
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Ultra-Fast, Accurate, and Practical Anomaly Detection Algorithms for Time Series Data

Permalink
https://escholarship.org/uc/item/4j58s0v5

Author
Lu, Yue

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4j58s0v5
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Ultra-fast, Accurate, and Practical Anomaly Detection Algorithms for Time
Series Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yue Lu

December 2023

Dissertation Committee:
Dr. Eamonn Keogh, Chairperson
Dr. Tao Jiang
Dr. Tamar Shinar
Dr. Evangelos Papalexakis

Copyright by
Yue Lu

2023

The Dissertation of Yue Lu is approved:

 Committee Chairperson

University of California, Riverside

 iv

Acknowledgement

First and foremost, I would like to express my deep and sincere gratitude to Dr.

Eamonn Keogh for his guidance and mentorship over the past four years. Working with

him on research has been an enriching experience, allowing me to learn a great deal. I

am particularly grateful for the numerous opportunities and assistance he has provided

me throughout my academic journey. I feel incredibly fortunate and proud to be his

student.

I also wish to extend my heartfelt thanks to all my lab mates: Ryan Mercer,

Audrey Der, Renjie Wu, Seyedehmaryam Shahcheraghi, Sadaf Tafazoli, Thirumalai

Vinjamoor Akhil Srinivas, and Dr. Abdullah Mueen. As an international student, their

camaraderie and assistance have been a source of comfort and a sense of belonging in a

foreign land. Their support has been an invaluable part of my journey.

Lastly, but certainly not least, I am grateful to all the co-authors of my papers for

their invaluable contributions and assistance. Without their help and collective efforts,

my current achievements would not have been possible. I deeply appreciate their

willingness to invest their time and expertise in assisting me with my research work.

The text of this dissertation, in part (Chapter 2), is a reprint of the material as it

appears in "DAMP: accurate time series anomaly detection on trillions of datapoints and

ultra-fast arriving data streams" from Data Mining and Knowledge Discovery, pp.1-43,

2023. The co-author Dr. Eamonn Keogh, listed in that publication, directed and

supervised the research which forms the basis for this dissertation.

 v

I am profoundly appreciative of all the help and support I have received during

my research journey, and I owe my deepest thanks to everyone who has been part of it.

vi

ABSTRACT OF THE DISSERTATION

Ultra-fast, Accurate, and Practical Anomaly Detection Algorithms for Time Series Data

by

Yue Lu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2023

Dr. Eamonn Keogh, Chairperson

Time Series Anomaly Detection (TSAD) has emerged as an intensely active field in data

mining due to its profound implications in numerous real-world scenarios. While various

solutions are proposed each year, empirical evidence indicates that time series discord, a

simple distance-based technique, remains among the state-of-art methods. However,

conventional algorithms to compute time series discords face limitations: they are

restricted to batch cases and struggle with scalability beyond tens of thousands of

datapoints. To address these challenges, we introduce DAMP, a novel algorithm that

computes exact left-discords on fast-arriving streams, at up to 300,000 Hz using a

commodity desktop, making it possible to find time series discords in datasets with

trillions of datapoints for the first time.

However, time series discords have one other notable issue; the anomalies discovered

depend on the algorithm’s only input parameter, the subsequence length. To circumvent

vii

this limitation, we introduce MADRID, a Hyper-Anytime Algorithm engineered to

efficiently solve the all-discords problem. By using a novel computation ordering

strategy, MADRID can reduce the absolute time to compute all-discords, and allow users

to interact with their data in real-time. We demonstrate the utility of MADRID in various

domains and show that it allows us to find anomalies that would otherwise escape our

attention.

In our ongoing endeavor to make TSAD tasks practical and user-centric, we realize that

we cannot overlook the user’s perspective in defining an anomaly. We posit that without

accurately capturing the user’s knowledge and requirements, TSAD algorithms are likely

to suffer from an influx of false positives, thus hindering their adoption. Hence, we

present FIRE, a versatile framework that encapsulates the user’s requirements and

communicates them to the algorithms. FIRE’s flexibility allows for implementation

across different domains and algorithms. As we will show, it can make anomaly detection

faster, more accurate, and more useful.

In summary, our proposed algorithms, DAMP, MADRID, and FIRE, demonstrate robust

performance across diverse domains and provide a robust, versatile, and efficient solution

to time series anomaly detection.

viii

Table of Contents

1.	 Introduction	...	1	
1.1	 Scaling	Time	Series	Anomaly	Detection	to	Trillions	of	Datapoints	and	Ultra-Fast	Arriving	
Data	Streams	...	1	
1.2	 Discovering	Time	Series	Anomalies	of	All	Lengths	...	3	
1.3	 Encoding	Information	to	Improve	the	Efficiency	and	Accuracy	of	Time	Series	Anomaly	
Detection	...	5	

2.	 DAMP:	Accurate	Time	Series	Anomaly	Detection	on	Trillions	of	Datapoints	and	Ultra-fast	
Arriving	Data	Streams	...	6	
2.1	 Motivation	...	7	
2.1.1	Effectively	Online	Anomaly	Detection	...	11	

2.2	 Definitions	and	Background	..	13	
2.3	 Related	Work	..	16	
2.4	 DAMP	...	20	
2.4.1	Intuitive	Overview	of	DAMP	...	20	
2.4.2	Backward	Processing	..	22	
2.4.3	Forward	Processing	...	23	
2.4.4	Formal	Pseudocode	for	DAMP	...	24	
2.4.5	The	Time	and	Space	Complexity	of	DAMP	...	34	
2.4.6	DAMP	Variants	...	34	
2.4.6.1	X-Lag-Amnesic	DAMP	..	37	
2.4.6.2	Golden	DAMP	...	39	

2.4.7	Multidimensional	DAMP	..	46	
2.5	 Empirical	Evaluation	...	57	
2.5.1	Energy	Grid	Dataset	...	57	
2.5.2	Machining	Dataset	..	59	
2.5.3	Comparison	to	LSTM	Deep	Learning	..	61	

ix

2.5.4	Comparison	on	the	KDD	Cup	2021	datasets	...	62	
2.5.5	Threshold	Learning	for	DAMP	...	67	
2.5.6	Scalability	Comparisons	...	69	
2.5.7	Scalability	and	Stability	of	DAMP	...	71	

3.	 MADRID:	A	Hyper-Anytime	Algorithm	to	Find	Time	Series	Anomalies	of	all	Lengths	73	
3.1	 Motivation	and	Assumptions	...	74	
3.1.1	On	the	Difficulty	of	Finding	a	Compromise	Length	..	75	
3.1.2	On	the	Computational	Demands	of	“all-lengths”	...	77	

3.2	 Definitions	and	Notations	...	77	
3.2.1	A	Brief	Review	of	DAMP	...	79	
3.2.2	Measuring	Anytime	Algorithm	Efficiency	...	80	

3.3	 MADRID	..	82	
3.3.1	Setting	a	Strong	Baseline	for	Efficiency	...	83	
3.3.2	Making	Different	Length	Subsequences	Commensurate	...	89	

3.4	 Discussion	..	90	
3.4.1	MADRID	Solves	the	Core	TSAD	Problem	..	90	

3.5	 Experimental	Evaluation	...	93	
3.5.1	Revisiting	Melbourne	Dataset	..	94	
3.5.2	Revisiting	HEX/UCR	Anomaly	Dataset	..	96	
3.5.3	Scalability	..	100	
3.5.4	Case	Study	in	Industrial	Data	..	104	
3.5.5	Case	Study	in	PSML	...	105	

4.	 FIRE	makes	any	Time	Series	Anomaly	Detection	Algorithm	Faster,	More	Accurate	and	
more	Practical	..	107	
4.1	 Motivation	and	Observations	...	107	
4.1.1	Anomalies	can	be	subjective	...	111	

x

4.2	 Definitions	and	Discussion	..	112	
4.3	 Some	of	Values	in	FIRE	may	be	Assigned	by	Out-of-band	Knowledge	114	
4.4	 Case	Studies	...	116	

5.	 Conclusion	...	123	
6.	 Bibliography	...	126	

xi

List of Figures

Fig. 1 top) An eight-month long time series representing pedestrian traffic in a street in
Melbourne. center) The location of the top-1 discord, for subsequence lengths (m) from
eight to twenty-four hours. bottom) A zoom-in of the three discovered anomalies. 4	

Fig. 2 top) A 20-second run of an industrial motor. bottom) a zoom-in of the region
known to contain an anomaly, which is the length of (but not necessarily at the location
of) the red bar. Here m = 300. ... 8	

Fig. 3 top) A 20-second run of an industrial motor. bottom) The time series discord
discovered by the Left-MP correctly locates the anomaly. Note that higher values are
more anomalous. Here m = 300. ... 9	

Fig. 4 top) A sixty-second snippet of an ECG. bottom) The top-1 time series discord
correctly locates the anomaly. Here m = 150. ... 10	

Fig. 5 top) The MGAB dataset was built to defy visual discovery of anomalies. bottom)
The Top-1 time series discord correctly locates the anomaly. Here m = 40. 10	

Fig. 6 top to bottom) A snippet of ECG with two types of anomalous heartbeats indicated
by a ground truth vector. A full Matrix Profile can find the sole occurrence of V-tach, but
is confused by the multiple occurrences of Premature Ventricular Contractions (PVCs),
i.e., twin-freaks, and cannot find them. In contrast, the Left-MP flags the first occurrence
of a PVC and the first (and only) V-tach. Here m = 150. ... 15	

Fig. 7 A sketch of the DAMP algorithm in progress, processing the current subsequence.
top) The time series T. center) The Left-aMP, its values between 1 and i are computed,
its values after i have yet to be computed. bottom) the Pruned Vector indicates
subsequences that can be ignored without affecting the final result. 21	

Fig. 8 A visualization of the iterative doubling search policy used in lines 10-14 of Table
2. See also Fig. 7. .. 27	

Fig. 9 left) The theoretical lookahead tradeoff is based on two factors. As the lookahead
grows, the pruning rate becomes greater, but the cost of the similarity search increases.
right) The empirically measured effectiveness of forward processing (on random walks
of length 220) is indeed the sum of the two factors. Here m = 1,024. 31	

Fig. 10 bottom-to-top) 133_UCR_Anomaly_InternalBleeding14 dataset with an anomaly
highlighted in red. The top-1 Left-aMP computed with forward processing. The top-1
Left-aMP computed without forward processing. The Left-MP computed without
backward and forward processing. Both top-1 Left-aMPs have a secondary peak at
around 6500, which seems to indicate an anomaly, whereas in fact they are caused by
early abandon and are not meaningful. The top-1 Left-aMP computed with forward

xii

processing produces long constant runs that indicate that the algorithm admissibly
skipped those regions. Here m = 180. ... 32	

Fig. 11 Three variants of DAMP. top) Classic DAMP middle) X-Lag Amnesic DAMP
bottom) Golden DAMP. .. 36	

Fig. 12 top) A snippet of arterial blood pressure (ABP) data from a healthy patient
undergoing a tilt-table test. There are no biological anomalies in the dataset, but near the
end there is a short disconnection artifact (highlighted in green). middle) If we train
Telemanom on the prefix of the snippet, before the table was tilted, it has a hard time
adjusting to the post-tilt increased heartrate. It flags eight anomalies (highlighted in
yellow), all false positives, and fails to discover the single true anomaly. bottom) In
contrast, because DAMP is using all previously seen data, it can adjust to the changing
heartrate, and it strongly peaks at the location of the true anomaly. Here m = 33. 45	

Fig. 13 Multidimensional distance profile for position i. ... 47	

Fig. 14 Synthetic time series A and B. top) Synthetic dataset A and its corresponding one-
dimensional Left-aMP. bottom) Synthetic dataset B and its corresponding one-
dimensional Left-aMP. Here we set the window size to be the minimum positive period
of the sine wave, i.e., m = 100. ... 51	

Fig. 15 Left-aMP generated by two-dimensional DAMP. Here we set the window size to
be the minimum positive period of the sine wave, i.e., m = 100. 52	

Fig. 16 top) Three years of wind speed and relative humidity data for the New York area
from [38]. bottom) The two corresponding top 2D discord in this dataset. Here m = 1440
(one day in minutes). ... 54	

Fig. 17 Top discord for two-dimensional DAMP. Here m = 1440 (one day in minutes). 55	

Fig. 18 The scalability of 1D and 2D DAMP over increasingly large datasets. The cost to
double the number of dimensions considered is only slightly worse than double the time,
suggesting that multidimensional DAMP search inherits the efficiency of the 1D version.
Here m = 1440 (one day in minutes). .. 56	

Fig. 19 top) Two examples of time series from [38]. Most, like temperature are measured,
but Solar Zenith Angle is computed. bottom) The two corresponding top discords in these
datasets. Here m = 5760 (four days in minutes). .. 58	

Fig. 20 top) Vibration telemetry from a milling machine that was cutting cast iron, but
then overshot to start cutting the steel jaws of the vice. bottom) The Left-aMP discovers
the transition. Here m = 16. ... 60	

xiii

Fig. 21 An excerpt from the 243_UCR_Anomaly_tilt12744mtable dataset. The task is to
exploit information in the training split, to detect the most significant anomaly in the test
split. When requested, DAMP can instantaneously begin to monitor. However, NORMA
(and all other TSAD algorithm), must have a period of inaction or “linger” while they
build their models. Here m = 276. .. 65	

Fig. 22 top) A sample random walk with an anomaly embedded. left) The distribution of
top-1 discord scores for the two cases of interest. right) The confusion matrix for this
task. Here m = 1024. ... 68	

Fig. 23 The CPU time vs time series length for various discord discovery algorithms.
Note the Y-axis is in log scale. Note that DAMPeffectively online means that the forward
processing algorithm introduced in Table 3 was used. Here m = 94. 69	

Fig. 24 (Most of this figure is taken from [4] with permission, only the green elements are
new). The scalability of various algorithms on increasing large subsets of a long ECG
trace. All algorithms except DAMP are limited to the first 2M data points by [4]. Note
that the Y-axis is logarithmic. Here m = 94. ... 70	

Fig. 25 The time taken for DAMP to process a random walk time series of length 230 (just
over one billion). For context, we have labeled the size of two concrete tasks, processing
a month of ECGs and twenty-five years of sensor data. Here m =128. 71	

Fig. 26 Two examples to show that anomaly detection can be hypersensitive to the
sliding window length. In (A) we can correctly find a subtle anomaly when m = 49 but
increasing m by just one causes the discord score to plunge. In (B) we can correctly find a
subtle anomaly when m = 49 but decreasing m by just one causes the discord score to
plunge to zero. ... 76	

Fig. 27 An illustration of a multi-length discord table M. To ground it in a familiar
setting, it is loosely based on Fig. 1. ... 78	

Fig. 28 An illustration of the performance of five hypothetical anytime algorithms. The
point where they intersect the red dashed line allows us to rank them with the proposed
hierarchy. .. 82	

Fig. 29 An initialized multi-length discord table M. Compare to Fig. 27. Here the user
chose minL = 8, maxL = 24 and S = 1. .. 83	

Fig. 30 top) The performance of four algorithms tasked with computing M for a time
series of length 8,192, with minL = 128, maxL = 768, and step size S = 1. As pure brute
force visually dominates, in (bottom) we show a zoom-in on the other three approaches.
... 85	

xiv

Fig. 31 MADRID’s multi-length discord table M after the first step of initialization. As a
follow-up to Fig. 29, here minL = 8, maxL = 24 and S = 1. .. 87	

Fig. 32 MADRID’s multi-length discord table M after the second step of initialization.
As a follow-up to Fig. 31, here minL = 8, maxL = 24 and S = 1. 88	

Fig. 33 top) Two slightly noisy sine waves. bottom) We measured the distance between
the prefixes of these sine waves of every length from 128 to 1024. The unnormalized
distance grows, the length normalized distance plunges, but the proposed “divide by the
square root of m” normalized distance remains almost constant. 90	

Fig. 34 top) A trivially simple anomaly detection problem is unsolvable for any algorithm
that considers a sliding window length m < 54. bottom) However, MADRID with minL =
10, maxL = 100 and S = 1 easily solves this. .. 92	

Fig. 35 The futility of the “one-size-fits-all” unspoken assumption of TSAD is obvious if
we consider its analogue in image processing. Any face processing algorithm would
clearly find the images at the left or right extremely challenging. 93	

Fig. 36 top) About eight years of pedestrian traffic. bottom). MADRID with minL = 4,
maxL = 48 and step size S = 1, finds eight distinct anomalies, the top-3 are shown. 95	

Fig. 37 The 3-dimensional multi-length discordance table of dataset UCR-202, where
minL = 10, maxL = 96, and step size S = 1. .. 97	

Fig. 38 top) The beginning and end of the test datasets. bottom) The three anomalies
embedded into the synthetic data are visually obvious with human inspection. 101	

Fig. 39 Anytime convergence plots for MADRID on 100K (left) and 1,000K (center),
datapoints. In both cases, minL = 64, maxL = 256 and step size S = 1. right) Overlaying
MADRID’s convergence plot onto the nomenclature template shown in Fig. 28 suggests
that MADRID is a Hyper-Anytime Algorithm. .. 102	

Fig. 40 The classic “mean-plus-three-standard-deviations” rule correctly flags anomalies
shown in Fig. 38. ... 102	

Fig. 41 top) A 27-minute-long O_w_BHR_voltage trace from HRSS. bottom) MADRID
with minL = 64, maxL = 256 and step size S = 1, finds four distinct anomalies, all true
positives. ... 104	

Fig. 42 top) Three years of relative humidity data for Northern California from PSML.
bottom) MADRID with minL = 720, maxL = 10,080 and step size S = 720, finds four
distinct anomalies. ... 106	

xv

Fig. 43 Three independent time series that apparently have strong anomalies in the yellow
highlighted regions. As we will show in this chapter, these should not be considered
anomalies. ... 108	

Fig. 44 top to bottom) The ABP time series shown in Fig. 43. The Matrix Profile ADA
strongly peaks at the highlighted disconnection artifact. We can use FIRE to suppress the
MP’s selection of this region as the top anomaly. FIRE is programed to ignore regions
around low cardinality subsequences. ... 117	

Fig. 45 top to bottom) The ECG time series shown in Fig. 43. The apparent anomaly here
is simply caused by the sensor receiving a ‘bump’. Because we have an accelerometer on
the ECG sensor, we can suppress any apparent anomalies that happen during sudden
movements of the sensor. .. 117	

Fig. 46 top to bottom) Three years of electrical load data for Northern Texas from [71].
The first OMIT occurs on May 12, 2020 and is a dropout. The second OMIT occurs on
December 12, 2020 and is a linear region caused by linear interpolation. 118	

Fig. 47 top to bottom) Three years of electrical load data for Northern California from
[71]. The FIRE vector generated using Table 10’s algorithm. One of the top-10 discords
reported by FIREDAMP in this dataset. Here the window size is set to 2,160 (one and a
half days in minutes). .. 120	

Fig. 48 top to bottom) Three years of electrical load data for Northern California from
[71]. The FIRE vector generated using Table 10’s algorithm. One of the top-10 discords
reported by FIREDAMP in this dataset. Here the window size is set to 2,160 (one and a
half days in minutes). .. 121	

xvi

List of Tables

Table 1: The Main DAMP Algorithm .. 24	

Table 2: DAMP Backward Processing Algorithm .. 26	

Table 3: DAMP Forward Processing Algorithm .. 29	

Table 4: Pseudo code snippet for X-Lag-Amnesic DAMP .. 39	

Table 5: The Main Golden DAMP Algorithm .. 42	

Table 6: Golden DAMP Backward Processing Algorithm ... 43	

Table 7: Multidimensional DAMP Backward Processing Algorithm 50	

Table 8: Multidimensional DAMP Forward Processing Algorithm 51	

Table 9: Accuracy and Time for Eight TSAD Methods ... 63	

Table 10: Pseudo code snippet for creating FIRE vectors to suppress OMITS in PSML
dataset ... 119	

1

1. Introduction

Time Series Anomaly Detection (TSAD) is one of the most important and widely used

tools investigated by the data mining community [2][14][21]. There has been an

explosion of interest in Anomaly Detection Algorithms (ADA) in both the commercial

and academic settings in recent years. Although various ADAs are proposed each year,

the majority of existing ADAs are primarily confined to solving simple problems. If

noise, trends, concept drifts, and other factors exist within the time series data, these

algorithms can easily be disturbed, consequently leading to false positives. Moreover, due

to the complexity of their design, most ADAs require significant time and/or memory for

computing, making it difficult for them to be extended to datasets exceeding one hundred

thousand data points. We believe that some simple and straightforward approaches could

enhance the speed, scalability, and accuracy of TSAD tasks. In this regard, in Chapters 2

to 4 of this thesis, we propose several TSAD methods aimed at ameliorating the

deficiencies in speed, scalability, and accuracy identified in existing methodologies. The

motivations underlying each of these methods are detailed in the subsequent three

sections. Finally, Chapter 5 concludes the thesis and outlines potential directions for

future work.

1.1 Scaling Time Series Anomaly Detection to Trillions of Datapoints and Ultra-
Fast Arriving Data Streams

TSAD methods can be applied offline to investigate archival data, or online, to monitor

critical situations where real-time human intervention is possible. For example, by

summoning a doctor or shutting down a machine that may be about to damage itself.

2

Given its importance, it is unsurprising that this area attracts a lot of attention from the

community, with dozens of algorithms proposed each year. However, in spite of the

plethora of algorithms in the literature, there is increasing evidence that a twenty-year-old

distance-based method called time series discords is still competitive [21]. Discords are

competitive with deep learning methods in spite (or perhaps because) of their great

simplicity. Time series discords (sometimes referred to in the literature by the name of

the algorithm that is used to discover them, i.e., HOT SAX [49], Matrix Profile [65],

SCRIMP [67], etc.), are the subsequences that have the greatest distance from their

nearest neighbor in the training data. In most contexts, “training data” refers to all data

encountered thus far. This makes discords particularly robust to concept drift, as newly

ingested data instantly becomes part of the training data.

At least one hundred papers have reported using discords to solve problems in diverse

domains, and discords seem to be the only time series anomaly detection technique to

produce “superhuman” results (see discussion in Section 2.1). However, discords have

three important limitations that have limited their broader adoption:

• If an anomalous pattern appears at least twice in the time series, then each occurrence

will be the other nearest neighbor, and thus fail to optimize the discord definition.

This is informally called the twin-freak problem.

• Discords are only defined for the batch case, but anomaly detection is most actionable

in online settings.

3

• In spite of extensive progress in speeding up discord discovery, datasets with millions

of datapoints remain intractable.

To address all the above issues, we will introduce the DAMP algorithm in Chapter 2 to

rapidly and accurately identify anomalies in data streams exceeding the level of millions.

1.2 Discovering Time Series Anomalies of All Lengths

Although as outlined in Chapter 2, by only considering nearest neighbors to the left of the

subsequence being examined, DAMP makes time series discords invariant to the so-

called twin-freak problem and allows them to achieve state-of-the-art (SOTA)

performance on several benchmark datasets including the Hexagon ML/UCR Anomaly

Detection datasets [48][65]. However, time series discords have noted one weakness, the

anomalies discovered depend on the algorithm’s only input parameter, the subsequence

length. Numerous researchers have pointed this out, for example [42] notes: “setting the

right window size is crucial…failure to provide an optimal window size may incur

monetary damage.”

To illustrate the issue, consider Fig. 1 in which we searched for time series discords in an

eight-month long time series of pedestrian traffic on Bourke Street in Melbourne

Australia. Rather than rely on a single subsequence length m, we simply placed the

DAMP algorithm [65] in a loop and tested all discord lengths from eight hours to twenty-

four hours.

4

Fig. 1 top) An eight-month long time series representing pedestrian traffic in a street in Melbourne1.
center) The location of the top-1 discord, for subsequence lengths (m) from eight to twenty-four hours.
bottom) A zoom-in of the three discovered anomalies.

The results clearly depend on the subsequence length chosen. Had we chosen only eight

hours, we would have only discovered the tragic car attack January 20th, had we chosen

ten hours, we would have discovered the sensor battery change on June 12th, and had we

chosen twelve hours (or longer), we would have only discovered Xmas day.

This example exposes an additional issue that is not well understood. We might have

imagined that if we somehow had access to out-of-band data and knew that our anomalies

should last only a certain time, we could set our subsequence length to that value.

However, that is not the case; the manner in which an anomaly manifests itself within a

time series is not only a function of the anomaly’s intrinsic length, but also depends on

the rest of the data. For example, the battery change anomaly is two hours long, yet it

reveals itself best at a scale of ten hours; the small blip is only anomalous when seen in

1 This figure, and several others in this work suffer from the small scale of reproduction allowed by this format. We
encourage the interested reader to visit [51] for large scale images and additional context.

8

24

0

4000

0

Battery
change

4000

0 70hours0 70hours0 70hours

Xmas Day Car
Attack

May 18th 2016 Jan 25th 2017Bourke Street Mall (North) Pedestrian Traffic

of

 P
ed

es
tri

an
s

Su
bs

eq
ue

nc
e

Le
ng

th
 (h

ou
rs

)

5

the context of the normal data that surrounds it. The obvious way to bypass this issue is to

find anomalies at every possible length, however this seems to be an untenably slow idea.

In Chapter 3, we will present MADRID, a novel anytime algorithm that can quickly

identify anomalies of all lengths.

1.3 Encoding Information to Improve the Efficiency and Accuracy of Time Series
Anomaly Detection

Perhaps surprisingly, while there are now over a thousand papers on anomaly detection,

few of them attempt to define “anomaly” other than to echo the boilerplate definition of

“Something that deviates from what is normal”.

We argue that it is necessary to augment this definition to “Something that deviates from

what is normal, given the users implicit and explicit knowledge of the domain”. This is a

subtle but critical distinction. We believe that the anomaly detection task is not to predict

something about the data per se. The anomaly detection task should be to predict the

user’s discernment of the data. This change of focus offers two challenges: How can we

model such information, and how can we communicate it to the algorithm? Note that the

user’s discernment of the data can be subjective, and depend on the domain and the user’s

role (engineer, manager, insurance underwriter etc.)

In Chapter 4, we will introduce FIRE, a novel framework for annotating and interpreting

time series data, to enhance the efficiency and accuracy of time series anomaly detection

tasks.

6

2. DAMP: Accurate Time Series Anomaly Detection on Trillions of Datapoints

and Ultra-fast Arriving Data Streams

In this chapter, we introduce DAMP (Discord Aware Matrix Profile), a novel algorithm

which solves all the problems listed in Section 1.1 and has the following useful

properties.

• DAMP is not confused by repeated anomalies (twin-freaks), it simply flags the first

occurrence. If desired, other occurrences can then be found by simple similarity

searches. These other occurrences can be clustered, average, or otherwise summarized

as appropriate.

• DAMP is defined for both online and offline cases. Moreover, DAMP has an

extraordinary fast throughput, exceeding 300,000 Hz on standard hardware.

• As the previous bullet point suggests, DAMP is extraordinarily scalable. For the first

time, this allows us to consider datasets with millions, billions and even trillions of

datapoints.

The rest of this chapter is organized as follows. In Section 2.1 we motivate the use of

discords as the time series anomaly definition most worthy of acceleration and

generalization. We also concretely define a new term, effectively online, that allows

DAMP to tackle ultra-fast real-time data sources found in industry and science. Section

2.2 contains the necessary definition and notation required, and Section 2.3 discusses

related work, before we introduce our algorithm in Section 2.4. In Section 2.5 we conduct

the most ambitious empirical evaluation of time series anomaly detection ever attempted.

7

2.1 Motivation

Before we continue, it is necessary to answer the following question. Why do we attempt

to fix discord’s scalability issues instead of inventing a new algorithm, or making one of

the many dozens of more recently proposed methods more scalable?

The reason is that there is increasing evidence that discords remain competitive with the

state-of-the-art2[21]. Among the hundreds of time series anomaly detection algorithms

proposed in the last two decades, only time series discords could claim to have been

adopted by more than one hundred independent teams to actually solve a real-world

problem. For example, a group of climatologists at France’s UMR Espace-Dev laboratory

uses discords to find anomalies in climate data [17]. A team of researchers at NASA’s

JLP lab have applied discord discovery to planetary data, noting that “(discords) detect

Saturn bow shock transitions well” [9]. A group based in Halmstad University created a

tool called IUSE for applying discord discovery to industrial datasets. One of their first

applications was to a City Bus Fleet dataset, where they noted that the discords

discovered did indeed have an objective meaning “The discords in this case primarily

consisted of significant drops of pressure … likely correspond to the drainage of the wet

tank.” [24]. Finally, a team of researchers at the National Renewable Energy Laboratory,

in Golden, Colorado, have used discords to find anomalies in a large building portfolio,

showing that they could discover anomalies with diverse causes caused by both “internal

(occupant behavior) and external factors (weather conditions).” [28]. There are several

2 Note that some papers misattribute the success of their anomaly detection to the Matrix Profile or to HOTSAX, but
these are simple different algorithms to compute time series discords.

8

other time series anomaly detection algorithms that are well cited [14][30], but most of

the citations are from rival methods comparing these algorithms on a handful of

benchmarks [35]. It is not clear that anyone actually uses these algorithms to solve real-

world problems, as a detailed literature search does not produce any examples.

In addition, time series discords seem to be the only anomaly detection algorithm that has

been demonstrated to perform at superhuman levels [21]. All other algorithms that we are

aware of have shown to discover anomalies that are also readily apparent to the human

eye. For example, a recent paper proposed a LSTMs network for anomaly detection and

evaluated it on data retrieved from Mars [14]. However, the only anomaly shown in the

paper shows a visually obvious anomaly where a repeated periodic pattern suddenly

transitions to a literal flatline. Of course, this does not mean that such algorithms have no

value, as human attention is very expensive. However, the literature also offers some

examples where discords have found anomalies that are very subtle, defying the

possibility of human discovery. For example, in [21], their Figure 8 and Figure 9 both

seem to meet that criterion. For completeness, we will show some additional examples.

Consider Fig. 2, which shows the vibration of an industrial motor [7][23].

Fig. 2 top) A 20-second run of an industrial motor. bottom) a zoom-in of the region known to contain an
anomaly, which is the length of (but not necessarily at the location of) the red bar. Here m = 300.

0 1000 2000 3000

The anomaly is the length of this red bar Zoom-in

0 100,000 200,000

2 hp Reliance Electric motor, fan-end bearing (20 seconds)

9

The data comes for a motor running under no load, however for a brief instant a load was

applied and immediately removed, creating an anomaly. It is clearly fruitless to visually

search for the anomaly in the full dataset, however, even if we zoom into a local region

containing the anomaly, it is not clear where it is. In Fig. 3 we task time series discords

with detecting the anomaly.

Fig. 3 top) A 20-second run of an industrial motor. bottom) The time series discord discovered by the Left-
MP correctly locates the anomaly. Note that higher values are more anomalous. Here m = 300.

Beyond the accuracy of discords prediction here, note that this dataset contains 244,189

datapoints, representing about 20 seconds of wall clock time recorded at 12,000 Hz. We

are not aware of any anomaly detection algorithm in the literature that could process this

dataset in real-time, however, as we will show, DAMP can.

We also consider a dataset that is dramatically different to the bearing data. In Fig. 4 we

show the Left-MP for an ECG which we know contains a single anomaly beat, a

ventricular contraction.

0
100,000 200,000

0

5

10

15

20 Left-MP top-1 discord

2 hp Reliance Electric motor, fan-end bearing (20 seconds)

Warm up, no
prediction made

Ground Truth

10

Fig. 4 top) A sixty-second snippet of an ECG. bottom) The top-1 time series discord correctly locates the
anomaly. Here m = 150.

This dataset has a wandering baseline which is diagnostically meaningless, but which

distracts the human eye (and many algorithms). However, once again time series discords

have no problem detecting the anomaly, which noted cardiologist Dr. Gregory Mason

says is on the cusp of his ability to detect by eye.

Finally, in Fig. 5 we consider a dataset that was explicitly created with the sole purpose

of having anomalies that are “difficult to spot for the human eye” [31]. Here again

discords are superhuman.

Fig. 5 top) The MGAB dataset was built to defy visual discovery of anomalies. bottom) The Top-1 time
series discord correctly locates the anomaly. Here m = 40.

In summary, both the recent literature and our experiments suggest that time series

discords are at least competitive with recently proposed algorithms, and thus worthy of

accelerating to allow discords to be discovered in settings that are currently infeasible.

1 150000

5

10

15

ECG (43-year-old male)

Warm up, no
prediction made

Left-MP top-1 discord

Ground Truth

Sixty Seconds

0 100,000

85,000 87,000 89,000

0

5

10

15
Mackey-Glass anomaly benchmark (MGAB)

Anomaly

Zoom-in

Anomaly

11

2.1.1 Effectively Online Anomaly Detection

Let us take a moment to make clear what the terms batch and online mean. If we are

tasked with finding the top-k anomalies in a batch setting, we have random access to all

data. For example, we could initially define April 1st as an anomaly, but when we later

see data from say the summer months, we can change our mind, revisit April 1st, and

reduce its anomaly score. For that matter, we could revisit April 1st, and increase its

anomaly score. In contrast, in the online case we see the data incrementally arrive and

must make an irrevocable decision as to the appropriate anomaly score. When recording

this score, we do have access to all the data previously seen, but clearly we cannot see

any future data. For some time series anomaly detection algorithms this distinction is

important, and the algorithm can give different answers in the two settings. However, as

we will show, the algorithm we propose in this chapter will produce the exact same

answers in either setting.

Now that the terms batch and online are clear, it is helpful to introduce a new term,

effectively online. A true online algorithm reports the instant it detects a monitored

condition. However, let us imagine the following scenario: After a difficult cardiac

surgery, a doctor decides she wants to monitor her patient for anomalous heartbeats,

which may be an indication of postoperative Cardiac Tamponade (CT). If the patient does

have an ECG suggestive of CT symptoms, the doctor has perhaps eight to ten minutes to

confirm CT with an ultrasound and perform pericardiocentesis, a procedure done to

remove fluid that has built up in the sac around the heart [18]. Clearly, in this situation an

algorithm that reported an anomalous heartbeat ten minutes after its appearance would be

12

unacceptable. However, an algorithm that reported an anomalous heartbeat at most two

seconds after it appears would be just as good as a true online algorithm. As such we

propose the following definition:

Definition 1: An algorithm is said to be effectively online, if the lag in reporting a

condition has little or no impact on the actionability of the reported information.

Note that the scale of the permissible lag is problem dependent. In the above scenario,

two seconds made sense to the cardiologists we consulted. In an ultrafast arriving data

stream, the permissible lag may be as little as 0.1 seconds, and for telemetry arriving

from devices with a slow cycle rate, say the daily periodicity of pedestrian traffic, the

permissible lag may be minutes to hours.

We suspect that many algorithms that are referred to as online in the literature, are really

effectively online. The above discussion allows us to frame our contribution. Our

proposed algorithm DAMP is parameterized by a single variable called lookahead.

• If lookahead is zero, DAMP is a fast true online algorithm.

• If lookahead is allowed to be arbitrarily large, DAMP is an ultrafast batch

algorithm. We should not be surprised that a batch algorithm can be much faster, as

it has access to all the information at once.

And now the raison d'etre for our digression:

• Even if lookahead is a small (but non-zero) number, DAMP is effectively online

algorithm, yet it retains most or all the speedup of the arbitrarily large lookahead

algorithm.

13

As we will show, DAMP allows for the discovery of time series discords in ultra-fast-

moving streams for the first time.

2.2 Definitions and Background

We begin by defining the key terms used in this chapter. The data we work with is a time

series.

Definition 2: A time series T is a sequence of real-valued numbers !! : "	 =

	[!", !#, . . . , !$] where n is the length of T.

Typically, we consider only local subsequences of the times series.

Definition 3: A subsequence "!,& of a time series T is a continuous subset of data points

from T of length) starting at position i. "!,& 	= 	 [!! , !!'", . . . , !!'&("] , 1	 ≤ 	,	 ≤

	-	–)	 + 	1.

The length of the subsequence is typically set by the user based on domain knowledge.

For example, for most human actions, ½ second may be appropriate, but for classifying

transient stars, three days may be appropriate.

If we take any subsequence "!,& as a query, calculate its distance from all subsequences

in the time series T and store the distances in an array in order, we get a distance profile.

Definition 4: Distance profile 0! for time series T refers to an ordered array of

Euclidean distances between the query subsequence "!,& and all subsequences in time

series T. Formally, 0! = 1!,", 1!,#, … , 1!,$(&'",where 1!,) 	(1 ≤ ,, 4 ≤ - −) + 1) is the

Euclidean distance between "!,& and "),&.

For distance profile 0! of query "!,&, the ,*+position represents the distance between the

query and itself, so the value must be 0. The values before and after position , are also

14

close to 0, because the corresponding subsequences have overlap with query. Our

algorithm neglects these matches of the query and itself, and instead focuses on non-self

match.

Definition 5: Non-Self Match: Given a time series T containing a subsequence ",,& of

length m starting at position p and a matching subsequence "-,& starting at q, ",,& is a

non-self match to "-,& with distance 1,,- if |	8	– 	9| 	≥).

With the definition of non-self match, we can define time series discords.

Definition 6: Time Series Discord: Given a time series T, the subsequence ".,& of

length m beginning at position d is said to be a discord of T if the distance between ".,&

and its nearest non-self match is maximum. That is, ∀ subsequences "/,& of T, non-self

matching set MD of ".,& , and non-self matching set MC of "/,& ,),-(1.,0!) 	>

),-(1/,0").

Although there are many ways to locate time series discord, the most effective one

recently is the matrix profile [39].

Definition 7: A matrix profile = of a time series T is a vector storing the z-normalized

Euclidean distance between each subsequence and its nearest non-self match. Formally,

= = [),-(0"),),-(0#), … ,),-(0$(&'")] , where 0! (1 ≤ , ≤ - −) + 1) is the

distance profile of query "!,& in time series T. It is easy to see that the highest value of

the matrix profile is the time series discord.

As we will explain below, we can compute a special matrix profile which only looks to

the past. We call it the left matrix profile.

15

Definition 8: A left matrix profile =1 of a time series T is a vector that stores the z-

normalized Euclidean distance between each subsequence and the nearest non-self

match appearing before that subsequence. Formally, given a query subsequence "!,&, let

0!1 = 1!,", 1!,#, … , 1!,!(&'" be a special distance profile that records only the distance

between the query subsequence and all subsequences that occur before the query, then

we have =1 = [),-(0"1),),-(0#1), … ,),-(0$(&'"1)].

Note that the term discord in this chapter refers to the highest value on the left matrix

profile =1, i.e., left-discord. For the sake of simplicity, we will refer to left-discord as

discord where there is no ambiguity. It is clear that in the online case, we must use the

Left-MP. However, here we argue that even in the offline case we should use it. To see

why, consider the example shown in Fig. 6.

Fig. 6 top to bottom) A snippet of ECG with two types of anomalous heartbeats indicated by a ground truth
vector. A full Matrix Profile can find the sole occurrence of V-tach, but is confused by the multiple
occurrences of Premature Ventricular Contractions (PVCs), i.e., twin-freaks, and cannot find them. In
contrast, the Left-MP flags the first occurrence of a PVC and the first (and only) V-tach. Here m = 150.

Here left-discords solve the twin-freak problem by reporting the first occurrence of the

anomaly (later occurrences, if of interest, can be trivially found with subsequence

search/monitoring).

0

10

0 12000

0

10

mit_long_term_ecg_14157

Ground Truth V-tach
PVC
Normal

94 seconds

Left-MP

Full-MP
False negative caused
by “twin freaks”

True positive, the first
occurrence of a PVC

True positive: Ventricular
tachycardia (V-tach)

KEY

True positive: Ventricular
tachycardia (V-tach)

16

2.3 Related Work

In recent years, there has been a surge of research interest in the topic of time series

anomaly detection. For a detailed review, we refer the interested reader to

[1][2][4][14][21][31] and the references therein. In addition to the work listed in Section

2.1, we have also compiled a longer annotated biography at [10] that explicitly discusses

discords.

There are two important points that we have gathered from our survey of the literature.

The first is due mostly to a single paper [35], that forcefully suggests some of the

apparent success of recently proposed algorithms may be questionable, due to severe

problems with the commonly used benchmarks in this area.

Beyond four issues that [35] notes with benchmarks datasets, we wish to add another

issue. Most of these benchmarks are minuscule. We suspect that the small datasets that

the community has focused on are at least partly due to the poor scalability of current

approaches. For example, a recent paper examines time series of length 140,256 and

notes “Given the length of the dataset, we sub-sample it by a factor 10.” [1]. This paper is

by a research group at Amazon, who presumably does not lack for computational

resources. For reference, it takes our proposed algorithm 0.9 seconds on the full-sized

version of this dataset [10] on a commodity desktop.

In addition to the problems caused by using poor quality benchmarks, a recent paper

suggests yet another compelling reason why much of the recent apparent success of

recent research efforts should be viewed with caution. Paper [12] notes that “most recent

approaches employ an inadequate evaluation criterion leading to an inflated F1 score.

17

(however) a rudimentary Random Guess method can outperform state-of-the-art

detectors in terms of this popular but faulty evaluation criterion.”.

A recent SIGKDD workshop keynote makes a related point about evaluation [16].

Suppose you have a year of data monitoring an industrial boiler, and it happens that on

Christmas, the boiler leaks all day, causing an anomaly. One might imagine the best way

to evaluate an algorithm on the task of discovering this anomaly would be a binary score,

success/failure. However, many papers essentially consider each datapoint as if it was an

independent event. Suppose they predicted all of Xmas day, and the first minute of the

next day was an anomaly. They would report an F1 score of 0.9997. The four significant

decimal digits imply some extraordinarily careful and significant measurement was

made. However, with a little introspection will allow the diligent reader to see that this

precision is unwarranted and misleading. The TSAD literature is replete with

impressively large tables of numbers with four (and sometimes, five or six!) digits, that

simply give the illusion of progress and rigor.

It is somewhat surprising that so few papers in the literature discuss time complexity.

This can possibly also be attributed to issues with the benchmark datasets. For example,

by far the two most discussed datasets in the literature are Yahoo and NY-Taxi (NAB),

with lengths of 1,200 and 10,321 respectively. Even the most sluggish of algorithms are

unlikely to be taxed by such tiny datasets. If building a particular highly-quality anomaly

detection algorithm had a high one-time cost, then we might be willing to throw whatever

computational resources are needed at the task, and then deploy the model in perpetuity.

However, the situation is worse than that. In virtually any domain, the model will become

18

stale due to concept drift, and need to be periodically retrained, either on a regular

schedule (say once a week), or when the model detects that it has drifted from the newly

arriving data.

Recently a handful of papers have recognized that the slow training times for deep

learning anomaly detectors can be an issue. For example, [32] notes that “fast training

times (are needed) to cope with the requirement of frequently re-updating the learning

model.”. These authors then went on to introduce a “light-weight” anomaly detection

system that can complete training in as little as twenty minutes (using GPUs) in a dataset

of size 274,627. This kind of time frame may work for some domains, for example the

three-year-long energy grid/weather data we consider in Section 2.5.1 Energy Grid

Dataset. We surely could afford a few hours to build the model, and perhaps a few hours

at the end of each month to retrain it. However, consider the machining dataset we

examine in Section 2.5.2 Machining Dataset. Here we see the first thirty seconds of data,

and then must instantly have a working model. While DAMP can do this, it is not clear

that any other anomaly detector in the literature can. One might imagine that other

methods could potentially look only at say, the first twenty seconds of data, and use the

remaining ten seconds to build their model. However, this would require most of the

algorithms in the literature to be accelerated by several orders of magnitude.

Finally, the reader may wonder why we do not test on the large collection of datasets

during [26] in our empirical section. There are two reasons. First, the data collection

includes datasets that [35] notes are deeply flawed, including mislabeled ground truth. If

a significant fraction of the datasets have mislabeled ground truth, as Wu and Keogh

19

point out [35], and which the authors of [26] have acknowledged [25], it is hard to have

any faith in evaluation on the overall data collection. For at least some of the datasets in

this collection, including NAB-NYTaxi, NASA-MSL (trace G-1), YAHOO (A1-real46),

it is known that at least 50% of the ground truth labels are incorrect [35]. With that

amount of mislabeling, it would be fruitless to claim that one algorithm is superior to

another because it was say 6.3% better than another. In any case, testing on small

synthetic or unrealistic datasets seems pointless when we can test on large real datasets,

as we do in this chapter.

In Table 9 we will compare to several rival methods. We refer the interested reader to the

original papers for more detailed descriptions, but below we present a terse description of

these rival methods.

An Auto-Encoder (AE) is a neural network architecture consisting of a combined

encoder and decoder [2]. The encoder maps the input windows into a set of latent

variables, while the decoder maps the latent variables back into the input space as a

reconstruction. The difference between the input window and its reconstruction is the

reconstruction error. The AE learns to minimize this error. The anomaly score of a

window is the corresponding reconstruction error. A window with a high score is

considered abnormal.

The Unsupervised Anomaly Detection (USAD) [2] extends the AE concept and

constructs two AEs sharing the same encoder. The architecture is driven in two phases. In

the first phase, the two AEs learn to reproduce the normal windows. In the second phase,

an adversarial training teaches the first AE to fool the second one, while the second one

20

learns to recognize the data coming from the input or the reconstructed by the first AE.

The anomaly score is the difference between the input data and the data reconstructed by

the concatenated AEs.

Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) uses an LSTM

to model temporal dependency [27], whereas the VAE projects the input data and its

temporal dependencies into a latent space. During decoding, the latent space

representation allows to estimate the output distribution. An anomaly is detected when

the log-likelihood of the current data is below a threshold. LSTM-VAE’s have the

capacity to identify anomalies that span over multiple time scales [27].

Telemanom is a Long Short-Term Memory (LSTMs) networks, a type of Recurrent

Neural Network (RNN) [14]. Once model predictions are generated, we offer a

nonparametric, dynamic, and unsupervised thresholding approach for evaluating

residuals.

NORMA can be thought of as a variant of a Golden Batch Matrix Profile, which uses a

clustering preprocessing step to compact the training data into a small, therefore quickly

searched, reference dataset [4].

SCRIMP is a fast method to compute the classic Matrix Profile.

2.4 DAMP

2.4.1 Intuitive Overview of DAMP

Before giving a formal explanation of our algorithm, we will first provide an intuitive

description of how it works. We will start with discussing the batch case and then further

21

generalize to the (minor) steps required for the online case. As shown in Fig. 7, it will be

helpful to explain the algorithm mid-execution, as it is processing the subsequence Ti.

Fig. 7 A sketch of the DAMP algorithm in progress, processing the current subsequence. top) The time
series T. center) The Left-aMP, its values between 1 and i are computed, its values after i have yet to be
computed. bottom) the Pruned Vector indicates subsequences that can be ignored without affecting the final
result.

Fig. 7.top shows the time series T being processed, the green bar indicating the current

subsequence being processed at location i. Note that we have created two parallel vectors

to accompany T. The Left-aMP is the vector we are computing. It is an approximation to

the true Left-MP, with the following properties:

• If location j is the true left-discord for the time series T1:j, then the discord value at

aMPj is not an approximation, but the true left-discord value.

• Otherwise, the approximation at aMPj is strictly bounded: MPj ≤ aMPj ≤ max(MP1:j)

These properties tell us that we can take any prefix of T (inducing the special case of the

entire length of T), and the left-discord reported by the Left-aMP will be the same as that

reported by the Left-MP.

In Fig. 7.bottom we show the other parallel vector that accompanies T and the Left-aMPj.

The Pruned Vector tells us which subsequences could not be the left-discord, and hence

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T
Left-aMP

Pruned Vector

Ti
Best-So-Far = 2.2

Current Subsequence

Ti:i+m-1

22

do not need to be processed. At initialization time, this vector is set to all ‘1’s, indicating

that all subsequences must be processed. However, as we process the data, we may be

able to “peek into the future” and cheaply determine locations that could not be a discord,

and flip their corresponding bits to ‘0’.

At the ith location, the processing can be divided into two independent steps, backward

processing and forward processing.

2.4.2 Backward Processing

The main task of backward processing is to discover whether the current subsequence

Ti:i+m-1 is the left-discord, for which the naïve way would be to compute its nearest

neighbor distance to any subsequences in T1:i.

However, note that in general we may not need to find the nearest neighbor, any neighbor

whose distance is less than the Best-So-Far will disqualify the current subsequence from

being the discord. This suggests an early abandoning scheme that we can optimize with

the two following observations:

• Instead of incrementally searching from the beginning, we should expect to be able to

abandon earlier if we search backwards from the ith location. The reason this is true is

that the patterns can drift over time. In other words, the pattern most likely to be

similar to the current subsequences is generally the subsequence just before the current

subsequence3.

3 This observation is true for heartbeats, gaits, machine cycles etc. One exception is for events tied to a cultural calendar. For example,
for taxi demand or electrical power demand, the most similar day to any given day, is not the previous day, but the same day one
week earlier.

23

• The MASS algorithm is optimized for queries with powers of two length. For

example, using the machine that performed all the experiments in this chapter, we find

that a MASS search with a query of length 512, takes 0.025 seconds for a time series

of length 524,288 (i.e., 219). But if we delete a single point to get a 524,287, it takes

0.177 seconds. This suggests we should attempt to construct a backward search

algorithm that is comprised mostly or solely of such pinteger length queries.

These two observations suggest an algorithm. We should look backwards at the prefix

that is the next power-of-two longer than m. If that yields a neighbor that is less than the

Best-So-Far (BSF) we are done, we simply place that value in aMPi as our

approximation. If that was not the case, we double the length of the prefix to two times

the next power-of-two longer than m, and try again. We continue to iteratively double

until we find a nearest neighbor distance that is less than the Best-So-Far, or until our

prefix includes the full span back to the beginning of T. In that latter case, we use the

nearest neighbor distance to update both the Best-So-Far and aMPi.

2.4.3 Forward Processing

In the forward processing step, we attempt to discover and prune subsequences that

cannot be left-discord. If we take the current subsequence and compare it to the suffix of

T, that is, to Ti+m:n (the search must start at i+m to avoid self-match), any subsequence

that is less than the Best-So-Far distance to the current subsequence can be pruned (have

its corresponding bit in the Pruned Vector set to ‘0’).

24

In principle, we could do this search from i+m to the end. However, the two observations

in the previous section still apply. While the next few cycles may be similar and yield a

good pruning rate, over time the patterns tend to drift and the pruning rate falls. The

combination of a long expensive similarity search and the lower pruning rate means that

the forward step may not “pay” for itself. So instead, we can look forward a limited

amount, say four times the next power-of-two longer than m.

After completing both the backward and forward processing, the algorithm increments

the current pointer from i to the next index which has a ‘1’ in the Pruned Vector, and

repeats the two processing steps.

2.4.4 Formal Pseudocode for DAMP

Here we give the pseudocode shown in Table 1 to formalize the intuition of the previous

sections. For ease of explanation, we first consider only the batch case.

Table 1: The Main DAMP Algorithm
Function: DAMP(T, m, spIndex)
Input: T: Time series

m: Subsequence length
spIndex: Location of split point between training and test data

Output: aMP: Left approximate Matrix Profile
1
2
3
4
5
6
7
8
9
10
11

PV = ones(1,length(T)-m+1)
aMP = zeros(1,length(T)-m+1)
BSF = 0 // The current best discord score
// Scan all subsequences in the test data
For i = spIndex to length(T) – m + 1

If NOT PVi // Skip the pruned subsequence
aMPi = aMPi-1

Else
[aMPi, BSF] = BackwardProcessing(T, m, i, BSF)
PV = ForwardProcessing(T, m, i, BSF, PV)

return aMP

25

In lines 1 and 2 we initialize two vectors that are essentially the same length as the time

series T, but are actually of length n-m+1. These are PV (Pruned Vector), a Boolean

vector that indicates which indices can be dismissed without evaluation, and aMP, which

is the approximate Matrix Profile we wish to compute. The current highest discord score

encountered during execution is stored in the BSF, initialized to zero in line 3.

In lines 5 to 10, we iterate through all subsequences of length m in the test data. In each

iteration, we first determine whether the current subsequence was pruned, i.e., whether it

is marked as 0 in the PV (line 6). If yes, we assign the discord score of the previous

subsequence to the current subsequence and then skip to the next subsequence (line 7). If

the current subsequence was not pruned, we must process it. In line 9 we call

BackwardProcessing to calculate the discord score of the current subsequence. In

particular, if the backward search finds a value higher than the current highest discord

score (BSF), BackwardProcessing returns the exact score of the current subsequence and

updates the BSF; otherwise, BackwardProcessing returns an approximate score of the

current subsequence and does not update the BSF. Note that while this score is

approximate, it is bounded between the true score and the current BSF.

At this point we have completely processed the current location. However, before we

increment our loop index to process the next location, we take a brief digression. We will

use the current subsequence to look “forward”, finding any subsequences ahead of it that

have a distance to it that is less than the current BSF. It is easy to see that any such

subsequences could not be a better discord than the current BSF, as when they do

BackwardProcessing, they would find the current subsequences to be close enough to

26

disqualify them. This observation allows us to prune these “near-enough” neighbors of

the current subsequence. Concretely, line 10 invokes ForwardProcessing to find out the

subsequences that can be pruned within a specific range in the future (if any), and their

corresponding vectors are marked as 0 and recorded in the Pruned Vector PV. Finally in

line 11 we return the left approximate Matrix Profile computed by the DAMP algorithm.

Table 1 provides a high-level overview of how the DAMP algorithm works. Let us now

“zoom in” and look at the two core subroutines of DAMP, BackwardProcessing and

ForwardProcessing. We begin with Table 2 to explain backward processing, whose

intuition we laid out in Section 2.4.2 Backward Processing.

Table 2: DAMP Backward Processing Algorithm
Function: [aMPi, BSF] = BackwardProcessing(T, m, i, BSF)
Input: T: Time series

m: Subsequence length
i: Index of current query
BSF: Highest discord score so far

Output: aMPi: Discord value at position i
BSF: Updated highest discord score so far

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

aMPi = inf
prefix = 2^nextpow2(m) // Initial length of prefix
While aMPi ≥ BSF

If the search reaches the beginning of the time series
aMPi = min(MASS(T1:i,Ti:i+m-1))
If aMPi > BSF // Update the current best discord score
 BSF = aMPi
break

Else
aMPi = min(MASS(Ti-prefix+1:i,Ti:i+m-1))
If aMPi < BSF
 break // Stop searching
Else // Double the length of prefix
 prefix = 2*prefix

return aMPi, BSF

In line 1 we begin by initializing the discord score of the current query at position i to

positive infinity. Then in line 2 we specify the initial length of the backward processing

27

and store it in the variable prefix. We employ 2^nextpow2(m) to define this initial length.

Specifically, when we feed the subsequence length m into 2^nextpow2(m), it will return

the smallest power of 2 greater than m. Recall that we are doing this because MASS is

significantly faster when the length of the time series is a power of two. Since we are

going to do a “piecewise” search of the time series that precedes the subsequence being

processed, it makes sense to make these pieces be a power of two in length.

The loop in lines 3-14 evaluates the exact or approximate discord score of the current

query. Here we adopt the idea of “iterative doubling”. At the beginning, we find the

nearest neighbor of the current query in the initial length prefix and save the distance

between the current query and the nearest neighbor into aMPi (line 10). If this distance is

lower than the current highest discord score, this means that we find a nearest neighbor

for the current query within prefix that is more similar than the current discord and its

nearest neighbor, so it cannot be a discord, and the iteration terminates (lines 11-12).

However, if the distance between the query and its nearest neighbor aMPi is higher than

the current highest discord score BSF, we double the length of the backward processing

and continue the search in the next iteration (lines 13-14). This idea is shown in Fig. 8.

Fig. 8 A visualization of the iterative doubling search policy used in lines 10-14 of Table 2. See also Fig. 7.

0.9 0.8 1.1 1.2 - - - -
T

Left-aMP

Ti

Current Subsequence

Ti:i+m-1

Look back this far, to try to find a
subsequence that will disqualify Current
Subsequence from being the Discord…

If not found, double the length and look back this far..

If not found, double the length and look back this far..

28

We keep iteratively doubling until we compute a score smaller than the BSF within the

range prefix, or search to the beginning of the time series T. If the search gets to the

beginning of the time series, we first find the nearest neighbor of the query from position

1 to i and store the distance to the nearest neighbor in aMPi (lines 4-5). After that, we will

check whether aMPi is still larger than BSF (line 6). If yes, this means that we cannot find

a nearest neighbor that is similar enough to the current query, and clearly, the current

query is the new discord. In this case, we will update the highest discord score and break

out of the loop (lines 7-8). Finally, line 15 returns the result of backward processing, the

score of the current query aMPi, and the current highest discord value BSF.

Note that if the search reaches the very beginning of the time series, our computation is

performed in the global region (from 1 to i), not in the local region prefix, in which case

the discord score of the current query aMPi is an exact value; whereas if our score is

computed in the local region prefix, aMPi is an approximate value, but bounded between

the true score and the current BSF.

If we just use the backward processing step (line 9 of Table 1), then we have a fast online

algorithm to compute the aMP. However, the use of forward processing as outlined in

Table 3 can speed up the processing by at least a further order of magnitude. This is the

algorithm whose intuition was laid out in Section 2.4.3 Forward Processing. The purpose

of forward processing is admissible pruning. That is, if there is evidence that some future

subsequences cannot be a discord, we will ignore these subsequences and no longer

perform expensive processing on them. To achieve this in line 1 we need to define

lookahead, the range of how many subsequences to peek ahead.

29

Table 3: DAMP Forward Processing Algorithm

Function: PV = ForwardProcessing(T, m, i, BSF, PV)
Input: T: Time series

m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
PV: Pruned Vector

Output: PV: Updated Pruned Vector
1
2
3
4
5
6
7
8
9
10

lookahead = 2^nextpow2(m) // Length to “peek” ahead
If the search does not reach the end of the time series

start = i + m
end = min(start + lookahead – 1,length(T))

 "#$ = MASS(Tstart:end,Ti:i+m-1) // Definition 4
indices = all indices in "#$ with values less than BSF
indices = indices + start – 1 // Convert indices on distance
 //profile to indices on time series

PVindices = 0 // Update the Pruned Vector
return PV

Here we also use 2^nextpow2(m), i.e., the smallest power of 2 larger than the

subsequence length m. After that, we need to determine whether the forward search

exceeds the range of T to ensure that our processing is safe and there is no out-of-bounds

problem (line 2). Line 3 defines the start position of the forward search, namely start. To

avoid self-matching, we set the start to the position after the end of the query, that is,

i+m. Line 4 explicitly defines the end position of the forward search, and since the length

of our forward search is lookahead, or n. We can easily conclude that end is start +

lookahead - 1. In line 5, we calculate the distance profile 0!2 by calling the MASS

function.

The distance profile 0!2 here is slightly different from the one described in Definition 4

because it is computed under a specific range. That is, 0!2 stores the distance between the

current query and all subsequences in the range of lookahead (from start to end) instead

of the distance between the current query and all subsequences of T. Once the distance

30

profile 0!2 is constructed, we can use it for pruning. Suppose there exist subsequences in

the future that are more similar to the current query than the discord to its nearest

neighbor. In that case, these subsequences cannot be a discord, so we can prune them.

Therefore, we can use the current highest discord score BSF as a criterion to find all the

indices in the distance profile with values lower than the BSF (line 6). Since the indices

on the distance profile start at 1 and are not aligned with the true indices of the time

series, we need an additional step in line 7 to convert the indices on the distance profile to

the true indices of the subsequence. After line 7 we get a list of indices for the

subsequences that can be pruned out. The Pruned Vector values at the corresponding

positions specified in the list indices are set to 0 (line 9), indicating that when later

iterations process the subsequences listed in indices we can simply skip them. At last, line

10 returns the updated Pruned Vector PV.

The forward processing algorithm has exactly one parameter, the lookahead length. How

should we set this? In Fig. 9.left we sketch out the tradeoffs involved. A longer lookahead

can prune more subsequences, but this comes at the cost of more expensive similarity

searches. The good news is that the speedup is dramatic, that the sweet spot is early

(given us effectively online detection), and that the exact value of the lookahead

parameter is not too critical. All datasets we examined exhibit this “U-shaped” behavior,

although the similarity searches. As Fig. 9.right shows, this intuition is borne out by

experiment. The height of the base of the “U” can be lower (smooth and highly periodic

data) or higher.

31

Fig. 9 left) The theoretical lookahead tradeoff is based on two factors. As the lookahead grows, the pruning
rate becomes greater, but the cost of the similarity search increases. right) The empirically measured
effectiveness of forward processing (on random walks of length 220) is indeed the sum of the two factors.
Here m = 1,024.

Finally, this is a good place to mention an important caveat about interpreting a Left-aMP

that is computed using forward processing. Failure to understand this caveat may lead a

user to think the aMP is indicating an anomaly where there is none. Consider Fig. 10

which compares the results of Brute Force and DAMP with and without forward

processing for a dataset from the KDD Cup 2021.

Increasingly long lookahead ®

Ti
m

e

The time required for
MASS grows almost
linearly (actually nlog2(n))

Time saved by pruning
initially grows quickly, but
then suffers from
diminishing returns.

Increasingly long lookahead ®

Ti
m

e
(s

ec
on

ds
)

0

800

0 1024(multiples of 1024)

The empirical curve
matches the sum of two
theoretical curves.

32

Fig. 10 bottom-to-top) UCR-133 dataset with an anomaly highlighted in red. The top-1 Left-aMP
computed with forward processing. The top-1 Left-aMP computed without forward processing. The Left-
MP computed without backward and forward processing. Both top-1 Left-aMPs have a secondary peak at
around 6500, which seems to indicate an anomaly, whereas in fact they are caused by early abandon and
are not meaningful. The top-1 Left-aMP computed with forward processing produces long constant runs
that indicate that the algorithm admissibly skipped those regions. Here m = 180.

As can be seen from Fig. 10, the discord scores calculated by different approaches look

different for the same data set. So how should we interpret these results?

First, the Brute Force illustrated by the blue curve is identical to the one shown in Fig. 23.

It does not have forward and backward processing, and for each iteration, it searches

from the current position to the beginning of the time series. Therefore, each value on

Left-MP generated by Brute Force is an exact value. That is, for any of the peaks on Left-

MP, there could be physical meaning that we can interpret.

By contrast, when using both DAMP algorithms to search for the top-k left-discords, the

k highest peaks do correctly show the location and strength (the height of the peaks) of

the top-k left-discords (in Fig. 10, k = 1). However, the remaining k + 1 peaks should not

be assumed to indicate slightly smaller anomalies. This is because both DAMP methods

perform the iterative doubling backward search, yielding either approximate or exact

0 1000 2000 3000 4000 5000 6000 7000 8000

133_UCR_Anomaly_InternalBleeding14

DAMP: Forward processing

DAMP: No forward processing

Brute Force

All three approaches are only guaranteed to
agree at the top-K (here, K = 1) locations

Long “runs” of admissibly
pruned calculations

High approximate values
caused by early abandon

33

discord scores. Whether the score is exact or approximate depends on two cases, which

we detailed in Section 2.4.4 Formal Pseudocode for DAMP and will not repeat here. In

brief, for most iterations of DAMP, the backward processing is terminated before it

reaches the beginning of the time series, thus producing approximate scores on Left-aMP

that are larger than the exact scores. Therefore, most peaks on Left-aMP except for the

top-k ones are probably "false positives" due to this early abandoning scheme. For

example, the Left-aMPs represented by the orange and green curves in the figure both

have a secondary peak at around 6,500, which seems to indicate an anomaly at that

location; however, by comparing it to the Left-MP results shown by the blue curve, it is

clear that the scores at around 6,500 are actually below average. Thus, these secondary

peaks cannot be interpreted as anomalies.

Further, we can observe a lot of piecewise constant regions on the Left-aMP generated by

DAMP using forward processing, i.e., the green curve. They simply indicate regions that

were pruned by encountering a matching subsequence that was below the current Best-

So-Far and had no practical meaning. For example, at the end of the green curve, there

are two long constant plateaus, one of which has a relatively high value. As we can see

by comparing that region to the corresponding region in the topmost blue curve, we

should not assume that there are any anomalies in that region.

Again, to summarize: The top-k peaks of the top-k Left-aMP should be interpreted as

having the correct values of top-k discords of T, but the remaining values of the top-k

Left-aMP have no meaningful interpretation.

34

2.4.5 The Time and Space Complexity of DAMP

Since all computation results are stored in a one-dimensional vector of size n, the space

complexity of DAMP is just the size of the original data, O(n). The worst-case time

complexity is O(nlogn) per datapoint ingested, the time required to do a full similarity

search with MASS [19]. However, empirically, on diverse real-world datasets, more than

99.999% of the times we enter the loop in line 3 of Table 2 we will break out in the first

iteration (line 12), making the algorithm effectively O(mlogm) per datapoint ingested,

and linear in the time series length. Fig. 25 shows this linear assumption strongly holds

up to at least n = 230.

2.4.6 DAMP Variants

There are more general cases that can be easily handled by modifying the basic DAMP,

for example:

• The algorithm as explained in Table 1 is a batch algorithm. To make it an effectively

online algorithm, we simply must reduce the size of the lookahead (Table 3, line 1) to

the largest delay we are willing to accept (including possibly zero delay).

• The algorithm as explained in Table 1 computes the Left-aMP, however we can modify

it to compute the classic Full-aMP. If the backward processing step reaches the

beginning of the time series, instead of updating the BSF, we do the same type of

iterative doubling search, but forward from the current index (not to be confused with

forward pruning search in Table 3). We have made this code available at [10], but we

do not consider it further here, due to page limits.

35

• It may be useful to limit how far back the backward processing can look, essentially

redefining anomalies as “the subsequence with the maximum distance to any of the X

subsequences before it”. We call this variant the X-Lag-Amnesic DAMP.

• Instead of searching an ever-growing amount of previously seen data in the

BackwardProcessing step, we can search a fixed pool of explicit training data. For

example, an engineer could curate a dataset that contains all the allowable behaviors for

a manufacturing process (i.e., the “Golden Batch”).

There are several other useful variants that we have considered, and we suspect the

community will quickly exploit the scalability of the basic DAMP algorithm to invent

further variants.

Below we give more details about the two useful variants of DAMP, X-Lag-Amnesic

DAMP and Golden DAMP mentioned above. To help the reader better understand how

these two variants work, let us start with the most basic variant, namely, Classic DAMP.

36

Fig. 11 Three variants of DAMP. top) Classic DAMP middle) X-Lag Amnesic DAMP bottom) Golden
DAMP.

The Classic DAMP algorithm illustrated in Fig. 11.top was already discussed in Sections

2.4.1 Intuitive Overview of DAMP and 2.4.4 Formal Pseudocode for DAMP. It is worth

noting here that for Classic DAMP, all data collected before the current time T1:i-1 are our

training data by default, and our backward search is executed on this progressively

growing training data. This means that to calculate the discord score of the current

subsequence Ti:i+m-1, Classic DAMP searches all the way forward from position i by the

iterative doubling process, and, in the worst case, all the way to the beginning of the time

series, i.e., T1:i. Therefore, as we process more and more data points over time, our

backward search may also require more and more time.

As we shall see in our experimental section, empirically this is not a problem on the

dozens of datasets we consider. Nevertheless, X-Lag-Amnesic DAMP and Golden

0.6 0.7 1.0 1.1 - - - -

1 1 1 1 1 0 0 1

T

X-Lag-Amnesic Left-aMP

Pruned Vector

Ti
Ti:i+m-1

1.0 0.8

1 1

X-Lag-Amnesic DAMP: Look
back only as far as the ith – X
data point (if necessary)

0.5

1
X

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T

Left-aMP

Pruned Vector

Ti
Ti:i+m-1

Classic DAMP: Look all
the way to beginning
of time (if necessary) 0.0 0.0

1 1

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T

Golden Left-aMP

Pruned Vector

Ti
Ti:i+m-1

Golden DAMP: Look all only at a fixed curated
time series, that contains all the allowable
behavior of a system.

Golden Batch

37

DAMP allow us to provide a strict bound on the worst-case behavior, in addition to

possessing other useful properties.

2.4.6.1 X-Lag-Amnesic DAMP

In some settings we may require an algorithm that can show us the most unusual behavior

in just the last few minutes, days, months, or years. In that case, a DAMP variant that

constrains how far back the backward search can look is required. Formally, we refer to

such a DAMP variant as X-Lag-Amnesic DAMP.

Compared with Classic DAMP, the time overhead of X-Lag-Amnesic DAMP is bounded

and controllable. This is because it only cares about what happened in a fixed unit of time

before the present, and its calculation is based on fixed-size and real-time updated

training data. For example, if we only need to find anomalies that occurred in the most

recent month, X-Lag-Amnesic DAMP will perform an iterative doubling search in the

most recent month’s data rather than searching through all past data. Consequently, the

time cost of X-Lag-Amnesic DAMP is bounded by the length of X as opposed to

increasing gradually.

In addition, X-Lag-Amnesic DAMP can better deal with concept drift. For time series in

some domains, their patterns change over time and the dependence between their data

weakens as the distance increases, at which point it makes no sense to consider data that

is too far from the present. For example, for many batch processes in the food and

beverage industry the time series patterns are known to drift over each day, due to

changes in ambient temperature and humidity. A pattern that happens during the

nightshift may be anomalous because the process is “running hot”. That is to say, it is

38

exhibiting behaviors that would be normal if it was in the middle of a hot day, but these

behaviors are anomalous given that they are observed in the cool of the night. It might be

obvious if we compare only to the patterns in the previous hour or so, but it will not be

obvious if we allow comparisons back to the previous midday. Obviously, since X-Lag-

Amnesic DAMP focuses only on what happened recently, it can avoid such issues caused

by concept drift. By contrast, Classic DAMP is more vulnerable to this, as its backward

search may cover all data that occurred before the present, and all these data have the

same weight for the discord score calculation regardless of their proximity to the current

subsequence.

Fig. 11.middle describes how the X-Lag-Amnesic DAMP works. Here we introduce a

new parameter X, the maximum length that the backward processing algorithm can look

back, specified by the user as needed. The framework of the X-Lag-Amnesic DAMP

algorithm is the same as Classic DAMP; it retains the forward and backward processing

steps, in which the forward processing is identical to Classic DAMP. The only difference

between X-Lag-Amnesic DAMP and Classic DAMP is that for the current subsequence

being processed Ti:i+m-1, we only perform a backward search on the X data points before

it, not on all the previous data. However, the search is still iteratively doubled: it

terminates either when it finds the nearest neighbor with a distance smaller than the BSF

or when it reaches the beginning of X. Therefore, to make X-Lag-Amnesic DAMP work,

we simply need to change lines 4-5 of Table 2 for Classic DAMP to the five lines shown

in Table 4.

.

39

Table 4: Pseudo code snippet for X-Lag-Amnesic DAMP

1
2
3
4
5

If Starting position of the search < max(i-X,1) Or X < prefix
If i – X < 1

 aMPi = min(MASS(T1:i,Ti:i+m-1))
 Else

 aMPi = min(MASS(Ti-X:i,Ti:i+m-1))

In line 1 we added two new criteria for search termination, i.e., reaching the beginning of

the time series Ti-X:i, or the maximum length of looking back X is less than the initial

length of the iterative doubling search prefix. In both cases, we do not iteratively double

our search anymore. We have reached the limit of the history we think should inform our

decision. Instead, we only search for the nearest neighbor of the current subsequence in

the range i-X to i (lines 4-5). Moreover, there is a special case where the number of data

points that arrived has not yet reached X (i<X+1). In this case, we can only conduct the

backward search in all available data T1:i as shown in lines 2-3.

Others works have noted the utility of amnesic anomaly detection (although not using

that phrase), including the SAND algorithm of [5]. However, SAND requires significant

effort to build a reference dataset, and the setting of several unintuitive parameters.

2.4.6.2 Golden DAMP

Recall that Classic DAMP has a parameter called spIndex, which sets the location of the

split point between the training and test data in the initial state. When Classic DAMP

processes a time series, it assumes that the data before spIndex, T1:spIndex-1 are normal,

which may lead to three issues. First, this causes the algorithm to ignore the potential

anomalous behavior present in T1:spIndex-1, resulting in certain false-negative results.

40

Second, this approach may have the algorithm wasting time searching redundant data. It

is possible that the patterns in T1:spIndex-1 are highly redundant, such as 1,000 heartbeats

that are essentially identical. If the heartbeats all have the same pattern, it would suffice

for the algorithm to take just one of them to learn4; there is no need to consider the same

pattern 1,000 times, which will waste a lot of time. Further, it may be difficult for

T1:spIndex-1 to contain every normal pattern, which can cause the algorithm to incorrectly

identify normal behavior that does not appear in T1:spIndex-1 as an anomaly. For example, if

T1:spIndex-1 only contains data on the solar zenith angle during the day, the algorithm may

incorrectly identify normal solar zenith angles at night as anomalies. These potential

problems can undermine the accuracy and efficiency of the algorithm.

Golden DAMP is our proposed solution to the above three problems. It processes each

subsequence not by referring to information that occurred before the current time, but to

user-defined, curated, out-of-band information, denoted as Golden Batch. The Golden

Batch implicitly defines every possible legal behavior, such as every possible dance

move, every normal heartbeat, etc. It includes all the things the user expects to happen in

the system. With this correct and comprehensive priori knowledge, the algorithm will be

able to make more accurate and efficient decisions.

This idea of creating a curated collection of data that spans the space of all possible

acceptable behaviors is well known in the process industry [37]. For example,

food/beverage engineers will often set aside one day to create a recipe under all

4 Actually, using exactly one heartbeat (or pattern more generally), may make the downstream algorithms brittle to the
choice of the starting point of the heartbeat. To bypass this issue, we always extract two consecutive beats.

41

combinations of conditions encountered: under cool conditions, under hot conditions,

with carbonated infeed, with flat infeed etc. However, the use of these batch profiles is

typically human comparison of the evolving process to the Golden Batch(es) [37]. Here

we are interested in automatic anomaly detection. In addition, note that while the Golden

Batch data can be hand curated, it can also be created automatically by various

numerosity reduction algorithms [15][36].

Further note that the execution time of Golden DAMP is also bounded because its

training data is the Golden Batch with a fixed size. Therefore, as we explained in Section

2.4.6.2 Golden DAMP, the cost of Golden DAMP’s backward search is proportional to

the size of Golden Batch.

Fig. 11.bottom illustrates the idea of Golden DAMP. When processing the current

subsequence Ti:i-m+1, Golden DAMP no longer looks backward in the time series T but

toward the Golden Batch, a vector containing all acceptable patterns. We still use the

iterative doubling search policy shown in Fig. 8 for Golden Batch. The search keeps

iteratively doubling until it finds the nearest neighbor within the prefix whose distance

from Ti:i-m+1 is less than the BSF, or it gets to the beginning of the Golden Batch. After

computing the approximate or exact discord score for position i, we invoke the same

forward processing procedure as in Classic DAMP to disqualify future subsequences that

are unlikely to become a discord.

The implementation details of Golden DAMP are given in

Table 5 and Table 6. Since most of them are the same as Table 1 and Table 2, we will

highlight the parts that we changed

42

Table 5: The Main Golden DAMP Algorithm
Function: Golden_DAMP(T, m, GoldenBatch)
Input: T: Time series

m: Subsequence length
GoldenBatch: A long time series with all possible normal
patterns

Output: aMP: Left approximate Matrix Profile

1
2
3
4
5
6
7
8
9
10
11

PV = ones(1,length(T)-m+1)
aMP = zeros(1,length(T)-m+1)
BSF = 0 // The current best discord score
 // Scan all subsequences in the test data
For i = 1 to length(T) – m + 1

If NOT PVi // Skip the pruned subsequence
aMPi = aMPi-1

Else
[aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch)
PV = ForwardProcessing(T, m, i, BSF, PV)

return aMP

The main framework of Golden DAMP is shown in Table 5. Golden DAMP has a new

input, GoldenBatch, a long vector that joins all normal patterns together. As with Table 1,

the algorithm starts with initialization in lines 1-3. Since we already have the training

data GoldenBatch, we no longer need to use the first spIndex-1 data of the time series T.

As a result, in line 5 we adjust the processing range of Golden DAMP from TspIndex:n-m+1 to

T1:n-m+1. After that, within the loop, lines 6-7 decide whether to process the current

subsequence Ti:i-m+1 according to the value in the pruned vector PV. If the subsequence at

position i needs to be processed, we first invoke BackwardProcessing in line 9 to

calculate the discord score for position i and update the current highest discord value, and

then call ForwardProcessing in line 10 to determine the subsequences to be pruned in the

future. Finally, lines 5-10 iterate through each subsequence in T1:n-m+1 and line 11 returns

the Golden Left-aMP. In particular, the ForwardProcessing here is identical to that of

43

Classic DAMP, so we do not repeat it below. However, we partially changed

BackwardProcessing from Table 2 of Classic DAMP, so we give Table 6 detailing the

backward processing for Golden DAMP.

Table 6: Golden DAMP Backward Processing Algorithm

Function: [aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch)
Input: T: Time series

m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
GoldenBatch: A long time series with all possible normal
patterns

Output: aMPi: Discord value at position i
BSF: Updated highest discord score so far

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

aMPi = inf
prefix = min(2^nextpow2(m),length(GoldenBatch))
While aMPi ≥ BSF

If the search reaches the beginning of the Golden Batch
aMPi = min(MASS(GoldenBatch1:end,Ti:i+m-1))
If aMPi > BSF // Update the current best discord score
 BSF = aMPi
break

Else
aMPi = min(MASS(GoldenBatchend-prefix+1:end,Ti:i+m-1))
If aMPi < BSF
 break // Stop searching
Else // Double the length of prefix
 prefix =2*prefix

return aMPi, BSF

Table 6 illustrates the backward processing algorithm of Golden DAMP. As the

backward search is performed on top of Golden Batch, we need to enter GoldenBatch

into the algorithm. The first two lines of Table 6 are still the initialization phase. Line 1 is

the same as in Table 2, initializing the discord score of the current subsequence to

positive infinity. In line 2 we define the initial length of the iterative doubling search

prefix. Here we set it as the lower bound of 2nextpow2(m) and Golden Batch size to prevent

44

possible array out-of-bounds problem at line 10. Then in the loop in lines 3-14, we

perform the iterative doubling search, which starts from the end of Golden Batch and

goes backwards. We keep searching in GoldenBatchend-prefix+1:end until we find the nearest

neighbor whose distance from the current subsequence is less than BSF (line 11) or reach

the beginning of Golden Batch (line 4). Specifically, if we find the nearest neighbor

within the range prefix, we assign the approximate discord score of the current

subsequence to aMPi and stop the search (lines 10-12); if not, in lines 13 and 14 we

double the length of prefix and continue the search in GoldenBatchend-prefix+1:end. If the

search finally reaches the beginning of Golden Batch (line 4), we first calculate the exact

discord score of the current subsequence using all the data in GoldenBatch (line 5), and

then determine whether the current highest discord score BSF needs to be updated (line

6). If the discord score of the current subsequence is still greater than BSF, it means that

the subsequence at position i does not have a nearest neighbor similar enough to it in the

Golden Batch and it is a discord, at which point we should update the current highest

discord score BSF in line 7.

This discussion of Golden DAMP is a good place to highlight an interesting and

important property of the general DAMP algorithm. Virtually all other TSAD algorithms,

including USAD [2], AE [2], Telemanom [14], NORMA [4] and LSTM-VAE [27], exist

only as the implicit equivalent of Golden Batch algorithm. Here the training data given to

the algorithm acts as the Golden Batch. This can be a problem if the period of the data

changes, and we wish to be invariant of that. For example, a healthy human heartrate can

vary between about 40 to 120 beats per minute (bpm). If a batch algorithm is trained on

45

one heartrate, it may have difficulty generalizing to a different heartrate. In contrast,

classic DAMP will be unaffected, because at every time step it is using all previously

seen data as training data. Thus, so long as the heartrate change is not instantaneous, it

can adjust to the new periodicity.

To illustrate this, in Fig. 12 we perform an experiment comparing classic DAMP with

Telemanom [14], on a dataset that has a changing periodicity.

In a sense, the news is even worse for Telemanom than Fig. 12 suggests. The algorithm

has a stochastic element. We ran it three times, and this is the best of the three runs. In

addition, note that this is an offline experiment. However, as we discuss in Section 2.5.3

Comparison to LSTM Deep Learning, all algorithms except DAMP have a period

between the time they are given the training data, and the time they are ready to begin

monitoring (we call this “linger”). Thus, in a real-time situation, there would be a period

of a few tens of seconds, for which Telemanom would be undefined.

Fig. 12 top) A snippet of arterial blood pressure (ABP) data from a healthy patient undergoing a tilt-table
test. There are no biological anomalies in the dataset, but near the end there is a short disconnection artifact
(highlighted in green). middle) If we train Telemanom on the prefix of the snippet, before the table was
tilted, it has a hard time adjusting to the post-tilt increased heartrate. It flags eight anomalies (highlighted in
yellow), all false positives, and fails to discover the single true anomaly. bottom) In contrast, because
DAMP is using all previously seen data, it can adjust to the changing heartrate, and it strongly peaks at the
location of the true anomaly. Here m = 33.

Zoom-in

4,500

Dataset: prcpABP13960m

0

Tilting
Begins

DAMP

Telemanom

46

These observations do open an interesting issue, should we be invariant to changes in

periodicity? This is a domain dependent question. Most biological signals can vary

innocuously within a certain range. For example, heartbeats, respiration, gait cycles etc.

In contrast, cycles guided by the circadian progression of the Earth’s rotation, traffic

patterns, electrical power demand, web traffic etc., will not be expected to have a change

of periodicity, and any apparent change of periodicity probably warrants flagging as an

anomaly. The Golden Batch implementation of DAMP allows the user to create a curated

dataset that reflects the domain constraints. For example, suppose a user is given normal

heartbeats at say 60 bpm. If she wants to be invariant to the heartrate varying between say

50 and 70 bpm, she can just create such rescaled time series and add them to her Golden

Batch.

2.4.7 Multidimensional DAMP

The previous sections have shown how to find anomalies in a one-dimensional time

series. We believe that in many cases, anomaly detection of all the one-dimensional data

is sufficient for user demands. For example, in a hospital setting, a doctor may monitor a

patient’s ECG, blood pressure, and respiration. Most life-threatening situations will show

up in at least one of the above. For example, a myocardial infarction, will first show up in

the patient’s ECG, septicemia will first show up in the patient’s blood pressure, and

tracheomalacia will first show up in the patient’s blood respiration.

However, there are also special cases where anomalies occur in only two or more

dimensions. For example, in the low-latitude Pacific West Coast region, typhoons

accompanied by heavy precipitation occasionally make landfall in summer. In order to

47

identify such unusual weather events, it is insufficient to monitor only precipitation or

wind speed. This is because these areas may have strong winds but sunny weather, or

extreme rainfall but still air. As a result, we need to combine wind speed and

precipitation as two-dimensional data to find out which day has both precipitation and

wind speed anomalies. If such anomalies can be identified in two dimensions, there is a

high chance of typhoon weather on that day. Therefore, it is necessary to generalize our

DAMP algorithm to support searching in high-dimensional spaces. We refer to the

DAMP algorithm for multidimensional data anomaly detection as multidimensional

DAMP. We note that there are several ways in which the information from multiple time

series can be combined. This issue is perhaps worthy of a detailed investigation. Here we

show one simple and obvious method and demonstrate that DAMP can easily support it.

Fig. 13 Multidimensional distance profile for position i.

The basic idea of multidimensional DAMP is the same as the one-dimensional DAMP we

introduced in Section 2.4.1 Intuitive Overview of DAMP, which retains the procedure of

0.9 0.8 1.1 1.2 - - - -
TA

Distance Profile DA
i for TA

TAi

Current Subsequence

TAi:i+m-1

0.6 2.2 1.5 0.6 - - - -

TB

Distance Profile DB
i for TB

TBi
TBi:i+m-1

1.5 3.0 2.6 1.8 - - - -Multidimensional Distance
Profile MDi for A and B

48

backward iterative doubling and forward pruning. The difference between them is

reflected solely in the calculation of the discord score.

Fig. 13 illustrates how the multidimensional DAMP calculates the discord score for

position i. Let TA be the time series of dimension A in a two-dimensional time series,

while TB corresponds to dimension B, and the length and frequency of TA and TB are

equal. For position i, we first compute the distances between the current subsequence of

TA and TB and the subsequences before position i in their respective dimensions, forming

two distance vectors DAi and DBi (see Definition 4). After that, we add the elements of the

two distance vectors two by two according to their positions to produce a new vector

MDi, which contains the distance information in both dimensions A and B. Finally, the

minimum value on MDi is the discord score at position i. As the algorithm progresses, the

BSF continuously tracks the current highest discord score that combines information

from both dimensions. Table 7 presents the multidimensional backward processing

algorithm. As it is primarily similar to Table 2, we refer the reader to Section 2.4.4

Formal Pseudocode for DAMP for more details on the iterative doubling backward

algorithm. Here we only highlight the parts that have changed. Compared to Table 2, we

add two new inputs TA and TB, the time series in dimensions A and B. In lines 5 and 10,

we change the calculation of the discord score at position i aMPi. In line 5, to obtain

aMPi, we call MASS twice to calculate the distance between the current subsequence of

TA and TB and all subsequences before position i respectively. Next, we add the elements

in the two distance vectors returned by MASS two by two according to the positions to

obtain the multidimensional distance profile. Finally, the minimum value of the

49

multidimensional distance vector is taken as the exact discord score of position i. Line 10

is similar to line 5. The only difference is that line 10 only finds the nearest neighbor in

the prefixes of TA and TB before position i and aMPi is the approximate discord score for

position i.

 give the implementation details of multidimensional DAMP. Here we only demonstrate

the two-dimensional version, however the reader can easily modify it to work with higher

dimensional data. Since the basic steps of multidimensional DAMP and one-dimensional

DAMP are the same, the framework of multidimensional DAMP is identical to Table 1.

Table 7 presents the multidimensional backward processing algorithm. As it is primarily

similar to Table 2, we refer the reader to Section 2.4.4 Formal Pseudocode for DAMP for

more details on the iterative doubling backward algorithm. Here we only highlight the

parts that have changed. Compared to Table 2, we add two new inputs TA and TB, the time

series in dimensions A and B. In lines 5 and 10, we change the calculation of the discord

score at position i aMPi. In line 5, to obtain aMPi, we call MASS twice to calculate the

distance between the current subsequence of TA and TB and all subsequences before

position i respectively. Next, we add the elements in the two distance vectors returned by

MASS two by two according to the positions to obtain the multidimensional distance

profile. Finally, the minimum value of the multidimensional distance vector is taken as

the exact discord score of position i. Line 10 is similar to line 5. The only difference is

that line 10 only finds the nearest neighbor in the prefixes of TA and TB before position i

and aMPi is the approximate discord score for position i.

50

Table 7: Multidimensional DAMP Backward Processing Algorithm
Function: [aMPi, BSF] = BackwardProcessing(TA, TB, m, i, BSF)
Input: TA: Dimension A of the multidimensional time series

TB: Dimension B of the multidimensional time series
m: Subsequence length
i: Index of current query
BSF: Highest discord score so far

Output: aMPi: Discord value at position i
BSF: Updated highest discord score so far

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

aMPi = inf
prefix = 2^nextpow2(m) // Initial length of prefix
While aMPi ≥ BSF

If the search reaches the beginning of the time series
aMPi = min(MASS(TA1:i,TAi:i+m-1) + MASS(TB1:i,TBi:i+m-1))
If aMPi > BSF // Update the current best discord score
 BSF = aMPi
break

Else
aMPi = min(MASS(TAi-prefix+1:i,TAi:i+m-1) + MASS(TBi-prefix+1:i,TBi:i+m-1))
If aMPi < BSF
 break // Stop searching
Else // Double the length of prefix
 prefix =2*prefix

return aMPi, BSF

Multidimensional DAMP also has a similar forward pruning process to that of one-

dimensional DAMP, as shown in Table 8. Compared with Table 3, we need to only

change line 5. In the range of lookahead, the distances between the current and future

subsequences of TA and TB are calculated separately. Then the distance vectors of A and B

dimensions are summed to yield a distance vector MD'i containing two-dimensional

information. Our pruning decisions are made based on this two-dimensional distance

vector.

51

Table 8: Multidimensional DAMP Forward Processing Algorithm
Function: PV = ForwardProcessing(TA, TB, m, i, BSF, PV)
Input: TA: Dimension A of the multidimensional time series

TB: Dimension B of the multidimensional time series
m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
PV: Pruned Vector

Output: PV: Updated Pruned Vector
1
2
3
4
5
6
7
8
9
10

lookahead = 2^nextpow2(m) // Length to peek ahead
If the search does not reach the end of the time series

start = i + m
end = min(start + lookahead – 1,length(T))

 #"#$ = MASS(TAstart:end,TAi:i+m-1) + MASS(TBstart:end,TBi:i+m-1)
indices = all indices in #"#$ with values less than BSF
indices = indices + start – 1 // Convert indices on distance
profile to indices on time series

PVindices = 0 // Update the Pruned Vector
return PV

Fig. 14 Synthetic time series A and B. top) Synthetic dataset A and its corresponding one-dimensional Left-
aMP. bottom) Synthetic dataset B and its corresponding one-dimensional Left-aMP. Here we set the
window size to be the minimum positive period of the sine wave, i.e., m = 100.

Let us start with a toy data set to understand the difference between multidimensional

DAMP and one-dimensional DAMP. The red curves in Fig. 14 illustrate two synthetic

time series A and B. These two time series consist mainly of sine waves. Specifically, for

time series A, the data at positions 3700-3799 (X) are noisier than the other parts, while

for time series B, the data at positions 1700-1799 (Y) are noisier. If you look closely, you

will find that the two time series will have a square wave at random positions from time

Z

Left-aMP for A

Left-aMP for B

Y

X0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A

B

52

to time. It so happens that at positions 2605-2644, both time series show a square wave

simultaneously, which is where our real anomaly lies. We denote it as Z. We tested the

time series A and B with one-dimensional DAMP and two-dimensional DAMP

respectively to see if they could find the true anomaly Z. Fig. 14 also gives the results of

performing a one-dimensional DAMP on time series A and B. It is easy to see by the

highest point of the blue curve in Fig. 14.top that one-dimensional DAMP is attracted to

the noisy sine wave in A and does not notice the anomaly at position Z. Similarly, as

illustrated in Fig. 14.bottom, one-dimensional DAMP on B also fails to detect the

anomaly at Z, instead considers the nosier Y as the anomaly. Missing information in

another dimension, the one-dimensional DAMPs mistakenly believe that the presence of

the square wave at Z is justified because they observe similar patterns before Z.

Fig. 15 Left-aMP generated by two-dimensional DAMP. Here we set the window size to be the minimum
positive period of the sine wave, i.e., m = 100.

Next, we combine A and B into a two-dimensional time series and feed it into the two-

dimensional DAMP to see if the results will be different. The Left-aMP generated by

two-dimensional DAMP is shown in Fig. 15. Note that compared with the Left-aMP

generated by the one-dimensional DAMP in Fig. 15, the two-dimensional Left-aMP

Left-aMP for A and B

X

Y Z
A

B

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

53

captures more anomalies with more “bumps” on its curve. All these bumps can be

interpreted intuitively. For example, when both square and sine waves are present, or

when one of the sine waves is noisier, they are recognized by the algorithm as a potential

anomaly and correspond to a bump in the Left-aMP. What is more, the position of the

highest point of Left-aMP in Fig. 15 corresponds to the coincidence of two square waves,

that is, Z. This is because if you look at the entire time series of A and B, you will see that

the square wave only appears at Z in both dimensions simultaneously, which cannot be

observed at other locations.

We have seen that we can create a synthetic dataset that has an anomaly that can be

discovered only by considering two time series simultaneously. However, can we

discover two-dimensional anomalies in real data? Surprisingly, we are not aware of any

such benchmark dataset. Most datasets in the space are synthetic, or are

multidimensional, but have anomalies that are so obvious that it suffices to examine any

single dimension [2][14]. However, we can explore energy grid data published by a

consortium of Texas A&M and USC in 2021 [38], and use out-of-band data to evaluate

the returned anomalies. Fig. 16.top shows three years of wind speed and relative humidity

data from the New York area between 2018 to 2020 [38].

54

Fig. 16 top) Three years of wind speed and relative humidity data for the New York area from [38].
bottom) The two corresponding top 2D discord in this dataset. Here m = 1440 (one day in minutes).

Fig. 16.bottom shows the results of our search on the one-dimensional data of wind speed

and relative humidity, respectively, and the anomalies identified by one-dimensional

DAMP are marked in red. First, for wind speed, the one-dimensional DAMP reports the

constant interval occurring on January 24, 2019, as an anomaly; however, we do not find

any reported climate anomaly in New York State on that date. That is to say, although the

algorithm finds an anomaly with a pattern that is different from its context, it does not

seem to noticeably affect people’s lives. As a result, we can conclude that the wind speed

60

80

100

0.1

0.6

1.1

Jan 24th, 2019

Nov 23th, 2018

W
in

d
Sp

ee
d

R
el

at
iv

e
H

um
id

ity

1/1/2018 31/12/2020Three years

Relative Humidity

Wind Speed

Eleven days

55

anomaly is trivial. Second, for relative humidity, the one-dimensional DAMP identifies

the continuous peak occurring on November 23, 2018, as an anomaly. Through a Google

search, we found reports of heavy rainfall and flooding that occurred in New York State

on that day [22], which confirms that the anomalies identified in the dimension of relative

humidity are informative and that the one-dimensional DAMP is effective.

Fig. 17 Top discord for two-dimensional DAMP. Here m = 1440 (one day in minutes).

However, if we combine wind speed and humidity and search in two dimensions, will the

algorithm give us more interesting results? To investigate this, we took wind speed as

dimension A and relative humidity as dimension B and re-executed this two-dimensional

data using multidimensional DAMP. The results are presented in Fig. 17. Note that the

two-dimensional DAMP reports a different date to either of the one-dimensional DAMP

runs, May 28, 2019. This means that both humidity and wind speed in New York City

showed anomalous patterns on this date. This anomaly is confirmed by the news “A

powerful thunderstorm slammed Staten Island Tuesday night, pounding the borough with

large hail, heavy rain and the threat of a tornado.” [29].

0

0.6

1.2

40

70

100 May 28th, 2019

R
el

at
iv

e
H

um
id

ity

W
in

d
Sp

ee
d

Dimension A

Dimension B

Eleven days

56

Fig. 18 The scalability of 1D and 2D DAMP over increasingly large datasets. The cost to double the
number of dimensions considered is only slightly worse than double the time, suggesting that
multidimensional DAMP search inherits the efficiency of the 1D version. Here m = 1440 (one day in
minutes).

We have demonstrated the utility of multidimensional DAMP. However, readers may

wonder if it will pay a large time overhead for it. To investigate this, we used the data

shown in Fig. 16.bottom (wind speed) and Fig. 17 and recorded the time cost of the one-

dimensional and two-dimensional algorithms for increasingly long subsets. The

experimental results are shown in Fig. 18. It can be seen that the time cost of a two-

dimensional DAMP is only a small constant ratio of approximately 3.0 slower than the

cost of a one-dimensional DAMP, which suggests the good scalability for

multidimensional DAMP.

Ti
m
e
(s
ec
on

ds
)

1 million

Data Length

2D DAMP

1D DAMP

57

2.5 Empirical Evaluation

To ensure the reproducibility of our experiments, we have built a website [10] containing

all the data/code used in this chapter. All experiments were conducted on an Intel® Core

i7-9700CPU at 3.00GHz with 32 GB of main memory, unless otherwise stated.

There are two things one normally needs to establish to validate an anomaly detection

algorithm.

• Effectiveness: Here we feel less of an obligation. As we noted in Section 2.1, there are

at least one hundred independent papers that have used discords to solve a real-world

problem and that have shown that discords are the only technique that seems to be able

to discover anomalies that are not visually obvious (Fig. 3, Fig. 4 and Fig. 5).

Nevertheless, for completeness we will show examples in Sections 2.5.1 Energy Grid

Dataset and 2.5.2 Machining Dataset that further demonstrate the excellent

effectiveness of discords in diverse domains, and Section 2.5.3 Comparison to LSTM

Deep Learning and Section 2.5.4 Comparison on the KDD Cup 2021 datasets offer

comparisons to several deep learning-based methods.

• Efficiency: As this is the main contribution of the paper, here we will attempt an

ambitious set of anomaly detection experiments in terms of both throughput and scale.

2.5.1 Energy Grid Dataset

Recently, a consortium from Texas A&M and USC released a large dataset on

decarbonized energy grids [38]. The dataset contains files representing three years of

measurements of various metrics in sixty-six electrical zones in the continental USA. As

58

Fig. 19 suggests, each file represents eleven measurements, ten of which are measured

(temperature, wind speed etc.), but one is computed from the first principles of

astronomy, the Solar Zenith Angle.

Fig. 19 top) Two examples of time series from [38]. Most, like temperature are measured, but Solar Zenith
Angle is computed. bottom) The two corresponding top discords in these datasets. Here m = 5760 (four
days in minutes).

The total size of this dataset is 12 GB, representing 2,174 years of data with

1,142,668,098 datapoints. As such, we believe that it is the largest real dataset ever

searched for anomalies. This complete search took only 2.06 days.

As Fig. 19 shows, most of the anomalies discovered do have a semantic meaning that can

be traced. For example, a temperature trace from California had a discord that reflected

“Valentine’s Day Storm Slams California” [33]. Even the computed time series reveals a

Feb 14th

2019

Unusually warm night

2020

Unusually cold day

1/1/2018 31/12/2020Three years

Feb 29th

5

10

15

20

25

C
el

si
us

40

180

So
la

r Z
en

ith

Solar Zenith Angle

Temperature

59

strange anomaly echoing a biblical event. Joshua persuades God to stop the sun from

moving for a day “There has never been a day like it before or since (Joshua 10:14)”. In

our dataset there is a similarly unique day in which the sun apparently does not move!

The reader will readily appreciate the cause of this anomaly, after noting it occurs on the

29th of February [34]. It is a classic leap year bug. Note that we informed the Texas A&M

and USC team of this bug, so presumably it will be fixed in upcoming releases.

2.5.2 Machining Dataset

The example in Section 2.5.1 Energy Grid Dataset demonstrates the utility of anomaly

detection in batch data exploration. However, in some cases if we can do anomaly

detection in real-time, we may be able to perform an intervention to improve an outcome.

For example, consider the process of making parts using a CNC milling machine.

Occasionally a problem arises where an item being machined is not held correctly and it

moves. This can cause a milling machine to “crash” [8]. High-end CNC mills can cost

over one million dollars, and crashes resulting in more than $20,000 in damage are

known. Many (but not all) machining processes can be paused by an operator, so in

principle it may be possible to stop a machine before it crashes. However, with the speed

at which these machines operate, it is unlikely that the operators’ reflexes would be fast

enough.

This suggests the question, could we monitor the process with telemetry, and pause the

process if we detected an anomaly? In order to test this, we recreated a common scenario

in Fig. 20.

60

Fig. 20 top) Vibration telemetry from a milling machine that was cutting cast iron, but then overshot to
start cutting the steel jaws of the vice. bottom) The Left-aMP discovers the transition. Here m = 16.

A common CNC programming error is to give the wrong coordinates for a cutting pass,

and have the cutter overshoot the intended material to be machined, and inadvertently

attempt to remove material from the jaws of the vice. Because the jaws are typically

harder than the material they hold, and more resistant to cutting, two things can happen:

• The milling cutter itself will break. This is a $20 to $200 error.

• A much worse possibility is that the cutter will move the vice. If it happens to push it

into the path of later traversal, this could cause a head crash, which is a $2,000 to

$20,000 error.

As Fig. 20 shows, the aMP can detect the change of material, and this could be used to

sound an alarm, or pause the machining process until the operator can inspect this.

Note that before the true anomaly there are other areas with high discord scores. They are

when the milling cutter changes direction (from Climb milling to Conventional milling).

Under our proposed scheme these would have a small cost, the process would pause until

the operator visually confirms all is well, and hits continue.

Three Minutes

Cutting Cast Iron… then SteelMilling Machine Vibration Sensor

Left aMP
Top-1 Discord

61

2.5.3 Comparison to LSTM Deep Learning

Although dozens of competing deep learning anomaly detection (DLAD) algorithms now

exist, it is impossible to say which is the state-of-the-art. This is because, as Wu and

Keogh have demonstrated, the amount of mislabeling in the benchmark datasets dwarfs

the reported differences between algorithms [35]. It makes no sense to say that algorithm

A is 5% better than algorithm B, when up to 30% of the ground truth labels are suspect.

To bypass this issue, here we will compare to just Telemanom. It is the most cited

anomaly detection paper of the last five years [14], and several independent papers have

also found it to be effective. The general idea of this work is to use LSTM to predict

future values, then detect anomalies based on the difference between predictions and

actual data. Can Telemanom detect the anomalies we consider in this work?

• ECG (Fig. 4) No. Given the same 500 datapoint prefix as training data, it fails to find

the anomaly. If we give it ten times as much training data (the first 5,000 datapoints), it

still fails.

• Bearing (Fig. 3): Yes. However, Telemanom took a total of (517.6 training + 700.4

testing) 1,218 seconds. This is two orders of magnitude slower than DAMP, which took

16.1 seconds. More importantly, Telemanom is an order of magnitude slower than real-

time, precluding any possibility of online monitoring.

• Energy Grid (Section 2.5.1 Energy Grid Dataset) Maybe. There are only objective

labels for Solar Zenith Angle (this anomaly was discovered with DAMP but confirmed

with the data creators). If Telemanom sees only the first week as training data (as

62

DAMP did), then it only learns that the Solar Zenith Angle can decrease over time, and

it will flag as anomalous anything that happens after the summer solstice. A solution to

this problem is to allow Telemanom to train on the full first year, then test on the

subsequent years. Then it may find the “Joshua” anomaly. However, this will take 59.1

hours, over 1,300 times slower than DAMP.

• Milling Data (Fig. 20) No. Actually, Telemanom can detect the same anomaly as

DAMP. But recall it can only start training when the first 5,000 datapoints arrive, and it

takes 411 seconds to train the model. However, 127 seconds after it begins training, we

encounter the anomaly, and about 21 seconds after that, the endmill snaps off.

Telemanom is just too slow to be useful here.

These comparisons suggest that the most cited deep learning anomaly detection algorithm

is not as accurate as DAMP, requires more training data, and is much slower.

2.5.4 Comparison on the KDD Cup 2021 datasets

To further see the limitations of deep learning time series anomaly detection, we can

compare DAMP to DLAD algorithms on publicly available benchmarks. Wu and Keogh

have shown that most benchmarks in this space are too trivial to be interesting, and in any

case are plagued by mislabeling and other problems [35]. Instead, we consider the KDD

Cup 2021 dataset consisting of 250 univariate time series [11]. This archive was designed

to be diverse, have a spectrum of difficulties ranging from easy to essentially impossible,

and has a detailed provenance for each of the 250 datasets, giving us some confidence

that the ground truth is correct. Moreover, the datasets include a wide range of domains,

63

including cardiology, industry, medicine, zoology, weather, human behavior, etc. We use

the accuracy metric that was suggested by the dataset’s creators. In brief, each of the 250

datasets has a single anomaly. Each algorithm is tasked with predicting the location of

that anomaly. Let the length of the anomaly be L. If the prediction is within plus or minus

L data points of the anomaly’s true location, it is judged correct. If L is less than 100, then

it will be set to 100. The scores in Table 9 show the ratio of correct predictions for the

250 datasets.

Table 9: Accuracy and Time for Eight TSAD Methods

Method Accuracy Train and Test Time

USAD [2] 0.276 8.05 hours
LSTM-VAE [27] 0.198 23.6 hours
AE [2] 0.236 6.11 hours
Telemanom [14] Out of memory error on longer examples
NORMA [4] 0.474 17.8 minutes
SCRIMP (Full-MP) 0.416 24.5 minutes
DAMP (Left-MP) out-of-the-box 0.512 4.26 hours
DAMP (Left-MP) sharpened data 0.632 4.26 hours

Once again, these results show that DAMP is more accurate and faster than deep

learning-based methods. It is important to note that the results for DAMP are completely

free of any human intervention or tuning. We use four hardcoded lines of Matlab (see

[10]) to find the approximate period in each training dataset, and used that as the value of

m. Likewise, we simply hardcoded a single lookahead value for all 250 datasets. Further

optimizing the former would improve accuracy and personalizing the latter for each

individual problem would improve the speed. However, we wanted to show that even the

most naïve out-of-the-box use of DAMP is highly competitive. As an example of a small

64

intervention that can further improve accuracy, if we run DAMP on sharpened data (a

single extra line of code, see [10] for details) the accuracy improves to 0.632.

The left-discords of DAMP are significantly more accurate than the full-discords

computed by SCRIMP, because some anomalies have near “twin-freaks” that suppress

the distance of the anomaly to its nearest neighbor. Note that the time for SCRIMP and

NORMA here is relatively good, as there are 250 short time series. In Fig. 23 we will see

that for longer time series this advantage of SCRIMP/NORMA rapidly inverts.

We included a comparison to the recently published NORMA [4], which can be seen as a

sort of Matrix Profile that uses an automatically discovered subset of the training data as

the reference data. Here we used the original authors’ tools and suggestions to set the

parameters (we were able to make the results slightly better with our own parameter

settings [10]). The time for NORMA is good, but it is important to note the following:

These datasets have tiny training data splits (they were deliberately made that way, to

allow the deep learning community to consider them in a tenable fashion [11]). But as

Fig. 24 shows the NORMA algorithm scales poorly for large datasets.

On these datasets, we can easily close all of the time gap by using either X-Lag-Amnesic

DAMP (Section 2.4.6.1 X-Lag-Amnesic DAMP) or Golden DAMP (Section 2.4.6.2

Golden DAMP), with only a minimal decrease in accuracy. Indeed, the Golden DAMP

algorithm essentially subsumes NORMA as a special case.

65

The results in Table 9 mask a unique timing advantage that DAMP has over not only

NORMA, but all other non-trivial anomaly detectors5. We believe that DAMP is the only

instantaneous TSAD in the literature. To see this, consider the situation in Fig. 21.

Fig. 21 An excerpt from the 243_UCR_Anomaly_tilt12744mtable dataset. The task is to exploit
information in the training split, to detect the most significant anomaly in the test split. When requested,
DAMP can instantaneously begin to monitor. However, NORMA (and all other TSAD algorithm), must
have a period of inaction or “linger” while they build their models. Here m = 276.

The figure shows a dataset from the KDD Cup 2021. The first forty seconds of wall-clock

time pass, and then we are invited to monitor for anomalies in the remainder of the data.

We define “linger” as the time a TSAD algorithm requires to ingest the training data,

build its model, and be ready to start monitoring. As shown in Fig. 21, the linger for

NORMA on this problem is thirteen seconds. This means that any anomaly that occurs in

the first thirteen seconds will not be detected (or will only be detected post-mortem).

5 Here we explain “non-trivial anomaly detector”. Simple rule-based conditionals such as: “if the time series
ever reports a value that is higher than any value you have seen before, then
flag anomaly” could be used as an anomaly detector, and could be instantaneously instantiated. By non-trivial
we mean any TSAD algorithm that examines each subsequence for any information about shape, autocorrelation,
Markov properties etc., and compares this information (in the most general sense), to a model gleaned from training
data. The reader will appreciate that this includes essentially all proposed anomaly detectors in the literature.

…

…

…

…

Request to monitor happens here

DAMP begins to monitor instantaneously

NORMA begins model building here…
…and is ready to start monitoring here

Training data (excerpt):
40 seconds of wall-clock time

Test data (excerpt)

Linger = 13 seconds

243_UCR_Anomaly_tilt12744mtable

66

Note that DAMP appears to be unique among TSAD algorithms in having zero linger. In

this example, the linger of NORMA may not be too consequential (although it grows

rapidly with more training data, see Fig. 24). Perhaps the attending physician can wait

with the patient while the model is being built. However, recall our machining example in

Section 2.5.2 Machining Dataset. Here, if the linger is more than 127 seconds, the TSAD

algorithm would not be able to avoid the expensive head-crash.

Recall that Table 9 notes “Out of memory error on longer examples” for Telemanom [8].

There does not seem to be any simple way to fix this issue, so we did the following. We

sorted all the datasets from smallest to largest, and kept evaluating increasingly longer

datasets until the first failure. Telemanom failed at the 63rd smallest dataset

(114_UCR_Anomaly_CIMIS44AirTemperature2). On the first 62 datasets it correctly

found the anomaly on 29, giving an accuracy of 0.468. This took Telemanom 3.4

hours. When we run DAMP on just these 62 shorter datasets, it takes 64.9 seconds. In

general, the 62 shorter test cases are the easier ones (they certainly have a much higher

default rate), yet both flavors of DAMP are still significantly more accurate.

Finally note that Table 9 does not include any comparisons to the algorithms that entered

the KDD Cup in 2021 [11]. The best performing algorithms scored an impressive 88.4%.

However, note that none of the top performers have made code publicly available.

Moreover, all the top performers use meta-algorithms. For example, the top place

algorithm, DeepBlueAI, used a meta-algorithm that included at least four different

algorithms (“Fourier Transformation based methods”, Matrix Profile, LightGBM and

Dilated CNN). In all cases, the logic used to switch between or combine the atomic

67

algorithms is not clear (We hope that in at least some cases, the participants with

publishing a publication will make that clear). In contrast, Table 9 compares the leading

single algorithms, which have usable public implementations. Combining them in a meta-

algorithm or ensemble would be an interesting project but is beyond the scope of this

chapter.

2.5.5 Threshold Learning for DAMP

Up to this point, we have experimentally demonstrated that DAMP can locate the most

anomalous subsequence. However, we have not shown how the algorithm makes a binary

decision thereafter to flag the subsequence as anomalous or not. For this purpose, we

simply need to learn a threshold. To demonstrate, consider the following experiment. We

created 200 random walk time series of length one million. As shown in Fig. 22.top, into

half of them we randomly inserted a subtle anomaly, a low amplitude random section of

length 950 (Why length 950? We found that if we used length 1,000 we got perfect

accuracy, which is uninteresting for this experiment. So, we tuned the value to give an

error rate of about 10%). In Fig. 22.left, we show the top-1 discord score (for m = 1,024)

for all 200 time series, divided into the two cases. This plot suggests that a threshold of

36.0 is the optimal value to maximize the accuracy on future occurrences. To test this, we

created and tested an additional million examples, all of which are also of length one

million, classifying an actual anomaly as a true positive if the correct location of the

anomaly was discovered and the top-1 discord score was above the threshold. Fig.

22.right shows the confusion matrix.

68

 Predicted

anomaly

Predicted

no-

anomaly

Actual

anomaly

57,987 6,013

Actual

no-

anomaly

5,502 58,498

Fig. 22 top) A sample random walk with an anomaly embedded. left) The distribution of top-1 discord
scores for the two cases of interest. right) The confusion matrix for this task. Here m = 1024.

We note in passing that this experiment (which took several days distributed across

commodity laptops and desktops), trained on time series with a total length of 200

million, and tested on time series with a total length of 128 billion. To the best of our

knowledge, this is the largest scale time series anomaly detection experiment ever

conducted. Could deep learning do this? We estimate that Telemanom [14] would take

about twelve years to do this, although in practice it gives out-of-memory errors.

0 1,000,000

34,000 38,000

Random Walk Time SeriesInjected
anomaly

Zoom in

32 34 36 38 40 42 44

Top-1 discord
score for no
anomaly case

Top-1 discord
score for
anomaly case

Threshold

69

2.5.6 Scalability Comparisons

To find out which elements of our proposed method contribute most to its efficiency, we

have performed an ablation study, in which various elements of DAMP were

progressively crippled. As a baseline, we also compare to SCRIMP [39]. This

comparison to SCRIMP is a little unfair, as it discovers motifs as well as discords.

However, it seems to be the most used discord discovery algorithm in recent years. Fig.

23 summarizes our findings.

Fig. 23 The CPU time vs time series length for various discord discovery algorithms. Note the Y-axis is in
log scale. Note that DAMPeffectively online means that the forward processing algorithm introduced in Table 3
was used. Here m = 94.

It is clear that each element we proposed does actually contribute to speed up, and that

DAMP is effectively linear in n.

As we earlier noted, most of the benchmark datasets are only hundreds to thousands of

datapoints long [35], and that seems to have set the limit of the ambition of most of the

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Ti
m

e
(s

ec
on

ds
)

(3.1 years)

(3.8 months)

(11.5 days)

(27.7 hours)

(2.7 hours)

(16.6 min)

(1.6 min)

0 8 millionData Length

Dashed lines are extrapolated

70

community when it comes to scalability. However, a recent paper pushed that envelope

by considering a two million length ECG dataset [4]. In fact, these authors graciously

gave us the exact dataset they used, (which was in fact even longer than they considered

in [4]), and helped us create a perfectly commensurate experiment, as shown in Fig. 24.

A real-time video trace of this experiment is at [10].

Fig. 24 (Most of this figure is taken from [4] with permission, only the green elements are new). The
scalability of various algorithms on increasing large subsets of a long ECG trace. All algorithms except
DAMP are limited to the first 2M data points by [4]. Note that the Y-axis is logarithmic. Here m = 94.

Note that of the many approaches considered, some time out (i.e., are not finished in a

four-hour cutoff) at length 500K. In contrast, DAMP can handle eight million datapoints

in just 22.3 seconds, this is over 358,000 Hz. In fact, DAMP is so fast, that the time it

reports for the 50K length trial is literally off the original chart, taking less than one

second.

As eight million datapoints are about the longest publicly available ECG, in Fig. 25 we

conclude this section by searching a single random walk time series of length 230.

1000

4M 8M

Some datapoints are literally “off the chart”

Eight million datapoints, corresponding to
17.36 hours (85,056 heartbeats), processed in
22.3 seconds. This is 2,802 times faster than
real-time.

71

Fig. 25 The time taken for DAMP to process a random walk time series of length 230 (just over one billion).
For context, we have labeled the size of two concrete tasks, processing a month of ECGs and twenty-five
years of sensor data. Here m =128.

2.5.7 Scalability and Stability of DAMP

One of Wu and Keogh’s criticisms of common benchmarks is unrealistic anomaly

density [35]. They noted that over 20% of the data is labeled anomalous in many

benchmarks, which poses a real problem for the evaluation. Suppose that an algorithm

has near perfect sensitivity, but it will randomly give out a false positive once in every

million datapoints (perhaps due to the numerical instability of streaming algorithms [13]).

Note that because most benchmarks in the literature only have a few thousand datapoints,

this issue would almost certainly not be observed during testing. However, it clearly

would be a problem for any real-world deployment. For example, for a continuous

processing system with telemetry reporting every second, this would give us about thirty-

one false positives a year.

To demonstrate DAMP does not have this issue, we did the following test. Recall the

subtle anomaly shown in the 100,000 datapoint MGAB dataset in Fig. 5. We can append

anomaly-free data from the same Mackey-Glass model (but free of the embedded

anomalies [31]) to make it one thousand times longer, i.e., a total length of 100 million.

2300

1000

2000

3000

4000

27

Ti
m

e
(s

ec
on

ds
) (One hour)

One month of ECGs:
2,628,288sec @ 128Hz Twenty-five years

of barometer: 25*
31,536,000 @1hz

72

When we search this with DAMP (m = 40), we count a trial successful if the top-1

discord is found in the first 100,000 datapoints (created by [31]), rather than from the

appended ninety-nine million nine hundred thousand datapoints. Each of the coauthors of

this work ran this experiment multiple times in the background of their desktops over a

week, and in total conducted over 16,000 such trials, finding a total of zero false

positives.

Note that this experiment required performing anomaly detection on time series with a

total length of 1.648 trillion datapoints, using off-the-shelf hardware. This is something

that would be inconceivable with any other anomaly detection method.

73

3. MADRID: A Hyper-Anytime Algorithm to Find Time Series Anomalies of all

Lengths

In this chapter, we introduce MADRID, an algorithm to efficiently solve the discords-at-

all-lengths problem. We first show that we can reduce the absolute time to compute all-

discords by passing information between computations of different lengths.

We then demonstrate that we can cast the search as an anytime algorithm [63]. Previous

work has shown that some discord discovery algorithms, most noticeably the Matrix

Profile, are amenable to being cast as anytime algorithms [67]. However, we will show

that MADRID is able to produce very efficient anytime convergence, a property we have

named (and will formally define) a Hyper-Anytime Algorithm.

 Our newfound ability to compute anomalies of all lengths produces the downstream

issue of ranking anomalies of all lengths. We further introduce novel algorithms for this

task.

The rest of this chapter is organized as follows. In Section 3.1 we review our motivation

and state our assumptions. Section 3.2 introduces all needed definitions and notation,

allowing us to introduce MADRID in Section 3.3, which in turn allows us to offer a

discussion of the implications of all-lengths anomaly search in Section 3.4. We

empirically evaluate our work in Section 3.5. We omit a separate related works section,

instead we discuss such material inline and in context.

74

3.1 Motivation and Assumptions

There has been a recent explosion of research efforts in Time Series Anomaly Detection

(TSAD) [42][54][58][62][65]. To make our contribution clear in this cluttered literature,

we will begin by stating and justifying our assumptions:

Discord-based anomaly detection algorithms are competitive with the SOTA. This claim

seems unimpeachable, based on recent empirical results from multiple independent

groups [65]. Some researchers have expressed surprise that such a simple algorithm could

be competitive. However, we suspect that discord’s simplicity is the cause of its

competitiveness. Most deep learning TSAD algorithms have at least ten parameters to set,

typically using limited data, that is a recipe for overfitting.

When using discords, the choice of subsequence length matters. We have already shown

them in Fig. 1. Moreover, this has been empirically observed by several independent

research groups [42][46][54][60], and we demonstrate it in Fig. 26 and elsewhere in this

chapter.

Creating a heuristic to find the “optimal” window size (even assuming that such a task is

well-defined) is a very hard task. Once again, multiple groups have observed this:

“Finding the optimal window size has remained to be one of the most challenging tasks in

TSDM domains, where no domain-agnostic method is known for learning the window

size” [42].

As we hinted at above, it is not clear that a single optimal window size is meaningful. A

single dataset may have structures and anomalies on multiple scales. For example, in [46]

the researchers acknowledge the attractiveness of the subsequence-base anomaly

75

detection algorithms but bemoan “a fixed length must be specified in advance, making it

a clearly sub-optimal approach for applications dealing with climate data events of

varying length”.

Given the above, there is a simple and obvious answer to all these issues. Simply

compute the anomaly score for every possible subsequence length! Or equivalently, every

possible subsequence length between some widely-spaced minimum and maximum

lengths. This completely solves the issue. If the location of the anomalies agrees at all

lengths, we are done. However, if multiple anomalies emerge at different lengths (as in

Fig. 1, a downstream algorithm can be used to rank/summarize/process them.

Before explaining how we can tackle the apparent untenable time complexity, we will

take the time to dismiss the apparent solution to the problem, using some heuristics to

find a good compromise length.

3.1.1 On the Difficulty of Finding a Compromise Length

We noted that the community has recognized the difficulty of finding the best value of m

for anomaly detection. The basic solution proposed in the literature seems to be to find a

“compromise” length. For example, if you suspect that anomalies might manifest

themselves at a scale of about fifty to seventy minutes, you could set m = 60 minutes.

However, there does not appear to be an understanding as to why finding a good

compromise value for m is so hard. Here we present some novel observations that show

in at least some cases, the task is actually futile. There are simple and obvious anomalies

that can only be discovered for a very particular value of m. Concretely, our observations

are that:

76

• There exist anomalies that are trivial to find for some value of m = t, but completely

disappear any value m < t.

• There exist anomalies that are trivial to find for some value of m = t, but completely

disappear any value m > t.

• In Fig. 26 we illustrate both cases by using the Matrix Profile to find anomalies for

consecutive values of m.

Fig. 26 Two examples to show that anomaly detection can be hypersensitive to the sliding window length.
In (A) we can correctly find a subtle anomaly when m = 49 but increasing m by just one causes the discord
score to plunge. In (B) we can correctly find a subtle anomaly when m = 49 but decreasing m by just one
causes the discord score to plunge to zero.

Note that for clarity we are showing examples on synthetic datasets, however the effect is

seen on real data. Further note that we can combine these observations to contrive a

dataset where the value of m must be exactly 49, or any other number.

1 1000

0
2
4
6
8

10 Discord score for m = 49 is 8.57

Discord score for m = 50 is 0.277

1 1000

0
1
2
3
4
5

Discord score for m = 49 is 4.05

Discord score for m = 48 is 0.00

(A)

(B)

77

To be clear, we are pointing out a worst-case scenario, the evolution of the discord score

with changes m is generally smooth (for example, see Fig. 1, from 12 to 24 hours).

However, these observations strongly motivate MADRID’s philosophy of testing every

length. We can simply bypass the difficulty of finding a good value by testing all values.

3.1.2 On the Computational Demands of “all-lengths”

There appears to be a flaw in our proposed “test-all-lengths” solution. Until recently,

processing even a single subsequence length was considered challenging [65], thus

processing perhaps a thousand subsequence lengths appears to be an insurmountable task

for realistic deployments. In this chapter we show that we can overcome this apparent

bottleneck. We introduce MADRID, an algorithm that is absolutely fast, and for large

datasets can be computed in a Hyper-Anytime fashion. The term Hyper-Anytime will be

formally defined later. In brief it means an algorithm that can converge to within 10% of

the optimal answer, after using less than 10% of the time needed for full convergence.

3.2 Definitions and Notations

We begin by introducing the necessary definitions and notation. This chapter continues to

use all definitions and notations given in Section 2.2 of Chapter 2. In addition to these,

there is one new definition as follows.

Definition 9: A multi-length discord table > is a two-dimensional array that holds the

normalized left Matrix Profiles calculated at multiple scales. Each row represents a left

Matrix Profile derived from executing queries of a different length, arranged row by row

in a descending order based on query length. Let =&1 be the left Matrix Profile of a query

subsequence of length) and is normalized according to query length), with a user-

78

defined query length range [),-?,)@A?] and a step size B, then >	 = 	 [=&!$11 ; 	=&!$1'31 ,

=&!$1'#31 ; 	… ;	=&4511].

In Fig. 27 we illustrate a multi-length discord table M.

Fig. 27 An illustration of a multi-length discord table M. To ground it in a familiar setting, it is loosely
based on Fig. 1.

The left side holds the table’s meta-data. Reading from left to right, the top Discord, is at

the given Loc, for the anomaly length of m. Computing this meta-data is the task-at-hand.

To do so, we can fill in all the values on the right side, record the maximum value in each

row (illustrated by the colored cell) and copy that information to the meta-data. As we

will show, we can in fact prune most such calculations.

Note that in our example above we consider every value of m from 8, the minL to 24, the

maxL. If this is too fine a granularity for a user, they can set a step size, say B = 	2, and

only consider m = [8, 10, ..., 22, 24].

Discord Loc m

23.4 11,895 24 …

23.5 11,895 23 …

23.7 11,895 21 …

23.6 11,895 21 …

22.8 342 10 …

22.4 12,123 9 …

22.3 12,123 8 …

… … … … … … … … … … … … …… …… …

79

3.2.1 A Brief Review of DAMP

MADRID exploits some ideas from the recently introduced DAMP algorithm [65], which

we will review here. To be clear, we can think of DAMP as the currently fastest known

algorithm to compute a single row of multi-length discord table M.

DAMP is an ultra-fast time series anomaly detection algorithm that operates on a fixed

sliding window size. It defines the discord score by measuring the z-normalized

Euclidean distance between the current subsequence and its nearest neighbor in history.

That is, its nearest neighbor in the past; the algorithm is not allowed to compare to

subsequences that occur after its arrival.

DAMP employs two key strategies to speed up the process of anomaly detection, which

are also adopted by MADRID:

• Iterative doubling: Instead of searching the entire time series in history, DAMP

searches back for the nearest neighbor only as far as needed. Initially, it looks back a

small, power-of-2 distance for a subsequence with a distance from the current

subsequence less than the Best-So-Far (BSF) discord score. If such a subsequence is

found, the current subsequence is disqualified from being a discord, and the search

stops. Otherwise, the search length doubles iteratively. Due to the dependency of the

time series data, in most cases, iterative doubling requires only one or two attempts to

disqualify the current subsequence, pruning over 99% of the search space. The

reduction of the search space significantly enhances the speed of the backward

search. In addition, efficiency is gained using the MASS algorithm [44], a fast

80

Euclidean distance computation algorithm based on the Fast Fourier Transform

(FFT), which performs optimally for input data lengths is a power of two.

• Forward pruning: DAMP integrates a forward search procedure to further improve

its speed. The principle is akin to that of the backward search; if there exists a future

subsequence that is similar to the current one, then it is unlikely to be a discord and

will be skipped in subsequent iterations. Similarly, BSF is used as a criterion to prune

future subsequences that do not qualify as discords. This method allows DAMP to

bypass processing unnecessary subsequences, thereby saving computational time and

improving the overall efficiency of the algorithm.

DAMP is a fast algorithm, thus a strong starting point for the task-at-hand is to simply

loop over all values of m using DAMP. However, there are two ways we can improve

upon this. The first is to share information across multiple runs, and the second is to

create an anytime algorithm [63].

3.2.2 Measuring Anytime Algorithm Efficiency

In the title of this chapter, we used the phrase Hyper-Anytime Algorithm. This is a

definition that we invented. To our knowledge, there is no existing taxonomy or

hierarchy to reference the performance of anytime algorithms [63]. We propose the

following (loosely inspired by the h-index).

Assume we are measuring the performance of an anytime algorithm in terms of

percentages, both in computational resources used (generally wall clock time) and current

quality of solution (typically measured in Root Mean Square Error (RMSE)). An anytime

algorithm is said to be E-efficient for the largest number that the following sentence is

81

true: The algorithm can converge within 1-E percent of the final solution using just E

percent of the computational resources.

For example, in Fig. 28, the performance of the algorithm shown in green is 70%-

efficient, as it has converged to within 30% of the final solution using only 30% of the

time required by the batch algorithm. As such, we would call it Ultra-Anytime. Note that

to compute the E-efficiency of an algorithm, we can simply find where it intersects a line

that connects the two “100%” corners.

With E-efficiency defined, we further propose the semantic hierarchy shown in Fig. 28.

As we will show in Section 3.3.1 Setting a Strong Baseline for Efficiency, we will

propose a variety of algorithms to solve the task-at-hand, culminating with MADRID,

which is a Hyper-Anytime Algorithm.

82

Fig. 28 An illustration of the performance of five hypothetical anytime algorithms. The point where they
intersect the red dashed line allows us to rank them with the proposed hierarchy.

3.3 MADRID

We are now in a position to introduce MADRID. The reader will recall the completed

multi-length discord table > shown in Fig. 27. In Fig. 29 we show what this data

structure looks like when it is initialized.

100%0%
0%

100%

Computational Resource

Q
ua

lit
y

of
 S

ol
ut

io
n

Hyper-Anytime
Super-Anytime
Ultra-Anytime

Anytime
Hypo-Anytime

<90%

<80%

<70%

~50%

>50%

30%

83

Fig. 29 An initialized multi-length discord table M. Compare to Fig. 27. Here the user chose minL = 8,
maxL = 24 and S = 1.

Note that there is a simple way we can measure progress when completing this data

structure. The current sum of all the numbers in the Discord column is zero, let us call

this number the discord-sum. As we begin to incrementally fill in cells with either their

final values or increases in their current BSF values, this sum will rise, until it reaches its

final value, which happens to be 374.2. This is the variable we will use to track progress

in our anytime algorithm framework.

3.3.1 Setting a Strong Baseline for Efficiency

As shown in Fig. 30, before we formally introduce MADRID, we will introduce four

baselines, each one progressively better than the last. All four sequentially visit each cell

in the multi-length discord table M from left to right and top to bottom. However, due to

the different search strategies they employ, their processing speed varies greatly.

Discord Loc m

0 NaN 24 …

0 NaN 23 …

0 NaN 21 …

0 NaN 21 …

0 NaN 10 …

0 NaN 9 …

0 NaN 8 …

… … … … … … … … … … … … …… …… …

84

The first technique is pure brute force. It uses a naïve nearest neighbor algorithm to

search for the nearest neighbor in all historical data for every subsequence in the sliding

window. As shown in Fig. 30.top it takes 15.5 hours to finish.

The MASS Brute Force was introduced as a baseline in [65]. It also searches across all

historical data, however it avails of MASS [44], which is a highly optimized subsequence

search algorithm. As Fig. 30 shows, it is 14 times faster.

By using DAMP, we can further improve efficiency. DAMP accelerates the search by

using the iterative doubling and forward pruning techniques we reviewed in Section 3.2.1

A Brief Review of DAMP, significantly reducing the search space and thereby greatly

accelerating the process. As Fig. 30, shows it is about 2.3 times faster than a

straightforward application of MASS.

While DAMP itself is fast, we can further accelerate it by taking advantage of a unique

feature of our problem setting. The efficiency of DAMP greatly depends upon the BSF

discord score. The larger it is, the more effective the pruning is. For a single run of

DAMP at a given value of m, we have no control over how fast m rises to its final value,

the discord score. However, in our setting, we expect that in general, the discord score of

cell M[Loc,m] will be highly correlated with cell M[Loc,m+1]. We compute the first row of M

using classic DAMP, which computes (calculating or pruning) the cells from left to right.

But for all subsequent rows, we first compute the value of the cell that had the highest

value in the previous row. This gives us a large BSF discord score from the beginning.

We call this optimization warm-start. Fig. 30 shows that it gives a further 1.5 times

speed-up.

85

Fig. 30 top) The performance of four algorithms tasked with computing M for a time series of length 8,192,
with minL = 128, maxL = 768, and step size S = 1. As pure brute force visually dominates, in (bottom) we
show a zoom-in on the other three approaches.

For the rest of this chapter, we will only show results corresponding to the gray shaded

area in Fig. 30, having established it as our strong baseline. In addition, in future figures

in order to factor out the influence of the hardware being used, we will plot not the

absolute time, but the percentage of cells in M computed or pruned.

Although warm-start DAMP can achieve further acceleration by leveraging higher BSF

discord scores, each iteration depends on the results of the previous one, meaning we

have to wait for the search on m to complete before jumping to m + 1. As a result, this is

a batch-only algorithm.

However, when dealing with very long time series and/or a wide range of subsequence

lengths, warm-start DAMP may take a long time to complete all iterations and report to

the user. Is there an anytime algorithm approach [63] that can offer an approximate

Q
ua

lit
y

of
so

lu
tio

n

0 4000
0%

100%

Wall clock time (seconds)

Warm-start DAMP

Pure DAMP MASS Brute Force

~One hour
~24 minutes

Q
ua

lit
y

of
so

lu
tio

n

0 60,000
0%

100%

~15.5 hours

Pure brute force (NN)
Pure brute force (extrapolated)

~16 minutes Pure brute force (NN)

(Zoom-in of the above)

86

answer early in the execution of the algorithm? In response to this, we introduce

MADRID, which employs an additional initialization strategy to provide a quick

estimation of the top discord for each subsequence length before launching warm-start

DAMP.

Fig. 31 illustrates the initialization process of MADRID. Since the DAMP search is very

fast for a single window length, we can take advantage of this fact to quickly calculate

several top discords of different lengths that are representative of the full range we are

tasked with searching. This will provide strong clues for inferring the location of

remaining discords at other lengths. But what makes top discords representative? We

hope that the most representative top discords can provide more information for

subsequent inferences, which means there should be as much diversity among them as

possible; they should exhibit the maximum possible differences either in length (m) or

location (Loc). As in most cases, the discord location (Loc) of m and m + 1 can be

adjacent, by maximizing the differences in lengths of three top discords, we are more

likely to obtain three widely separated Locs. Therefore, as the first step in initialization,

we let DAMP perform searches on the maximum length maxL (here 24), the minimum

length minL (here 8), and the mid-length (maxL + minL) / 2 (here 16). As shown in Fig.

31, the cells visited by DAMP are marked in gray, and the top discords found by DAMP

are highlighted in red.

Discord scores/locations are also updated in the meta-data (red text). Following this, we

can utilize the known information, i.e., the red text, to make quick and reasonable

inferences about the unknown information in the meta-data.

87

Fig. 31 MADRID’s multi-length discord table M after the first step of initialization. As a follow-up to Fig.
29, here minL = 8, maxL = 24 and S = 1.

The second step of initialization builds on the same insight that informs warm-start

DAMP. Since the discord score of cell M[Loc,m] will generally be highly correlated with

cell M[Loc,m+1], we postulate that cells located in the same column as the red points, while

may not end up as the top discord for that row, have a high likelihood of being in close

proximity to the top discord, with a score near that of the top discord. Consequently, we

compute the scores for all cells in the same columns as the three top discords. In Fig. 32,

the columns accessed during this process are colored in yellow. Finally, apart from the

rows selected in the first step, each row computes three discord scores at three positions,

from which we choose the cell with the highest score as the approximated solution and

use it to update the meta-data for that row. The left side of Fig. 32 displays the meta-data

after initialization, where we distinguish between exact and approximate values using red

……

Discord Loc m

23.4 11,895 24 …

0 NaN 23 …

0 NaN 22 …

0 NaN 9 …

21.3 7,569 8 …

… … … … … … … … … … … … …… …… …

18.7 12,123 16 …

0 NaN 10 …

0 NaN 21 …

0 NaN 11 …

… … … … … … … … … … …… …… …

88

and black colors respectively. The red fonts in the Discord and Loc columns represent

exact values that match the final results and will not be modified in subsequent

computations. Meanwhile, the black fonts are approximations, which may be corrected in

subsequent calculations.

After the initialization process, MADRID initiates warm-start DAMP to calculate the

exact scores and positions of top discords row by row. This time, warm-start DAMP can

utilize the discord scores obtained during the initialization stage, compare them with the

BSF discord score returned after processing the previous row and select the higher score

as the initial BSF score to start searching the current row.

Fig. 32 MADRID’s multi-length discord table M after the second step of initialization. As a follow-up to
Fig. 31, here minL = 8, maxL = 24 and S = 1.

Discord Loc m

23.4 11,895 24 …

22.5 11,895 23 …

23.7 11,895 22 …

20.8 7,569 9 …

21.3 7,569 8 …

… … … … … … … … … … … … …… …… …

18.7 12,123 16 …

19.9 7,569 10 …

19.2 12,123 21 …

18.4 12,123 11 …

… … … … … … … … … … … … …… …… …

89

3.3.2 Making Different Length Subsequences Commensurate

We have glossed over one important issue in the above. We propose to find anomalies at

lengths that may differ by more than an order of magnitude. Naturally, all things being

equal, longer anomalies will tend to have higher discord scores. However, we would like

the discord scores to be commensurate across different lengths for two reasons.

• The effectiveness of MADRID’s search strategies is based on passing information

between subsequence lengths; this is most effective if the subsequence lengths are

commensurate.

• We may wish to report the most natural length anomaly. However, unless we can

make the different lengths commensurate, the longest discord will almost

certainly have the highest discord score.

Several research efforts have proposed normalizing different length Euclidean distances

by dividing by the subsequence length, however this overcompensates. As Fig. 33 shows,

the correct normalization is to divide by the square root of the subsequence length.

90

Fig. 33 top) Two slightly noisy sine waves. bottom) We measured the distance between the prefixes of
these sine waves of every length from 128 to 1024. The unnormalized distance grows, the length
normalized distance plunges, but the proposed “divide by the square root of m” normalized distance
remains almost constant.

For brevity, we relegate the derivation of this normalization factor to [51].

3.4 Discussion

Before beginning the experimental evaluation, we will take the time to discuss the

implications of an all-lengths search for anomalies.

3.4.1 MADRID Solves the Core TSAD Problem

We have seen that MADRID is an effective TSAD algorithm, here we make a stronger

claim. MADRID solves (or rather bypasses) the core TSAD issue, parameter tuning.

Most researchers who attempt to evaluate TSAD algorithms noted the extreme difficulty

of setting parameters. For example [62] notes “specifying the hyperparameters of

anomaly detection is particularly difficult because it requires an in-depth understanding

of the data and the algorithm”, [61] bemoans “a full parameter grid search is clearly

0 10000

1

Unnormalized
ED

ED normalized
by length m

ED normalized
by square root
of length m

128

The distance between A[1:i] and B[1:i] for all values of i from 128 to 1024

A
B

91

infeasible” and [42] laments “..window size for extracting such subsequences is a crucial

hyper-parameter”.

Note that these are the comments of experts in TSAD, presumably the technicians tasked

with using the algorithms in factories/hospitals would have even more difficulty. The

reader will appreciate that MADRID completely solves this issue, there are simply no

parameters to set6.

Many other research efforts make an unspoken assumption before introducing their

proposed approach. Here we will make that assumption concrete, and show it is

unwarranted. The (near universal) unspoken assumption of TSAD is:

If there is an anomaly of length K in a dataset, and we set the sliding window length of a sensitive

algorithm to be L, a number smaller than, but still a large fraction of K, then we will probably find the

anomaly. This is because a strong anomaly of length K surely is comprised of sub-regions that are at least

somewhat anomalous.

To show that this is an unwarranted assumption, let us create a simple synthetic dataset.

As shown in Fig. 34.top, the normal data simply consist of two small bumps, followed by

a large bump. The anomaly we created is similar, but there are three small bumps. This

anomaly is visually obvious.

6 For the pedant, minL can be set to 3, the smallest subsequence that can be z-normalized, and maxL can be set to an arbitrarily

high number, and S is defaulted to one. Thus MADRID is truly parameter-free.

92

Fig. 34 top) A trivially simple anomaly detection problem is unsolvable for any algorithm that considers a
sliding window length m < 54. bottom) However, MADRID with minL = 10, maxL = 100 and S = 1 easily
solves this.

As shown in Fig. 34.bottom, MADRID[10,100,1] solves this problem. It finds the anomaly

in two ways. The random scattering of the top discord location for m = 10 to 53 suggests

that these are not true anomalies, whereas the stability of the top discord location for m =

54 to 100 is evidence of a strong significant anomaly. Moreover, the discord scores (see

[51] for a 3D version of this plot) rise dramatically as we transition from 53 to 54 and

beyond.

We have tested DAMP, the Matrix Profile, OmniAnomaly and Telemanom on this

dataset with a sliding window of length 50, and they all fail to find this obvious anomaly.

Moreover, although we clearly have not tested all of the dozens of TSAD algorithms out

there, from their descriptions we believe that most or all of them will fail here.

In retrospect this finding seems obvious. By analogy, the last decade has seen

extraordinary progress in facial recognition algorithms. However, Fig. 35 invites us to

imagine we forced the algorithms to use a single-sized bounding box for all images.

10

100

Extra
“bump”

Training
data

Va
lu

e
of

 m

54
“All” TSAD algorithms
fail ifm < 54

93

Fig. 35 The futility of the “one-size-fits-all” unspoken assumption of TSAD is obvious if we consider its
analogue in image processing. Any face processing algorithm would clearly find the images at the left or
right extremely challenging.

This observation has implications not only for our championing of MADRID, but even

for a retrospective review of previous comparisons of TSAD algorithms. By carefully

choosing the right datasets and the “right” value for m, it is possible to achieve almost

any relative ranking of any competing approaches. No empirical comparison we are

aware of seems to have carefully considered this issue.

Finally, here we used a synthetic dataset for clarity, however the empirical results in the

next section suggest that this is a real issue. In many settings, a single-length TSAD

algorithm can be effective if the perfect subsequence length is chosen but can fail if the

value is even slightly off.

3.5 Experimental Evaluation

To ensure experiments are easily reproducible, we have built a website [51] that contains

all the data/code used in this chapter. All experiments were conducted on an Intel® Core

i7-9700CPU at 3.00GHz with 32 GB of main memory.

In our experiments we need to demonstrate two things. First, that there are anomalies that

MADRID can discover that will escape our attention if we use a single window length

application of the MP, or any competitive TSAD algorithm.

94

Second, we need to show that our casting of MADRID as an anytime algorithm allows us

to find discords quickly. So quickly, that for many realistic scenarios a user can interact

with historical archives in real-time interactive sessions.

3.5.1 Revisiting Melbourne Dataset

We revisit the Melbourne dataset shown in Fig. 1, this time considering foot traffic in

Waterfront City, a popular shopping area, from April 2009 to January 2018.

 In [65] the authors noted that deep learning approaches have a hard time generalizing.

For example, if a deep learning model is trained in the winter, it may fail to generalize to

the summer. This is not an issue for MADRID; once a subsequence is inspected, it is

instantly ingested into the model, thus we are largely invariant to concept drift. Thus, to

be fair to deep learning models, we use the first full year as training data, and the

remaining eight years as test data. This way, the model has seen all the annual seasonal

variability and all annual cultural events (Xmas, national holidays, etc.)

We tasked MADRID to return only the top-1 anomaly at each length. Because we are

considering 44 distinct lengths, the algorithm could have returned between 1 and 44

different anomalies, however it actually reports eight district anomalies. Because we have

made the different lengths commensurate, we can rank them. The top three anomalies

(Fig. 36) are:

• 15-hours: Police say widespread flash flooding is beginning to affect central areas

around Melbourne [56]

• 19-hours: Thousands of AFL fans have created a carnival-like atmosphere as they...	
final parade [40]

95

• 39-hours: ...public holiday in Remembrance Day [41]

Fig. 36 top) About eight years of pedestrian traffic. bottom). MADRID with minL = 4, maxL = 48 and step
size S = 1, finds eight distinct anomalies, the top-3 are shown.

Interestingly, these three anomalies are from different causes: an unpredictable weather

event, a sporting celebration, and a somber cultural event.

We compared to Telemanom, one of the most cited TSAD deep learning models [52]. It

would take an estimated 8.6 hours to test all 44 lengths, Instead, we tested just the

shortest, longest, and median lengths. All three lengths found the same anomaly, the 2014

national holiday. There is a sense in which this could be seen as a positive feature, that

the algorithm is “stable”. However, it also hints at the fact that the algorithm is biased

towards certain types of anomalies, independent of the user’s selection of window length,

meaning that certain types of anomalies could be hard to find.

MADRID took 40.5 minutes to fully converge and is semantically converged after just

6.5% of the computations have been completed. Telemanom is an order of magnitude

slower. That is not untenable, especially for data that took nine years to collect, but it

does prohibit real-time interaction with the data. As [47] notes “In interactive data

0

1200

0 100hours0 100hours0 100hours

of

 P
ed

es
tri

an
s

Waterfront City Pedestrian Traffic

0

10000

Apr 30th 2009 Jan 31st 2018

Flash flooding
(15 hours)

AFL Parade
(19 hours)

Remembrance Day
(39 hours)

96

analysis processes, the dialogue between the human and the computer is the enabling

mechanism. It is of paramount importance that this dialogue is not interrupted by slow

computation”. Using MADRID, especially with its anytime feature, a user could run

TSAD for a few minutes and then peek at the results. Based on what she sees, she could

perhaps edit the data “Oh, I should delete all of the summer of 2012, due to that

construction period”, and search again. This type of interaction is simply not tenable if

each cycle takes hours.

3.5.2 Revisiting HEX/UCR Anomaly Dataset

Recently, the HEX/UCR Anomaly Dataset has emerged as a standard benchmark for time

series anomaly detection. One of its key advantages is that it provides a standardized

scoring function to facilitate reproducible and fair evaluation among different papers. As

demonstrated by several independent papers [58][65], DAMP is highly competitive in the

domain. Since DAMP is the core subroutine of MADRID, that bodes well for our

proposed approach.

DAMP offers a heuristic for automatically suggesting a value for m. The method is

simple, and claimed to be effective for most datasets, but it is not perfect and can fail

with datasets that do not have a single distinct periodicity. Because MADRID considers a

range of window lengths, we can increase the chance of successfully detecting

anomalies. Based on the m value suggested by DAMP, we simply set the minL for

MADRID to be one-third of this value and maxL to be three times this value (rounding to

the nearest integer).

Consider the following two examples:

97

We begin by testing the UCR-202 dataset, for which the DAMP’s heuristic suggested a

window length of 32. Therefore, we set the range of MADRID’s window lengths from 10

to 96. Fig. 37 displays the results of MADRID and DAMP algorithms executed on this

dataset. The x-axis represents the window lengths used by MADRID, the y-axis

represents the positions in the input time series, and the z-axis denotes the anomaly

scores. We plotted the top discords found using different window lengths as “stems” in

the figure, where successful MADRID predictions are marked with red stems, failed

MADRID predictions with blue stems, and the DAMP prediction with a green stem.

Fig. 37 The 3-dimensional multi-length discordance table of dataset UCR-202, where minL = 10, maxL =
96, and step size S = 1.

From Fig. 37, we can easily see that most of MADRID’s predictions successfully

identified the ground truth anomaly. Of the 87 predictions of MADRID, 75 are

32

DAMP’s prediction (m=32)

T

98

objectively correct. Or if we report only the location with the highest (length normalized)

discord score, we are also correct.

 In contrast, DAMP uses a window length of 32, which is only one less than the correct

window lengths used for successful predictions. However, this small difference of only

one value caused DAMP to generate a completely wrong prediction result that is far from

the ground truth.

The UCR-202 dataset is not the only such example. For example, we also observed

nearly identical results for UCR-113. For that dataset, MADRID used a window length

interval of [8, 72] and step size 1 to predict the anomaly, with the results showing that 60

out of the 65 predictions are correct. Here DAMP used an incorrect window size of 24,

resulting in a difference of nearly 2000 units between its predicted location and the

ground truth location. There are more examples; however, due to space constraints, we

invite interested readers to view the detailed experimental results/visualizations of other

examples at [51].

Although the success of MADRID is evident in the previous examples, The reader may

argue that MADRID’s higher success rate is simply because it attempts more window

lengths and thus reports more anomaly locations. Since MADRID makes multiple

predictions while DAMP only makes one, this comparison might seem unfair to DAMP.

Therefore, for situations and downstream algorithms that require a single answer, how

can we summarize MADRID’s multiple predictions into a single value?

We believe that there is no single answer to this question, here we highlight some

possible approaches:

99

Human Inspection: In many cases, the ultimate filter of anomaly detection is human

inspection. Anyone glancing at Fig. 37 would surely come to the right conclusion. The

instability of locations for m < 34 suggests that such short lengths are inappropriate for

this domain, but there is a significant anomaly here.

Highest Score: Because we have made the discord score commeasure, we can simply

report only the location of the highest score. In Fig. 37 this would return the correct

answer (m = 71 has the highest discord score of 0.52). This idea generally works well, but

there is a danger of obtaining a false result for a small value of m, if we allow a very low

value of minL.

Clustering: Here, we construct a cluster-based approach to summarize the results

returned by MADRID. First, we employ DBSCAN to cluster the top discords reported by

MADRID based on their two-dimensional coordinates [Loc, m] in the multi-length

discord table, which can be accessed in MADRID’s meta-data. Typically, when DAMP

searches on excessively short lengths m, its predictions are unstable, the distribution of

Loc is discrete and random. DBSCAN can address this issue by adjusting its epsilon

parameter to exclude sparsely distributed points from the clusters. After clustering, to

measure the importance of each cluster, we calculate the sum of the discord scores of all

top discords within each cluster as the cluster’s weight. We do this because the sum of

the discord scores is related to both the magnitude of each discord’s score within the

cluster and the number of discords in the cluster. These two elements are crucial for

evaluating the importance of the current cluster. Finally, we sort the clusters in

100

descending order based on their weights and return the position of the centroid of the

highest-weighted cluster as MADRID’s best prediction.

If we apply any of these three methods (recognizing that “1” is not a true algorithm) we

can significantly boost the performance of DAMP, which is currently SOTA on this

archive [65]. However, we will not report the actual number, as there is a chance of being

accused of HARKing (hypothesizing after the results are known) [55]. Here the

accusation may be justified, as we took advantage of the high certainty ground truth7 to

understand these issues and design these solutions.

3.5.3 Scalability

Here we test the scalability of our proposed algorithm. We consider two synthetic

datasets of lengths 100,000 and 1,000,000. In both cases, the first 50,000 datapoints were

used as training data. As shown in Fig. 38, the synthetic datasets have three anomalies

embedded into them. These datasets are designed to be easy, and to have an unambiguous

ground truth. Recall that our baseline is warm-start DAMP (cf. Fig. 30), which is already

much faster than the application of pure DAMP. To appreciate the anytime properties of

MADRID we plot the results inside a unit square as shown in Fig. 28.

7 A recent paper offers forceful evidence that many TSAD benchmarks have high undocumented uncertainty in their ground
truth [59].

101

Fig. 38 top) The beginning and end of the test datasets. bottom) The three anomalies embedded into the
synthetic data are visually obvious with human inspection.

We also want to test the semantic convergence of MADRID, to ensure that RMSE

measured is a good proxy for the task-at-hand. We therefore ask the following question:

at what point could we have stopped MADRID and have the majority of the Loc pointers

point to one of the three anomalies locations? As shown in Fig. 39, this happens after

only ~1.55% of the total computation was completed, at which point there were 58

pointers pointing to the first anomaly, 89 pointing to the second anomaly, and 46 pointing

to the third anomaly, confirming MADRID’s strongly anytime behavior.

995,000 100,0000 500

First 500 datapoints, last 500
datapoints. Note the slight change
in period, which is smoothly
spread over the full length of the
data.

102

Fig. 39 Anytime convergence plots for MADRID on 100K (left) and 1,000K (center), datapoints. In both
cases, minL = 64, maxL = 256 and step size S = 1. right) Overlaying MADRID’s convergence plot onto the
nomenclature template shown in Fig. 28 suggests that MADRID is a Hyper-Anytime Algorithm.

It is difficult to see in the above plot, but MADRID’s convergence is slightly faster for

larger datasets, and in both cases the algorithm is a Hyper-Anytime Algorithm.

MADRID returns a real-valued anomaly score for the most anomalous location at each

length. However, how do we make the binary decision as to sound an alarm or not? This

is simple. We use the training data to sample time series of a random length in the range

minL to maxL, and then find their nearest neighbor (i.e., their “discord score”, in spite of

the fact that they are not anomalous by definition, coming from the training data). We can

then use the classic “mean-plus-three-standard-deviations” technique as an anomaly

threshold. As Fig. 40 shows, this correctly flags all three anomalies.

Fig. 40 The classic “mean-plus-three-standard-deviations” rule correctly flags anomalies shown in Fig. 38.

Q
ua

lit
y

of
so

lu
tio

n

Percentage of Computational Resource
0 100%

0

100%

Percentage of Computational Resource
0 100%

Semantic Convergence Semantic Convergence

100%0%

Hyper-
Anytime

Percentage of Computational Resource

100,000
Datapoints

1,000,000
Datapoints

0 0.5Discord Scores

Anomaly
Threshold

Anomaly-Free
distance
distribution

103

Having established MADRID performance, we measured the performance of two of the

most cited TSAD algorithms, OmniAnomaly [66] and Telemanom [52] on the smaller

dataset. We set their sliding window to be 160, the midrange of lengths that MADRID

considers.

Using OmniAnomaly’s default (binary) predictions, it reports forty positives, two of

which are true anomalies. If we instead use its internal real-valued measure of the

“strength” of anomalies to find the top three anomalies, we find none of them are true

positives. We used the default parameters, perhaps changing these parameters could

improve performance, however the training/test times of 352 minutes/10 seconds do not

invite the user to interact with the algorithm. Telemanom does much better, correctly

reporting all three anomalies. However, its training/test times of 111 minutes/23 minutes

are also very slow for such a small dataset. In contrast MADRID takes a total time of 3.9

minutes and converges on the correct answer in just 34 seconds.

In summary, in this dataset MADRID can test 192 different subsequence lengths much

faster than the SOTA deep learning algorithms can test a single length, and MADRID

successfully finds all anomalies.

There are two other algorithms that we can directly compare to: MERLIN, and the PAN-

Matrix Profile. To be fair, to the PAN-Matrix Profile, we note that it is solving a more

general and more difficult task, as it is computing the full Matrix Profile at every length

(i.e., motifs and discords), whereas MADRID and MERLIN are only finding discords. On

the 100K dataset, MERLIN takes 3.6 hours and the PAN-Matrix Profile takes 1.8 days.

104

3.5.4 Case Study in Industrial Data

The core motivation for MADRID is that there may exist anomalies of very different

lengths within a single dataset. Here we show this to be true on an industrial conveyor

system known as HRSS [53]. The system consists of multiple high-speed conveyor belts

that can move an object along both the horizontal and vertical axis (A video of the system

is at [53]). The dataset is interesting because the technicians, after allowing 48 normal

cycles, begin to introduce physical obstructions that resulted in anomalies, thus we have

an unambiguous ground truth. We ran MADRID on a voltage trace from the system, with

minL = 64 and maxL = 256.

Fig. 41 top) A 27-minute-long O_w_BHR_voltage trace from HRSS. bottom) MADRID with minL = 64,
maxL = 256 and step size S = 1, finds four distinct anomalies, all true positives.

MADRID reported four distinct different length anomalies, all true positives. If we use

the commonly proposed heuristic of setting a sliding window length to about one cycle,

almost all algorithms (including the Matrix Profile) will fail to find the two shorter

anomalies, Spike and Stall.

0 600 0 600

m = 64

m = 98

m = 133

m = 256

O_w_BHR_voltage

Spike

Stall(compare to)

Repolarization Fault

Null Cycle

Green
highlight
shows
expected
behavior

0 32500

105

Another interesting observation is that for the Repolarization Fault, MADRID detects the

first occurrence of it, and notices the following cycle has the same fault. This shows that

MADRID is “twin-freak” invariant, a property we inherit from our use of DAMP. In

contrast, the classic Matrix Profile fails to find this anomaly. Finally, even though we

searched over a large range of m, at the finest resolution possible, MADRID is still much

faster than real-time here.

3.5.5 Case Study in PSML

To further investigate multi-scale anomalies, we explored the PSML dataset [64], which

contains relative humidity, temperature, and electricity load for CASIO Zone 1 (Northern

California). We used the entirety of 2018 as training data to detect anomalies occurring

during 2019 and 2020. Since the PSML dataset is sampled every minute, our training and

testing data have lengths of 0.5 million and 1 million, respectively. To ensure that

MADRID can perform fine-grained and efficient searches on such a large-scale dataset,

we set minL = 720 (half a day), maxL = 10,080 (one week), and step size S = 720 (half a

day).

MADRID detected various multi-scale anomalies in three dimensions: relative humidity,

temperature, and electricity load. Due to space constraints, we only report the search

results for relative humidity here. For the rest of the results, please refer to [51].

As illustrated in Fig. 42, MADRID identified four distinct relative humidity anomalies,

each corresponding to extreme weather events of varying durations. The shorter

anomalies captured by MADRID are associated with three different storms - Winter

Storm Kai [42], Winter Storm Nadia [45], and the Thanksgiving week storm of 2019

106

[50]. These storms brought about brief but intense precipitation, thereby causing a short-

term increase in relative humidity. All the longer anomalies, extending beyond two days,

are caused by the Kincade Fire, which ravaged Northern California for a protracted

period of 15 days. As reported, due to the wildfire spread, “humidity remained critically

low” [57].

Fig. 42 top) Three years of relative humidity data for Northern California from PSML. bottom) MADRID
with minL = 720, maxL = 10,080 and step size S = 720, finds four distinct anomalies.

MADRID required 10.6 hours to conduct 14 searches of varying lengths on 1 million

data points and report the four meaningful anomalies of different lengths. We made every

effort to make Telemanom and OmniAnomaly work on this dataset, however the size of

the training data completely defeated them. We documented these efforts at [51].

Three years of relative humidity data for northern California

0

100

Jan 1st 2018 Dec 31st 2020

0 15000
0

100

0 15000
0

100

Kinkaid Fire (one week)

Winter storm Kai (half day)

Winter storm Nadia (one day)

Thanksgiving-week storm (two days)0 15000
0

100

0 15000
0

100

107

4. FIRE makes any Time Series Anomaly Detection Algorithm Faster, More

Accurate and more Practical

Time series anomaly detection has become an increasingly important task with our

dramatically increasing ability to sense the world. The time series anomaly detection

(TSAD) task is typically framed as follows: Given some training data, build a model to

predict the occurrence of anomalous subsequences.

In this chapter, we argue that any practical definition of TSAD must be generalized to:

Given some training data, predict when a user would claim a subsequence is anomalous.

This is a simple but critical distinction, but as we will show, without understanding and

modeling the user’s knowledge and requirements, most TSAD algorithms are doomed to

be plagued with false positives. Moreover, false positive fatigue is widely understood to

be the greatest barrier to adoption for TSAD algorithms. After demonstrating this claim,

we introduce FIRE, an intuitive framework to allow us to represent the user’s knowledge

and requirements and communicate them to the anomaly detection algorithm. As we will

show, FIRE is algorithm and domain agnostic, and it can make anomaly detection faster,

more accurate and more useful.

4.1 Motivation and Observations

We begin by stating the fundamental observations that inform our work. The reader may

find these observations obvious or even bordering on tautological. However, we are not

aware of their concrete statement in the literature.

108

Fundamental Observation 1: For virtually any domain, and for virtually any ADA,

there will be patterns observed that are not anomalies, but they will trigger the ADA. We

call such patterns OMITS (Obviously MeanIngless Time Series).

To illustrate, consider the time series shown in Fig. 43.

Fig. 43 Three independent time series that apparently have strong anomalies in the yellow highlighted
regions. As we will show in this chapter, these should not be considered anomalies.

The reader may be surprised by these examples, the highlighted regions appear to be

visually obvious anomalies. Indeed, the Taxi Demand example shown in Fig. 43.bottom

has been flagged as an anomaly by several hundred papers. However, the Taxi “anomaly”

is caused by a simple formatting quirk of dealing with Daylight Saving Time. Given that

this spike could be predicted years in advance, it makes no sense to call it anomalous. By

analogy, for millennia comets were literal anomalies in the sky, but the 1758 appearance

of Halley's Comet was not an anomaly, it had been predicted decades early.

This introspection leads us to a new observation.

The NY-Taxi example shown in Fig. 43.bottom has an interesting history. In the original

dataset there is a labeled anomaly for Marathon, which did indeed take place on Sunday,

November 2nd 2014. Of the five labeled anomalies in this dataset, this is the most visually

obvious anomaly, and over one hundred papers report being able to discover it. However,

ECG

Anomaly?

ABP

Anomaly? Anomaly?
Taxi
Demand

109

the large visually obvious spike does not happen at during the late morning/early

afternoon when the athletes were running in the marathon, it happens exactly at 2:pm,

when the clocks move back for Daylight Saving Time. It is obvious that a naïve

processing script summed the taxi demand for the two hours then mapped that value to

one hour, rather than averaging them, creating an apparent spike in demand. Wu and

Keogh [35] noted that many datasets suffer from similar mislabeling.

Fundamental Observation 2: Most definitions of 'anomaly' make reference only to

predictions made based on properties of a data set. However, any practical definition of

'anomaly' should instead predict how a given user would label the data. Moreover, the

definition must allow for the fact that the user may have access to arbitrary out-of-band

data and domain knowledge.

We can use Fig. 43.middle to illustrate this. If we look at the highlighted shape, every

ADA we are aware of will strongly signal that region as containing an anomaly.

However, there is an important domain-specific fact that experienced users in this domain

know. This data comes from a sensor that is glued to a patient's skin. If the sensor has a

weak contact with the skin, it can send erratic signals, but critically, those signals have

very low cardinality. Thus, a medical doctor will realize that these strange signals are not

biological anomalies to be investigated, just low-quality data to be ignored.

Finally, we note that even within an single domain, the definition of anomaly can be

idiosyncratic.

Fundamental Observation 3: Time series anomalies can be subjective. We can only

meaningfully define anomalies with reference to purpose of monitoring.

110

To illustrate consider Fig. 43.top . Without context the highlighted pattern appears to be

an anomaly in someone’s electrocardiogram. However, as Fig Y shows, this dropout is

the result of the body-mounted sensor experiencing a dramatic acceleration. Is this

pattern an anomaly? To a cardiologist, the answer is no, it is just corrupted data.

However, to the bedside vascular technologist who is in charge of collecting the data, the

answer is yes. They are charged with producing high-quality data, and some anomalous

event, perhaps a nurse tripping over the sensor cable, has caused an anomaly that that the

technician must address, perhaps by tying up the loose cable.

This realization that TSAD is an inherently subjective task initially appears to be bad

news. By analogy, we are used to objective classification problems like {cat | dog}. There

really is an unambiguous definition of cat (i.e., any animal descended from Pseudaelurus

[68]) and dog. The problem may still be challenging, perhaps the animals are seen from

unusual angles or partly obfuscated by furniture. However, no one doubts that there is a

ground truth in principle.

In contrast, suppose that instead we are asked to classify {cats-ann-likes | cats-ann-does-

not-like }. This subjective problem initially may see like a much harder task. However,

suppose we are allowed to interview Ann, and she informs us that "I like cats that are fat

and I like cats that are a single color". This now becomes a much easier problem, given

only that there is some way to communicate Ann's preferences to our algorithm. Note that

the problem is now much easier, but still not trivial, we need to be able to learn the

animal’s mass and color.

111

To summarize, we claim that anomaly detection needs to be reframed as the problem of

predicting when a given user would claim a subsequence is anomalous.

Given the above motivation, the obvious question is how we should represent and

communicate this user information to the ADA? We propose a data structure called

FIRE. FIRE is a vector that is parallel to the time series being examined, its it used to

communicate between the user and the ADA. As we will show, FIRE can make anomaly

detection algorithms faster and more accurate.

4.1.1 Anomalies can be subjective

The fact that anomalies can be subjective has significant implications for evaluation of

TSAD algorithms. The Inter-rater reliability (IIR) of the ground truth labels provided for

a benchmark dataset creates limits on the claims that can be made. For example, if

Cohen's kappa is say, 0.7 on a dataset, it would be ludicrous for someone to claim that

algorithm A is better than algorithm B because the former had an F1 score that was 5%

higher (See [35] for a formal discussion of IIR of datasets and the claims that can be

made on such datasets).

Given this, it may be surprising to note that virtually no TSAD papers make any effort to

estimate the IIR of the benchmarks they consider. This would not be an issue if we had

good reason to think that the IIR would be very high, but is that the case? Consider the

NY-Taxi example mentioned in the previous section. There are supposedly five

anomalies Marathon, Thanksgiving, Christmas, New Year’s Day and

Blizzard. However, as Wu and Keogh noted, a strong case could be made that there at

least five more, including Independence Day, Labor Day, MLK Day, Grand

112

Jury, BLM march, Comic Con, Labor Day and Climate March. By visual

inspection these unlabeled events seem to be as novel as the five official anomalies. Yet

many papers have reported four significant digits when reporting their performance on

this dataset.

There is a further layer of subjectivity and uncertainty here. We could argue that

Thanksgiving, Christmas, New Year’s day etc. are not anomalies, as they can

be predicted decades in advance. We would further argue that from the list above, only

Grand Jury and BLM march, are true anomalies in the sense that they could not have

been predicted at least a day in advance (Note that we had several days of warning for

Blizzard).

Note that it is possible that a holiday could be an anomaly. The Matrix Profile reports an

anomaly on October 13, Columbus Day. Most US states do not celebrate Columbus Day

as an official state holiday, and the current authors, who live in California, are completely

oblivious to its passing each year. However, New York has a large Italian American

population, and they are perhaps the only group to recognize this holiday. No New

Yorker would be unaware that traffic would be different on this day, due to parades. This

further reinforces the main claim of this chapter, we can only meaningfully define

anomalies with reference to the user's knowledge.

4.2 Definitions and Discussion

To keep our discussion generic, we will use ADA to refer to any Anomaly Detection

Algorithm. In later sections we concretely demonstrate our ideas with particular

algorithms. In general, all ADAs work by “sliding” a window across the time series and

113

giving each subsequence an anomaly score. In some cases, ADA may immediately decide

that the anomaly score is high enough to warrant sounding an alarm. In other cases, the

ADA may abrogate this responsibility, and simply maintain a list of the top-K anomalies

encountered thus far. In this instantiation the assumption is that at any point it may be

queried (by an algorithm or person) to report the top-K tentative anomalies it has

encountered thus far. If needed, some external test can be performed to decide if top-K

tentative anomalies warrant labeling as true anomalies.

Definition 10: An OMIT is a subsequence of a time series that will cause an ADA to

report and anomaly, but which the user will not consider to be an anomaly.

The reader may respond to this this definition, “Can’t you just make sure that these

patterns are in the training data, thus allow the ADA to learn the OMIT pattern?”

However:

• Some OMITS may be due to out-of-band data that the ADA will not have access to.

For example, as shown in Fig V, most algorithms will trigger an alarm when they

encounter a region that includes the changing of clocks due to daylight saving time

(DST). In order to learn this concept, an ADA would need to reason not just about the

shapes of the time series but also about the day and the month. However, no ADA

algorithms we are aware of even represent or consider such information.

• It may be the case that the OMITS are not learnable by the ADA. For example,

consider the low cardinality example shown in Figure X. We are not aware of any

ADA algorithm that is sensitive to the intrinsic cardinality of the data and could

therefore learn to ignore low cardinality subsequences.

114

• Even where ‘2’ above is not true, and the ADA could in principle learn the OMIT,

asking the ADA to learn the OMITS means that the algorithm may do a worse job at

learning the important regularities. All ADA models have a finite capacity to learn.

We should not tax this limited resource by asking them to learn something that could

be trivially hardcoded.

• Even where ‘2’ and ‘3’ above are not true, in at least some cases, it would simply be

much easier and faster to simply hardcode the rules. As we shall see, we can typically

achieve invariance to OMITS with a single line of intuitive code.

In our discussion below, note that ADA is potentially both a consumer of information

from FIRE, and a producer of information that is written to FIRE, for potential post-

mortem analysis.

• FIRE is a categorical vector that accompanies a time series. FIRE contains various

codes that annotate and explain the time series data.

• Some of the values in FIRE may be assigned before ADA begins, and some may be

assigned by ADA as it processes the data. The values of FIRE that are preassigned are

designed to change how the ADA processes the data.

• Some of the values in the FIRE may be assigned by out-of-band information.

• Some of the value’s FIRE may be assigned by the ADA as it processes the data.

4.3 Some of Values in FIRE may be Assigned by Out-of-band Knowledge

It may sometimes be useful to tell ADA to ignore regions of the time series. If ADA sees

such a code, it should do nothing, except move on to the next datapoint. The instruction

115

to ignore could have been placed in FIRE ahead of time, or in real-time. Let us consider

some examples of each.

Established Exclusion: Suppose we have an anomaly detector that monitors the

production of a batches with a short cycle, say five minutes. While skilled operators can

generally operate the machines with metronome-like regularity, there may be unusual

telemetry that happens around midnight, 8:00am and 4:00pm, when there is a shift

change. The newly arriving worker may change settings slightly to reflect her personal

preferences, or abort the last operators unfinished cycle in favor of a calibration run. This

example is motivated by a real-world situation in which a plant manager disabled a

monitoring system because it gave so many false positives at shift change times. FIRE

allows us to simply ignore these using something like: If MOD(now.minutes,480)

< 5, then FIREi = ‘ignore’. Clearly this is an example of a previously

establish exclusion code that can be place in FIRE before ADA is run.

Consider this additional example. The highly studied NAB NY-Taxi dataset has an

apparent anomaly with an interesting cause. On one day the demand for taxis appears to

suddenly spike, but the real cause is that because of the clock change for daylight saving

time, were two hours of taxi demand are mapped to one hour (many papers misattribute

this anomaly to the NY Marathon). Again, it would be easy to instruct ADA to ignore

such anomalies in perpetuity by placing an ‘ignore’ code in FIRE, for a few hours

surrounding the clock change.

Real-time Exclusion: Many medical sensors that are attached to the patient skin with

sticky pads that are vulnerable to motion artifacts. In most cases these artifacts have no

116

medical meaning, and do not warrant recording as an anomaly. For example, a motion

artifact can be caused by a patient scratching the skin near the electrode or even by

sneezing. As recently noted, “motion artefact are the most difficult type of noise to

eliminate because their spectrum usually overlaps with the very important spectral

components of the ECG signal, making it difficult for traditional signal processing

techniques to separate.” [68]. Because of the ubiquity of motion artifacts, the majority of

anomalies detected in such data streams are uninteresting motion “anomalies”, and this

may mask the handful of potentially interesting medical anomalies. Fortunately, there is a

simple solution. Many medical sensors now also include an accelerometer. If we observe

a significant change in acceleration, we can simply write an “ignore” code to the next five

seconds of FIRE. We may desire to be more specific and use a code that explains why the

region of time was ignored, something like: If acceleration > 1.0ms2 then

FIRE[i:i+5seconds] =‘ignore-due-to-motion’.

4.4 Case Studies

Here we show some case studies, beginning with an example of intrinsic annotation of

FIRE.

Recall the APB-data example in shown in Fig. 43.middle. We noted that the bizarre shape

was not an anomaly, but merely a disconnection artifact. In Fig. 44 we show how FIRE

can be programed to communicate to the ADA to ignore such regions.

117

Fig. 44 top to bottom) The ABP time series shown in Fig. 43. The Matrix Profile ADA strongly peaks at
the highlighted disconnection artifact. We can use FIRE to suppress the MP’s selection of this region as the
top anomaly. FIRE is programed to ignore regions around low cardinality subsequences.

Note that in this case suppressing the discovery of the disconnection artifact allows us to

find a subtle true anomaly, the transient rise at about 10,000. This are often called

"sighing" by the attending physician, and depending on the medical context, may be

worth investigating.

In our next example, we consider an example of extrinsic annotation of FIRE. In Fig. 45

we revisit the ECG-data example shown in Fig. 43.top.

Fig. 45 top to bottom) The ECG time series shown in Fig. 43. The apparent anomaly here is simply caused
by the sensor receiving a ‘bump’. Because we have an accelerometer on the ECG sensor, we can suppress
any apparent anomalies that happen during sudden movements of the sensor.

120001

ABP

Anomaly? True Anomaly

FIRE = movmax(PUV<0.5,2×m)

PUV, Percent Unique Values

Matrix ProfileMatrix Profile does have a “highish” value here

Matrix Profile has a
huge value here

36,500 39,000

ECG

FIRE= movmax(Acc’X,250)>10

AccelerometerX

movmax(Acc’X,250)

Anomaly?

118

We investigated the PSML dataset [71], which collects hourly load data from 2018 to

2020 for 66 representative load zones in the U.S. electricity market. In our initial survey,

we noted two OMITS in ERCOT Zone 4, which covers Northern Texas.

• Dropouts.

• Linear regions interpolation artifacts.

Fig. 46 shows two examples of each.

Fig. 46 top to bottom) Three years of electrical load data for Northern Texas from [71]. The first OMIT
occurs on May 12, 2020 and is a dropout. The second OMIT occurs on December 12, 2020 and is a linear
region caused by linear interpolation.

Thus, before investigating other regions, we created the FIRE vector in Table 10.

0.6

1.1

1.6

0.4

0.9

1.4

1/1/2018 31/12/2020Three years

Electrical Load (ERCOT_zone_4)

Seven days

E
le

ct
ric

al
Lo

ad

Dropout

Linear region interpolation artifact

119

Table 10: Pseudo code snippet for creating FIRE vectors to suppress OMITS in PSML dataset
1
2
3
4
5
6
7
8

// Generate FIRE vector to suppress dropouts
FIRE = movmax((abs(diff(T,2))>0.02),2*m)
// Generate FIRE vector to suppress linear regions
For i = 1 to length(T) – m + 1 // Scan all subsequences

linear_region_ratio = max(diff(find(vertcat(1,…
diff(round(diff(zscore(Ti:i+m-1)),3)),1))))/m
If linear_section_ratio > 0.4

FIREi = 1

To see what difference this makes, we searched CAISO Zone 2, which covers Northern

California, both with and without FIRE.

For an m = 36-hour search, eight out of the top ten reported anomalies are false positives

caused by interpolation artifacts (3) or dropouts (5). However, if we rerun with FIRE,

then ten out of the top ten anomalies appear to be true positives. For example, consider

Fig. 47.

120

Fig. 47 top to bottom) Three years of electrical load data for Northern California from [71]. The FIRE
vector generated using Table 10’s algorithm. One of the top-10 discords reported by FIREDAMP in this
dataset. Here the window size is set to 2,160 (one and a half days in minutes).

Based on the date, this anomaly appears to be caused by the Donnell Fire [69]. This was a

wildfire that started on August 1, 2018, due to an unattended illegal campfire, near

Donnell Reservoir, burning around California State Route 108 in Tuolumne County,

California. More than 100 buildings were destroyed, and 9 civilians were injured. The

fire cut brought down powerlines, reducing what otherwise would have been a high-

demand day for air conditioning.

We also considered an m = 48-hour search. This time six out of the top ten reported

anomalies are false positives caused by interpolation artifacts (2) or dropouts (4). Once

again, using FIRE, ten out of the top ten anomalies appear to be true positives. For

example, consider Fig. 48.

0.6

1.4

2.2

1/1/2018 31/12/2020Three years

Electrical Load (CAISO_zone_2)

Ten and a half days

FIRE (m = 2,160)

Aug 1st at 11 p.m. to Aug 3rd at 11 a.m., 2018

El
ec

tri
ca

lL
oa

d

121

Fig. 48 top to bottom) Three years of electrical load data for Northern California from [71]. The FIRE
vector generated using Table 10’s algorithm. One of the top-10 discords reported by FIREDAMP in this
dataset. Here the window size is set to 2,160 (one and a half days in minutes).

Based on the date and location, this anomaly appears to be caused by a preemptive move

by Pacific Gas and Electric (PG&E). The previous year, The Camp Fire was the deadliest

and most destructive wildfire in California’s history, and the most expensive natural

disaster in the world in 2018 in terms of insured losses. At least eight-five people lost

their lives. The cause of the fire was traced to a PG&E power transmission line that was

downed by high winds. Given that background, it is unsurprising that when a year later

on October 26th 2019, when a severe windstorm was expected in Northern California

preemptively cut power to almost one million people, explaining “Public Safety Power

Shutoff (PSPS) events in order to mitigate catastrophic wildfire risk presented by

0.5

1.0

1.5

1/1/2018 31/12/2020Three years

Electrical Load (CAISO_zone_2)

Fourteen days

FIRE (m = 2,880)

Oct 27th to Oct 29th, 2019

El
ec

tri
ca

lL
oa

d

122

significant offshore wind events combined with low humidity levels and critically dry

fuels” [70].

That appears to explain the highlighted anomaly, but not that on the day before the

anomaly there is a peak in demand. Here we can only speculate. The Donnell Fire

anomaly in Fig. 47 was an unexpected event. In contrast, the people affected by this event

were given 24 to 48 hours’ notice. This may reflect a change in behavior of individuals

expecting a power cut, doing laundry or charging their automobiles while they could.

123

5. Conclusion

In this thesis, we introduced three innovative algorithms to address the challenges of

speed and accuracy in TSAD tasks. First, we presented DAMP, a novel algorithm that

computes left-discords on fast-arriving data streams, significantly improving the

scalability of the algorithm up to trillions of data points. Next, we proposed MADRID, a

Hyper-Anytime algorithm designed to tackle the issue of dependency on subsequence

length for detecting anomalies and swiftly identify multi-scale anomalies within time

series. Lastly, we established FIRE, a user-centric framework for encapsulating users'

requirements and communicating to the algorithms, thereby making anomaly detection

algorithms faster, more accurate, and more applicable.

In Chapter 2, we created the left-discord anomaly detection framework, generalizing

classic time series discords that previously only handled the batch case, to the online and

effectively online case, and solving the twin-freak problem in the process. Further, we

have introduced DAMP, a fast and scalable algorithm to discover such discords.

Experimental results have demonstrated that our proposed left-discords outperform the

current SOTA methods, including the most cited deep learning methods in terms of

accuracy. Moreover, we have further demonstrated that DAMP is orders of magnitude

faster and more scalable than any method in the literature. In future work, we plan to

address the limitations of DAMP. For example, DAMP uses the Z-normalized Euclidean

distance, but you cannot Z-normalize constant regions of the time series (as you get a

divide-by-zero error). Another type of anomaly that DAMP cannot detect is a sudden

decrease in the noise level of a time series, as smooth time series tend to have a relatively

124

low distance from all other time series. As of now, we can catch these two special cases

with ad-hoc rules, but a more principled and elegant solution is desirable.

In Chapter 3, we have shown that the results of TSAD algorithms depend more strongly

on the length of the subsequences considered than the community seems to appreciate.

We further show that we can completely bypass the issue by testing all lengths. The

expressiveness of all-lengths search does not come at the expense of tractability.

Therefore, we propose MADRID, which reduces the absolute time to compute all-

discords by employing a novel computation ordering strategy and allows real-time

interaction with data. We have shown that MADRID can test hundreds of values for m, at

least an order of magnitude faster than deep learning models can test a single length, and

thus produce more accurate results. In the future, we intend to enhance the user

experience of MADRID. One direction involves further adapting MADRID to become a

contract algorithm, which affords users the flexibility to plan their computational

resources based on their availability of time, memory, and other factors.

In Chapter 4, we propose a novel paradigm for anomaly detection wherein algorithms

leverage FIRE, a vector for annotating and interpreting time series data, to gain insights

into user knowledge and requirements in order to make more accurate decisions. We used

numerous real-world examples to demonstrate that FIRE improves the accuracy and

efficiency of anomaly detection algorithms. In the future, we will expand FIRE to include

more categorical information, providing enriched context for anomaly detection tasks.

For instance, categorical FIRE vectors can be used in integration learning by assigning

weights to multiple anomaly detection algorithms. Moreover, another possibility is to

125

employ FIRE to dynamically adjust algorithmic thresholds based on domain or out-of-

band information. An example would be recalibrating anomaly detection thresholds in a

factory setting when new processes or equipment alter the standard machine behavior.

We believe that the throughput and scalability of DAMP will allow the community to

address datasets and applications that are currently out of reach, opening up numerous

new possibilities for research. In this thesis, MADRID and FIRE serve as excellent

examples of extensions to DAMP, their superior performance attributable to utilizing

DAMP as a foundation. We believe that there are further potentials to be unearthed in the

future. Finally, to encourage the community to adopt and expand upon our work, we have

made all code and data available at [10][51].

126

6. Bibliography

[1] Aubet F-X, Zügner D, Gasthaus J (2021) Monte Carlo EM for Deep Time Series
Anomaly Detection. arXiv:211214436 [cs, stat]

[2] Audibert J, Marti S, Guyard F, Zuluaga MA (2021) From Univariate to Multivariate
Time Series Anomaly Detection with Non-Local Information. In: Lemaire V,
Malinowski S, Bagnall A, et al. (eds) Advanced Analytics and Learning on Temporal
Data. Springer International Publishing, Cham, pp 186–194

[3] Batista GEAPA, Keogh EJ, Tataw OM, de Souza VMA (2014) CID: an efficient
complexity-invariant distance for time series. Data Min Knowl Disc 28:634–669.
https://doi.org/10.1007/s10618-013-0312-3

[4] Boniol P, Linardi M, Roncallo F, et al (2021) Unsupervised and scalable subsequence
anomaly detection in large data series. The VLDB Journal 30:909–931.
https://doi.org/10.1007/s00778-021-00655-8

[5] Boniol P, Paparrizos J, Palpanas T, Franklin MJ (2021) SAND: streaming
subsequence anomaly detection. Proceedings of the VLDB Endowment 14:1717–
1729

[6] Bu Y, Chen L, Fu AW-C, Liu D (2009) Efficient anomaly monitoring over moving
object trajectory streams. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’09. ACM Press, Paris,
France, p 159

[7] Case Western Reserve University Bearing Data Center. [Online]. Available:
https://csegroups.case.edu/ bearingdatacenter/home. Accessed: Nov. 15, 2021.

[8] CNC Crashes. Video. (15 Feb 2018). from https://youtu.be/t2tBtZCa7j4?t=205.
Retrieved December 20, 2021.

[9] Daigavane A, Wagstaff KL, Doran G, et al (2022) Unsupervised detection of Saturn
magnetic field boundary crossings from plasma spectrometer data. Computers &
Geosciences 161:105040

[10] DAMP (2022) https://sites.google.com/view/discord-aware-matrix-profile

[11] Dau HA, Bagnall A, Kamgar K, et al (2019) The UCR time series archive.
IEEE/CAA J Autom Sinica 6:1293–1305. https://doi.org/10.1109/JAS.2019.1911747

[12] Doshi K, Abudalou S, Yilmaz Y (2022) TiSAT: Time Series Anomaly
Transformer. arXiv:220305167 [cs, eess, stat]

https://doi.org/10.1007/s10618-013-0312-3

127

[13] Higham NJ (2002) Accuracy and Stability of Numerical Algorithms (2 ed). ISBN:
978-0-89871-521-7

[14] Hundman K, Constantinou V, Laporte C, et al (2018) Detecting Spacecraft
Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, London United Kingdom, pp 387–395

[15] Imani S, Madrid F, Ding W, et al (2020) Introducing time series snippets: a new
primitive for summarizing long time series. Data Min Knowl Disc 34:1713–1743.
https://doi.org/10.1007/s10618-020-00702-y

[16] Keogh E (2021) Irrational Exuberance Why we should not believe 95% of papers
on Time Series Anomaly Detection. 7th SIGKDD Workshop on Mining and Learning
from Time Series at SIGKDD 2021. Workshop Keynote
https://www.youtube.com/watch?v=Vg1p3DouX8w&t=324s

[17] Khansa HE, Gervet C and Brouillet A (2012) Prominent Discord Discovery with
Matrix Profile : Application to Climate Data Insight. 10th International Conference
of Advanced Computer Science & Information Technology (ACSIT 2022) May
21~22, 2022, Zurich, Switzerland

[18] Kirti R, Karadi R (2012) Cardiac tamponade: atypical presentations after cardiac
surgery. Acute Medicine 11:93–96

[19] Mueen A, Zhu Y, Yeh M, et al (2017) The fastest similarity search algorithm for
time series subsequences under euclidean distance. url: www cs unm edu/~
mueen/FastestSimilaritySearch html. Accessed 24 Janurary, 2022

[20] Murray D, Liao J, Stankovic L, et al A data management platform for
personalised real-time energy feedback.

[21] Nakamura T, Imamura M, Mercer R, Keogh E (2020) MERLIN: Parameter-Free
Discovery of Arbitrary Length Anomalies in Massive Time Series Archives. In: 2020
IEEE International Conference on Data Mining (ICDM). IEEE, Sorrento, Italy, pp
1190–1195

[22] National Weather Service. January 24, 2019 Heavy Rain and Flooding. from
https://www.weather.gov/aly/24Jan19HeavyRainFlood. Retrieved May 1 2022.

[23] Neupane D, Seok J (2020) Bearing Fault Detection and Diagnosis Using Case
Western Reserve University Dataset With Deep Learning Approaches: A Review.
IEEE Access 8:93155–93178. https://doi.org/10.1109/ACCESS.2020.2990528

https://doi.org/10.1007/s10618-020-00702-y
https://kdd-milets.github.io/milets2021/
https://kdd-milets.github.io/milets2021/

128

[24] Nilsson F (2022) Joint Human-Machine Exploration of Industrial Time Series
Using the Matrix Profile. Halmstad University, School of Information Technology,
Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for
Applied Intelligent Systems Research.

[25] Palpanas T. Personal communication June 4th 2022.

[26] Paparrizos J, Kang Y, Boniol P, et al (2022) TSB-UAD: An End-to-End
Benchmark Suite for Univariate Time-Series Anomaly Detection. Proceedings of the
VLDB Endowment (PVLDB) Journal

[27] Park D, Hoshi Y, Kemp CC (2018) A Multimodal Anomaly Detector for Robot-
Assisted Feeding Using an LSTM-Based Variational Autoencoder. IEEE Robot
Autom Lett 3:1544–1551. https://doi.org/10.1109/LRA.2018.2801475

[28] Park JY, Wilson E, Parker A, Nagy Z (2020) The good, the bad, and the ugly:
Data-driven load profile discord identification in a large building portfolio. Energy
and Buildings 215:109892

[29] Silive.com. Wild storm pelts Staten Island with giant hail -- ‘threat of tornado has
passed’ from https://www.silive.com/news/2019/05/nws-issues-tornado-warning-for-
staten-island.html. Retrieved May 1 2022.

[30] Su Y, Zhao Y, Niu C, et al (2019) Robust anomaly detection for multivariate time
series through stochastic recurrent neural network. pp 2828–2837

[31] Thill M, Konen W, Bäck T (2020) Time series encodings with temporal
convolutional networks. Springer, pp 161–173

[32] Truong HT, Ta BP, Le QA, et al (2022) Light-weight federated learning-based
anomaly detection for time-series data in industrial control systems. Computers in
Industry 140:103692. https://doi.org/10.1016/j.compind.2022.103692

[33] Wastewater News. Valentine’s Day Storm Slams California, Pushing Water
Agencies to the Edge. from
www.news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html. Retrieved Dec 1
2021.

[34] Wikipedia. Leap year problem. from
https://en.wikipedia.org/wiki/Leap_year_problem. Retrieved December 1, 2021.

[35] Wu R, Keogh E (2021) Current Time Series Anomaly Detection Benchmarks are
Flawed and are Creating the Illusion of Progress. IEEE Trans Knowl Data Eng 1–1.
https://doi.org/10.1109/TKDE.2021.3112126

129

[36] Yeh C-CM, Zheng Y, Wang J, et al (2021) Error-bounded Approximate Time
Series Joins using Compact Dictionary Representations of Time Series. CoRR
abs/2112.12965 (2021)

[37] Yeh C-CM, Zhu Y, Dau HA, et al (2019) Online amnestic dtw to allow real-time
golden batch monitoring. pp 2604–2612

[38] Zheng X, Xu N, Trinh L, et al (2021) PSML: A Multi-scale Time-series Dataset
for Machine Learning in Decarbonized Energy Grids. arXiv preprint
arXiv:211006324

[39] Zhu Y, Yeh C-CM, Zimmerman Z, et al (2018) Matrix profile XI: SCRIMP++:
time series motif discovery at interactive speeds. IEEE, pp 837–846

[40] "2011 AFL Parade," The Age, 30 Sep. 2010. [Online]. Available:
www.theage.com.au/sport/afl/2011-afl-parade-20110930-1l0un.html.

[41] "Remembrance Day," Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Remembrance_Day.

[42] “Winter Storm Kai Spreads Snow” Weather.com, Feb. 04, 2019. [Online].
Available: weather.com/safety/winter/news/2019-02-01-winter-storm-kai-snow-wind-
sierra-plains-midwest-new-england.

[43] A. Ermshaus, P. Schäfer, and U. Leser, “Window Size Selection in Unsupervised
Time Series Analytics: A Review and Benchmark,” in AALTD, 2023, pp. 83–101.

[44] Mueen et al., “The fastest similarity search algorithm for time series subsequences
under euclidean distance,” url: www. cs. unm. edu/~ mueen/FastestSimilaritySearch.
html (accessed 24 May, 2016), 2017.

[45] Shulman, "Snow falling in some parts of Redding," Redding, 2019. [Online].
Available: www.redding.com/story/news/local/2019/02/12/snow-falling-some-parts-
redding/2854564002

[46] Barz, et al. “Maximally divergent intervals for extreme weather event detection,”
in OCEANS 2017-Aberdeen, IEEE, 2017, pp. 1–9.

[47] Turkay, E. Kaya, S. Balcisoy, and H. Hauser, “Designing progressive and
interactive analytics processes for high-dimensional data analysis,” IEEE TVCG vol.
23, no. 1, pp. 131–140, 2016.

[48] Keogh, D. R. Taposh, U. Naik, and A. Agrawal, “Multi-dataset time-series
anomaly detection competition,” presented at the 2021 ACM SIGKDD.
www.cs.ucr.edu/~eamonn/time_series_data_2018/UCRArchive_2018.zip

130

[49] Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most unusual time
series subsequence,” in Fifth IEEE International Conference on Data Mining
(ICDM’05), Ieee, 2005, p. 8 pp.

[50] H. Fry and R.-G. Lin, "Storm slams into Northern California with heavy snow and
rain, record low pressure," LA Times, Nov. 26, 2019. [Online]. Available:
www.latimes.com/california/story/2019-11-26/storm-northern-california-heavy-
snow-rain.

[51] https://sites.google.com/view/madrid-icdm-23

[52] Hundman, K., et al. Detecting Spacecraft Anomalies Using LSTMs and
Nonparametric Dynamic Thresholding. (2018), SIGKDD, 387-95.

[53] inIT-OWL, "High Storage System Data for Energy Optimization," Kaggle, 2017.
[Online]. Available: www.kaggle.com/datasets/inIT-OWL/high-storage-system-data-
for-energy-optimization

[54] M. Zymbler and Y. Kraeva, “High-performance Time Series Anomaly Discovery
on Graphics Processors,” arXiv:2304.01660, 2023.

[55] N. L. Kerr, “HARKing: Hypothesizing after the results are known,” Personality
and social psychology review, vol. 2- 3, pp. 196–217, 1998.

[56] N. Parkin and Staff, "Soaked Victoria warned of flash flooding," ABC News, 12
Jan. 2011. [Online]. Available: www.abc.net.au/news/2011-01-12/soaked-victoria-
warned-of-flash-flooding/1903164.

[57] National Weather Service, “Historic Fire Weather Conditions during October
2019,” U.S. Department of Commerce,2023. [Online]. Available:
www.weather.gov/mtr/FireWeatherOctober2019.

[58] OneShotSTL: One-Shot Seasonal-Trend Decomposition For Online Time Series
Anomaly Detection And Forecasting. To appear in VLDB.

[59] R. Wu and E. Keogh, “Current time series anomaly detection benchmarks are
flawed and are creating the illusion of progress,” IEEE Transactions on Knowledge
and Data Engineering, 2021.

[60] S. Imani and E. Keogh, Multi-window-finder: Domain agnostic window size for
time series data. MileTS, 2021.

[61] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in time series: a
comprehensive evaluation,” Proceedings of the VLDB Endowment, vol. 15, no. 9, pp.
1779–1797, 2022.

131

[62] S. Schmidl, P. Wenig, and T. Papenbrock, “HYPEX: Hyperparameter
Optimization in Time Series Anomaly Detection,” BTW 2023, 2023.

[63] S. Zilberstein & S. Russell, “Approximate reasoning using anytime algorithms”
Imprecise and approximate computation, pp. 43–62, 1995.

[64] X. Zheng et al., “A multi-scale time-series dataset with benchmark for machine
learning in decarbonized energy grids,” Scientific Data, vol. 9, no. 1, p. 359, 2022.

[65] Y. Lu, et al, “DAMP: accurate time series anomaly detection on trillions of
datapoints and ultra-fast arriving data streams,” Data Mining and Knowledge
Discovery, pp. 1–43, 2023.

[66] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection
for multivariate time series through stochastic recurrent neural network,” in ACM
SIGKDD 2019, pp. 2828–2837.

[67] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh, “Matrix Profile
XI: SCRIMP++: time series motif discovery at interactive speeds” ICDM, 2018, pp.
837–846.

[68] X. An and G. K. Stylios, “Comparison of Motion Artefact Reduction Methods
and the Implementation of Adaptive Motion Artefact Reduction in Wearable
Electrocardiogram Monitoring,” Sensors, vol. 20, no. 5, p. 1468, Mar. 2020, doi:
10.3390/s20051468.

[69] https://en.wikipedia.org/wiki/Donnell_Fire.

[70] M. E. Allen, “PG&E Public Safety Power Shutoff (PSPS) Report to the CPUC
October 26 & 29, 2019 De-Energization Event”, 2019.

[71] X. Zheng et al., “A Multi-scale Time-series Dataset with Benchmark for Machine
Learning in Decarbonized Energy Grids.” arXiv, May 22, 2022. Accessed: Sep. 27,
2022. [Online]. Available: http://arxiv.org/abs/2110.06324.

https://en.wikipedia.org/wiki/Donnell_Fire

