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ABSTRACT OF THE DISSERTATION

Analysis of sea surface scatter in the time-varying impulse response

by

Edward L. Richards

Doctor of Philosophy in Oceanography

University of California San Diego, 2020

Professor William S. Hodgkiss, Co-Chair
Professor Hee-Chun Song, Co-Chair

In ocean environments, acoustics is the primary means of signal transmission, and sea

surface waves can cause significant propagation variability. Reflections from the moving sea

surface waves cause transient, and often simultaneous, acoustic arrivals. The motivation for

this study is to better understand scattered arrivals, which complicate processing of acoustic

signals in communication systems. Numerical methods are presented that improve modeling

of acoustic scatter in estimates of the time-varying channel impulse response. These methods

are both intended to improve prediction of surface scatter, and also to relate scatter arrivals to

features on the sea surface. Complementary analysis of experimental measurements also relates

xiii



scatter observations to reflecting features on the sea surface. Taken together, these numerical and

experimental analyses both show how surface waves lead to surface scatter, and also how scatter

arrival observations can reveal properties of these surface waves.

Several numerical model methods, both approximate and exact, are used to calculate

sea surface scatter. The approximate models are eigen-rays and the Kirchhoff approximation,

and the exact models are the Rayleigh-Fourier method (RFM) and the limited duration integral

equation method (DIEM). While the eigen-ray solution is often less accurate than the Kirchhoff

approximation, it can be used to show the positions on the sea surface that serve as acoustic

reflectors. The Kirchhoff approximation, in turn, often gives accurate results at close ranges but

diverges significantly from the exact solution at moderate to long ranges. While the RFM was

used to initially demonstrate these results, the DIEM method was developed as a more general

method for exact calculations of surface scatter.

Experimental measurements of surface scatter are significantly more cluttered than pre-

dictions from the numerical models. This issue is addressed with Doppler sensitive probe signals,

which enable resolving scatter arrivals with different Doppler shifts. The flat surface travel time

demonstrates how the Doppler shift relates to both the position and velocity of each surface

reflector. Doppler selective processing is then shown to select for surface reflectors from limited

portions of the sea surface. These results improve the interpretation of scatter observations,

and are intended to inform future studies that compare numerical results with experimental

measurements.

xiv



Chapter 1

Introduction
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Ocean acoustics has been used in numerous applications, including environmental surveys,

fish stock assessment, anti-submarine warfare (ASW), and underwater wireless communication

[1]. In many of these applications, acoustic signals replace electromagnetic signals in analogous

systems such as radar, satellite altimetry and cellphone communications. Acoustic signals are es-

pecially useful in oceanographic research and applications because the ocean environment allows

for sound propagation over long distances. By contrast, electromagnetic signals attenuate rapidly

in the ocean, evidenced by the underwater light field becoming darker only a few meters below

the surface. Consequently, acoustic signals are the only practical means of signal transmission

over significant distances at sea [2].

The longest open-ocean acoustic transmissions have been done with relatively deep

sources and receivers (e.g. the Heard island feasibility test [3]). These long-range transmissions

utilize the deep sound channel, a refracting duct located approximately 1 km deep in most of the

worlds oceans. In the deep sound channel, a significant portion of the acoustic energy propagates

without interaction with either the surface or bottom ocean boundaries, and thus lower loss. This

property of the channel contrasts other cases in which either or both of these boundaries cause

significant signal loss. Such signal loss generally occurs because these boundaries scatter or

attenuate signals interacting with them.

The commonly used phrase “one researchers noise is anothers signal”, applies just as

well when “scatter” is used instead of “noise”. Scatter means both “to cause to separate widely”

and “to cause to vanish”. In many experimental settings, scatter from boundaries does cause

acoustic signals to reduce in amplitude and eventually vanish, precluding the analysis of acoustic

transmissions. However, when scattered signals are detectable and observed clearly, they generally

contain information about widely separated events on the surface.

Work by Cox and Munk [4] on sea surface glitter, visible light scattered off the sea surface,

was an early demonstration of how scattered signals can be used to study the ocean surface. Cox

and Munk took aerial photographs of the suns reflection on the surface of the ocean and showed

2



Figure 1.1: Experimental geometry of KAM11 tripod transmissions: (a) plan view and (b) side
view.

how the spatial extent of the solar bright spot depended on local wind conditions. The results

from this study have since been extended to measurements of wind speed across the open ocean

by satellite using electromagnetic radiation.[5]

This study of acoustic scatter primarily is motivated by the application of acoustic

communication.[6, 7] Acoustic communication is the underwater analog of cellphone and Wi-

Fi communication, where acoustic, instead of electromagnetic, signals carry communication

sequences between modems.[8] However, this analogy often is imperfect and electromagnetic

wireless communication research cannot always be directly applied to acoustic communication.

Instead, both experimental and numerical studies are necessary to address the physics unique to

underwater acoustic communication.

An important part of underwater communication studies, like the Kauai Acomms MURI

2011 (KAM11) experiment discussed here, are repeated measurements of the underwater com-

munication channel in a variety of environmental conditions. These measurements are made by

the transmissions of specialized probe signals, which were sent between a number of different

source and receiver stations over the course of the KAM11 experiment. Between the numerous

components of the KAM11 experiment, the test setup shown in Fig. 1.1 specifically facilitated

the study of surface scatter, [9] and is the motivation of this thesis. Like previous studies of this

setup,[9, 10, 11] this thesis takes a deterministic approach to analyze the surface scatter, which is

a relatively recent framework that works to describes discrete events in scatter observations.[6]

3



The deterministic approach is important because acoustic scatter is often episodic, with relatively

rare but high amplitude arrivals, which are difficult to describe statistically.

The term deterministic scatter was introduced to first describe a short-range at-sea experi-

ment that measured the sea surface profile simultaneously with acoustic channel measurements.[6]

The sea-surface profile was used to model the received scatter arrivals, in many cases with high

accuracy. Similar experiments were made in the surf zone [7] and in wave tanks [12, 13, 14] that

focused on correlating acoustic scatter arrivals with specific reflecting features on the surface

waves.

The KAM11 data represents an important extension of these deterministic scatter studies

to longer-range transmissions, but it presents two additional challenges discussed here. First, the

measurement of the sea-surface profile is challenging over longer ranges, and measurements made

during the KAM11 instead characterized the ocean wave state statistically. Consequently, analysis

of the KAM11 arrivals is largely performed in a qualitative manner by visually comparing obser-

vations to scatter from hypothetical sea-state realizations. Secondly, common approximations

used to model acoustic scatter break down at longer ranges,[15] which require careful assessment

before they can be used with confidence.

This thesis works to improve the analysis of KAM11 scatter, with the aim of extending the

study of deterministic acoustic scatter to longer transmission ranges. The numerical modeling of

surface scatter and the analysis of KAM11 experimental observations make up two distinct parts

of this thesis. Chapters 2 and 3 present the numerical model results that improve the simulation

of the surface scatter in communication transmission scenarios like that of KAM11. Chapter

4 presents a method that relates acoustic scatter arrivals to a position and velocity estimate of

a surface reflector. Finally, Ch. 5 summarizes the major findings of each study, and suggests

possible directions for future work.
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1.1 Framework of observations and analysis

This section provides a brief overview of the theoretical framework used in this thesis to

describe, model and measure surface scatter.

1.1.1 Channel impulse response

The time-evolving channel impulse response will be used here to characterize the acoustic

propagation between the source and receiver and can be used to simulate the received signal for

any specific transmission signal. A schematic of the channel impulse response for the KAM11

experiment appears in Fig. 1.2, modeled for an iso-speed environment with a flat, mirror-like,

ocean surface and bottom.[2] This simple propagation environment has an analytic solution in

which reflections from both top and bottom boundaries create arrivals that are delayed and scaled

replicas of the transmitted signal. In the figure, only the first four arrivals are shown, although

many additional paths exist with repeated interactions between the sea surface and ocean bottom.

The received signal is represented in Fig. 1.2 (b) as a series of the lollipops commonly

used to show an impulse, or delta, function. The delta function is a generalized function of

theoretically zero duration that cannot be realized physically.[16] This function is approximated

experimentally using specialized probe signals and processing, discussed in Sec. 1.1.3. A

received time series of any transmitted signal can be simulated using the impulse response by

super-position. In super-position, each of the impulses shown in Fig. 1.2 (b) represents a scaled

and delayed copy of the transmitted signal that is added together to create the simulated time

series.

The complete duration of the impulse response typically is many milliseconds long.

This means a significant period of silence is required between multiple transmissions, even

if the original transmission was very short, for the receptions to not overlap. In an acoustic

communication scenario where each symbol represents one to a few bits of information, this
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Figure 1.2: First four eigen-rays for an ideal channel: (a) eigen-rays, (b) channel impulse
response. The two shortest paths in Panel (a) are the direct (blue) and bottom bounce (orange).
The two surface interaction paths shown are the surface (black) and surface-bottom (green).
The amplitudes of the arrivals in panel (b) have very similar magnitude, with a sign determined
by the number of surface interactions. Panel (b) shows the first two paths are well separated
in delay from the surface paths, which allows for the separate analysis of these two pairs of
arrivals.

period of silence sets a very low upper limit to the data transmission rate. To avoid this limit,

multiple symbols typically are sent within the duration of the channel impulse response and a

channel equalizer system is used to recover the original sequence of symbols transmitted.[8]

When channel equalizers are used to recover the original transmission, they work best if

the acoustic channel is relatively stable over multiple symbols.[17] For this reason, an important

consideration in the design of a channel equalizer is the expected variation of the channel over time.

This variation is quantified in at-sea experiments like KAM11 that make repeated measurements

of the channel impulse response. In this data, differences between each successive measurement
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of the channel impulse response can be connected to the various environmental conditions most

relevant to each path. Of the channel impulse response paths, the surface paths shows the most

significant variation over short periods of time and this variation is critical in the design of acoustic

communication systems.[18]

1.1.2 Numerical modeling of the surface scatter

While experimental measurements are important to the understanding of acoustic scatter,

numerical models often are necessary to describe or predict these results as well as to extend

these results to other environments. Two commonly used models of scatter are eigen-rays and the

Kirchhoff approximation.[11, 12] In addition to solving for the surface scatter, these models are

useful in relating acoustic scatter arrivals to reflecting features on the surface.

Eigen-ray modeling

The eigen-ray, or geometric acoustics, solution is a high frequency approximation in

which all acoustic propagation is described by rays. Acoustic rays are traced for different launch

angles, and follow straight lines in the case of an iso-speed medium. When a ray encounters

the surface, it reflects specularly, with equal angles of incidence and reflection. This simple

calculation is the basis of the optical scatter study of Cox and Munk,[4] and is most accurate

when the acoustic wavelength is shorter than the smallest physical length scale on the surface.

The eigen-ray model of the surface path is shown in Fig. 1.3 for a sinusoidal surface.

Each row in Fig. 1.3 shows a different snapshot in time as the wave translates from right to left.

The eigen-rays, shown in the left column of Fig. 1.3, reflect from a number of specular points on

the surface. Where a flat surface predicts a single arrival (Fig. 1.2 (b)), the surface wave breaks it

apart into a number of arrivals from various specular points.

The amplitude and delay of each of these eigen-rays are shown in the right column of

Fig. 1.3 as an impulse response. The amplitude of each scattered arrival is generally smaller than

7
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Figure 1.3: Eigen-rays and impulse response for different surface wave positions. Rays that
reflect near wave troughs are shown as black circles, while rays reflecting near wave crests are
shown as blue triangles.

the flat surface arrival (magnitude of 1 in these figures), although Fig. 1.3 (d) shows a focusing

event at 1 ms delay with magnitude above the flat surface arrival. Additionally, the number of

eigen-rays and the delay of each ray changes according to surface wave position.

While the eigen-ray solution captures much of the variability observed in surface scatter

problems, the high frequency approximation used to derive eigen-rays predicts non-physical

discontinuities in pressure. These discontinuous features are termed caustics and shadows zones

(Ch. 3.4 in Ref. [2]). A caustic is formed at the convergence of two eigen-rays, which leads to an

eigen-ray prediction of infinite amplitude. Neighboring the caustic, a shadow zone is a region

where neither of the rays associated with the caustic pass, and the eigen-ray solution therefore

predicts no pressure from these rays. In the eigen-ray solution, the transition region between the

caustic and shadow zone is characterized by a sharp increase of amplitude up to an unbounded

value at the caustic, followed by zero pressure after the caustic. The physical pressure predicted
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Figure 1.4: Pressure magnitude simulated with (a) eigen-rays and (b) Kirchhoff approximation.
Arrows in both panels point to the same positions. The two solutions are similar up to the two
discontinuous caustic features highlighted in panel (a), where the amplitude increases rapidly in
the eigen-ray solution. Only one shadow zone is highlighted here, although there is a shadow
zone associated with each caustic feature. In a shadow zone, no arrival is predicted by the
eigen-ray solution but appears in the Kirchhoff approximation.

for this same transition instead approaches a finite value and is then followed by rapidly decaying

magnitude (a similar ray-cutoff phenomena is discussed by Buckingham [19]).

Kirchhoff Approximation

While a number of different approaches have been used to address the high frequency of

approximation of eigen-ray theory, the Kirchhoff approximation affords many advantages when

used with surface scatter problems.[15, 12] Primarily, the Kirchhoff approximation is simple

to implement and removes discontinuous features in the channel impulse response predicted

by eigen-rays. Additionally, the eigen-ray result can be derived as a further approximation of

the Kirchhoff approximation, which provides a consistent framework for the solution of surface

scatter problems.[20]

In the Kirchhoff approximation, a ray is drawn to every position on the surface, instead

of including only ray that obey specular reflection at the surface. The majority these rays are
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non-physical. The Kirchhoff approximation then integrates the contribution of all of these rays,

and the result of this calculation is assumed to show only physical arrivals.

The Kirchhoff approximation is compared to the eigen-ray solution in Fig. 1.4, using a

physically realizable, broadband, probe signal. Unlike the theoretical impulse, the probe signal

has finite duration, apparent in the vertical width of each arrival in Fig. 1.4. The eigen-ray solution

in Fig. 1.4 (a) shows caustics and shadow zones at the positions indicated by arrows. The large

amplitudes of the caustic are only apparent very close to the feature, but the eigen-ray solution

is expected to show significant error for a range of times near the caustic. [2] The Kirchhoff

approximation shown in Fig 4 (b) largely agrees well with the eigen-ray solution outside of the

caustics and shadow zones. However, the Kirchhoff solution has a continuous progression of the

pressure field throughout the scatter observation, a requirement of a physically consistent scatter

solution.

The numerical studies of Ch. 2 and 3 work to verify the use of the Kirchhoff approximation

for transmission scenarios like the ones shown in Fig. 1.1. While the Kirchhoff approximation

does address the caustics and shadow zones of eigen-ray theory, it fails to completely include

all scatter phenomena. There are two notable objections to the Kirchhoff approximation: (1) the

treatment of surface self-shadowing and (2) multiple scatter effects. While theoretical treatments

that improve the Kirchhoff approximation treat both objections solely with multiple scatter

corrections,[21, 22] both issues will be discussed separately in the context of eigen-rays. First,

surfaces begin to shadow themselves at longer ranges, and paths to portions of the surface

require rays to leave the acoustic medium. Paths that encounter the surface more than once are

typically removed from the Kirchhoff approximation, which leads to non-physical cutoffs in

incident pressure along the surface.[23] Secondly, while eigen-rays may bounce two or more

times along the surface before reaching the receiver, these paths are not included in the Kirchhoff

approximation. The effects of these physical inconsistencies are explored by comparing the

Kirchhoff approximation to an exact surface scatter solution in Ch. 2, and an improved scatter
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Figure 1.5: Ambiguity surface for (a) LFM and (b) MLS probe sequences. Both sequences
have a center frequency of 10 kHz, and 6 kHz of bandwidth. The LFM signal is 48 ms long
and the MLS signal is 256 ms long, consistent with KAM11 transmissions. Both probe signals
have similar time resolution, or vertical width. The frequency, or Doppler, resolutions of both
signals are significantly different. For the LFM, arrivals that are frequency shifted only produce
a small change in delay time. For the MLS, arrivals that are shifted by more than 4 Hz from the
matched filter template are essentially absent in impulse response estimates.

solution intended for further analysis is proposed in Ch. 3.

1.1.3 Channel probe signals and Doppler shift

Most studies of surface scatter are made using a transmission that when processed is a

physically realizable approximation of the impulse. Like the numerical studies presented in Ch. 2

and 3, the scatter pressure simulations shown in Fig. 1.4 used a probe signal that was relatively

short in duration. Short duration pulses are impractical, however, in experimental conditions

where signal-to-noise ratio is limited. To compensate, the KAM11 transmissions used in the

experiment geometry shown in Fig. 1.1 were long duration probe signals. During processing,

each received transmission is cross-correlated, or match filtered, with a template of the transmitted

signal for an impulse response estimate that has both short duration and large amplitude.

Two commonly used probe signals used in matched filter processing are the linear fre-

11



quency modulated waveform (LFM) and the maximum length sequence (MLS). These two signals

are used for different applications because while they both have similar time resolution, they have

different frequency resolution. The additional consideration of frequency resolution is unique to

these long duration probe signals, and commonly is displayed as an ambiguity function, as in Fig.

1.5.[24] The time resolution, or vertical width of the ambiguity function, is similar for the two

probe signals. The frequency resolution, or horizontal width, is significantly different.

The Doppler shift causes frequency changes in the received probe signal related to the

velocity of an acoustic source or reflector. Of the two signals shown in Fig. 1.5, the LFM is

relatively insensitive to Doppler (large horizontal extent) while the MLS is Doppler sensitive

(narrow horizontal extent). The Doppler shift is also apparent in impulse response estimates,

like those shown in Fig. 1.4, created without Doppler sensitive probe signals. A negative slope

indicates an arrival decreasing in delay over time, or a positive Doppler shift. Likewise, a positive

slope indicates a negative Doppler shift. The Doppler sensitive probe signals are used in Ch. 4 to

emphasize these sloped arrivals in cluttered experimental measurements.

The Doppler sensitivity of the MLS is directly related to the duration of the transmitted

probe signal, and longer probe signals have more Doppler sensitivity. It is common to increase

the Doppler sensitivity of MLS signals by treating multiple repeats of the probe sequence as a

single transmission (e.g. Preisig [17]). The changes in Doppler over time in each scattered arrival,

apparent from the curved arrival shapes in Fig. 1.4, set a upper limit on the MLS template length.

A single Doppler value cannot match the changing Doppler shift over the template duration,

which begins to reduce the matched filter output for highly curved arrivals and long templates.

For the simulation results presented in Fig. 1.5, two repeats of the 128 ms duration KAM11

MLS signal are used as a matched filter template, which give the same Doppler sensitivity as a

256 ms probe signal. A longer duration probe signal, with 640 ms duration, was chosen for the

experimental data processing presented in Ch. 4 to increase the Doppler resolution of the impulse

response. For the 256 ms probe signal shown in Fig. 1.5, the MLS produces almost no output
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Figure 1.6: Impulse response estimate for sinusoidal surface: (a) Doppler insensitive LFM
probe signal, (b) and (c) MLS probe signal with Doppler shifts of 2.5 and -4.0 Hz, respectively.

for an arrival shifted in frequency by more than 4 Hz, enabling this probe signal to distinguish

arrivals with significant differences in Doppler shift.

The Doppler shift is apparent in impulse response estimates as a sloped arrival. A negative

slope indicates a source decreasing in delay over time, or moving towards the observer. A

positive slope indicates the opposite motion of the source. The three panels in Fig. 1.6 show

channel impulse response estimates made with: (a) Doppler insensitive LFM probe signal, (b)

and (c) Doppler shifted MLS templates. The Doppler shifts of the MLS templates are chosen

to emphasize either the down or up slope arrivals in Fig. 1.6 (b) and (c), respectively. While

the LFM is useful for presenting all scatter arrivals at once, the MLS reduces the number of

arrivals apparent at a time, and removes clutter from impulse response observations. Both the

LFM and MLS probe signals are used to analyze KAM11 data in Ch. 4, which also presents a

more complete discussion of the observed patterns of the Doppler shift in scatter arrivals.
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1.2 Summary

1.2.1 Chapter 2: Comparison of numerical scatter models

Numerical modeling is used to predict observations of scatter using a simplified model of

the acoustic propagation environment. While this numerical analysis is motivated by KAM11, Ch.

2 focuses on quantifying the differences between the eigen-ray and Kirchhoff approximations and

the exact scatter result. The exact, or reference, solution is computed using the Rayleigh-Fourier

method (RFM). The RFM is an exact solution method limited to periodic surfaces. This study

focuses exclusively on the sinusoidal surface, and uses it to show the limitations of the Kirchhoff

approximation at longer ranges.

1.2.2 Chapter 3: Development of reference surface scatter model

While the numerical comparison study of Ch. 2 shows significant differences between

the Kirchhoff approximation and the exact scatter result, the RFM reference solution used in this

study is difficult to extend to more general sea surfaces. This led to a study of the integral equation

solution for surface scatter and its solution with the limited duration integral equation method

(DIEM). The DIEM is an efficient reference solution for surface scatter specifically designed for

the simulation of band-limited impulse responses.

1.2.3 Chapter 4: Doppler analysis of KAM11 striation patterns

The third study presented in this thesis focuses on explaining experimental observations

instead of using a numerical simulation to simulate them. The KAM11 channel impulse response

estimates showed numerous late-delay arrival striation patterns that are explained as reflections

from moving features on the sea surface. Doppler sensitive MLS probe signals are used to reduce

significantly clutter in these measurements to clearly focus on these arrivals. The Doppler shift of
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the scattered arrival and its delay then are used to estimate of the in-plane position and velocity of

each surface reflector.

1.2.4 Chapter 5: Conclusions and suggestions for futher research

The numerical simulation results of Ch. 2 and 3 are intended for use in future studies

that seek to improve the performance of acoustic communication systems. Furthermore, while

motivated by acoustic communications, the simulation of surface scatter could inform other ocean

acoustic applications, such as active sonar or acoustic tomography. The observational analysis

of Ch. 4 aims to inform future research that relates physical events on the surface to changes in

communication system performance. These results also suggest that a relatively focused sampling

of the sea surface could significantly improve scatter modeling of experimental observations,

which could be used to design future studies. Taken together, these chapters explore acoustic

scatter with a variety of numerical and observational techniques, and also show some of the

challenges that still remain for describing experimental results with numerical simulation.
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Chapter 2

Acoustic scattering comparison of

Kirchhoff approximation to

Rayleigh-Fourier method for sinusoidal

surface waves at low grazing angles
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The Fourier series method for implementing the Rayleigh hypothesis (RFM) is used as

a reference solution to assess the Kirchhoff approximation of the Helmholtz integral (HKA)

for modeling broadband scatter from sinusoidal surfaces at low grazing angles. The HKA

is a valuable solution because it has an eigen-ray interpretation without unbounded caustic

amplitudes and discontinuous shadow zones. Plane wave studies of the HKA, however, show it

becomes inaccurate at low grazing angles. This study quantifies how this limitation manifests

with increasing transmission distance for time domain scattering simulations. Scattering results

are compared over a complete surface wave cycle with parameters modeling sea surface-swell.

The HKA agrees reasonably well with RFM in point source calculations for limited extensions

of transmission distances beyond where planewave comparisons begin to diverge. Past these

distances, HKA solutions begin to show significant over-prediction of the acoustic amplitude

around late arrivals. This over-prediction is frequency dependent and eigen-ray interference offers

an explanation of this behavior. Further extending the transmission range leads to significant

HKA error, and a range is found at which flat surface reflections have less error.

2.1 Introduction

Modeling time-domain acoustic scatter from deterministic, two-dimensional sea surfaces

remains a computationally challenging task and practicality requires approximate methods of

solution. The Helmholtz-Kirchhoff approximation (HKA) is often used for scattering calculations

from general sea surfaces. It is straightforward to calculate and offers an interpretation of the

solution through its eigen-ray approximation (ERA). This study seeks to establish experimental

geometries where the HKA may be expected to give reasonable scattering results by comparing it

to a reference Rayleigh-Fourier method (RFM). The RFM requires periodic scattering surfaces,

and a sinusoidal surface is used for comparison. By establishing experimental geometries where

the HKA is accurate for a simplified surface, this comparison lends credence to the approximation

20



for surfaces without a simple reference solution.

2.1.1 Helmholtz Kirchhoff approximation

A number of approximate surface scattering solutions exist in underwater acoustics

literature, including the small slope approximation, [1] the parabolic equation, [2] the wedge

assemblage method [3] and the Kirchhoff approximation of the Helmholtz integral (HKA).[4]

The HKA recently has been used for wave tank studies; as a forward model in an inverse method

determining the shape of the surface wave,[5] and to create scattering statistics.[6] Additionally,

the HKA has been used for three-dimensional [7] and refractive environment [8] time domain

scatter modeling.

The time domain form of the HKA is an extension of eigen-ray theory, building scattered

time series with scaled and delayed transmissions from a number of surface interactions. The

delay of each of the interactions, or rays, is the sum of the acoustic travel time to the surface

point from the source and receiver. Whereas eigen-ray solutions only include contributions from

rays which reflect specularly, the HKA includes rays from every point along the surface. The

stationary phase approximation may be used to produce the ERA from the HKA surface integral,

and each stationary point in travel time along the surface corresponding to an eigen-ray.[9]

The ERA of the HKA integral breaks down when it cannot be described with first-

order stationary phase approximations. The most common breakdown of the ERA occurs in

caustic regions where two eigen-rays coincide. To avoid inaccuracies introduced by the ERA

this study uses numerical quadrature to solve the HKA, although higher-order stationary phase

approximations provide similar results.[9] The ERA is found to be a good approximation of the

HKA only short distances away from where it breaks down, however. Once the HKA result is

used to find locations of interest, the ERA may be used to explain frequency-dependent focusing

observed in the HKA at ranges where HKA begins to show significant error.

Describing the HKA as a superposition of rays can also explain the shortcomings of
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the approximation. Planewave studies [10] have shown that the HKA becomes significantly

inaccurate at lower grazing angles. This inaccuracy at low grazing angles is attributed to the

inability of the HKA to model how one part of the surface interacts with the acoustic field at

another part of the surface.[11] Shadowing effects, which occur when one portion of the surface

blocks straight line propagation to another part of the surface, are simple to understand and test.

However this study will not use shadowing corrections to the HKA because straightforward

implementations did not yield any marked improvements of the results.

Meecham [4] used the Helmholtz integral equation (HIE) to study the surface self-

interaction not modeled in the HKA. The HIE is a solution to the Helmholtz equation and surface

boundary condition, using both the HKA and an additional integral of the unknown pressure field

at the scattering surface. This unknown pressure field may be found with an iterative method that

uses the HKA as an initial guess. With a stationary phase approximation of this iterative method,

Liszka and McCoy [11] argued that surface shadowing is a particular multiple-scatter effect. In

this solution, each iteration represents an additional surface-to-surface scattering event, either

removing previous shadowed rays or adding another surface-to-surface ray to the solution. In

numerical studies, however, iterative methods have shown qualified success,[12] and this makes

it important to quantify the performance of the HKA before attempting to compensate for its

limitations.

2.1.2 Rayleigh-Fourier Method

In addition to the iterative HIE, there exist a number of exact methods for the periodic

surface scattering problem including conformal mappings,[13] direct HIE solutions using matrix

inversion, and methods based on the Rayleigh hypothesis. The integral equation method is the

most relevant exact solution to discussions of the HKA is because the two methods share a

derivation. The direct HIE solution has been established as a reference for incident planewaves

for both rough [10] and periodic surfaces.[14] However, the Rayleigh-Fourier method (RFM)
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[15] was chosen over the HIE for this study because it has a straightforward implementation and

efficient solution.

Scattering solution methods based on the Rayleigh hypothesis begin with a periodic

surface. For planewave sources periodic surfaces give rise to Bragg scattering with a finite

number of planewave propagation angles in the far-field. The periodic surface condition may

be used to simplify the solution of a number of exact methods, including the HIE,[16] in terms

of these Bragg scattering orders. The Rayleigh hypothesis then assumes further the boundary

condition of the problem (in this case a pressure-release boundary) is satisfied on the featured

surface by a superposition of out-going planewaves and an evanescent field. For the special case

of sinusoidal surfaces with limited slope, the Rayleigh hypothesis has been shown to solve the

boundary condition directly.[17] The slope limitations for sinusoidal surfaces are sufficient for

this study on ocean surface-swell scatter, and the RFM will be considered exact in this discussion.

The RFM reference solution is also useful to determine ranges at which scattering solutions

are unnecessary. In many practical experimental setups, a flat-surface reflection model may serve

to explain data well. This result has been established for scattering surfaces of all types at the

lower limit of grazing angles.[18] A number of different source-to-receiver ranges are used

to establish when the HKA is accurate, when the image-source is accurate, and when both

solutions have significant error. The range where neither solution is appropriate is found to be

small, suggesting that with the appropriate choice of model, many transmission scenarios with

sinusoidal surfaces can be well modeled by one of these two simple approximations.

2.1.3 Model intercomparison

The transmission scenario chosen for this study is a modest extension of wave tank studies

by Walstead and Deane.[5] A high-frequency and broadband source signal was used to produce

a ray-like transmission scenario for a short source-receiver x-distance, ∆x, of 1.2 m (about one

surface wavelength). While the surface parameters and acoustic frequencies of this numerical
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study scale similarly to these studies, a number of separation distances are used to explore the

limits of the HKA at low grazing angles. The first part of the model intercomparison studies fixed

source and receiver geometry over a complete wave cycle, at a range where the HKA solution

begins to show significant error (about five surface wavelengths).

A similar five surface wavelength geometry was also used by Choo, Seong and Song

[19] to model scattering observed in channel impulse response measurements taken during

sea experiments. In rapidly repeated impulse response measurements, late arriving surface

scatter had coherent structure and a change in delay of about 5 ms over a few seconds of

measurements.[20] This striation pattern was shown by Choo, Seong and Song [19] to arise from

eigen-rays interacting with the surface close to the source or receiver. These arrivals have a longer

travel distance than eigen-rays interacting with the surface near the flat surface reflection path,

and result in large arrivals late in the scattered time series. This study considers a number of

source-receiver separations and confirms that these eigen-rays produce a significant contribution

to the scattered time series at short ranges, but find they are the largest source of error in the HKA

at longer ranges.

A full description of the problem statement, and a discussion of the choice of simulation

environment is covered in Sec. 2.2. The HKA, ERA, and RFM are covered in detail in Sec. 2.3.

The HKA is introduced along with analytical simplifications leading to a time domain solution in

Sec. 2.3.1. The further analytic approximations leading to the ERA are covered in Sec. 2.3.2.

The formulation and solution method of the RFM is discussed in Sec. 2.3.3. Additionally, Sec.

2.3.3 covers the wavenumber synthesis required to create point source results. The scattered time

series are computed over the full surface wave cycle at a single range in Sec. 2.4. The largest

difference seen in this comparison is a frequency dependent focusing of the HKA not observed

in the RFM, and this effect is explained using ERA. The maximum error between the RFM and

HKA solutions is then studied for a number of ranges, and both solutions are compared with

flat-surface reflection. Finally, Sec. 2.5 summarizes the study.
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Kirchho↵ approximation for sinusoidal surfaces
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FIG. 1. Basic schematic of the simulation setup used for Fig. 3, 6 and 7. The sinusoidal pressure-

release surface is drawn in blue, with two characteristic length scales, height H and wavelength ⇤

are shown. A plane view of the surface is drawn, with the y coordinate defined as positive into the

page. A radiating half space is assumed as z ! �1.
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This study fixes the wave parameters to a 2-m wave height and 40-m wavelength. The phase146

of the surface wave, �, is related to the surface wave time, twv, by the linear dispersion147

relationship. The deep-water gravity waves dispersion relationship was used in this study,148
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that the movement of the ocean surface is much slower than the sound speed in water. Similar151
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Figure 2.1: Basic schematic of the simulation setup used for Fig. 2.3, 2.6 and 2.7. The
sinusoidal pressure-release surface is drawn in blue, with two characteristic length scales, height
H and wavelength Λ are shown. A plane view of the surface is drawn, with the y coordinate
defined as positive into the page. A radiating half space is assumed as z→−∞.

2.2 Problem statement

The three-dimensional setup of the problem along with the coordinate system is shown

in Fig. 2.1. The acoustic point source is located at rsrc = (0,0,−10m). The receiver is fixed

at a 20-m depth, with a ∆x of 200 m. For all simulations the source and receiver are separated

exclusively in the x-direction, in-line with the surface wave variation.

The sinusoidal pressure-release surface is defined for wavelength Λ and wave height H as

η(x, twv) =
H
2

cos
(

2πx
Λ

+φ(twv)

)
. (2.1)

This study fixes the wave parameters to a 2-m wave height and 40-m wavelength. The phase of the

surface wave, φ, is related to the surface wave time, twv, by the linear dispersion relationship. The

deep-water gravity waves dispersion relationship was used in this study, φ(twv) = twv
√

2πg0/Λ,

with gravitational acceleration g0 = 9.81 m/s2.
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The time variation of the surface wave is solved as a succession of frozen surfaces,

assuming that the movement of the ocean surface is much slower than the sound speed in water.

Similar to the argument in Walstead and Deane,[5] the short time duration of the transmitted pulse

makes it insensitive to the motion of the sea surface. While a full time domain solution is required

to quantify this approximation, eigen-rays are used to justify the frozen surface assumption based

on two arguments. First, all eigen-rays interact with the surface within a millisecond of each

other, and so all relevant acoustic paths encounter essentially the same wave shape. Secondly no

significant Doppler shift is expected, since for the duration of the acoustic pulse the motion of the

surface is a small fraction of the shortest acoustic wavelength.

For a frozen surface and an acoustic time dependence of exp(−i2π f t), the acoustic

pressure, P(x,y,z), satisfies the Helmholtz equation

(∇2 + k2)P(x,y,z) = 0. (2.2)

Upper case letters indicate frequency domain functions. The acoustic wavenumber, k, is defined

in terms of the acoustic frequency, f , through the dispersion relationship, k = 2π f/c. The sound

speed in the medium, c, is fixed at 1500 m/s.

The total pressure field is split into a sum of two fields, P(x,y,z) = Pinc(x,y,z)+Psc(x,y,z).

Pinc(x,y,z), is the known incident pressure field of an acoustic source in a homogeneous, un-

bounded medium. Psc(x,y,z), is the unknown scattered pressure field determined by the boundary

conditions. The pressure-release boundary condition is

−Pinc(x,y,η(x)) = Psc(x,y,η(x)). (2.3)

A radiating boundary condition is required to fully define the problem and can be expressed

in general terms.[21] For incident planewaves, the general radiating condition of the scattered

pressure for a homogeneous and otherwise unbounded medium is simplified to an outgoing
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FIG. 2. (a) Time series of 1.5 kHz center frequency transmission, s(t). (b) Fourier transforms of

all three transmitted signals, S(f), showing the signals bandwidth are roughly equal to the carrier

frequencies: 1.5 , 2.5 and 3.5 kHz. All three of the transmitted time series are constructed as

four-cycle sinusoids, windowed with a Kaiser-Bessel function, and have the same shape in the time

domain. The scaling of the center frequency of the sinusoid has the e↵ect of changing the time

scales of the signal, including the half cycle period, f�1
c /2, and the duration, defined as 3 f�1

c .

A radiating boundary condition is required to fully define the problem and can be expressed169

in general terms (Jensen et al., 2011, p. 79). For incident planewaves, the general radiating170

condition of the scattered pressure for a homogeneous and otherwise unbounded medium is171

simplified to an outgoing wave condition (Petit et al., 1980). The outgoing wave condition172

specifies that, for an incident planewave, the scattered pressure field below the minimum173

extent of the surface consists only of planewaves propagating in the �z direction and an174

exponentially decaying evanescent field.175
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Figure 2.2: (a) Time series of 1.5 kHz center frequency transmission, s(t). (b) Fourier transforms
of all three transmitted signals, S( f ), showing the signals bandwidth are roughly equal to the
carrier frequencies: 1.5 , 2.5 and 3.5 kHz. All three of the transmitted time series are constructed
as four-cycle sinusoids, windowed with a Kaiser-Bessel function, and have the same shape in
the time domain. The scaling of the center frequency of the sinusoid has the effect of changing
the time scales of the signal, including the half cycle period, f−1

c /2, and the duration, defined as
3 f−1

c .

wave condition.[15] The outgoing wave condition specifies that, for an incident planewave, the

scattered pressure field below the minimum extent of the surface consists only of planewaves

propagating in the −z direction and an exponentially decaying evanescent field.

As shown in Fig. 2.2, simulation test signals, s(t), are four-cycle sinusoids at three center

frequencies: 1.5, 2.5 and 3.5 kHz. A Kaiser-Bessel window with design parameter 2.5 π (α in

[22]) is applied to reduce side lobes in the frequency domain representation of the signal, S( f ).

The scattered time series is the real part of the analytic signal given by the one-sided Fourier

transform of the signal spectra, S( f ), and the pressure field, Psc(x,y,z, f ),

27



psc(x,y,z, t) = 2Re





∞∫
0

Psc(x,y,z, f )S( f )exp(−i2π f t)d f



 . (2.4)

Note that the sign convention adopted here, where positive k values give waves outgoing with

time, is opposite to that of the discrete Fourier transform.

2.3 Scattering solution methods

The comparison of HKA and RFM solutions in this study are primarily between scattered

time series from acoustic point sources. However, the RFM solution exists only for planewave

sources, and both wavenumber and frequency syntheses are required to produce these time series.

In contrast, the HKA has a simple integral form for point sources,[9] in addition to a closed-form

solution for planewaves.[23] The time domain form of the HKA is derived in 2.3.1. The RFM

and the additional wavenumber integration required to produce point source results are covered

in Sec 2.3.3.

2.3.1 Helmholtz Kirchhoff approximation

The HKA is an expression for the total pressure field along a boundary in terms of the

incident pressure field. This approximation, also known as the local tangent approximation,

is equivalent to constructing the scattered field from an integral of infinitesimal flat surface

reflections. For a pressure-release boundary, the HKA is

∂P
∂n

(r̄)≈ 2
∂Pinc

∂n
(r̄). (2.5)

An over-bar is used to indicate a position vector along the surface and for each value of (x,y),

the z value of the vector r̄ is η(x,y). A vector along the surface may be defined alternatively as

points at which the function g(r̄) = 0, convenient for surface normal and projected surface area
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calculations. The definition of g(x,y,z) consistent with the outward surface normal direction, n̂,

(shown in Fig. 2.1) is g(x,y,z) = z−η(x,y).

The incident field, Pinc, is determined using the free-space Green’s function. For iso-speed

media,

G(rsrc,rrcr) =
exp(ikdsr)

4πdsr
, ∇G(rsrc,rrcr)≈ ik

(rrcr− rsrc)

dsr

exp(ikdsr)

4πdsr
, (2.6)

where rsrc and rrcr are vectors of source location and observation point, respectively, and dsr =

|rrcr− rsrc|. The far-field approximation was used to simplify the Green’s function gradient. The

incident normal derivative term of Eq. (2.5), ∂Pinc(r̄)/∂n, is calculated from Eq. (2.6) using the

operator ∂/∂n = n̂ ·∇.

Green’s theorem relates the scattered pressure at the receiver to the pressure field at

the surface. Excluding the source from the integration volume following Holford,[24] Green’s

theorem [21] along the pressure-release surface and the radiating boundary is

Psc(rrcr) =
1

4π

∞∫∫
−∞

exp(ik|rrcr− r̄|)
|rrcr− r̄| Ψ(r̄)dx dy, (2.7)

where the vector r̄ depends on (x,y). The function, Ψ(r̄), is introduced as the product of

the normal derivative of the pressure field with the surface differential scaling term, Ψ(r̄) =

|∇g(x,y,η)| ∂P(x,y,η)/∂n, projecting the integral onto the z = 0 plane.

The HKA is expressed as a two-dimensional integral using the approximation of (2.5) in

Eq. (2.7). The resulting integral can be evaluated using numerical quadrature or approximate

methods such as stationary phase.[25] Either method can be applied to one or both of the integrals.

For the flat surface, two applications of the stationary phase approximation to the HKA integral

give the exact image-source solution, −exp(ikdimg) (4πdimg)
−1, where dimg is the image-source

distance.

Following Walstead and Deane,[5] the stationary phase approximation is applied along

the y-axis to reduce the surface integral dimension to one. This approximation produces exact
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results for the surface under study since the y-dimension is an infinite line for each value of x,

Psc(rr) = exp(i 3π/4)

√
k

2π

∞∫
−∞

(r̄− rsrc) ·∇g
dsrc

exp [ik(drcr +dsrc)]√
(drcr +dsrc)drcrdsrc

dx. (2.8)

The scalar distances dsrc and drcr are |r̄− rsrc| and |rrcr− r̄|, respectively.

The form of Eq. (2.8) allows for analytical evaluation of the Fourier synthesis, Eq.

(2.4), resulting in a time domain equation. With one exception, each of the terms of Eq. (2.8)

depend either on the spatial variable, x, or on the wavenumber, k. After changing the order of

spatial and frequency integration, the terms depending on x can be brought outside the Fourier

synthesis integration. The only function that has both spatial and wavenumber variables is

exp[ik(rsrc + rrcr)], representing the time shift τ(x) = (rsrc + rrcr)/c. Collecting all complex and

frequency dependent terms into the inverse Fourier transform gives the filtered and delayed signal

function,

shk(t− τ) = F −1
(

exp(i 3π/4)
√

f S( f )exp(i 2π f τ)
)
. (2.9)

The time domain HKA is then

psc(rrcr, t) =

√
1
c

∞∫
−∞

(r̄− rsrc) ·∇g(x,z)
dsrc

shk(t− τ(x))√
(drcr +dsrc)drcrdsrc

dx. (2.10)

2.3.2 Eigen-ray approximation to the Kirchhoff approximation

The HKA scattering solution can be reduced from an integral to a sum of discrete

scattering points using the stationary phase approximation for all integrals in equation (2.7).

Barring multiple bounce reflection paths and surface shadowing, the result is equivalent to

geometrical acoustics.[9] Geometric acoustics is a high frequency limit, and expected to give

better results with increasing source frequencies. Each term in the stationary phase sum is termed

an eigen-ray, and is characterized by a complex amplitude and delay. This approximation then
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solves for the scattered pressure field as an interference of a few arrivals from different parts of

the scattering surface.

The stationary phase approximation is applied to equation (2.8). Collect all non-exponential

terms of this equation into the slowly varying function A(x),

Psc(rr) = exp(i3π/4)

√
f
c

∞∫
−∞

A(x)exp [i 2π f τ(x))]dx. (2.11)

This leads to the approximate scattering solution

Psc(rr) =
exp
(
i [3π/4±π/4]

)
√

c ∑
n

A(xn)√
|τ′′(xn)|

exp
(
i 2π f τ(xn)

)
. (2.12)

The prime notation, ′, is used to denote a derivative with respect to x. The sum in Eq. (2.12) is

carried over the n points at which τ′(xn) = 0. The sign inside the exponential of Eq. (2.12) is the

same as that of τ′′(xn).

As with the HKA, the Fourier synthesis of the ERA can be evaluated analytically. Two

different signals are used in the scattered solution, dependent on the sign of τ′′(xn). Positive τ′′(xn)

gives a real amplitude term which contributes a delayed and scaled version of the transmitted

signal to the scattered result. Negative τ′′(xn) gives an imaginary amplitude term and contributes

a phase shifted version of the transmitted signal,

s−(t− τ) =−F −1 (i S( f )exp(i 2π f τ)) . (2.13)

A negative sign is included for consistency in later notation, and this result is the Hilbert transform

by standard convention.[26]

Denoting the unmodified transmitted signal as s+, the scattered pressure field in the time
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domain is expressed

Psc(rr) =−
1√
c ∑

n

A(xn)√
|τ′′(xn)|

s±(t− τ(xn)). (2.14)

Again, the sign choice for the signal interpolator, s±(t), is the same as that of τ′′(xn). This sum

represents the sum of two convolutions, one for s−(t) and s+(t), with a channel represented as a

few scaled delta functions.

The ray travel time, τ(x), and its derivatives are important to determining the amplitude,

position and delay of each eigen-ray. In Fig. 2.3(b), the total travel time is plotted for the example

of the surface wave at twv = 0.70 s. The overall bowl-like shape of τ(x) is similar to that of the flat

surface reflection, with deviations in travel time related to the surface profile. Stationary points

appear or disappear from this curve in pairs, preserving the direction of the derivatives at the

edges of this curve. The appearance of a pair of stationary points on τ(x) occurs in three steps:

1) the travel time curve near an edge flattens, 2) two stationary points coincide on the curve, 3)

points are separated in space. The first two steps create eigen-ray shadow and caustic regions,

respectively. In eigen-ray shadow regions the stationary phase approximation does not include

contributions from a significant region. In eigen-ray caustic regions, τ′′(x) approaches 0 and Eq.

(2.14) grows unbounded.

The interference pattern between multiple eigen-rays means that different source signals

have different behaviors for the same channel. For the signal used in this simulation the interfer-

ence for two rays is largely determined by center frequency of the signal, fc, and the spacing of

rays less than one period apart, f−1
c . When two signals have the same sign of τ′′(xn) maximum

constructive interference occurs with no delay and maximum destructive interference occurs at

half period delay, f−1
c /2. For a ray pair, the difference in τ′′(xc) sign means maximum construc-

tive interference occurs at quarter period delay, f−1
c /4, and maximum destructive interference

at three quarter period delay, 3 f−1
c /4. Away from eigen-ray shadow and caustic regions, the

interferences predicted by the ERA agree well with the HKA and explain large peak amplitudes

observed in the HKA.
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FIG. 3. Simulation setup of Fig. 1, wave at twv=0.70 s. (a) Spatial position of surface with

eigen-rays. Eigen-rays connect the source and receiver and obey specular reflection at the surface

(di↵erences in spatial scales may distort perceived angles). Thick patches are shadowed areas of

the wave where rays intersect the surface more than once. (b) Travel time, ⌧(x), for ray connecting

the source and receiver at each point on the surface. Travel time curve for flat surface is the smooth

light line. Relative eigen ray amplitudes are shown as a function of both position and delay. Rays

with circles have real amplitude, while rays with diamonds have imaginary amplitude. The ray

pair closest to the receiver have the largest ray amplitudes, which contribute to a cluster of rays

near 0.6 ms delay.

et al., 1980, p.9),298

Psc(x, z) = exp(i↵inc x)
1X

n=1
RnZ(z) exp

✓
i2⇡nx

⇤

◆
, (15)

19

Figure 2.3: Simulation setup of Fig. 2.1, wave at twv=0.70 s. (a) Spatial position of surface
with eigen-rays. Eigen-rays connect the source and receiver and obey specular reflection at the
surface (differences in spatial scales may distort perceived angles). Thick patches are shadowed
areas of the wave where rays intersect the surface more than once. (b) Travel time, τ(x), for ray
connecting the source and receiver at each point on the surface. Travel time curve for flat surface
is the smooth light line. Relative eigen ray amplitudes are shown as a function of both position
and delay. Rays with circles have real amplitude, while rays with diamonds have imaginary
amplitude. The ray pair closest to the receiver have the largest ray amplitudes, which contribute
to a cluster of rays near 0.6 ms delay.

The travel time curve for the wave position of Fig. 2.1 is shown in Fig. 2.3. The paths of

each eigen-ray, which connect the source and receiver through a specular reflection, are drawn in

Fig. 2.3(a). Each of the extrema of τ(x) in Fig. 2.3(b) corresponds to an eigen-ray in Fig. 2.3(a).

In the center of the wave profile eigen-rays appear at the peaks and troughs, while closest to the

source and receiver the ray pairs appear on the same wave face. The largest eigen-rays occur in a

pair on the wave face closest to the receiver, and these share a delay similar to that of the smaller

eigen-ray pair closest to the source. These late arrival features are found consistent in the HKA

and ERA solutions for a number of source-receiver x-separations, section 2.4.2.
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The Rayleigh hypothesis then makes the assumption that the Rayleigh expansion con-301

verges to the true pressure field at the pressure-release surface itself (Millar, 1973). This302

hypothesis holds for sinusoidal scattering surfaces with maximum slope (⇡H/⇤) of 0.448 or303

less (Millar, 1969), but not for general periodic surfaces. When this hypothesis holds, the304

scattering problem is simplified to finding the complex amplitudes of an number of outgoing305
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Figure 2.4: Schematic of the Rayleigh expansion. An incident planewave propagates with
angle θinc towards the pressure-release surface. Two lines of constant phase are shown with a
one acoustic wavelength, λ, spacing. The incident field does not interact with the surface, and
the constant phase lines are drawn through the surface as though it were not there. The Bragg
scattering angles are numbered, where θ0 is the specular reflection angle when cos(θinc) =
cos(θ0).

2.3.3 Rayleigh expansion and hypothesis

For an incident planewave on a periodic surface, the expansion of the scattering solution

into a discrete sum of plane and evanescent waves is known as the Rayleigh expansion, represented

schematically in Fig. 2.4. The expansion is the result of the surface periodicity and the planewave

radiation condition. The unknown scattered field is also expressed as the product of an unknown

function periodic with scale Λ, and the function exp(iαinc x),[15]

Psc(x,z) = exp(iαinc x)
∞

∑
n=∞

RnZ(z)exp
(

i2πnx
Λ

)
, (2.15)
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where the unknowns Rn are the sound pressure reflection coefficients. The unknown function,

Z(z,n), is determined by Eq. (2.2) and the OWC,

Z(z,n) = exp(−iγnz), γn =

√
k2−

(
αinc +

2πn
Λ

)2

. (2.16)

The Rayleigh hypothesis then makes the assumption that the Rayleigh expansion con-

verges to the true pressure field at the pressure-release surface itself.[27] This hypothesis holds

for sinusoidal scattering surfaces with maximum slope (πH/Λ) of 0.448 or less,[17] but not

for general periodic surfaces. When this hypothesis holds, the scattering problem is simplified

to finding the complex amplitudes of an number of outgoing planewaves. This study uses the

Rayleigh-Fourier method (RFM) to solve for these unknown amplitudes, leading to an infinite

system of equations relating Fourier series coefficients. The Galerkin method is used to solve this

infinite system of equations, simply truncating it after a few evanescent orders. The reflection

coefficients from this method conserved energy beyond 99.9% [24] for all calculated values, and

are considered exact.

Each term in Eq. (2.15) represents a plane or evanescent wave with horizontal wavenumber

αn = αinc +2πn/Λ, and vertical wavenumber, γn. The propagation direction of these planewave

are the Bragg angles,[15]

cos(θn) = cos(θinc)+n
λ

Λ
. (2.17)

Each term with |cos(θinc)+nλ/Λ|< 1 is a planewave propagating away from the surface, and

otherwise is an evanescent wave decaying exponentially as z→−∞.

The RFM uses the expansion of Eq. (2.15) directly in the boundary condition of Eq. (2.3).

The resulting equality between two periodic functions is solved as an equality between Fourier

coefficients. For the sinusoidal surface of Eq. (2.1), the Fourier coefficients are analytic, and the
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FIG. 5. Magnitude of the reflection coe�cients, Rn(↵inc), computed using RFM and HKA at 500

Hz for a sinusoidal surface with a 2-m wave height and a 40-m wavelength. The RFM results are

plotted as solid lines, while the HKA is plotted as lighter dashed lines. For symmetric surface

profiles, the reflection coe�cients of order n are the same as that for order �n, mirrored about

✓inc = 90�. The angles at which each Bragg order becomes evanescent are marked on top of graph

with arrows, and the HKA coe�cients grow unbounded at these angles. The incident angles of the

eigen-rays for the experimental setup of Fig. 1 at twv=0.70 s are plotted as ticks along the bottom

axis.

For comparison with RFM calculations, the reflection coe�cients of the HKA have a324

closed form (McCammon and McDaniel, 1985),325

Rn = in
↵inc(↵n � ↵inc) � �inc(�inc + �n)

�n(�inc + �n)
Jn

�
(�inc + �n)H/2

�
. (19)

The phase term, in, was added to this expression following McCammon (1984), and gives326

R0 = �1 when H = 0.327
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Figure 2.5: Magnitude of the reflection coefficients, Rn(αinc), computed using RFM and HKA
at 500 Hz for a sinusoidal surface with a 2-m wave height and a 40-m wavelength. The RFM
results are plotted as solid lines, while the HKA is plotted as lighter dashed lines. For symmetric
surface profiles, the reflection coefficients of order n are the same as that for order −n, mirrored
about θinc = 90◦. The angles at which each Bragg order becomes evanescent are marked on top
of graph with arrows, and the HKA coefficients grow unbounded at these angles. The incident
angles of the eigen-rays for the experimental setup of Fig. 2.1 at twv=0.70 s are plotted as ticks
along the bottom axis.

RFM gives

−imJm

(
γinc

H
2

)
=

∞

∑
n=−∞

in−mRnJn−m

(
−γn

H
2

)
, (2.18)

where Jm is a Bessel function of the first kind with order m. This infinite system of equations is

solved by truncation after a finite number of terms. Three positive and three negative evanescent

orders of n were found sufficient for energy conservation, while including too large a number of

evanescent orders introduced numerical instability.

For comparison with RFM calculations, the reflection coefficients of the HKA have a

36



closed form,[23]

Rn = in
αinc(αn−αinc)− γinc(γinc + γn)

γn(γinc + γn)
Jn
(
(γinc + γn)H/2

)
. (2.19)

The phase term, in, was added to this expression following McCammon and McDaniel,[28] and

gives R0 =−1 when H = 0.

The HKA and RFM reflection coefficients are shown at 500 Hz in Fig. 2.5. This low

frequency was chosen for ease of visualization because it has the least variation with θinc, but

the behavior comparison is similar at higher frequencies. The surface profile is symmetric about

x = 0, requiring Rn(θinc) = R−n(180◦−θinc). The HKA coefficients are indistinguishable from

the RFM for θinc between 40◦ and 140◦, covering near-vertical incidence. All of the eigen-rays

angles for the test scenario of Fig. 2.1 are less than 20◦, and are indicated as copper ticks along

the θinc axis in Fig. 2.5. For negative Bragg orders, these angles are past where the two solution

methods diverge, below θinc = 40◦. The largest discrepancy between the RFM and the HKA

solutions is largest at the cutoff angle for each Bragg order (31.7◦ and 22.3◦ for orders 2 and 1),

where the HKA predicts unbounded amplitude, while the RFM remains bounded.

A wavenumber synthesis is required to produce point source scattering from the planewave

results of the RFM,

Psc(r) =
i

8π2

∞

∑
n=−∞

∞∫∫
−∞

Rn(αinc,β)

exp




i







αn

β

−γn



· rrcr−




αinc

β

γinc



· rsrc







γinc
dαinc dβ. (2.20)

The horizontal wavenumber in the y-dimension is introduced as β, with the requirement k2 =

α2 +β2 + γ2. Holford [24] noted that for y-independent surfaces, the solution for Rn(αinc,β) at

all β can be constructed from the planewave with β = 0 and a modified value of k2
2d = k2−β2.
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Figure 2.6: Scattered time series plotted over a single surface wave period for 2.5 kHz center
frequency pulse and simulation setup of Fig. 2.1: (a) ERA, (b) HKA, and (c) RFM results. The
scattered pressure, psc(t), is plotted referenced to the image (flat surface) arrival.

The stationary phase approximation in αinc and β is used to compute point source results

from Eq. (2.20). The phase function of the wavenumber integral is simple, with a single

stationary point for each term in Eq. (2.20). For source and receivers at y = 0, the stationary

phase approximation is

Psc(r)≈
∞

∑
n=−∞

R(αinc)
exp [i(αnxr−αincxs− γnzr + γinczs)]

4πkγinc

(∣∣∣∣
zr

γ3
inc

+
zs

γ3
n

∣∣∣∣
∣∣∣∣

zr

γinc
+

zs

γn

∣∣∣∣
)−1/2

.

(2.21)

This function is evaluated at stationary points when xs = xr +αn zr/γn +αinc zs/γinc. The errors

associated with the stationary phase approximation are related to the rapidly changing values

of Rn(αinc), evident in Fig. 2.5. These errors were found to be small by comparing synthesized

HKA results using Eqs. (2.19) and (2.21) with time series solutions computed using Eq. (2.10).
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2.4 Results

Time series transmissions are compared between the HKA of Eq. (2.10), the ERA of

Eq. (2.14), and the RFM constructed with the wavenumber and time synthesis of Eqs. (2.21)

and (2.4). To highlight the effect of the featured surface, the amplitudes in the following plots

are divided by the amplitude of the image arrival, (4πrimg)
−1, and the image delay, rimg/c, is

subtracted from the acoustic time scale, t. For the first part of the results discussion ∆x is fixed at

200 m. The surface wave position is allowed to vary as a function of wave time, twv, according to

Eq. (2.1). For the second part of the discussion, ∆x is varied between 50 and 1000 m. A single

wave position is chosen for each range which produces the largest peak arrival in the HKA results.

The remaining simulation parameters are constant, as discussed in Sec. 2.2 and plotted in Fig.

2.1.

2.4.1 Full surface wave cycle simulations

The 2.5 kHz signal scattered time series is presented as color-maps in Fig. 2.6 over the

full surface wave cycle for ∆x = 200 m. There is good agreement between the HKA and RFM

in the time dilation of the pulse, the distribution of energy through the scattered arrival, and the

location of major focusing events. The ERA and the HKA are in agreement up until the caustic

region, apparent in the ERA as a sharp increase in amplitude followed by sudden disappearance of

acoustic pressure. In contrast, the HKA predicts a smooth decrease of acoustic pressure through

this region.

The largest discrepancy between HKA and RFM is in the amplitudes of the largest peak

pressure, around surface wave time, twv, of 0.70 s (indicated by vertical line in Fig. 2.6). These

scattering results are shown in Fig. 2.7 for three acoustic center frequencies: (a) 3.5, (b) 2.5,

and (c) 1.5 kHz. There are no significant eigen-ray shadow or caustic regions near the receiver,

and ERA does well predicting the HKA result. For the higher source frequencies shown in Fig.
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FIG. 7. (color online) Scattered time series for surface wave phase at twv = 0.70 s, using the simula-

tion setup shown in Fig. 1. Each panel shows results for one of three source center frequencies, fc,

computed using RFM, the HKA and the ERA: (a) 3.5, (b) 2.5, and (c) 1.5 kHz. The shape of the

time series is similar between the RFM and HKA solution methods, though the HKA consistently

over-predicts the largest amplitudes at each center frequency. The HKA over-prediction is greatest

for the 2.5-kHz transmission between 1 ms and 1.5 ms. The ERA agrees well with the HKA, with

a slight overprediction, largest at 1.5 kHz.

The largest discrepancy between HKA and RFM is in the amplitudes of the largest peak373

pressure, around surface wave time, twv, of 0.70 s (indicated by vertical line in Fig. 6).374

These scattering results are shown in Fig. 7 for three acoustic center frequencies: (a) 3.5,375

(b) 2.5, and (c) 1.5 kHz. There are no significant eigen-ray shadow or caustic regions near the376

receiver, and ERA does well predicting the HKA result. For the higher source frequencies377

shown in Fig. 7(a) and 7(b), the rays that make up the scattered time series are separated378

in time, with low amplitude arrivals before 1 ms, and higher amplitude arrivals after 1 ms379
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Figure 2.7: Scattered time series for surface wave phase at twv = 0.70 s, using the simulation
setup shown in Fig. 2.1. Each panel shows results for one of three source center frequencies,
fc, computed using RFM, the HKA and the ERA: (a) 3.5, (b) 2.5, and (c) 1.5 kHz. The shape
of the time series is similar between the RFM and HKA solution methods, though the HKA
consistently over-predicts the largest amplitudes at each center frequency. The HKA over-
prediction is greatest for the 2.5-kHz transmission between 1 ms and 1.5 ms. The ERA agrees
well with the HKA, with a slight overprediction, largest at 1.5 kHz.

2.7(a) and 2.7(b), the rays that make up the scattered time series are separated in time, with low

amplitude arrivals before 1 ms, and higher amplitude arrivals after 1 ms delay. This structure

is not apparent in Fig. 2.7(c), where the longer time width of the 1.5 kHz signal merges the

eigen-ray arrivals. For all frequencies, this surface wave position leads to focusing and the late

arrival amplitudes exceed the image arrival (i.e. > 1).

While the HKA over-estimates the signal amplitude for almost the entire time series for

each frequency, the most significant disagreement between the solutions is for the peak pressures

at the middle probe signal frequency (2.5 kHz; Fig. 2.7(b) around 1.5 ms). The eigen-ray arrival

structure for 200-m ∆x, shown in Fig. 2.8(a), produces an ERA result is similar to the HKA.
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FIG. 8. Eigen-ray delay and amplitude, normalized to image arrival, for the wave position creating

the largest HKA peak amplitude. Rays with circles have real amplitude, while rays with diamonds

have imaginary amplitude. Panel (a) are the rays for the test setup of Fig. 1. Panel (b) shows rays

making up the largest HKA peak arrival at 50-m increments of source-receiver separation. The

approximate delay times of the largest arrivals are highlighted in grey for ranges with strong late

arrival rays.

delay. This structure is not apparent in Fig. 7(c), where the longer time width of the 1.5380

kHz signal merges the eigen-ray arrivals. For all frequencies, this surface wave position leads381

to focusing and the late arrival amplitudes exceed the image arrival (i.e. > 1).382

While the HKA over-estimates the signal amplitude for almost the entire time series383

for each frequency, the most significant disagreement between the solutions is for the peak384

pressures at the middle probe signal frequency (2.5 kHz; Fig. 7(b) around 1.5 ms). The385

eigen-ray arrival structure for 200-m �x, shown in Fig. 8(a), produces an ERA result is386

similar to the HKA. The large amplitude eigen-ray arrivals around 0.6 ms delay are most387
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Figure 2.8: Eigen-ray delay and amplitude, normalized to image arrival, for the wave position
creating the largest HKA peak amplitude. Rays with circles have real amplitude, while rays with
diamonds have imaginary amplitude. Panel (a) are the rays for the test setup of Fig. 2.1. Panel
(b) shows rays making up the largest HKA peak arrival at 50-m increments of source-receiver
separation. The approximate delay times of the largest arrivals are highlighted in grey for ranges
with strong late arrival rays.

The large amplitude eigen-ray arrivals around 0.6 ms delay are most relevant for determining the

peak pressure. This ray pair is close to the optimal constructive spacing of 1/10 ms for the 2.5

kHz center frequency signal, and the total interference result produces the largest peak pressures

for this signal. The reference RFM solution, however, does not show the large peak pressures

observed for the 2.5 kHz signal by the HKA. This over-prediction of the late arrivals is further

demonstrated as ∆x is increased and the differences between the RFM and HKA become marked.

2.4.2 Multiple source-receiver separations

To study the effect of lower surface grazing angles ∆x was incremented in 50-m range

steps from 50 to 1000 m. The surface wave position resulting the largest peak HKA arrival was

identified for inter-range comparison. These HKA and RFM time series are presented in Fig.
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FIG. 9. Cascade plot of acoustic pressure time series at wave time producing the largest arrival in

the HKA solution for fc = 2.5 kHz. �x is increased by 50 m for each acoustic time series, while all

other simulation parameters are the same as in Fig. 1: (a) RFM solution and (b) HKA solution.

The delay times of the largest HKA arrivals are highlighted in grey for ranges where this is clearly

associated with late arrival rays. The acoustic time series is first normalized in amplitude and

delay to the image arrival, and then scaled by 40 for legibility. The vertical spacing for the 50, 100

and 150-m time series have been increased to improve legibility, while the rest of the time series

have a constant o↵set of 50 m.

The RFM solution in Fig. 9(a) agrees well with the HKA up to �x of 200 m, when409

distinctions become apparent. The late arrivals fade with increasing �x past 200-m and410

are hardly significant beyond 400 m. Additionally, eigen-rays with delays more than 1.5411

ms do not appear significant in the RFM solution. Finally, beyond 600-m �x the RFM412

is virtually indistinguishable from the image solution, while the HKA only approaches this413

result around 1000-m �x. This result is consistent with the reflection coe�cients in Fig. 5414

which shows the 0-th RFM coe�cient approaches 1 the angle of incidence approaches 0�,415
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Figure 2.9: Cascade plot of acoustic pressure time series at wave time producing the largest
arrival in the HKA solution for fc = 2.5 kHz. ∆x is increased by 50 m for each acoustic time
series, while all other simulation parameters are the same as in Fig. 2.1: (a) RFM solution and
(b) HKA solution. The delay times of the largest HKA arrivals are highlighted in grey for ranges
where this is clearly associated with late arrival rays. The acoustic time series is first normalized
in amplitude and delay to the image arrival, and then scaled by 40 for legibility. The vertical
spacing for the 50, 100 and 150-m time series have been increased to improve legibility, while
the rest of the time series have a constant offset of 50 m.

2.9. The eigen-rays for this wave position are shown in Fig. 2.8(b). The delay of the largest

HKA arrivals is highlighted by a grey box for both solutions, and this corresponds to the delay

highlighted in Fig. 2.8 after convolution with the source signal. The basic shape of the HKA

result, Fig 2.9(b), remains consistent as ∆x is varied from 200 m, with large late arrivals occurring

up to 600-m ∆x. The HKA time spread for the 2.5 kHz signal remains larger than 2 ms for all

ranges, sometimes up to 4 ms. This is consistent with the late eigen-rays around 0.6 ms, Fig.

2.8(b), which reflect close to the receiver and show large amplitude for all ranges up to 600 m.

Additionally, for ∆x beyond 350-m, very late eigen-rays with about 1.5 ms delays are apparent

which reflect from the surface near the source. The majority of the eigen-rays, occurring in the

middle of the travel time curve, approach the flat surface travel time curve as range increases and
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interfere to create an image source at long ranges.

The RFM solution in Fig. 2.9(a) agrees well with the HKA up to ∆x of 200 m, when

distinctions become apparent. The late arrivals fade with increasing ∆x past 200-m and are

hardly significant beyond 400 m. Additionally, eigen-rays with delays more than 1.5 ms do

not appear significant in the RFM solution. Finally, beyond 600-m ∆x the RFM is virtually

indistinguishable from the image solution, while the HKA only approaches this result around

1000-m ∆x. This result is consistent with the reflection coefficients in Fig. 2.5 which shows the

0-th RFM coefficient approaches 1 the angle of incidence approaches 0◦, while other coefficients

approach 0. The 0-th HKA coefficient also approaches 1 as the angle of incidence approaches 0◦,

but the negative Bragg orders approach non-zero values. The eigen-rays of Fig. 2.8 and the time

series of Fig. 2.9 demonstrate that the HKA error seen in reflection coefficients at low grazing

angles is the result of late arrival rays. These rays, reflecting of the surface near the source and

receiver, are well modeled by the HKA for small ∆x values, but become the dominant source of

error for larger ∆x values.

The error of the HKA compared to the RFM and the image solution is shown against

range in Fig. 2.10. This error is calculated as the integral in time, t, of the absolute difference

between two solutions for a fixed surface wave position. This result is then normalized by the

image-source amplitude to remove the effect of spreading loss. There is little mismatch between

the RFM and the HKA for ∆x values up until 150 m. The error between the two solutions begins

to increase sharply at this point, and the difference between the two solutions levels off around

300 m ∆x. At 350-m and greater ∆x, the simple image-source solution has less integrated absolute

difference compared to the RFM. This suggests the image solution is preferred over the HKA at

350 m and beyond for the test scenario under consideration.
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FIG. 10. Absolute di↵erence of acoustic pressure integrated over time (t) at the surface wave

time (twv) of maximum HKA arrival. Comparisons are taken between: RFM and HKA, HKA and

image-source, RFM and image-source. For each range, the RFM and HKA time series used in the

integration are the same as those plotted in Fig. 9.
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of incidence approaches 0�, but the negative Bragg orders approach non-zero values. The417

eigen-rays of Fig. 8 and the time series of Fig. 9 demonstrate that the HKA error seen418

in reflection coe�cients at low grazing angles is the result of late arrival rays. These rays,419

reflecting of the surface near the source and receiver, are well modeled by the HKA for small420

�x values, but become the dominant source of error for larger �x values.421
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Figure 2.10: Absolute difference of acoustic pressure integrated over time (t) at the surface
wave time (twv) of maximum HKA arrival. Comparisons are taken between: RFM and HKA,
HKA and image-source, RFM and image-source. For each range, the RFM and HKA time series
used in the integration are the same as those plotted in Fig. 2.9.

2.5 Summary

For sinusoidal surfaces (40-m wavelength, 20-m source and 10-m receiver depths) at short

∆x (up to 150-m), HKA results agreed with reference RFM solutions. At moderate ∆x (around

200 m), the HKA sometime over-estimated the peak pressure, dependent on the frequency of the

signal tested. Eigen-ray interferences were used as an explanation for the frequency dependent

HKA over-prediction. As the source-receiver x-separation was extended to longer ranges (past

200 m), the error of the HKA increased significantly at all frequencies. The HKA continued to

predict large amplitude late arrival features up to 550-m ∆x and significant acoustic time spread

up to 1000-m ∆x. In contrast, the RFM approached the image-source solution quickly for ∆x past

350 m. After 350-m ∆x the image-source approximation had less integrated mismatch with the

reference RFM than the HKA.

This study used the RFM reference solution to inform the application of the more practical

and flexible HKA. As ∆x was extended to explore low grazing angles the HKA began to show
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significant error. The range for which the HKA is an useful approximation extended for some

distance past the point suggested by planewave reflection coefficients. When solving for acoustic

scatter from monochromatic surface waves at short ranges, the HKA was found to be a useful

method for modeling and understanding acoustic scatter in the time domain. The monochromatic

surface solution modeled by the RFM is expected to give relevant bounds on experimental

geometries for which the HKA result is accurate, and lend credence when using the approximation

for more complicated scattering problems with the same geometries.
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Chapter 3

Limited duration integral equation method

for acoustic sea surface scatter calculations

49



This study describes the limited duration integral equation method (DIEM) for calculating

broadband scatter from sea surfaces. The DIEM solves for surface scatter using a numerical

integration of Green’s theorem, the same solution framework used in the Helmholtz-Kirchhoff

approximation (HKA). The DIEM replaces the HKA with a numerically calculated solution to a

Helmholtz integral equation (HIE), a theoretically exact description of the surface scatter result.

The limited duration approximation of the DIEM uses the spatiotemporal relationship of the time

domain HKA to limit the spatial extent of HIE calculations. The DIEM results are confirmed

for a one-dimensional sinusoidal surface using the exact Rayleigh-Fourier method (RFM), in a

scenario where the HKA solution yields significant error. A sinusoidal surface was chosen for

this comparison because the RFM requires periodic surfaces. The DIEM, however, is not limited

to a specific surface type, making it a natural and computationally tractable solution for scatter

studies.

3.1 Introduction

The modeling of broadband acoustic scatter from realistic sea surfaces is computationally

prohibitive for many scenarios of practical interest, leading to the common use of approximate

solutions. Scattering approximations include eigenrays,[1] the parabolic equation,[2] and the

Helmholtz-Kirchhoff approximation (HKA).[3] Each approximate solution is useful for scattering

calculations in the varied environments relevant to ocean acoustic studies, but these approximate

results require verification using reference solutions. This study investigates the use of a limited

duration integral equation method (DIEM) as a scatter reference solution that shares a common

framework with the HKA and allows for general scatter surfaces. The DIEM is demonstrated for

a one-dimensional surface with a line source for an example geometry that contrasts the DIEM

with the HKA.

The DIEM and HKA both solve for surface scatter as an infinite surface integral using the
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Green’s theorem solution of the Helmholtz governing equation. The HKA uses an approximate

form of Green’s theorem integral, while the DIEM calculates the Green’s theorem integrand using

a Helmholtz integral equation (HIE). The HKA becomes less accurate for either low grazing angle

scatter or steep surfaces.[4] This study uses a moderately sloped sinusoidal surface to focus on a

low grazing angle propagation scenario, characterized by a large horizontal separation between

the source and receiver relative to their depths.[5] The development of the DIEM is motivated by

the inaccuracy of the HKA for transmission scenarios of importance to sea surface scatter studies,

and the need for a reference solution that builds from the same framework as the HKA.

The DIEM numerically approximates the infinite spatial integral of the exact HIE after a

spatial truncation, which results in truncation error.[6] While numerical solution of the HIE has

been used in a number of narrowband scattering studies, typically mitigating the truncation error

requires a modification of the problem setup. A spatial tapering of the source was introduced

by Thorsos [7] to reduce the acoustic pressure incident on the truncation edges. Alternatively,

Dawson and Fawcett [8] assumed a limited spatial extent of the surface deformations. Instead of

modifying the incident pressure field or scattering surface profile, the DIEM mitigates the spatial

truncation effects in broadband scatter results after a transformation into the time domain. The

HKA is used to predict the arrival time of truncation effects in the DIEM time series, allowing for

the temporal isolation of these effects after all significant scatter has occurred. Williams, Stroud

and Marston [9] previously used the time domain to remove spatial truncation effects from HKA

results, and the effectiveness of this approach is demonstrated here for DIEM solutions.

This study uses a sinusoidal scattering surface because it has an established reference

solution, the Rayleigh-Fourier method (RFM).[10] The RFM uses the periodic structure of the

surface to reduce scattering calculations to a single period, a procedure common to the larger

class of grating methods.[11] The formulation of the DIEM does not place any restrictions on the

scattering surface, however, and it is expected to be a valid reference solution for more general

surface geometries than the periodic surfaces required for grating methods.

51



Limited duration integral equation method

0 2 4
Trough number, N

0

-10

-20

P
os

it
io

n,
z

(m
)

⇤H

s

r

ab c
d e

H : 2 m

⇤ : 40 m

0 100 200
Position, x (m)

FIG. 1. Test setup. The acoustic source is at 20-m depth, the receiver is at 10-m depth, with

200-m horizontal separation. The point a indicates a general location along the scattering surface.

The points b and c are endpoints used in Green’s theorem integration, Sec. II B. The endpoints,

d and e, are specific to DIEM calculations and discussed in Sec. III B. Seven eigenrays, acoustic

rays that obey specular reflection at the scattering surface, are plotted as gray lines. The trough

number along the x-axis is introduced as the index of surface minima, measured from the origin

(trough number 0 is at x = 24.35 m for wave phase ⇣ = 5.6 rad).

Section IV discusses scatter time series using a specific short duration transmission that gives76

an estimate of the scatter impulse response over a finite bandwidth. While the specifics of a77

long duration transmission simulation are not discussed further, such a study could account78

for the temporal evolution of the physical surface using a sequence of frozen surface impulse79

responses.80

5

Figure 3.1: Test setup. The acoustic source is at 20-m depth, the receiver is at 10-m depth,
with 200-m horizontal separation. The point a indicates a general location along the scattering
surface. The points b and c are endpoints used in Green’s theorem integration, Sec. 3.2.2.
The endpoints, d and e, are specific to DIEM calculations and discussed in Sec. 3.3.2. Seven
eigenrays, acoustic rays that obey specular reflection at the scattering surface, are plotted as
gray lines. The trough number along the x-axis is introduced as the index of surface minima,
measured from the origin (trough number 0 is at x = 24.35 m for wave phase ζ = 5.6 rad).

Section 3.2 introduces the study test setup and acoustic governing equation. Green’s

theorem then is used to formulate the scatter solution as an infinite surface integral. Section 3.3

discusses the HKA, DIEM and RFM scatter solutions along with a description of the specific

numerical implementation of each method. Section 3.4 discusses the calculation of HKA and

DIEM scatter time series, and the limited duration approximation used to truncate spatial integral

lengths of Green’s theorem. Section 3.5 demonstrates that the DIEM time series is virtually

identical to that of the exact RFM solution. Intermediate DIEM results then are used to illustrate

some shortcomings of the HKA at low grazing angles.

3.2 Problem statement

We consider the test geometry illustrated in Fig. 3.1 that previously was shown to yield

significant HKA error for acoustic frequencies around 2.5 kHz.[5] The scattering surface, η(x), is
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defined as

η(x) =
H
2

cos
(

2πx
Λ

+ζ

)
, (3.1)

where wave height, H = 2 m, and wave length, Λ = 40 m. Unless otherwise stated, all results use

a wave phase, ζ = 5.6 rad, which leads to a large amplitude arrival in HKA scatter time series.

The DIEM, HKA and RFM scattering solutions considered in this study are derived from

the Helmholtz governing equation and a pressure release boundary condition. The Helmholtz

equation assumes a frozen surface, which is considered appropriate for sea surface scatter studies

with short duration transmissions.[3] Section 3.4 discusses scatter time series using a specific

short duration transmission that gives an estimate of the scatter impulse response over a finite

bandwidth. While the specifics of a long duration transmission simulation are not discussed

further, such a study could account for the temporal evolution of the physical surface using a

sequence of frozen surface impulse responses.

3.2.1 Governing Helmholtz equation

The pressure field from a line source in the acoustic volume satisfies the governing

two-dimensional Helmholtz equation,

(∇2 + k2)Φ(r) = δ(r− s), (3.2)

where s and r correspond to the source and receiver positions, respectively. The medium is

assumed to have a constant sound speed c = 1500 m/s. The wavenumber, k, is defined as 2π f/c,

where f is the acoustic frequency.

Following Meecham,[12, Meecham] the pressure field is split into a sum of two fields,

Φ(r) = Φinc(r)+Φsca(r). (3.3)

53



The incident pressure field, Φinc, is defined by the Green’s function,

G(r,s) = Φinc(r) =
i
4

H(1)
0 (k‖r− s‖), (3.4)

where H(1)
0 is the zero-th order Hankel function of the first kind. The pressure field, Φsca, is the

scatter from the surface due to the incident pressure field.

A pressure release boundary condition is used for the scattering surface of Eq. (3.1). A

half-space model is assumed below the scattering surface. The position vector, a, shown in Fig.

3.1, indicates a general position along the scattering surface. The pressure release boundary

condition is

Φsca(a) =−Φinc(a). (3.5)

The governing equation of Eq. (3.2) and the boundary condition of Eq. (3.5) fully determine the

scattered pressure at the receiver, Φsca(r).

3.2.2 Green’s theorem

Green’s theorem is used to formulate the solution to the Helmholtz governing equation as

a contour integration. This study uses the Green’s function proposed by Meecham,[12] and an

integral notation similar to DeSanto,[13]

Φ(r) = Φinc(r)+
∫

S
dx

∂

∂n
Φ(a) G(r,a), (3.6)

where S denotes an infinite integral along the pressure release surface. The G(r,a) term is the

Green’s function of Eq. (3.4), which describes the response at the receiver r to a source at surface

position a, with strength ∂Φ(a)/∂n. The infinitesimal of the integral is taken along the x-axis,

while all functions are evaluated at the scattering surface position that corresponds to x. The

normal derivative operator, (~n ·∇), is defined using a non-unit normal vector,~n = [−∂η(x)/∂x,1].
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The scattered pressure, Φsca(r), is the integral term in Eq. (3.6). The DIEM and HKA

methods both solve for the scattered pressure numerically by rectangular quadrature, but use

different values of ∂Φ(a)/∂n in this calculation. Numerical solution for the scattered pressure

introduces the finite spatial integration endpoints, b and c, shown in Fig. 3.1,

Φsca(r)≈
c∫

b

dx
∂

∂n
Φ(a) G(r,a). (3.7)

The truncation error of this approximation is discussed for time series scatter calculations in Sec.

3.4.

3.3 Solution methods

Three different solution methods for the normal derivative of the pressure field at the

surface, ∂Φ(a)/∂n, are discussed in this section: HKA, DIEM and RFM. The HKA uses a

closed form approximation for ∂Φ(a)/∂n which leads to an analytic expression for the scattered

pressure. The DIEM computes ∂Φ(a)/∂n numerically based on an integral equation, with a

spatial integration interval selected by a convergence analysis. The RFM, an exact solution that

incorporates the periodicity of the surface, is used to validate the integral equation calculation of

the DIEM.

3.3.1 HKA

This derivation of the HKA begins with the Kirchhoff approximation,[12] which enforces

a local pressure release boundary condition at each point,

∂

∂n
Φ

HKA(a) = 2
∂

∂n
Φinc(a), (3.8)
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where Φinc = G(a,s) according to Eq. (3.4). The doubling of ∂ΦHKA(a)/∂n, assumed by the

Kirchhoff approximation, is an exact result for flat scattering surfaces with the pressure release

boundary condition of Eq. (3.5).

The Kirchhoff approximation is substituted into Eq. (3.7) to give the HKA,

Φ
HKA
sca (r)≈− 1

4π

c∫
b

dx

(
a− s

)
·~n∣∣a− s
∣∣

exp
(

ik
(∣∣a− s

∣∣+
∣∣r−a

∣∣
))

√∣∣a− s
∣∣ ∣∣r−a

∣∣
. (3.9)

The distances between the source, receiver and surface are assumed long enough to use the large

argument asymptotic of the Hankel function. The significant approximation of Eq. (3.9) is instead

related to the positions of the endpoints, b and c. The errors caused by the specific placements of

b and c are discussed in Sec. 3.4.2 using time domain results.

3.3.2 DIEM

The DIEM uses a Fredholm integral equation of the first kind to solve for the pressure

field at the surface, referred to as the Helmholtz integral equation (HIE). The HIE is the result of

the limiting process of bringing the receiver in Eq. (3.6) to the scattering surface itself,

Φsca(a) =
∫
S

dx′
∂

∂n
Φ(a′) G

(
a,a′

)
=−Φinc(a), (3.10)

where the prime notation indicates a dummy variable of integration. The G(a,a′) term is the

Green’s function of Eq. (3.4), which describes the acoustic response at surface point a to a source

at surface position a′, with strength ∂Φ(a′)/∂n.

The DIEM approximates Eq. (3.10) with a finite interval integration,

e∫
d

dx′
∂

∂n
Φ

DIEM(a′) G
(
a,a′

)
≈−Φinc(a), (3.11)
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required to correctly compute @�(a)/@n between endpoints b and c. As described in Sec.147

VB, a small extension of the integration length of Eq. (12) is needed for calculation of Eq.148

(11), illustrated by the position of endpoints d and e in Fig. 1.149

C. RFM150

Grating methods, like the RFM, require both a plane wave acoustic source and a periodic151

surface, and are solved over a single periodic length of the surface (Petit et al., 1980).152

Grating methods solve for the amplitudes of the plane and evanescent waves predicted by153

the Rayleigh expansion shown in Fig. 2, which have propagation angles,154

cos(✓q) = cos(✓) +
2⇡q

⇤k
. (13)

10

Figure 3.2: Rayleigh expansion for plane waves scattered from a periodic surface with an
incident plane wave. A single up-going incident plane wave gives rise to a finite number of
scattered plane waves that propagate downward. The angle θ0 is the specular reflection direction,
where cos(θ) = cos(θ0).

which is discretized into a matrix equation to solve for the unknown term, ∂ΦDIEM(a)/∂n,

following Thorsos.[7]

The positions of endpoints d and e are determined after specifying the positions of

endpoints b and c, used to calculate the pressure at the receiver,

Φ
DIEM
sca (r)≈− 1

4π

c∫
b

dx
∂

∂n
Φ

DIEM(a)
exp
(

ik
∣∣r−a

∣∣
)

√∣∣r−a
∣∣

. (3.12)

The placement of endpoints b and c is made with the aid of the time domain HKA, discussed in

Sec. 3.4.2. A convergence analysis then determines the integration length of Eq. (3.11) required

to correctly compute ∂Φ(a)/∂n between endpoints b and c. As described in Sec. 3.5.2, a small

extension of the integration length of Eq. (3.12) is needed for calculation of Eq. (3.11), illustrated

by the position of endpoints d and e in Fig. 3.1.

3.3.3 RFM

Grating methods, like the RFM, require both a plane wave acoustic source and a periodic

surface, and are solved over a single periodic length of the surface.[11] Grating methods solve for
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the amplitudes of the plane and evanescent waves predicted by the Rayleigh expansion shown in

Fig. 3.2, which have propagation angles,

cos(θq) = cos(θ)+
2πq
Λk

. (3.13)

The angles of the scattered plane waves are real if |cos(θ)+2πq/(Λk)|< 1, indicating a prop-

agating wave. Imaginary values of θq indicate an evanescent wave, decaying exponentially as

z→−∞.

While the Rayleigh expansion gives the angles of the scattered waves, it does not specify

their amplitudes, i.e. the reflection coefficients. The RFM is used to determine the reflection

coefficients because of its straightforward formulation and implementation, following Richards

et al.[5]. Although the RFM is not expected to give the correct pressure field at all positions

in the acoustic medium for general periodic surfaces, the RFM is valid inside the medium for

sinusoidal surfaces with limited slope.[14] The RFM sinusoidal slope limit (πH/Λ≤ 0.448 . . . )

is considered sufficient for scattering surfaces approximating ocean swell, which allows for

calculation of the surface field ∂ΦRFM(a)/∂n.

The wave number synthesis discussed in the appendix computes line source results from

plane wave source calculations,

∂

∂n
Φ

RFM(a) =
∂

∂n
Φinc(a)−

i
4π

u

∑
q=l

∫
C

dθ Rq(θ)

(
sin(θq)+ cos(θq)

dη

dx
(x)
)

exp
[
ik
(

cos(θq)(x− xs)− sin(θq)(η(x)− zs)
)]
,

(3.14)

where Rq(θ) is the reflection coefficient of the q-th plane wave for an incident plane wave of

angle θ.
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The scattered pressure at a receiver similarly is computed as

Φ
RFM
sca (r) =− i

4π

u

∑
q=l

∫
C

dθ Rq(θ)exp
[
ik
(

cos(θq)(xr− xs)+ sin(θq)|zr + zs|
)]
. (3.15)

The limited integration length relevant to the wave number integration contour C, see appendix,

combined with the limited number of relevant Bragg orders, makes the solutions of Eq. (3.14)

and (3.15) computationally tractable expressions for the exact scattered pressure field.

3.4 Scatter time series calculations

Scatter results are calculated as bandlimited impulse response (IR) estimates, which are

scatter time series for short time pulse transmissions. Section 3.4.1 describes the calculation

of time series from frequency domain scatter solutions. Section 3.4.2 introduces a minimum

travel time description of the scatter time series, along with the time domain HKA. Section 3.4.3

uses the minimum travel time to relate limited spatial integration lengths in Green’s theorem

calculations to an arrival time for the truncation error. The travel time description models the

truncation error as arrivals from the edges of Green’s theorem integrations, and the edge arrivals

are removed from the scatter IR to estimate the infinite scattering surface result.

3.4.1 Scatter impulse response estimates

Estimates of the IR are made over a finite band of frequencies centered at fc = 2.5 kHz.

A windowed four-cycle sinusoid is used as a transmission pulse that is both short in time and

limited in bandwidth,

s(t) = w(t−2/ fc)sin(2π fct), (3.16)

where w(t) is a Kaiser-Bessel window with design parameter α = 2.5 π and width τ = 4/ fc.[15]

The transmitted signal is plotted in Fig. 3.3, along with its frequency transform, S( f ). IR
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FIG. 3. Transmitted signal: (a) time domain, (b) frequency domain. Transmitted pulse signal is a

tapered four-cycle sinusoid, plotted as black line. The envelope of the transmitted pulse is plotted

as a gray line, and has a maximum value at 0.78 ms. Scatter calculations are performed between

0.625 kHz and 4.375 kHz.

frequency transform, S(f). IR calculations use S(f) and the inverse Fourier transform,191

F�1,192

psca(r, t) = F�1
n
�sca(r, f)S(f)

o
=

1Z

�1

df exp(i 2⇡ft) �sca(r, f)S(f). (17)

The frequency band between 0.625 to 4.375 kHz (see Fig. 3) is used in the calculations193

shown in Sec. V.194

While the IR for RFM calculations is computed directly from the frequency domain result,195

the HKA and DIEM solutions apply the inverse Fourier transform to Green’s theorem,196

psca(r, t) =

Z

S

dx F�1

⇢
@

@n
�(a, f) G(r, a, f)S(f)

�
=

Z

S

dx v(a, t), (18)

13

Figure 3.3: Transmitted signal: (a) time domain, (b) frequency domain. Transmitted pulse
signal is a tapered four-cycle sinusoid, plotted as black line. The envelope of the transmitted
pulse is plotted as a gray line, and has a maximum value at 0.78 ms. Scatter calculations are
performed between 0.625 kHz and 4.375 kHz.

calculations use S( f ) and the inverse Fourier transform, F −1,

psca(r, t) = F −1
{

Φsca(r, f )S( f )
}
=

∞∫
−∞

d f exp(i2π f t)Φsca(r, f )S( f ). (3.17)

The frequency band between 0.625 to 4.375 kHz (see Fig. 3.3) is used in the calculations shown

in Sec. 3.5.

While the IR for RFM calculations is computed directly from the frequency domain result,

the HKA and DIEM solutions apply the inverse Fourier transform to Green’s theorem,

psca(r, t) =
∫

S
dx F −1

{
∂

∂n
Φ(a, f ) G(r,a, f )S( f )

}
=

∫
S

dx v(a, t), (3.18)

where the order of integration is interchanged. The function, v(a, t), is introduced in the right-hand

expression as the time domain integrand of Green’s theorem for the transmitted pulse, s(t).
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Figure 3.4: Minimum travel time curve, τ(a), plotted as a solid black line for the experimental
setup of Fig. 3.1. Time is referenced to the image, or flat surface reflection, arrival time. The
plot of τ(a) is terminated at the endpoints of Green’s theorem integrations, b and c. Stationary
points, local extrema of τ(a), are drawn as grey circles. The flat surface travel time, τ0(x), is
shown as the solid gray line with a single minima at 0 ms. The dashed curve shows the HKA
prediction for the final arrival time, and is separated from τ(a) by the duration of the transmitted
signal (~1.5 ms). Three time limits used in IR calculations are indicated with horizontal lines,
tmin, tmax and t f in, for the minimum, maximum and final time, respectively.

3.4.2 Minimum travel time and the time domain HKA

The time domain integrand of Green’s theorem, v(a, t), can be transformed analytically

into the time domain for the HKA. In the HKA formulation of Eq. (3.9), the exponential phase

function is the only frequency dependent term, and it represents a delay,

pHKA
sca (r, t) =

∫
S

dx vHKA(a, t) =− 1
4π

∫
S

dx

(
a− s

)
·~n∣∣a− s
∣∣

s
(
t− τ(a)

)
√∣∣a− s

∣∣ ∣∣r−a
∣∣
. (3.19)

An equality indicates the infinite surface integral gives the complete HKA result in the far-field,

in contrast to Eq. (3.9) which was an approximate formulation with finite spatial boundaries.

The single arrival from each surface position in Eq. (3.19) is a scaled copy of the source

transmission, s(t). The arrival delay is

τ(a) =
|a− s|+ |r−a|

c
, (3.20)
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which is the minimum travel time for paths that include the source, receiver and a single surface

position a. The solid black line in Fig. 3.4 shows τ(a) for the experimental setup of Fig. 3.1.

The solid gray line in Fig. 3.4 is the travel time curve for a flat surface, introduced as τ0(x). The

travel time curves are referenced to the delay of the flat surface reflection, τimg = rimg/c, where

rimg is the distance from the image source to the receiver. While the sinusoidal surface modifies

the travel time from the flat surface result, the bowl-like shape is similar for both curves, with the

similarity increasing along the bowl walls.

All positions along the scattering surface contribute to the scattered time series according

to Eq. (3.19), but most of these arrivals interfere destructively. The dominant constructive inter-

ference can be predicted using first-order stationary phase analysis [9] of Eq. (3.19). Stationary

phase analysis of the HKA predicts that each of the stationary points, grey circles in Fig. 3.4,

leads to an eigen-ray contribution. Each eigen-ray, the gray paths in Fig. 3.1, obeys specular

reflection at the surface.

The stationary points for τ(a) are clustered toward the center of the travel time curve of

Fig. 3.4, with wave troughs and crests associated with local minima and maxima, respectively.

The reduced sensitivity of τ(a) to the wave shape along the edges of the travel time curve restricts

eigen-rays spatially to the region between trough numbers 1 and 4, and temporally to within 1 ms

of the image arrival time. The eigen-ray analysis indicates clear spatial and temporal limits on the

scatter solution, suggesting that a limited spatial integration of Green’s theorem is sufficient to

describe the scatter solution.

The scatter IR of the HKA is calculated numerically with Eq. (3.19), and the results

of stationary phase analysis are not further developed here. One advantage to the numerical

solution of the HKA is that it allows for a direct comparison with the DIEM of Green’s theorem

calculations, Eq. (3.18). Additionally, numerical HKA calculations avoid the shadow zones and

caustic features of eigen-ray propagation solutions,[16] which require higher order stationary

phase corrections.[9] The eigen-ray analysis of the HKA does provide an intuitive description of
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the scatter results, however, and the distinct arrival features of eigen-rays are apparent in both the

HKA and DIEM results shown in Sec. 3.5.

3.4.3 Limited surface spatial integration

Stationary phase analysis of the HKA predicts that scatter IRs have a finite duration, with

contributions arriving from a limited region of the surface. The spatiotemporal relationship of the

minimum travel time, τ(a) of Eq. (3.20), further relates all scatter IRs with a finite duration to a

finite spatial interval of the scattering surface. However, significant truncation error is introduced

when Green’s theorem calculations are restricted to just the relevant surface interval determined

by the scatter IR duration. The time domain HKA is used to model the truncation error as edge

arrivals following Williams (in discussion of Eq. 7),[9] with the edge arrival times determined

by the positions of the integration endpoints. The times of the edge arrivals are used to isolate

the truncation error so that it occurs after all physical scatter arrivals, and the error effectively is

removed by considering only the limited duration of the calculated IR, up to the edge arrivals, to

be valid.

The exact solution for the IR, Eq. (3.18), contains scatter arrivals between tmin and tmax ,

shown in Fig. 3.4: tmin is the global minimum of τ(a) and tmax is chosen so the IR effectively is 0

for t ≥ tmax. For a choice of tmax, the finite spatial interval used in Green’s theorem calculations is

psca(r, t)≈
c∫

b

dx v(a, t), (3.21)

where the endpoints of integration are selected so that τ(b) = τ(c) = tmax. All positions with τ(a)

less than tmax are included in the spatial integration interval between b and c, and so all of v(a, t)

before tmax is included in the scatter IR calculation. For all scatter IR calculations considered in

this study, tmax = τimg +5 ms. The selection of tmax is made with HKA scatter IR calculations,

Sec. 3.5.1.

63



The finite spatial integration interval of Eq. (3.21) introduces computational artifacts in

the scatter IR, edge arrivals that begin at tmax and end by a final time, t f in. The value of t f in is

modeled with vHKA(a, t), Eq. (3.19). For each surface postion, vHKA(a, t) begins at τ(a) and

extends for the duration of s(t), ending at the dashed line in Fig. 3.4. The latest arrivals in the

HKA scatter IR calculations are the endpoint contributions vHKA(b, t f in) and vHKA(c, t f in), where

t f in is tmax plus the duration of s(t).

To compute the scatter IR, the DIEM uses the HKA estimate of tmax and t f in to isolate and

remove edge arrivals. The DIEM scatter IR are calculated between tmin and t f in with a discrete

Fourier transform approximation of Eq. (3.18). The calculated results then are limited in duration

to tmax, with the IR set to 0 for t ≥ tmax, which removes the edge arrivals from the calculated

scatter IR.

The DIEM solution for v(a, t) includes multiple scatter effects not modeled by the HKA

that may result in time extensions past the last non-zero time of vHKA(a, t).[17] Comparison of

the DIEM and HKA results for v(a, t) in Sec. 3.5.3 shows that time extensions from multiple

scatter are small for the surface under study, and that the HKA estimates for tmax and t f in are

sufficient for DIEM scatter IR calculations.

3.5 Results

A description of the DIEM solution method for the specific test setup of Fig. 3.1 is

presented along with comparisons to HKA and RFM results. Section 3.5.1 describes the deter-

mination of the Green’s theorem integration length from HKA estimates of tmax. Section 3.5.2

computes DIEM solutions for ∂Φ(a)/∂n over the finite surface length identified by tmax, and

compares the result to the HKA and RFM. Section 3.5.3 calculates the scatter IR from solutions

of ∂Φ(a)/∂n, and demonstrates that the DIEM result essentially is the same as the RFM.
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FIG. 5. (color online) Envelope of the scatter time series, psca(t), over a surface wave phase cycle:

(a) HKA and (b) DIEM. Vertical lines mark the wave phase of Fig. 1, horizontal lines mark the

time bounds tmin, tmax and tfin introduced in Fig. 4. Arrivals after tmax and before tfin are the

edge arrivals of generated by the endpoints b and c of the spatial integral in Eq. (21). While

the DIEM and HKA solutions have di↵erent amplitudes, only one significant arrival in the DIEM

solution is not predicted by the HKA, a small amplitude arrival marked with the arrow at 2.3 ms

in panel (b).
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DIEM solutions for @�(a)/@n over the finite surface length identified by tmax, and compares279

the result to the HKA and RFM. Section V C calculates the scatter IR from solutions of280
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Figure 3.5: Envelope of the scatter time series, psca(t), over a surface wave phase cycle: (a)
HKA and (b) DIEM. Vertical lines mark the wave phase of Fig. 3.1, horizontal lines mark the
time bounds tmin, tmax and t f in introduced in Fig. 3.4. Arrivals after tmax and before t f in are the
edge arrivals of generated by the endpoints b and c of the spatial integral in Eq. (3.21). While
the DIEM and HKA solutions have different amplitudes, only one significant arrival in the
DIEM solution is not predicted by the HKA, a small amplitude arrival marked with the arrow at
2.3 ms in panel (b).

3.5.1 Estimates of tmax

The integration length used in Green’s theorem calculations of Eq. (3.21) is determined

with a value of tmax that includes all arrivals in the HKA IR. The value of tmax sufficient for the

HKA solution is decided by computing the scatter time series, pHKA
sca (r, t), over an entire surface

wave cycle and finding the latest scatter arrival. Figure 3.5 compares the time domain structure of

the HKA to the DIEM solution. Note that the DIEM does not have any late arrivals that are not

apparent in the HKA, and this similarity of arrival structure indicates that a choice of tmax made

with the HKA scatter solutions is appropriate for DIEM calculations as well.

The envelope of the scatter time series, psca(r, t), is plotted as intensity in Fig. 3.5,

with the HKA and DIEM solutions shown in panels (a) and (b), respectively. The magnitude

is referenced to the envelope maximum of the image arrival, |pimg(r)| = (4π)−1
√

c/( fc rimg),

where rimg is the distance from the image source to the receiver. Time, t, progresses along the
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vertical axis, with the origin set at the image arrival time, timg = rimg/c. The arrival structure of

psca(r, t) depends significantly on the surface wave phase, which progresses along the bottom

axis. Vertical lines mark the surface wave phase value used for the test setup of Fig. 3.1.

Calculations of psca(r, t) are made with Eq. (3.21), where the endpoints b and c of the

spatial integral are determined using tmax = 5 ms, shown in Fig. 3.4. Physical scatter is bounded

by the horizontal lines at tmin and tmax. The edge arrivals from the finite spatial integration of

Green’s theorem are apparent in both solutions between tmax and t f in. In addition to the edge

arrivals, the HKA solution largely predicts the physical arrival structure of the DIEM. The one

arrival not seen in the the HKA is the small amplitude arrival at 2.3 ms, a result of multiple scatter

effects not modeled by the HKA.[17] The similarity of arrival structure means that the most

significant differences occur in the amplitude of scatter arrivals, discussed in Sec. 3.5.3.

3.5.2 Solutions for ∂Φ(a)/∂n

The function ∂Φ(a)/∂n is used by the Green’s theorem integration of Eq. (3.7) to calculate

the scatter pressure at the receiver. The HKA uses an analytic approximation for ∂Φ(a)/∂n, Eq.

(3.8), while the DIEM computes it numerically over a limited spatial interval of the scattering

surface, Eq. (3.11). The value of tmax, identified in Sec. 3.5.1, determines the surface interval

for the computation of ∂Φ(a)/∂n according to the discussion of Sec. 3.4.3. The comparisons

shown in Fig. 3.6 are made at the center frequency, fc = 2.5 kHz. Solutions for ∂Φ(a)/∂n are

normalized by the normal derivative of the pressure for a flat surface, |∂Φ0(x)/∂n|.

The agreement between the HKA and reference RFM solution of ∂Φ(a)/∂n depends

on the distance along the surface from x = 0. The HKA is similar to the RFM up to the first

wave trough where the two solutions begin to diverge, consistent with the low grazing angle

limitations of the HKA.[7] However, the HKA continues to share many features of the RFM

solution throughout the surface length.

The local grazing angle of the incident pressure largely determines the normalized magni-
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on the top axis. The endpoints d and e, used in DIEM calculations of Eq. (11), are placed at

positions b and c, which leads to significant error at the endpoints. Areas of the surface where

straight line paths from the source to the surface are blocked are indicated with thick gray dashes

above the results.

addition to the edge arrivals, the HKA solution largely predicts the physical arrival structure303

of the DIEM. The one arrival not seen in the the HKA is the small amplitude arrival at 2.3304

ms, a result of multiple scatter e↵ects not modeled by the HKA (Liszka and McCoy, 1982).305

The similarity of arrival structure means that the most significant di↵erences occur in the306

amplitude of scatter arrivals, discussed in Sec. V C.307

B. Solutions for @�(a)/@n308

The function @�(a)/@n is used by the Green’s theorem integration of Eq. (7) to calculate309

the scatter pressure at the receiver. The HKA uses an analytic approximation for @�(a)/@n,310
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Figure 3.6: Comparison of ∂Φ(a)/∂n2 between the HKA, DIEM, and RFM at fc = 2.5 kHz.
The interval across the surface for comparison is between the positions b and c, indicated on the
top axis. The endpoints d and e, used in DIEM calculations of Eq. (3.11), are placed at positions
b and c, which leads to significant error at the endpoints. Areas of the surface where straight
line paths from the source to the surface are blocked are indicated with thick gray dashes above
the results.

tude of ∂Φ(a)/∂n, shown in Fig. 3.6. For the HKA of Eq. (3.8), ∂Φ(a)/∂n is directly proportional

to the cosine of the source grazing angle. The wave profile increases the grazing angle on the

source side of each wave trough and decreases it on the far side, leading to maxima and minima

in ∂Φ(a)/∂n, respectively. Very low grazing angles reduce the amplitude of the cosine term to the

limit of 0 amplitude, which leads to the deep HKA minima in Fig. 3.6. These amplitude minima

are less extreme in the RFM solution, where diffraction prevents the deep nulls of the HKA.

Source shadowing corrections, which set the HKA solution for ∂Φ(a)/∂n to 0 when

incident rays are blocked from the source, are sometimes proposed as an intuitive improvement

for the HKA.[18] Shadow zones occur when rays paths from the source to the surface are blocked

by other portions of the surface, and are indicated with two grey dashes in Fig. 3.6. The shadow

zones largely predict the location of the RFM minima, although a deep minimum that occurs after

trough 2 is not associated with a shadow zone. The HKA, however, already underestimates the

amplitude of the RFM in all shadow regions. Thus, the HKA accuracy is not expected to improve
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from the source to the surface are blocked by other portions of the surface, and are indi-333

cated with two grey dashes in Fig. 6. The shadow zones largely predict the location of the334

RFM minima, although a deep minimum that occurs after trough 2 is not associated with335

a shadow zone. The HKA, however, already underestimates the amplitude of the RFM in336

all shadow regions. Thus, the HKA accuracy is not expected to improve with shadowing337

corrections, consistent with the shadowing study results of Holliday et al. (1995).338

The DIEM agrees with the RFM except at the edges of Fig. 6, which is more apparent339

at b than c. The mismatch primarily is because the DIEM result was calculated with the340

HIE endpoints, d and e in Eq. (11), collocated with b and c. A convergence analysis of341

@�(a)/@n between the endpoints b and c determines the extended spatial interval used for342

Eq. (11) calculations, which is shown in Fig. 7.343
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Figure 3.7: Error of ∂ΦDIEM(a)/∂n for different integration lengths of Eq. (3.11). The three
integration lengths, 182, 200 and 233 m, correspond to a minimum travel time at the endpoints
d and e of 5, 10 and 25 ms. Comparisons are made between endpoints b and c, indicated on the
top axis.

with shadowing corrections, consistent with the shadowing study results of Holliday et al.[19]

The DIEM agrees with the RFM except at the edges of Fig. 3.6, which is more apparent

at b than c. The mismatch primarily is because the DIEM result was calculated with the HIE

endpoints, d and e in Eq. (3.11), collocated with b and c. A convergence analysis of ∂Φ(a)/∂n

between the endpoints b and c determines the extended spatial interval used for Eq. (3.11)

calculations, which is shown in Fig. 3.7.

The RFM solution is used to compute the absolute error of ∂ΦDIEM(a)/∂n for different

positions of the endpoints d and e in Eq. (3.11), shown in Fig. 3.7. The error of ∂ΦDIEM(a)/∂n

is calculated by subtracting the RFM result for ∂Φ(a)/∂n, and the absolute value of the mismatch

is normalized by |∂Φ0(x)/∂n|. The endpoints d and e are placed according to τ(d) = τ(e) = tmax,

for tmax values of 5, 10 and 25 ms. This leads to integration lengths in Eq. (3.11) of 182, 200 and

233 m, respectively, and this extended integration interval is indicated in Fig. 3.1. While the 182

m integration length leads to significant error near endpoints b and c, the integration lengths of

200 and 233 m essentially have the same error between points b and c. The convergence analysis
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minimum travel time of the test setup. However, the HKA prediction for the final arrival365

time, the dashed black line, does not completely describe the DIEM solution. The DIEM366

integrand has arrivals about 0.5 ms past the dashed black line at some surface positions,367

which is an indication of time extensions due to multiple scatter. However, the small am-368

plitude and extent of v(a, t) past the HKA final arrival time means this is not a significant369

change of the time domain structure of v(a, t) from the HKA prediction. The similarity370

of the structure of v(a, t) suggests that the DIEM result for psca(r, t), calculated with the371

Green’s theorem of Eq. (21), will also be similar in arrival structure to the HKA results.372

The envelope of the scatter time series, psca(r, t), is compared between the HKA, DIEM373

and RFM solutions in Fig. 9. The times of the largest arrivals, i and ii, match the eigen-ray374
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Figure 3.8: Envelope of Green’s theorem integrand, v(a, t), Eq. (3.18): (a) HKA and (b) DIEM.
Solid and dashed black curves are the minimal travel time and the HKA prediction for the final
arrival time, respectively, following Fig. 3.4.

for ∂Φ(a)/∂n determines that a 200 m integration length is sufficient for the HIE calculation of

Eq. (3.11), which is used at all frequencies required by the DIEM.

3.5.3 Time series

The envelope of Green’s theorem integrand, v(a, t), is plotted as intensity for the HKA

and DIEM in Fig. 3.8, panels (a) and (b), respectively. Both results are compared to the minimum

travel time, τ(a), and the final HKA arrival time prediction, also shown in Fig. 3.4. The integrand

in Fig. 3.8 is normalized to the envelope maximum for a flat surface, |v0(x)|= [4π
√

fc τ0(x)]−1,

where τ0(x) is the flat surface minimum travel time (grey line in Fig. 3.4).

The HKA and DIEM solutions for v(a, t) are similar in both magnitude and shape along

the surface interval used in Green’s theorem integrations. The solid black line is a lower bound on

both solutions, which indicates that the DIEM solution is consistent with the minimum travel time

of the test setup. However, the HKA prediction for the final arrival time, the dashed black line,

does not completely describe the DIEM solution. The DIEM integrand has arrivals about 0.5 ms
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predictions shown in Fig. 4 after adding the �0.75 ms delay to reach the maximum of the375

transmission pulse (shown in Fig. 3).376

Arrival iii, with the smallest amplitude, is a multiple scatter e↵ect that is only included377

in the RFM and DIEM solutions. Importantly, however, while arrival iii is not predicted by378

the HKA, it does not extend the DIEM scatter duration past that of the HKA. This result379

validates the use of the HKA for predicting DIEM scatter duration for the specific test380

setup of Fig. 1, a result predicted for general source and receiver locations by the discussion381

related to Fig. 8.382

Arrival iv is a shadow zone contribution, which appears as a flattening of ⌧(a) between383

trough numbers 0 and 1 with no stationary points. The prediction of this arrival by the384

26

Figure 3.9: Envelope of scatter time series, psca(r, t), for the test setup of Fig. 3.1. Distinct
arrivals in DIEM time series are labeled with Roman numerals along the top of the plot. The
time bounds tmin, tmax and t f in are indicated along the top axis.

past the dashed black line at some surface positions, which is an indication of time extensions due

to multiple scatter. However, the small amplitude and extent of v(a, t) past the HKA final arrival

time means this is not a significant change of the time domain structure of v(a, t) from the HKA

prediction. The similarity of the structure of v(a, t) suggests that the DIEM result for psca(r, t),

calculated with the Green’s theorem of Eq. (3.21), will also be similar in arrival structure to the

HKA results.

The envelope of the scatter time series, psca(r, t), is compared between the HKA, DIEM

and RFM solutions in Fig. 3.9. The times of the largest arrivals, i and ii, match the eigen-ray

predictions shown in Fig. 3.4 after adding the ~0.75 ms delay to reach the maximum of the

transmission pulse (shown in Fig. 3.3).

Arrival iii, with the smallest amplitude, is a multiple scatter effect that is only included

in the RFM and DIEM solutions. Importantly, however, while arrival iii is not predicted by the

HKA, it does not extend the DIEM scatter duration past that of the HKA. This result validates

the use of the HKA for predicting DIEM scatter duration for the specific test setup of Fig. 3.1, a
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result predicted for general source and receiver locations by the discussion related to Fig. 3.8.

Arrival iv is a shadow zone contribution, which appears as a flattening of τ(a) between

trough numbers 0 and 1 with no stationary points. The prediction of this arrival by the HKA

indicates the advantage of numerical solution of the HKA with Eq. (3.19) over a simple stationary

phase analysis.

Arrival v, apparent in HKA and DIEM solutions, is the edge arrival caused by limited

spatial integrations of Green’s theorem, described in Sec. 3.4.3. While time series results are

calculated for a total length of t f in, the valid duration of the solution is limited to tmax. There is

negligible difference between the DIEM and RFM solutions before tmax, and the DIEM essentially

is identical to the reference solution after the scatter IR is limited to the valid duration between

tmin and tmax.

The HKA and DIEM show similar arrival structure in time, but the amplitudes of the

arrivals are significantly different. The first HKA arrival, label i, is approximately 4 dB lower than

the DIEM. The second and third HKA arrivals, labels ii and iv, have amplitudes about 3 dB larger

than the DIEM. The distinct error between arrivals is consistent with the DIEM approaching the

image solution more quickly than the HKA. The exact scatter solution at shallow grazing angles

from any surface is the image solution,[20] and this limit begins to be apparent for the test setup

of Fig. 3.1. The agreement of the DIEM and RFM further indicates the DIEM is an appropriate

reference solution for identifying the limitations of the HKA in test setups with low grazing angle

scatter.

3.6 Summary

The DIEM uses limited spatial integrations of Green’s theorem to compute broadband

scatter from infinite surfaces. The DIEM result is calculated as an impulse response estimate

for a short time pulse transmission, which allows for a travel time description of the solution.
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Importantly, the truncation error from limited spatial integrations of Green’s theorem is modeled

with the HKA as an arrival from the integration edges. The edge arrival model allows for

separation in time between physical arrivals and the truncation error, which effectively is removed

by limiting the duration of the scatter solution. A test scenario with a sinusoidal surface was used

to compare the DIEM to the exact RFM scatter solution, and the DIEM matched RFM results for

scatter from an infinite surface.

The DIEM determines the spatial interval in Green’s theorem calculations from the arrival

time of the last significant scatter arrival. Instead of computing the last significant arrival time

directly, the DIEM uses an estimate made with the HKA. Comparisons of the time domain HKA

and DIEM show the arrival structure of the two solutions are similar, and the HKA provides an

appropriate estimate of the last scatter arrival time. The arrival structure of the HKA and DIEM is

compared both at the receiver with scatter time series, and along the scattering surface with the

Green’s theorem integrand. The Green’s theorem integrand shows that multiple scatter effects

not modeled by the HKA do not significantly extend scatter time series durations, a result which

largely is independent of receiver location. The DIEM therefore uses the HKA to determine the

surface interval of Green’s theorem integrations, at significantly less computational cost than an

equivalent analysis with DIEM calculations.

Once the surface integration interval for Green’s theorem is established with the HKA,

the DIEM calculates the normal derivative of the pressure field on the surface, ∂Φ(a)/∂n. The

DIEM calculation for ∂Φ(a)/∂n is solved with an integral equation, which has its own spatial

integration interval. A comparison between RFM and DIEM solutions for ∂Φ(a)/∂n shows that a

small extension of the spatial interval in Green’s theorem integrations is required for the DIEM’s

integral equation calculations.

Although a number of calculations were made with the RFM reference solution to confirm

DIEM results, the DIEM does not require the RFM solution in its computations. Instead, its

results build from the commonly used HKA, and many of its results are described as departures
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from the HKA. The general formulation of the DIEM, and its similarity to the HKA, serve to

establish it as a viable reference solution for future scatter studies.
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Chapter 4

Observations of scatter from surface

reflectors with Doppler sensitive probe

signals
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Previous analysis of sea-surface scatter from the KAM11 experiment focused mainly on

the late-arriving striation patterns in time-varying channel impulse responses. This paper reveals

additional striations in the opposite direction using Doppler-sensitive waveforms. A surface

reflector model is proposed that illustrates observed Doppler shifts and relates scatter observations

to positions on the sea surface.

4.1 Introduction

Studies of deterministic acoustic scatter from the sea surface describe the transient acoustic

arrivals that reflect from identifiable surface features. [1] These studies are important because

transient arrivals can both be predicted from, [2] and invert for, [3, 4, 5] the sea surface profile.

Many of these deterministic surface scatter studies have been made in wave tanks or at relatively

short ranges at-sea, and focus on completely describing observed scatter. In contrast, longer range

measurements made during the Kauai Acomms MURI 2011 experiment (KAM11) had more

cluttered scatter arrivals, and studies of this data have focused on describing only the striation

features apparent at late delays. [6, 7, 8]

The KAM11 striations were most apparent in transmissions between two sea-floor

mounted tripods and a ship-deployed receiver, shown schematically in Fig. 4.1 (a) and (b).

Each transmission is labeled by tripod station, Sta07 or Sta05, and measurements discussed here

were taken within 20 minutes on J191 (July 10). Following previous studies,[8, 6, 7] the single

surface interaction paths in impulse response measurements are shown in Fig. 4.1 (c) and (d)

for a linear frequency modulated (LFM) probe signal. The geometries for both transmissions

are similar but the surface wave propagation direction is different, approximately (1) in-line or

(2) opposite the acoustic propagation for Sta07 and Sta05, respectively. Most apparent after the

cluttered first 4 ms of delay in Fig. 4.1 (c) and (d), striation patterns have negative or positive

slope for Sta07 and Sta05, respectively.
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Figure 4.1: Schematic of KAM11 tripod transmissions: (a) top view, (b) side view. Trans-
missions were made from tripod mounted acoustic sources, and recorded on a ship deployed
hydrophone. LFM impulse response estimates: (c) Sta07 (J191 23:06 UTC), (d) Sta05 (J191
23:12 UTC). Type I striations are most apparent after 4 ms delay with negative and positive
slopes in panels (c) and (d), respectively.
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Observed striation patterns for both transmission geometries were simulated with eigen-

ray models for both sinusoidal and rough sea surfaces. [8, 7] The sinusoidal surface study of

Choo, Seong and Song [8] demonstrated that the late-delay striation patterns are the result of

reflections from the sloped surface wave face, and the striations in Fig. 4.1 (c) and (d) arise

from surface reflections near the tripod sources. These striation patterns are termed Type I here.

Additionally, a second set of striation patterns, termed Type II here, was predicted to arise from

the surface reflections near the ship-deployed receiver. Type II striations have an opposite slope

direction from Type I striations and end at earlier delays. While suggestions of the Type II

striations are sometimes apparent, for example between 4-6 ms delay and 7-15 s time in Fig. 4.1

(c), observation of these features is challenging due to early delay clutter. [8]

This study uses impulse response estimates made with Doppler sensitive maximum length

sequence (MLS) probe signals to reduce early delay clutter, which allows the resolution of

Type II striations. Observed striation patterns are associated with surface reflectors in Sec. 4.3,

and these reflectors are specified by an in-plane position and velocity. Similar to arrivals from

moving targets in bistatic geometries, [9] both the magnitude and sign of the Doppler shift

depends on the in-plane position of the surface reflector as well as its velocity. Section 4.4.1

demonstrates the existence of both Type I and II striations at significantly different Doppler shifts

for Sta07, differences that are related to surface reflectors with similar in-plane velocities at

different locations. A similar analysis of Sta05 measurements did not reveal any Type II striations,

an absence related to the research vessel interfering with portions of the surface reflected path.

4.2 Estimation of time-varying surface impulse responses

In this study, impulse response estimates were made from LFM and MLS probe trans-

missions, centered at 10 kHz with 6 kHz bandwidth, with the two sea-floor tripods alternating

transmission sequences every 2 minutes. [6] The LFM transmission was 48 ms long and repeated
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every 144 ms for 40 s. The MLS transmission was 127.75 ms long and repeated without inter-

ruption for 20 s. Time-varying impulse responses are estimated for each probe signal following

Choo, Seong and Song [8]

The near bottom source deployment resulted in a bottom-surface path with similar delay

to the shorter surface path. Both specular arrival times appear as dark horizontal bands in Fig. 4.1

(c) and (d). For specular reflection, the delay difference between these paths is 1.8 and 1.4 ms for

Sta07 and Sta05, respectively. Similar to Funk and Williams,[10] this study assumes that the same

scatter event on the surface produces arrivals for both paths. Each scatter event then produces a

pair of striations, separated approximately by their specular reflection delay. For Fig. 4.1 (c) and

(d), however, striations cannot be attributed clearly to either the surface or surface-bottom path

due to the difficulty of identifying striation pairs among the numerous arrivals.

Instead of further analyzing the busy arrival structure of the LFM impulse response

estimates, this study focuses on the less cluttered MLS estimates. In contrast with the LFM, the

matched filter template of the MLS selects for Doppler shift, which removes many scatter arrivals

from each impulse response estimate. Each matched filter template used here is made with five

repeated MLS sequences, for an approximate 0.6 ms template duration and a reciprocal Doppler

resolution of 1.6 Hz.

4.3 Estimation of surface reflector position and velocity

The observed delay and Doppler shift of surface striations fit the in-plane position and

velocity of a surface reflector. While this study does not explicitly describe the features on the sea

surface that act as reflectors, it assumes that they are stationary points of the Helmholtz-Kirchhoff

integral, following Funk and Williams.[10] The Helmholtz-Kirchhoff integral is not evaluated

for any specific surface profile. Instead, the surface reflectors are assumed to be small elevation

perturbations that do not change the delay significantly from the flat surface.
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The in-plane velocity of the surface reflector, ∂x/∂t, is first related to a slope in the

time-varying impulse response,

m =
∂τ

∂t
=

∂τ

∂x
∂x
∂t
. (4.1)

The value of m is expected to be time-varying for the curved striation patterns predicted from

eigen-ray studies. [8, 7] The value of m in Eq. (4.1) determines the Doppler shift of the received

signal, ∆ f ,

∆ f =−m fc, (4.2)

where fc is the acoustic center frequency of the transmission.

The delay to a position on the surface, τ, and the spatial derivative, ∂τ/∂x, are modeled

for a reflector moving along the flat surface,

τ(x)≈
√

x2 + z2
rcr +

√
(xsrc− x)2 + z2

src
c

− τ f lat , (4.3)
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where the subscripts src and rcr indicate the source and receiver, respectively. The delay is

relative to the flat surface ray, τ f lat , the x-axis to the hydrophone position, and the z-axis to the

mean water level. The sound speed value, c =1535 m/s, is representative of the approximately 60

m deep mixed layer,[6] although delay corrections are possible for the refracting medium. [11]

The in-plane position and velocity of surface reflectors are estimated from striation delay,

τ, with the inverse of Eq. 4.3. For the delay curve of either source, shown in Fig. 4.2 (b), values

of τ other than zero have two possible x-positions on either side of the delay minimum. The

different x-positions are in separate regions associated with each striation type, defined by the

sign of ∂τ/∂x and shown on the top of Fig. 4.2 (b). The Type I and II regions have different

directions of striation slope for the same direction of surface reflector travel through Eq. (4.3).

This also is illustrated using eigen-rays by Choo, Seong and Song,[8] where Regions 1 and 2 in

their Fig. 4 correspond to the Type I and II regions here. The direction of the striation slope then

resolves region type, and thus the in-plane position ambiguity, necessary to estimate x from τ

with Eq. 4.3. Finally, a constant in-plane velocity, ∂x/∂t, is chosen by eye to fit the time evolving

delay of the striation pattern.

4.4 Analysis of striation patterns

The two transmission periods presented here were chosen to cover a large range of

observed in-plane scatter positions, shown as the thick black lines in Fig. 4.2 (b). For both Sta07

and Sta05, Doppler shift magnitudes of 2.5 and 4.0 Hz are used to show Type I and II striations,

respectively. The Type I striation Doppler shift was chosen to best capture the striations for both

station transmissions. The Type II striation Doppler shift was selected by considering only Sta07

transmissions because these striations did not appear in Sta05 transmissions, discussed in Sec.

4.4.2. These values are considered representative of each striation type, and a survey of other

candidate Doppler shifts did not show any additional striations.
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Figure 4.3: Station 07 surface impulse response estimates for the MLS probe signal (J191 23:10
UTC): (a) Type I, (b) Type II striations. Sloped line in panel labels shows maximum Doppler
sensitivity. The traced arrival pair in (a) has a horizontal velocity of 8.5 m/s. The traced arrival
pairs in (b) both have a horizontal velocity of 6 m/s.

4.4.1 Station 07

Doppler sensitive MLS probe signals successfully remove clutter at early delays in surface

interacting paths, showing Type I and II striations in the Sta07 transmission, Fig. 4.3 (a) and (b),

respectively. Type I striations are less sloped and approximately linear, while Type II striations are

more sloped and curvilinear. Type II striations are more sloped because the delay curve, at positive

x in Fig. 4.2 (b), is steeper for this striation type. The curvilinear shape of Type II striations is

well modeled with a constant surface reflector velocity, ∂x/∂t in Eq. 4.1, because the derivative of

the delay curve, ∂τ/∂x, changes significantly with position at early delays. The curved shape of

the Type II striations changes the slope m over time, and consequently the Doppler shift through

Eq. (4.2). Despite the changes in Doppler over a striation, the resolution of each MLS template is

broad enough that a single Doppler shifted template is able to show the entire striation pattern.

The single Type I striation observation fits a reflector speed of 8.5 m/s, while the Type II
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Figure 4.4: Station 05 surface impulse response estimates for the MLS probe signal (J191 22:56
UTC): (a) Type I, (b) Type II striations. Sloped line in panel labels shows maximum Doppler
sensitivity. The traced arrival pair in (a) has a horizontal velocity of 8 m/s.

striations fit a lower speed of 6 m/s. The observed speeds of both striation types are consistent

with the observed wave spectrum, which had a broad peak centered at a 70 m wavelength and

phase speed of 10.5 m/s. [6]

4.4.2 Station 05

The MLS probe signal results for Sta05 are displayed in Fig. 4.4, for Type I and II

striations in (a) and (b), respectively. A single Type I striation is fit to a reflector speed of 8

m/s, which is similar to the speed observed for the Sta07 Type I striation. The MLS impulse

response estimates at the Type II striation Doppler shift show almost no energy, and no striations

are apparent in Fig. 4.4 (b). While 20 s of observations cannot be considered representative of

the episodic striations, a complete survey of the KAM11 Sta05 transmissions over a range of

Doppler shifts did not reveal any Type II striations.

Often discussed in the context of the Helmholtz-Kirchhoff integral, [12] a possible
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explanation of the absence of Type II scatter arrivals in the Sta05 observations is surface self-

shadowing at low grazing angles. Although Sta05 has longer transmission paths and shallower

grazing angles than Sta07, surface self-shadowing is not a sufficient explanation for the absence of

Type II striations because: (1) the difference in distance between the two stations and the receiver

is relatively small and (2) the Type I striation patterns are very similar for the two transmissions.

Instead, it is proposed here that the hull of the R/V Kilo Moana interfered with the near receiver

surface reflection paths and thus the Type II striations are not observed. The estimated region of

vessel interference is shown as a thick grey line in Fig. 4.2 (b), calculated to include any path

in Eq. (4.3) that passes through its draft of 7.6 m within the 57 m vessel length. The hull of the

research vessel completely blocks rays in the Type II region in Fig. 4.2 (b), which explains the

lack of these striations in the Sta05 observations.

4.5 Conclusion

This study used Doppler sensitive probe signals and identified two different types of

striation patterns in the surface reflected paths of KAM11 time-varying impulse response estimates.

Both striation types can be related to a surface reflector, characterized here by its in-plane position

and velocity. These position and velocity estimates can be used in future studies as statistical

descriptions of the sea-surface, or to correlate sea-surface profile measurements with acoustic

scattering events. Finally, the presence of the R/V Kilo Moana was related to the lack of Type II

striation observations for Sta05 measurements, providing a demonstration that a specific surface

region is related to each striation type.
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Four numerical modeling methods and one experimental analysis technique were pre-

sented that focused on improving the interpretation of ocean acoustic scatter. By focusing on

estimates of the channel impulse response, both numerical and experimental analysis described

the environmental impact on broadband acoustic signals in scenarios relevant to acoustic commu-

nication systems. While significant challenges remain in reconciling numerical modeling results

with experimental measurements, many important features of experimental results can be captured

using numerical models. These results both provide additional methods for the analysis of current

acoustic scatter studies, and suggest the design of future acoustic experiments to improve the

description of acoustic scatter from the sea surface.

5.1 Summary of results

Surface scatter was described using two separate approaches. Chapters 2 and 3 presented

improved numerical modeling of surface scatter and focused on the calculation of exact scatter

solutions. Chapter 4 focused on the analysis of experimental scatter measurements, demonstrating

how Doppler sensitive impulse response estimates can significantly reduce scatter clutter and

increase the number of scatter arrival observations. Taken together, these three chapters demon-

strate the ways that numerical modeling describes observations well and also show the remaining

challenges to reconciling these separate approaches to studying surface scatter.

5.1.1 Chapter 2

Three different numerical methods were used to study mid-frequency ( 1-4 kHz) scatter

from a sinusoidal surface: eigen-rays, the Kirchhoff approximation and the Rayleigh-Fourier

method (RFM). In ocean acoustics, eigen-rays are the most commonly used approach of these

three methods and the RFM is the only exact solution considered. The Kirchhoff approximation

agrees well with the RFM results in limited horizontal ranges, while the eigen-ray solution

90



displays error at all ranges. This comparative study led to conclusion that using a reference scatter

solution should always be a component of future studies because the Kirchhoff approximation

often diverges from the exact solution in ways that are hard to predict.

Other important findings include:

• The Kirchhoff approximation and the eigen-ray solution agree with each other for portions

of the surface wave cycle, but the Kirchhoff approximation is continuous as the surface

wave translates in position. In contrast, the eigen-ray solution has discontinuities associated

with non-physical caustics and shadow-zones.

• The Kirchhoff approximation agrees with the reference solution at small to moderate

horizontal source-receiver separations. The most significant differences between these

solutions appear at longer ranges as over-predictions of arrival amplitude by the Kirchhoff

approximation.

• Reference solutions, like the RFM presented here, are necessary for longer-range studies

that require accurate amplitude results.

5.1.2 Chapter 3

Although Ch. 2 highlighted the importance of reference scatter solutions, the RFM is

difficult to generalize to more realistic ocean surfaces. The integral equation solutions for surface

scatter, which are exact for general scatter surfaces, were considered to provide a reference for

future studies. The limited duration integral equation method (DIEM) was introduced as a numer-

ical method that solves these integral equations. The DIEM assumes a short duration transmission

and is specifically designed for band-limited impulse response simulation. The relatively short

duration of the resulting scattered time series is shown to limit the spatial integrations required in

the calculation of the integral equations. The computational efficiency of the DIEM makes it a

practical scatter reference solution for use in future scatter studies with more general surfaces.
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Other important findings include:

• Multiple scatter effects are localized along the surface with the kernel of the integral

equation. The importance of multiple scatter increases with separation between source and

receiver, consistent with the accuracy of the single scatter Kirchhoff approximation at short

ranges.

• While DIEM and RFM produce essentially identical results, the DIEM is more computa-

tionally efficient and therefore allows analysis of more general surfaces than the RFM.

• The sinusoidal surface was used to demonstrate the accuracy of the DIEM, but the use of

more realistic sea surface profiles are necessary before comparisons can be made between

at-sea experiments and numerical model predictions.

5.1.3 Chapter 4

The scatter arrivals measured in channel impulse response estimates during the KAM11

experiment were shown to have significant differences in Doppler shift. Doppler sensitive probe

signals were used to select for these different Doppler shifts in impulse response estimates,

significantly reducing early delay clutter. This allowed for the observation of more striation

patterns than previously reported for this data set, demonstrating a range of Doppler shifts that is

more consistent with predictions from previous numerical studies. Finally, the observed Doppler

shifts in scatter arrivals were directly related to position and velocity estimates of a reflecting

feature on the sea surface.

Other important findings include:

• While the velocity of the surface reflectors gives rise to a Doppler shift in each scattered

arrival, different scattered arrivals have significantly different Doppler shifts that depend on

surface reflector position.
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• A constant velocity, unique to each surface reflector, matches observations well. This is

true even when scatter arrivals appear as highly curved features with variable Doppler shift

resulting from the bi-static experimental geometry.

• While two experimental setups were analyzed from the KAM11 experiment, only one setup

showed the range of Doppler shift values expected for the scattered arrivals. The missing

Doppler shifts were related to positions on the surface occupied by the research vessel

collecting the acoustic recordings. The interference from the vessel hull was then related to

the absence of arrivals with certain Doppler shifts observed for one experimental setup.

5.2 Suggestions for further research

The first part of this thesis, Ch. 2 and 3, described numerical results for surface scatter

from a simple sinusoidal sea surface. Chapter 3 further described the DIEM solution method for

surface scatter problems, which is intended for use in future scatter studies with more realistic sea

surfaces. The second part of this thesis, Ch. 4, used a travel time model to analyze experimental

observations made during KAM11 and described scattered arrivals as reflections from features

moving along the sea surface. Taken together, these three chapters form a framework for future

work to bring these two lines of inquiry together. The future work would both verify numerical

modeling methods by matching results to the scatter observations, and describe the surface

reflectors discussed in Ch. 4 with numerical studies.

Comparison of DIEM results with KAM11 experimental data requires future numerical

studies with a one-dimensional sea surface that matches the observed wave spectrum. This

comparison will inform what further model development is necessary to better match observations.

Possible future model development could include effects such as: out of plane wave propagation

[1], 2-D surface wave spectra, non-linear wave shapes [2], and bubble clouds. Additionally, the

scatter model can be improved for more general propagation conditions by including refraction
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effects [3] and interaction with the ocean bottom. These improvements to scattering modeling can

be verified using available experimental results, like those from KAM11, or future experiments

that simultaneously measure the instantaneous surface profile and the acoustic channel impulse

response.

Future experimental studies informed by the analysis of Ch. 4 could serve to further

the understanding of surface scatter in the acoustic channel. Controlled wave tank experiments

at longer ranges than previous studies (i.e. [4, 5]) could clearly demonstrate the relationship

between reflector position and apparent Doppler shift. Also, these results would be the first step

in comparing the predictions of the Kirchhoff approximation to exact scatter solutions. The most

important demonstration of both the Doppler sensitive analysis of surface scatter and the DIEM

would be an at-sea experiment that measures the acoustic channel simultaneously with the ocean

surface. While an at-sea experiment would add significant complexity to both modeling and

data analysis, initial results indicate that limited regions of the sea surface are most significant

to surface scatter. Targeted sampling of the most important portions of the surface could relate

significant acoustic scatter events to moving surface wave features, and lead to better prediction

of acoustic scatter from ocean wave observations.

Finally, both numerical and experimental results presented here contribute to the un-

derstanding of time-evolving surface scatter in the broadband signals most relevant to acoustic

communication. The improved understanding of time-evolving surface scatter can improve

acoustic communication systems by increasing the accuracy of channel simulations. Future

work with these channel simulations could also be used to improve the prediction of existing

communication system performance in novel environments. These results are expected to be most

relevant to mid-range acoustic communication scenarios in shallow water conditions, important

for applications like the growing prevalence of autonomous underwater vehicle surveys.

94



Bibliography

[1] Y. Choo, H. C. Song, and W. Seong, “Numerical study of three-dimensional sound reflection
from corrugated surface waves,” The Journal of the Acoustical Society of America, vol. 140,
no. 4, pp. 2290–2296, 2016.

[2] M. Badiey, A. Song, and K. B. Smith, “Coherent reflection from surface gravity water waves
during reciprocal acoustic transmissions,” The Journal of the Acoustical Society of America,
vol. 132, no. 4, pp. EL290–EL295, 2012.

[3] Y. Choo, H. C. Song, and W. Seong, “Time-domain Helmholtz-Kirchhoff integral for surface
scattering in a refractive medium,” The Journal of the Acoustical Society of America, vol. 141,
no. 3, pp. EL267–EL273, 2017.

[4] S. P. Walstead and G. B. Deane, “Reconstructing surface wave profiles from reflected acoustic
pulses,” The Journal of the Acoustical Society of America, vol. 133, no. 5, pp. 2597–2611,
2013.

[5] S. P. Walstead and G. B. Deane, “Intensity statistics of very high frequency sound scattered
from wind-driven waves,” The Journal of the Acoustical Society of America, vol. 139, no. 5,
pp. 2784–2796, 2016.

95




