ij ,

d

dt
V (t, j) = −γθ̃∗(t, j)⊤ψ∗(t, j)⊤ψ∗(t, j)θ̃∗(t, j)

= −γ|ψ∗(t, j)θ̃∗(t, j)|2 ≤ 0. (6.37)

Thus, V is nonincreasing during flows, and ξ∗ cannot leave A via flow. We

now analyze the variation of V at jumps. Let (t, j) ∈ dom ξ∗ be such that
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(t, j + 1) ∈ dom ξ∗. Using again the fact that A ∩G(D) ⊂ X0, it follows from the

jump map G in (6.10) and from (6.9) that θ̂(t, j + 1) = θ. Hence,

V (t, j + 1)− V (t, j) = −V (t, j) ≤ 0. (6.38)

Thus, V is nonincreasing at jumps, and ξ∗ cannot leave A via jump.

In view of (6.36), (6.37), and (6.38), we conclude that, under Assumption 6.4,

each solution ξ to H from ξ(0, 0) ∈ X0 converges in finite time to A ∩G(D) and

remains in A for all future hybrid time in dom ξ. Hence, (6.16) holds for all

(t, j) ∈ dom ξ satisfying t ≥ t′ + T and j ≥ 1. Moreover, by integration using the

bounds in (6.34), (6.37), and (6.38), and from the definition of V in (6.33), for

each solution ξ to H from ξ(0, 0) ∈ X0,

|ξ(t, j)|2A = V (ξ(t, j)) ≤ V (ξ(0, 0)) = |ξ(0, 0)|2A

for all (t, j) ∈ dom ξ. Hence, (6.15) holds for all (t, j) ∈ dom ξ.

To conclude the proof, we bound the condition number of Φ− I as in (6.17).

Since Assumptions 6.3 and 6.4 hold with µ ≥ α, the conditions of Lemma 6.9 are

satisfied. Hence, from Lemma 6.9, there exists t1 ∈ (0, T ] such that (t1, 0) ∈ dom ξ

and
cond(Ω(t1, 0)− I) ≤ 1 + σ(γ, α)

1− σ(γ, α)
(6.39)

with σ as in (6.18), where Ω is the state transition matrix for (6.22a). Moreover,

since Φ(0, 0) = I and the dynamics during flows of the state component Φ are

equivalent to the dynamics of Ω, it follows that Φ(t, 0) = Ω(t, 0) for all t ∈ I0, and

(6.17) follows from (6.39).

6.4 Robustness Analysis

In this section, we analyze the robustness of our algorithm with respect to

bounded noise on the state measurements. Consider additive noise t 7→ ν(t) ∈ Rn
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in the measurements of the plant state x. During flows, ν affects the dynamics of

the state components θ̂ and η in (6.10). In particular, the dynamics of θ̂ become

˙̂
θ = γψ⊤(x+ ν(t) + η − ψθ̂)

and the dynamics of η become

η̇ = −λ(x+ ν(t) + η)− f(x+ ν(t), u(t)).

Similarly, at jumps, the reset map for η becomes

η+ = −x− ν(t)

which implies that ε in (6.3) is reset as ε+ = −ν(t) when a jump occurs at hybrid

time (t, j).

We denote the hybrid system H in (6.10) under the effect of the measurement

noise ν as Hν , with state ξ := (x, θ̂, ψ, η,Φ, Q,m, τ) ∈ X and dynamics

Hν :

 ξ̇ = Fν(ξ) ξ ∈ Cν

ξ+ = Gν(ξ) ξ ∈ Dν

(6.40)

where

Fν(ξ) :=



f(x, u(τ)) + ϕ(τ)θ

γψ⊤(x+ ν(τ) + η − ψθ̂)

−λψ + ϕ(τ)

−λ(x+ ν(τ) + η)− f(x+ ν(τ), u(τ))

−γψ⊤ψΦ

ψ⊤ψ

0

1


Gν(ξ) := (x,R(ξ), 0,−x− ν(τ), I, 0, R(ξ), τ)

(6.41)

with R as in (6.7) and Cν := C, Dν := D, with C, D as in (6.10).

To enable analysis on the noise effect, we make the following Lipschitz continuity

assumption.

111



Assumption 6.13: Given the system (6.1), there exists Lx > 0 such that, for all

x1, x2 ∈ Rn and all u ∈ Rr,

|f(x1, u)− f(x2, u)| ≤ Lx|x1 − x2|.

6.4.1 Robustness Under Persistence of Excitation

We first analyze the robustness properties induced by Hν under the following

persistence of excitation condition.

Assumption 6.14: Given t 7→ ϕ(t) ∈ Rn×p and λ > 0, there exist T, µ > 0 such

that ∫ t+T

t

Ψ(s, t)⊤Ψ(s, t)ds ≥ µI ∀t ≥ 0 (6.42)

with Ψ as in (6.14).

Remark 6.15: Compared to Assumption 6.4, which requires that the inequality in

(6.13) holds over only a finite time interval, Assumption 6.14 requires that (6.42)

holds for all t ≥ 0. Moreover, from [50, Lemma 2.6.7], we have that if ϕ, d
dt
ϕ ∈ L∞

and ϕ satisfies the classical continuous-time persistence of excitation condition in

Definition 2.12, that is, there exist T, µ > 0 such that

∫ t+T

t

ϕ(s)⊤ϕ(s)ds ≥ µ ∀t ≥ 0, (6.43)

then the solution t 7→ ψ(t) to (6.22b) is persistently exciting. Moreover, since

Ψ(s, t) in (6.14) gives the solution to (6.22b) for all s ≥ t ≥ 0, it follows that

Assumption 6.14 holds if ϕ is persistently exciting as in (6.43) and ϕ, d
dt
ϕ ∈ L∞.
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We establish that, under the persistence of excitation condition in Assump-

tion 6.14, the hybrid system Hν is such that solutions from a perturbed version of

X0 in Theorem 6.6 satisfy an ISS bound for any essentially bounded noise ν in the

measurements of x.

Theorem 6.16: Given the hybrid system Hν in (6.40) and λ, α > 0, suppose that

Assumptions 6.3, 6.13, and 6.14 hold with T, ϕM > 0 and µ ≥ α. Then, for

each γ > 0 and each ζ ∈ (0, 1), the parameter estimation error (t, j) 7→ θ̃(t, j) :=

θ − θ̂(t, j) for each solution ξ to Hν from ξ(0, 0) ∈ X ν
0 := {ξ ∈ X : θ̂ = m, ψ =

0, η = −x− ν(0), Φ = I, Q = 0, τ = 0} satisfies

|θ̃(t, j)| ≤ q(j)|θ̃(0, 0)|+ (1− q(j))κ1(∥ν∥∞) + κ2(∥ν∥∞) (6.44)

for all (t, j) ∈ dom ξ, where q(j) := 1 if j = 0, q(j) := 0 if j > 0, and

κ1(s) :=
γψM

1− σ(γ, α)

(
1

ω
+ T (ρ+ 1)

)
s (6.45a)

κ2(s) := γψM

(
1

ω
+ T (ρ+ 1)

)
s (6.45b)

ω :=
1

2
min{λ(1− ζ),− ln(ζ)} (6.45c)

ρ := max

{
2(Lx + λ)

λ
√
ζ

,
1√
ζ

}
, (6.45d)

with σ, ψM as in (6.18) and Lx from Assumption 6.13.

To prove Theorem 6.16, we require the following results.

Lemma 6.17: Given the hybrid system Hν in (6.40), for each solution ξ to Hν

from ξ(0, 0) ∈ X ν
0 , the parameter estimation error (t, j) 7→ θ̃(t, j) := θ − θ̂(t, j)

satisfies

θ̃(t, j) = Φ(t, j)θ̃(tj, j)− γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds (6.46)
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for each j ∈ N and all t ∈ Ij := {t : (t, j) ∈ dom ξ}, where {tj}
supj dom ξ

j=0 is the

sequence defining dom ξ as in Section 2.1, and ε is defined in (6.3). Moreover, for

each (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

θ̃(t, j + 1) = −K1(ξ(t, j))γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds (6.47)

with K1 as in (6.8).

Proof. This proof is given in Appendix E.1.

Lemma 6.18: Given the hybrid system Hν in (6.40), suppose that Assumption 6.13

holds. Then, for each λ > 0, the ψ component of each solution ξ to H from

ξ(0, 0) ∈ X0 satisfies
|ψ(t, j)| ≤ ψM (6.48)

for all (t, j) ∈ dom ξ, with ψM as in (6.18).

The proof of Lemma 6.18 follows directly from Lemma 6.8 and the fact that

ψ(0, 0) = 0 and, at each jump, ψ+ = 0.

Lemma 6.19: Given the hybrid system Hν in (6.40), suppose that Assumption 6.13

holds. Then, for each λ, γ > 0, ζ ∈ (0, 1), and each solution ξ to Hν, (t, j) 7→ ε(t, j) =

z(t, j) + η(t, j)− ψ(t, j)θ in (6.3) satisfies

|ε(t, j)| ≤ e−ω(t+j−t
′−j′)|ε(t′, j′)|+ ρ∥ν∥∞ (6.49)

for all (t, j), (t′, j′) ∈ dom ξ satisfying t+ j ≥ t′ + j′, with ω as in (6.45c) and ρ

as in (6.45d).

Proof. This proof is given in Appendix E.2.
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Lemma 6.20: Given t 7→ ϕ(t) ∈ Rn×p and λ > 0, suppose that Assumption 6.14

holds. Then, for all t′ ≥ 0, Assumption 6.4 holds with T from Assumption 6.14.

The proof of Lemma 6.20 is immediate since, by Assumption 6.14, there exists

T, µ > 0 such that
∫ t′+T
t′

Ψ(s, t′)⊤Ψ(s, t′)ds ≥ µI for all t′ ≥ 0, with Ψ as in (6.14).

We now have all the ingredients to prove Theorem 6.16.

Proof of Theorem 6.16: Let ξ = (x, θ̂, ψ, η,Φ, Q,m, τ) be a maximal solution

to Hν in (6.40) from ξ(0, 0) ∈ X ν
0 . We first bound the parameter estimation error

θ̃ = θ − θ̂ during the initial interval of flow I0 := {t : (t, 0) ∈ dom ξ}. From

Lemma 6.17, we have that for all t ∈ I0,

θ̃(t, 0) = Φ(t, 0)θ̃(0, 0)− γ

∫ t

0

Φ(s, 0)ψ(s, 0)⊤(ε(s, 0) + ν(s))ds.

Since Assumption 6.14 is satisfied, it follows from Lemma 6.20 that Assumption 6.4

holds over the time interval [0, T ]. Hence, by Assumption 6.3, the conditions of

Lemma 6.9 are satisfied with t′ = 0. Moreover, since Φ(0, 0) = I and the dynamics

during flows of the state component Φ are equivalent to the dynamics of the state

transition matrix Ω for (6.22a), it follows from (6.23) that |Φ(t, 0)| ≤ 1 for all

t ∈ I0. Hence,

|θ̃(t, 0)| ≤ |Φ(t, 0)||θ̃(0, 0)|+ γ

∫ t

0

|Φ(s, 0)||ψ(s, 0)|(|ε(s, 0)|+ |ν(s)|)ds

≤ |θ(0, 0)|+ γψM

∫ t

0

(
e−ωs|ε(0, 0)|+ (ρ+ 1)∥ν∥∞

)
ds

≤ |θ̃(0, 0)|+ γψM

(∫ ∞

0

e−ωs|ε(0, 0)|ds+ t(ρ+ 1)∥ν∥∞
)

≤ |θ̃(0, 0)|+ γψM

(
1

ω
|ε(0, 0)|+ t(ρ+ 1)∥ν∥∞

)
≤ |θ̃(0, 0)|+ γψM

(
1

ω
+ t(ρ+ 1)

)
∥ν∥∞

(6.50)
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for all t ∈ I0, where the second line follows from Lemmas 6.18 and 6.19, the fourth

line uses the fact that ω > 0, and the last line follows from the fact that, since

ξ(0, 0) ∈ X ν
0 , |ε(0, 0)| = |ν(0)| ≤ ∥ν∥∞.

Note that the measurement noise ν does not affect the dynamics of the ψ or

Q components of the solution ξ of Hν . Hence, by Assumptions 6.3 and 6.14 and

Lemma 6.20, the conditions of Theorem 6.6 hold. Moreover, by the equivalence

between the jump sets of H in (6.10) and Hν in (6.40), it follows from Theorem 6.6

that ξ jumps at hybrid time (t1, 0) with t1 ∈ (0, T ], and thus I0 ⊂ [0, T ]. Hence,

for all t ∈ I0,

|θ̃(t, 0)| ≤ |θ̃(0, 0)|+ κ2(∥ν∥∞) (6.51)

with κ2 as in (6.45b).

Next, we bound the parameter estimation error after each jump in dom ξ. Let

(tj, j) ∈ dom ξ be such that (tj, j − 1) ∈ dom ξ. From Lemma 6.17, we have that

θ̃(tj, j) = −K1(ξ(tj, j − 1))γ

∫ tj

tj−1

Φ(s, j − 1)ψ(s, j − 1)⊤(ε(s, j − 1) + ν(s))ds

Since Assumption 6.14 is satisfied, it follows from Lemma 6.20 that Assumption 6.4

holds over the time interval [tj−1, tj−1 + T ]. Hence, by Assumption 6.3, the

conditions of Lemma 6.9 are satisfied with t′ = tj−1. Moreover, since Φ(tj−1, j−1) =

I and the dynamics during flows of Φ in (6.40) are equivalent to the dynamics of

the state transition matrix Ω for (6.22a), it follows from (6.23) that |Φ(t, j−1)| ≤ 1
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for all t ∈ Ij−1. Thus,

|θ̃(tj, j)| ≤ |K1(ξ(tj, j − 1))|γ
∫ tj

tj−1

|Φ(s, j − 1)||ψ(s, j − 1)|(|ε(s, j − 1)|+ |ν(s)|)ds

≤ |K1(ξ(tj, j − 1))|γψM
∫ tj

tj−1

(
e−ω(s+j−1)|ε(0, 0)|+ (ρ+ 1)∥ν∥∞

)
ds

≤ |K1(ξ(tj, j − 1))|γψM
(∫ ∞

0

e−ωs|ε(0, 0)|ds+ (tj − tj−1)(ρ+ 1)∥ν∥∞
)

≤ |K1(ξ(tj, j − 1))|γψM
(
1

ω
|ε(0, 0)|+ (tj − tj−1)(ρ+ 1)∥ν∥∞

)
≤ |K1(ξ(tj, j − 1))|γψM

(
1

ω
+ (tj − tj−1)(ρ+ 1)

)
∥ν∥∞

where the second line follows from Lemmas 6.18 and 6.19, the fourth line uses the

fact that ω > 0, and the last line follows from the fact that |ε(0, 0)| = |ν(0)| ≤ ∥ν∥∞.

Since, by Assumption 6.14 and Lemma 6.20, Assumption 6.4 holds over the time

interval [tj−1, tj−1 + T ], it follows from the same arguments as in the proof of

Theorem 6.6 that tj − tj−1 ≤ T . Hence,

|θ̃(tj, j)| ≤ |K1(ξ(tj, j − 1))|γψM
(
1

ω
+ T (ρ+ 1)

)
∥ν∥∞

≤ γψM
1− σ(γ, α)

(
1

ω
+ T (ρ+ 1)

)
∥ν∥∞ = κ1(∥ν∥∞)

with κ1 as in (6.45a) and σ as in (6.18), where the last inequality follows from the

definition of K1 = −(Φ− I)−1 in (6.8), and we use the equivalence between the

dynamics of the state component Φ in (6.40) and the state transition matrix Ω

from Lemma 6.9 to upper bound |(Φ− I)−1| using (6.26).

During the interval of flow after the jump at hybrid time (tj, j), we have from

Lemma 6.17 that, for all t ∈ Ij,

θ̃(t, j) = Φ(t, j)θ̃(tj, j)− γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds.
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Since Assumption 6.14 is satisfied, it follows from Lemma 6.20 that Assumption 6.4

holds over the time interval [tj, tj + T ]. Hence, by Assumption 6.3, the conditions

of Lemma 6.9 are satisfied with t′ = tj. Moreover, since Φ(tj, j) = I and the

dynamics during flows of Φ in (6.40) are equivalent to the dynamics of the state

transition matrix Ω for (6.22a), it follows from (6.23) that |Φ(t, j)| ≤ 1 for all

t ∈ Ij. Using similar arguments as in (6.50), we obtain

|θ̃(t, j)| ≤ |θ̃(tj, j)|+ γψM

(
1

ω
+ (t− tj)(ρ+ 1)

)
∥ν∥∞ (6.52)

for all t ∈ Ij , where the second line follows from Lemmas 6.18 and 6.19, and the last

line follows from the fact that |ε(0, 0)| = |ν(0)| ≤ ∥ν∥∞. Since, by Assumption 6.14

and Lemma 6.20, Assumption 6.4 holds over the time interval [tj, tj +T ], it follows

from the same arguments as in the proof of Theorem 6.6 that tj+1− tj ≤ T . Hence,

for all t ∈ Ij,

|θ̃(t, j)| ≤ |θ̃(tj, j)|+ γψM

(
1

ω
+ T (ρ+ 1)

)
∥ν∥∞

≤ κ1(∥ν∥∞) + κ2(∥ν∥∞)

(6.53)

where the last line follows from substituting (6.52).

Since the bound in (6.53) does not depend on the choice of hybrid time instant

(tj, j), it follows that (6.53) holds for each j ∈ N \ {0} and all t ∈ Ij. Hence, we

unify the bounds in (6.51) and (6.53) to obtain that, for all (t, j) ∈ dom ξ,

|θ̃(t, j)| ≤ q(j)|θ̃(0, 0)|+ (1− q(j))κ1(∥ν∥∞) + κ2(∥ν∥∞)

where q(j) := 1 if j = 0 and q(j) := 0 if j > 0. Hence, (6.44) holds.

6.4.2 Robustness Under Finite Excitation

To analyze the robustness properties of Hν under the finite excitation condition

in Assumption 6.4, we modify the algorithm to jump only once by augmenting the
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state vector with a new component k ∈ {0, 1}. The resulting algorithm, denoted

by H′
ν , has state ξ := (x, θ̂, ψ, η,Φ, Q,m, τ, k) ∈ X ′ := X × {0, 1} and dynamics

H′
ν :


ξ̇ =

[
Fν(ξ)

0

]
=: F ′

ν(ξ) ξ ∈ C ′
ν

ξ+ =

[
Gν(ξ)

1

]
=: G′

ν(ξ) ξ ∈ D′
ν

(6.54)

with Fν , Gν as in (6.41),

C ′
ν := {ξ ∈ X ′ : λmin(Q) ≤ α} ∪ {ξ ∈ X ′ : k = 1}

D′
ν := {ξ ∈ X ′ : λmin(Q) ≥ α, k = 0} ,

(6.55)

and α > 0 is a design parameter. The jump set D′
ν in (6.55) ensures that H′

ν

jumps only once, when k = 0. Note that the results in Lemmas 6.19 and 6.20 also

apply to the hybrid system H′
ν .

We now show that, under the finite excitation condition in Assumption 6.4,

the hybrid system H′
ν is such that, for solutions from an augmented version of X ν

0

defined above (6.44), the norm of the parameter estimation error is upper bounded

by a function of the integral of the noise ν in the measurements of x.

Theorem 6.21: Given the hybrid system H′
ν in (6.54) and λ, α > 0, suppose that

Assumptions 6.3, 6.4, and 6.13 hold with t′ ≥ 0, T, ϕM > 0, and µ ≥ α. Then, for

each γ > 0 and each ζ ∈ (0, 1), the parameter estimation error (t, j) 7→ θ̃(t, j) :=

θ − θ̂(t, j) for each solution ξ to H′
ν from ξ(0, 0) ∈ X ν′

0 := X ν
0 × {0} satisfies

|θ̃(t, j)| ≤ q(j)|θ̃(0, 0)|+ (1− q(j))κ′1(∥ν∥∞)

+ κ′2(∥ν∥∞) +

∫ t

0

κ′3(|ν(s)|, ∥ν∥∞)ds
(6.56)
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for all (t, j) ∈ dom ξ, where q(j) := 1 if j = 0, q(j) := 0 if j > 0, and

κ′1(s) :=
γψM

1− σ(γ, α)

(
1

ω
+ (t′ + T )(ρ+ 1)

)
s

κ′2(s) :=
γψM
ω

s

κ′3(s1, s2) := γψM (s1 + ρs2)

(6.57)

with ψM as in (6.18) and ω, ρ as in (6.45).

Proof. Let ξ = (x, θ̂, ψ, η,Φ, Q,m, τ, k) be a maximal solution to H′
ν in (6.54) from

ξ(0, 0) ∈ X ν′
0 . We first bound the parameter estimation error θ̃ = θ − θ̂ during the

initial interval of flow I0 := {t : (t, 0) ∈ dom ξ}. From Lemma 6.17, we have that

for all t ∈ I0,

θ̃(t, 0) = Φ(t, 0)θ̃(0, 0)− γ

∫ t

0

Φ(s, 0)ψ(s, 0)⊤(ε(s, 0) + ν(s))ds.

Since Φ(0, 0) = I and the dynamics during flows of Φ in (6.54) are equivalent to

the dynamics of the state transition matrix Ω for (6.22a), it follows from (6.23)

that |Φ(t, 0)| ≤ 1 for all t ∈ I0. Thus,

|θ̃(t, 0)| ≤ |Φ(t, 0)||θ̃(0, 0)|+ γ

∫ t

0

|Φ(s, 0)||ψ(s, 0)|(|ε(s, 0)|+ |ν(s)|)ds

≤ |θ(0, 0)|+ γψM

∫ t

0

(
e−ωs|ε(0, 0)|+

∫ t

0

(|ν(s)|+ ρ∥ν∥∞) ds

)
≤ |θ̃(0, 0)|+ γψM

(∫ ∞

0

e−ωs|ε(0, 0)|ds+
∫ t

0

(|ν(s)|+ ρ∥ν∥∞) ds

)
≤ |θ̃(0, 0)|+ γψM

(
1

ω
|ε(0, 0)|+

∫ t

0

(|ν(s)|+ ρ∥ν∥∞) ds

)
≤ |θ̃(0, 0)|+ γψM

(
1

ω
∥ν∥∞ +

∫ t

0

(|ν(s)|+ ρ∥ν∥∞) ds

)
≤ |θ̃(0, 0)|+ κ′2(∥ν∥∞) +

∫ t

0

κ′3(|ν(s)|, ∥ν∥∞)ds (6.58)
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for all t ∈ I0, with κ′2, κ
′
3 as in (6.57), where the second line follows from Lem-

mas 6.18 and 6.19, the fourth line uses the fact that ω > 0, and the fifth line

follows from the fact that |ε(0, 0)| = |ν(0)| ≤ ∥ν∥∞.

Note that the measurement noise ν does not affect the dynamics of the ψ

or Q components of the solution ξ of Hν . Hence, by Assumptions 6.3 and 6.4,

the conditions of Theorem 6.6 hold. Thus, it follows from Theorem 6.6 that the

solution ξ jumps at hybrid time (t1, 0) with t1 ∈ (0, t′ + T ]. After the jump, we

have from Lemma 6.17 that

θ̃(t1, 1) = −K1(ξ(t1, 0))γ

∫ t1

0

Φ(s, 0)ψ(s, 0)⊤(ε(s, 0) + ν(s))ds

which is upper bounded by

|θ̃(t1, 1)| ≤ |K1(ξ(t1, 0))|γ
∫ t1

0

|Φ(s, 0)||ψ(s, 0)|(|ε(s, 0)|+ |ν(s)|)ds

≤ |K1(ξ(t1, 0))|γψM
∫ t1

0

(
e−ωs|ε(0, 0)|+

∫ t1

0

(1 + ρ) ∥ν∥∞ds
)

≤ |K1(ξ(tj, j − 1))|γψM
(∫ ∞

0

e−ωs|ε(0, 0)|ds+ t1 (1 + ρ) ∥ν∥∞
)

≤ |K1(ξ(tj, j − 1))|γψM
(
1

ω
|ε(0, 0)|+ t1 (1 + ρ) ∥ν∥∞

)
≤ |K1(ξ(tj, j − 1))|γψM

(
1

ω
+ t1 (1 + ρ)

)
∥ν∥∞

where the second line follows from Lemmas 6.18 and 6.19, the fourth line uses the

fact that ω > 0, and the last line follows from the fact that |ε(0, 0)| = |ν(0)| ≤ ∥ν∥∞.

Since t1 ∈ (0, t′ + T ], we have

|θ̃(t1, 1)| ≤ |K1(ξ(tj, j − 1))|γψM
(
1

ω
+ (t′ + T ) (1 + ρ)

)
∥ν∥∞

≤ γψM
1− σ(γ, α)

(
1

ω
+ (t′ + T ) (1 + ρ)

)
∥ν∥∞ = κ′1(∥ν∥∞)

(6.59)

with κ′1 as in (6.57), where the last inequality follows from the definition of

K1 = −(Φ− I)−1 in (6.8), and we use the equivalence between the dynamics of the
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state component Φ in (6.54) and the state transition matrix Ω from Lemma 6.9 to

upper bound |(Φ− I)−1| using (6.26).

By construction, the hybrid system H′
ν jumps at most once, when k = 0. Since

k is reset to 1 at the first jump, ξ flows for all hybrid time after the first jump.

We have from Lemma 6.17 that, for all t ∈ I1,

θ̃(t, 1) = Φ(t, 1)θ̃(t1, 1)− γ

∫ t

t1

Φ(s, 1)ψ(s, 1)⊤(ε(s, 1) + ν(s))ds.

Since Φ(t1, 1) = I and the dynamics during flows of Φ in (6.54) are equivalent to

the dynamics of the state transition matrix Ω for (6.22a), it follows from (6.23)

that |Φ(t, 1)| ≤ 1 for all t ∈ I1. Using similar arguments as in (6.58), we obtain

|θ̃(t, 1)| ≤ |θ̃(t1, 1)|+ γψM

(
1

ω
∥ν∥∞ +

∫ t

0

(|ν(s)|+ ρ∥ν∥∞) ds

)
≤ κ′1(∥ν∥∞) + κ′2(∥ν∥∞) +

∫ t

0

κ′3(|ν(s)|, ∥ν∥∞)ds

(6.60)

for all t ∈ I1, with κ′1, κ′2, κ′3 as in (6.57), where the last line follows from substituting

(6.59).

We unify the bounds in (6.58) and (6.60) to obtain that, for all (t, j) ∈ dom ξ,

|θ̃(t, j)| ≤ q(j)|θ̃(0, 0)|+ (1− q(j))κ′1(∥ν∥∞)

+ κ′2(∥ν∥∞) +

∫ t

0

κ′3(|ν(s)|, ∥ν∥∞)ds

where q(j) := 1 if j = 0 and q(j) := 0 if j > 0. Hence, (6.56) holds.
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6.5 Numerical Example

Consider the following nonlinear system similar to that in [1], with state

x = (x1, x2, x3) ∈ R3, input t 7→ u(t) ∈ R, and dynamics

ẋ1 = x2 + θ1x1

ẋ2 = x3 + θ2x1

ẋ3 = θ3x
3
1 + θ4x2 + θ5x3 + (2 + sin(x1))u(t)

(6.61)

where θ = (θ1, θ2, · · · , θ5) ∈ R5 is a vector of unknown parameters, and the input

t 7→ u(t) is designed using the control algorithm in [33] so that the state component

x1 converges asymptotically to a reference signal t 7→ xr(t). To estimate θ using

our proposed algorithm, we express the dynamics of each solution pair (x, u) to

(6.61) in the form of (6.1) with

f(x(t), u(t)) =


x2(t)

x3(t)

(2 + sin(x1(t)))u(t)



ϕ(t) =


x1(t) 0 0 0 0

0 x1(t) 0 0 0

0 0 x1(t)
3 x2(t) x3(t)


(6.62)

for all t ∈ dom(x, u).

We simulate our estimation algorithm H in (6.10) with f and ϕ in (6.62). To

illustrate the robustness properties of H, we also simulate the system with additive

noise t 7→ ν(t) = 0.5 sin(10t)[1 1 1]⊤ in the measurements of x. The plant has

parameters θ = (−1,−2, 1, 2, 3), reference signal xr(t) = 1 for all t ≥ 0, and initial

condition x(0) = (0, 0, 0). The estimator has design parameters γ = 1, λ = 0.1,

and α = 0.2, and initial conditions θ̂(0, 0) = m(0, 0) = (0, 0, 0, 0, 0), ψ(0, 0) = 0,

η(0, 0) = −x(0, 0), Φ(0, 0) = I, and Q(0, 0) = 0. With these parameters and
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initial conditions, it can be shown that ϕ in (6.62) satisfies Assumption 6.3 with

ϕM = 6.64, and satisfies Assumption 6.4 with t′ = 0 sec, T = 2.93 sec, and µ = 0.2.

Hence, the conditions of Theorem 6.6 are satisfied. Furthermore, since f in (6.62)

satisfies Assumption 6.13 with Lx = 1, the conditions of Theorem 6.21 are satisfied.

When no noise is present, the parameter estimate θ̂ converges in finite-time to θ in

accordance with Theorems 6.6, as shown in blue in Figure 6.1.22 When noise is

present, the estimation error remains bounded in accordance with Theorem 6.21,

as shown in green in Figure 6.1.

Figure 6.1: The projection onto t of the norm of the parameter estimation error
for H.

22Code at https://github.com/HybridSystemsLab/HybridFT_NonlinearSystem
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Chapter 7

Parameter Estimation for Hybrid

Systems with Approximately Known

Jump Times

In this chapter, we propose an algorithm for estimating unknown parameters

of hybrid dynamical systems whose jump times are known only approximately.

The algorithm solves an optimization problem to estimate the jump times of the

hybrid system.

7.1 Problem Statement

Consider a hybrid plant, denoted by HP , with dynamics

HP :

 ẋ = FP (x, θ) x ∈ CP

x+ = GP (x, θ) x ∈ DP

(7.1)

where x ∈ Rn is the state vector, FP is the flow map, GP is the jump map, CP ⊂ Rn

is the flow set, DP ⊂ Rn is the jump set, θ ∈ Θ is a vector of unknown constant

parameters that are contained in a known compact set Θ ⊂ Rp, and n, p ∈ N.
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If jumps in x are detected instantaneously, then a hybrid estimator can be

designed to estimate θ for certain classes of hybrid plants – see Chapters 4 and 5

and [48, 27, 28]. We denote such an estimation algorithm as HE with state z ∈ Rm,

input x ∈ Rn,23 and dynamics

HE :

 ż = FE(x, z) when HP flows

z+ = GE(x, z) when HP jumps
(7.2)

where FE is the flow map, GE is the jump map, and m ∈ N. The state z of HE is

partitioned as z := (θ̂, χ), where θ̂ ∈ Rp is an estimate of the unknown parameter

vector θ in (7.1) and χ ∈ Rm−p collects any auxiliary state variables. We denote

the interconnection of HP and HE as H, with state ξ := (x, z) and dynamics

H :



ẋ = FP (x, θ)

ż = FE(x, z)

 =: F (x, z, θ), (x, z) ∈ C

x+ = GP (x, θ)

z+ = GE(x, z)

 =: G(x, z, θ), (x, z) ∈ D

(7.3)

where C := CP × Rm and D := DP × Rm.

The flow map FE and jump map GE of HE are designed so that, under sufficient

excitation conditions, each complete solution (x, z) to H converges to the set

A := {(x, z) ∈ Rn × Rm : θ̂ = θ}. (7.4)

In practice, exact synchronization between a plant and an estimator is difficult

to achieve due to delays in sensing, signal transmission, and computation. Moreover,

if detection of jumps in the plant state is delayed, resetting z based on GE may

result in divergence of the parameter estimate – see the example in Section 7.5.
23See [45] for details on hybrid systems with inputs.
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This motivates the design of a new estimation algorithm that accounts for such

delays. We denote this algorithm as ĤE, with dynamics

ĤE :

 ż = FE(x, z) otherwise

z+ = ĜE(x, z) when a jump in x is detected
(7.5)

where FE is given in (7.2) and ĜE is to be designed to solve the following problem.

Problem 7.1: Design the jump map ĜE of ĤE in (7.5) so that, under delays in

detection of jumps in the plant state, the parameter estimate θ̂ converges to the

unknown parameter vector θ in (7.1), except possibly on the delay intervals.

7.2 Problem Solution

7.2.1 Assumptions

To enable our design of ĜE, we make the following assumption on the data of

HP and HE.

Assumption 7.2: Given the hybrid systems HP in (7.1) and HE in (7.2),

1. domFP ⊃ Rn ×Θ;

2. domFE = Rn × Rm;

3. domGE = Rn × Rm.

We impose the following local Lipschitz continuity condition (that is uniform in θ).

Assumption 7.3: For each (x, z, θ) ∈ Rn×Rm×Θ, there exist δx, δz > 0 and L ≥ 0

such that

|F (x1, z1, θ)− F (x2, z2, θ)| ≤ L(|x1 − x2|+ |z1 − z2|)

for all x1, x2 ∈ x+ δxB and all z1, z2 ∈ z + δzB, with F as in (7.3).
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Furthermore, we make the following assumption on solutions to HP .

Assumption 7.4: Given the hybrid systems HP in (7.1), there exist I, ε > 0,

∆ ∈ [0, I), and a closed set P ⊂ Rn such that the following conditions hold.

1. Each maximal solution x to HP from x(0, 0) ∈ P satisfies24

tj − tj−1 ≥ I

for all j ∈ {1, 2, · · · , supj domx}, where {tj}
supj domx

j=0 is the sequence defining

domx as in Section 2.1.

2. Each solution x to HP from x(0, 0) ∈ P satisfies

|x(t, j)− x(t, j + 1)| ≥ ε

for all (t, j) ∈ domx such that (t, j + 1) ∈ domx.

3. Following each jump in x, there is a delay of δ ∈ [0,∆] seconds before the

jump can be detected.

Item 1 of Assumption 7.4 means that each maximal solution x to HP from

x(0, 0) ∈ P has a dwell time of at least I seconds. Item 2 imposes a lower bound

on the change in x at jumps. Item 3 means that each jump in x can be detected

in at most ∆ seconds following the jump. Since ∆ < I, items 1 and 2 ensure that

each time x jumps, it does not jump again in the (hybrid) time required for the

estimation algorithm ĤE to detect the jump. In Section 7.5 we show that, for the

bouncing ball system [22, Example 1.1] with coefficient of restitution equal to one,

each solution with initial conditions in a closed set P satisfies Assumption 7.4.
24If x is continuous, we define t1 := supt domx.
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Remark 7.5: According to item 3 of Assumption 7.4, the delay δ in detecting a

jump in x depends on the hybrid time at which the jump occurred. In other words,

the detection delay is not necessarily the same for each jump in x. Such a property

holds for Zeno solutions as well; however, the dwell time condition imposed by item

1 of Assumption 7.4 prohibits solutions with intervals of flow that have vanishing

length as hybrid time evolves.

7.2.2 Hybrid Model

Inspired by [2], we model the interconnection of HP and ĤE as25

Ĥ :



ẋ = FP (x, θ)

ż = FE(x, z)

τ̇δ = −min{τδ + 1, 1}

 ξ ∈ Ĉ

x+ = GP (x, θ)

z+ = z

τ+δ ∈ [0,∆]

 ξ ∈ D̂−1

x+ = x

z+ = ĜE(x, z)

τ+δ = −1

 ξ ∈ D̂0

(7.6)

with state ξ := (x, z, τδ) ∈ Rn × Rm ×
(
{−1} ∪ [0,∆]

)
, flow set

Ĉ := C ×
(
{−1} ∪ [0,∆]

)
,

and jump set D̂ := D̂−1 ∪ D̂0, where

D̂−1 := D × {−1}, D̂0 :=
(
C ∪D

)
× {0}

25Note that the jump map in (7.6) encodes a sequential execution of jumps. That is, it does
not allow solutions to jump due to the state component x reaching DP during a delay interval.
This modeling decision is justified since Assumption 7.4 imposes that x flows for the duration of
each delay interval.
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with C and D given below (7.3).

Compared to H in (7.3), Ĥ contains a new state component τδ ∈ [0,∆] that

models the delay between the jumps of the plant and the jumps of the estimator.

When τδ = −1 and x does not jump, Ĥ flows with x and z flowing according to

FP and FE, respectively, and τδ remains equal to −1. When the plant state x

jumps, τδ is set to a value in [0,∆] thus starting a delay period. Ĥ then flows and

the timer τδ decreases until it reaches 0, at which point a delay interval of length

smaller than or equal to ∆ has elapsed. Once τδ reaches zero, the estimator state

is reset based on ĜE, and τδ is reset back to −1.

We design the jump map ĜE of Ĥ so that the dynamics of the θ̂ component

of solutions to Ĥ are equivalent to the dynamics of the θ̂ component of solutions

to H, except perhaps on the delay intervals. The algorithm we propose requires

sampling of solutions to Ĥ, which we describe in the following section.

7.2.3 Sampling of Solutions to Ĥ

Let ξ = (x, z, τδ) be a solution to Ĥ in (7.6). During flows, we sample x and z

at hybrid time instants {(t̃k, j̃k)}S(t)k=0 ∈ dom ξ, where t 7→ S(t) ∈ N \ {0} indicates

a time-dependent number of samples that is to be designed, and (t̃0, j̃0) := (0, 0).

We also record the time t at which each sample is taken. We store the samples of

x, z, and t in time-varying matrices X, Z, and T, respectively, defined as26

X(t, j) :=
[
x1(t, j) x2(t, j) · · · xN(t)(t, j)

]
∈ Rn×N(t)

Z(t, j) :=
[
z1(t, j) z2(t, j) · · · zN(t)(t, j)

]
∈ Rm×N(t)

T(t, j) :=
[
τ1(t, j) τ2(t, j) · · · τN(t)(t, j)

]
∈ R1×N(t)

(7.7)

26We denote the columns of T as τi, rather than ti, in order to avoid confusion with the
sequence of times {tj}

supj dom ξ

j=0 that define dom ξ as in Section 2.1.
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for all (t, j) ∈ dom ξ, where t 7→ N(t) ∈ N \ {0} indicates that the number of

columns of X, Z, and T is time-dependent. The matrices X, Z, and T are initialized

as X(0, 0) = x(0, 0), Z = z(0, 0), and T(0, 0) = 0, respectively, with N(0) = 1.

Each time a sample of x (resp. z, t) is stored, we append a new column to the

right of the last column of X (resp. Z, T), thereby increasing the value of N(t) by

one, and store the sample in the new column. Samples are stored whenever the

current value of t or x differs sufficiently from the value stored in the last column

of T or X, respectively. In particular, when

|t− τN(t)(t, j)| ≥ αt (7.8a)

or

|x(t, j)− xN(t)(t, j)| ≥ αx (7.8b)

where αt ∈ (0, (I −∆)/3] and αx ∈ (0, ε/2] are design parameters, with I, ε > 0

from Assumption 7.4. For each (t, j) ∈ dom ξ and each ℓ ∈ {1, 2, · · · , N(t)−1}, we

discard column ℓ of X, Z, and T, when τℓ+1(t, j) ≤ t−I. Each time a column of X,

Z, and T is discarded, the value of N(t) is decreased by one. Thus, the elements of

X, Z, and T are piecewise constant right-continuous signals, with values changing

only at the sample times.

Omitting the arguments of X, Z, T, and N for readability, suppose that a

jump in x is detected at hybrid time (t∗, j∗) ∈ dom ξ. Since each solution ξ to Ĥ

in (7.6) jumps each time the plant state x jumps, it follows that the jump in x

occurred at hybrid time (t∗− δ, j∗− 1), where δ is unknown and satisfies δ ∈ [0,∆],

with ∆ ∈ [0, I) from Assumption 7.4. Note that, due to Assumption 7.4, (7.8a)

guarantees that, at hybrid time (t∗, j∗) ∈ dom ξ, there are at least three samples

of x (resp. z, t) stored in X (resp. Z, T) from the interval of flow prior to the
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jump at hybrid time (t∗ − δ, j∗ − 1). Furthermore, (7.8b) guarantees that a sample

of x (resp. z, t) is stored in X (resp. Z, T) immediately after the jump at hybrid

time (t∗ − δ, j∗ − 1). Finally, since column xℓ (resp. zℓ, τℓ) of X (resp. Z, T) is

discarded when τℓ+1 ≤ t∗ − I for each ℓ ∈ {1, 2, · · · , N − 1}, it follows that there

is only one jump among the samples of x in X. In the next section, we describe a

method of determining the index of the jump in the samples of x.

7.2.4 Jump Index Determination

We wish to find the index of the last sample of x that was stored before the

jump. We explain our approach in words before formally defining the algorithm.

Pick ℓ ∈ {1, 2, · · · , N − 1} and ϑ ∈ Θ, with Θ ⊂ Rp from (7.1), where ℓ is a

candidate for the index of the last sample of x that was stored before the jump,

and ϑ is a candidate for the unknown parameter vector θ. Using the flow map FP

in (7.1), we compute two solutions, denoted by t 7→ x̂1(t) with initial condition x1,

and t 7→ x̂ℓ+1(t), with initial condition xℓ+1. In particular, we solve

˙̂x1 = FP (x̂1, ϑ), x̂1(τ1) = x1 (7.9)

for all t ∈ [τ1, τℓ], and

˙̂xℓ+1 = FP (x̂ℓ+1, ϑ), x̂ℓ+1(τℓ+1) = xℓ+1 (7.10)

for all t ∈ [τℓ+1, τN ], where xi and τi, i ∈ {1, 2, · · · , N}, are the columns of X and

T, respectively, in (7.7). Note that, due to item 1 of Assumption 7.2, the systems

in (7.9) and (7.10) are well defined for all x̂1, x̂ℓ+1 ∈ Rn and all ϑ ∈ Θ. Finally, we

compare the solutions x̂1 and x̂ℓ+1 against the samples stored in X by computing

α(ℓ, ϑ) :=
ℓ∑
i=1

|xi − x̂1(τi)|2 +
N∑

i=ℓ+1

|xi − x̂ℓ+1(τi)|2. (7.11)
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Figure 7.1: The projection onto t of a hybrid arc x = (x1, x2), shown in blue,
with a jump at t = 1 second. The stored samples of x are shown in black. The
trajectories x̂1 and x̂ℓ+1 that minimize α in (7.11) are shown in green and magenta,
respectively, for ℓ = 4 on the left and ℓ = 6 on the right. The right plot, in which
ℓ corresponds to the index of the last sample of x from before the jump, results in
the smallest value for α.

Let ϑ ∈ Θ be such that the value of α(ℓ, ϑ) is minimized. If the jump in x

occurred between the samples xℓ and xℓ+1, then the value of α(ℓ, ϑ) will be small.

On the other hand, if the jump did not occur between xℓ and xℓ+1, then α(ℓ, ϑ)

may be large. Example trajectories x̂1 and x̂ℓ+1 that minimize α for an example

hybrid arc x = (x1, x2) are shown in Figure 7.1 for two different values of ℓ.

Remark 7.6: Note that, for each ℓ ∈ {1, 2, · · · , N}, multiple distinct values of

ϑ ∈ Θ may yield the same minimum value of α(ℓ, ϑ). In particular, if the flow

map FP in (7.1) does not depend on components of θ, then α can be minimized

for any values of the corresponding components of ϑ. An example of such a case is

described in Section 7.5, where FP does not depend on the second component of

θ.

Formally, we determine the index of the last sample of x that was stored before
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the jump by solving the following optimization problem

minimize α(ℓ, ϑ)

subject to ℓ ∈ {1, 2, · · · , N − 1}, ϑ ∈ Θ,

d

dt
x̂1 = FP (x̂1, ϑ), x̂1(τ1) = x1,

d

dt
x̂ℓ+1 = FP (x̂ℓ+1, ϑ), x̂ℓ+1(τℓ+1) = xℓ+1.

(7.12)

7.2.5 Design of ĜE

Let ℓ ∈ {1, 2, · · · , N − 1} be the result of (7.12). Since, by (7.8b) and item 2

of Assumption 7.4, a sample of x is stored in X immediately after each jump, it

follows that the jump in x occurred at hybrid time (τℓ+1, j
∗ − 1). We design the

jump map ĜE in (7.5) to reset the estimator state, z, using the data stored in Z,

based on the knowledge that a jump in x occurred at hybrid time (τℓ+1, j
∗ − 1).

To do so, we first compute solutions to the system

˙̂x = FP (x̂, ϑ), x̂(τℓ) = xℓ

µ̇ = FE(x̂, µ), µ(τℓ) = zℓ
(7.13)

for all t ∈ [τℓ, τℓ+1], where ϑ ∈ Θ is constant and the result of (7.12). Note that,

due to items 1 and 2 of Assumption 7.2, the system in (7.13) is well defined for all

(x̂, µ) ∈ Rn × Rm and all ϑ ∈ Θ and, due to Assumption 7.3, a solution to (7.13)

from a given initial condition is unique. Then, we reset column zℓ+1 of Z in (7.7)

using the value of jump map GE in (7.2) evaluated on x̂(τℓ+1) and µ(τℓ+1), which

are obtained from computing the solution to (7.13). That is,

zℓ+1 = GE(x̂(τℓ+1), µ(τℓ+1)) (7.14)

which is well defined due to item 3 of Assumption 7.2. Next, we forward propagate

the system in (7.13) from time τℓ+1 up to the current time t∗ by solving

˙̂x = FP (x̂, ϑ), x̂(τℓ+1) = xℓ+1

µ̇ = FE(x̂, µ), µ(τℓ+1) = zℓ+1

(7.15)
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for all t ∈ [τℓ+1, t
∗]. Given the solution t 7→ (x(t), µ(t)) to (7.15), we reset columns

ℓ+2 through N of Z in (7.7) as zi = µ(τi) for all i ∈ {ℓ+2, ℓ+3, · · · , N}. Finally,

we reset the estimator state z as

z+ = µ(t∗). (7.16)

Given a solution ξ to Ĥ and matrices X, Z, and T as in (7.7), we implement

(7.12)–(7.16) using the following algorithm.

Algorithm 1 An algorithm for computing ĜE in (7.5)
Require: ξ(t∗, j∗) ∈ D0

Create an empty vector Q ∈ RN−1

for ℓ = 1 to N − 1 do

Solve for ϑ ∈ Θ that minimizes α(ℓ, ϑ) in (7.11)
Store α(ℓ, ϑ) in row ℓ of Q

end for

Find minQ and set ℓ as the corresponding row index
Compute the solution (x̂, µ) to (7.13) for all t ∈ [τℓ, τℓ+1]

Set zℓ+1 = GE(x̂(τℓ+1), µ(τℓ+1) as in (7.14)
Compute the solution (x̂, µ) to (7.15) for all t ∈ [τℓ+1, t

∗]

for i = ℓ+ 2 to N do

Set zi = µ(τi)

end for

Set z+ = µ(t∗)

7.3 Stability Analysis

To analyze the stability properties induced by our proposed algorithm, we

rewrite the dynamics of Ĥ in (7.6) to incorporate our design for the jump map

ĜE. To do so, we augment the state vector of Ĥ with a new component, µ, that
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evolves based on the dynamics of µ in (7.13)–(7.15). The resulting hybrid system,

denoted by H, has dynamics

H :



ẋ = FP (x, θ)

ż = FE(x, z)

µ̇ = FE(x, µ)

τ̇δ = −min{τδ + 1, 1}


=: F (ξ, θ), ξ ∈ C

x+ = GP (x, θ)

z+ = z

µ+ = GE(x, µ)

τ+δ ∈ [0,∆]


=: G−1(ξ, θ), ξ ∈ D−1

x+ = x

z+ = µ

µ+ = µ

τ+δ = −1


=: G0(ξ, θ), ξ ∈ D0

(7.17)

with state ξ := (x, z, µ, τδ) ∈ X := Rn × Rm × Rm ×
(
{−1} ∪ [0,∆]

)
, flow set

C := C × Rm ×
(
{−1} ∪ [0,∆]

)
and jump set D := D−1 ∪D0, where

D−1 := D × Rm × {−1}, D0 :=
(
C ∪D

)
× Rm × {0}

with C and D given below (7.3).

Compared to Ĥ in (7.6), H contains a new state component µ ∈ Rm. When

τδ = −1 and x does not jump, µ flows per the flow map FE, as in (7.13). When

the plant state x jumps, µ is reset to the value of GE(x, µ), and then continues

flowing per FE until τδ reaches zero, as in (7.14)–(7.15). At the end of the delay
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interval, the estimator state z is reset to value of µ, as in (7.16). Note that the

dynamics of µ in (7.17) are equivalent to the dynamics of z in (7.3), except that µ

has an extra trivial jump each time τδ = 0.

To establish the stability properties induced by H in (7.17), we first make the

following assumption regarding the parameter estimation error for H in (7.3).

Assumption 7.7: Let P ⊂ Rn come from Assumption 7.4. For each compact

set K ⊂ Rm, there exists β ∈ KL such that the parameter estimation error

(t, j) 7→ θ̃(t, j) := θ− θ̂(t, j) for each solution (x, z) to the hybrid system H in (7.3)

from (x(0, 0), z(0, 0)) ∈ P ×K satisfies

|θ̃(t, j)| ≤ β(|θ̃(0, 0)|, t+ j) ∀(t, j) ∈ dom(x, z).

In words, Assumption 7.7 states that H ensures semiglobal KL pre-asymptotic

stability of the set A in (7.4) – see Definition 2.11. Several recent works proposed

hybrid parameter estimation algorithms that, under sufficient excitation conditions,

satisfy this assumption. In particular, [28, 48, 60] propose algorithms for hybrid

linear regression, and Chapters 4 and 5 propose algorithms for estimating unknown

parameters in hybrid dynamical systems.

We now establish our main stability result.

Theorem 7.8: Given the hybrid system H in (7.17) and K ⊂ Rm compact, suppose

that Assumption 7.7 holds, and let P ⊂ Rn and β ∈ KL come from that assumption.

Then, the parameter estimation error (t, j) 7→ θ̃(t, j) := θ− θ̂(t, j) for each solution

ξ to H from ξ(0, 0) ∈ X0 := {ξ ∈ X : x ∈ P , z ∈ K,µ = z, τδ = −1} satisfies

|θ̃(t, j)| ≤ β(|θ̃(0, 0)|, t+ η(j)) (7.18)

for all (t, j) ∈ dom ξ such that τδ(t, j) = −1, where

η(j) := j −
⌊
j

2

⌋
. (7.19)

137



Theorem 7.8 provides an upper bound on the norm of the parameter estimation

error for H, except possibly on the delay intervals, namely, for (t, j)′s such that

τδ(t, j) = −1.

Remark 7.9: Note that Assumptions 7.2, 7.3, and 7.4 are not included in Theo-

rem 7.8. These assumptions are used to justify the hybrid model Ĥ in (7.6) and

to design the jump map ĜE in Sections 7.2.3–7.2.5. We then rewrite Ĥ in view

of ĜE to obtain the hybrid system H in (7.17). However, given H, we need only

Assumption 7.7 to prove Theorem 7.8.

7.3.1 Proof of Theorem 7.8

To prove Theorem 7.8, we require the following result that employs a notion of

j-reparamaterization of a hybrid arc – see Definition 2.8.

Lemma 7.10: Let ξ = (x, z, µ, τδ) be a solution to H in (7.17) with τδ(0, 0) = −1,

and let xr and µr be j-reparameterizations of x and µ, respectively, given by

xr(t, η(j)) := x(t, j), µr(t, η(j)) := µ(t, j), (7.20)

for all (t, j) ∈ dom ξ, with η as in (7.19). Then, ξr := (xr, µr) is a solution to the

hybrid system H in (7.3).

Remark 7.11: In words, the j-reparameterization of the solution components x and

µ in Lemma 7.10 removes the even-numbered jumps (excluding zero) from dom ξ.

Since, for each solution ξ to H with τδ(0, 0) = −1, the even-numbered jumps in

dom ξ correspond to jumps from the set D0, this reparameterization removes the

trivial jumps of x and µ.
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Proof of Lemma 7.10: Pick a solution ξ = (x, z, µ, τδ) to H with τδ(0, 0) =

−1. We show that ξr = (xr, µr) below (7.20) satisfies the dynamics of H – see

Definition 2.1. Since ξ is a solution to H, we have

ξ(0, 0) ∈ cl(C) ∪D =⇒ (x(0, 0), µ(0, 0)) ∈ cl(C) ∪D.

Then, since xr(0, 0) = x(0, 0) and µr(0, 0) = µ(0, 0), it follows that ξr(0, 0) ∈

cl(C) ∪D.

Let j ∈ N. If the interior of Ij := {t : (t, j) ∈ dom ξ} is nonempty, then

ξ(t, j) ∈ C for all t ∈ int Ij, which, from (7.17), implies that

ξr(t, η(j)) = (xr(t, η(j)), µr(t, η(j)))

= (x(t, j), µ(t, j)) ∈ CP × Rm ⊂ C

for all t ∈ int Ij. Furthermore, it follows from (7.17) that

ξ̇r(t, η(j)) = (ẋr(t, η(j)), µ̇r(t, η(j)))

= (ẋ(t, j), µ̇(t, j))

=
(
FP (x(t, j), θ), FE(x(t, j), z(t, j))

)
=
(
FP
(
xr(t, η(j)), θ

)
, FE

(
xr(t, η(j)), zr(t, η(j))

))
= F

(
xr(t, η(j)), zr(t, η(j)), θ

)
for almost all t ∈ Ij, with F as in (7.3).

Next, let (t, j) ∈ dom ξ be such that (t, j + 1) ∈ dom ξ. If j is odd, then, since

τδ(0, 0) = −1, it follows that ξ(t, j) ∈ D0, which implies that

ξr(t, η(j)) = (xr(t, η(j)), µr(t, η(j)))

= (x(t, j), µ(t, j)) ∈ (CP ∪DP )× Rm ⊂ C ∪D.
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Moreover, it follows from (7.17) that

ξr(t, η(j + 1)) = (xr(t, η(j + 1)), µr(t, η(j + 1)))

= (x(t, j + 1), µ(t, j + 1))

= (x(t, j), µ(t, j))

= (xr(t, η(j)), µr(t, η(j)))

= ξr(t, η(j))

which trivially satisfies the dynamics of H since, from (7.19), η(j +1) = η(j) when

j is odd. On the other hand, if j is even, then ξ(t, j) ∈ D−1, which implies that

ξr(t, η(j)) = (xr(t, η(j)), µr(t, η(j)))

= (x(t, j), µ(t, j)) ∈ DP × Rm ⊂ D.

Moreover, it follows from (7.17) that

ξr(t, η(j + 1)) = (xr(t, η(j + 1)), µr(t, η(j + 1)))

= (x(t, j + 1), µ(t, j + 1))

=
(
GP (x(t, j), θ), GE(x(t, j), µ(t, j))

)
=
(
GP

(
xr(t, η(j)), θ

)
, GE

(
xr(t, η(j)), µr(t, η(j))

))
= G

(
xr(t, η(j)), zr(t, η(j)), θ

)
with G as in (7.3). Therefore ξr = (xr, µr) is a solution to H.

We now have the ingredients to prove Theorem 7.8.

Proof of Theorem 7.8: Pick a solution ξ = (x, z, µ, τδ) to H from X0 and let xr

and µr be j-reparameterizations of x and µ, respectively, as in (7.20). We partition

µ and µr as µ := (ϑ̂, ω) and µr := (ϑ̂r, ωr), respectively, where ϑ̂, ϑ̂r ∈ Rp are

estimates of θ, and ω, ωr ∈ Rm−p. From Lemma 7.10, it follows that ξr = (xr, µr)
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is a solution to H. Thus, from Assumption 7.7, we have that the ϑ̂r component of

ξr satisfies
|ϑ̃r(t, j)| ≤ β(|ϑ̃r(0, 0)|, t+ j)

for all (t, j) ∈ dom ξr, where ϑ̃r := θ− ϑ̂r. Then, from the definition of µr in (7.20),

it follows that

|ϑ̃(t, j)| = |ϑ̃r(t, η(j))| ≤ β(|ϑ̃(0, 0)|, t+ η(j)) (7.21)

for all (t, j) ∈ dom ξ, where ϑ̃ := θ − ϑ̂.

To complete the proof, let (t, j) ∈ dom ξ be such that τδ(t, j) = −1. From

the flow map F in (7.17), it follows that τδ(s, j) = −1 for all s ∈ Ij. Next, since

ξ(0, 0) ∈ X0, it follows from the jump map G0 in (7.17) that z(tj, j) = µ(tj, j)

– that is, the solution components z and µ are equal at the beginning of the Ij

interval of flow. From the equivalence between the dynamics of z and µ during

flows, we conclude that z(s, j) = µ(s, j) for all s ∈ Ij , which, from the partitioning

of z and µ, implies that θ̂(s, j) = ϑ̂(s, j) for all s ∈ Ij. Since this result does

not depend on the particular choice of (t, j) ∈ dom ξ such that τδ(t, j) = −1, we

conclude from (7.21) that

|θ̃(t, j)| = |ϑ̃(t, j)| ≤ β(|θ̃(0, 0)|, t+ η(j))

for all (t, j) ∈ dom ξ such that τδ(t, j) = −1, where θ̃ = θ − θ̂. Hence, (7.18)

holds.

7.4 Robustness Analysis

In this section, we study the robustness properties induced by H with respect

to vanishing state perturbations. We first impose the following well-posedness

assumption on H.
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Assumption 7.12: The hybrid system H in (7.3) satisfies the hybrid basic conditions

in Definition 2.2.

We impose the following assumption on solutions to H.

Assumption 7.13: All maximal solutions to the hybrid system H in (7.3) are

complete.

We now introduce the notion of a ρ-perturbation of a hybrid system [22,

Definition 6.27]. Namely, given the hybrid system H in (7.17) and a function

ρ : X → R≥0, the ρ-perturbation of H, denoted by Hρ, is the hybrid system

Hρ :

 ξ̇ = Fρ(ξ, θ) ξ ∈ Cρ

ξ+ = Gρ(ξ, θ) ξ ∈ Dρ

(7.22)

where

Cρ := {ξ ∈ X : (ξ + ρ(ξ)B) ∩ C ̸= ∅ } ,

Fρ(ξ, θ) := conF ((ξ + ρ(ξ)B) ∩ C, θ) + ρ(ξ)B ∀ξ ∈ X ,

Dρ := {ξ ∈ X : (ξ + ρ(ξ)B) ∩D ̸= ∅ } ,

Gρ(ξ, θ) :=
{
v ∈ X : v ∈ g + ρ(g)B,

g ∈ G((ξ + ρ(ξ)B) ∩D, θ) + ρ(ξ)B
}

∀ξ ∈ X .

and

G(ξ, θ) :=

G−1(ξ, θ) if ξ ∈ D−1

G0(ξ, θ) if ξ ∈ D0.

We establish the following robustness result, which relies on the notion of

(τ, ε)-closeness of trajectories in Definition 2.7.

Theorem 7.14: Given the hybrid system H in (7.3), suppose that Assumptions 7.12

and 7.13 hold. Then, for every solution ξρ to the hybrid system Hρ in (7.22),

there exists a solution ξ to the hybrid system H in (7.17) such that ξρ and ξ are

(τ, ε)-close.
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To prove Theorem 7.14, we require the following results.

Lemma 7.15: If Assumption 7.12 holds for H, then H satisfies the hybrid basic

conditions.

Proof. This proof is in Appendix F.1.

Lemma 7.16: If Assumption 7.13 holds for H, then all maximal solutions to H

are complete.

Proof. This proof is in Appendix F.2.

We recall [22, Proposition 6.34].

Proposition 7.17: Given a hybrid system H as in (2.1), let H be well posed in

the sense of [22, Definition 6.29]. Suppose that H is pre-forward complete (see

Definition 2.6) from a compact set K ⊂ Rn and ρ : Rn → R≥0. Then, for every

ε > 0 and τ ≥ 0, there exists δ > 0 with the following property: for every solution

xδ to Hδρ with xδ(0, 0) ∈ K + δB, there exists a solution x to H with x(0, 0) ∈ K

such that xδ and x are (τ, ε)-close.

We now have the ingredients to prove Theorem 7.14.

Proof of Theorem 7.14: We rely on Proposition 7.17. Indeed, well-posedness

of H follows from Assumption 7.12, Lemma 7.15, and Theorem 2.3. Pre-forward

completeness of H follows from Assumption 7.13 and Lemma 7.16. The (τ, ε)-

closeness result follows from Proposition 7.17.
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7.5 Numerical Example

Consider the problem of estimating the acceleration due to gravity and the

restitution coefficient for a bouncing ball. The ball has state x = (x1, x2) ∈ R2,

where x1 is the height above the ground and x2 is the vertical velocity. The

bouncing ball system has dynamics [22, Example 1.1]

HP :


ẋ =

[
x2

−γ

]
= FP (x, θ) x ∈ CP

x+ =

[
0

−λx2

]
= GP (x, θ) x ∈ DP

(7.23)

with flow set CP := {x ∈ R2 : x1 ≥ 0}, jump set DP := {x ∈ R2 : x1 = 0, x2 ≤ 0},

and θ := (γ, λ) ∈ Θ := [0, 10]× [0, 1], where γ is the acceleration due to gravity

and λ is the restitution coefficient.

For the estimation algorithm HE, we employ the algorithm proposed in Chap-

ter 4. This algorithm has state z := (θ̂, ψ, η) ∈ R2 ×R2×2 ×R2, input x ∈ R2, and

data

FE(x, z) =


γcψ

⊤(y − ψθ̂)

−λcψ + ϕc(x)

−λc(x+ η)− fc(x)



GE(x, z) =


θ̂ + ψ+⊤

γd+|ψ+|2 (y
+ − ψ+θ̂)

(1− λd)ψ + ϕd(x)

(1− λd)(x+ η)− gd(x)


(7.24)

where γc, λc, γd > 0, λd ∈ (0, 2) are design parameters, y := x+ η, and

fc(x) =

[
x2

0

]
, ϕc(x) =

[
0 0

−1 0

]

gd(x) =

[
0

0

]
, ϕd(x) =

[
0 0

0 −x2

]
.
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The interconnection of HP and HE is simulated with θ = (9.81, 1), γc = 1.5,

λc = 0.01, γd = 0.5, and λd = 1.99 from the initial conditions x(0, 0) = (4.91, 0),

θ̂(0, 0) = (0, 0), ψ(0, 0) = [ 0 0
0 0 ], and η(0, 0) = −x(0, 0). It can be shown numerically

that the trajectory of the plant state x, shown in Figure 7.2, is sufficiently exciting

to ensure exponential convergence of θ̂ to θ for HE (see Theorem 4.7). Hence,

Figure 7.2: The projection onto t of the bouncing ball state x.

if jumps in x are detected instantaneously, the parameter estimate θ̂ converges

exponentially to θ as shown in blue in Figure 1.3. However, when the detection of

each jump is delayed by up to 0.2 seconds, the parameter estimation error fails to

converge to zero, as shown in green in Figure 1.3.

To estimate θ in the presence of delays in jump detection, we employ our

proposed algorithm Ĥ in (7.6), where the jump map ĜE of Ĥ is computed using

Algorithm 1. It can be shown that the maps FP in (7.23) and FE, GE in (7.24)

satisfy Assumptions 7.2 and 7.3. Furthermore, with θ = (9.81, 1), for each maximal

solution x to (7.23) from x(0, 0) ∈ [4.91,∞) × [0,∞), the initial interval of flow

in domx has length of at least 1 second, and x flows for at least 2 seconds after

each jump. Since the detection of jumps in x is delayed by at most 0.2 seconds,

it follows that Assumption 7.4 holds with P = [4.91,∞) × [0,∞), I = 1, and
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∆ = 0.2. Moreover, since, for each compact set K ⊂ Rm, the θ̂ component of each

solution to H from the set P × K converges exponentially to θ, it follows that

Assumption 7.7 holds. Hence, the conditions of Theorem 7.8 are satisfied. The

parameter estimation error for Ĥ, shown in green in Figure 7.3, converges to zero

and is equal to the error for HE shown in blue (with no delays in jump detection),

except possibly on the delay intervals, in accordance with Theorem 7.8.

Figure 7.3: The projection onto t of the parameter estimation error for HE with
no delay in jump detection (blue) and for Ĥ with a delay of up to 0.2 seconds
(green). The estimation error for Ĥ converges to zero, except possibly on the delay
intervals.
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Chapter 8

Conclusion and Future Work

In this dissertation, we proposed algorithms for estimating unknown parameters

in hybrid dynamical systems. In this chapter, we present a summary of the major

contributions and describe several potential future research directions.

8.1 Summary

In Chapter 3, we established key properties of a class of time-varying hybrid

systems. For (3.1), we established global exponential stability of a closed set under

the hybrid persistence of excitation condition in Assumption 3.2. Then, for (3.8),

we established input-to-state stability with respect to a class of hybrid disturbances

in the state dynamics. These results are used in Chapters 4 and 5 to prove the

properties induced by our proposed hybrid parameter estimation algorithms.

In Chapter 4, we developed a hybrid algorithm for estimating unknown param-

eters in hybrid systems of the form in (4.1). The algorithm flows and jumps in

accordance with the plant, under the assumption that jumps in the plant state are

detected instantaneously. The parameter estimate is updated continuously during

flows and discretely at jumps, using dynamics inspired by the continuous-time
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and discrete-time gradient descent algorithms in Section 2.2. We show that our

proposed algorithm ensures exponential convergence of the parameter estimation

error to zero under the hybrid persistence of excitation condition in (4.13). Fur-

thermore, we show that the algorithm is ISS with respect to bounded hybrid noise

on the measurements of the plant state.

In Chapter 5, we developed a hybrid algorithm for estimating unknown pa-

rameters in hybrid systems of the form in (5.1). Inspired by the continuous-time

ICL algorithm in Section 2.3, our proposed hybrid ICL algorithm integrates the

input and output signals of the plant during flows, and sums these signals at

jumps, over a hybrid time window of specified length. The resulting values are

selectively stored using the algorithms in Section 5.6, and the stored data is used

alongside current measurements to adapt the parameter estimate. We show that

our proposed algorithm ensures exponential convergence of the parameter estima-

tion error to zero when the stored data satisfies the hybrid richness condition in

(5.25). Furthermore, we show that the algorithm is ISS with respect to bounded

hybrid noise on the measurements of the plant state.

In Chapter 6, we developed a hybrid algorithm for estimating unknown param-

eters in continuous-time systems of the form in (6.1). We show that our proposed

algorithm ensures finite-time convergence of the parameter estimate to the true

value when the regressor is exciting over only a finite time interval. As a result, our

algorithm can also be applied to estimate unknown parameter of hybrid systems

when the regressor is sufficiently exciting over a single interval of flow. We show

that our proposed algorithm is ISS with respect to bounded hybrid noise on the

measurements of the plant state if the regressor satisfies a persistence of excitation

condition. Furthermore, we show that, if the regressor is exciting over only a

finite time interval, the parameter estimation error is bounded by a function of
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the integral of the measurement noise.

In Chapter 7, we developed a hybrid algorithm for estimating unknown param-

eters in hybrid systems of the form in (7.1), whose jump times are known only

approximately. We propose a method of modifying an estimation algorithm that

is designed to jump coincident with jumps in the plant state, so that its jumps

can be delayed with respect to jumps in the plant state. By sampling and storing

the input and output signals of the plant, we solve an optimization problem that

estimates the jump times of the plant. We show that the estimation algorithm that

results from our proposed modification preserves the stability properties induced

by the unmodified version, except possibly during the delays in detection of jumps

in the plant state. Furthermore, we show that our proposed algorithm is robust to

vanishing state perturbations.

8.2 Future Directions

The following research directions arise from the results in this dissertation.
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• Estimation of parameters for hybrid systems with unknown jump

times: The algorithms in this dissertation are derived assuming that the

jump times of the plant are known, either exactly or approximately. As

a result, we do not use information about the flow and jump sets of the

plant to adapt the parameter estimate. By extending the algorithms in this

dissertation to incorporate information about the flow and jump sets of the

plant, it may be possible to relax the assumption that the jump times of the

plant state are known.

• Nonlinear dependence on unknown parameters: This dissertation

considers parameter estimation for classes of hybrid systems whose dynamics

depend linearly on the unknown parameters. However, this dependence may

be nonlinear in practice, which motivates developing algorithms for estimating

unknown parameters for hybrid systems whose dynamics depend nonlinearly

on the unknown parameters. The development of hybrid algorithms employ-

ing the state augmentation approach in [17] or the multi-observer approach

in [13, 61] are promising directions for this research.

• General robustness to perturbations: In this dissertation, we establish

robustness results for each of the proposed algorithms. Namely, in Chap-

ters 4, 5, and 6, we study input-to-state stability with respect to hybrid

noise in the measurements of the plant state, and, in Chapter 7, we study

robustness with respect to vanishing state perturbations. These results moti-

vate studying the robustness properties induced by our proposed algorithms

for wider varieties of disturbances and uncertainties. The analysis tools in

[22, 45] are promising approaches for this research.
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• Simultaneous state and parameter estimation for hybrid systems:

The algorithms in this dissertation are derived assuming that the full plant

state is measurable. However, full state measurement is not always feasible

in practice, which motivates extending the results in this dissertation to

develop algorithms for simultaneous state and parameter estimation for

hybrid systems with only output measurements. The development of hybrid

extensions of the algorithms in [13, 17, 34, 58, 59, 62] are promising directions

for this research.

• Estimation of slowly time-varying parameters for hybrid systems:

The algorithms in this dissertation are derived assuming that unknown

parameters are constant. However, such parameters may be slowly time-

varying it practice, which motivates developing algorithms for estimating

slowly time-varying unknown parameters in hybrid dynamical systems. The

development of hybrid extensions of the algorithms in [32, 34, 58, 59] are

promising directions for this research.

• Experimental validation using real-world testbeds: This dissertation

includes simulation results for several practical systems, including a bouncing

ball system in Chapters 5 and 7, and a spacecraft system in Chapter 4.

However, experimental validation of our results using real-world testbeds

would further highlight the practicality of the proposed estimation algorithms.

The juggling apparatus in [56] and the boost converter system in [26, 55] are

promising applications for this work.
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Appendix A

Proofs of Stability Results for

Chapter 3

A.1 Proof of Theorem 3.3

Consider the following Lyapunov function

V0(ξ) :=
1

2
ϑ⊤ϑ =

1

2
|ξ|2A ∀ξ ∈ C0 ∪D0. (A.1)

By (3.1), we have that, for all ξ ∈ C0,

⟨∇V0(ξ), F0(ξ)⟩ = −ϑ⊤A(τ, k)ϑ ≤ 0 (A.2)

and, for all ξ ∈ D0,

V0(G0(ξ))− V0(ξ) ≤ −1

2
ϑ⊤B(τ, k)ϑ ≤ 0 (A.3)

where the inequality follows from the fact that, by Assumption 3.1, B(t, j) ≥ 0

and |B(t, j)| ≤ 1 for all (t, j) ∈ Υ(E). Hence, V0 is nonincreasing during flows and

jumps.
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To prove pre-exponential stability of A for H0, we follow the approach in [48]

and show that, for each solution ξ to H0 and each (t′, j′), (t∗, j∗) ∈ dom ξ satisfying

(3.4), with ∆ from Assumption 3.2, the following inequality holds:

V0(ξ(t
∗, j∗)) ≤ (1− σ)V0(ξ(t

′, j′)), (A.4)

with σ as in (3.7). To show (A.4), we define, for the given solution ξ to H0 and

for each (t′, j′), (t∗, j∗) ∈ dom ξ satisfying t∗ + j∗ ≥ t′ + j′,

Ṽ := V0(ξ(t
∗, j∗))− V0(ξ(t

′, j′))

=

j∗∑
j=j′

VF (max{t′, tj},min{t∗, tj+1}, j) +
j∗−1∑
j=j′

VG(tj+1, j)
(A.5)

where for each (t, j), (to, j) ∈ dom ξ satisfying t ≥ to,

VF (to, t, j) := V0(ξ(t, j))− V0(ξ(to, j)) (A.6)

and for each (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

VG(t, j) := V0(ξ(t, j + 1))− V0(ξ(t, j)). (A.7)

To complete the proof, we rely on the following lemmas.

Lemma A.1: For each solution ξ = (ϑ, τ, k) to the hybrid system H0 in (3.1) and

each (t′, j′), (t, j) ∈ dom ξ satisfying t+ j ≥ t′ + j′, the x component of ξ satisfies

ϑ(t, j) = ϑ(t′, j′)−
j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}
A(s, i)ϑ(s, i)ds (A.8)

−
j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i).
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Proof. This proof is given in Appendix A.2.

Lemma A.2: Given the hybrid system H0 in (3.1), suppose that Assumption 3.1

holds and let aM > 0 come from that assumption. Then, for each solution ξ =

(ϑ, τ, k) to H0, each (t′, j′), (t∗, j∗) ∈ dom ξ satisfying t∗ + j∗ ≥ t′ + j′, and each

ρ > 0, the function VF in (A.6) satisfies

j∗∑
j=j′

VF (max{t′, tj},min{t∗, tj+1}, j)

≤ − ρ

1 + ρ
ϑ(t′, j′)⊤

( j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
A(s, j)ds

)
ϑ(t′, j′)

− ρaM(aM + 2)(t∗ − t′ + 1)2(j∗ − j′ + 1)2Ṽ

with Ṽ defined in (A.5).

Proof. This proof is given in Appendix A.3.

Lemma A.3: Given the hybrid system H0 in (3.1), suppose that Assumption 3.1

holds and let aM > 0 come from that assumption. Then, for each solution ξ =

(ϑ, τ, k) to H0, each (t′, j′), (t∗, j∗) ∈ dom ξ satisfying t∗ + j∗ ≥ t′ + j′, and each

ρ > 0, the function VG in (A.7) satisfies

j∗−1∑
j=j′

VG(tj+1, j) ≤− 1

2

ρ

1 + ρ
ϑ(t′, j′)⊤

( j∗−1∑
j=j′

B(tj+1, j)

)
ϑ(t′, j′)

− ρ

2
(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)2Ṽ

with Ṽ defined in (A.5).

Proof. This proof is given in Appendix A.4.
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Combining the results in Lemma A.2 and Lemma A.3, we obtain the following

upper bound on Ṽ in (A.5),

Ṽ ≤ − ρ

1 + ρ

× ϑ(t′, j′)⊤
( j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
A(s, j)ds+

1

2

j∗−1∑
j=j′

B(tj+1, j)

)
ϑ(t′, j′)

− ρ(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)2(aM(t∗ − t′ + 1) + 1/2)Ṽ

From Assumption 3.2 and the definition of V0 in (A.1), it follows that

Ṽ ≤ − 2ρµ

1 + ρ
V0(ξ(t

′, j′))

− ρ(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)2(aM(t∗ − t′ + 1) + 1/2)Ṽ

Since, by (A.2) and (A.3), Ṽ is nonpositive, the second term on the right-hand side

of the expression above is nonnegative. Using the fact that, by Assumption 3.2,

t∗ − t′ < ∆+ 1 and j∗ − j′ < ∆+ 1, we upper bound the expression above by

Ṽ ≤ − 2ρµ

1 + ρ
V0(ξ(t

′, j′))

− ρ(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2)Ṽ .

Using the definition of Ṽ in (A.5), we have

V0(ξ(t
∗, j∗)) ≤ (1− σ)V0(ξ(t

′, j′)). (A.9)

with

σ =
2ρµ

(1 + ρ) (1 + ρ(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2))

where ρ > 0 is chosen so that σ ∈ (0, 1). By choosing ρ as

ρ := 1
/√

(aM + 2)(∆ + 2)3(aM(∆ + 2) + 1/2)
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we conclude that (A.4) holds with σ in (3.7). From the fact that

µ ≤ aM(t∗ − t′) +
1

2
(j∗ − j′) ≤ (∆ + 1)(aM + 1/2)

it follows that σ in (3.7) satisfies σ ∈ (0, 1).

Since (A.9) holds for each (t′, j′), (t∗, j∗) ∈ dom ξ satisfying (3.4) and, by (A.2)

and (A.3), V0 is nonincreasing during flows and jumps, it follows that, for all

(t, j) ∈ dom ξ,

V0(ξ(t, j)) ≤ (1− σ)

⌊
t+j
∆+1

⌋
V0(ξ(0, 0))

≤ (1− σ)

(
t+j
∆+1

−1
)
V0(ξ(0, 0))

≤ 1

1− σ
(1− σ)

t+j
∆+1V0(ξ(0, 0)).

Using the definition of V0 in (A.1), we conclude that (3.6) holds with κ, λ in

(3.7).

A.2 Proof of Lemma A.1

Pick a maximal solution ξ = (ϑ, τ, k) to H0 and hybrid time instants (t′, j′), (t, j) ∈

dom ξ satisfying t+ j ≥ t′ + j′. To prove the result, we proceed by induction on

i ∈ {j′, j′ + 1, · · · , j}. First, let i = j′. We consider the following two cases.

1. If ξ is flowing at hybrid time (t′, j′), then it follows from (3.1) that, for all

(r, j′) ∈ dom ξ satisfying r ≥ t′,

ϑ(r, j′) = ϑ(t′, j′)−
∫ r

t′
A(s, j′)ϑ(s, j′)ds

= ϑ(t′, j′)−
j′∑
i=j′

∫ min{r,tj′+1}

max{t′,t′j}
A(s, i)ϑ(s, i)ds

−
j′−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)
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where the second equality above follows from the fact that the third term on

the right-hand side is equal to zero. Hence, (A.8) holds.

2. If ξ jumps at hybrid time (t′, j′), then it follows from (3.1) that, at hybrid

time (t′, j′ + 1) ∈ dom ξ,

ϑ(t′, j′ + 1) = ϑ(t′, j′)−B(t′, j′)ϑ(t′, j′)

= ϑ(t′, j′)−
j′+1∑
i=j′

∫ min{t′,tj′+1}

max{t′,t′j}
A(s, i)ϑ(s, i)ds

−
j′∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

where the second equality above follows from the fact that the integral on

the right-hand side is equal to zero. Hence, (A.8) holds.

Now, for the given hybrid time instant (t, j) ∈ dom ξ, we consider the following

two cases.

1. If the interior of Ij := {t : (t, j) ∈ dom ξ} is nonempty, then ξ is flowing at

time (tj, j), where {tj}
supj dom ξ

j=0 is the sequence defining dom ξ as in Section 2.1.

Then, assume that (A.8) holds for all i ∈ {j′, j′ + 1, · · · , j}. That is,

ϑ(tj, j) = ϑ(t′, j′)−
j∑

i=j′

∫ min{tj ,ti+1}

max{t′,ti}
A(s, i)ϑ(s, i)ds

−
j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

(A.10)

It follows from (3.1) that, at time (t, j) ∈ dom ξ,

ϑ(t, j) = ϑ(tj, j)−
∫ t

tj

A(s, j)ϑ(s, j)ds

= ϑ(tj, j)−
j∑
i=j

∫ min{t,ti+1}

max{tj ,ti}
A(s, i)ϑ(s, i)ds (A.11)
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Subsituting (A.10) into (A.11), we obtain

ϑ(t, j) = ϑ(t′, j′)−
j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}
A(s, i)ϑ(s, i)ds

−
j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

Hence, (A.8) holds.

2. If there exists (t, j − 1) ∈ dom ξ such that (t, j) ∈ dom ξ, then ξ jumps at

hybrid time (t, j − 1). Then, assume that (A.8) holds for all i ∈ {j′, j′ +

1, · · · , j − 1}. That is,

ϑ(t, j − 1) = ϑ(t′, j′)−
j−1∑
i=j′

∫ min{t,ti+1}

max{t′,ti}
A(s, i)ϑ(s, i)ds

−
j−2∑
i=j′

B(ti+1, i)ϑ(ti+1, i).

(A.12)

It follows from (3.1) that, at time (t, j) ∈ dom ξ,

ϑ(t, j) = ϑ(t, j − 1)−B(t, j − 1)ϑ(t, j − 1)

= x(t, j − 1)−
j∑

i=j−1

∫ min{t,ti+1}

max{t,ti}
A(s, i)ϑ(s, i)ds (A.13)

−
j−1∑
i=j−1

B(ti+1, i)ϑ(ti+1, i)

where the second equality follows from the fact that the integral on the

right-hand side is equal to zero. Subsituting (A.12) into (A.13), we obtain

ϑ(t, j) = ϑ(t′, j′)−
j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}
A(s, i)ϑ(s, i)ds

−
j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i).

Hence, (A.8) holds.
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From the analysis above, we conclude by induction that (A.8) holds for all

(t′, j′), (t, j) ∈ dom ξ satisfying t ≥ t′ and j ≥ j′.

A.3 Proof of Lemma A.2

We begin by bounding the evolution of VF in (A.6) over a single interval of flow.

Since, by Assumption 3.1, A is positive semidefinite, let A1/2 denote the unique

positive semidefinite square root of A. Then, for each solution ξ to H0 and each

(to, j), (t, j) ∈ dom ξ satisfying t ≥ to, we have from (A.2) that

VF (to, t, j) = V0(t, j)− V0(to, j)

= −
∫ t

to

ϑ(s, j)⊤A
1
2 (s, j)A

1
2 (s, j)ϑ(s, j)ds

= −
∫ t

to

∣∣A 1
2 (s, j)ϑ(s, j)

∣∣2ds.
For the given (to, j), (t, j) ∈ dom ξ, we have from Lemma A.1 that, for each

(t′, j′) ∈ dom ξ satisfying to + j ≥ t′ + j′,

VF (to, t, j) =−
∫ t

to

∣∣∣∣A 1
2 (s, j)ϑ(t′, j′)− A

1
2 (s, j)

×
( j∑

i=j′

∫ min{s,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

+

j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

)∣∣∣∣2ds.
Using the fact that, for any a, b ∈ R and any ρ > 0,

|a− b|2 ≥ ρ

1 + ρ
|a|2 − ρ|b|2

159



we obtain

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρ

∫ t

to

∣∣A 1
2 (s, j)

∣∣2(∣∣∣∣ j∑
i=j′

∫ min{s,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

+

j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

∣∣∣∣2)ds
Using the triangle inequality, the Cauchy–Schwarz inequality, and the boundedness

of A according to Assumption 3.1, we obtain

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM

∫ t

to

(
(j − j′ + 1)

j∑
i=j′

∣∣∣∣ ∫ min{s,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

∣∣∣∣2

+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)ds

Using the Cauchy–Schwarz inequality again, we obtain

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM

∫ t

to

(
(j − j′ + 1)

j∑
i=j′

(min{s, ti+1} −max{t′, ti})

×
∫ min{s,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)ds

Using the fact that t ≥ s ≥ to,

0 ≤
j∑

i=j′

∫ min{s,tj+1}

max{t′,ti}

∣∣∣A1/2(v, j)ϑ(v, j)
∣∣∣2dv ≤

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣∣A1/2(v, j)ϑ(v, j)
∣∣∣2dv.
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Hence,

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM(t− to)

×
(
(j − j′ + 1)

j∑
i=j′

(min{t, ti+1} −max{t′, ti})

×
∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2).

Since min{t, ti+1} −max{t′, ti} ≤ t− t′ for all i ∈ {j′, j′ + 1, · · · , j},

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM(t− t′)(j − j′ + 1)

×
(
(t− t′)

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)

which is upper bounded by

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM(t− t′ + 1)2(j − j′ + 1)

×
( j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2).
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Using the decomposition of A as A1/2A1/2 and B as B1/2B1/2,

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM(t− t′ + 1)2(j − j′ + 1)

×
(
aM

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (v, i)ϑ(v, i)

∣∣2dv
+ 2

1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2)

which is upper bounded by

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
+ ρaM(aM + 2)(t− t′ + 1)2(j − j′ + 1)

×
( j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (v, i)ϑ(v, i)

∣∣2dv
+

1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2).
For the given (t′, j′), (t, j) ∈ dom ξ, it follows from (A.2), (A.3), and the definition

of Ṽ in (A.5) that, for each (t∗, j∗) ∈ dom ξ satisfying t∗ + j∗ ≥ t+ j,

−Ṽ ≥
j∗∑
i=j′

∫ min{t∗,ti+1}

max{t′,ti}

∣∣A 1
2 (s, i)ϑ(s, i)

∣∣2ds+ 1

2

j∗−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2
≥

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (s, i)ϑ(s, i)

∣∣2ds+ 1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2.
Hence, we have

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
− ρaM(aM + 2)(t− t′ + 1)2(j − j′ + 1)Ṽ .
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Since, by (A.2) and (A.3), Ṽ is nonpositive, the second term on the right-hand

side of the expression above is nonnegative. Using the fact that t∗ ≥ t and j∗ ≥ j,

we upper bound the expression above by

VF (to, t, j) ≤− ρ

1 + ρ

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
− ρaM(aM + 2)(t∗ − t′ + 1)2(j∗ − j′ + 1)Ṽ .

Since this inequality holds for each (t′, j′), (to, j), (t, j), (t
∗, j∗) ∈ dom ξ satisfying

t∗ ≥ t ≥ to ≥ t′ and j∗ ≥ j ≥ j′, we upper bound the evolution of VF between

(t′, j′) and (t∗, j∗) as

j∗∑
j=j′

VF (max{t′, tj},min{t∗, tj+1}, j)

≤ − ρ

1 + ρ

j∗∑
j=j′

∫ t

to

∣∣A 1
2 (s, j)ϑ(t′, j′)

∣∣2ds
−

j∗∑
j=j′

ρaM(aM + 2)(t∗ − t′ + 1)2(j∗ − j′ + 1)Ṽ

which we rewrite as
j∗∑
j=j′

VF (max{t′, tj},min{t∗, tj+1}, j)

≤ − ρ

1 + ρ
ϑ(t′, j′)⊤

( j∗∑
j=j′

∫ min{t∗,tj+1}

max{t′,tj}
A(s, j)ds

)
ϑ(t′, j′)

− ρaM(aM + 2)(t∗ − t′ + 1)2(j∗ − j′ + 1)2Ṽ .

A.4 Proof of Lemma A.3

We begin by bounding the evolution of VG in (A.7) over a single interval of flow.

Since, by Assumption 3.1, B is positive semidefinite, let B1/2 denote the unique
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positive semidefinite square root of B. Then, for each solution ξ to H0 and each

(t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, we have from (A.3) that

VG(t, j) = V0(t, j + 1)− V0(t, j)

≤ −1

2
ϑ(t, j)⊤B

1
2 (t, j)B

1
2 (t, j)ϑ(t, j)

≤ −1

2

∣∣B 1
2 (t, j)ϑ(t, j)

∣∣2.
For the given (t, j) ∈ dom ξ, we have from Lemma A.1 that, for each (t′, j′) ∈ dom ξ

satisfying t+ j ≥ t′ + j′,

VG(t, j) ≤− 1

2

∣∣∣∣B 1
2 (t, j)ϑ(t′, j′)−B

1
2 (t, j)

×
( j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

+

j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

)∣∣∣∣2.
Next, using the fact that for any a, b ∈ R and any ρ > 0,

|a− b|2 ≥ ρ

1 + ρ
|a|2 − ρ|b|2

we obtain

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2 + ρ

2

∣∣B 1
2 (t, j)

∣∣2
×
(∣∣∣∣ j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

+

j−1∑
i=j′

B(ti+1, i)ϑ(ti+1, i)

∣∣∣∣2)
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Using the triangle inequality, the Cauchy–Schwarz inequality, and the boundedness

of B according to Assumption 3.1, we obtain

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2

(
(j − j′ + 1)

j∑
i=j′

∣∣∣∣ ∫ min{t,ti+1}

max{t′,ti}
A(v, i)ϑ(v, i)dv

∣∣∣∣2

+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)

Using the Cauchy–Schwarz inequality again, we obtain

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2

(
(j − j′ + 1)

j∑
i=j′

(min{t, tj+1} −max{t′, tj})

×
∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)

Since min{t, ti+1} −max{t′, ti} ≤ t− t′ for all i ∈ {j′, j′ + 1, · · · , j},

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2

(
(j − j′ + 1)(t− t′)

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+ (j − j′)

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2)
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which is upper bounded by

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2
(t− t′ + 1)(j − j′ + 1)

×
( j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A(v, i)ϑ(v, i)∣∣2dv
+

j−1∑
i=j′

∣∣B(ti+1, i)ϑ(ti+1, i)
∣∣2).

Using the decomposition of A as A1/2A1/2 and B as B1/2B1/2,

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2
(t− t′ + 1)(j − j′ + 1)

×
(
aM

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (v, i)ϑ(v, i)

∣∣2dv
+ 2

1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2)

which is upper bounded by

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
+
ρ

2
(aM + 2)(t− t′ + 1)(j − j′ + 1)

×
( j∑

i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (v, i)ϑ(v, i)

∣∣2dv
+

1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2).
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For the given (t′, j′), (t, j) ∈ dom ξ, it follows from (A.2), (A.3), and the defintion

of Ṽ in (A.5) that, for each (t∗, j∗) ∈ dom ξ satisfying t∗ + j∗ ≥ t+ j,

−Ṽ ≥
j∗∑
i=j′

∫ min{t∗,ti+1}

max{t′,ti}

∣∣A 1
2 (s, i)ϑ(s, i)

∣∣2ds+ 1

2

j∗−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2
≥

j∑
i=j′

∫ min{t,ti+1}

max{t′,ti}

∣∣A 1
2 (s, i)ϑ(s, i)

∣∣2ds+ 1

2

j−1∑
i=j′

∣∣B 1
2 (ti+1, i)ϑ(ti+1, i)

∣∣2.
Hence, we have

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
− ρ

2
(aM + 2)(t− t′ + 1)(j − j′ + 1)Ṽ .

Since, by (A.2) and (A.3), Ṽ is nonpositive, the second term on the right-hand

side of the expression above is nonnegative. Using the fact that t∗ ≥ t and j∗ ≥ j,

we upper bound the expression above by

VG(t, j) ≤− 1

2

ρ

1 + ρ

∣∣B 1
2 (t, j)ϑ(t′, j′)

∣∣2
− ρ

2
(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)Ṽ .

Since this inequality holds for each (t′, j′), (t, j), (t∗, j∗) ∈ dom ξ satisfying (t, j +

1) ∈ dom ξ, t∗ ≥ t ≥ t′, and j∗ ≥ j ≥ j′, we upper bound the evolution of VG

between (t′, j′) and (t∗, j∗) as

j∗−1∑
j=j′

VG(tj+1, j) ≤− 1

2

ρ

1 + ρ

j∗−1∑
j=j′

∣∣B 1
2 (tj+1, j)ϑ(t

′, j′)
∣∣2

−
j∗−1∑
j=j′

ρ

2
(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)Ṽ

which is upper bounded by

j∗−1∑
j=j′

VG(tj+1, j) ≤− 1

2

ρ

1 + ρ

j∗−1∑
j=j′

ϑ(t′, j′)⊤
( j∗∑
j=j′

B(tj+1, j)

)
ϑ(t′, j′)

− ρ

2
(aM + 2)(t∗ − t′ + 1)(j∗ − j′ + 1)2Ṽ .
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Appendix B

Proofs of Robustness Results for

Chapter 3

B.1 Proof of Lemma 3.4

To prove Lemma 3.4, we first recall the following result from [24].

Lemma B.1: Given B ∈ Rp×p, if |B| < 1, then I −B is invertible.

Proof of Lemma 3.4: Let U : E → Rp×p be such that U(0, 0) is invertible and,

for each j ∈ N and almost all t ∈ Ij,

d

dt
U(t, j) = −A(t, j)U(t, j) (B.1)

and, for all (t, j) ∈ Υ(E), with Υ as in (2.2),

U(t, j + 1) = U(t, j)−B(t, j)U(t, j). (B.2)

Then, for all (t, j), (t′, j′) ∈ E, we define

Φ(t, j, t′, j′) := U(t, j)U(t′, j′)−1, (B.3)
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where, in view of Lemma B.1, U(t, j) is invertible for all (t, j) ∈ E since U(0, 0) is

invertible and, by Assumption 3.1, |B(t, j)| < 1 for all (t, j) ∈ Υ(E).

By the equivalence between the dynamics of U and the ϑ component of ξ

in (3.1), we have that, for each solution ξ to H0 and each (t, j), (t′, j′) ∈ dom ξ

satisfying t+ j ≥ t′ + j′,27

ϑ(t, j) = Φ(t, j, t′, j′)ϑ(t′, j′). (B.4)

Hence, Φ is the state transition matrix for ϑ. Note that Φ is not necessarily smooth

at jumps.

Next, we define (t, j) 7→ P (t, j) as

P (t, j) := Pc(t, j) + Pd(t, j) + qmI (B.5)

for all (t, j) ∈ E, with

Pc(t, j) :=
J∑
i=j

∫ ti+1

max{t,ti}
Φ(s, i, t, j)⊤Q(s, i)Φ(s, i, t, j)ds

Pd(t, j) :=
J∑
i=j

Φ(ti+1, i, t, j)
⊤Q(ti+1, i)Φ(ti+1, i, t, j),

where tJ+1 := T , with J := supj E and T := suptE. Note that the term qmI in

(B.5) was chosen for simplicity – any positive definite matrix would suffice.

We first show that (3.10) holds. Since, for all (t, j) ∈ E, Pc(t, j) ≥ 0 and

Pd(t, j) ≥ 0, a lower bound on P in (B.5) is P (t, j) ≥ qmI for all (t, j) ∈ E.

Next, we develop an upper bound on P . Since, by Assumptions 3.1 and 3.2,

the conditions of Theorem 3.3 are satisfied, it follows from (3.6) and from the
27Since each solution ξ to H0 inherits the hybrid time domain E, it follows that dom ξ = E,

and thus Φ(t, j, t′, j′) is well defined for all (t, j), (t′, j′) ∈ dom ξ,
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equivalence between |ξ|A and |ϑ| that, for each solution ξ = (ϑ, τ, k) to H0 and

each (s, i), (t, j) ∈ dom ξ satisfying s+ i ≥ t+ j,

|ϑ(s, i)| ≤ κ0e
−λ0(s+i−t−j)|ϑ(t, j)|

with κ0 and λ0 from Theorem 3.3. By substituting (B.4) into the expression above,

we have that, for each (s, i), (t, j) ∈ dom ξ satisfying s+ i ≥ t+ j,

|Φ(s, i, t, j)ϑ(t, j)| ≤ κ0e
−λ0(s+i−t−j)|ϑ(t, j)|

which, if |ϑ(t, j)| ≠ 0, implies that

|Φ(s, i, t, j)ϑ(t, j)|/|ϑ(t, j)| ≤ κ0e
−λ0(s+i−t−j).

Since this inequality holds for any ϑ(t, j) ∈ Rp \{0}, it follows from the equivalence

between dom ξ and E that, for each (s, i), (t, j) ∈ E satisfying s+ i ≥ t+ j,

|Φ(s, i, t, j)| = sup
r∈Rp\{0}

|Φ(s, i, t, j)r|
|r|

≤ κ0e
−λ0(s+i−t−j).

Then, from the definitions of Pc and Pd below (B.5),

Pc(t, j) ≤ qM

∫ ∞

0

κ20e
−2λ0sdsI =

qMκ
2
0

2λ0
I

and

Pd(t, j) ≤ qM

∞∑
i=0

κ20e
−2λ0iI =

qMκ
2
0e

2λ0

e2λ0 − 1
I.

From the bounds above and the definition of P in (B.5), we conclude that (3.10)

holds with pm, pM in (3.11).
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Next, we show that (3.12) holds. We differentiate P during flows and use that,

for each (s, i) ∈ E and each j ∈ N and for almost all t ∈ Ij,

d

dt
Φ(s, i, t, j) = Φ(s, i, t, j)A(t, j).

This property follows from (B.1) and from the definition of Φ in (B.3). For

readability, we define

Π(s, i, t, j) := Φ(s, i, t, j)⊤Q(s, i)Φ(s, i, t, j). (B.6)

Using the Leibniz integral rule, we obtain that, for each j ∈ N and for almost all

t ∈ Ij,

d

dt
Pc(t, j) = A(t, j)⊤

( J∑
i=j

∫ ti+1

max{t,ti}
Π(s, i, t, j)ds

)

+

( J∑
i=j

∫ ti+1

max{t,ti}
Π(s, i, t, j)ds

)
A(t, j)−Q(t, j)

= A(t, j)⊤Pc(t, j) + Pc(t, j)A(t, j)−Q(t, j) (B.7)

and

d

dt
Pd(t, j) = A(t, j)⊤

( J∑
i=j

Π(ti+1, i, t, j)

)

+

( J∑
i=j

Π(ti+1, i, t, j)

)
A(t, j)

= A(t, j)⊤Pd(t, j) + Pd(t, j)A(t, j). (B.8)

Combining the expressions in (B.7) and (B.8), and using the definition of P in

(B.5), we have that, for each j ∈ N and for almost all t ∈ Ij,

d

dt
P (t, j) = A(t, j)⊤P (t, j) + P (t, j)A(t, j)

−Q(t, j)− 2qmA(t, j)

≤ A(t, j)⊤P (t, j) + P (t, j)A(t, j)−Q(t, j).
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The inequality follows from the fact that, by Assumption 3.1, A(t, j) ≥ 0 for all

(t, j) ∈ E. Hence, (3.12) holds.

To conclude the proof, we show that (3.13) holds. We use the property that,

for each (t, j), (s, i) ∈ Υ(E),

Φ(s, i, t, j + 1)(I −B(t, j)) = Φ(s, i, t, j).

This property follows from (B.2) and from the definition of Φ in (B.3). Then, for

each (t, j) ∈ Υ(E),

(I −B(t, j))⊤Pc(t, j + 1)(I −B(t, j))

=
J∑

i=j+1

∫ ti+1

max{t,ti}
Π(s, i, t, j)ds.

Since the value of ordinary time t is the same immediately before and after each

jump, it follows that, for each (t, j) ∈ Υ(E), max{t, tj} = t = tj+1. Hence, we

rewrite the expression above as

(I −B(t, j))⊤Pc(t, j + 1)(I −B(t, j))

=
J∑
i=j

∫ ti+1

max{t,ti}
Π(s, i, t, j)ds = Pc(t, j). (B.9)

Focusing now on Pd, for each (t, j) ∈ Υ(E),

(I −B(t, j))⊤Pd(t, j + 1)(I −B(t, j))− Pd(t, j)

= −Π(tj+1, j, t, j).

From (B.6) and the fact that t = tj+1 at each jump,

(I −B(t, j))⊤Pd(t, j+1)(I −B(t, j))−Pd(t, j)

=−Φ⊤(t, j, t, j)Q(t, j)Φ(t, j, t, j) =−Q(t, j).
(B.10)
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Using the definition of P in (B.5), it follows from (B.9) and (B.10) that, for each

(t, j) ∈ Υ(E),

(I −B(t, j))⊤P (t, j + 1)(I −B(t, j))− P (t, j)

= −Q(t, j)− qmB(t, j)(2I −B(t, j)) ≤ −Q(t, j),

where the inequality holds since, by Assumption 3.1, B(t, j) ≥ 0 and |B(t, j)| < 1

for all (t, j) ∈ Υ(E).

B.2 Proof of Theorem 3.5

Since, by Assumptions 3.1 and 3.2, the conditions of Lemma 3.4 are satisfied, it

follows that, given qM ≥ qm > 0 and a symmetric matrix function Q : E → Rp×p

satisfying (3.9), there exists a symmetric matrix function P : E → Rp×p satisfying

(3.10)–(3.13). Given such P , consider the Lyapunov function

V (ξ) := ϑ⊤P (τ, k)ϑ ∀ξ ∈ C ∪D.

From (3.10) and from the equivalence between |ϑ| and |ξ|A, we have that

pm|ξ|2A ≤ V (ξ) ≤ pM |ξ|2A ∀ξ ∈ C ∪D, (B.11)

with pm, pM as in (3.11). We first study the change in V during flows. Omitting

the (τ, k) arguments for readability, we have from (3.12) that, for all ξ ∈ C,

⟨∇V (ξ), F (ξ)⟩ ≤ −ϑ⊤Qϑ+ 2ϑ⊤Pνc.

We use that for any ϱ > 0, 2ϑ⊤Pνc ≤ ϱϑ⊤Pϑ+ϱ−1ν⊤c Pνc. Choosing ϱ = qm/(2pM ),

⟨∇V (ξ), F (ξ)⟩ ≤ − qm
2pM

V (ξ) +
2p2M
qm

|νc(τ, k)|2.
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Let ζ ∈ (0, 1). By adding and subtracting ζ qm
2pM

V (ξ) to the right-hand side of the

expression above, we conclude

⟨∇V (ξ), F (ξ)⟩ ≤ − qm
2pM

(1− ζ)V (ξ) (B.12)

∀ξ ∈ C : V (ξ) ≥ 4p3M
q2mζ

|νc(τ, k)|2.

Next, we study the change in V at jumps. For readability, we omit the (τ, k)

arguments and denote P (τ, k + 1) as P+. Then, we have from (3.13) that, for all

ξ ∈ D,

V (G(ξ))− V (ξ) ≤ −ϑ⊤Qϑ+ 2|ϑ⊤P+νd|+ ν⊤d P
+νd.

We use that for any ϱ > 0, 2|ϑ⊤P+νd| ≤ ϱϑ⊤P+ϑ + ϱ−1ν⊤d P
+νd. Choosing

ϱ = qm/(2pM),

V (G(ξ))−V (ξ)≤− qm
2pM

V (ξ)+

(
2p2M
qm

+pM

)
|νd(τ,k)|2.

Let ζ ∈ (0, 1). By adding and subtracting ζ qm
2pM

V (ξ) to the right-hand side of the

expression above, we conclude

V (G(ξ))− V (ξ) ≤ − qm
2pM

(1− ζ)V (ξ), (B.13)

∀ξ ∈ D : V (ξ) ≥ 2p2M
qmζ

(
2pM
qm

+ 1

)
|νd(τ, k)|2.

Note that the lower bound on V for which (B.13) holds is more restrictive than

the lower bound on V for which (B.12) holds. Using the function ν defined in

(3.15), we combine the expressions in (B.12) and (B.13) and obtain

⟨∇V (ξ), F (ξ)⟩ ≤− qm
2pM

(1− ζ)V (ξ) ∀ξ ∈ C ∩ S

V (G(ξ))− V (ξ) ≤ − qm
2pM

(1− ζ)V (ξ) ∀ξ ∈ D ∩ S,
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where S :=
{
ξ∈C∪D :V (ξ)≥ 2p2M

qmζ

(
2pM
qm

+1
)
|ν(τ,k)|2

}
. Then, for each solution ξ

to H, by integration using the bounds above, we have that, for all (t, j) ∈ dom ξ,

V (ξ(t, j)) ≤ exp

{(
− qm

2pM
(1− ζ)t+ ln

(
1− qm

2pM
(1− ζ)

)
j

)}
× V (ξ(0, 0)) +

2p2M
qmζ

(
2pM
qm

+ 1

)
|ν|(t,j).

Using (B.11), we conclude that (3.14) holds.

B.3 Proof of Theorem 3.6

Let ξ be a maximal solution to H. First, we upper bound (t, j) 7→ |ξ(t, j)|A for all

(t, j) ∈ dom ξ. Since, by Assumptions 3.1 and 3.2, the conditions of Theorem 3.5

are satisfied, it follows from (3.14) that

|ξ(t, j)|A ≤ β(|ξ(0, 0)|A, 0) + aρ|ν(0, 0)| =: ξM (B.14)

for all (t, j) ∈ dom ξ, where the second inequality follows from (3.16). Next, we

define δ 7→ c1(δ) ∈ R as

c1(δ) := −1

b
ln

(
δ/2

aρ|ν(0, 0)|

)
∀δ > 0. (B.15)

Let δ > 0 be such that there exists (t′, j′) ∈ dom ξ such that t′ + j′ ≥ c1(δ).

Then, it follows from (3.16) that for all (t, j) ∈ dom ξ satisfying t + j ≥ t′ + j′,

|d(t, j)| ≤ ae−b(t+j)|ν(0, 0)| ≤ ae−bc1(δ)|ν(0, 0)| = δ/(2ρ). Hence, for all (t, j) ∈

dom ξ satisfying t+ j ≥ t′ + j′, the supremum norm of (t, j) 7→ |d(t, j)| from (t′, j′)

to (t, j) is less than or equal to δ/(2ρ). Thus, from (3.14), for all (t, j) ∈ dom ξ

satisfying t+ j ≥ t′ + j′,

|ξ(t, j)|A ≤ β(ξM , t+ j − c1(δ)) + δ/2 (B.16)
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with ξM as in (B.14). Next, we define δ 7→ c2(δ) ∈ R as

c2(δ) := − 1

ω
ln

(
δ/2

β(ξM , 0)

)
∀δ > 0. (B.17)

Omitting the argument δ of c1 and c2 for readability, we have that, for all (t, j) ∈

dom ξ satisfying t+ j ≥ c2 + c1,

β(ξM , t+ j − c1) ≤ β(ξM , c2 + c1 − c1) = δ/2. (B.18)

By combining (B.16) and (B.18), it follows that, for each δ > 0 and each (t, j) ∈

dom ξ,

t+j≥max{c1(δ),c2(δ)+c1(δ)} =⇒ |ξ(t,j)|A≤ δ. (B.19)

Since c1 in (B.15) and c2 in (B.17) are continuous monotonically increasing functions

of δ with rge c1 = rge c2 = R, it follows that, for each (t, j) ∈ dom ξ, there exists a

unique δ > 0 such that t+ j = max{c1(δ), c2(δ) + c1(δ)}. For such δ, (B.19) holds.

Hence, we develop a bound for (t, j) 7→ |ξ(t, j)|A by bounding, for each (t, j) ∈

dom ξ, the corresponding value of δ for which t+ j = max{c1(δ), c2(δ) + c1(δ)}.

Given (t, j) ∈ dom ξ and δ > 0 satisfying t + j = max{c1(δ), c2(δ) + c1(δ)},

we consider two cases: max{c1(δ), c2(δ) + c1(δ)} = c1(δ) and max{c1(δ), c2(δ) +

c1(δ)} = c2(δ) + c1(δ).

1. If max{c1(δ), c2(δ) + c1(δ)} = c1(δ), then t+ j = c1(δ) which, from (B.15),

implies that δ = 2aρe−b(t+j)|ν(0, 0)|.

2. If max{c1(δ), c2(δ) + c1(δ)} = c2(δ) + c1(δ), then t+ j = c2(δ) + c1(δ). Since

c2(δ) + c1(δ) ≥ c1(δ), it follows that c2(δ) ≥ 0. Then, we consider two cases:

c1(δ) ≤ 0 and c1(δ) > 0.

a. If c1(δ) ≤ 0, then t + j ≤ c2(δ) which, from (B.17), implies that δ ≤

2e−ω(t+j)β(ξM , 0). Substituting ξM given in (B.14) yields

δ ≤ max
{
2pM
pm
, 2aρ

√
pM
pm

}
e−ω(t+j)(|ξ(0, 0)|A + |ν(0, 0)|).
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b. If c1(δ) > 0, we define σ := min{ω, b} and then

t+ j = c1(δ) + c2(δ)

≤ −1

σ

(
ln

(
δ/2

β(ξM ,0)

)
+ln

(
δ/2

aρ|ν(0,0)|

))

which implies δ ≤
√

4aρe−σ(t+j)β(ξM , 0)|ν(0, 0)|
)
. By substituting ξM in

(B.14) and completing the square yields δ≤max

{(
pM
pm

)3/4

,2a
√
ρ
(
pM
pm

)1/4
}

× e−
σ
2
(t+j) (|ξ(0, 0)|A + |ν(0, 0)|) .

By combining the bounds in the items above, and using that pM/pm > 1 and

ρ > 1, it follows from (B.19) that (3.17) holds.
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Appendix C

Proofs of Results for Chapter 4

C.1 Proof of Lemma 4.8

Consider the Lyapunov function

Vε(ξ) :=
1

2
ε⊤ε ∀ξ ∈ C̃g ∪ D̃g, (C.1)

with ε as in (4.11). Since θ is constant, we have from (4.15) that ε̇ = ż+ η̇− ψ̇θ =

−λcε. Thus, for all ξ ∈ C̃g, ⟨∇Vε(ξ), F̃g(ξ)⟩ = −2λcVε(ξ) ≤ 0. At jumps, since

θ is constant, we have from (4.15) that ε+ = z+ + η+ − ψ+θ = (1− λd)ε. Thus,

for all ξ ∈ D̃g, Vε(G̃g(ξ))− Vε(ξ) = −λd(2− λd)Vε(ξ) ≤ 0, where the inequality

holds since λd ∈ (0, 2). Then, for each solution ξ to H̃g, by integration using the

bounds above and the definition of Vε in (C.1), (4.17) holds.

C.2 Proof of Lemma 4.9

Consider the Lyapunov function

Vψ(ξ) :=
1

2
tr(ψ⊤ψ) =

1

2
|ψ|2F ∀ξ ∈ C̃g ∪ D̃g. (C.2)
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For all ξ ∈ C̃g, we have from (4.15) that ⟨∇Vψ(ξ), F̃g(ξ)⟩ = −2λcVψ(ξ) +

tr(ψ⊤ϕc(τ, k)). Applying the Cauchy-Schwarz inequality yields ⟨∇Vψ(ξ), F̃g(ξ)⟩ ≤

−2λcVψ(ξ) +
√

2Vψ(ξ)|ϕc(τ, k)|F. Hence,

⟨∇Vψ(ξ), F̃g(ξ)⟩ ≤ 0 (C.3)

∀ξ ∈ C̃g : Vψ(ξ) ≥
1

2λ2c
|ϕc(τ, k)|2F.

Let us now analyze the variation of Vψ at jumps. Omitting the (τ, k) arguments for

readability, for all ξ ∈ D̃g, we have from (4.15) that Vψ(G̃g(ξ))−Vψ(ξ) ≤ −λ̄dVψ(ξ)+

|tr(ψ⊤ϕd)|+ 1
2
tr(ϕ⊤

d ϕd), where the inequality follows since λd ∈ (0, 2), and we define

λ̄d := λd(2− λd) for readability. We apply the Cauchy-Schwarz inequality and use

that for any ϱ > 0,
√

tr(ψ⊤ψ)
√

tr(ϕ⊤
d ϕd) ≤ ϱtr(ψ⊤ψ) + ϱ−1tr(ϕ⊤

d ϕd). Choosing

ϱ = λ̄d/4 yields Vψ(G̃g(ξ))− Vψ(ξ) ≤ − λ̄d
2
Vψ(ξ) +

λ̄d+8
2λ̄d

|ϕd|2F. Hence,

Vψ(G̃g(ξ))− Vψ(ξ) ≤ 0

∀ξ ∈ D̃g : Vψ(ξ) ≥
λ̄d + 8

λ̄2d
|ϕd(τ, k)|2F.

(C.4)

Using the bounds in Assumption 4.6, we combine the expressions in (C.3) and

(C.4) to obtain

⟨∇Vψ(ξ), F̃g(ξ)⟩ ≤ 0 ∀ξ ∈ C̃g ∩ Sψ
Vψ(G̃g(ξ))− Vψ(ξ) ≤ 0 ∀ξ ∈ D̃g ∩ Sψ,

where
Sψ :=

{
ξ ∈ C̃g ∪ D̃g : Vψ(ξ) ≥ max

{
1

2λ2c
,
λ̄d + 8

λ̄2d

}
ϕ2
M

}
.

Then, for each solution ξ to H̃g from X0, by integration using the bounds above, we

conclude that, for all (t, j) ∈ dom ξ, Vψ(ξ(t, j)) ≤ Vψ(ξ(0, 0))+max
{
1/(2λ2c), (λ̄d + 8)/λ̄2d

}
ϕ2
M .

Using the definition of Vψ in (C.2), we obtain |ψ(t, j)| ≤ |ψ(t, j)|F ≤ |ψ(0, 0)|F +

max
{
1/λc,

√
2λ̄d + 16/λ̄d

}
ϕM ≤ ψ0+max

{
1/λc,

√
2λ̄d + 16/λ̄d

}
ϕM for all (t, j) ∈

dom ξ, where the last inequality follows from the fact that, since ξ(0, 0) ∈ X0,

|ψ(0, 0)|F ≤ ψ0. Hence, (4.18) holds.
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C.3 Proof of Lemma 4.12

Consider the Lyapunov function

Vε(ξ) :=
1

2
ε⊤ε ∀ξ ∈ Cν ∪Dν , (C.5)

with ε as in (4.11). Since θ is constant, we have from (4.11) that ε̇ = ż+ η̇− ψ̇θ =

−λcε + αc(τ, k), with αc as in (4.23b). Thus, for all ξ ∈ Cν , ⟨∇Vε(ξ), Fν(ξ)⟩ =

−2λcVε(ξ)− ε⊤αc(τ, k) ≤ −λcVε(ξ) + 2
λc
|αc(τ, k)|2. Then, for any ζ ∈ (0, 1),

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λc(1− ζ)Vε(ξ) (C.6)

∀ξ ∈ Cν : Vε(ξ) ≥
2

λ2cζ
|αc(τ, k)|2.

Let us now analyze the variation of Vε at jumps. Omitting the (τ, k) arguments for

readability, since θ is constant, we have from (4.11) that ε+ = z+ + η+ − ψ+θ =

(1 − λd)ε + αd(τ, k), with αd as in (4.23d). Thus, for all ξ ∈ Dν , Vε(Gν(ξ)) −

Vε(ξ) ≤ −λ̄dVε(ξ) + |ε⊤αd|+ 1
2
α⊤
d αd ≤ − λ̄d

2
Vε(ξ) +

λ̄d+8
2λ̄d

|αd(τ, k)|2, where we define

λ̄d := λd(2− λd) for readability. Then, for any ζ ∈ (0, 1),

Vε(Gν(ξ))− Vε(ξ) ≤ − λ̄d
2
(1− ζ)Vε(ξ),

∀ξ ∈ Dν : Vε(ξ) ≥
λ̄d + 8

λ̄2dζ
|αd(τ, k)|2.

(C.7)

Using the function dε defined in (4.22), we combine the expressions in (C.6) and

(C.7) and obtain that

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λc(1− ζ)Vε(ξ) ∀ξ ∈ Cν ∩ Sε

Vε(Gν(ξ))− Vε(ξ) ≤ − λ̄d
2
(1− ζ)Vε(ξ) ∀ξ ∈ Dν ∩ Sε,

where

Sε :=

{
ξ ∈ Cν ∪Dν : Vε(ξ) ≥ max

{
2

λ2cζ
,
λ̄d + 8

λ̄2dζ

}
|dε(τ, k)|2

}
.
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Then, for each solution ξ to Hν , by integration using the bounds above, and using

the definition of Vε in (C.5), we conclude that (4.24) holds.
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Appendix D

Data Recording Algorithms for

Hybrid ICL

In this section only, we make explicit the dependence of Zc in (5.21) and Zd in

(5.23) on the history stacks Zc and Zd by writing

Zc(Zc(t, j)) :=
Nc∑
ℓ=1

Zc,ℓ(t, j)
⊤Zc,ℓ(t, j)

Zd(Zd(t, j)) :=

Nd∑
ℓ=1

Zd,ℓ(t, j)
⊤Zd,ℓ(t, j)

for all (t, j) ∈ E, where Zc,ℓ (resp. Zd,ℓ) are the layers of Zc (resp. Zd) as in (5.8)

(resp. (5.15)). Furthermore, write Z in (5.62) as

Z(Zc(t, j), Zd(t, j)) := Zc(Zc(t, j)) + Zd(Zd(t, j)).

for all (t, j) ∈ E.
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Algorithm 2 Data Recording During Flows
Initialize: ℓ = 1

Require: (t, j) ∈ E and (t, j − 1) ̸∈ E

if ℓ ≤ Nc then ▷ fill empty elements
if |Φc(t, j)| > 0 then

Store Φc(t, j) in layer ℓ of Zc
Store Yc(t, j) in column ℓ of Yc
ℓ = ℓ+ 1

end if

else ▷ overwrite stored data
Rold = rank(Zc(Zc))

S1,old = λmin(Zc(Zc))

S2,old = λmin(Z(Zc, Zd))

Create empty vectors R, S1, S2 ∈ RNc and set q = 0

for r = 1 to Nc do

Q = Zc; Store Φc(t, j) in layer r of Q
Store rank(Zc(Q)) in row r of R
Store λmin(Zc(Q)) in row r of S1

Store λmin(Z(Q,Zd)) in row r of S2

end for

if maxS1 > S1,old then

Set q as the row index of maxS1

else if maxR > Rold then

Set q as the row index of maxR

else if maxS2 > S2,old then

Set q as the row index of maxS2

end if

if q ≥ 1 then

Store Φc(t, j) in layer q of Zc
Store Yc(t, j) in column q of Yc

end if

end if
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Algorithm 3 Data Recording At Jumps
Initialize: ℓ = 1

Require: (t, j), (t, j − 1) ∈ E

if ℓ ≤ Nd then ▷ fill empty elements
if |Φd(t, j)| > 0 then

Store Φd(t, j) in layer ℓ of Zd
Store Yd(t, j) in column ℓ of Yd
ℓ = ℓ+ 1

end if

else ▷ overwrite stored data
Rold = rank(Zd(Zd))

S1,old = λmin(Zd(Zd))/(ρd + λmax(Zd(Zd)))

S2,old = λmin(Z(Zc, Zd))

Create empty vectors R, S1, S2 ∈ RNd and set q = 0

for r = 1 to Nd do

Q = Zd; Store Φd(t, j) in layer r of Q
Store rank(Zd(Q)) in row r of R
Store λmin(Zd(Q))/(ρd + λmax(Zd(Q))) in row r of S1

Store λmin(Z(Zc, Q)) in row r of S2

end for

if maxS1 > S1,old then

Set q as the row index of maxS1

else if maxR > Rold then

Set q as the row index of maxR

else if maxS2 > S2,old then

Set q as the row index of maxS2

end if

if q ≥ 1 then

Store Φd(t, j) in layer q of Zd
Store Yd(t, j) in column q of Yd

end if

end if
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Appendix E

Proofs of Results for Chapter 6

E.1 Proof of Lemma 6.17

Let ξ be a solution to Hν from ξ(0, 0) ∈ X ν
0 , where X ν

0 is defined above (6.44).

We first analyze the evolution of the parameter estimation error θ̃ = θ − θ̂ during

flows. Since θ is constant, it follows from Fν in (6.41) that

d

dt
θ̃(t, j) = − d

dt
θ̂(t, j)

= −γψ(t, j)⊤(x(t, j) + ν(t) + η(t, j)− ψ(t, j)θ̂(t, j))

= −γψ(t, j)⊤ψ(t, j)θ̃(t, j)− γψ(t, j)⊤(ε(t, j) + ν(t))

for each j ∈ N and all t ∈ Ij, with ε as in (6.3). Since Φ(0, 0) = I and, by the

jump map Gν in (6.41), Φ is equal to the identity immediately after each jump, it

follows from Fν in (6.41) that, since Φ is the state transition matrix for (6.5),

θ̃(t, j) = Φ(t, j)θ̃(tj, j)− γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds

for each j ∈ N and all t ∈ Ij. Thus, (6.46) holds.
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Next, we analyze the evolution of θ̃ at jumps. Let (t, j) ∈ dom ξ be such that

(t, j + 1) ∈ dom ξ. Denoting m̃ = θ −m and omitting the argument ξ of K1 for

readability, it follows from Gν in (6.41) that

θ̃(t, j + 1) = θ −R(ξ(t, j))

= K1(θ̃(t, j)− m̃(t, j)) + m̃(t, j)

= K1

(
Φ(t, j)θ̃(tj, j)− γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds− m̃(t, j)

)
+ m̃(t, j)

= K1(Φ(t, j)− I)m̃(tj, j) + m̃(tj, j)−K1γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds

= −m̃(tj, j) + m̃(tj, j)−K1γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds

= −K1γ

∫ t

tj

Φ(s, j)ψ(s, j)⊤(ε(s, j) + ν(s))ds

where the second line follows from the definition of R in (6.7), the third line follows

from substituting (6.46), and the fourth line follows from the fact that, since

ξ(0, 0) ∈ X ν
0 , m̃ = θ̃ at the beginning of each interval of flow in ξ, and the fact

that m is constant during flows. Thus, (6.47) holds.

E.2 Proof of Lemma 6.19

Consider the Lyapunov function

Vε(ξ) :=
1

2
ε⊤ε ∀ξ ∈ Cν ∪Dν (E.1)

with ε as in (6.3). Since θ is constant, we have from the definition of Fν below

(6.40) that, during flows,

ε̇ = ẋ+ η̇ − ψ̇θ

= −λε+ f(x, u(τ))− f(x+ ν(τ), u(τ))− λν(τ).
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Hence, for all ξ ∈ Cν ,

⟨∇Vε(ξ), Fν(ξ)⟩ = −λε⊤ε+ ε⊤(f(x, u(τ))− f(x+ ν(τ), u(τ))− λν(τ))

≤ −λε⊤ε+ |ε|(Lx + λ)|ν(τ)|

≤ −2λVε(ξ) + |ε|χ(τ)

where the first inequality follows from Assumption 6.13, and we define χ(τ) :=

(Lx + λ)|ν(τ)| for readability. We use the fact that, via Young’s inequality, for any

ϱ > 0, |ε|χ(τ) ≤ ϱ|ε|2 + ϱ−1χ(τ)2 for all τ ≥ 0. Choosing ϱ = λ/2,

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λVε(ξ) +
2

λ
χ(τ)2.

Let ζ ∈ (0, 1). We rewrite the expression above as

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λ(1− ζ)Vε(ξ)− λζVε(ξ) +
2

λ
χ(τ)2.

Hence,

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λ(1− ζ)Vε(ξ) (E.2)

∀ξ ∈ Cν : Vε(ξ) ≥
2(Lx + λ)2

λ2ζ
|ν(τ)|2.

Let us now analyze the variation of Vε at jumps. Since θ is constant, we have from

the definition of Gν below (6.40) that, at jumps,

ε+ = x+ + η+ − ψ+θ = −ν(τ)

Hence, for all ξ ∈ Dν ,

Vε(Gν(ξ))− Vε(ξ)

= −1

2
ε⊤ε+

1

2
ν(τ)⊤ν(τ) = −Vε(ξ) +

1

2
|ν(τ)|2
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Let ζ ∈ (0, 1). We rewrite the expression above as

Vε(Gν(ξ))− Vε(ξ) = −(1− ζ)Vε(ξ)− ζVε(ξ) +
1

2
|ν(τ)|2

Hence,
Vε(Gν(ξ))− Vε(ξ) ≤ −(1− ζ)Vε(ξ),

∀ξ ∈ Dν : Vε(ξ) ≥
1

2ζ
|ν(τ)|2.

(E.3)

Combining the expressions in (E.2) and (E.3), we obtain

⟨∇Vε(ξ), Fν(ξ)⟩ ≤ −λ(1− ζ)Vε(ξ) ∀ξ ∈ Cν ∩ Sε
Vε(Gν(ξ))− Vε(ξ) ≤ −(1− ζ)Vε(ξ) ∀ξ ∈ Dν ∩ Sε

where

Sε :=

{
ξ ∈ Cν ∪Dν : Vε(ξ) ≥ max

{
2(Lx + λ)2

λ2ζ
,
1

2ζ

}
|ν(τ)|2

}
.

Then, for each solution ξ to Hν , by integration using the bounds above, we obtain

Vε(ξ(t, j)) ≤ exp {−λ(1− ζ)(t− t′) + ln (ζ) (j − j′)}Vε(ξ(t′, j′))

+ max

{
2(Lx + λ)2

λ2ζ
,
1

2ζ

}
∥ν∥2∞

for all (t, j), (t′, j′) ∈ dom ξ satisfying t+ j ≥ t′ + j′. Using the definition of Vε in

(E.1), we conclude that (6.49) holds.
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Appendix F

Proofs of Results for Chapter 7

F.1 Proof of Lemma 7.15

That the sets C and D are closed follows from the closesedness of the sets C and D

by Assumption 7.12. The flow map F is outersemicontinuous and locally bounded

relative to C since, by Assumption 7.12, F is outersemicontinuous and locally

bounded relative to C, and the flow map for τδ is globally Lipschitz. Outersemi-

continuity and boundedness of G relative to D holds since, by Assumption 7.12,

G is outersemicontinuous and locally bounded relative to D.

F.2 Proof of Lemma 7.16

We rely on Proposition 2.5. Let TC(ξ) be the tangent cone of the flow set C at

ξ ∈ X . For ξ ∈ C \D,

• If τδ = −1, then TC(ξ)∩F (ξ, θ) ̸= ∅ since Assumption 7.13 holds and τ̇δ = 0.

• If τδ ∈ (0,∆], then TC(ξ) ∩ F (ξ, θ) ̸= ∅ since Assumption 7.13 holds and

τ̇δ = −1.
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Hence, there exists a nontrivial solution to H from all points in C ∪D.

Next, we show that cases (b) and (c) in Proposition 2.5 cannot hold, and hence

only case (a) is true.

• Case (c) (solutions jumping outside C ∪D) We consider the following two

cases:

1. If ξ ∈ D−1 then we have from (7.17) and Assumption 7.13 that

G−1(ξ, θ) ∈ (C ∪D)× Rm × [0,∆] ⊂ C ∪D.

2. If ξ ∈ D0 then we have from (7.17) and Assumption 7.13 that G0(ξ, θ) ∈

(C ∪D)× Rm × {−1} ⊂ C ∪D.

Thus solutions to H cannot terminate by jumping outside C ∪D, and case

(c) of Proposition 2.5 cannot hold.

• (b) (finite escape time) We exclude this case by contradiction. Suppose that

there exists a maximal solution ξ to H with ξ(0, 0) ∈ C ∪ D that is not

complete. Let (T, J) = sup dom ξ and note that, since ξ is not complete,

T +J <∞. By definition of solutions, if (T, J) ∈ dom ξ, then (T, J) ∈ C∪D.

We consider the following two cases:

1. If (T, J) ∈ D, then from the first bullet of this list, ξ may be extended

by jumping.

2. (T, J) ∈ C \ D, then since Assumption 7.13 holds and the flow map

for τδ is globally Lipschitz, it follows that solutions will not escape

in finite-time due to evolution via the flow map, and thus ξ can be

extended via flow.

Hence, case (b) of Proposition 2.5 cannot hold.
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By the arguments above, we conclude that cases (b) and (c) in Proposition 2.5

cannot hold, and thus only case (a) is true.
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Appendix G

Code for Numerical Examples

The numerical examples in this dissertation were simulated in MATLAB using

the Hybrid Equations Toolbox version 3.0.0.76 [46]. The Hybrid Equations Toolbox

can be downloaded for free from

https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-e

quations-toolbox

Code for each of the numerical examples can be found at the following GitHub

repositories.

• Figures 1.1 and 4.1: https://github.com/HybridSystemsLab/HybridGD

_Motivation

• Figure 1.2: https://github.com/HybridSystemsLab/HybridICL_Motiva

tion

• Figure 4.2: https://github.com/HybridSystemsLab/HybridGD_Spacecr

aftBiasTorque

• Figures 5.1, 5.2, and 5.3: https://github.com/HybridSystemsLab/Hybr

idICL_BouncingBall
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• Figure 6.1: https://github.com/HybridSystemsLab/HybridFT_Nonline

arSystem

• Figures 1.3, 7.2, and 7.3: https://github.com/HybridSystemsLab/Appr

oximatelyKnownJumpTimes_BouncingBall
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