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Abstract

Dynamic gadoxetic-acid enhanced magnetic resonance imaging (MRI) allows investigation of 

liver function through observation of the perfusion and uptake of contrast agent in the 

parenchyma. Voxel-by voxel quantification of contrast uptake rate (k1) from dynamic gadoxetic-

acid enhanced MRI through the standard dual-input two-compartment model could be susceptible 

to over fitting variance in the data. The aim of this study is to develop a linearized but more robust 

model. To evaluate estimated k1 values using this linearized analysis, high temporal resolution 

gadoxetic- acid enhanced MRI scans were obtained in 13 exams, and k1 maps were created using 

both the models. Comparison of liver k1 values estimated from the two methods produced a 

median correlation coefficient of 0.91 across the 12 scans that could be used. Temporally sparse 

clinical MRI data with gadoxetic acid uptake were also used to create k1 maps of 27 exams using 

the linearized model. Of 20 scans, the created k1 maps were compared to overall liver function as 

measured by indocyanine green (ICG) retention, and yielded a correlation coefficient of 0.72. In 

the 27 k1 maps created via the linearized model the mean liver k1 value was 3.93 ±1.79 mL/

100mL/min, consistent with prior studies. The results indicate that the linearized model provides a 

simple and robust method for assessing the rate of contrast uptake that can be applied to both high-

temporal resolution dynamic contrast enhanced MRI and typical clinical multi-phase MRI data 

and that correlates well with both the results of two-compartment analysis and independent whole 

liver function measures.

Graphical Abstract

This study used the uptake of gadoxetic acid contrast into the hepatocytes as a means of 

quantifying liver function. A linearized form of the dual-input two-compartment model was 

developed to estimate the uptake robustly and efficiently. The resulting function maps were 

compared to the full dual-input two-compartment model, and to whole liver function quantified via 

indocyanine green.
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1. Introduction

Regional and global liver function measures are critical for guiding treatments for 

intrahepatic cancers, including surgical resection, radiofrequency or microwave ablation, and 

radiation therapy, to preserve liver function and prevent organ failure1. Mapping both 

baseline regional liver function, and early change after liver-directed therapy is critical to 

predict permanent treatment effects on liver function and reduce the probability of liver 

failure after intervention. Further, accurate liver function mapping could allow for precise 

customization of treatment planning that carefully accounts for present and future regional 

liver function2,3.

Various methods currently exist for determining regional liver function. Positron emission 

tomography (PET) and single positron emission computed tomography (SPECT), with 

radioactive hepatobiliary tracers, have been developed for direct measurement of regional 

liver function3–5. MRI-based methods benefit from both superior resolution and the absence 

of a radiation dose during the assessment scans. Using dynamic contrast enhanced (DCE) 

MRI with vascular contrast agents, perfusion parameters have been calculated from a dual-

input single-compartment model of the liver, in which portal venous perfusion was 

considered as a surrogate for liver function6. However, use of a hepatobiliary contrast agent 

allows direct assessment of liver function through contrast uptake in liver parenchyma. 

Gadoxetic acid, marketed in the United States as Eovist, and as Primovist in Europe, is a 

hepatobiliary MRI contrast agent7. It is distinguished from vascular agents in that it is taken 

up into the liver cells, allowing more direct interrogation of liver function. Using this agent, 

hepatic extraction fraction (HEF) can be estimated to assess liver function. While HEF is 

directly related to uptake rate, it cannot isolate uptake rate from the effects of plasma flow. 

Semi-quantitative measures such as relative enhancement (RE) and enhancement relative to 

spleen similarly cannot differentiate between uptake rate and plasma flow, while additionally 

either ignoring fluid enhancement or assuming its uniform conformity to fluid enhancement 

in the spleen8. A dual-input two-compartment model of liver function can be used to directly 

estimate the uptake rate, but the model requires high temporal resolution images to 
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adequately characterize the concentration curves used as inputs, can have as many as 6 

unknown parameters, and may be susceptible to over fitting variance in the data 9.

This study develops and applies a linear model based on the dual-input two compartment 

model of liver function. Ideally, this model can be used to estimate both flow dependent and 

independent measures of liver function with decreased computational complexity and 

susceptibility to variance as compared to the dual-input two-compartment model. To this end 

we compare the results of the developed model to the dual-input two-compartment model as 

applied to high-temporal resolution gadoxetic-acid enhanced MRI data, and to indocyanine 

green (ICG) retention in livers with corresponding clinical temporally-sparse MRI data. 

Through simulations we also assess the impact of failure to capture the peak of the arterial 

input function on the estimate of uptake. This allows us to confirm the correspondence of 

our approach to the two-compartment model for liver function, and to an independent and 

reliable measure of whole liver function found in the extraction by the liver of ICG10, while 

confirming the applicability to low temporal resolution clinical datasets.

2. Methods and Materials

2.1 Dual-Input Two-Compartment Model

2.1.1 Model Description—The dual-input two-compartment (DITC) pharmacokinetic 

(PK) model of gadoxetic acid in the liver9 is illustrated in figure 1. This model describes the 

hemodynamics of gadoxetic acid (hepatic arterial and portal venous perfusion), and contrast 

uptake of hepatocytes. In this model, after injection of a bolus of gadoxetic acid, the contrast 

circulates in the blood by flowing in from both hepatic artery and portal vein into the 

sinusoids, distributing in the space of Disse and flowing out through the central and hepatic 

veins. This assumes fast exchange between the sinusoids and the space of Disse. Meanwhile, 

hepatocytes take up the contrast through the sinusoid membrane. The contrast uptake of 

hepatocytes is assumed to be unilateral, by omitting the minor efflux of the contrast back to 

sinusoids in the initial retention period11. This model also omits the slow and delayed 

excretion process.

If we consider a voxel or a volume of interest with a total volume of Vt, the total amount of 

contrast in the voxel is a sum of the amounts of contrast in the extracellular and intracellular 

spaces, and can be described by the following equations:

V tCt(t)
Contrast in Tissue

= VdisCdis(t)
Exctracellular Contrast

+ k1∫
0

t
VdisCdis(τ)dτ

Intracellular Contrast

(1)

VdisCdis(t) = Vdis∫
0

t
kaCa(τ − τa) + kpvCpv(τ − τpv) e

−(t − τ)(k2 + k1)
dτ (2)
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where Vdis is the distribution volume of blood; Ct, Cdis, Ca, and Cpv are contrast 

concentrations as a function of time in the respective total, distribution, arterial, and portal 

vein volumes; τa and τpv describe respective arrival time delays of the arterial and portal 

vein input functions at each voxel; ka and kpv describe the normalized arterial and portal 

venous flow rates, and k2 is the normalized flow rate leaving the volume of interest through 

the central vein. k1 is the normalized rate of uptake of contrast to the intracellular space. The 

distribution volume includes the Space of Disse and sinusoids. We also define a fractional 

distribution volume of vdis =
Vdis
Vt

. The derivation and a detailed description of equations are 

given in the appendix.

Ct, Ca, and Cpv are measurable from the intensity of dynamic contrast enhanced MRI at 

regions or voxels of hepatic tissue, artery, and portal vein respectively. As a result, equations 

(1) and (2) have 6 unknown variables (ka, kpv, τa, τpv, k1 and vdis) to be determined.

2.1.2 Optimization—To determine the 6 unknown variables in equations (1) and (2), the 

cost function

∑i = 0

Nt − 1
Ct(iT) − Ct(iT) 2

(3)

is optimized. Here Ĉt is the estimate of Ct given by the model in equation (1) with guessed 

values of ka, kpv, τa, τpv, k1 and vdis during the optimization process. T is the temporal 

interval between time points and Nt is the total number of time points in the DCE curves. 

This study used the Nelder Mead Simplex algorithm to perform the optimization.

2.2 Linear single-input two-compartment model

2.2.1 Rationale—Since fitting the DITC PK model requires the optimization of 6 

parameters, it is susceptible to overfitting of variations due to noise, and also is time 

consuming when fitting a long dynamic series of data in the whole liver. Estimating k1 (the 

contrast uptake rate of hepatocytes) requires a long time period of observation of the contrast 

accumulation in hepatocytes. The hemodynamic changes after the initial transient time 

following the contrast bolus injection become slow. This offers an opportunity to solve the 

problem in a different manner, producing a computationally simpler problem and, ideally, 

reducing susceptibility to variation. Assumptions used in the derivation and formula are 

described in the following subsections

2.2.2 Assumptions & Formulation—The change in the total amount of contrast in the 

distribution volume in a voxel is:

Vdis
dCdis(t)

dt = Vdis[kaCa t − τa + kpvCpv t − τpv ] − Vdis(k2 + k1)Cdis(t) (4)
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which is equation (2) in the derivative form. Given the long acquisition period for 

observation of gadoxetic-acid uptake in hepatocytes, after a few circulations of the contrast 

bolus in the blood (t > tp), the contrast concentration in the portal vein blood is eventually 

equal to that in the arterial blood, Ca(t) = Cpv(t). Under this condition, equation (4) can be 

re-written as:

Vdis
dCdis(t)

dt = Vdis ktCa(t) − (k1 + k2)VdisCdis(t) when t > tp (5)

where kt = (ka+kpv) = (1-Hct)k2, the normalized total blood flow rate in Vt, and Hct is 

hematocrit. Equation (5) can be re-arranged as:

Cdis(t) =
kt

k1 + k2
Ca(t) − 1

k1 + k2

dCdis(t)
dt when t > tp (6)

Substituting Cdis in equation (6) into the second term in equation (6), equation (6) can be 

further re-written as:

Cdis(t) =
kt

k1 + k2
Ca(t) −

kt

(k1 + k2)2
dCa(t)

dt + O(
d2Ca(t)

dt2
) + … when t > tp (7)

where the first term depends upon Ca, the second term depends upon the first derivative of 

Ca, the third term depends upon the second derivative of Ca, and so on. If the second 

derivative of Ca is small enough to be neglected, substituting equation (7) into equation (1) 

and re-arranging the terms, we have:

(1 − Hct)Ct(t) = vdis
k2

k1 + k2
1 −

k1
k1 + k2

Ca(t) + k1∫0

t
Ca(τ) dτ − 1

k1 + k2

dCa(t)
dt (8)

Equation (8) can be considered as the linear problem y = ax1 +bx2 +cx3, where y = (1 − 

Hct)Ct(t), and x = (x1, x2, x3) = (Ca(t), ∫ 0
t Ca(τ) dτ,

dCa(t)
dt ). A linear least squares (LLS) fit can 

estimate coefficients of a, b and c. k1, k2 and vdis can be solved from the coefficients (see 

appendix B).

If the second term (related to the first derivative of Ca) in equation (7) can be neglected, we 

have:

(1 − Hct)Ct(t) = vdis
k2

k1 + k2
Ca(t) + k1∫0

t
Ca(τ) dτ (9)

Simeth et al. Page 5

NMR Biomed. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Again, equation (9) is a linear problem, y = ax1+bx2, where y = (1 − Hct)Ct(t), and 

x = (x1, x2) = (Ca(t), ∫ 0
t Ca(τ) dτ), which can be solved by LLS fitting. In this case, k1 = b

a . 

Note that there is no assumption made relating to k1 and k2; and but k2 and vdis cannot be 

solved. Also, equation (9) can be re-arranged to be:

(1 − Hct)Ct(t)
Ca(t)

y

= vdisk1
k2

k1 + k2

slope

∫ 0
t Ca(τ)dτ
Ca(t)

x

+ vdis
k2

k1 + k2

intercept

(10)

which is a form of the Patlak analysis12. Note that k1 can be calculated by slope/intercept, 

and is not affected by the relationship between k1 and k2, which is different from the Patlak 

analysis. The intercept in the Patlak analysis is called veff and is usually greater than the true 

blood distribution volume. The intercept in our case, vdis
k2

k1 + k2
, is smaller than vdis. 

However, if we assumed that k2≫k1, vdis can be estimated by the intercept. Note that we 

only used the assumptions:Ca(t) = Cpv(t) and that there is slow contrast change in the blood 

after t > tp, to derive these equations. We will call it the linearized single-input two-

compartment (LSITC) model hereafter.

2.2.3 Optimization—Optimization of equation (10) involves first computing the vector x 
and the set of vectors y (one for each voxel). Additionally, tp (or xp corresponding to tp) 

needs to be determined. Based on the assumptions of the model, x and y will be linearly 

related after xp, suggesting a linearity test is needed. If it is assumed that xp is relatively 

consistent throughout the liver a single test can be performed, reducing noise effects and 

saving computation time.

To obtain xp, the vectors y are averaged over all voxels within the liver to form a single 

vector. The two singular values of the centered data matrix [x y] after the tested xp are 

acquired by the singular value decomposition. The tested xp is varied within a time interval 

between the arterial peak and 2 min before the last data point. The ratio of the first singular 

value to the second is calculated to determine the linearity of the relationship. xp is then 

chosen to maximize this ratio. Figure 2 illustrates the behavior of the y vector before and 

after xp in a region of interest. However, in cases with sparse temporal sampling the process 

can be simplified by setting tp based on the DCE data with high temporal sampling.

After selection of xp total least squares regression is performed for each voxel using the data 

after xp to minimize the impact of errors in both x and y. The slope of the resulting fit is 

divided by the intercept to determine the value of k1 in the voxel. In cases where the 

intercept is less than 0.02, k1 is set to zero to prevent values from blowing up. This is also 

justified in that a low intercept, corresponding to a sufficiently low vdis will effectively 

preclude meaningful levels of uptake in the voxel.
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2.3 Evaluation

This study evaluates the performance of the LSITC model, with reference to the results of 6 

parameter optimization of the established DITC model, simulated data based on the DITC 

model, global liver function assessment through indocyanine green (ICG) retention in the 

plasma, and a comparison to literature values.

2.3.1 Data Acquisition—In order to compare the results of the proposed LSITC model 

with the DITC model, 3D volumetric DCE MRI of the liver were acquired during the 

intravenous injection of a single standard dose of gadoxetic acid using a Golden-Angle 

Radial sampling VIBE sequence on a 3T scanner (Skyra, Siemens Healthineer) in a 

prospective protocol approved by University of Michigan Institutional Review Board. A 

total of 14 exams from 13 patients with intrahepatic cancers prior to radiation therapy were 

acquired during free breathing. Demographic, pathological, and clinical Child Pugh scores 

of this group of patients (called Group 1) are provided in table 1. Note that 54% of the 

patients had Child Pugh scores of 5, indicating good liver function. In this group of the 

patients, 3D DCE images were acquired with temporal resolutions of 3.5 to 10 seconds and 

total acquisition times of 4 to 24 minutes, and covered the whole liver with 64 to 72 slices 

with slice thicknesses of 2.6 to 4.5 mm and in-plane resolution of 2.1×2.1 mm to 2.4×2.4 

mm (192×192 pixels). These scans will be referred to as high temporal resolution (HTR) 

scans. The high temporal resolution scans could be fitted to both the DITC model and the 

LSITC model, allowing comparison of the results obtained from the two methods.

In addition, the proposed LSITC model was applied to clinical multi-phase MRI with 

gadoxetic acid in 19 patients, which was approved by a retrospective protocol of University 

of Michigan Cancer Center. Demographic, pathological, and clinical Child Pugh scores of 

this second group of patients are provided in table 1. Pre- and post-RT scans were acquired 

from 19 patients, for a total of 40 scans. Each patient had been diagnosed with HCC. The 

scans were comprised of 3D volumetric multi-phase MRI of the liver during the intravenous 

injection of a single standard dose of gadoxetic acid on either a 1.5 T GE or a 1.5T Philips 

scanner. Each exam consisted of a pre-contrast volume, three-phase (arterial and portal vein 

phases) volumes that were each spaced approximately 20 seconds apart, and hepatobiliary 

phase volumes at approximately 10 and 20 minutes post contrast, for a total of 6 time points. 

Each acquisition was obtained during a breath hold. 3D MRI had 88 to 124 slices per 

volume with 256×256 pixels to 512×512 pixels in the plane. The pixel size varied from 

0.7×0.7 mm to 1.4×1.4 mm within each slice, with the slice thickness consistently 2 mm. 

These scans will be referred to as low temporal resolution (LTR) scans. However, due to 

changes in flip angle between phases in the scan (particularly in the late phases) and image 

quality issues, the set of usable scans was only 27 of the original 40. ICG retention exams 

were carried out near the time of the scan for 20 of the 27 scans, without RT or any other 

treatment having taken place in the meantime. The ICG retention score as a quantitative 

overall liver function assessment was measured as the percentage of the original ICG dose 

remaining 15 minutes after injection, as described previously10, with higher plasma retention 

signifying poorer liver function. The patients in this second group had a median baseline 

ICG retention of 37.2%, with minimum and maximum retention scores of 9.8% and 50.2%.
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2.3.2 Image pre-processing—For the clinical LTR multi-phase images, interpolation 

was carried out on the image volumes that had different spatial resolutions between the 

volumes. All 3D multi-phase LTR MRI volumes in an exam were co-registered using a 

robust, over-determined image registration method13. For all volumes the aorta was 

contoured from the aortic split to the liver up 3 cm. The 100 voxels within this region that 

had the highest contrast just before the arterial concentration peak were averaged to form the 

arterial input function (AIF). For the HTR DCE data, the portal vein was also contoured and 

selected by the same process to obtain the portal vein input function (PVIF). In both cases 

relative enhancement was used to create the input functions:

C(iT) ∝
SIi

SI precontrast
− 1 (13)

where C(iT) describes the relevant concentration at time point i, given a sampling interval of 

T, and SIi and SIprecontrast are the average signal intensities in the given region of interest at 

time point i, and prior to contrast enhancement respectively. The same calculation was 

performed for each voxel in the liver.

2.3.3 Evaluation metrics—k1 maps were obtained from the HTR DCE series using both 

the established DITC model and the proposed LSITC model. The k1 maps obtained from the 

DITC approach were used as a reference standard in the evaluation of the LSITC approach.

The first evaluation was to assess the similarity and deviation between the two resulting k1 

maps within the liver. The similarity was tested by the linear correlation coefficient between 

the two k1 maps. The deviation was evaluated by the weighted mean absolute percent error 

(WMAPE), where we define the voxel-wise weighted absolute percent error (WAPE) as

∣ reference(i) − estimate(i) ∣
1
N ∑n = 1

n = N reference(n)
. (14)

Where i and n are voxel indices, and N is the total number of voxels considered. It should be 

noted that this metric places higher weight on accuracy for larger measurements. In this case 

the DITC model uptake rates are the reference values.

The second evaluation was to assess the validity of the LSITC model as applied to the 

clinical multi-phase LTR MRI data. Due to the low temporal resolution of approximately 20 

seconds, the arterial input function peak could be missed or averaged over 20-second 

sampling. The sampling of the arterial peak affects the integral of the arterial input function 

in equation (10). Considering that the integral is over a long time period of 10 to 20 minutes, 

the effect of the arterial peak on the k1 estimation could be small. To evaluate it, a tissue 

concentration curve with a temporal resolution of 1/s was simulated by direct application of 

the DITC model, subject to the input of reasonable parameter values and blood 

concentration curves. To mimic the LTR multi-phase MRI data, a subsampled curve was 
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created by removing all points after the 1st pre contrast point and prior to the peak of the 

arterial input function. This curve was used to assess the error inherent in neglecting to 

sample the upswing in the arterial function, even when the image was perfectly timed to 

correspond to the peak. In order to evaluate the additional bias incurred by mistiming the 

peak, an additional concentration curve was created by removing all post-contrast data until 

20 seconds after the arterial peak. This mimics a 20-second delay in the ideal time to image 

the arterial peak. For each of these three cases, the primary metrics were the correlation 

coefficients and WMAPE. The error in the k1 estimation could represent an upper bound on 

the error incurred by missing the arterial peak, since acquisition delays longer than this 

would be easily visually recognizable.

The third assessment involved the application of the LSITC approach to the clinical multi-

phase MRI data and comparison to global liver function as measured by the ICG retention 

rates. These clinical scans were much sparser temporally than those seen in the HTR DCE 

scans and so fitting with the full DITC model was impractical. The metric for evaluation was 

the correlation coefficient between the sum of the estimated K1 values over the contoured 

liver volume by the LSITC approach and the log of the ICG retention score, where K1 = 

k1Vdis. In the sum of K1 over the whole contoured liver volume, outliers having K1 values 

above the 95th or below the 5th percentiles were rejected to remove edge effects. 

Additionally, large vessels were excluded by rejecting voxels where vdis was greater than 

0.4. The inclusion of the volume term ensures both uptake rate and plasma flow are 

accounted for. The summation of a regional measure of liver function to allow comparison to 

a global function such as ICG is not new.14

The final assessment involved comparison of the k1 values obtained in the HTR DCE, and 

LTR multi-phase MRI data sets to reported values of k1 in the liver from prior studies.

3. Results

3.1 k1 estimations by the LSITC model vs. DITC model

Maps of k1 values estimated from the liver HTR DCE scans using both the LSITC and DITC 

models are shown in figure 3.

The linear correlations between the k1 maps estimated by the two models are shown in 

figure 4. The correlation was calculated in a randomly selected 5000 voxels within each 

liver, restricted to the voxels where vdis was above the 25th and below the 75th percentiles, 

and the k1 values were greater than 0.01 mL/100mL/min. (In one patient who was a 

candidate for the liver transplant and had very poor liver function, there was a small volume 

in the liver that had the non-zero k1 values, leaving little volume for analysis. Thus, this 

patient was excluded from the analysis described here). The correlation coefficients ranged 

from 0.98 to 0.76 with a median of 0.91. The WMAPEs ranged from 9.0% to 39.4% with a 

median of 17.2%. Note that either estimate can be considered as the ground truth.

The estimated transition times (tp) when the varied from 10 to 313 seconds as measured 

from the peak of the arterial input function, with a median value of 58 seconds. The 

computation speed of the LSITC approach was approximately 1000 times faster than the 
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dual-input two-compartment model, taking a few seconds per exam while the DITC model 

fitting took several hours per exam.

3.2 k1 estimation by simulation of missing the arterial peak

To simulate DCE data, composite input curves were first created by averaging the respective 

AIF and PVIF after matching the arterial peaks and re-sampling the time curves from all 

patients. The composite functions converged approximately 75 seconds after the arterial 

peak. To reduce noise the input data at least 5 min subsequent to the arterial peak was 

replaced by a double exponential fit.

Simulated parameters were randomly chosen but uniformly distributed over the ranges 

shown in table 2, while τa and τpv were assumed to be 0 seconds. Using these values and the 

composite input concentration curves (AIF and PVIF), the resulting tissue concentration 

curves were calculated using the dual-input two-compartment model.

To assess the potential error and variance incurred by missing the arterial peak during the 

clinical multi-phase MRI scan, the resulting tissue and arterial functions (figure 5a) were 

then subsampled to remove all points prior to the arterial peak, apart from one pre contrast 

reference scan (figure 5b). Furthermore, the data points acquired 20 seconds after the arterial 

peak (including the peak) were removed from the simulated curve and AIF to mimic a 

possible further delayed acquisition in the clinical data (figure 5c).

For each scenario tp was assumed to be 60 seconds post peak. The simulation was run 

10,000 times per case. A strong correlation was found between the LSITC results and input 

simulation values. Without noise, correlation coefficients remained above 0.99 for all three 

cases including the case with an acquisition delay of 20 seconds after the arterial peak.

Results showed similar distributions for estimates of k1, regardless of the acquisition delay 

(see figure 6 and figure 7). The WAPE in the noise free simulations was 4.7 ± 3.2% (mean ± 

standard deviation) for the full dataset, and then shifted to 6.1 ± 3.6% for the data missing 

time points before the arterial peak and to 6.7 ± 2.4% for the data missing time points up to 

20 s after the arterial peak. The WAPE changed little when introducing white Gaussian noise 

to the generated Ct functions. Note that missing the early time points in the dynamic curves 

caused a maximum change in the WAPE of 2% (from 4.7% to 6.7% without noise), 

suggesting other effects predominate in the k1 estimation errors. Based on these results we 

would expect similar levels of systematic error resulting from delayed or averaged capture of 

the arterial peak in the LTR multi-phase data.

3.3 k1 estimation from the clinical MRI and comparison with ICG retention

Maps of k1 and vdis were estimated from the clinical LTR multi-phase MRI of 27 exams 

using the LSITC model. Example k1 and vdis maps are shown in figure 8. For the 20 clinical 

scans with accompanying ICG retention scores, the scores were compared to the K1 values 

(K1 = k1Vdis) summed over the contoured liver volume (figure 9). Voxels with vdis greater 

than 0.4 were rejected to omit vasculature, and K1 values less than the 5th or greater than the 

95th percentile were rejected to avoid outliers and edge effects. Since the log of ICG 

retention is inversely proportional to the rate of clearance in the liver, a linear relationship is 
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expected. The sum of K1 values were significantly correlated to the log of ICG retention 

values with a correlation coefficient of R = −0.72 (p=0.0004, n = 20).

3.4 Comparison to Literature values

Maps of k1 values were generated for the 27 multi-phase LTR liver scans by the LSITC 

model. In each of the 27 k1 maps the mean value was calculated over the volume with vdis 

less than 0.4 and with k1 values in the central 90th percentile of k1 value for the liver. The 

mean value across all multi-phase LTR scans was 3.93 ±1.79 mL/100mL/min. Using the 

same process for the HTR DCE based maps the mean uptake was measured as 9.17 ± 8.23 

mL/100mL/min, across all HTR DCE scans, and 7.44 ± 4.93 mL/100mL/min after removal 

of an outlier more than twice as large as any other mean uptake. It should be noted that the 

outlier was also the scan with the shortest total duration.

This is fairly consistent with the prior literature. Previous studies have found mean uptake 

rates of 3.4 ± 2.1 in background regions of livers with metastases, 3.03 ± 2.1 in cirrhotic 

livers, and 6.53 ± 2.4 in healthy livers, as seen in figure 1015,16.

4. Discussion

This study developed a LSITC model to quantify k1 from dynamic gadoxetic acid enhanced 

MRI in the liver, and evaluated the results by comparisons to an established uptake model, 

and measure of whole liver function. The k1 values estimated by the LSITC and DITC 

analysis of the HTR DCE MRI data had a close median correlation (R = 0.91). Application 

of the LSITC approach to LTR multi-phase MRI data gave similar results to prior studies 

and correlated relatively well (R = −0.72) with the results of ICG retention exams. 

Furthermore, concerns about the impact of delayed imaging of the arterial peak were 

addressed by simulations showing less than 3% related error. The results indicate that the 

LSITC model is a simple analog to the dual-input two-compartment model, and correlates 

well with independent scores of liver function. Since this technique can be applied to 

clinically typical multi-phase data, it presents the possibility of quantitative liver assessment 

without large changes to existing clinical workflow.

There are several possible sources of error in the determination of k1 via the LSITC model 

set forth here. It should first be noted that unlike the Patlak model, the ratio of k1 to k2 

should not impact the estimate of k1, since the k2 dependent term cancels in equation (10) 

when dividing slope by intercept. However, this term will impact the estimate of vdis and K1, 

with both underestimated. This also suggests a more complete linear model where equation 

(8) is fit to determine k1, k2 and vdis, allowing a more accurate estimate of K1 (see appendix 

B).

The model assumes that after tp, Cpv = Ca. In most of the measured input curves Ca and Cpv 

were very similar within less than a minute of the arterial peak. In some cases this held true 

after a constant correction factor, i.e. Cpv × constant = Ca. This could reflect differences in 

Hct between Ca and Cpv. In quantification of Ca and Cpv, native T1 of plasma was not 

considered since images for T1 quantification are almost never acquired in clinical liver 

scans. However, native T1 of plasma should be the same for Ca and Cpv. This omission 

Simeth et al. Page 11

NMR Biomed. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



should not contribute to the difference between Ca and Cpv. In general, it is anticipated that 

the peak of Cpv is shallower and broader than that of Ca, since the bolus of contrast travels 

through the vascular systems of intestines and spleen before it slowly returns to the portal 

vein through the mesenteric vein and splenic vein. In some patients, this contrast return 

seems to be slower than in others. This could be a factor contributing to difference between 

Ca and Cpv even after the typical time tp. However, partial volume effects and motion could 

also affect the measurement of Cpv, causing apparent differences between Cpv and Ca that do 

not reflect the actual contrast concentrations. The simplified form of the model also neglects 

dCa/dt from equation (8). Since dCa/dt will generally be negative, and decreasing in 

magnitude after tp, we expect this to result in a small overestimate of vdis and k1. The 

possibility of flow related enhancement causing a mischaracterization of AIF can be 

considered as well. Selecting the AIF values from an Aorta contour within 3 cm of the aortic 

split to the liver ensured the blood in the voxels used were far from the edge of the FOV, and 

had experienced multiple repetitions within the excitation volume. This minimizes the 

impact of flow related enhancement on the AIF, making this an unlikely source of error in 

AIF, or cause for differences between AIF and PVIF. The estimate of xp could also impact 

the final solution. Choosing xp too early would be expected to cause an underestimate of 

vdis, and an overestimate of k1. In the absence of noise even a very late estimate of xp should 

have little impact on the result. However, with noise we would expect additional uncertainty 

in the result as we estimate the slope and intercept from fewer data points.

In the LTR clinical data we assumed the last three points after enhancement were after tp. 

This was necessary to have an overdetermined solution, but may not have been accurate in 

some voxels or livers. The time post arterial peak for the first point in the fit varied between 

36 and 290 seconds. The median time was 48 seconds. This can be compared to the optimal 

tp times chosen in the HTR data, which had a median of 65 seconds. It should be noted that 

the peak in the LTR clinical data was assumed to coincide with the start of the first post 

contrast image, so it is possible that there is a hidden delay relative to the physiological 

arterial peak. Another possible source of error is the sparsity of the clinical data which 

causes an underestimate of the integral of Ca, and thus an underestimate of the values for x. 

We would expect this error to increase as the timing of the 1st post contrast measurement 

was delayed past the peak, but the change in error in the simulation was relatively minor, 

indicating other effects predominate.

Both the LSITC and DITC models omit several notable features. Firstly, the models omit the 

excretion of contrast from the hepatocytes into the bile. It was assumed that the rate of 

excretion is negligible over the timeframe of the exams. Deviations from this assumption 

would cause error in k1 and thus impact the total functional estimate. However, this would 

not impact the comparison between the two models, or effect error in the simulated case. 

Secondly, the DITC model includes only one extracellular compartment, which may not be 

valid in tumors or other pathological tissues where movement between the capillary bed and 

the space of Disse is relatively slow. This would again impact both models. The impact 

could be assessed by comparison to a dual-input three compartment model.17

Contrast concentration for all exams was calculated using relative enhancement. Relative 

enhancement has been found to correlate linearly with the concentration in a given tissue, 
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though this relationship breaks down at sufficiently high contrast concentrations.17 However, 

even if we assume perfect linearity and that all plasma and all liver voxels had uniform 

respective native T1 values, the direct use of relative enhancement as relative concentration 

will introduce a constant bias term in the uptake rate based on the native T1 in plasma 

relative to liver tissue. This would not impact the correlation with liver function and could be 

fixed through a correction constant with knowledge of the ratio of native liver and plasma 

T1. If we further consider differences in native T1 across the liver we would expect 

additional error even in the relative voxel wise uptake rate. This could be fixed by 

characterizing the precontrast T1 with an additional sequence before contrast injection. 

Ideally this would allow for more accurate quantification of concentration, but does 

introduce clinical inconvenience and complicates analysis.

In all real data; noise, motion and other random variation contributed to error in the input 

curves, and the tissue curves. Random variation will be especially harmful in cases where 

relatively few data points are used in the estimate of k1. Motion effects are especially 

apparent at the edges of the liver and liver vasculature. In these locations slight motion can 

cause apparent jumps in uptake as a motion artefact.

Further work can be done to improve k1 quantification. For example, the impact of noise and 

motion could be lessened by the introduction of spatial regularization to the creation of the 

k1 map. The full model from equation (8) can be used if k2, or vdis are parameters of interest, 

though it should be noted that the LSITC model cannot replace the DITC model when 

arterial or portal venous perfusion are parameters of interest. An evaluation of the impact of 

omission of native T1 on k1 estimation across the population of patients will be conducted. 

Additional work should also use larger and more varied data sets to further characterize the 

relationship between liver function and uptake as measured by the LSITC model. Further 

analysis should also consider tissues in which the DITC model is insufficient and include 

comparison to a dual-input three compartment model.17

5. Conclusion

This work proposes and validates the LSITC model for assessing liver function based on the 

uptake rate of gadoxetic acid. Validation was obtained relative to the17 predictions of the 

accepted dual-input two-compartment model, and independent measurements of whole liver 

function. The LSITC approach allows the creation of a spatially resolved quantitative image 

of liver function, using standard clinical acquisitions, and removes the requirement for 

impractical, high temporal resolution scans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A dual-input two-compartment pharmacokinetic model of gadoxetic acid in the liver.
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Figure 2. 
An example of the relationship between the vectors y and x in equation (10) from a volume 

of interest in the liver. Note that the linear assumptions of the model only bear out after the 

transition point xp.
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Figure 3. 
Example slices of the k1 maps estimated from the HTR DCE scans of four patients by the 

linearized single-input two-compartment model (left) and dual-input two-compartment 

model (right). Note that the units are mL/100mL/min.
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Figure 4. 
Scatter plot of the k1 values estimated by the two models for the 8 patients. The k1 values in 

the horizontal axis were estimated from the dual-input 2-compartment model and the ones in 

the vertical axis from the linearized single-input two-compartment model.

Simeth et al. Page 19

NMR Biomed. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Early section of the AIFs to demonstrate subsampling used to investigate delays in 

acquisition. a) shows an AIF with the full dataset, b) shows an AIF with missing data points 

prior to the arterial peak, and c) shows an AIF with missing data points up to 20 seconds 

after the arterial peak.
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Figure 6. 
Plots of the input k1 values against the k1 values obtained by LSITC model. The correlation 

coefficient was R = 0.999, 0,998 and 0.999 for the full dataset (a), the dataset missing time 

points prior to the arterial peak (b), and the dataset missing time points up to 20 seconds 

after the arterial peak (c) respectively.
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Figure 7. 
Boxplots for the WAPE in the LSITC model results relative to the simulated values at 3 

noise levels for the three simulated datasets: a) the full dataset, b) the dataset missing data 

points prior to the arterial peak, and c) the dataset missing data points up to 20 seconds after 

the arterial peak. The median values are indicated by the horizontal line, the mean is 

indicated by the diamond, and error bars are 1.5 times the interquartile range.
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Figure 8. 
Example maps of k1 and vdis in the assessed livers. Notice that high values of vdis can be 

seen to correspond to vasculature.
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Figure 9. 
Plot of the log of ICG retention at 15 minutes against the sum of K1 values in the contoured 

total liver volume. R = −0.72 (p = 0.0004, n = 20).
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Figure 10. 
This plot shows the mean values obtained in several studies for background liver uptake rate 

of gadoxetic acid in cancerous livers, and a group of healthy livers for reference. Error bars 

indicate the standard deviation. The HTR values are based on a removed outlier.
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Table 1

The demographic, pathological, and clinical Child Pugh scores for the patient groups used.

Characteristic
Group 1 (HTR)

n=13
Group 2 (LTR)

n=19
Total
n=32

 Median Age (range) 60.7 (56.5 – 72.0) 61.1 (52.7 – 78.9) 61.0 (52.7 – 78.9)

 Gender

  Male 10 (77%) 14 (74%) 24 (75%)

  Female 3 (23%) 5 (26%) 8 (25%)

 Cirrhosis

  Positive 8 (62%) 16 (84%) 24 (75%)

  Negative 5 (38%) 3 (16%) 8 (25%)

 Histology

  Hepatocellular carcinoma 9 (69%) 18 (95%) 27 (84%)

  Adenocarcinoma 2 (15%) 1 (5%) 3 (9%)

  Intrahepatic cholangiocarcinoma 1 (8%) 0 (0%) 1 (3%)

  Solitary fibrous tissue 1 (8%) 0 (0%) 1 (3%)

 Baseline Child Pugh

  5 7 (54%) 5 (26%) 12 (38%)

  6 4 (31%) 7 (37%) 11 (34%)

  7 0 (0%) 5 (26%) 5 (16%)

  8 1 (8%) 1 (5%) 1 (3%)

  9 1 (8%) 0 (0%) 1 (3%)

 Missing 0 (0%) 1 (5%) 1 (3%)
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Table 2

The ranges of the parameter values for the simulation, where kpvp = kpv(1-Hct) and kap = ka(1-Hct).

Parameter Minimum Value Maximum value

vdis 10 20 %

kpvp+ kap 50 300 mL/100mL/min

kpvp 0.5(kpvp+ kap) (kpvp+ kap) mL/100mL/min

k1 0 0.1(kpvp+ kap) mL/100mL/min
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