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Abstract 
Computational modeling of cognition has provided many new 
insights into the human mind. In this paper, we use the same 
technique to advance our understanding of other, nonhuman 
minds: Those of corvids. This family of birds stores food 
under ground, saving it for later. This process of caching and 
recovery has been used to study many different aspects of 
corvid cognition, making it possible to build one integrated 
model that can be used to study many different cognitive 
phenomena. We start the construction of such a model by 
focusing on memory, and validate it by replicating three 
experiments by de Kort et al. Here, the caches of scrub jays 
are systematically stolen or moved, and the question is how 
this will affect their choice of cache sites. We use our model 
to reproduce the empirical data, and confirm its robustness by 
demonstrating that there are alternative outcomes that it could 
not have fit. In the process, we provide a new perspective on 
what exactly scrub jays may be learning and remembering. 

Keywords: Computational model; cognition; corvid; scrub 
jay; Aphelocoma californica; caching; memory; learning. 

Introduction 
Computational models of cognition have significantly 
advanced our understanding of the human mind (Sun, 
2008). Therefore, the same techniques hold promise for 
advancing our understanding of other, nonhuman minds. 
Essentially, what such models do, is to implement a theory 
of cognition as a working computer program, making it 
possible to very precisely test a theory’s assumptions, 
conclusions and predictions. In the field of comparative 
cognition, many questions are being asked about animal 
memory, learning and problem solving (Premack, 2007). 
Innovative experiments have produced a wealth of empirical 
data, but results can be difficult to interpret. Computational 
models offer one way of testing the plausibility of 
competing explanations (Penn, Holyoak, & Povinelli, 2008). 

Studies of jays, nutcrackers and other corvids - members 
of the extended family of crows - seem particularly likely to 
benefit from this approach. In terms of their cognitive 
abilities, corvids have been likened to apes: One species 
uses tools, another solves trap-tube problems, a third can 
infer hierarchical relationships (Emery & Clayton, 2004). 
But what makes corvids particularly attractive from a 
modeling perspective, is that some of the most interesting 
results have been obtained within a single experimental 
paradigm - that of caching and recovery. 

Virtually all corvids cache: They bury food items under 
ground, saving them for later. It can be days, weeks, or 
months before they return to eat them. This behavior has 
been extensively studied in the laboratory, and depends on 
memory. Corvids’ natural tendency to cache and recover has 
been used to study memory mechanisms, various kinds of 
learning, use of visual landmarks, future planning, and 
social cognition, among other things (de Kort et al., 2006). 
Usually, in these experiments, the birds are presented with a 
discrete set of cache sites to choose from, a number of 
visual landmarks, the presence or absence of a conspecific, 
and very little else. This means a uniform setup is being 
used to study a diverse set of cognitive phenomena, making 
it possible to validate a single computational model across a 
large variety of experimental results. 

In this paper, we start the design of such a model by 
focusing on memory, for cache and recovery events. To 
store these, we draw inspiration from the ACT-R cognitive 
architecture, and the way it uses chunks (Anderson, 2007). 
Here, a chunk is a declarative fact, stored in memory, with 
an activation that depends on its own history of use, as well 
that of related chunks. What this allows us to do, is to 
encode both a bird’s options and its memories as chunks, 
and to have the most active option chunk determine its next 
action. Then, if we let memory chunks affect the activations 
of option chunks, we can simulate how previous cache and 
recovery events affect future cache and recovery choices. 

We validate our cognitive model, and test its usefulness, 
by replicating three experiments by de Kort et al. (2007). 
This work features Western scrub jays, Aphelocoma 
californica, and looks at whether they learn to adjust their 
choice of cache sites in response to their experiences at 
recovery. In these experiments, a scrub jay in its cage is 
presented with a bowl of worms, and a number of visually 
distinct ice cube trays to cache in. After it has cached for 
fifteen minutes, all trays are taken away, only to be returned 
a day later, with all caches in one of the trays missing, or 
moved. This procedure is repeated across a number of trials, 
and the question is whether the scrub jay will change its 
caching behavior over time, and if it does, what the 
mechanism is. Is it responding to punishment, avoiding trays 
that are always pilfered, or is it responding to reward, 
preferring trays where it always finds its worms? Our 
computational model successfully reproduces the empirical 
data, and thereby gives a new answer to this question. 
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We show that both punishment and reward may be at work, 
and that learning is likely to involve recall of specific 
caching events. A systematic exploration of our model’s 
parameter space confirms its robustness: First, there are 
plausible, alternative outcomes that it cannot generate, and 
second, there are no other initial assumptions that allow it 
to fit all three experiments. That is, with only punishment 
or with only reward, or with indiscriminate learning, our 
model always fails to match the birds’ performance. In this 
way, our computational model provides a new perspective 
on what exactly scrub jays may be learning and 
remembering, and serves as a suitable starting point for 
more comprehensive architectures of corvid cognition. 

Model 
Our implementation of de Kort et al.’s (2007) experiments 
consists of two components: A simulator and a cognitive 
model. The simulator runs the experiments, while the 
cognitive model is a computational theory of the cognitive 
processes under concern. We assume that three factors 
account for the caching and recovery behavior of corvids: 
First, that corvids experience inhibition to return to recently 
visited sites; second, that they form memories of caching 
events, which influence where they will recover, and third, 
that they form memories of recovery events, which influence 
where they will cache. Motivational processes, that govern 
whether the birds want to cache or recover at all, are not 
considered; we simply assume that they want to cache in 
caching sessions and recover in recovery sessions.  

The Basics of Chunks 
At our model’s core are two types of chunks: Option chunks 
and memory chunks. Option chunks represent the locations 
that are available for the bird to cache or recover in; 
memory chunks represent the actual cache or recovery 
events that the bird has experienced. Every chunk has at 
least two features, an identifier and an activation. A chunk’s 
identifier specifies which individual tray section it 
represents, in which particular tray. 
 A chunk’s activation Ai consists of three parts: Base-level 
activation Bi, spreading activation Si, and noise; see 
Equation 1. A chunk’s base-level activation Bi is computed 
according to Equation 2, following ACT-R’s equation for 
base-level learning (Anderson, 2007). Here, tj represents the 
elapsed time t since use j of chunk i, while d is a decay 
parameter. The weighing factor wi is determined by chunk 
i’s type, where the wo of option chunks is 1, and the wm of 
memory chunks is 2. This represents the idea that actually 
caching in a particular location is more memorable than 
simply deciding to cache there. The effect is that a chunk’s 
base-level activation depends on its frequency and recency 
of use, plus its type. A chunk’s spreading activation depends 
on the activation of other chunks, and will be discussed in 
the following sections. A chunk’s noise value is re-
computed every time it is evaluated, according to Equation 
3, taken from ACT-R, where n is a parameter that we tune, 
and r is a random value between 0 and 1. 
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The Structure of Sessions 
When our cognitive model is first initialized, its memory is 
empty, and the time is 0. Every subsequent caching or 
recovery event counts as one time step. 
 As soon as a caching session starts, the cognitive model 
encodes every individual section in every available tray as a 
cache option chunk. Every time it starts to cache, it 
computes the activation of all its cache option chunks, 
according to Equation 1, and selects the most active one; 
this causes the model bird to cache in the corresponding tray 
section, and counts as a use of that chunk. Once the 
cognitive model has selected its cache site, it caches there, 
and the corresponding cache memory chunk is given a use. 
Caching continues until the simulator asks the cognitive 
model to stop; this is determined by the average number of 
caches made by the real scrub jays in the same experiment. 
 A recovery session works in exactly the same way, except 
that it revolves around recovery option chunks and recovery 
memory chunks. Also, as we lack data on the number of 
recovery attempts made by the real jays, the simulator 
always prompts the model birds to try twenty recoveries, 
unless all caches are found before twenty attempts are made. 

Inhibition of Return 
To prevent the model birds from returning to recently 
visited sites, once a memory chunk is used within a session, 
it spreads negative activation, or inhibition, to the 
corresponding option chunk. See Equation 4 for recovery 
chunks, and Equation 6 for cache chunks.  To work out the 
case of Equation 6: The higher the base-level activation B of 
the cache memory chunk cmi, the lower the spreading 
activation S of the cache option chunk coi, and the smaller 
the odds that the model bird will return to that cache site. 

Knowing Where to Recover 
What allows the cognitive model to relocate its caches, is 
the fact that every cache memory chunk spreads positive 
activation to the recovery option chunk that codes for the 
same location; see Equation 4. This has the effect that the 
cognitive model is more likely to try and recover in cups 
where it has actually cached items. Given the noise present 
in the system, it can of course make errors, however. 
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Learning Where To Cache 
In de Kort et al.’s (2007) research, every experiment 
consists of multiple trials. Although every trial features new 
ice cube trays, with unique identifiers, the locations of trays 
are consistent across trials. A tray’s position is what predicts 
whether or not its caches will be stolen or moved by the 
experimenter. Our model, then, considers all trays placed in 
the same location to be equivalent. It learns by taking the 
outcomes of previous recovery attempts into account: All 
recovery memory chunks of which the bird is confident 
spread activation to cache option chunks which code for the 
same or neighboring tray sections. 
 Confidence works as follows: Once the cognitive model 
has received the simulator’s feedback concerning the 
outcome of a recovery attempt, it checks if it can remember 
actually caching in the current location. This process is not 
perfect; in trying to recall a cache memory chunk belonging 
to the exact tray section just probed, it can also accidentally 
retrieve a cache memory chunk for a section directly 
adjacent to it, either horizontally or vertically. Whichever of 
these eligible cache memory chunks has the highest 
activation will be selected for recall. Whether or not this is 
successful depends on ACT-R’s probability of retrieval 
equation (Anderson, 2007); see Equation 5. 
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Here, n is the same parameter that governs the noise 
production of Equation 3, and τ is a new parameter that 
governs the sharpness of the retrieval threshold. If a cache 
memory chunk can be retrieved, the new recovery memory 
chunk will have a confidence rating of 1; otherwise, it will 
have a confidence rating of 0. Once a chunk’s confidence 
rating is set, a new experience will not affect it. Thus, a 
model bird can only learn from a recovery experience if it is 
confident that it has cached there; only then is the fact that it 
has relocated a worm, or failed to relocate a worm, really 
relevant to where it should cache in future. 

What kind of activation a recovery memory chunk will 
spread, depends on its success; this is simply whether or not 
a simulated worm is found. Separate recovery memory 
chunks are kept for successful and unsuccessful recoveries. 
Successful recovery memory chunks spread positive 
activation; unsuccessful recovery memory chunks spread 
negative activation. This is summarized by Equation 6, 
where the expression rmi,s,c indicates a recovery memory 
chunk with identifier i, success s, and confidence level c.  
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(where T represents the set of chunks that code for direct 
tray neighbors of chunk i) 

 
 

Experiments 
To validate our cognitive model, we test it against three 
experiments from de Kort et al. (2007). For each 
experiment, we average the outcomes of 1000 model runs, 
using the parameter values of Table 1. The choice of these 
values, and their effect on the model’s performance, will be 
discussed in the section Parameter Search and Robustness. 
 

Table 1: Parameter values used in the experiments.  
 

 d, decay n, noise τ, threshold 
experiments 0.10 0.35 3.00 

range 
searched 

0.05 – 0.5, 
by 0.05 

0.05 – 0.5, 
by 0.05 

1 – 3, 
 by 0.25 

Experiment 1 (Experiment 2b in de Kort et al. (2007)) 
In this experiment, the birds are presented with two ice cube 
trays, of which one is always replenished with fresh worms 
in the correct locations, while the other is pilfered and 
returned empty. Every caching trial, ten scrub jays may 
cache for fifteen minutes. When both trays are returned a 
day later, the birds may recover for ten minutes, finding one 
tray empty, and the other as they left it. This routine is 
repeated four times, with at least a day between trials, and 
unchanging locations for the replenished and pilfered trays. 
 
Real Bird Results, de Kort et al. (2007) As can be seen in 
Figure 1A, as trials progress, the scrub jays cache 
proportionally more worms in the replenished tray. 
Statistically, de Kort et al. (2007) find a significant effect of 
trial on the number of caches in the replenished tray, and a 
significant difference between the two trays on trial four. 

 
Computational Model Results Like the real birds, the 
model birds quickly learn to allocate proportionally more 
caches to the replenished tray. The learning curve of the 
model birds is similar to that of de Kort et al.’s (2007) scrub 
jays; see Figure 1A. 

 

 
 

Figure 1: Results, real birds, de Kort et al. (2007) and 
computational model; 1A: Experiment 1, 1B: Experiment 3. 
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Experiment 2 (Experiment 4a in de Kort et al. (2007)) 
In this experiment, some caches are moved from one tray to 
another. Eight scrub jays are again presented with two trays, 
A and B, but now one of them, tray B, is unavailable for 
caching, as it is covered by a lid. A day later, during the 
recovery session, both trays are fully accessible. Now, the 
birds in the control condition find their caches returned to 
them in tray A, where they had left them; those in the 
experimental condition find their caches moved to tray B, 
with tray A now empty. After two such training trials, the 
birds are given a single test trial. It consists of one caching 
session, where both trays are fully accessible. 
 
Real Bird Results, de Kort et al. (2007) On the test trial, 
the birds in the control group cache more in tray A than in 
tray B, while those in the experimental group seem to prefer 
tray B over tray A, though this difference is not significant 
(de Kort et al., 2007; see Figure 2A). 
 
Computational Model Results As can be seen in Figure 
2B, on the test trial, the model birds distribute their caches 
in a fashion that is qualitatively similar to that of de Kort et 
al.’s (2007) jays. The most notable difference is in the 
control condition, where the model birds show a slightly 
weaker preference for tray B than the real scrub jays. 
 

 
 

Figure 2: Results for Experiment 2; 2A: Real birds, de 
Kort et al. (2007), 2B: Computational model. 

Experiment 3 (Experiment 4b in de Kort et al. (2007)) 
Like Experiment 2, this experiment involves movement of 
caches, but now using a third, neutral tray. It comprises two 
training trials, each consisting of a caching and a recovery 
session, and a single test trial, consisting of a caching 
session only. Every session, four birds are offered three 
trays, A, B and C. During the training trials, caching in trays 
B and C is not possible, as access to these trays is blocked. 
However, at recovery, the scrub jays find all their caches 
moved from tray A to tray B, leaving trays A and C empty. 
On the test trial, all three trays are available for caching. 
 
Real Bird Results, de Kort et al. (2007) This experiment is 
replicated twice with the same subjects, with the outcome 
redrawn in Figure 1B. In the test trial, the scrub jays make 
significantly less caches in tray A as compared to trays B 
and C, while trays B and C are used equally often, 
statistically speaking (de Kort et al., 2007). 

Computational Model Results Like the real scrub jays, in 
the test trial, our model birds cache approximately equally 
in trays B and C, and considerably less in tray A. A direct 
comparison can be found in Figure 1B. 

Parameter Search and Robustness 
All reported results are the product of the same parameter 
settings; see Table 1. These values were chosen after a 
comprehensive search for good fits, in all of the model’s 
plausible parameter space. However, as Roberts and Pashler 
(2000) point out, the fact that a theory with free parameters 
is capable of reproducing empirical data is not in itself that 
informative. What is equally important, is to understand 
how strongly the model predicts the observed results, and if 
there are any plausible alternatives that it cannot reproduce. 
To determine this, we explore the model’s performance in 
the rest of its plausible parameter space.  In all, we evaluate 
729 different combinations of decay, noise and threshold, 
by averaging the results of 100 model birds for Experiments 
1, 2 and 3; see Table 1 for the range of values used.  

First, we define as qualitative fits all results that match the 
empirical data in terms of the direction of tray preferences, 
with at least twenty percent more caches in the preferred 
trays. So, for Experiment 1, this requires more caches in the 
replenished tray than in the pilfered tray; for Experiment 2, 
more caches in tray A for the control group and more caches 
in tray B for the experimental group; and for Experiment 3, 
more caches in trays B and C than in tray A – all with 
differences of at least twenty percent. Using these criteria, 
we find a total of 565 qualitative fits. In other words, in 
about 78% of its parameter space, our model replicates the 
direction of observed tray preferences, if not their exact 
proportions. This raises the question: What does the model’s 
behavior look like in the rest of its parameter space? 
 Taking a closer look, we find that the remaining 164 
combinations of values have very high settings of threshold 
relative to noise and decay. What happens then, is that very 
few recoveries make an impression on the model birds, as 
they cannot specifically recall caching anywhere. As a 
consequence, they do not learn, or only very slowly. Instead, 
two kinds of behavior are possible: If noise is very low, the 
tendency to cache in familiar locations takes over, so that 
the model birds of Experiments 2 and 3 develop a 
preference for caching in tray A on test trials, the only tray 
that was also available during training. Otherwise, if noise is 
sufficiently high, this effect is suppressed, and the model 
birds cache equally in all trays available. This implies that, 
irrespective of its exact parameter settings, our cognitive 
model can only produce outcomes that reflect the learning 
displayed by the real birds, or that show no learning at all. 

Discussion 
In the previous section, we have demonstrated that our 
cognitive model can successfully reproduce the empirical 
results obtained by de Kort et al. (2007), and that this 
success is relatively robust with respect to the model’s 
parameters. Three issues, however, remain to be discussed. 
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Implications of the Model for Real Scrub Jays 
To assess what new insights our current work contributes, it 
is necessary to look at the conclusions drawn by de Kort et 
al. (2007), who were mainly interested in whether scrub jays 
learn by punishment, or by reward. In the end, they explain 
the birds’ behavior in these experiments as inhibited caching 
in pilfered locations, using a ‘memory at retrieval’ process. 
The idea is that when the scrub jays attempt to recover a 
cache and find it missing, they recall the corresponding 
caching episode, and associate their current state of 
frustration with it, discouraging the birds from caching in 
that location again. As a result, the scrub jays learn to avoid 
trays that are pilfered, and place their caches in ‘safe’ trays 
instead. Thus, the mechanism at work is one of punishment.  
 This account is very close to what occurs in our cognitive 
model, except that our artificial birds respond to both 
punishment and reward. Every recovery leads to the creation 
of a recovery memory chunk; if the model bird is confident 
that it actually cached there, the recovery memory chunk 
will influence further cache choices. If it represents a 
success, it spreads positive activation to nearby cache option 
chunks; if it represents a failure, it spreads negative 
activation to nearby cache option chunks. Whether or not 
the artificial bird is confident of its recovery attempt 
depends on whether, at recovery, it can actually recall 
caching there. In other words, this is exactly de Kort et al.’s 
‘memory at retrieval’ process, but with inhibited caching in 
pilfered trays and preferred caching in rewarded trays – 
punishment and reward. Our model uses both because it 
cannot fit the data otherwise. The main problem is with the 
control group of Experiment 2: On de Kort et al.’s (2007) 
test trials, the scrub jays in this condition cache significantly 
more in tray A (Figure 2A), where they have previously 
cached and recovered. If we run our cognitive model with 
spread of negative activation only, and the parameters of 
Table 1, we get the results of Figure 3A: The model birds of 
the control condition cache equally in trays A and B. As 
they experience few unsuccessful recoveries, they do not 
learn to prefer one tray over another. In fact, with just 
punishment, or with just reward, we find no qualitative fits 
of the empirical data at all, anywhere in the model’s 
plausible parameter space. 
 

 
 

Figure 3: Results of altered models; 3A: Experiment 2, 
computational model, 3B: Experiment 3, real birds, de Kort 

et al. (2007) and computational model. 
 

This effect might have been predicted without running the 
simulation. What the model contributes, is that it allows us 
to easily integrate different explanations. The idea that 
successful recoveries reinforce particular caching strategies 
is not new; Clayton et al. (2005) already propose it. 
However, de Kort et al. (2007) discard this explanation 
because it does not account for the results of Experiment 3. 
Our model shows that punishment and reward are not 
mutually exclusive, and that, in fact, only the two 
mechanisms together are capable of successfully 
reproducing all of the empirical data. 
 We also draw a second conclusion from our work, which 
is that recall of specific caching events really is necessary to 
produce the results obtained by de Kort et al. (2007). In the 
first version of our model, our artificial birds were 
automatically impressed by every recovery attempt. In 
Experiment 3, this creates unforeseen effects. If we assume 
that every failure to recover a worm inhibits caching in that 
tray, then the model birds of Experiment 3 always learn to 
prefer tray B over tray C, even if we only allow learning 
through punishment. This is illustrated in Figure 3B, using 
the parameter values of Table 1. At first sight, the result is 
counterintuitive: The artificial birds have only lost caches 
from tray A, and they only learn from negative experiences, 
so why do they differentiate between trays B and C? 
 The answer is that, during recovery, once the model birds 
give up on tray A, they start probing the other trays, and 
invariably experience fewer unsuccessful recoveries in tray 
B, because their own caches have been moved there, while 
tray C is empty. Only if recovery attempts are linked to 
specific caching events, can the birds learn to avoid caching 
in tray A but treat trays B and C equally. For us, this insight 
came only after explicitly simulating the experiment, 
illustrating the contribution that models can make to 
clarifying what specific theories and assumptions predict. 

Validation of the Model’s Recovery Behavior 
As de Kort et al.’s (2007) experiments focus on caching 
strategies, recovery behavior is not reported. Therefore, we 
have not fit this aspect of our cognitive model to the 
empirical data. Other publications, however, offer clues that 
allow us to judge its performance. One issue concerns 
whether the real scrub jays in Experiments 2 and 3 learn to 
look for worms in tray B, where their caches are moved to, 
rather than in tray A, where they left them. Our simulated 
birds, in any case, cannot learn to shift their attention at 
recovery. Work by Watanabe (2005) suggests that this lack 
of learning is perhaps not too much of a simplification; 
there, in a similar setup, scrub jays find their entire tray of 
caches moved at recovery, with a different tray left in its 
place. These birds, in other words, have the tray’s visual 
identifiers to guide them to the new locations of their 
caches. But even they do not learn to prefer the displaced 
tray over the course of three trials. Another issue concerns 
the scrub jays’ basic recovery accuracy: For this, we turn to 
Clayton and Dickinson (1999), who test scrub jays in 
similar setups, though involving shorter retention intervals. 
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They report that the birds direct 76 ± 5% and 81± 5% of 
their recovery attempts to cache sites. When we calculate 
the same statistic for our model birds in the control 
condition of Experiment 2, using the parameters of Table 1, 
we find an accuracy of 83 ± 18%, which seems to be in the 
right range. We hope to further validate our model’s 
recovery behavior in future. 

Plausibility of the Model’s Implementation 
A number of core aspects of our model are derived from the 
cognitive architecture ACT-R (Anderson, 2007), and in 
particular, its declarative memory module. But ACT-R is a 
cognitive architecture designed for humans, and our use of it 
for birds might seem problematic. However, we do not think 
that this is the case: Although built for humans, ACT-R’s 
declarative memory module captures fundamental properties, 
such as recency and frequency effects, that seem to apply to 
all species. In addition, previous research has used the full 
architecture to model experiments with mice (Belavkin, 
2001) as well as monkeys (Wood, Leong, & Bryson, 2004), 
so there is some precedence for our approach. 
 More fundamental, perhaps, are the changes we make to 
the architecture itself. While ACT-R allows for spreading 
activation, it is a fixed amount, which spreads between 
related chunks, depending on the strength of the association 
between them. In our cognitive model, it is a chunk’s own 
activation that spreads, and this activation can even be 
negative, inhibiting a chunk’s retrieval. The main function 
of this mechanism is to prevent the model birds from 
continuously caching or recovering in the same location. It 
is possible that the same effect could be achieved by instead 
increasing the activation of all other chunks, but our 
solution is computationally easier, and seems to be 
acceptable in the model’s current state of development. 
Interestingly, other recent ACT-R adaptations also make 
similar changes to the architecture: Van Maanen & van Rijn 
(2007) let activation spread between chunks of different 
types, and Juvina & Taatgen (2009)  also attach negative 
activation to chunks to suppress their retrieval. 

Conclusions and Future Work 
In this paper, we have presented a computational model of 
corvid cache and recovery cognition, and have shown that it 
can successfully replicate three experiments by de Kort et 
al. (2007), with robust performance. In this work, scrub jays 
must learn where it is safe to cache. Our work brings the 
novel insight that both positive and negative reinforcement 
are likely to be involved. In future work, we aim to apply 
the same cognitive model to other cache and recovery 
experiments, in order to study new cognitive phenomena. 
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