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ABSTRACT OF THE DISSERTATION

Learning to Detect Malicious URLs

by

Justin Tung Ma

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Lawrence K. Saul, Co-Chair
Professor Stefan Savage, Co-Chair

Professor Geoffrey M. Voelker, Co-Chair

Malicious Web sites are a cornerstone of Internet criminal activities. They

host a variety of unwanted content ranging from spam-advertised products, to

phishing sites, to dangerous “drive-by” exploits that infect a visitor’s machine

with malware. As a result, there has been broad interest in developing systems

to prevent the end user from visiting such sites. The most prominent existing

approaches to the malicious URL problem are manually-constructed blacklists, as

well as client-side systems that analyze the content or behavior of a Web site as it

is visited.

The premise of this dissertation is that we should be able to construct a

lightweight URL classification system that simultaneously overcomes the challenges

that face blacklists (which have manual updates that can quickly become obsolete)

and client-side systems (which are difficult to deploy on a large scale because of

their high overhead). To this end, our contribution is that we develop a highly

effective system for malicious URL detection that (in its final form) leverages large
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numbers of features and online learning to scalably and adaptively construct an

accurate classifier. Because our system exploits large amounts of training data

and adapts to day-by-day variations, we are able to classify URLs with up to 99%

accuracy.

As part of pursuing malicious URL detection, this dissertation addresses

issues that arise from the use of online learning for this application. Thus, our

further contributions include advances in understanding the role of uncertainty in

online learning, as well as the benefits of exploiting feature correlations in high-

dimensional applications such as URL classification. Overall, the contributions of

this dissertation make significant advances in improving malicious URL detection

and understanding the role of online learning in this application.
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Chapter 1

Introduction

From an early age we learn to manage personal risk: to infer which situa-

tions may be dangerous and avoid them accordingly. For example, most cities have

a “rough part of town” that is understood to be more dangerous for casual visitors.

However, this same notion translates poorly to the Internet context — there are

few effective “rules of thumb” to differentiate safe Web sites from those that are

dangerous. Indeed, Internet criminals depend on the absence of such indicators to

prey on their marks.

Thus, the Web has become a platform for supporting a wide range of crim-

inal enterprises such as spam-advertised commerce (e.g., counterfeit watches or

pharmaceuticals), financial fraud (e.g., via phishing or 419-type scams) and mal-

ware propagation (e.g., trojan downloads and so-called “drive-by exploits”). Al-

though the precise commercial motivations behind these schemes may differ, the

common thread among them is the requirement that unsuspecting users visit their

sites. These visits can be driven by email, Web search results or links from other

Web pages, but all require the user to take some action, such as clicking, that

specifies the desired Uniform Resource Locator (URL).

Clearly, if one could inform users beforehand that a particular URL was

dangerous to visit, much of this problem could be alleviated. To this end, the

security community has responded by developing blacklisting services — encap-

sulated in toolbars, appliances and search engines — that provide precisely this

feedback. These blacklists are in turn constructed by a range of techniques includ-

1
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ing manual reporting, honeypots, and Web crawlers combined with site analysis

heuristics. Inevitably, many malicious sites are not blacklisted — either because

they are too new, were never evaluated, or were evaluated incorrectly (e.g., due to

“cloaking”). To address this problem, some client-side systems analyze the content

or behavior of a Web site as it is visited. But, in addition to run-time overhead,

these approaches can expose the user to the very browser-based vulnerabilities that

we seek to avoid.

In this dissertation, we focus on a complementary part of the design space:

lightweight URL classification — that is, classifying the reputation of a Web site

entirely based on the inbound URL. The motivation is to provide inherently better

coverage than blacklisting-based approaches (e.g., correctly predicting the status

of new sites) while avoiding the client-side overhead and risk of approaches that

analyze Web content on demand. In the following, we summarize this dissertation’s

contributions to the problem of detecting malicious URLs.

1.1 Contributions

This dissertation’s addresses the problem of detecting malicious Web sites

using machine learning over URL-based features. We want to simultaneously over-

come the issues that plague blacklists (which have manual updates that cannot

keep up with newly-introduced malicious sites) and client-side systems (which are

difficult to deploy on a large scale because of their high overhead). The challenge

is to construct a system that is accurate, scalable and adaptive. To this end, the

contributions of this dissertation are the following:

• We demonstrate the effectiveness of using a large number of features for

automated, malicious URL detection (Chapter 3).

• We use online learning to scalably and adaptively tackle the problem of large-

scale, real-time malicious URL detection (Chapter 4).

We also make contributions to the field of online learning that arise from our

investigation of large-scale malicious URL detection:
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• A side-by-side comparison of Bayesian logistic regression and confidence-

weighted learning (Chapter 5).

• The development of low-rank methods for approximating the full covariance

in high-dimensional online learning (Chapter 6).

As a result, we show that it is feasible to construct a scalable and adaptive system

for malicious URL detection that is highly accurate, and we deepen our under-

standing of the benefits of online learning in large-scale applications.

In the following, we provide an overview of the chapters of the dissertation

and elaborate on our contributions.

1.2 Organization

Chapter 2 covers essential background material for the dissertation and

discusses related work.

Chapter 3 describes our initial feasibility study on using machine learning

for malicious URL detection. In this work, we face the challenge of sifting through

myriad URL-based features to automatically construct a viable URL classifier.

In contrast to previous work, we successfully demonstrate our approach of using

a large number of lexical and host-based features for classification. Given these

encouraging results, we conduct a follow-on study over more realistic, large-scale

data.

Chapter 4 presents our work of detecting malicious URLs over a large-scale,

real-time feed of URLs. The challenge for this work is to exploit large amounts of

training data (on the order of millions of examples) and to adapt to changes in mali-

cious URLs over time (since new data arrives on a continual basis). We address the

problem by building a system that collects URL features in real time and employs

online learning to construct an accurate and timely classifier. Confidence-weighted

(CW) learning [DCP08, CDP09] is the most successful algorithm in this study be-

cause it treats features differently — learning more aggressively for feature weights

with uncertain estimates, and learning less aggressively for feature weights with

confident estimates. CW’s success inspires follow-on work comparing CW to other
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online algorithms on our application (Chapter 5), as well as work on augmenting

CW to exploit feature correlations in high-dimensional spaces (Chapter 6).

Chapter 5 compares confidence-weighted learning with Bayesian logistic re-

gression (BLR), two online algorithms that incorporate per-feature-weight uncer-

tainty in ways that are very similar yet fundamentally different. Through carefully

constructed synthetic experiments and through evaluations on URL classification,

we highlight the advantages and disadvantages of BLR vs. CW, giving practition-

ers insight on when to choose one algorithm over the other. In particular, we

show that CW is more suited to malicious URL detection than BLR because CW

adapts more quickly to newly-introduced features. This adaptiveness is important

for successfully learning a classifier on the evolving data streams that characterize

this application.

Chapter 6 explores the benefits and tradeoffs of exploiting feature covari-

ances in high-dimensional spaces for online learning algorithms such as CW. Up

to this point, we have relied on modeling the uncertainty of feature weights in-

dependently — i.e., using a diagonal covariance matrix. In this chapter, we use

synthetic experiments to demonstrate when using a full covariance matrix is bene-

ficial. Then, we develop a low-rank, factored approximation of the full covariance

matrix for high-dimensional applications — such as malicious URL detection —

for which using a full covariance is computationally infeasible.

Finally, Chapter 7 presents conclusions of the dissertation and discusses

future work.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of

the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)

2009. Ma, Justin; Saul, Lawrence K.; Savage, Stefan; Voelker, Geoffrey M. The

dissertation author was the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings

of the International Conference on Machine Learning (ICML) 2009. Ma, Justin;

Saul, Lawrence K.; Savage, Stefan; Voelker, Geoffrey M. The dissertation author

was the primary investigator and author of this paper.



Chapter 2

Background and Related Work

The World Wide Web is a global information network that users can access

through the Internet, and this network consists of a collection of Web sites. An

individual Web site is a collection of related text pages, videos, images and other re-

sources that are hosted on a Web server. Typically, users access Web sites through

browsers, client software that fetches and renders the text, images and other con-

tent associated with a site (examples of popular contemporary browser programs

are Firefox, Internet Explorer, Chrome and Safari). However, the browser must

locate the desired site before fetching, and Uniform Resource Locators (URLs) are

the standard way of naming locations on the Web [BLFM98, Voe99].

2.1 What is a URL?

Just as we use filenames to locate files on a local computer, we use Uni-

form Resource Locators (URLs) to locate Web sites (as well as individual Web

resources). One way users visit a site is by typing a URL into the browser’s ad-

dress bar. An arguably easier way is to click a link, which is contained within a

page that is already rendered by the browser or an email message rendered by a

mail client. In either case, the link contains the URL of the desired site. Because

sites often link to other sites, the network of links among Web sites would be

similar to a spider web (hence the naming of the Web).

However, URLs are text strings that are human readable but not directly

5
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Figure 2.1: Example of a Uniform Resource Locator (URL) and its components.

usable by client programs. Through a multi-step resolution process, the browser

translates a URL into instructions on how to locate the server that is hosting the

site, as well as where within that host the site or resource is placed. Because a URL

must go through this machine translation process, it has the following standard

syntax:

<protocol>://<hostname><path>

The <protocol> portion of the URL indicates which network protocol should be

used to fetch the requested resource. The most common protocols in use are

Hypertext Transport Protocol or HTTP (http), HTTP with Transport Layer Se-

curity (https) and File Transfer Protocol (ftp). In Figure 2.1, all of the example

URLs specify the HTTP protocol. Although we do not include the protocol as

a classification feature (most of the URLs we encounter in our training sources

use http), we observe that phishing exploits often insert tokens such as http into

the URL’s path to trick the user into thinking that the URL is legitimate. For

example, if we own malicioussite.com but want to trick the user into think-

ing they are visiting www.cs.ucsd.edu, then we may construct a URL such as

http://malicioussite.com/http:/www.cs.ucsd.edu.



7

The <path> of a URL is analogous to the path name of a file on a local com-

puter. In Figure 2.1, the path in the example is /~jtma/thesis/example.html.

The path tokens, delimited by various punctuation such as slashes, dots and dashes,

show how the site is organized. However, criminals sometimes obscure path tokens

to avoid scrutiny, or they may deliberately construct tokens to mimic the appear-

ance of a legitimate site, as in the case of phishing (see Chapter 3.3.6 for examples

of such tokens).

The <hostname> is the identifier for the Web server on the Internet. Some-

times it is a machine-readable Internet Protocol (IP) address, but more often

(especially from the user’s perspective) it is a human-readable domain name.

IP is a network protocol that makes it possible for a host to send network

packets to another host on the Internet, regardless of the underlying networking

hardware. A key principle behind IP is that all hosts on the Internet have an IP

address and can thus reach one another. In IP version 4 (IPv4) [USC81], addresses

are 32-bit integers that are typically represented as a dotted quad. In dotted quad

notation, we divide the 32-bit address into four 8-bit bytes. Then, from most to

least significant byte, we print each byte in decimal notation delimited by dots

(e.g., 132.239.51.66 in Figure 2.1). This ordering of the bytes is significant be-

cause it lets us represent hierarchies in the address space using IP prefix notation

(Section 2.4.3). Other representations such as hexadecimal, dotted quad of hex-

adecimal numbers, dotted quad of octal numbers and binary are interchangeable

with the dotted quad of decimal numbers we described. However, we restrict our

attention to the dotted quad of decimal numbers because it is the most popu-

lar representation. Finally, we restrict our attention to IPv4 because the newer IP

version 6 [DH98] (with 128-bit addresses) is not as widely deployed at the moment.

Because hostnames represented as IP addresses do not convey high-level

information about the host (such as which organization it belongs to), we typi-

cally use human-readable domain names instead. A domain name is a series of

text tokens delimited by dots ‘.’; they describe the hostname’s place in a multi-

level naming hierarchy. The right-most token indicates the domain name’s ma-

jor categorization — e.g., .com and .edu for generic domain names, and .cn
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and .uk for international domain names. Moving from right-to-left, each token

identifies the hostname at progressively lower levels of the hierarchy (known as

“subdomains”) and provides a blueprint for translating the domain name into an

IP address. For example, the domain www.cs.ucsd.edu from Figure 2.1 repre-

sents a host (www.cs.ucsd.edu) contained within the computer science depart-

ment (cs.ucsd.edu) at UC San Diego (ucsd.edu), whose domain registration is

handled by EDUCAUSE (the .edu registrar). To better understand the mecha-

nisms behind the domain name, we describe how a name is translated into an IP

address (Section 2.4.1) and how a name is established (Section 2.4.2).

We have described URLs at a high level in this section and provide further

background on the mechanisms for constructing, resolving and hosting a Web

site’s URL in Section 2.4. But before we can understand the implications of URL

resolution mechanics on the ability to detect malicious Web sites, we need a high-

level overview of malicious sites themselves.

2.2 Malicious Web Sites

Malicious Web sites encompass a range of different criminal enterprises.

Although the precise motivations may differ among the criminals who construct

these sites, malicious sites present a danger to users who unsuspectingly visit them.

Nevertheless, because different genres of malicious sites present different threats

to users, it is helpful to examine these genres individually to arrive at a better

understanding of their commonalities. In doing so, we can develop an intuition for

the kinds of defenses that will work against all genres instead of tailoring solutions

to a particular kind of threat.

There are four major categories of malicious sites, and each category is dis-

tinguished by the level of interaction required by the user, as well as the motivation

of the site owners.

• Illicit Products: These sites typically sell illicit goods such as pharmaceu-

ticals (often counterfeit), counterfeit watches and pirated software. Because

of the criminal nature of these enterprises, these sites typically rely on URLs
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(a) Illicit Products (b) Phishing

(c) Trojan Downloads

Figure 2.2: Examples of three categories of malicious Web sites: (a) illicit prod-
ucts, (b) phishing, and (c) trojan downloads.

in spam advertising or artificially-optimized Web search results to attract

traffic. Figure 2.2(a) shows an example of a pharmacy campaign selling male

enhancement drugs.

• Phishing: Phishing sites use mimicry to trick users into divulging private

information such as passwords and account numbers. First, phishers send

email messages to unsuspecting users that prompt the users to visit the phish-

ing site’s URL. Users are then asked to enter their sensitive information on

the site, which is intentionally crafted to resemble a legitimate site (e.g., their

bank, email or social networking account page). A common deception phish-

ers use is to embed tokens from the legitimate target site into their own phish-

ing URL (e.g., http://www.bankofamerica.com.malicioussite.com).



10

After the criminals acquire the user’s credentials, they may use them to

withdraw money, launder money, send spam under a new guise, as well as

commit other nefarious acts. We present a phishing example in Figure 2.2(b),

which compares the legitimate login page for Facebook with the illegitimate

login page for the phishing site fblight.com.

• Trojan Downloads: These sites encourage users to download and execute a

malware binary that purports to be benign. Figure 2.2(c) shows an example

of a site that encourages users to download an electronic postcard. Other

examples of trojan downloads can include sites hosting screensavers, codec

plugins for video players, and other seemingly mundane programs. Criminal

organizations construct these kinds of sites to infect new hosts and expand

their networks of compromised hosts (known as botnets).

• Drive-By Exploits: Drive-by exploits are scripts or objects embedded in a

Web page that exploit a vulnerability in the user’s browser. Once the browser

is compromised, the exploit code causes the user to involuntarily download

malicious code. Examples of drive-by exploits include maliciously-crafted

javascript, Flash objects and images. Criminals may embed the exploits into

stand-alone pages, but often the exploits are also loaded into legitimate sites

via third-party advertising. Although we do not directly address the threat

of drive-by exploits loaded as advertisements (this would require analyzing

content), our approach could still address this problem by letting legitimate

servers determine the safety of the advertisement URLs before including such

third-party content.

Although the motivations differ behind these genres of malicious sites, there

are common properties related to their URLs that we can leverage. Because some

of these properties are related to the mechanics of URL resolution, we reserve a

more detailed discussion for Section 2.4 but allude to salient properties here to

provide intuition.

In particular, because these sites are taken down regularly as part of enforce-

ment efforts, we can view the recentness of their new WHOIS domain registrations
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with suspicion. Moreover, these take-down efforts prompt criminals to quickly ro-

tate through new Web servers. As a result, criminals will often host these sites on

compromised user machines or machines hosted by disreputable service providers

(e.g., “bullet-proof” hosting providers who deliberately ignore victims’ complaints

about the abuse perpetrated by their criminal customers). Moreover, criminals

will often use a similarly illicit hosting configuration for their domain name system

(DNS) infrastructure, which is responsible for directing users to the site. Finally,

the textual makeup of the URLs themselves (particularly for phishing sites) can

provide clues about malicious intent.

Finally, because malicious Web sites represent a significant threat to users,

an early (and still prominent) solution to the problem is to blacklist those sites.

2.3 Blacklists

In the Web browsing context, blacklists are precompiled lists (or databases)

that contain IP addresses, domain names or URLs of malicious sites that users

should avoid. (By contrast, whitelists contain sites that are known to be safe.)

To cross reference a site against a blacklist, users submit a given IP address,

domain name or URL to the blacklist’s query service. In return, they receive a

response for whether the site is in the blacklist. The most popular implementations

of blacklist query services are domain name system-based (DNS-based) blacklists,

browser toolbars and network appliances.

2.3.1 DNS-Based Blacklists

DNS blacklists are a query service implemented on top of DNS (we describe

the details of DNS in Section 2.4.1). Users submit a query (representing the IP

address or the domain name in question) to the blacklist provider’s special DNS

server, and the response is an IP address that represents whether the query was

present in the blacklist.

SORBS, URIBL, SURBL and Spamhaus are examples of major DNS black-

list providers. To get a concrete idea of how these lists operate, we provide an ex-
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ample from URIBL. If we encounter a site unknown.com, then performing a DNS

lookup on unknown.com.multi.uribl.com could return the address 127.0.0.2

(which represents membership in their blacklist) or host not found (which means

the site is not on the blacklist). The mechanism is similar for other major DNS

blacklist providers, although the exact implementation details differ.

The most prominent uses for DNS blacklists are filtering the IP addresses of

spam message senders, as well as marking messages with URLs that contain black-

listed domain names. Although generic Web browsing is not the most prominent

use case for DNS blacklists, the intertwined nature of spam sending and malicious

sites makes DNS blacklists useful features for a URL classification system (see

Section 3.1.1).

2.3.2 Browser Toolbars

Browser toolbars provide a client-side defense for users. Before a user visits

a site, the toolbar intercepts the URL from the address bar and cross references a

URL blacklist, which is often stored locally on the user’s machine or on a server

that the browser can query. If the URL is present on the blacklist, then the browser

redirects the user to a special warning screen that provides information about the

threat. The user can then decide whether to continue to the site.

McAfee SiteAdvisor, Google Toolbar and WOTWeb of Trust are prominent

examples of blacklist-backed browser toolbars. McAfee’s SiteAdvisor is backed by

a blacklist of URLs collected by virtual machine-based Web crawlers (which test

for exploits and scams); SiteAdvisor also accepts user feedback and analyzes links

to and from sites [McA]. WOT Web of Trust is a URL blacklist that is constructed

collaboratively through user contributions and feedback [Aga]. The Google Toolbar

is a browser plugin that queries a Google-maintained URL blacklist [Goo]. The

Google blacklist itself is constructed using a large-scale machine learning-based

approach that is similar to ours [WRN10]; their approach is contemporary work

that was published subsequent to our work in Chapters 3–4.
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2.3.3 Network Appliances

Dedicated network hardware is another popular option for deploying black-

lists. These appliances serve as proxies between user machines within an enter-

prise network and the rest of the Internet. As users within an organization visit

sites, the appliance intercepts outgoing connections and cross references URLs or

IP addresses against a precompiled blacklist. The operating principle is similar to

browser toolbars, but the positioning of the appliance at the network gateway saves

the overhead of installing special software on all machines within the organization.

IronPort and WebSense are examples of companies that produce blacklist-

backed network appliances. Before constructing the blacklist, IronPort Web Rep-

utation assigns reputations to URLs based on a weighted score of several features

including URL category, IP address information, and domain registration informa-

tion [Iro08]. Likewise, the WebSense ThreatSeeker Network assigns reputations to

URLs and IP addresses before constructing the final blacklist [Web].

2.3.4 Limitations

The primary advantage of blacklists is that querying is a low overhead oper-

ation: the lists of malicious sites are precompiled, so the only computational cost of

deployed blacklists is the lookup overhead. However, the need to construct these

lists in advance gives rise to their most glaring disadvantage: blacklists become

stale.

Blacklist construction is a perpetual game of “catch up.” Network admin-

istrators block existing malicious sites, and enforcement efforts take down criminal

enterprises behind those sites. There is a constant pressure on criminals to con-

struct new sites and to find new hosting infrastructure. As a result, new malicious

URLs are introduced and blacklist providers must update their lists yet again.

However, in this vicious cycle, criminals are always ahead because Web site con-

struction is inexpensive: domain registration is cheap (on the order of $10 per year

at major registrars such as GoDaddy), subdomains of a registered domain can be

generated for free (which is useful if blacklists record the entire domain name in-

stead of the primary domain), and Web site templates are reusable. Moreover, free
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services for blogs (e.g., Blogger) and personal hosting (e.g., Google Sites, Microsoft

Live Spaces) provide another inexpensive source of disposable sites.

In light of blacklist limitations, a machine learning approach to detecting

malicious URLs would be a promising step toward breaking this vicious cycle. For

this alternative approach to succeed, we would have to anticipate trends in the

various properties (features) related to malicious URLs. As we will see in the next

section, many useful features arise from URL resolution mechanisms.

2.4 Mechanics of URL Resolution

We provide background on the mechanisms involved in constructing, resolv-

ing and hosting a Web site’s URL. We relate these mechanics to the goal of de-

tecting malicious URLs, hinting at their applications as useful indicators (features)

for automated detection and deferring a detailed discussion about the features to

Chapter 3.1.1.

2.4.1 Domain Name System Resolution

The Domain Name System (DNS) is a hierarchical network of servers re-

sponsible for translating domain names into IP addresses and other kinds of infor-

mation [Moc87a, Moc87b]. During the DNS resolution process, the tokens in the

domain name are traversed from right-to-left to direct the client’s DNS resolver to

query the appropriate DNS name servers.

Let us take the hostname www.cs.ucsd.edu from Figure 2.1 as an example.

First, the resolver will query a DNS root server to resolve the .edu portion of the

domain name. The response from the root server will be a name server (NS) record

that directs the resolver to the .edu name server. Next, the resolver will query

the .edu name server for the records corresponding to ucsd.edu; in return the

resolver receives the address for the ucsd.edu name server. Then, a request to the

ucsd.edu name server for cs.ucsd.edu would return the NS record pointing to

the cs.ucsd.edu name server. Finally a query to the cs.ucsd.edu name server

with a request containing www.cs.ucsd.edu would return an address (A) record



15

containing the IP address of www.cs.ucsd.edu (which in this case is 132.239.51.66).

Alternatively, we could query the cs.ucsd.edu name server for the mail exchanger

(MX) record containing the IP address of the mail server associated with the

cs.ucsd.edu domain.

The A, MX and NS records are IP addresses of hosts associated with a

domain name. Under the hypothesis that the hosting infrastructure for malicious

URLs is distinct from that for benign URLs, the various DNS records become use-

ful differentiators. The A records for malicious Web servers might be hosted on

compromised residential machines or in disreputable providers. The NS records

would represent the DNS infrastructure that leads a victim to a malicious site —

this infrastructure is also likely to be hosted on compromised machines or disrep-

utable providers. Moreover, if the set of hosts responsible for hosting malicious

sites are affiliated with the hosts that send spam for a mailing campaign, then the

associated MX records would be reliable indicators of malice. The stories of the

McColo, Troyak and Group 3 hosting providers reinforce the notion that malicious

sites tend to be hosted in bad places:

• McColo provided hosting for major botnets, which in turn were responsi-

ble for sending 41% of the world’s spam just before McColo’s takedown in

November 2008 [Kei08].

• Troyak and Group 3 were responsible for hosting 90 out of 249 command-

and-control servers for the Zeus botnet before their takedown in March

2010 [McM08].

On a related note, there is a special DNS record type called the pointer

(PTR) record. Its purpose is to enable reverse DNS lookups: given an IP ad-

dress as a query, the associated domain name is returned. To perform a reverse

lookup on 132.239.51.66, a client submits a DNS query for the domain name

66.51.239.132.in-addr.arpa (note the reverse byte order of the IP address)

and receives www.cs.ucsd.edu as the PTR record response. The existence of a

PTR record is a reliable indicator that the domain name is well-established — as

such, the PTR record is a potentially useful classification feature.



16

Finally, although A, MX and NS records show promise as classification

features, individual IP addresses may be too fine-grain for characterizing malicious

hosting activity. To address this problem, we describe the standard for representing

an aggregate set of IP addresses in Section 2.4.3. Next, we cover how the binding

between name server and domain name is established.

2.4.2 Domain Name Registration

Besides the IP addresses associated with a domain name, there is useful

information associated with domain name registration.

Registration establishes which name servers are associated with a domain

name. Typically, the registrant registers the primary domain name (a term we

define shortly) with the registrar; the registrant is the owner of the domain name,

and the registrar is the organization responsible for hosting the NS record that

points to the primary domain’s servers.

The top-level domain (TLD) is the right-most token in a domain name —

e.g., .com, .edu, .cn, .uk. A registrar is usually in charge of a single TLD, although

it is possible for a registrar to delegate that authority to other smaller registrars.

The primary domain is the highest level domain name that a registrant can register.

It usually consists of the two right-most tokens in the domain (e.g., google.com),

although it may be the three right-most tokens in international domain names

(e.g., google.co.uk). In the Figure 2.1 example, .edu is the TLD and ucsd.edu

is the primary domain.

The information associated with a domain name registration can indicate

whether certain entities have a higher tendency of registering domains associated

with malicious sites, as well as whether a site is newly registered and has yet to

establish its credibility. This information includes vital data about the registrant,

the registrar, date of registration, date of expiration, date of the latest update,

and other attributes associated with the record; it is typically stored in databases

accessible through the WHOIS query/response protocol [Dai04]. WHOIS works as

follows:

1. The client contacts the registrar’s WHOIS server on TCP port 43.
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2. The registrar returns a plaintext response, or redirects the query to a smaller

registrar that is in charge of the designated WHOIS record.

Because the WHOIS server infrastructure and plaintext response format is ad-hoc

compared to DNS, the query time may take on the order of seconds (especially for

queries to registrars with less infrastructure). As a result, some registrars put a

quota on the number of WHOIS queries that a user can perform in a day. Thus,

if we are concerned about query overhead and rate limiting, we may choose to

omit WHOIS features. In fact, evaluations in Section 3.3.2 show that although

the inclusion of WHOIS data yields the highest accuracy, the exclusion of WHOIS

data still results in a highly accurate classifier.

2.4.3 Routing and Forwarding

As we alluded in Section 2.4.1, individual IP addresses are very fine-grain

because there are more than 4 billion possible addresses; recording enough of them

to characterize the location of malicious URLs can be overwhelming. Thus, it is

beneficial for us to represent an IP address as belonging to a block of IP addresses.

This more coarse-grain view of representing addresses is important because individ-

ual hosts can have address churn (e.g., because of the Dynamic Host Configuration

Protocol [Dro97]). Moreover, we may be able to identify aggregate behaviors if cer-

tain activities tend to occur in specific subsections of the Internet (see the McColo

example in Section 2.4.1). Fortunately, we can use existing representations from

Internet routing and forwarding for these address blocks.

Routing is the process of setting up paths along which IP packets are for-

warded. Internet service providers (ISPs) negotiate these paths using the border

gateway protocol (BGP). In BGP, ISPs are also known as autonomous systems

(ASes), which are identified by their AS numbers. Thus, we can treat AS numbers

as de facto identifiers for ISPs: if an ISP is responsible for hosting a collection of

malicious sites, then we can use the AS number as a salient feature (e.g., McColo’s

AS number was 26780).

Similarly, we can also treat IP prefixes as de facto identifiers for ISPs. Dur-

ing packet forwarding, routers must redirect incoming packets by looking up the
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next-hop router responsible for forwarding to the packet’s destination address.

Storing individual IP addresses in the forwarding table would consume a pro-

hibitive amount of memory, especially for routers at the Internet core. However,

routers save space by referencing groups of IP addresses using classless inter-

domain routing (CIDR) aggregation [FL06]. An IP prefix (or CIDR block) is

a compact way of denoting a block of IP addresses. In Internet Protocol ver-

sion 4 (IPv4), the notation <address>/<prefix len> represents all IP addresses

that share the <prefix len> most significant bits with <address>. For exam-

ple, 137.110.222.0/24 represents all IP addresses in the range 137.110.222.0–

137.110.222.255. Typically, authorities assign IP prefixes to ISPs, thereby mak-

ing these prefixes useful identifiers of providers (for McColo, it was 208.66.192.0/22).

We note that the mapping from AS numbers to IP prefixes is not neces-

sarily isomorphic. It is possible for an AS to contain multiple IP prefix blocks,

or for an IP prefix block to be spread across multiple ASes. Thus, because AS

numbers provide a slightly different granularity than IP prefixes, both sets of fea-

tures are complementary — we include both in our evaluations. As we will see

in Section 3.3.2, the addition of AS numbers and IP prefixes (along with other

host-based properties) results in highly accurate classification results.

Next, we provide an overview of related work in the area of detecting ma-

licious URLs to place this dissertation in context.

2.5 Related Work

In this dissertation, we describe our approach to detecting malicious Web

sites using machine learning over the lexical and host-based features of their URLs.

The previous section provided technical background for understanding our ap-

proach to constructing features in Chapters 3 and 4. In the following, we place

this dissertation in context with related work in URL classification using learning

methods, the use of statistical methods in related applications, as well as other

approaches to URL classification. Because our techniques are based on lexical and

host-based features of the URL, we place more emphasis in surveying related work
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that incorporates those features.

2.5.1 Classification of URLs

Researchers have sought opportunities to move beyond conventional means

to address the problem of identifying suspicious URLs. Previous work has either

employed batch machine learning techniques or performed extensive feature anal-

ysis without using machine learning. The work in this dissertation differs in that

we employ a more comprehensive feature set and address the problem of scalable

learning over large data sets.

Kan and Thi [KT05] provide one of the early efforts of classifying URLs

using machine learning. Because they want to train their models quickly, they

only use lexical features — i.e., analyzing the URL string and ignoring properties

related to the page content and the host. They use a bag-of-words representation

of tokens in the URL with annotations about the tokens’ positions within the URL

(e.g., hostname, path, etc.). They also use consecutive n-grams of tokens, ordered

bigrams of tokens that do not have to be consecutive, and the lengths of different

parts of the URL. A noteworthy result is that lexical features can achieve 95% of

the accuracy of page content features. We use a similar but simpler set of lexical

features in this dissertation, yet we are able to achieve high accuracy with them

(see “Lexical” results in Section 3.3.2).

The work by Garera et al. is the most closely related to ours [GPCR07].

They use logistic regression over 18 hand-selected features to classify phishing

URLs. The features include the presence of red flag key words in the URL, features

based on Google’s Page Rank, and Google’s Web page quality guidelines. Although

a direct comparison with our approach is difficult without access to the same

URLs or features, they achieve a classification accuracy of 97.3% over a set of

2,500 URLs. Though similar in motivation and methodology, our approach differs

significantly in both scope (aiming to detect other types of malicious activity) and

scale (considering orders-of-magnitude more features and training examples).

McGrath and Gupta do not construct a classifier but nevertheless perform

a comparative analysis of phishing and non-phishing URLs [MG08]. With respect
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to data sets, they compare non-phishing URLs drawn from the DMOZ Open Di-

rectory Project [Net] to phishing URLs from PhishTank [Ope] and a non-public

source. The features they analyze include IP addresses, WHOIS thin records (con-

taining date and registrar-provided information only), geographic information, and

lexical features of the URL (length, character distribution, and presence of pre-

defined brand names). We build on their work by incorporating similar sources

and features into our approach.

Provos et al. perform a study of drive-by exploit URLs and use a patented

machine learning algorithm as a pre-filter for virtual machine (VM) based anal-

ysis [PMRM08]. Unlike our approach, they extract content-based features from

the page, including whether inline frames are “out of place” (an “IFrame” is a

window within a page that can contain another page), the presence of obfuscated

javascript, and whether IFrames point to known exploit sites. In their evaluations,

the ML-based pre-filter can achieve 0.1% false positives and 10% false negatives.

Although a direct comparison is not possible because of different data sets, our

evaluations in Section 3.3.4 yielded similar performance despite the exclusion of

content.

CANTINA classifies phishing URLs by thresholding a weighted sum of 8

features (4 content-related, 3 lexical, and 1 WHOIS-related) [ZHC07]. Among

the lexical features, it looks at dots in the URL, whether certain characters are

present, and whether the URL contains an IP address. The WHOIS-related fea-

ture CANTINA examines is the age of the domain. These features are a subset of

those we use in our approach, but we use more sophisticated classification models.

Although a direct comparison is not possible, we show that more sophisticated

classification models achieve higher accuracy than simple ones (e.g., logistic re-

gression and support vector machines perform better than the simple Naive Bayes

in Section 3.3.3).

Guan et al. [GCL09] focus on classifying URLs that appear in instant mes-

saging (IM). Although they use several URL-based features, they also take ad-

vantage of a number of IM-specific features such as message timing and content.

Among the URL-based features are the age of the domain (WHOIS lookup), Google
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rank and a number of lexical features (IP address in the hostname, presence of par-

ticular tokens in the URL, as well as the length of certain hostname tokens). They

use an ad-hoc linear classifier where the weight of each feature is proportional to

the difference in the number of benign examples that possess the feature and the

number of malicious examples that do not. As we explained in the discussion of

CANTINA, we believe a more sophisticated classification model would yield higher

accuracy.

2.5.2 Machine Learning and URL Features in Related Con-

texts

The work in this dissertation deals with classifying URLs in a generic set-

ting, irrespective of the applications in which they appear. However, there is a

body of related work that uses URL-based features for classifying email messages

and Web pages (not the URLs themselves).

Fette et al. use statistical methods in machine learning to classify phish-

ing messages [FST07]. Their classifiers examine the properties of URLs contained

within a message (e.g., the number of URLs, number of domains, and number

of dots in a URL), but unlike our approach they also consider features of the

email structure and content. Bergholz et al. further improve the accuracy of

Fette et al. by introducing models of text classification to analyze email con-

tent [BCP+08]. Abu-Nimeh et al. compare different classifiers over a corpus of

phishing messages, using as features the frequency of the 43 most-popular words

in the corpus [ANNWN07].

Kolari et al. use URLs found within a blog page as features to determine

whether the page is spam [KFJ06]. They use a “bag-of-words” representation of

URL tokens, and we use a similar set of features in our approach which contribute

to a highly accurate classifier (see Section 3.3.2).
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2.5.3 Non-Machine Learning Approaches

Highly Predictive Blacklists (HPBs) address the limitations of traditional

blacklists by allowing participants to construct blacklists in a distributed fash-

ion [ZPU08]. In this way, HPBs bypass the inefficiencies associated with central-

ized blacklist construction. Although the focus of HPB is network-level intrusion

detection, HPBs introduce a notion of cooperative, community-based labeling that

is similar in spirit to future work we propose in Section 7.2.2.

Several projects have also explored operating systems-level techniques where

the client visits the Web site using an instrumented virtual machine (VM). The VM

can emulate any client-side exploits that occur as a result of visiting a malicious

site, and the instrumentation can detect whether an infection has occurred. In this

way, the VM serves as a protective buffer for the user. Moshchuk et al. use VMs to

analyze downloaded trojan executables, relying on third-party anti-spyware tools

to detect whether VMs were infected by executables [MBGL06]. Wang et al. de-

tect drive-by exploits by using behavioral detection (monitoring anomalous state

changes in the VM) as well as detecting exploits of known vulnerabilities [WBJ+06].

Provos et al. monitor VM state changes and use multiple anti-virus engines to de-

tect VM infection [PMRM08]. Moshchuk et al. also construct a VM-based Web

proxy defense that uses behavior-based detection and adds only a few seconds of

overhead to page rendering for the end-client [MBD+07]. These efforts have dis-

tinct benefits (direct detection of certain classes of sites such as drive-by exploits)

and limitations (inadvertently exposing the user to undetected drive-by exploits

and other malicious sites that do not fit their precise detection criteria); thus, they

are complementary to our approach.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of

the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)

2009. Ma, Justin; Saul, Lawrence K.; Savage, Stefan; Voelker, Geoffrey M. The

dissertation author was the primary investigator and author of this paper.



Chapter 3

Moving Beyond Blacklists

Malicious Web sites are a cornerstone of Internet criminal activities. As a

result, there has been broad interest in developing systems to prevent the end user

from visiting such sites. To that end, our goal is to construct a system for detect-

ing malicious URLs that is both scalable (for learning over large-scale data sets)

and adaptive (especially to changes in malicious URLs over time). The current

chapter presents the first step of our approach: investigating the effectiveness of

our features using batch classification over smaller-scale data (on the order of 104

examples). Later in Chapter 4, we will adopt online learning techniques to scale

our approach to large-scale data sets (on the order of 106 examples).

In contrast to blacklists (Section 2.3), our approach to the problem is based

on automated URL classification. In particular, we explore the use of statistical

methods from machine learning for classifying site reputation based on the rela-

tionship between URLs and the lexical and host-based features that characterize

them. Unlike previous work, we show that these methods are able to sift through

tens of thousands of features derived from publicly available data sources, and can

identify which URL components and meta-data are important without requiring

heavy domain expertise. Indeed, our system automatically selects many of the

same features identified by domain experts as being typical of “malicious” Web

sites. But more importantly, our system selects new, non-obvious features that are

highly predictive and yield substantial performance improvements. We evaluate

the feasibility of this approach across 20,000 to 30,000 URLs drawn from different

23
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sources, and show that it can obtain an overall prediction accuracy of 95–99%,

detecting a large fraction of malicious Web sites while maintaining a very low false

positive rate.

We begin the remainder of this chapter with an explanation of the formal

basis for our approach.

3.1 Approach

In this section, we provide a detailed discussion of our approach to clas-

sifying site reputation. We begin with an overview of the classification problem,

followed by a discussion of the features we extract, and finally the set of machine

learning classifiers we use for the study.

For our purposes, we treat URL reputation as a binary classification prob-

lem where positive examples are malicious URLs and negative examples are benign

URLs. This learning-based approach to the problem can succeed if the distribu-

tion of feature values for malicious examples is different from benign examples,

the ground truth labels for the URLs are correct, and the training set shares the

same feature distribution as the testing set. (We revisit the last assumption by

considering non-stationary distributions in Chapter 4.)

Significantly, we classify sites based only on the relationship between URLs

and the lexical and host-based features that characterize them, and we do not

consider two other kinds of potentially useful sources of information for features:

the URL’s page content, and the context of the URL (e.g., the page or email

in which the URL is embedded). Although this information has the potential

to improve classification accuracy, we exclude it for a variety of reasons. First,

avoiding downloading page content is strictly safer for users. Second, classifying a

URL with a trained model is a lightweight operation compared to first downloading

the page and then using its contents for classification. Third, focusing on URL

features makes the classifier applicable to any context in which URLs are found

(Web pages, email, chat, calendars, games, etc.), rather than dependent on a

particular application setting. Finally, reliably obtaining the malicious version
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of a page for both training and testing can become a difficult practical issue.

Malicious sites have demonstrated the ability to “cloak” the content of their Web

pages, i.e., serving different content to different clients [NWC+07]. For example,

a malicious server may send benign versions of a page to honeypot IP addresses

that belong to security practitioners, but send malicious versions to other clients.

Nonetheless, we show in Section 3.3 that classifying on lexical features of the URL

and features about the host are sufficient for highly accurate prediction. (We

propose investigating content-based features as future work in Section 7.2.1.)

3.1.1 Features

We categorize the features that we gather for URLs as being either lexical

or host-based.

Lexical features: The justification for using lexical features is that URLs

to malicious sites tend to “look different” in the eyes of the users who see them.

Hence, including lexical features allows us to methodically capture this property

for classification purposes, and perhaps infer patterns in malicious URLs that we

would otherwise miss through ad-hoc inspection.

For the purpose of this discussion, we want to distinguish the two parts of a

URL: the hostname and the path. As an example, with the URL www.geocities

.com/usr/index.html, the hostname portion is www.geocities.com and the path

portion is usr/index.html.

Lexical features are the textual properties of the URL itself (not the content

of the page it references). We use a combination of features suggested by the

studies of McGrath and Gupta [MG08] and Kolari et al. [KFJ06]. These properties

include the length of the hostname, the length of the entire URL, as well as the

number of dots in the URL — all of these are real-valued features. Additionally,

we create a binary feature for each token in the hostname (delimited by ‘.’) and

in the path URL (strings delimited by ‘/’, ‘?’, ‘.’, ‘=’, ‘-’ and ‘ ’). This manner

of allocating features is known as a “bag-of-words.” Although we do not preserve

the order of the tokens, we do make a distinction between tokens belonging to the

hostname, the path, the top-level domain (TLD) and primary domain name (the



26

domain name given to a registrar). More sophisticated techniques for modeling

lexical features are available, such as Markov models of text. However, even with

the bag-of-words representation, we can achieve very accurate classification results

(see Section 3.3.2).

Host-based features: Host-based features describe “where” malicious

sites are hosted, “who” they are managed by, and “how” they are administered.

The reason for using these features is that malicious Web sites may be hosted in

less reputable hosting centers, on machines that are not conventional Web hosts,

or through disreputable registrars.

The following are properties of the hosts (there could be multiple) that are

identified by the hostname part of the URL. We note some of these features overlap

with lexical properties of the URL.

1. IP address properties — Are the IPs of the A, MX or NS records in the same

autonomous systems (ASes) or prefixes as one another? To what ASes or

prefixes do they belong? If the hosting infrastructure surrounding malicious

URLs tends to reside in a specific IP prefix or AS belonging to an Internet

service provider (ISP), then we want to account for that disreputable ISP

during classification.

2. WHOIS properties — What is the date of registration, update, and expira-

tion? Who is the registrar? Who is the registrant? Is the WHOIS entry

locked? If a set of malicious domains are registered by the same individual,

we would like to treat such ownership as a malicious feature. Moreover, if

malicious sites are taken down frequently, we would expect the registration

dates to be newer than for legitimate sites.

3. Domain name properties—What is the time-to-live (TTL) value for the DNS

records associated with the hostname? Additionally, the following domain

name properties are used in the SpamAssassin Botnet plugin for detecting

links to malicious sites in emails: Does the hostname contain “client” or

“server” keywords? Is the IP address in the hostname? Is there a PTR

record for the host? Does the PTR record in-turn resolve one of the host’s
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IP addresses (known as having a “full-circle” record)?

4. Blacklist membership — Is the IP address in a blacklist? For the evaluations

in Section 4.5, 55% of malicious URLs were present in blacklists. Thus,

although this feature is useful, it is still not comprehensive.

5. Geographic properties— In which continent/country/city does the IP address

belong? As with IP address properties, hotbeds of malicious activity could

be concentrated in specific geographic regions.

6. Connection speed — What is the speed of the uplink connection (e.g., broad-

band, dial-up)? If some malicious sites tend to reside on compromised resi-

dential machines (connected via cable or DSL), then we want to record the

host connection speed.

This list of features we use is not exhaustive, as there is always the possibility of

generating or aggregating new meta-information about the URL such as popularity

rankings in Netcraft, indexing in Google, etc. Nevertheless, the list is still exten-

sive (e.g., 17 feature categories yield 30,000–50,000 features in Section 3.2), as it

represents many pieces of information about the URL and host (much of which is

publicly available) that we can collect efficiently through the automated crawling

tools at our disposal.

3.1.2 Classification Models

We use the features described in the previous section to encode individual

URLs as very high dimensional feature vectors. Most of the features are generated

by the “bag-of-words” representation of the URL, registrar name, and registrant

name; binary features are also used to encode all possible ASes, prefixes and ge-

ographic locales of an IP address. The resulting URL descriptors typically have

tens of thousands of binary features.

The high dimensionality of these feature vectors poses certain challenges

for classification. Though only a subset of the generated features may correlate

with malicious Web sites, we do not know in advance which features are relevant.
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More generally, when there are more features than labeled examples, we enter the

regime in which statistical models are most prone to overfitting.

In this section, we briefly review the models that we studied for classifica-

tion, as well as their relative strengths and weaknesses. For all these models, we

adopt the following notation. We use n to denote the number of labeled examples

in the training set and d to denote the dimensionality of the feature space (i.e., the

number of features). We use x ∈ ℜd to denote a feature vector and xj to denote

its jth component. Finally, we use y ∈ {0, 1} to denote the label of an example,

with y=1 for malicious sites and y=0 for benign ones.

Though individual classifiers differ in their details, the same basic protocol

applies to all the models we consider here. The classifiers are trained on labeled

examples to learn a decision rule that can ultimately be applied to unlabeled

examples. Given an input x, the trained classifiers return a real-valued output

h(x) that we threshold to obtain a binary prediction. We hold out a small subset

of the training data to determine this threshold t, which can be chosen to reach a

desired tradeoff between false positives and false negatives. Finally, for h(x)≥ t,
we classify the site as malicious, and for h(x)<t, we classify the site as benign.

We provide further details on the individual classifiers below. In particular,

for each classifier, we briefly describe its testing process (how it predicts a label

from the features of URLs) and its training process (how it learns the decision rule

to predict these labels).

Naive Bayes: Commonly used in spam filters, this basic model assumes

that, for a given label, the individual features of URLs are distributed inde-

pendently of the values of other features [Bis06]. Letting P (x|y) denote the

conditional probability of the feature vector given its label, the model assumes

P (x|y) = ∏d

j=1 P (xj|y). Then, from Bayes rule, assuming that malicious and be-

nign Web sites occur with equal probability, we compute the posterior probability

that the feature vector x belongs to a malicious URL as:

P (y=1|x) = P (x|y = 1)

P (x|y=1) + P (x|y=0)
. (3.1)

Finally, the right hand side of eq. (3.1) can be thresholded to predict a binary label

for the feature vector x.
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The Naive Bayes classifier is most easily trained by computing the condi-

tional probabilities P (xj|y) from their maximum likelihood estimates [Bis06]. For

real-valued features, we model P (xj|y) by a Gaussian distribution whose mean and

standard deviation are computed over the jth component of feature vectors in the

training set with label y. For binary-valued features, we estimate P (xj=1|y) as

the fraction of feature vectors in the training set with label y for which the jth

component is one.

The model parameters in the Naive Bayes classifier are estimated to maxi-

mize the joint log-likelihood of URL features and labels, as opposed to the accuracy

of classification. Optimizing the latter typically leads to more accurate classifiers,

notwithstanding the increased risk of overfitting.

Support Vector Machine (SVM): SVMs are widely regarded as state-

of-the-art models for binary classification of high dimensional data. SVMs are

trained to maximize the margin of correct classification, and the resulting decision

boundaries are robust to slight perturbations of the feature vectors, thereby pro-

viding a hedge against overfitting. The superior generalization abilities of SVMs

have been borne out by both theoretical studies and experimental successes [SS02].

The decision rule in SVMs is expressed in terms of a kernel functionK(x,x′)

that computes the similarity between two feature vectors and non-negative coef-

ficients {αi}ni=1 that indicate which training examples lie close to the decision

boundary. SVMs classify new examples by computing their (signed) distance to

the decision boundary. Up to a constant, this distance is given by:

h(x) =
n∑

i=1

αi(2yi−1)K(xi,x), (3.2)

where the sum is over all training examples. The sign of this distance indicates

the side of the decision boundary on which the example lies. In practice, the value

of h(x) is thresholded to predict a binary label for the feature vector x.

SVMs are trained by first specifying a kernel function K(x,x′) and then

computing the coefficients αi that maximize the margin of correct classification

on the training set. The required optimization can be formulated as an instance

of quadratic programming, a problem for which many efficient solvers have been
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developed [CL]. In our study, we experimented with both linear and radial basis

function (RBF) kernels.

Logistic Regression: This is a simple parametric model for binary clas-

sification where examples are classified based on their distance from a hyperplane

decision boundary [HTF01]. The decision rule is expressed in terms of the sigmoid

function σ(z) = [1 + e−z]−1, which converts these distances into probabilities that

feature vectors have positive or negative labels. The conditional probability that

feature vector x has a positive label y=1 is the following:

P (y=1|x) = σ(w·x+ b), (3.3)

where the weight vector w∈ℜd and scalar bias b are parameters to be estimated

from training data. In practice, the right hand side of eq. (3.3) is thresholded to

obtain a binary prediction for the label of the feature vector x.

We trained models for logistic regression using a regularized form of maxi-

mum likelihood estimation. Specifically, we chose the weight vector w and bias b

to maximize the objective function:

L(w, b) =
n∑

i=1

logP (yi|xi)− γ
d∑

α=1

|wα|. (3.4)

The first term computes the conditional log-likelihood that the model correctly

labels all the examples in the training set. The second term in eq. (3.4) penalizes

large magnitude values of the elements in the weight vector w. Known as ℓ1-norm

regularization, this penalty not only serves as a measure against overfitting, but

also encourages sparse solutions in which many elements of the weight vector are

exactly zero. Such solutions emerge naturally in domains where the feature vectors

contain a large number of irrelevant features. The relative weight of the second

term in eq. (3.4) is determined by the regularization parameter. We determined

the value of γ in our experiments by cross validation.

We included ℓ1-regularized logistic regression for its potential advantages

over Naive Bayes and SVMs in our particular domain. Unlike Naive Bayes clas-

sification, the parameters in logistic regression are estimated by optimizing an

objective function that closely tracks the error rate. Unlike SVMs, ℓ1-regularized
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logistic regression is especially well suited to domains with large numbers of irrel-

evant features. (In large numbers, such features can drown out the similarities be-

tween related examples that SVMs expect to be measured by the kernel function.)

Finally, because ℓ1-regularized logistic regression encourages sparse solutions, the

resulting models often have decision rules that are easier to interpret in terms of

relevant and irrelevant features.

3.2 Data Sets

This section describes the data sets that we use for our evaluation. For

benign URLs, we used two data sources. One is the DMOZ Open Directory

Project [Net]. DMOZ is a directory whose entries are vetted manually by editors.

The editors themselves go through a vetting process, with editors given responsi-

bility for larger portions of the directory as they gain trust and experience. The

second source of benign URLs was the random URL selector for Yahoo’s direc-

tory. Visiting http://random.yahoo.com/bin/ryl multiple times can generate a

sample of this directory.

We also drew from two sources for URLs to malicious sites: PhishTank [Ope]

and Spamscatter [AFSV07]. PhishTank is a blacklist of phishing URLs consisting

of manually-verified user contributions. Spamscatter is a spam collection infras-

tructure from which we extract URLs from the bodies of those messages. Note that

the malicious URL data sets have different scopes. PhishTank focuses on phish-

ing URLs, while Spamscatter includes URLs for a wide range of scams advertised

in email spam (phishing, pharmaceuticals, software, etc.). Both sources include

URLs crafted to evade automated filters, while phishing URLs in particular may

be crafted to visually trick users as well.

Table 3.1 summarizes the number and types of features in the data sets

that we use in our evaluations. The four data sets consist of pairing 15,000 URLs

from a benign source (either Yahoo or DMOZ) with URLs from a malicious source

(5,500 from PhishTank and 15,000 from Spamscatter). We refer to these sets as

the DMOZ-PhishTank (DP), DMOZ-Spamscatter (DS), Yahoo-PhishTank (YP),
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Table 3.1: Breakdown of feature types for data sets used in evaluations.

Feature type DP YP DS YS

DNS NS record 10818 4186 10838 3764
WHOIS info 9070 3959 8702 3525
Hostname 7928 3112 7797 2959
TLD + domain 5787 2186 5609 1980
DNS A record 5627 2470 5207 1862
Geographic 4554 2250 4430 1836
Path tokens 4363 8021 8390 11974
Last token of path 1568 3751 2892 5071
DNS MX record 1323 497 1422 559
TLD 319 284 102 51
Connection speed 31 29 30 30
DNS TTL 14 13 14 12
Blacklists 7 7 7 7
WHOIS dates 6 6 6 6
Spamassassin plugin 5 5 5 5
IP address misc. 4 4 4 4
Lexical misc. 3 3 3 3
All features 51427 30783 55458 33648

and Yahoo-Spamscatter (YS) sets. We collected URL features between August 22,

2008 – September 1, 2008.

We normalized the real-valued features in each feature set to lie between

zero and one, shifting and rescaling each real-valued feature so that zero and

one corresponded to the minimum and maximum values observed in the training

set. Values outside this range in the testing set were clipped to zero or one as

appropriate. The normalization served to equalize the range of the features in

each feature set, both real-valued and binary. Intuitively, it reflects our prior

belief that the real-valued and binary-valued features are equally informative and

therefore should be calibrated on the same measurement scales.

One further complication arises due to undefined, or missing, features.

Many real-valued features are undefined for large numbers of examples in the data

set (e.g., DNS time-to-live values). We handled missing values using the following

standard heuristic: for each real-valued feature, we defined an extra binary feature

indicating whether the feature was defined. This heuristic enables the classifiers to
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learn how to treat missing features from the way they appear in the training set.

3.3 Evaluation

In this section, we evaluate the effectiveness of the classifiers on identifying

URLs to malicious sites. Specifically, we want to answer the following questions:

Does using more features lead to more accurate classification? What is the most

appropriate classification model to use? What is the impact on accuracy if we tune

the classifier for lower false positives? Can we effectively classify data from one

source with a model that was trained on a different data source? What trends do

we see among the relevant features? And what do the misclassified examples have

in common?

3.3.1 Methodology

We start by describing our experimental methodology. For each feature set

and data set in our experiments, we perform classification over 10 random splits of

the data, and the splits are 50/50 between training and testing. We learn a decision

threshold t that will minimize the overall classification error (see Section 3.1.2 for

methodology of learning t). We show the average classification results of those 10

splits.

We ran our experiments on a machine with 2 dual-core 2.33 GHz Xeon

processors with 4 GB memory. Memory exhaustion was not an issue, but typical

usage was on the order of a few hundred megabytes. We implemented a Naive

Bayes solver in MATLAB. For the SVM solvers, we used the .mex implementations

of LIBSVM [CL] and LIBLINEAR [FCH+08] that interface with MATLAB. We

implemented a custom optimizer for ℓ1-regularized logistic regression in MATLAB

using multiplicative updates [SPS07].
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3.3.2 Feature Comparison

Our first experiments on URL classification were designed to explore the

potential benefits of considering large numbers of automatically generated features

as opposed to small numbers of manually chosen features. Figure 3.1 compares the

classification error rates on the four data sets described in Section 3.2 using nine

different sets of features. The different feature sets involve combinations of features

reflecting various practical considerations. For brevity, we only show detailed re-

sults from ℓ1-regularized logistic regression (LR), which yields both low error rates

(see Section 3.3.3) and also highly interpretable models (see Section 3.3.6). How-

ever, the other classifiers also produce qualitatively similar results.

Table 3.2 shows the total number of features in each feature set for the

Yahoo-PhishTank data set. For these experiments, we also report the number of

relevant features that received non-zero weight from ℓ1-regularized logistic regres-

sion. (The other three data sets yield qualitatively similar results.) The feature

sets are listed in ascending order of the total number of features. In what follows,

we describe the detailed compositions of these feature sets, as well as their effects

on classification accuracy.

We start with a “Basic” feature set that corresponds to the set of URL-

related (not content-related) heuristics commonly chosen by various anti-phishing

studies, including Fette et al. [FST07], Bergholz et al. [BCP+08] and CANTINA

[ZHC07]. This set consists of four features: the number of dots in a URL, whether

the hostname contains an IP address, the WHOIS registration date (a real-valued

feature), and an indicator variable for whether the registration date is defined.

Under this scheme, the classifier achieves a 10% error rate.

The next three feature sets (Botnet, Blacklist, and Blacklist + Botnet) rep-

resent the use of current spam-fighting techniques for predicting malicious URLs.

The features for “Botnet” are from the SpamAssassin Botnet plugin (Section 3.1.1).

These consist of five binary features indicating the presence of certain client- or

server-specific keywords, whether the hostname contains an IP address, and two

more features involving the PTR record of the host. With these features, we obtain

a 15% error rate at best.
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Figure 3.1: Error rates for LR with nine features sets on each of the four URL
data sets. Overall, using more features improves classification accuracy.

The “Blacklist” feature set consists of binary variables for membership in

six blacklists (and one white list) run by SORBS, URIBL, SURBL, and Spamhaus

(discussed in Section 2.3.1). These lists combined provide at best a 20% error rate.

When we combine the blacklists with the SpamAssassin Botnet plugin features in

the “Blacklist+Botnet” feature set, the error rate improves to 12%.

These small features sets are reasonably effective, but including features

that result in very large feature sets significantly improves classification accuracy.

The WHOIS registration date was a popular feature in previous stud-

ies [FST07][BCP+08][ZHC07]. Inspired by these examples, we also create aWHOIS

feature set that includes the registration date as well as additional WHOIS prop-

erties. The “WHOIS” set we evaluated includes the registration, update, and

expiration dates, as well as a bag-of-words representation of the registrar and reg-
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istrant. The feature set grows to nearly 4,000 on the YP data set (Table 3.1.1),

while reducing the error to 3–15% across the data sets. WHOIS features can

provide useful information for differentiating malicious and benign URLs, since

creators of legitimate sites are likely to adopt different registration patterns than

creators of malicious sites (whose sites are taken down more frequently, or who

want to anonymize their registration information).

WHOIS features, however, are just a subset of the available host-based

features. If we also include the remainder of our host-based features — IP, DNS,

and geographic properties as well as membership in a blacklist and SpamAssassin

Botnet plugin features — the feature sets from our data sets grow to over 10,000

features. And these additional features are beneficial: the LR classifier has an even

lower error rate of 1.2–6% across data sets. Using host-based features provides a

richer set of properties for the classifier to capture phenomena such as malicious

sites being hosted from a particular IP prefix, ISP, country and the like.

In addition to host-based features, we can also use lexical properties of the

URLs themselves as potentially strong features (again, we are not considering the

Web page content). That is, if the URLs themselves “look” malicious, then a lexical

feature set can help us automatically learn the tell-tale strings that characterize a

malicious or benign URL. For example, malicious sites may have legitimate-looking

tokens appended to the sub-domain of the hostname, or have them embedded in

the path of the URL for obfuscation purposes. In the “Lexical” set, we consider a

“bag-of-words” representation of the tokens in the URL augmented with additional

properties such as the length of the hostname, the length of the entire URL and

the number of dots. This feature set is indeed effective, with a resulting error

between 1.9% and 3.5% across data sets.

Combining the host-based and lexical features into the “Full” feature set,

we obtain the lowest classification error among all feature sets at 0.9–3.0%. For

YP, the FP/FN rates are 0.8%/2.6%.

Finally, blacklists and WHOIS information provide us known high-quality

information for classifying URLs. But do the low classification error rates of the

“Full” feature set critically depend on those particular features? The results for
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Table 3.2: Total and relevant number of features for the LR classifier and the
Yahoo-PhishTank data set. We reference the overall error rate from Figure 3.1.

# Features
Feature set Total Relevant Err%

Basic 4 4 10.12
Botnet 5 5 15.34
Blacklist 7 6 19.92
Blacklist+Botnet 12 10 12.14
WHOIS 3967 727 3.22
Host-based 13386 1666 2.26
Lexical 17211 4488 1.93
Full 30597 3891 1.24
w/o WHOIS/Blacklist 26623 2178 1.48

“w/o WHOIS/Blacklist” show the error rates without WHOIS and blacklist fea-

tures are 1.1–3.4%. Since the error rates across this feature set remain close to

those of the “Full” set, we find that the remaining features provide sufficient infor-

mation for achieving accurate classification results — using high-quality WHOIS

and blacklist information is not necessary for excellent results. Thus, practitioners

who are concerned about the query overhead of their implementations may choose

to omit these features.

Having reviewed the composition and results for each feature set, we observe

two noticeable trends in Figure 3.1: (1) Before “WHOIS,” the DMOZ-PhishTank

set has similar error rates to Yahoo-PhishTank, but starting with “WHOIS” the

Yahoo-trained set has lower error. The shift occurs because the distribution of

WHOIS and lexical features between DMOZ and Yahoo are distinct enough that

certain URL tokens and certain WHOIS properties receive more weight in one

data set than the other. (2) Prior to “WHOIS,” the PhishTank-trained sets have

better error rates because PhishTank Web sites have more undefined WHOIS reg-

istration dates (hence better “Basic” results), more IP addresses in the hostname

(better “Botnet” results), and more URLs in blacklists (better “Blacklist” results).

But starting with “WHOIS,” the Spamscatter-trained sets do better because the

introduction of registrar/registrant names provides a wealth of information for

differentiating malicious and benign sites, and the distribution of lexical tokens in

Spamscatter is distinct enough from benign sources to provide traction for accurate
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Figure 3.2: Overall error rates for the “Full” feature set using different
classification algorithms and data sets.

classification results.

These results demonstrate that different data sets provide different feature

distributions for distinguishing malicious and benign URLs. Rather than manually

discovering and adjusting the decision rules for different data sets, machine learning

techniques can adapt to these differing distributions by learning the appropriate

decision rules automatically.

3.3.3 Classifier Comparison

Next we compare the accuracy of the four classifiers described in Section 3.1,

each of which has different tradeoffs between model complexity and training exe-

cution time. We use the “Full” feature set because it yielded the best accuracy in

Section 3.3.2.

Figure 3.2 compares the results of the classifiers: Naive Bayes (Bayes),

SVM with a linear kernel (SVM-lin), SVM with an RBF kernel (SVM-rbf), and

ℓ1-regularized logistic regression (LR). The bars show the overall error rates for each

classifier on each of our four data sets. Additionally, Table 3.3 shows the training

and testing times for each classifier. The cross-validation time refers specifically

to the cross-validation process used in LR to choose a regularization constant.
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Although expensive, it can be effectively amortized when training over time.

Table 3.3: Training and testing times for the Yahoo-PhishTank data set.

Bayes SVM-lin SVM-rbf LR

Train 51 s 50 s 63 s 30 min
Test 87 s 91 s 170 s 90 s
Cross-validation — — — 5 hrs

The SVM and LR classifiers have at least half of the error of Naive Bayes,

which is not surprising given the models that we chose. Naive Bayes is a classifier

that sees wide-spread use in spam filters and related security applications, in part

because the training and testing performance of Naive Bayes is fast. However, the

benefit of reduced training time is outweighed in this case by the benefit of using

classifiers whose explicit goal is to minimize errors. This tradeoff is particularly

worthwhile when we are dealing with a large feature set.

As mentioned in Section 3.1.2, SVM classifiers can perform poorly if irrel-

evant features in a large feature set make the kernel functions poor measures of

similarity. Given that the difference in error between SVM and LR is so small,

though, this problem did not materialize in our data set. As such, we continue to

show the results for LR for the remaining experiments because of its interpretabil-

ity, which is useful for understanding how the model performs (Section 3.3.6) and

how it might be improved (Section 3.3.7).

3.3.4 Tuning False Positives & Negatives

An advantage of using these models is that they can trade off false positives

and false negatives. We have seen in the previous sections that classifying with the

“Full” feature set yields very low overall error rates. For policy reasons, however,

we may not want to choose a decision threshold t to minimize the overall error

rate. Instead, we may want to tune the threshold to have very low false positives

at the expense of more false negatives (or vice versa). For instance, practitioners

may be concerned that false positive classifications on legitimate sites result in

lawsuits — in this case they would want to set the threshold higher to reduce the

expected false positive rate.
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Consider blacklisting as a motivating example. Blacklisting has the intrinsic

advantage that it will have very low false positives because blacklisted sites go

through a manual vetting process. Suppose a network administrator wants to take

advantage of the benefits of classifying over a full feature set while maintaining the

low false positives of a blacklist-only policy as applied to URL classification. To do

so, we can select a threshold for the full feature set that will yield a false positive

rate competitive with blacklisting while having a much lower false negative rate.

An ROC graph is a typical method for visualizing the sensitivity of classifi-

cation models to the decision threshold t. In an ROC graph, the x-axis shows the

false positive rate (fraction of benign URLs identified as malicious) and the y-axis

shows the true positive rate (fraction of malicious URLs identified as malicious,

calculated as 1− false negative rate). Each point on the ROC curve represents

the true positive and false positive rate of that model for a particular decision

threshold t. The curve for a perfect classifier would have points occupying the

upper-left corner at (x, y) = (0, 1), where there are no false negatives (i.e., 100%

true positives) and no false positives.

Figure 3.3 shows the results of this experiment as an ROC graph with

respect to the decision threshold t. We see that even if we tune the decision

threshold of the full-featured classifier to the same false positives as a blacklist-

only classifier, the full-featured classifier still predicts malicious URLs with much

better accuracy than with blacklists alone.

3.3.5 Mismatched Data Sources

Coupling the appropriate classifier with a large feature set can yield a highly

accurate classifier when trained and tested on disjoint sets of the same data source.

But do these results hold when training and testing examples are drawn from

different data sources? To answer this question, we experiment with training and

testing on various combinations of benign and malicious sources of URLs. (We

use the abbreviations defined in Section 3.2 to refer to each combination of data

sources, e.g., YP for Yahoo-PhishTank.)

Table 3.4 shows classification results using ℓ1-regularized logistic regression.
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Figure 3.3: Tradeoff between false positives and false negatives: ROC
graph for LR over an instance of the Yahoo-PhishTank data set using
(1) the “Full” feature set and (2) blacklists only. We highlight the points
where the false positives are tuned to 0.1%.

Each row represents a pairing of benign and malicious URL training sources, and

each column represents a pairing of benign and malicious URL testing sources.

As expected, the entries along the NW-SE diagonal yield the lowest classification

errors because they represent matching similar data sources (these numbers are

repeated from previous experiments). When only the benign URL source is mis-

matched (e.g., YS and DS), error increases due to higher false positives. And if

only the malicious URL source is mismatched (e.g., YS and YP), error increases

due to higher false negatives. Nevertheless, we note that training on the Spamscat-

ter set — which includes URLs advertising a wide range of scam sites — generally

performs better on a mismatched source (YS-YP at 6%, DS-DP at 14%) than the

PhishTank set (YP-YS at 21%, DP-DS at 23%) — which focuses only on phishing

sites (Section 3.2).

Finally, if the training and testing sources are completely mismatched (SW-

NE diagonal), the error ranges between 18–44%. Although better than random,

the disparity in accuracy emphasizes the judicious selection of training data. This

selection is of particular importance for use in a deployment: the training data
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Table 3.4: Overall error rates when training on one data source and testing on
another (possibly different) data source using the LR classifier.

Testing
Training YS YP DS DP

YS 0.90% 5.66% 9.38% 17.73%
YP 21.33% 1.24% 44.02% 33.54%
DS 13.55% 31.57% 1.00% 13.70%
DP 22.95% 3.06% 22.92% 3.01%

All sources (YDSP) 0.95% 2.40% 1.43% 3.19%

should reflect the “testing” environment in which the system is used. To that end,

if we use all four training sources, the generalization ability of the classifier is strong

across all testing sources (last row). Thus, in a deployed system practitioners will

want to pay special attention to collecting training data that is representative.

3.3.6 Model Analysis

Besides high classification accuracy, LR has the advantages of performing

automatic feature selection as well as providing an interpretable linear model of

the training data. In particular, because the output of a linear model depends

on the weighted sum of the features, the sign and magnitude of the individual

parameter vector coefficients can tell us how individual features contribute to a

“malicious” prediction or a “benign” prediction. Generally, positive coefficients

correspond with malicious features while negative coefficients correspond with be-

nign features. 1 Additionally, the training phase for ℓ1-regularized logistic regres-

sion yields a sparse parameter vector w where the number of non-zero coefficients

is much smaller than the total number of features, making it easier for us to focus

on a smaller number of relevant features (a zero coefficient means that the corre-

sponding feature will not contribute to the prediction outcome). These properties

simplify the analysis of trends in malicious and benign features.

In this section, we analyze the model that LR constructed for one of the

1This interpretation overlooks complicated feature correlations that cannot be learned by a
linear classifier, such as XOR interactions. For example, if a ⊗ b = 1 is a strong predictor for a
malicious site (where a and b are binary features), then it is difficult to interpret the maliciousness
of a by itself because of the dependence on b’s value.
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Table 3.5: Breakdown of features for LR for an instance of the Yahoo-PhishTank
data set. We show total number of features in each feature type category, the
number of relevant (non-zero) features, as well as the number of selected features
with negative (benign) and positive (malicious) coefficients.

Sign(coeff.)
Feature type Total Relevant - +

Path tokens 8021 419 95 324
DNS NS record 4186 1021 468 553
WHOIS info 3959 633 284 349
Last token of path 3751 76 17 59
Hostname 3112 315 123 192
DNS A record 2470 407 173 234
Geographic 2250 692 329 363
TLD + domain 2186 237 97 140
DNS MX record 497 70 34 36
TLD 284 40 15 25
Connection speed 29 19 9 10
DNS TTL 13 9 6 3
Blacklists 7 7 1 6
WHOIS dates 6 6 1 5
Spamassassin plugin 5 5 3 2
IP address misc. 4 3 3 0
Lexical misc. 3 3 0 3
All feature types 30783 3962 1658 2304

ten random splits of the Yahoo-PhishTank data set, and discuss trends that we

observe in the model and correlate them with real-world phenomena. This example

has 3,962 active (non-zero) features out of a total of 30,783 features. There are

1,658 negative (benign) coefficients and 2,304 positive (malicious) coefficients in

the weight vector. Table 3.5 shows a breakdown of the different types of features

selected in this LR model. Overall, we find that the automatic feature selection of

certain feature groups is specific to the data set at hand, while other feature types

indicate broader trends in malicious sites.

Not surprisingly, the weights learned for the blacklist features are all non-

zero because the presence of domain names and IPs in one of the six blacklists, or

its absence in the whitelist, is an accurate indicator of maliciousness.

Additionally, the weights selected for the “SpamAssassin plugin” features

match their purpose as an indicator. For example, the model learned negative
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weights for having server words in the hostname, PTR records, and full-circle

records. And it learned positive weights for having client words or an IP address

in the hostname.

The miscellaneous IP address properties indicate whether the A record of

a host shares the same prefix or AS as its MX or NS record. These features are

considered benign on all counts, which makes sense because hosting the Web site

and email server in the same data center reflects a more orthodox hosting config-

uration that a customer would purchase through legitimate means, as opposed to

a hosting infrastructure acquired by compromising a scattered array of machines.

Next, the classifier selected 40 out of the 284 top-level TLD features. Generic

TLDs like ‘.gov’, ‘.edu’, ‘.com’, ‘.org’, and country-level TLDs like ‘.ca’ and ‘.se’

are the top-6 benign features by weight. By contrast, ‘.info’, ‘.kr’, ‘.it’, ‘.hu’, and

‘.es’ form the top-6 malicious features by weight, domains correlated with some

malicious sites.

For hostname tokens that do not include the TLD, the model selected 315

out of 3,112 features. Some interesting examples of malicious hostname tokens in-

clude the appearance of ‘com’ in the name, resulting from URLs to malicious sites

that prepend the tokens of legitimate hostnames (e.g., from banks) as an obfusca-

tion measure. And while it is no surprise to see that the presence of ‘www’ is con-

sidered a benign (albeit spoofable) feature, ‘members’ receives the most negative

weight because of its co-occurrence with benign sites hosted on ‘members.aol.com’,

‘members.tripod.com’ and other free hosting services.

Although the URL’s path tokens contribute the most features (about 8,000),

the model selects 419 relevant path tokens during training, 324 of which are mali-

cious. Among the automatically selected malicious features are ‘account’, ‘webscr’,

‘login’, ‘ebayisapi’, ‘signin’, ‘banking’, and ‘confirm’ — for comparison, these to-

kens the model learned automatically are also 7 out of the 8 manually chosen path

tokens that were considered tell-tale phishing features in the study by Garera et

al. [GPCR07]. However, additional selected tokens include ‘images’, ‘com’, ‘www’,

and ‘paypal’. Tokens like these indicate attempts by the site authors to spoof legiti-

mate sites by including domain names within the URL path (‘www.example.com’).
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Even ‘http:’ is considered a malicious feature, aiding in the prediction of URLs

that attempt to hide legitimate-looking URLs in the path component (the case of

using a legitimate domain’s redirection facilities was more rare). Because trends

in malicious sites can change over time, it is important to learn path tokens auto-

matically instead of manually.

Out of the 3,959 WHOIS information features (mainly tokens in the names

of the registrar and registrant of the domain name), the classifier selected 633 as

relevant. As for dates in the WHOIS record, missing any of the three WHOIS

dates (registration, update, expiration) is considered a malicious feature. More-

over, having a recent registration or update date is considered malicious — this

corresponds with the behavior of malicious sites having newer registration dates

because they are taken down more frequently. Having a newer expiration date is

the only benign WHOIS date feature.

For connection speed features, the model selected 19 out of 29. Having a

T1 speed for the DNS A and MX records are the top-2 benign features, while a

residential cable, DSL or satellite connection hosting an address in the A, MX or NS

record of an entry is considered malicious. These features reflect the phenomenon

of malicious sites hosted on compromised machines in residential ISPs.

Finally, the selected DNS A/MX/NS record features and geographic fea-

tures correspond to hosting activity associated with various regions of the Internet

address space. For example, IP ranges belonging to Google, Yahoo and AOL are

treated as benign features. Also, having DNS NS records in IP ranges belonging

to major registrars such as RIPE (the network information center for Europe) are

considered benign features. However, having an NS record in one of the IP prefixes

run by GoDaddy is considered a malicious feature — as discussed in Section 2.3.4,

because of enforcement efforts that take down existing sites, criminals gravitate

toward low-cost registrars when registering new sites.

Overall, the classifier was able to automatically select malicious and benign

features for which domain experts had prior intuition. Perhaps more importantly,

the classifier automatically selected new, non-obvious features that were highly

predictive and yielded additional, substantial performance improvements.
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When faced with such a reputation system, the ability of adversaries to

evade detection depends on their ability to avoid conforming to the trends and

selections determined by the classifier; we discuss the issue further in Section 3.4.

3.3.7 Error Analysis

A machine learning approach using a full feature set, consisting of both lex-

ical and host-based features, yields a URL reputation classifier that has low false

positive and low false negative rates. Despite the high accuracy of this approach,

in this section we examine examples of misclassified URLs to reveal trends that

can suggest refinements to our current approach, and also help us understand the

limitations of using just URL features for classification (as opposed to addition-

ally including features from Web page content, for example). For our analysis, we

examine one of the instances of the Yahoo-PhishTank data sets from the LR clas-

sifier, chosen randomly, which had 60 false positives and 71 false negatives (other

instances resulted in similar conclusions).

The most common cause of false positives (benign sites mistakenly classified

as malicious) was due to sites hosted at disreputable ISPs. This is a case of

guilt by association — our classifier penalizes legitimate sites hosted in the same

AS or IP prefix as malicious sites. This set of false positives could be mitigated

by examining the content of a site. Also, if reputation systems become more

prevalent, such false positives imply that it would behoove legitimate site owners

to seek service providers that have a reputation for cracking down on malicious

sites hosted on their networks.

The false negatives (undetected malicious sites) fell into the following cat-

egories: (1) URLs to sites with benign tokens in the URL, (2) malicious sites us-

ing free hosting services (such as ‘geocities.com’ or ‘tripod.com’), (3) compromised

sites, (4) redirection services, (5) sites hosted in reputable geographic regions (such

as the US), and (6) sites with international TLDs hosted in the US. The first cate-

gory shows that if certain lexical features have substantial weights in classification,

false negatives can result. Eliminating this false negative could be accomplished

by more careful vetting of which URL tokens become features.
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The last five categories are related because they reflect the situation where

host-based features of a malicious URL appear to be non-malicious. However, the

remedies for mitigating these kinds of false negatives differ. For example, elimi-

nating malicious sites in category (3) is a matter of encouraging sites to maintain

up-to-date patches of software, and category (5) reflects the practice of purchas-

ing services from a reputable ISP; such remedies, though, are out of the control

of a reputation system. However, the closely-related category (6) sites could be

addressed by adding features that indicate whether the country of a site’s TLD

corresponds to the country where the ISP is located. Finally, mitigating false

negatives in (2) and (4) may require examining the content of a site.

3.4 Evasion

If deployed and effective, adversaries will naturally try to invent methods

for evading this statistical modeling approach. As we discussed in Section 3.1,

the effectiveness of statistical modeling depends on a few key assumptions. When

hosting malicious sites, adversaries can try to violate these assumptions to evade

detection.

One approach for evasion is to reduce the information content in the lex-

ical features of URLs. For example, using redirection services such as TinyURL

produces fewer distinguishing lexical features (e.g., an identical host name coupled

with a random token). Another approach is to acquire many benign host-based

features, such as hiding behind the well-provisioned infrastructure provided by

legitimate free hosting services (e.g., ‘geocities.com’ or ‘tripod.com’). These alias-

ing techniques could provide adversaries methods for misclassifying their sites as

benign.

As discussed in Section 3.3.6, the weights assigned to features in our clas-

sifiers reflect trends in the features of malicious and benign URLs. An adversary

evading detection can strive to craft a site that can spoof sufficient benign features

with high weights, and avoid acquiring sufficient malicious features, to appear as

a benign site to the detection algorithm. For instance, ‘.org’ is a benign TLD
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according to our classifier, yet costs only $10/year to register.

There are, however, functional and cost-related limits to an adversary’s

ability to forge features. For instance, older WHOIS registration dates have high

weights as benign features, but are difficult to casually obtain for malicious sites.

Further, whether a site appears on a blacklist is out of its control. Whether such

features are sufficient in the long term for differentiating benign from malicious

sites remains an open question. As with any security approach facing an adaptable

adversary, though, we envision having to evolve a deployment in response over time.

3.5 Summary

We have described an approach for classifying URLs automatically as either

malicious or benign based on supervised learning across both lexical and host-

based features. We argue that this approach is complementary to both blacklisting

— which cannot predict the status of previously unseen URLs — and systems

based on evaluating site content and behavior — which require visiting potentially

dangerous sites. Further, we show that with appropriate classifiers it is feasible

to automatically sift through comprehensive feature sets (i.e., without requiring

domain expertise) and identify the most predictive features for classification.

However, an open issue is how to scale our approach to handle millions

of URLs whose features evolve over time. We address the issue in the following

chapter.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of

the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)

2009. Ma, Justin; Saul, Lawrence K.; Savage, Stefan; Voelker, Geoffrey M. The

dissertation author was the primary investigator and author of this paper.



Chapter 4

Large-Scale Online Learning

In the previous chapter, we demonstrated the feasibility of using machine

learning techniques over lexical and host-based features for predicting malicious

URLs. That work is among several previous systems for URL classification that

have relied on batch learning algorithms. However, once we enter a regime where

large-scale training sets are at our disposal, the resource limitations imposed by

batch methods become apparent. This chapter addresses two major issues: How

can we use online learning to scale our approach to large-scale data (on the order

of 106 examples and features)? And which online algorithms are best suited to the

task?

We argue that online methods are far better suited to the practical nature

of this problem for two reasons: (1) online methods can process large numbers

of examples far more efficiently than batch methods; (2) we need to adapt to

changes in malicious URLs and their features over time.

To demonstrate this approach, we have built a URL classification system

that uses a live feed of labeled URLs from a large Web mail provider, and that

collects features for the URLs in real time (see Figure 4.2). Using this data, we

show that online algorithms can be more accurate than batch algorithms in practice

because the amount of data batch algorithms can train on is resource-limited. We

compare classical and modern online learning algorithms and find that modern

algorithms can achieve accuracies up to 99% over a balanced data set. Finally,

we show that continuous retraining over newly-encountered features is critical for

49
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Table 4.1: Feature breakdown on Day 100 of the experiments.

Lexical Host-Based
Feature type Count Feature type Count

Hostname 835,764 WHOIS info 917,776
Primary domain 738,201 IP prefix 131,930
Path tokens 124,401 AS number 39,843
Last path token 92,367 Geographic 28,263
TLD 522 Conn. speed 52
Lexical misc. 6 Host misc. 37
Lexical 1,791,261 Host-Based 1,117,901

adapting the classifier to detect new, malicious URLs.

We begin the rest of the chapter by motivating the need for large-scale

detection and describing the online algorithms we use for classification. Next, we

describe our data collection methodology and evaluate the models over our data

set of labeled URLs. Finally, we conclude with an overall discussion.

4.1 Large-Scale Detection

Our goal is to detect malicious Web sites from the lexical and host-based

features of their URLs. This section describes the scale of the application and

motivates the need for online learning.

We analyze lexical and host-based features described in Section 3.1.1 be-

cause they contain information about the URL and host that is straightforward to

collect using automated crawling tools. Thus, the list of features is extensive, but

not necessarily exhaustive.

For our data set (which we describe in more detail in Section 4.3), Table 4.1

lists the lexical and host-based feature types we consider and the number con-

tributed by each type. Although lexical types account for the majority of features

(due to bag-of-words representation), host-based features still comprise a sizable

fraction — on Day 100, lexical types account for 62% of features and host-based

types account for 38%.

Figure 4.1 shows the cumulative number of features for each day of the eval-



51

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

x 10
6

New IP prefix
"209.172.192.0/19":
hosts 16 spam sites

from same direct
marketing company

New domain "cq.bz":
a prolific phishing site

New registrant token
"DualManagementMedia":
a direct marketing
company that registered
27 spam sites

C
u
m

u
la

ti
v
e
 N

u
m

b
e
r 

o
f 
F

e
a
tu

re
s

Days

Figure 4.1: Cumulative number of features observed over time for our live URL
feeds. We highlight a few examples of new features at the time they were introduced
by new malicious URLs.

uations. Each day’s total includes new features introduced that day and all old fea-

tures from previous days (see Section 4.5 on our methodology for new features). For

select days, we annotate the figure with particular features that appear for the first

time in the data set. On Day 8, we show the company “DualManagementMedia”

was responsible for purchasing 27 different spam domains. Around the same time,

we observe a disreputable ISP (represented by IP prefix 209.172.192.0/19) for the

first time. On that day, this ISP was responsible for hosting 16 different illegitimate

sites.

The dimensionality grows quickly because we assign a binary feature for

every token we encounter among the URL lexical tokens, as well as WHOIS and

location properties. As we will show in Section 4.5.3, accounting for new features

like the ones in Figure 4.1 is beneficial for detecting new malicious URLs.
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4.2 Online Algorithms

This section briefly describes the online learning algorithms we use for

our evaluations. Formally, the algorithms are trying to solve an online classifi-

cation problem over a sequence of pairs {(x1, y1), (x2, y2), ..., (xT , yT )}, where each
xt is an example’s feature vector and yt ∈ {−1,+1} is its label (in the online

framework, this notation is more convenient). At each time step t during train-

ing, the algorithm makes a label prediction ht(xt), which for linear classifiers is

ht(x) = sign(wt · x).
After making a prediction, the algorithm receives the actual label yt. (If

ht(xt) 6= yt, we record an error for time t.) Then, the algorithm constructs the

hypothesis for the next time step ht+1 using ht, xt and yt.

At the beginning, we did not have an a priori preference for particular

online algorithms. Thus, the online methods we evaluate are a mix of classical

and recent algorithms. We present the models in order of increasing sophistication

with respect to the objective functions and the treatment of classification margin

(which we can also interpret as classification confidence).

Perceptron: This classical algorithm is a linear classifier that makes the

following update to the weight vector whenever it makes a mistake [Ros58]:

wt+1 ← wt + ytxt (4.1)

The advantage of the perceptron is its simple update rule. However, because

the update rate is fixed, the perceptron cannot account for the severity of the

misclassification. As a result, the algorithm can overcompensate for mistakes in

some cases and undercompensate for mistakes in others.

Logistic Regression with Stochastic Gradient Descent: Many batch

algorithms use gradient descent to optimize an objective function that is expressed

as a sum of the examples’ individual objective functions. Stochastic gradient de-

scent (SGD) provides an online means for approximating the gradient of the orig-

inal objective, whereby the model parameters are updated incrementally by the

gradients of individual objectives. In this chapter we evaluate SGD as applied to

logistic regression.
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Let P (yt = +1|xt) = σ(w · xt) be the likelihood that example t’s label is

+1, where the sigmoid function is σ(z) = [1 + e−z]−1. Moreover, let Lt(w) =

log σ(yt(w · xt)) be the log-likelihood for example t. Then the update for each

example in logistic regression with SGD is as follows:

wt+1 ← wt + γ
∂Lt

∂w
= wt + γ∆txt (4.2)

where ∆t =
yt+1
2
−σ(wt ·xt) and γ is a constant training rate. We do not decrease γ

over time so that the parameters can continually adapt to new URLs. The update

resembles a perceptron, except with a learning rate that is proportional to ∆t, the

difference between the actual and predicted likelihood that the label is +1. This

multiplier allows the model to be updated (perhaps by a small factor) even when

there is no prediction mistake.

SGD has received renewed attention because of recent results on the con-

vergence of SGD algorithms and the casting of classic algorithms as SGD approx-

imations [Bot98, BL04]. For example, the perceptron can be viewed as an SGD

minimization of the hinge-loss function Loss(w) =
∑

t max{0,−yt(w · xt)}.
Passive-Aggressive (PA) Algorithm: The goal of the passive-aggressive

algorithm is to change the model as little as possible to correct for any mistakes

and low-confidence predictions it encounters [CDSSS06]. Specifically, with each

example PA solves the following optimization:

wt+1 ← argmin
w

1
2
‖wt −w‖2

s.t. yt(w · xt) ≥ 1
(4.3)

Updates occur when the inner product does not exceed a fixed confidence margin

— i.e., yt(wt · xt) < 1. The closed-form update for all examples is as follows:

wt+1 ← wt + αtytxt (4.4)

where αt = max{1−yt(wt·xt)
‖xt‖2 , 0}. (The details of the derivation are in Crammer et

al. [CDSSS06].) The PA algorithm has been successful in practice because the

updates explicitly incorporate the notion of classification confidence.

Confidence-Weighted (CW) Algorithm: We provide a brief overview

of the algorithm for this chapter and a more extensive overview in Chapter 6. The



54

idea behind confidence-weighted classification is to maintain a different confidence

measure for each feature so that less confident weights are updated more aggres-

sively than more confident weights. The “Stdev” update rule for CW is similar in

spirit to PA. However, instead of describing each feature with a single coefficient,

CW describes per-feature confidence by modeling uncertainty in weight wi with a

Gaussian distribution N (µi,Σi) [DCP08, CDP09]. Let us denote µ as the vector

of feature means, and Σ as the diagonal covariance matrix (i.e., the confidence)

of the features. Then the decision rule becomes ht(x) = sign(µt · x) — which is

the result of computing the average signed margin wt · x, where wt is drawn from

N (µt,Σt), and then taking the sign.

The CW update rule adjusts the model as little as possible so that xt

can be correctly classified with probability η. Specifically, CW minimizes the KL

divergence between Gaussians subject to a confidence constraint at time t:

(µt+1,Σt+1)← argmin
µ,Σ

DKL(N (µ,Σ)‖N (µt,Σt))

s.t. yi(µ · xt) ≥ Φ−1(η)
√
x⊤
t Σxt

(4.5)

where Φ is the cumulative distribution function of the standard normal distribu-

tion. This optimization yields the following closed-form update:

µt+1 ← µt + αtytΣtxt

Σ−1
t+1 ← Σ−1

t + αtφu
− 1

2

t diag2(xt)
(4.6)

where αt, ut and φ are defined in Crammer et al. [CDP09]. However, we can see

that if the variance of a feature is large, the update to the feature mean will be

more aggressive. As for performance, the run time of the update is linear in the

number of non-zero features in x.

Overall, because the CW algorithm makes a fine-grain distinction between

each feature’s weight confidence, CW can be especially well-suited to detecting

malicious URLs since our data feed continually introduces a dynamic mix of new

and recurring features.

Related Algorithms: We experimented with nonlinear classification us-

ing online kernel-based algorithms such as the Forgetron [DSSS08] and the Pro-

jectron [OKC08]. To make computation tractable, these algorithms budget (or at
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least try to reduce) the size of the support set used for kernel calculations. Our

preliminary evaluations revealed no improvement over linear classifiers.

4.3 Data Collection

This section describes our live sources of labeled URLs and the system we

deploy to collect features in real time. Figure 4.2 illustrates our data collection

architecture, which starts with two feeds of malicious and benign URLs.

We obtain examples of malicious URLs from a large Web mail provider,

whose live, real-time feed supplies 6,000–7,500 examples of spam and phishing

URLs per day. The malicious URLs are extracted from email messages that users

manually label as spam, run through pre-filters to extract easily-detected false

positives, and then verified manually as malicious.

We randomly draw our examples of benign URLs from Yahoo’s directory

listing. A random sample from this directory can be generated by visiting the link

http://random.yahoo.com/bin/ryl.

Combined, we collect a total of 20,000 URLs per day from the two URL

feeds, and the average ratio of benign-to-malicious URLs is 2-to-1. With this 2-

to-1 ratio, we implicitly value the cost of a false positive at twice the cost of a

false negative — practitioners may prefer to adjust this training ratio to express

a different policy on the relative cost of false positives vs. false negatives. We

ran our experiments for 100 days, collecting nearly 2 million URLs (there were

feed outages during Days 35–40). However, the feeds only provide URLs, not the

accompanying features.

Thus, we deploy a system to gather features in real-time. The real-time

aspect is important because we want the values to reflect the features a URL had

when it was first introduced to the feed (which ideally reflects values for when

it was introduced to the wild). For every incoming URL, our feature collector

immediately queries DNS, WHOIS, blacklist and geographic information servers,

as well as processing IP address-related and lexical-related features.

Our live feed is notably different from data sets such as the webspam set
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Figure 4.2: Overview of real-time URL feed, feature collection, and classification
infrastructure.

from the PASCAL Large Scale Learning Challenge [SFYTS08]. Our application

uses URLs as a starting point, and it is our responsibility to fetch lexical and

host-based features in real-time to construct the data set on an ongoing basis. By

contrast, the webspam set is a static representation of Web page content (not URLs)

and individual pages do not have dates associated with them — i.e., webspam is

not a temporal data set like the URL data set we collect.

Finally, our live feed provides a real-time snapshot of malicious URLs that

reflect the evolving strategies of Internet criminals. The freshness of this data

suggests that good classification results over the set will be a strong indicator of

future success in real-world deployments.

4.4 Implementation

In this section we describe salient details regarding the implementation of

our URL classification system.

At a high level, we implemented feature collection using a series of custom

Bash and Ruby scripts. For a given URL, the individual components handling
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lexical, IP address, WHOIS, DNS, blacklist and geographic features each output

their results to an intermediate format. This intermediate format is then converted

to a Matlab sparse matrix. After feature collection, we perform classification using

online and batch algorithms, which we implement in Matlab.

The following sections describe more implementation details about the fea-

ture collection infrastructure and feature representation.

4.4.1 Feature Collection Infrastructure

We construct the feature vector for each URL in real time. When our

feature collection server receives a URL, it attempts to query several external

servers to construct the host-based portion of the feature vector. We explain the

implementation details of host-based feature collection as follows:

• For IP address features, we look up the IP prefix and AS associated with

a given IP address using a routing information base (RIB), which can be

downloaded from the Route Views Project [Uni10]. There is a small, fixed

overhead of loading and indexing the database (30–40 MB in size) in memory

before feature collection begins. Once the database is loaded in memory, the

lookup for IP prefixes and AS numbers is efficient. However, keeping the

database up-to-date is an operational concern can practioners can address

by periodically downloading the latest RIBs from Route Views.

• Parsing WHOIS data can be difficult because WHOIS entries are typically

stored as flat text files with no standard format. We constructed a command-

line PHP script around PHPWhois [JS10] to simplify parsing of WHOIS fea-

tures. Nevertheless, WHOIS queries are high latency operations which take

1–3 seconds for most domain names and on the order of several seconds for

domains hosted from smaller registrars. We set a query timeout of 7 seconds

in our implementation to avoid undue delays in feature collection.

• We collect DNS data — e.g., IP addresses for the domain name’s associated

A, NS and MX records — by parsing the output of the host command.
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Because DNS is structured to handle a high query volume, the latecy for

collecting these features is low (less than a second).

• We query six blacklists (and one white list) run by SORBS, URIBL, SURBL

and Spamhaus. This introduces seven binary features, and the query over-

head is no more than performing a set of DNS queries.

• We collect geographic features using the NetAcuity service [Dig10]. Because

we have a dedicated NetAcuity server for the campus, the query latency is

very low.

4.4.2 Feature Representation

Because we implement the classification algorithms in Matlab, we have

to represent the URL features explicitly as sparse vectors in a high-dimensional

Euclidean space. Since new features are introduced continually, we must decide

when to add new columns to the data matrix.

In our implementation, we collect data in day-by-day chunks and handle

feature vector construction at the end of each day; Day N ’s feature vector becomes

the union of the Day N ’s features with the previous days’ features. Examples

preceding the first occurrence of a newly added feature are assigned the value 0

for that feature. Moreover, the classification model’s weight vector gets a 0 value

for each newly added feature weight.

4.4.3 Suggestion for Production Deployment

In our evaluations, we deliberately decouple the act of feature collection

from the act of classification because we want to create controlled evaluations. In

particular, we perform data and feature collection in real time, but we can perform

classification at a later time on data that retains its temporal characteristics. Nev-

ertheless, constructing new feature vectors at the end of each day is too infrequent

for a production deployment of our approach — we need a data representation

that dynamically accounts for growing feature vectors.
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Thus, for a production system we recommend storing a URL’s features as

a small hash table of <feature, value> pairs. The classification model’s weight

vector would likewise be a hash table. Because individual data vectors are sparse,

efficient hash table-based implementations of the online algorithms are feasible.

4.5 Evaluation

In this section, we evaluate the effectiveness of online learning over the live

URL feed. To demonstrate this effectiveness, we address the following questions:

Do online algorithms provide any benefit over batch algorithms? Which online

algorithms are most appropriate for our application? And is there a particular

training regimen that fully realizes the potential of these online classifiers?

By “training regimen”, we refer to (1) when the classifier is allowed to

retrain itself after attempting to predict the label of an incoming URL, and (2)

how many features the classifier uses during training.

For (1), we compare “continuous” vs. “interval-based” training. Under the

“continuous” training regimen, the classifier may retrain its model after each in-

coming example (the typical operating mode of online algorithms). In the “interval-

based” training regimen, the classifier may only retrain after a specified time in-

terval has passed. In our experiments, we set the interval to be one day. Batch

algorithms are restricted to interval-based training, since continuous retraining

would be computationally impractical. Unless otherwise specified, we use contin-

uous retraining for all experiments with online algorithms (and then evaluate the

benefit of doing so in Section 4.5.3).

For (2), we compare training using a “variable” vs. “fixed” number of fea-

tures. Under the fixed-feature regimen, we train using a pre-determined set of

features for all evaluation days. For example, if we fix the features to those en-

countered up to Day 1, then we use those 150,000 features for the whole experiment

(see Figure 4.1). Under the variable-feature regimen, we allow the dimensionality

of our models to grow with the number of new features encountered; on Day 8,

for instance, we classify with up to 500,000 features. Implicitly, examples that
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were introduced before a feature i was first encountered will have value 0 for fea-

ture i. Unless otherwise specified, we use the variable-feature training regimen for

all algorithms (and then evaluate the benefit of doing so in Section 4.5.3).

As for the sizes of the training sets, online algorithms implicitly train on a

cumulative data set, since they can incrementally update models from the previous

day. For batch algorithms, we vary the training set size to include day-long and

multi-day sets (details in Section 4.5.1).

4.5.1 Advantages of Online Learning

We start by evaluating the benefit of using online over batch algorithms

for our application in terms of classification accuracy — in particular, whether the

benefit of efficient computation in online learning comes at the expense of accuracy.

Specifically, we compare the online confidence-weighted (CW) algorithm against

four different training set configurations of a support vector machine. For our

canonical batch algorithm, we use the same LIBLINEAR [FCH+08] implementation

of an SVM with a linear-kernel from Section 3.3.1. Evaluations with other batch

algorithms such as logistic regression yielded similar results.

Figure 4.3 shows the classification rates for CW and for SVM using four

types of training sets. We tuned all classifier parameters over one day of holdout

data, setting C = 100 for SVM, and η = 0.90 for CW. The x-axis shows the

number of days in the experiment, and the y-axis shows the cumulative error rate:

the percentage of misclassified examples for all URLs encountered up to that date.

The SVM-once curve represents training once on Day 0’s data and using

that model for testing on all other days. The cumulative error steadily worsens to

3.5%, and the per-day false negative rate gets as high as 10–15%. These high error

rates suggests that, to achieve better accuracy, the model must train on fresh data

to account for new features of malicious and benign URLs encountered over time.

SVM-daily retrains only on data collected the previous day — e.g., Day 6

results reflect training on the URLs collected on Day 5, and testing on Day 6 URLs.

The only exception is that we do not retrain during the feed outages on Days 35–

40. As a result, the cumulative error is just under 3%, most of which is due to
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Figure 4.3: Cumulative error rates for CW and for batch algorithms under dif-
ferent training sets. Note the y-axis starts at 1%.

high per-day false negatives (5–15% on some days), whereas per-day false positives

are around 1.5%. Although fresh data eventually helps SVM-daily improve over

SVM-once, one day’s training data is still insufficient.

We use multi-day training sets to address this issue by training on as much

data as our evaluation machine with 4 GB RAM can handle (which is 14–17 days

worth, or 280,000–340,000 examples). SVM-multi-once is the multi-day analogue

to SVM-once. Here, SVM-multi-once trains on data from Days 0 to 16, and from

Day 17 on it uses that fixed model for testing on subsequent days. The improve-

ment over SVM-once shows the benefit of more training data, but the steadily

worsening error again demonstrates the nonstationarity of the URL data set.

SVM-multi is the multi-day analogue of SVM-daily. Here, SVM-multi trains

on the previous 14–17 days worth of data (depending on what can fit in memory).

The resulting cumulative error reaches 1.8%. SVM-multi’s improvement over SVM-

multi-once suggests the URL feature distribution evolves over time, thus requiring

us to use as much fresh data as possible to succeed. Overall, these results sug-

gest that more training data yields better accuracy. However, this accuracy is

fundamentally limited by the amount of computing resources available.

Fortunately, online algorithms do not have that limitation. Moreover, they

have the added benefit that they can incrementally adapt to new data. As we see in
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Figure 4.3, CW has higher accuracy than SVM-multi. Since the online algorithm is

making a single pass over a cumulative training set, it does not incur the overhead

of loading the entire data set in memory. Because its training is incremental, it

is capable of adapting to new examples in real time, whereas batch algorithms

are restricted to retraining at the next available interval (more on interval-based

training in Section 4.5.3). These advantages allow the online classifier to have the

best accuracy in our experiments.

4.5.2 Comparison of Online Algorithms

Given the demonstrated benefits of online learning over batch learning, we

next evaluate which of the online algorithms from Section 4.2 are best suited to ma-

licious URL detection. The main issue that these experiments address is whether

recent developments in online algorithms, which include optimizing different ob-

jective functions, adjusting for classification confidence, and treating features dif-

ferently, can benefit the classifiers in our application.

Figure 4.4(a) shows the cumulative error rates for the online algorithms.

All algorithms in this experiment adopt the continuous training regimen. We also

note that the error rates improve steadily over time for all classifiers, reaffirming

that training on cumulative data is beneficial.

The perceptron is the simplest of the algorithms, but it also has the highest

error rates across all of the days at around 2–3%. This result suggests that because

the perceptron treats mistakes equally (and ignores all correct classifications), its

updates are too coarse to accurately keep up with new examples. There needs

to be a more fine-grain distinction between misclassified and correctly-classified

examples with respect to their impact on model updates.

Both logistic regression with stochastic gradient descent (LRsgd) and the

passive-aggressive (PA) algorithm achieve a cumulative error approaching 1.6%,

improving over the perceptron results. (Here we tuned the LRsgd learning rate

to γ = 0.01 over one day of holdout data.) Presumably, this improvement occurs

because LRsgd and PA account for classification confidence. Specifically, LRsgd

updates are proportional to ∆t, and PA updates are proportional to the normalized
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(a) Error rates for online algorithms. All use

continuous/variable-feature training.
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(b) Benefits of using continuous training over interval-based

training.
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Figure 4.4: Comparing the effectiveness of various online algorithms, their use of
continuous vs. interval training, and their use of fixed vs. variable feature sets.
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classification margin αt. These results are comparable to SVM-multi.

The CW results suggest that the final leap comes from treating features

differently — both in terms of how they affect classification confidence, and how

quickly they should be updated. With an error approaching 1%, CW clearly

outperforms the other algorithms. Most of the gap between CW and the other

online methods comes from CW’s lower false negatives — CW has 1–2% false

negatives per day, whereas others have 2–4%. We hypothesize the gap occurs

because CW can update select portions of its model very aggressively to account

for new malicious features, all without perturbing more established features.

Overall, we find that the more recent online algorithms outperform the

simpler ones. Because the live combined URL feed contains a dynamic mix of new

and recurring features, CW’s per-feature confidence weighting can exploit that

structure to achieve the best accuracy.

4.5.3 Training Regimen

In this section, we show that there is a significant advantage to continuous

training vs. interval-based training. We also demonstrate that there is significant

benefit to adding newly-encountered features as opposed to using a fixed feature

set. The aforementioned training regimens can help online algorithms stay abreast

of changing trends in URL features. Thus, choosing the right training regimen can

be just as important as choosing the right algorithm.

Figure 4.4(b) shows the value of using continuous training over interval

training with the CW and perceptron algorithms. The higher error rates for in-

terval training show that there is enough variation between days that a model can

become stale if it is not retrained soon enough. In particular, the higher num-

ber of false negatives for interval-trained CW is responsible for the persistent gap

with continuously-trained CW. Notwithstanding the aforementioned feed outages

on Days 35–40, the 1% error difference between continuous and interval-based per-

ceptron is due to spikes in the false positive/negative rates for the interval-trained

perceptron. (During the outage, interval-trained CW’s performance does not de-

grade as severely because its per-feature learning rates ensure that low-variance
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feature weights are not perturbed severely.) Thus, continuous retraining yields as

much improvement for the simpler perceptron as it does for CW.

In addition to continuous retraining, accounting for new features is critical

to an algorithm’s success. Figure 4.4(c) shows the value of using variable-feature

training over fixed-feature training. In this graph, “fixed features” means that we

restrict the model to using the features encountered on Day 1 only (150,000 features

total). We see that the performance for fixed-feature CW degrades to a point that

it is no better than a perceptron. Interestingly, variable-feature perceptron only

achieves a marginal improvement over fixed-feature perceptron. One explanation is

that, even though variable-feature perceptron can occasionally benefit from adding

new features, it does not update the new feature weights aggressively enough to

correct for future errors. By contrast, the CW algorithm updates new features

aggressively by design, and hence can reap the full benefits of variable-feature

training.

Overall, continuous retraining with a variable feature set allows a model to

successfully adapt to new data and new features on a sub-day granularity. And

this adaptiveness is critical to the full benefits of online algorithms.

4.6 Proof-of-Concept

Given the promising experimental results from Section 4.5, we decided to

implement a prototype of our URL classification system as a Web browser toolbar,

which we call GranolaBar. In this proof-of-concept, our Firefox extension tells

the user (1) the predicted “safety rating” of the currently loaded URL and (2) the

predicted safety rating of a URL the user is thinking about visiting (i.e., when a

user mouses over a link before clicking it).

As a user visits or mouses over a target URL, the browser sends the URL

to our reputation server, which stores a linear classifier trained by confidence-

weighted (CW) learning. The reputation server returns the result of the classifi-

cation (expressed as a “safety percentage”), the top-10 highest-weight malicious

features and top-10 highest-weight benign features back to the browser. The la-
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tency of this query is typically 1–3 seconds because the reputation server gathers

the URL’s host-based features in real time (with WHOIS features dominating the

query time).

Figure 4.5 demonstrates what the user sees when our plugin predicts the

maliciousness of a real phishing site — before the user clicks on the phishing URL.

The phishing site in question attempted to mimic an Authorize.Net login page.

(Authorize.Net is a Web commerce service that helps merchants process credit

card transactions, making it an appealing target for phishing attacks.) When we

initially clicked the link on May 7, 2009, Firefox let us visit the site. However,

when we tried to visit the phishing site again on May 12, 2009, Firefox’s default

blacklist protection issued a warning. Thus, our predictive classification approach

identified the phishing site before it appeared on Firefox’s blacklist.

Overall, this proof-of-concept is a promising demonstration that our ap-

proach can classify malicious sites before they appear on blacklists.

4.7 Summary

URL classification is a challenging task because the distribution of features

that characterize malicious URLs evolves continually. With an eye toward ulti-

mately constructing a real-time malicious URL detection system, we evaluated

batch and online learning algorithms for our application to study their benefits

and tradeoffs.

Experiments over a live URL feed revealed the limitations of batch algo-

rithms in this setting, where we were forced to make a tradeoff between accu-

racy and coping with resource limitations (e.g., running out of memory). We

demonstrated that recently-developed online algorithms such as CW can be highly

accurate classifiers, capable of achieving classification accuracies up to 99%. Fur-

thermore, we showed that retraining algorithms continuously with new features

is crucial for adapting successfully to the ever-evolving stream of URLs and their

features.

The success of confidence-weighted learning in detecting malicious URLs
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Figure 4.5: Proof-of-Concept Toolbar— (1) The toolbar rates the current Web
mail page as safe. (2) Mousing over the phishing link in an email yields a warning
that the moused-over URL is unsafe (the toolbar queries this URL’s safeness rating
in the background). (3) Mousing over the warning bar yields a pop-up window
displaying the top malicious/benign features for the site, as well as query time.
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illustrates the importance of accounting for feature-weight uncertainty in this and

similar applications. However, CW is a recent development and is not the first

online algorithm to incorporate model uncertainty. In the following chapter, we

explore an older, related algorithm called Bayesian logistic regression and compare

it against CW for malicious URL detection. In doing so, we gain more understand-

ing about why CW performs well on this application.

Finally, we have made our data set available so that researchers interested

in developing algorithms will have a large-scale, temporal data set at their disposal.

The URL is http://www.sysnet.ucsd.edu/projects/url/.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings

of the International Conference on Machine Learning (ICML) 2009. Ma, Justin;

Saul, Lawrence K.; Savage, Stefan; Voelker, Geoffrey M. The dissertation author

was the primary investigator and author of this paper.



Chapter 5

Uncertainty in Online Learning

In Chapter 4, we saw online algorithms that incorporate feature-weight un-

certainty produced the best classification results for detecting malicious URLs. In

this chapter, we develop a deeper understanding of these 2nd-order online algo-

rithms (those that incorporate uncertainty) to determine why they work well for

our application.

Issues of uncertainty arise whenever we attempt to predict the future from

statistical models of the past. Typically, the past contains data that constrains

and informs our future predictions, but does not provide enough information to

identify the data’s underlying model. In this chapter, we compare two approaches

— one old, one new — for managing this uncertainty in statistical models of

linear classification. We work in the online setting, where classifiers incrementally

incorporate the evidence provided by each newly labeled example, then discard

the example from memory after updating the decision boundary.

The first approach we study is Bayesian logistic regression (BLR). Bayesian

methods are widely used for modeling uncertainty in parameter estimation [BS94].

For linear classification, this uncertainty is expressed as a probability distribution

over the weight vector that defines the decision boundary. BLR assumes a prior

distribution over this weight vector, then uses Bayes rule to compute the posterior

distribution induced by labeled examples. New examples are classified by integrat-

ing the model predictions over this posterior distribution. Conceptually, BLR is

naturally suited to online learning: Bayes rule dictates how to incorporate evidence

69
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from successive labeled examples, yielding incremental updates for the posterior

distribution over the weight vector. In general, however, exact implementations of

BLR are impractical because the posterior distribution from Bayes rule cannot be

computed in closed form. To circumvent this difficulty, implementations of BLR

resort to some form of approximation. A common approximation is to model the

posterior distribution over the weight vector by a multivariate Gaussian distribu-

tion [SL90, Mac92, JJ00]. Our implementations of BLR make this approximation,

which in turn leads to simple and efficient update rules for online learning.

The second approach we study in this chapter is confidence-weighted (CW)

learning [DCP08, CDP09], which we adopted in Chapter 4. Despite certain simi-

larities with BLR in both concept and practice, CW grew out of a rather different

tradition in statistical learning [CBCG05, CDSSS06, DSSS08, OKC08]. CW also

models the uncertainty in the weight vector during online learning by a multivari-

ate Gaussian distribution. But unlike BLR, this distribution is not sequentially

updated by Bayes rule, but by solving a constrained optimization. This optimiza-

tion ensures that with high probability, each newly labeled example is correctly

classified by a large margin. For CW, the weight vector distribution is updated by

the minimum amount required to satisfy this criterion.

In this chapter, we compare BLR and CW, highlighting their similarities

as well as their fundamental differences. To our knowledge, we present the first

parallel presentation of these algorithms that elucidates their common structure.

This common structure is not immediately apparent from previous expositions.

We also present the first experimental results comparing these two approaches.

Most notably, in simple, controlled experiments on synthetic data, we show that

BLR and CW can exhibit very different performance.

Beyond these experiments, we also compare BLR and CW on this disserta-

tion’s focus application of detecting malicious Web sites from suspicious URLs. We

use the URL Reputation data set from Chapter 4, whose lexical and host-based

(geographic, domain name, IP-based) features were gathered in real time and which

contains nearly four months of data. A challenge of this application is that the

feature set is constantly evolving; by Day 110, the URLs are represented by sparse
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feature vectors with over two million elements. In Chapter 4, we found that CW

outperformed many other approaches on this task; as independent practitioners

seeking only the best results, we wondered if BLR — which models uncertainty

in a different but time-honored fashion — would yield similar or perhaps further

improvements.

The organization of this chapter is as follows. We begin by reviewing BLR

and the approximations that have been developed for efficient, incremental updates

to the posterior distribution. Next, we review CW learning and present a high-

level comparison that highlights the similarities and differences with BLR. Finally,

we present our experimental results and conclude with a discussion of our most

significant findings.

5.1 Bayesian Logistic Regression

Given a weight vector w, logistic regression models the binary response

y ∈ {−1,+1} to an input x as:

P (y|x,w) = σ(yx⊤w), (5.1)

where σ(z) = [1 + e−z]−1 denotes the sigmoid function. In online learning, we at-

tempt to estimate the weight vector w from a stream of labeled examples. Initially,

after observing only a few examples, our estimate of w may be highly uncertain.

However, as we observe more examples, our uncertainty in the decision boundary

will evolve and in general decrease. The Bayesian approach to logistic regression

provides a principled way to model this uncertainty and incorporate new evidence

from successive labeled examples.

5.1.1 Bayesian Updating

More formally, let Dt−1 = {(x1, y1), . . . , (xt−1, yt−1)} represent a sequence of
t−1 labeled examples, and let the distribution P (w|Dt−1) model our uncertainty

in the weight vector w after observing these examples. Then to classify a new
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example xt, we compute

P (yt|Dt−1,xt) =

∫
dwP (w|Dt−1)P (yt|xt,w), (5.2)

which integrates over our current uncertainty in the decision boundary character-

ized by w. Likewise, to incorporate new evidence (xt, yt), we use Bayes rule:

P (w|Dt) =
P (w|Dt−1)P (yt|xt,w)∫
dwP (w|Dt−1)P (yt|xt,w)

, (5.3)

which updates the posterior distribution over the weight vector from time t−1 to

time t.

Though simple in concept, the above procedure is difficult to implement in

practice. For our initial model of uncertainty in the weight vector w, we assume a

Gaussian prior distribution P (w|D0) with mean µ0 and covariance matrix Σ0. We

also assume that Σ0 = ωI is a scalar multiple of the identity matrix, with ω > 0.

But even with this simple choice, an exact evaluation of the high-dimensional,

non-Gaussian integral in eqs. (5.2)–(5.3) is intractable.

As an alternative approach, we can approximate the non-Gaussian inte-

gral using Laplace or variational methods. We discuss these approximations in

the following sections. We favor these approximations over sampling-based tech-

niques [GRS96] because they lead to fast, closed-form updates.

5.1.2 Laplace Approximation

The Laplace approximation for Bayesian parameter estimation [Mac92] con-

structs a multivariate Gaussian distribution centered at the peak1 of the posterior

distribution P (w|Dt). Let us assume that P (w|Dt−1) is a multivariate Gaussian

at the previous time step. Then P (w, yt|Dt−1,xt), which equals the numerator of

eq. (5.3), is proportional to the following:

elog σ(ytx
⊤
t
w)− 1

2
(w−µt−1

)⊤Σ
−1

t−1
(w−µt−1

). (5.4)

Letw∗ denote the mode of the posterior distribution: i.e., the value that maximizes

eq. (5.4). As it turns out, we can express the mode as an additive correction

1See Spiegelhalter and Lauritzen [SL90] for a related approximation, which we do not pursue
here.
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to the posterior mean at the previous time step, where it takes the form w∗ =

µt−1 + αtytst (we define st = Σt−1xt). The scalar prefactor αt can be computed

by a one-dimensional Newton-Raphson procedure; see Appendix A for an efficient

implementation of the Newton-Raphson method in this problem.

We construct a Gaussian approximation by taking the second-order Tay-

lor expansion around the mode w∗. As shorthand, let zt = ytx
⊤
t w

∗ and κt =

σ(zt)σ(−zt). Then the Laplace approximation can be written as:

P (w, yt|Dt−1,xt) ∼ e−
1

2
(w−w∗)⊤[Σ−1

t−1
+κtxtx

⊤
t ](w−w∗). (5.5)

We identify the right hand side as a multivariate Gaussian distribution with mean

µt = w∗ and inverse covariance matrix Σ−1
t given by the bracketed term in the

exponent. Using the matrix inversion lemma over Σ−1
t−1 and substituting for w∗

yields the final update:

µt = µt−1 + αtytst, (5.6)

Σt = Σt−1 − βtsts
⊤
t , (5.7)

where as additional shorthand in eq. (5.7) we have defined βt = κt(1+κtx
⊤
t st)

−1.

For prediction, we can use the Laplace method to compute P (ŷt|Dt−1,xt) =
∫
dwP (w, ŷt|Dt−1,xt) approximately for outcomes ŷt ∈ {−1,+1}, then choose

the label ŷt that appears most likely under the approximation in eq. (5.5).

We show pseudocode for the Laplace approximation to BLR in option (i)

of Algorithm 1. In very high dimensional feature spaces, it is not feasible to store

a full covariance matrix. In this case, we can constrain the covariance matrix to

be diagonal by truncating the off-diagonal elements of the outer product sts
⊤
t that

appear in the update rule, eq. (5.7).

Intuitively, we expect the Laplace approximation for BLR to become in-

creasingly accurate over time (provided that the data itself is well modeled by a

logistic regression). In particular, as more examples arrive, our uncertainty in the

weight vector w should decrease, yielding increasingly sharp posterior distribu-

tions that are very well approximated by Gaussian distributions centered at their

modes.
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Algorithm 1 Bayesian Logistic Regression
Parameter: ω > 0

Initialize: µ0 = 0, Σ0 = ωI

for t = 1, 2, ... do

Receive xt ; Predict ŷt ; Receive yt

st = Σt−1xt

Option (i): Laplace update

Find αt using Newton-Raphson

zt = ytx
⊤
t µt−1 + αtx

⊤
t st

κt = σ(zt)σ(−zt)
βt = κt(1 + κtx

⊤
t st)

−1

Option (ii): Variational update

Find ξt using EM

zt = ytx
⊤
t µt−1

λt = (σ(ξt)− 1
2
)/(2ξt)

βt = 2λt(1 + 2λtx
⊤
t st)

−1

αt = [1− βt(x⊤
t st + 2zt)]/2

end

µt = µt−1 + αtytst
Σt = Σt−1 − βtsts⊤t (full)
Σt = Σt−1 − βt diag(sts⊤t ) (diag)

end for

5.1.3 Variational Approximation

Alternatively, we can approximate the posterior distribution P (w|Dt) by

a multivariate Gaussian using variational methods [JJ00]. Variational methods

construct this Gaussian approximation by computing a lower bound on the integral

P (yt|Dt−1,xt) =

∫
dwP (w|Dt−1)σ(ytx

⊤
t w) (5.8)

that appears in the denominator of eq. (5.3). The lower bound is obtained from a

so-called auxiliary function:

Q(z, ξ) = σ(ξ)e
1

2
(z−ξ)−λ(ξ)(z2−ξ2) (5.9)
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where λ(ξ) = (σ(ξ)− 1
2
)/(2ξ). Appealing to convexity properties, it can be shown

that the right hand side of eq. (5.9) computes a lower bound

Q(z, ξ) ≤ σ(z) (5.10)

valid for all z and ξ, with equality holding if and only if z = ξ. Substituting the

auxiliary function into eq. (5.8), we obtain the further bound:

P (yt|Dt−1,xt) ≥ max
ξ

∫
dwP (w|Dt−1)Q(ytx

⊤
t w, ξ). (5.11)

Let ξt denote the value of the variational parameter that maximizes this lower

bound on P (yt|Dt−1,xt). (An iterative EM algorithm for computing ξt is reviewed

in Appendix B.)

Appealing to the bound in eq. (5.11), the variational approach to BLR

makes the approximation:

P (w|Dt) ≈
P (w|Dt−1)Q(ytx

⊤
t w, ξt)∫

dwP (w|Dt−1)Q(ytx⊤
t w, ξt)

. (5.12)

Suppose that P (w|Dt−1) is approximated by a Gaussian distribution with mean

µt−1 and covariance matrix Σt−1. Due to the purposely constructed form of the

auxiliary function, it follows that eq. (5.12) also defines a Gaussian distribution.

As shorthand, let zt = ytx
⊤
t µt−1 and st = Σt−1xt. Straightforward algebra shows

that the updated mean and covariance matrix of P (w|Dt) in the approximation

are

µt = µt−1 + αtytst, (5.13)

Σt = Σt−1 − βtsts
⊤
t , (5.14)

where as additional shorthand, we have introduced the notation βt = 2λt(1 +

2λtx
⊤
t st)

−1, λt = λ(ξt) and αt = [1−βt(x⊤
t st+2zt)]/2. For prediction, we compute

the tightest variational bound on P (ŷt|Dt−1,xt) for outcomes ŷt ∈ {−1,+1}, then
choose the label ŷt that appears most likely under this approximation.

We summarize the algorithm for variational BLR in option (ii) of Algo-

rithm 1. As in the Laplace approximation for BLR, we can constrain the covariance

matrix to be diagonal by truncating non-diagonal elements in the update rule. Re-

sults from Jaakkola and Jordan [JJ00] suggest that the variational approximation
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will outperform the Laplace approximation in the early stages of learning, when

there is more uncertainty in the parameter estimates.

5.2 Confidence-Weighted Learning

Confidence-weighted (CW) learning is an alternative model of online learn-

ing for linear classification. As in BLR, CW also expresses its uncertainty over the

decision boundary by a probability distribution over the weight vector [DCP08,

CDP09]. However, the distribution in CW does not represent a posterior distribu-

tion in the traditional Bayesian sense.

CW assumes that the distribution over the weight vector is multivariate

Gaussian. Let µt−1 and Σt−1 denote the mean and covariance matrix of this

distribution after observing t−1 labeled examples. For a new example xt, we

predict its label by taking the sign of the expected value for the margin x⊤
t w,

where w ∼ N (µt−1,Σt−1). The precise calculation is

ŷt = sign(x⊤
t µt−1). (5.15)

Although both CW and BLR model uncertainty in the weight vector, learn-

ing in CW is not Bayesian. In particular, the distribution over the weight vector

is not updated by Bayes rule. Instead, for each labeled example (xt, yt), we solve

the following optimization:

(µt,Σt)← argmin
µ,Σ

KL(N (µ,Σ)‖N (µt−1,Σt−1))

s.t. yt(µ · xt) ≥ Φ−1(η)
√
x⊤
t Σxt

(5.16)

where η is a confidence parameter and Φ is the cumulative distribution function

for a zero-mean Gaussian with unit variance. Intuitively, this optimization up-

dates the Gaussian distribution over the weight vector as little as possible (i.e.,

minimizing the KL divergence) such that the latest example is classified correctly,

by a large margin, with probability η. Note that this update aggressively updates

the distribution over the weight vector to correct any margin violations that it

encounters.
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Algorithm 2 Confidence-Weighted Learning

Parameter: η ∈ [0.5, 1]
Initialize: µ0 = 0, Σ0 = I, φ = Φ−1(η),

ψ = 1 + φ2/2, ξ = 1 + φ2

for t = 1, 2, ... do

Receive xt ; Predict ŷt ; Receive yt

st = Σt−1xt

vt = x⊤
t st

zt = ytx
⊤
t µt−1

αt = max{0, 1
vtξ

(−ztψ +
√

1
4
z2t φ

4 + vtφ2ξ)}
ut =

1
4
(−αtvtφ+

√
α2
t v

2
t φ

2 + 4vt)
2

βt = αtφ(
√
ut + αtφvt)

−1

µt = µt−1 + αtytst
Σt = Σt−1 − βtsts⊤t (full)
Σt = Σt−1 − βt diag(sts⊤t ) (diag)

end for

The optimization in eq. (5.16) can be solved in closed form [CDP09], leading

to the updates shown in Algorithm 2. Denoting st = Σt−1xt, the final updates

take the simple form:

µt = µt−1 + αtytst, (5.17)

Σt = Σt−1 − βtsts⊤t , (5.18)

where αt and βt are adaptive, scalar learning rates determined by the optimization

itself. Note that the update for the mean µt in eq. (5.17) is proportional to

st = Σt−1xt; in particular, the optimization reweights the example xt so that

highly uncertain elements of the weight vector are more aggressively updated than

elements with less uncertainty in their estimates. This reweighting is perhaps the

key distinguishing feature (and benefit) of CW for perceptron learning. Note also

the parallel form of eq. (5.18) to the corresponding updates in eq. (5.7) and (5.14)

for BLR, though the coefficients βt are computed differently in each case.
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5.3 Comparison of BLR and CW

The last two sections have reviewed the algorithms for BLR (with Laplace

and variational approximations) and CW in a way that highlights their common

structure. We emphasize the following similarities:

• Both model the uncertainty in the weight vector by a multivariate Gaussian

distribution.

• Both update the mean of this distribution by adding a correction αtst, where

st = Σt−1xt.

• Both update the covariance matrix of this distribution by subtracting an

outer product βtsts
⊤
t .

Note how in both approaches, the term st = Σt−1xt plays a prominent

role in the update. The magnitude of Σt−1 measures the uncertainty or lack of

confidence in different components of the weight vector w. By rescaling each

example xt in this way, BLR and CW differentiate between components of w that

have been estimated with low and high confidence. The updates for BLR and CW

aggressively adapt their distributions over low-confidence components, while more

cautiously adapting their distributions over high-confidence components.

Our review of BLR and CW also reveals fundamental differences. We em-

phasize the following contrasts:

• The performance of BLR is sensitive to the initial value of the covariance

matrix, as determined by the scale-parameter ω > 0. The errors made by

CW are invariant to the initial scale of the covariance matrix (Lemma 3

from Crammer et al. [CDP09]), but overall performance is sensitive to the

pre-specified confidence parameter η.

• BLR involves an iterative, one-dimensional optimization to update its poste-

rior distribution (in the Laplace and variational approximations), while CW

has closed-form updates.

• BLR aims to maximize an approximate likelihood objective over all examples

it encounters, whereas CW instantly moves to correct the most recent margin

violation, thus privileging recent examples over previous ones.
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While the first two differences are fairly minor computational issues, the last sug-

gests that BLR and CW may exhibit rather different types of asymptotic behavior

on large data sets. In particular, for noisy data or highly overlapping classes, we

might expect that CW’s aggressive tendency to correct margin violations will lead

to different (and inferior) solutions over time than BLR. By contrast, for non-

stationary data, we might expect this tendency of CW to reduce the cumulative

number of prediction errors. The next section evaluates this hypothesis.

5.4 Evaluation

How do the differences between Bayesian logistic regression (BLR) and

confidence-weighted (CW) learning play out in practice? In this section, we com-

pare the accuracy of BLR and CW on several synthetic data sets as well as detecting

malicious URLs. Our experiments on synthetic data sets examine how the perfor-

mance of these approaches depends on certain basic or implicit assumptions. Our

large-scale experiments illustrate the performance on an application of significant

commercial interest.

We evaluate BLR and CW in an online scenario, permitting their models to

train incrementally on a single pass over the examples in each data set. For BLR,

we evaluate both the Laplace approximation (ℓBLR) and the variational approxi-

mation (vBLR). In addition to ℓBLR, vBLR, and CW, we also include results from

logistic regression with stochastic gradient descent (LRsgd) and passive-aggressive

(PA) learning [CDSSS06]. We view the latter as non-probabilistic counterparts to

BLR and CW which do not explicitly model the uncertainty of parameter esti-

mation. In many experiments, the contrast with these simpler approaches is also

interesting. Finally, our implementations of BLR and CW use a full covariance

matrix in the experiments on synthetic data sets and a diagonal covariance matrix

in malicious URL detection (due to the large number of features).
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Figure 5.1: Cumulative mistakes for the Gauss-1D and Margin-1D data sets.
Insets: class-conditional distributions for the first element of the feature vector in
these data sets.

5.4.1 One Dimensional Separation

Our first experiments illustrate basic differences between logistic regression

and large margin classification (which naturally carry over to BLR and CW). We
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generate points in R
20 where the distributions for positive and negative examples

differ only in the first coordinate. The data is split evenly (50/50) between positive

and negative examples, which are alternately presented for online learning. We

consider two different types of distributions.

Gauss-1D: This experiment evaluates the sensitivity of various methods

to noisy data and overlapping classes. We generate 10,000 points from two mul-

tivariate Gaussian distributions with diagonal covariance matrices. Values in the

first coordinate are distributed as N (1, 1
4
) for positive examples and N (−1, 1

4
) for

negative examples; all other features are drawn from independent zero-mean Gaus-

sians with unit variance. The inset of Fig. 5.1(a) plots the distribution of the first

coordinate for positive and negative examples. Here, we can describe the true

posterior distribution P (y|x) of this experiment by a logistic regression; thus the

basic parametric assumptions of BLR are true.

To tune the parameters, we used a separate 10,000 point validation set to

arrive at the following settings: a learning rate of 0.01 for LRsgd, ω = 0.1 for

vBLR, ω = 0.01 for ℓBLR, and η = 0.65 for CW.

Fig. 5.1(a) shows the cumulative number of mistakes (y-axis) in these exper-

iments over time, which is expressed as the number of training examples observed

thus far (x-axis). Here, the results show that methods based on logistic regression

(LRsgd and BLR) clearly outperform the methods based on large margin clas-

sification (PA and CW). For this data set, the latter algorithms are perturbed

by occasional outliers; in particular, even though CW models uncertainty in the

weight vector, it still suffers because it cannot learn the correct underlying noise

model. On the other hand, these experiments do not reveal any significant differ-

ences between LRsgd versus BLR or PA versus CW.

Margin-1D: This experiment reverses the assumptions of the previous one.

We generate 10,000 points from two non-overlapping uniform distributions. The

first coordinate’s values are drawn uniformly from [ 1
100
, 1] for positive examples and

[−1,− 1
100

] for negative examples; all other features are drawn uniformly from the

interval [−1, 1]. The inset of Fig. 5.1(b) plots the distribution of the first coordinate

for positive and negative examples. In this experiment, the data is separated by
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a small but finite margin, and the true posterior distribution P (y|x) is not well

modeled by logistic regression. Thus the data violates BLR’s basic parametric

assumptions.

We used a separate 10,000 point validation set to get the following parame-

ters: learning rate of 0.01 for LRsgd, ω = 0.1 for vBLR, ω = 10 for ℓBLR, η = 0.90

for CW.

Fig. 5.1(b) shows CW outperforming all other methods in this case. CW

outperforms BLR and LRsgd because the data does not match the latter’s noise

model. CW outperforms PA because the latter can only update its weight vector

in the direction of actual examples xt, most of whose elements contain noise.

By contrast, CW explicitly models its uncertainty in different components of the

decision boundary and learns to ignore the irrelevant features in this problem.

5.4.2 Two Dimensional Separation

Our next experiments illustrate the advantages of methods that model un-

certainty when the data contains multiple correlated features that are relevant for

classification. Again we generate points in R
20, but this time the distributions for

positive and negative examples differ in the first two coordinates. As before, the

data is split 50/50 between positive and negative examples, which are alternately

presented for online learning. We consider two types of distributions.

Gauss-2D: This experiment examines the performance on noisy data with

multiple relevant features. The experimental parameters are the same as Gauss-1D,

except that values in the second coordinate are distributed as N (1
2
, 1) for positive

examples and N (−1
2
, 1) for negative examples. The inset of Fig. 5.2(a) plots the

first two features of the data set for positive and negative examples. Again, in this

experiment, the true posterior distribution P (y|x) of the data is described by a

logistic regression; thus the basic parametric assumptions of BLR are true.

We used a separate 10,000 point validation set to get the following parame-

ters: learning rate of 0.01 for LRsgd, ω = 0.1 for vBLR, ω = 0.1 for ℓBLR, η = 0.65

for CW.

The results in Fig. 5.2(a) show that BLR outperforms LRsgd more clearly
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Figure 5.2: Cumulative mistakes for the Gauss-2D and Margin-2D data sets.
Insets: plot of the first two elements of the feature vectors in these data sets,
differently colored for positive and negative examples.

than in the Gauss-1D case. It seems that BLR’s incorporation of uncertainty allows

it to learn the correct decision boundary more quickly when the data contains

multiple relevant features.
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Margin-2D: This experiment examines the performance on data that con-

tains a mix of different features which distinguish the classes to varying degrees.

The experiment parameters are the same as Margin-1D, except that values in the

second coordinate are drawn uniformly from the interval [−1
2
, 3
2
] for positive ex-

amples and the interval [−3
2
, 1
2
] for negative examples. The inset of Fig. 5.2(b)

shows that the class-conditional distributions in this data set resemble those in

Gauss-2D (over which BLR succeeded) except that they are now separated by a

small margin.

We used a separate 10,000 point validation set to get the following param-

eters: learning rate of 1.0 for LRsgd, ω = 1 for vBLR, ω = 100 for ℓBLR, η = 0.90

for CW.

Fig. 5.2(b) shows that the performance gap between CW and other methods

is slightly wider than in the one-dimensional case, especially with ℓBLR making

more mistakes in Margin-2D than in Margin-1D. To visualize this result, the inset of

Fig. 5.2(b) shows the decision boundaries learned by ℓBLR (dashed line) and CW

(solid line). Because the data does not match ℓBLR’s parametric assumptions,

ℓBLR learns a decision boundary that does not separate the two classes. By

contrast, CW learns to separate the two classes based on the first (separable)

feature, while ignoring the second feature of the data.

Overall, these results suggest that if the data contains multiple relevant

features at different scales, then BLR and CW perform better than their non-

probabilistic counterparts, LRsgd and PA. We attribute this improvement to the

fact that BLR and CW explicitly model the uncertainty in different components

of the decision boundary and can update certain components more aggressively

than others. An even more striking observation is that as long as the classes are

separable (even by a small margin), then CW learns to ignore other directions in

the input space along which the data is partially but not completely separated.

By contrast, BLR does not focus on the margin to the exclusion of other data

components.

The synthetic results suggest that CW may be especially well suited for

applications that contain a mix of different features: some relevant, some irrelevant,
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Figure 5.3: Cumulative error rates for classifying the live, real-time URL feed
using a growing vs. fixed feature vector. The minimum value of the y-axis is 1%.

some which separate the classes very well, and some which do not. For such

applications, we might expect the same relative ranking of the algorithms as in

Fig. 5.2(b), with CW first, followed by BLR, followed by LRsgd and PA.
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5.4.3 Application: Detecting Malicious URLs

For our final experiments, we return to the dissertation’s focus of detecting

malicious Web sites from suspicious URLs. We use the data set from Chapter 4,

and we perform experiments over 110 days of this data. To generate confidence

intervals while maintaining the sequential order of the original data, we executed 10

runs of the experiment where each example had a 0.5 probability of being included

in the run. Because the original URL data set consisted of 20,000 URLs per day,

the effective data set size for each run was approximately 1.1 million examples.

The URLs are classified as malicious or benign based on features derived

from their lexical and host-based properties. The features are computed or gath-

ered in real time as we receive the live feed of labeled URLs. Lexical features

indicate which tokens are present in the URL (represented as a bag-of-words).

Host-based features are derived geographic, domain name, and IP-related prop-

erties of the URL. Binary features are associated with every geographic location,

Internet service provider, and registrar/registrant that we encounter in the feed.

Thus the feature set is constantly evolving; by Day 110, the URLs are represented

by sparse feature vectors with over two million elements.

To tune the parameters, we used a separate validation set of 10 days of

data for the following settings: a learning rate of 0.01 for LRsgd, ω = 1 for vBLR,

ω = 0.1 for ℓBLR, and η = 0.90 for CW.

Fig. 5.3(a) shows the cumulative error rates for this experiment, and we

notice three overall trends. First, the algorithms that incorporate uncertainty

(BLR and CW) obtain a 12–30% improvement over PA and LRsgd, which obtain

a cumulative error rate of 1.90% at best. This result is consistent with our earlier

results on synthetic data sets, again suggesting that BLR and CW are more robust

to the presence of noisy and/or irrelevant features.

The second trend is that CW significantly outperforms BLR throughout

the entire experiment. This result suggests that the data is linearly separable, or

nearly so, and that the aggressive update of CW is exploiting this property. We

believe that linear separability is made possible by the new features introduced

on a continual basis. To corroborate this hypothesis that new features play an
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important role, we ran an additional experiment limiting the feature set to the first

150K features gathered from the initial days of the feed, as shown in Figure 5.3(b).

We found that without the influx of new features over the two month period, CW

eventually performed worse than BLR.

5.5 Summary

We have compared two approaches to online learning of linear classifiers:

Bayesian logistic regression (BLR) versus confidence-weighted (CW) learning. Both

approaches incorporate uncertainty by maintaining a probability distribution over

the weight vector that defines the decision boundary. We have highlighted the

parallel structure of BLR and CW algorithms, while also noting the significant

differences between them. Our experiments on synthetic and real-world data sets

demonstrated the complementary strengths and weaknesses of these approaches:

BLR seems more appropriate for noisy data and overlapping classes, while CW is

very well suited for data that is linearly separable or nearly so.

We found that CW significantly outperformed BLR for our approach to

detecting malicious URLs. In our application, CW exploited the margin created by

the continual introduction of new, relevant features over time. At the same time,

BLR performed well compared to non-Bayesian approaches such as LRsgd and

PA. Overall, our results indicate the promise of confidence-weighted methods such

as BLR and CW for online learning. Although these methods share a deceptively

similar structure, they differ in key details. Our experiments have helped to develop

a better understanding of these differences.

Given the success of online linear classification — especially CW — for

detecting malicious URLs, the question arises of how to better use correlations

between features to improve classification accuracy. Up to this point, we have been

modeling feature variances independently using a diagonal covariance matrix Σ for

large-scale, high-dimensional applications; no doubt there are correlations among

the millions of features that we can exploit as well. We explore this issue in the

following chapter.



Chapter 6

Exploiting Feature Correlations

In Chapter 4, we demonstrated the successful application of online linear

classification to the problem of detecting malicious URLs. In particular, the exper-

iments showed confidence-weighted learning was the most effective algorithm; CW

models feature weight uncertainty, a distinguishing aspect of the algorithm which

is primarily responsible for its success. However, throughout that investigation

we modeled the uncertainty of each feature weight independently, ignoring any

correlations between features. In this chapter we address the following question:

how does classification improve if we exploit the covariance structure of the feature

space? We explore this issue in the general setting and relate the results back to

our application of malicious URL classification.

6.1 Overview

Online linear classification is well-suited for learning from large, rapidly

growing, high-dimensional data sets because it makes a single pass over the training

data and only needs to store the current example and the current classification

hypothesis. Among online linear classifier learners, those that maintain second-

order information have shown special promise because second-order information

can lead to faster convergence on a single pass over the training data. In confidence-

weighted (CW) learning [DCP08, CDP09] and Bayesian logistic regression [JJ00,

Mac92, SL90], second-order information represents uncertainty about the linear

88
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classifier’s feature weight estimates and can be modeled as a Gaussian distribution

over the classifier’s weight vector. The mean of the weight vector is used for

classification, and the covariance matrix is used to modulate the learning rate over

different features.

Unfortunately, storing and updating the full covariance matrix requires time

and space quadratic in the number of features, which becomes prohibitively ex-

pensive when that number grows much beyond 104. Efficient diagonal approxi-

mations, which scale linearly with the number of features, are often used in prac-

tice [DCP08, CDP09, CKD09]. However, these approximations sacrifice informa-

tion about cross-feature correlations that lead to faster convergence. Thus diagonal

approximations trade accuracy for speed.

We investigate the nature of this tradeoff, using synthetic experiments to

show when it is advantageous to use a full covariance rather than a diagonal co-

variance matrix. In these experiments, we consider variations in the data’s dimen-

sionality, the amount of correlation among the features, and the amount of noise

in the data set. We then propose a novel method for online learning by approx-

imating the inverse covariance matrices using a low-rank matrix. Our approach

forms a practical middle-ground, improving performance over diagonal methods

without incurring the high computational costs of modeling full covariance. We

base our methods on the CW framework, although we believe the approach is also

applicable to other covariance-tracking online algorithms, such as Bayesian logis-

tic regression, the second-order perceptron [CBCG05] and quasi-Newton gradient

descent [Bot98]. We show empirical benefits on a variety of real world data sets.

We begin with a review of the CW algorithm and compare methods for

computing full and diagonal updates. Then, we introduce our inverse covariance

approximation algorithm and follow with experimental results on synthetic and

real-world data. We conclude with related work and discuss our findings.
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6.2 Confidence-Weighted Online Learning

Online learning algorithms operate in rounds. During round t, the algorithm

receives an instance xt ∈ R
d and applies its current rule to make a prediction ŷt.

It then receives the true label yt and suffers a loss ℓ(yt, ŷt). Using this information,

the algorithm updates its prediction rule and proceeds to the next round. The

goal of the learner is to minimize its cumulative loss.

As in other chapters of this dissertation, we consider binary classification

problems where ŷt, yt ∈ {−1,+1} and ℓ(yt, ŷt) = I(yt 6= ŷt) is the zero-one loss

function. In this case, the cumulative loss is simply the number of incorrect pre-

dictions (mistakes). To predict ŷt we use a linear model parameterized by a weight

vector w ∈ R
d, ŷt = sign(w · xt).

The design of the update rule has a significant impact on performance.

A simple approach is to increment the weight vector by ytxt whenever the loss is

nonzero; this moves the score w ·xt in the right direction and yields the perceptron

algorithm. A better approach in many cases is the passive-aggressive rule, which

scales the perceptron update as needed to ensure that xt is correctly classified with

margin [CDSSS06].

More recently, Dredze, Crammer and Pereira proposed a new framework

called confidence weighted (CW) learning that allows the update rule to consider

confidence information about the model parameters [DCP08, CDP09]. Rather

than maintaining a single weight vector from round to round, a CW learner main-

tains a Gaussian distribution over weight vectors, parameterized by a mean vector

µ ∈ R
d and a covariance matrix Σ ∈ R

d×d, that represents the learner’s confi-

dence about its parameter values. By accounting for the shape of this distribu-

tion, CW algorithms can make more effective updates to the weights, for example

by refining them preferentially along directions that are currently low-confidence

(high-variance).

At test time, one imagines drawing a weight vector from the learned distri-

bution and then using it to make a prediction. However, for binary classification it

turns out that predictions made using the mean weight vector µ are Bayes optimal

with respect to sampling w (because the Gaussian is symmetric) as well as simpler
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to produce. Thus in practice the confidence information Σ serves primarily as a

regularizer for training.

The specific update used by CW classifiers is a passive-aggressive rule mod-

ified to account for confidence information. Following round t, a weight vector

drawn from the updated distribution is required to correctly classify xt with prob-

ability at least η ∈ (0.5, 1]. Subject to this constraint, the algorithm makes the

lowest possible KL divergence change to the hypothesis weight distribution:

(µt+1,Σt+1) = min
µ,Σ

DKL (N (µ,Σ) ‖N (µt,Σt)) (6.1)

s.t. Prw∼N (µ,Σ) [yt (w · xt) ≥ 0] ≥ η. (6.2)

This optimization can be solved in closed form, yielding the following update

equations, called the CW-Stdev update in [CDP09]:

µt+1 = µt + αtytΣtxt, (6.3)

Σt+1 = Σt − βtΣtxtx
⊤
t Σt. (6.4)

The constants αt and βt are nonnegative learning rates computed as given in eq. 22

of Crammer et al. [CDP09]. We note that the covariance update can alternatively

be written in the inverse:

Σ−1
t+1 = Σ−1

t +
αtφ√
ut
xtx

⊤
t , (6.5)

as defined in eqs. 10–11 of Crammer et al. [CDP09]. This representation of the

update is particularly useful for the factored inverse covariance approximation that

we discuss in Section 6.3.

6.2.1 High-Dimensional Applications

Some of the most successful applications of CW learning involve high-

dimensional data, especially from natural language processing [CDP09, DCP08,

DC08]. Clearly, it is impractical to maintain a full d2 covariance matrix in those

cases. Instead, Σ is approximated with a diagonal matrix to produce an algo-

rithm that scales linearly with the size of the feature vocabulary. An empirically
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successful approximation method is to begin with a diagonal matrix and project

back onto the set of diagonal matrices after each update. This projection can be

done using the ℓ2 norm, which simply drops the off-diagonal terms in eq. (6.4),

or using KL-divergence, which corresponds to dropping the off-diagonal terms of

Σ−1. Both of these approaches work well in practice, and for simplicity we proceed

here using ℓ2 projection.

6.2.2 Benefits of Full Σ

In diagonal CW learning, the element Σp,p of the covariance matrix encodes

the learner’s confidence in the mean weight µp for feature p. Given the update

rule in eq. (6.4), it is easy to see that Σp,p shrinks whenever feature p is observed

in the data; this corresponds to increased confidence in µp and smaller subsequent

updates to that value. Thus, the diagonal ofΣ serves to decay the effective learning

rate on a per-feature basis, hopefully leading to faster convergence.

However, the off-diagonal elements of Σ, discarded by the diagonal approx-

imation, can also provide useful guidance during training. In the following we

attempt to characterize some of the ways in which full Σ can provide improved

training regularization compared to diagonal Σ.

Consider a pair of binary features (xp, xq) that co-occur frequently. We

maintain a separate weight for each of these features, and given enough data a

learner can estimate their values independently. However, knowing that the fea-

tures are correlated, we might hope to do better by replacing them in advance

with a new pair of features: (xp + xq, xp − xq). While this change has no effect

on the expressive power of the model (or its literal dimension), it does change its

geometry: we have replaced two similar features with one more common feature

and another that is usually zero.

In the context of diagonal CW learning, we are now better equipped to

learn from these data. Our confidence about the weight for xp+xq will grow more

quickly than for xp − xq, because the observed values xp + xq are far from zero

more often. This enables us to quickly reduce the effective dimensionality of the

learning problem, since we need not consider large changes to weights that are



93

highly confident. We no longer zig (upon seeing feature p alone) and zag (upon

seeing feature q alone); instead we make consistent changes to the newly combined

weights. This is analogous to the shift from gradient to conjugate gradient methods

in the optimization literature [NW99, Figs. 5.1 and 5.2]. While gradient descent

will zig-zag when the Hessian of the objective is non-diagonal, conjugate methods

effectively diagonalize the Hessian and converge quickly and directly.

For our toy example, we have described a transformation of the features ex-

plicitly; however, similar effects can be obtained adaptively and implicitly through

the use of full Σ. While diagonal methods deal with each feature independently,

full methods can tie them together, simplifying the problem of locating a good

weight vector by regularizing the updates into an effectively lower-dimensional

space. Especially when there are many features and relatively few examples, this

can be a significant advantage. We demonstrate this effect with a simple synthetic

experiment.

We begin each trial by sampling a true weight vector w∗ ∈ R
10 from a ten-

dimensional normal distribution. On round t, we flip ten coins to produce “true”

binary features zt ∈ {−1,+1}10 and compute the label yt = sign(w∗ · zt). We

then construct the observed features by creating k duplicates of zt and randomly

flipping 5% of the resulting binary values, producing xt ∈ {−1,+1}10k. These data
share many properties with the simple example discussed above.

We applied both full and diagonal CW methods to data sets of varying size

for k ∈ {1, . . . , 10} and recorded the average difference in online accuracy over

100 trials. The results are shown in Fig. 6.1(a). When there are many features

and few examples, full CW learning significantly outperforms the diagonal method

(error bars not shown). To demonstrate the regularizing effects of full CW we plot

Tr(Σt)/λ1(Σt) at each learning round t for the 50 feature case, averaged over 20

trials (Fig. 6.1(b)). Here, λ1(Σt) is the largest eigenvalue of Σt. We refer to this

measurement as the “effective dimension” because it characterizes the eigenvalue

distribution of Σ as being either spherical (high-dimension) or squashed (low-

dimension). When the effective dimension is low, the learner has fewer degrees of

freedom to update its parameters. From the figure it is clear that full CW tightens
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its regularization more quickly. Note that the two methods have roughly equal

Tr(Σ) at each round.

From Fig. 6.1(a) we also see that, given enough data, diagonal CW learning

significantly outperforms the full version. This is because the same ability to adapt

to data co-dependencies that helps full CW learning during the early rounds leads

it to adapt to noise as it approaches the optimal weight vector when the data are

not separable. For example, during rounds 400–500 of the 10-feature experiment

(where both methods are essentially converged), the diagonal algorithm adjusts

the angle of µt by an average of 0.81◦ per round, while the full algorithm adjusts

it by an average of 2.42◦ per round. This increased “thrashing” leads to reduced

long-term performance of full CW learning.

These observations raise the question of possible intermediates between

full and diagonal learning that balance fast convergence (full) and efficient, robust

learning in high dimension (diagonal). We explore such a middle ground: a method

that can approximate the inter-feature correlations of full CW learning but also

scales well to high-dimensional data.

6.3 Factoring the Covariance Matrix

We observe that a matrix can be stored compactly if it is well approximated

by a matrix of low rank. In our approach, we model the inverse covariance matrix

for CW as the sum of a diagonal matrix plus a low rank positive semidefinite

matrix, giving the factored approximation

Σ−1 ≈D +RR⊤, (6.6)

where D is a d × d diagonal matrix and R is a d ×m rectangular matrix. Intu-

itively, this approximation is well-suited to CW because each update to the inverse

covariance matrix is the addition of a vector outer product.

The approximation in eq. (6.6) is inspired by the statistical method of fac-

tor analysis [Gor83]. However, in standard factor analysis this approximation is

used to model the covariance matrix, not the inverse covariance matrix; we will

return to this point later. For CW learning, the approximation in eq. (6.6) has
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important advantages over purely low-rank approximations (e.g., singular value

decomposition) that do not include a diagonal component. First, for CW learning,

we require a proper Gaussian density over the weight vector; the diagonal compo-

nent in eq. (6.6) is needed to ensure that the density is normalizable. Second, the

diagonal component models the per-component errors of the remaining low rank

approximation, as opposed to assuming that all weights are equally uncertain.

The latter assumption, though simplifying, is entirely contrary to the spirit of CW

learning. Finally, as we show next, there are iterative updates for learning ap-

proximations of the form in eq. (6.6) that scale well with the dimensionality of the

problem, whereas singular value decomposition may not be feasible for matrices of

extremely large size. Indeed, one leading algorithm for PCA in high-dimensional

spaces is an iterative estimation procedure [Row98] that can be viewed as a special

case of the algorithm for maximum likelihood factor analysis. Although we focus

on CW, our approach can be applied to other second-order online algorithms that

need to store and maintain a positive semidefinite matrix.

6.3.1 Approximation Algorithm

Our algorithm attempts to minimize a measure of discrepancy between

a target matrix P (assumed to be positive semidefinite) and its approximation

D+RR⊤. To measure discrepancy, we use the KL divergence between a pair of

multivariate Gaussian distributions with the same mean (assumed without loss of

generality to lie at the origin) but different covariance matrices P and D+RR⊤:

min
D,R

DKL( N (0,P ) || N (0,D+RR⊤) ) (6.7)

Unlike the updates for CW learning in Section 6.2, the optimization in eq. (6.7)

cannot be solved in closed form. However, we can search for a local minimum

of the KL divergence by adapting the iterative updates for maximum likelihood

factor analysis (see Appendix C for full derivation). As shorthand, we define the

following matrices:

Φ = (I+R⊤D−1R)−1, (6.8)

Υ = ΦR⊤D−1. (6.9)
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Note that the matrices Φ and Υ depend on the current approximation parameters,

namely the rectangular matrix R and the diagonal matrix D. In terms of these

matrices, the updates to minimize eq. (6.7) are as follows:

R ← PΥ⊤(Φ+ΥPΥ⊤)−1, (6.10)

D ← diag(P −RΥP ). (6.11)

To minimize eq. (6.7), we alternate between recomputing the matrices in

eqs. (6.8–6.9) and updating the model parameters in eqs. (6.10–6.11). Applied

in this way, the updates converge monotonically to a local minimum of the KL

divergence in eq. (6.7). Note that the “target” matrix P remains fixed throughout

this procedure.

6.3.2 Integration with CW Learning

The algorithm in Section 6.3.1 integrates naturally with CW learning to

provide a compact approximation for full covariance matrices. We refer to this

approach as CW-fact. To avoid performing the relatively expensive minimization

procedure described in eqs. (6.8–6.11) following every update, we augment our

approximation with a buffer:

Σ−1 = D +RR⊤ +BB⊤, (6.12)

where B is a d×m matrix holding up to m of the most recent exact updates. We

update the buffer B after each example, but fit the factored model using eqs. (6.8–

6.11) only when the buffer becomes full.

We initialize D to the identity matrix, and R and B to zero. The first m

updates to Σ dictated by the CW algorithm are stored directly in R. Using the

inverse rule in eq. (6.5), the tth column of R is given by ( αtφ√
ut
)
1

2xt. The next m

updates fill B in the same way. When the buffer is full, we run the algorithm in

Section 6.3.1 to compress the contents of both R and B into D and R (where we

set the target matrix to P = D + RR⊤ + BB⊤). This leaves the buffer empty,

and the cycle of filling the buffer and compressing repeats for the remainder of the

examples.
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6.3.3 Comparison with Full and Diagonal Covariance Rep-

resentations

We begin our empirical results by demonstrating that CW-fact occupies a

middle ground between CW-full and CW-diag on the synthetic data described in

Section 6.2. This time we generate 1000 examples with 1000 features (k = 100).

Figure 6.2 shows the cumulative mistake counts averaged over 100 runs.

We include perceptron and passive-aggressive results for reference. As we increase

m, the accuracy of CW-fact approaches CW-full. (CW-fact’s performance did not

improve beyond m = 16, which makes sense given the ten-dimensional underlying

distribution.) Table 6.1 shows the average runtime and memory overhead for the

different variations of CW in this experiment. The memory usage for CW-fact is

an order of magnitude improvement over CW-full, and the runtime is 5× faster.

Thus, CW-fact provides an adjustable compromise between the high-accuracy of

CW-full and the low-overhead of CW-diag.
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Table 6.1: Runtime and memory benchmarks for the synthetic experiment in
Figure 6.2.

Time w/o
Time (s) buffer (s) Mem (KB)

CW-diag 0.09 — 7.81
CW-fact2 1.61 2.61 87.21
CW-fact4 1.35 4.11 181.27
CW-fact8 1.21 7.16 370.15
CW-fact16 1.50 16.45 750.90
CW-full 7.00 — 7812.50

6.3.4 Benefits of Buffering and Σ−1

Before we move on, it is worth briefly addressing the effect of the buffer

matrix on the performance of CW-fact. Figure 6.3(a) shows the results of the same

synthetic experiment when we eliminate the buffer. The difference in accuracy

from the experiment in Figure 6.2 is negligible. However, Table 6.1 shows that the

computational cost is quite high.

We also tested the performance of buffering alone; that is, simply throwing

out the oldest update whenever a new one arrives. The results are in Figure 6.3(b).

They show that while buffering alone offers some benefit, it is less effective than

compressing information into R to provide a long-term summary of updates to

Σ−1, as done for CW-fact.

Finally, the algorithm in Section 6.3.1 appears to be a good fit for ap-

proximating Σ−1, since the update (6.5) is additive, matching the form of the

approximation. However, we could also consider approximating Σ in the same

way. Figure 6.3(c) shows that performance is dramatically reduced in this case,

possibly because the approximation is a poor fit for the subtractive Σ update (6.4).

6.4 Large-Scale Learning

We evaluate CW learning with our factored approximation (CW-fact) on

several high-dimensional real-world data sets where the number of features exceeds

the number of examples and many features are correlated. We use perceptron,
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(b) Σ
−1, buffering only
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(c) Σ, no buffer

Figure 6.3: Evaluating alternative design decisions for CW-fact with respect to
buffering and whether to approximate Σ vs. Σ−1. Results for perceptron, PA,
CW-diag and CW-full are repeated to provide a reference point.
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passive-aggressive (PA) learning [CDSSS06], and diagonal CW as baselines. For

perceptron and PA, we make predictions at each round using the average of all

previous weight vectors, which tends to outperform the single most recent weight

vector.

6.4.1 Detecting Malicious URLs

We evaluate CW-fact on a 20-day subset of the data set from Chapter 4,

which has about 1 million binary features and 64 real-valued features scaled to

the interval [0, 1]. The goal is to determine whether each Web site is malicious;

the ratio of positive to negative examples is 1 : 2. There are 20,000 examples

collected per day. We subsample the examples, preserving the temporal ordering,

to produce error bars: in each run an example has a 50% chance of being included

in the evaluation set (resulting in 10,000 examples per day). Results are computed

on 10 samples of 200,000 examples each.

Fig. 6.4 shows the absolute and relative mistake counts (CW-diag vs. CW-

fact) over time for CW-diag and CW-fact as well as perceptron and a passive-

aggressive (PA) learner [CDSSS06]. CW-fact provides a consistent, 5% relative

improvement over CW-diag, which is itself superior to PA and perceptron. This

result corroborates our findings in Section 6.3, which showed improvements when

there are more features than examples and many features are correlated.

6.4.2 Web Spam

Next, we consider the Web spam data from the PASCAL Large Scale Learn-

ing Challenge [SFYTS08]. The task is to classify Web pages from search engine

results as being spam or non-spam. We divide the data set into 35 epochs contain-

ing 10,000 examples each. Over 10 trials, we include an example in the evaluation

data with probability 0.5 (on average, 5,000 examples per epoch). This results in

680,000 features and an average of 175,000 examples per run. The default rep-

resentation contains trigram counts, which were normalized so that each example

had unit length.
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Figure 6.4: URL Data: (a) Mistakes made by each algorithm over 20 days. (b)
Relative improvement in error rate of CW-fact over CW-diag. Error bars are at
one standard deviation.
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Results (Fig. 6.5) are similar to the URL experiment: CW-fact improves

over CW-diag significantly (about 18% relative). Again, this data set has more

features than examples and various sets of features are correlated, for example

trigrams with shared bigrams or unigrams.

6.4.3 Stock Market Data

Given computational resource constraints, the choice of learning method

effectively determines the size of the feature set that can be used in practice. CW-

diag allows very large sets, while CW-full imposes relatively harsh limits. We show

here, using a stock market prediction task, that CW-fact offers an advantageous

middle ground: performance losses from approximating the covariance matrix can

be compensated by improvements from the use of a more informative feature set,

giving the highest overall performance with limited resources.

The task is to predict whether the price of a target stock went up or down

each day, based on the open, high, low, and close prices of a set of predictor stocks

for that day and the preceding 49 days (200 features per predictor). The feature

set is thus highly correlated. Our data spans a 15-year period from 1994 to 2009,

for a total of 4006 instances (2120 up days and 1886 down days). We use DELL

as a target, although other tested targets showed similar results. The number of

predictor stocks is variable, offering a tradeoff between speed and accuracy.

Table 6.2 shows the number of mistakes made by each method for a range

of predictor set sizes, subject to a memory constraint of 2GB and a time constraint

of two hours. Each result is the mean over 10 random draws of the predictor stocks

from our collection of 378, excluding DELL.

CW-diag handles all feature set sizes, but is unable to extract a useful

signal; note that perceptron and PA returned similarly poor results on these data

(not shown). CW-full extracts the most performance from each feature set, but

incurs large computational costs, requiring 54 minutes and 200MB of memory for

the 25-predictor test. Completing the 100-predictor test would have required over

3GB of memory and more than 10 hours. CW-fact, on the other hand, requires

only 38MB of memory and 63 minutes to run with 250 predictors, and achieves
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Figure 6.5: Web Spam Data: (a) Mistakes made by each algorithm (10k examples
per epoch.) (b) Relative improvement in error rate of CW-fact over CW-diag.
Error bars are at one standard deviation.
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Table 6.2: Number of mistakes on stock market data and relative improvements
over CW-diag. Values are omitted for any test that required more than 2GB of
memory (†) or two hours of runtime (∗). All differences of at least 44 mistakes are
statistically significant at p = 0.01 based on a paired t-test.

Predictors CW-diag CW-fact8 CW-full
(rel. improvement) (rel. improvement)

1 2141.0 2083.1 (2.7%) 2028.3 (5.3%)
10 2142.0 2036.8 (4.9%) 1891.4 (11.7%)
25 2142.0 1949.3 (9.0%) 1806.3 (15.7%)
100 2142.0 1779.0 (17.0%) †∗
250 2142.0 1749.9 (18.3%) †∗
378 2142.0 ∗ †∗

the overall best result.

6.4.4 Document Classification

Lastly, we evaluate CW-fact on the document classification data sets used

earlier to evaluate CW learning [DCP08]. The Reuters and 20 Newsgroups data

sets are binary classification tasks that require us to distinguish two closely related

topics within each set (using binary bag-of-words features). The Sentiment set is

a sentiment classification task that requires us to distinguish positive from nega-

tive reviews for different Amazon product categories (using unigram and bigram

counts). For each data set, we performed 10 runs of the experiment where we ran-

domized the order of the examples. The results in Table 6.3 show that CW-fact

consistently improves over CW-diag over all sets.

6.5 Summary and Related Work

We examined the effect of covariance matrix representation on confidence-

weighted learning, but we believe our results have the potential to generalize to

other second-order online learning algorithms. Depending on properties of the

data, full covariance or an approximate covariance matrix obtained by factored

representations may improve on the more efficient diagonal covariance version of

CW learning.



106

A desire for compact representations of second-order information arises in

contexts outside of our own work. For instance, in the limited memory BFGS

method (L-BFGS) for quasi-Newton algorithms, the Hessian is computed based

on the last m updates [LN89]. This approach is similar in spirit to our approach of

buffering the last m updates as described in Section 6.3.2. Other techniques such

as Kronecker factorization and incomplete Cholesky factorization have been ex-

plored in the context of approximating kernel matrices for support-vector machine

training [WCCH06].

In synthetic experiments and large-scale applications, we showed that full

and factored representations performed better than diagonal when there were many

correlated features and the effective dimensionality of the data was small. Con-

versely, we also showed that full methods performed worse when the data was noisy

or had fewer correlations between features. Thus, in the context of detecting ma-

licious URLs, approximating the full covariance matrix shows promise in further

improving the classification accuracy of our approach.

Chapter 6, in part, is a reprint of the material as it appears in Proceedings

of the International Conference on Artificial Intelligence and Statistics (AISTATS)

2010. Ma, Justin; Kulesza, Alex; Dredze, Mark; Crammer, Koby; Saul, Lawrence

K.; Pereira, Fernando. The dissertation author was a primary investigator and

author of this paper.
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Chapter 7

Conclusion

Over the past two decades, the World Wide Web has become a bedrock of

contemporary society. From commerce to government to research, Web sites have

become a vital and convenient way for people to conduct business, gather new

information, discover new worlds and perform myriad other functions — all without

the need to leave their seat. The convenience of the Web has had immeasurable

impact in improving our lives; it has also left us immeasurably vulnerable.

Without the typical cues associated with physical world interactions, it

becomes easy for people to overlook the dangers of visiting a malicious Web site.

In the physical world, we observe clues, read news and talk with friends to assess

the reputation of places and neighborhoods we want to visit. By contrast, the

Web lacks clear “rules of thumb” for whether a site is safe to visit — and criminals

have been quick to exploit this situation. Web sites for spam-advertised commerce,

financial fraud (such as phishing) and propagating malware have become platforms

for criminal enterprises. The mere click of a malicious site’s Uniform Resource

Locator (URL) is enough to lead users to harm.

The research community has responded to these threats by developing

blacklisting services that compile a list of “known bad” sites and client-side sys-

tems that analyze Web sites as they are visited. These services are helpful, but also

have their disadvantages. Blacklists are only useful for detecting known threats

and lag behind the endless stream of newly-introduced malicious sites. Client-side

systems have high run-time overhead and may inadvertently expose their users to
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the threats we seek to avoid. To address the limitations of existing approaches, we

developed an approach that was both scalable and adaptive.

7.1 Impact

The central thesis of this dissertation is that we can mitigate the disadvan-

tages of blacklists and client-side systems by constructing an adaptable, lightweight

URL classification system. Before, this approach to malicious URL detection gen-

erally involved using a small, hand-picked set of features and batch machine learn-

ing algorithms. However, we demonstrated that our approach of using a larger

feature set had clear advantages over manual feature set construction (Chapter 3).

This approach involved automatically enumerating every lexical token, network

location and other host-based features we encountered. The results of our eval-

uations have convinced some researchers, who were initially hesitant about the

seemingly indiscriminate feature gathering, to adopt our approach in their own

systems.

Moreover, we explained the benefits of online learning over standard batch

learning for malicious URL detection (Chapter 4). We constructed a system for

real-time feature collection and classification and showed that training on as large

a set of contemporaneous data as possible resulted in greater detection accuracy

— especially compared to training on a limited data set and training on old data.

Online learning overcame the limitations of batch learning because of its ability to

process large-scale data sets with fewer computational resources and to incorporate

fresh training data incrementally. In a future where there will be more (not less)

data at our disposal, our results demonstrated that scalable and adaptive detection

is feasible, representing a significant advance over previous work. As a result,

industrial organizations have adopted our techniques for their own malicious URL

detection systems.

In the course of tackling the URL classification problem, we explored im-

portant questions that arose out of our use of online learning. We addressed the

differences between confidence-weighted (CW) learning and Bayesian logistic re-
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gression (BLR) in Chapter 5. CW was our algorithm of choice in Chapter 4,

whereas BLR was an older technique that warranted consideration. Both incor-

porated per-feature-weight uncertainty to achieve better accuracies than standard

online algorithms, but we demonstrated that CW was more suitable for our appli-

cation because its aggressive large-margin criteria was better suited for adapting

to the myriad new features that arise during the course of daily training.

Finally, we examined the benefits and tradeoffs of exploiting feature corre-

lations in high-dimensional online learning in Chapter 6. We demonstrated that

for malicious URL detection and many related applications, approximating the full

covariance matrix for second-order online algorithms led to improved classification

accuracy.

7.2 Future Work

To succeed, our approach to malicious URL detection relies heavily on infor-

mative features and large sources of up-to-date training data. There are a number

of ways to expand the work of this dissertation, and two fundamental directions

include (a) providing a larger arsenal of distinguishing features and (b) finding al-

ternative large-scale sources of labeled data. Here, we describe salient examples of

gathering new features (content-based classification) and more labeled data (user

feedback).

7.2.1 Content-Based Classification

An open question concerns how much additional accuracy we can achieve if

we incorporate content-based features of the Web site. Indeed, the incorporation of

content opens a realm of possible techniques to explore. Up to this point, we have

used linear classification because it scales easily to large-scale problems. However,

content contains high-level structure and semantics that are potentially useful but

difficult to exploit using linear classification over low-level features.

One promising approach is to incorporate topic model features for linear

classification. Topic model features can describe the probability that the content
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of a page belongs to different categories — e.g., the number of topic features would

be equal to the number of possible categories, each having a real value between 0

and 1. In the related field of phishing email classification, adding topic features

yielded significant improvements [BCP+08].

However, with topic models we would face scalability and adaptability chal-

lenges similar to those we faced with linear classification. Is it sufficient to train

a topic model once, or are there significant advantages (both in terms of speed

and accuracy) to learning the topics in an online fashion? Instead of using a fixed

number of topics, can we benefit from using a nonparametric model where we allow

the number of topics to grow over time?

7.2.2 User Feedback

At present, our approach to detecting malicious URLs relies on a streaming

source of expert-labeled examples. Instead, can we ask for labels from the users

themselves to construct an effective classifier? We envision a deployment of our

URL classifier — e.g., as a browser toolbar — where users can provide explicit or

implicit feedback on whether a site they visit is malicious. However, trusting the

users presents interesting challenges:

• Should we incorporate user input into the classifier right away, or should user

input be delayed?

• Will we need to employ a reputation system for users to distinguish users

who provide accurate labels from those who provide inaccurate labels (e.g.,

via collaborative filtering)?

• Can we find an appropriate balance between soliciting explicit feedback (an-

noying for users, but accurate) and implicit feedback (invisible to users, but

potentially inaccurate)?

• Do we give more weight to custom per-user classifiers, or a global classifier?

• Can we respect the privacy of the users who submit labeled URLs without

sacrificing accuracy of the classifier? (URLs themselves could possibly encode
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personal information.)

Addressing these challenges would empower community-based URL security efforts

by providing an abundant source of labeled URLs to the research community and

the public.

7.3 Final Thoughts

Looking forward, we expect the synthesis of systems and machine learning

to play an important role in future research challenges. Real systems can provide a

rich source of large-scale data. Because large-scale data can be difficult to analyze

manually, machine learning provides a methodical way to understand and build

models of that data. However, real systems are often governed by resource and

time constraints; an uninformed application of high-overhead, resource-intensive

algorithms risks violating those constraints.

As a result, domain expertise and an awareness of systems-level constraints

are crucial in developing a machine learning approach to solving large-scale prob-

lems. This dissertation, with its focus on detecting malicious URLs, is a successful

application of this insight.



Appendix A

Laplace Approximation

We briefly describe the method for computing αt in the Laplace approxi-

mation for BLR; see Algorithm 1 from Chapter 5.1. Let w∗ denote the mode of

the posterior distribution, which maximizes eq. (5.4). The exponent of eq. (5.4) is

the following:

F (w) = log σ(ytx
⊤
t w)− 1

2
(w − µt−1)

⊤Σ−1
t−1(w − µt−1). (A.1)

To locate the maximum of F (w), we compute its gradient and set it equal to zero.

The gradient is

F ′(w∗) = ytσ(−ytx⊤
t w

∗)xt −Σ−1
t−1(w

∗−µt−1). (A.2)

Setting the right hand side to zero and rearranging the terms gives the expression

w∗ = µt−1 + σ(−ytx⊤
t w

∗)ytΣt−1xt. (A.3)

From the above, it follows that the solution for the maximum takes the form

w∗ = µt−1+αtytst, where st = Σt−1xt and αt is a scalar prefactor to be determined.

To determine αt, we substitute this form back into the function F (w) and rewrite

it as:

F (αt) = log σ(ytx
⊤
t µt−1 + αtx

⊤
t st)−

1

2
α2
tx

⊤st. (A.4)

We use a simple, one-dimensional Newton-Raphson procedure to maximize F (αt)

with respect to αt.
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Appendix B

Variational Approximation

Here, we describe the iterative procedure for computing the variational pa-

rameter ξt that yields the tightest bound in eq. (5.11). We initialize ξt = ytx
⊤
t µt−1

and assume that P (w|Dt−1) ≈ N (µt−1,Σt−1).

The iterative procedure for optimizing ξt can be viewed as an EM algo-

rithm. The E-step of the EM algorithm computes an intermediate Gaussian ap-

proximation N (µt,Σt) to the true posterior distribution P (w|Dt). For fixed ξt, the

mean µt and covariance matrix Σt of this intermediate Gaussian approximation

are computed from the updates in eqs. (5.13–5.14).

The M-step of the EM algorithm re-estimates ξt by the value that maximizes

the auxiliary function:

∫
dwP (w|Dt) log[P (w|Dt−1)Q(ytx

⊤
t w, ξt)]. (B.1)

For fixed µt and Σt, the update that maximizes eq. (B.1) is given by:

ξt ←
√
x⊤
t Σtxt + (x⊤

t µt)
2. (B.2)

The EM algorithm alternates between the E-step to re-estimate N (µt,Σt) and the

M-step to re-estimate ξt. This procedure provably converges to a local maximum

of the auxiliary function in eq. (B.1).

In practice, the EM algorithm can be further simplified by eliminating the

variable Σt from intermediate steps of this procedure. Using the notation in Sec-

114



115

tion 5.1.3, the simplified iterative procedure can be written as:

βt ← 2λ(ξt)(1 + 2λ(ξt)x
⊤
t st)

−1 (B.3)

αt ← [1− βt(x⊤
t st + 2zt)]/2 (B.4)

µt ← µt−1 + αytst (B.5)

ξt ←
√

x⊤
t st(1− βtx⊤

t st) + (x⊤
t µt)2 (B.6)

The above scheme converges very quickly. A few iterations appear to suffice.



Appendix C

Factored Approximation

Given a Gaussian distribution N (0,P ), we would like to use factor analysis

to approximate its covariance by P ≈D+RR⊤ where D is a diagonal d×d noise

matrix, and R the d×m factor loading matrix (m≪ d). Intuitively, this approach

can produce good approximations if there is an inherently low-dimensional (but

noisy) process that is generating high-dimensional outputs θ. We explain our EM

approach more formally as follows.

Given P , we want to find D and R that minimize the KL divergence

between two Guassians:

DKL( N (0,P ) || N (0,D+RR⊤) ) =

∫
dθP (θ|P ) log

P (θ|P )

P (θ|D,R)
, (C.1)

where P (θ|P ) = N (0,P )|θ and P (θ|D,R) = N (0,D +RR⊤)|θ. This is equiva-
lent to maximizing the following expression with respect to D and R:

∫
dθP (θ|P ) logP (θ|D,R). (C.2)

We can model the process of generating observations θ as a latent variable

model with parameters D, R and hidden variable z. That is, given a vector z

drawn from a standard normal distribution in m-dimensional space, we project it

into d-dimensions using R and add component-wise noise that has covariance D.

Formally, P (z) = N (0, I)|z and P (θ|z,D,R) = N (Rz,D)|θ.
Because of this latent variable formulation, we can use the EM algorithm

to maximize eq. (C.2) where the observed variable θ has the distribution P (θ|P ).
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E-step: For notational convenience, let us define

Φ = (I +R⊤D−1R)−1,

Υ = ΦR⊤D−1.
(C.3)

Then for the E-step, we compute the statistics of P (z|θ,D,R), the posterior

distribution, as follows:

E[z|θ,D,R] = Υθ,

E[zz⊤|θ,D,R] = Φ+Υθθ⊤Υ⊤.
(C.4)

M-step: Next, we want to choose new parameters D̃, R̃ that will maximize

the following auxiliary function:
∫
dθP (θ|P )

∫
dzP (z|θ,D,R) logP (θ, z|D̃, R̃). (C.5)

Note that eq. (C.5) is a lower bound for eq. (C.2). When we expand the log term

of eq. (C.5), we get the following:

logP (θ, z|D̃, R̃)

= logP (θ|z, D̃, R̃)P (z)

= log

[
exp

{
− 1

2
(θ−R̃z)⊤D̃

−1

(θ−R̃z)
}

√
(2π)d|D̃|

exp{− 1

2
z⊤z}√

(2π)m

]

= 1
2

[
log |D̃−1| − θ⊤D̃

−1
θ + 2θ⊤D̃

−1
R̃z − z⊤(I + R̃

⊤
D̃

−1
R̃)z

]
+ c,

(C.6)

where c is a constant. When we integrate eq. (C.6) with respect to z, we get the

following expression (we omit terms that are constant with respect to D̃ and R̃):

∫
dzP (z|θ,D,R)1

2

[
log |D̃−1| − θ⊤D̃

−1
θ + 2θ⊤D̃

−1
R̃z − z⊤R̃

⊤
D̃

−1
R̃z

]

= 1
2

[
log |D̃−1| − θ⊤D̃

−1
θ + 2θ⊤D̃

−1
R̃Υθ − tr[R̃

⊤
D̃

−1
R̃(Φ+Υθθ⊤Υ⊤)]

]
.

(C.7)

Then, when we integrate eq. (C.7) with respect to θ we get the following:

∫
dθP (θ|P )

1
2

[
log |D̃−1| − θ⊤D̃

−1
θ + 2θ⊤D̃

−1
R̃Υθ − tr[R̃

⊤
D̃

−1
R̃(Φ+Υθθ⊤Υ⊤)]

]

= 1
2

[
log |D̃−1| − tr(D̃

−1
P ) + 2tr(D̃

−1
R̃ΥP )− tr[R̃

⊤
D̃

−1
R̃(Φ+ΥPΥ⊤)]

]

= F (R̃, D̃
−1
),

(C.8)



118

where we define F (R̃, D̃
−1
) for notational convenience. To maximize F , we differ-

entiate with respect to R̃ and D̃
−1

and set the derivatives to zero. Differentiating

and solving for R̃ yields the following update for R:

∂F

∂R̃
= D̃

−1
PΥ⊤ − D̃

−1
R̃(Φ+ΥPΥ⊤) = 0

=⇒ D̃
−1
R̃(Φ+ΥPΥ⊤) = D̃

−1
PΥ⊤

=⇒ R← PΥ⊤(Φ+ΥPΥ⊤)−1.

(C.9)

Using the updated R in place of R̃, we can differentiate by D̃
−1

to yield an update

for D as follows:

∂F

∂D̃
−1 = 1

2

[
D̃ − P + 2RΥP −R(Φ+ΥPΥ⊤)R⊤

]
= 0

=⇒ D̃ = P − 2RΥP +R(Φ+ΥPΥ⊤)R⊤

=⇒ D̃ = P − 2RΥP +R(Φ+ΥPΥ⊤)(Φ+ΥPΥ⊤)−1ΥP

=⇒ D̃ = P − 2RΥP +RΥP

=⇒ D ← diag(P −RΥP ).

(C.10)

The D update can be efficient because the diagonal for P only needs to be com-

puted once before starting the EM algorithm. Furthermore, we can reuse the

expression PΥ⊤, which was computed during the R update.
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