
Lawrence Berkeley National Laboratory
LBL Publications

Title
Siblingrivalry

Permalink
https://escholarship.org/uc/item/4j94k7rw

Authors
Ansel, Jason
Pacula, Maciej
Wong, Yee Lok
et al.

Publication Date
2012-10-07

DOI
10.1145/2380403.2380425
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4j94k7rw
https://escholarship.org/uc/item/4j94k7rw#author
https://escholarship.org
http://www.cdlib.org/


SiblingRivalry: Online Autotuning Through Local
Competitions

Jason Ansel Maciej Pacula Yee Lok Wong Cy Chan Marek Olszewski
Una-May O’Reilly Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{jansel,mpacula,ylwong,cychan,mareko,unamay,saman}@csail.mit.edu

ABSTRACT
Modern high performance libraries, such as ATLAS and
FFTW, and programming languages, such as PetaBricks,
have shown that autotuning computer programs can lead
to significant speedups. However, autotuning can be
burdensome to the deployment of a program, since the
tuning process can take a long time and should be re-
run whenever the program, microarchitecture, execution
environment, or tool chain changes. Failure to re-autotune
programs often leads to widespread use of sub-optimal
algorithms. With the growth of cloud computing, where
computations can run in environments with unknown
load and migrate between different (possibly unknown)
microarchitectures, the need for online autotuning has
become increasingly important.

We present SiblingRivalry, a new model for always-
on online autotuning that allows parallel programs to
continuously adapt and optimize themselves to their
environment. In our system, requests are processed by
dividing the available cores in half, and processing two
identical requests in parallel on each half. Half of the
cores are devoted to a known safe program configuration,
while the other half are used for an experimental program
configuration chosen by our self-adapting evolutionary
algorithm. When the faster configuration completes,
its results are returned, and the slower configuration is
terminated. Over time, this constant experimentation
allows programs to adapt to changing dynamic environments
and often outperform the original algorithm that uses the
entire system.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages
and Software; D.3.4 [Programming Languages]: Proces-
sors—Compilers

Keywords
Autotuning, Evolutionary Algorithm, Genetic Algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1424-4/12/09 ...$15.00.

1. INTRODUCTION
Autotuning is becoming one of the most effective methods

for gaining efficient performance on complex applications
which run on modern hardware systems. Libraries such as
Atlas [35], FFTW [19], and SPARSITY [24]; frameworks
such as PERI [36], SPIRAL [28], and Green [7]; and
languages such as PetaBricks [3], allow the programmer
to set up an application to be autotuned for a given
microarchitecture.

However, while offline autotuning provides great per-
formance gains, it has two major problems. First, it
adds an additional step to the software installation and
upgrade process. Second, offline autotuning is unable to
construct programs that respond to dynamically changing
conditions. As we will show, changes to machine load
can substantially degrade an application’s performance.
When such changes occur, an offline autotuned algorithm
may no longer be the best choice. This situation
is further exacerbated in the emerging cloud and data
center computing environments, where in addition to
sharing a machine with varying load, applications may
be transparently migrated between machines, and thus
potentially between microarchitectures. Such changes to
computer architectures and microarchitectures have been
shown to lead to significant performance loss for autotuned
applications [3].

In response to some of these challenges, there is a
growing body of work [7, 9, 12, 22, 23, 25] focused on
creating applications that can monitor and automatically
tune themselves to optimize a particular objective (e.g.
meeting response time goals by trading quality of service
(QoS) for increased performance or lower power usage). In
order to provide stability, convergence and predictability
guarantees, many of these systems construct (either by
hand, or automatically) a linear model of their application
and employ control theory techniques to perform dynamic
tuning. The success of such techniques depends on the
degree to which the configurable choices can be mapped to a
linear system, a task that can be difficult when tuning large
complex applications with interdependent configuration
choices.

In contrast, offline evolutionary (a.k.a. genetic) autotun-
ing techniques, such as the one used in PetaBricks [3], are
model-free. They adaptively sample the search space of
candidate solutions and take advantage of both large and
small moves in the search space. Thus, they are able to find
global optima regardless of how non-linear or interdependent

1



the choice space and can do so without a model. Their
selection component allows them to improve execution time
even though they generate random variations on current
solutions with unpredictable performance. When a specific
variation is extremely slow, in an offline setting, it can be
killed and prevent a sampling bottleneck. Unfortunately,
this characteristic has meant that evolutionary techniques
are generally considered to be unsuitable for use in the
online setting. Executing multiple generations of a sizable
population at runtime (even at periodic intervals) is too
costly to be feasible. Additionally, the alternative approach
of continuously replacing the components being executed by
different experimental variations, offered by an autotuner,
is also a poor choice as there is no execution standard to
compare the variation against. Thus, the learning system
has no way of knowing whether a particular variation is
performing particularly poorly and thus should be aborted.

In this paper, we take a novel approach to online
learning that enables the application of evolutionary tuning
techniques to online autotuning. Our technique, called
SiblingRivalry, divides the available processor resources
in half and runs the current best algorithm on one half
and a variation on the other half. If the current best
finishes first, the variation is killed, the failure of the
variation is reported to the online learning algorithm
which controls the selection of both configurations for such
“competitions” and the application continues to the next
stage. If the variation finishes first, we have found a better
solution than the current best. Thus, the current best is
killed and the results from the variation are used as the
program continues to the next stage. Using this technique,
SiblingRivalry produces predictable and stable executions,
while still exploiting an evolutionary tuning approach. The
online learning algorithm is capable of adapting to changes
in the environment and progressively identifies better
configurations over time without resorting to experiments
that might deliver extremely slow performance. As we
will show, despite the loss of resources, this technique
can produce speedups over fixed configurations when the
dynamic execution environment changes. To the best
of our knowledge, SiblingRivalry is the first attempt
at employing evolutionary tuning techniques to online
autotuning computer programs.

We have implemented a prototype of the SiblingRivalry
algorithm within the context of the PetaBricks language [3,
4]. Our results show that SiblingRivalry’s always-on racing
technique can lead to an autotuned algorithm that uses
only half the machine resources (as the other half is used
for learning) but that is often faster than an optimized
algorithm that uses the entire processing resources of
the machine. Furthermore, we show that SiblingRivalry
dynamically responds and adapts to changes in the runtime
environment such as system load.

1.1 Contributions
SiblingRivalry makes the following contributions:

• To the best of our knowledge, the first general
technique to apply evolutionary tuning algorithms
to the problem of online autotuning of computer
programs.

• A new model for online autotuning where the processor

resources are divided and two candidate configurations
compete against each other.

• A multi-objective, practical online evolutionary learn-
ing algorithm for high-dimensional, multi-modal, and
non-linear configuration search spaces.

• A scalable learning algorithm for high-dimensional
search spaces, such as those in our benchmark suite
which average 97 search dimensions.

• Support for meeting dynamically changing time or
accuracy targets which are in response to changing
load or user requirements.

• Experimental results showing a geometric mean speedup
of 1.8x when adapting to changes in microarchitectures
and a 1.3x geometric mean speedup when adapting to
moderate load on the system.

• Experimental results showing how, despite accomplish-
ing more work, SiblingRivalry can actually reduce
average power consumption by an average of 30% after
a migration between microarchitectures.

1.2 Use cases
We envision a number of common use cases for our online

learning techniques:

• Adapting to dynamic load: Production code is usually
run not in isolation but on shared machines with
varying amounts of load. Yet it is impossible for
offline training to pre-compute a best strategy for
every type of load. SiblingRivalry enables programs
to dynamically adapt to changing load on a system.
It ensures continual good performance and eliminates
pathological cases of interference due to resource
competition.

• Migration in the cloud: In the cloud, the type of
machine on which a program is running is often
unknown. Additionally, the virtual machine executing
a program can be live migrated between systems.
SiblingRivalry allows programs to dynamically adapt
to these circumstances as the architecture changes
underneath them.

• Dynamically changing accuracy targets: Depending
on the situation, a user may need varying levels of
accuracy (or quality of service) from an application.
SiblingRivalry allows the user to dynamically change
either the accuracy or performance target of an
application. It supports trading-off execution time
with accuracy.

• Deploying to a wide variety of machines: Siblin-
gRivalry greatly simplifies the task of deploying an
application to a wide variety of architectures. It
enables a single centralized configuration, perhaps on a
shared disk, to be deployed. This is followed by online
customization for each machine on the network.

• Reducing over-provisioning requirements hardware re-
sources: Data centers must often over-provision
resources to handle rare load spikes. By supporting
dynamic changes to desired accuracies during load
spikes, SiblingRivalry can reduce the amount of
required over-provisioning.

2



2. PETABRICKS LANGUAGE
The PetaBricks language provides a framework for the

programmer to describe multiple ways of solving a problem
while allowing the autotuner to determine which of those
ways is best for the user’s situation [3]. It provides both
algorithmic flexibility (multiple algorithmic choices) as well
as coarse-grained code generation flexibility (synthesized
outer control flow).

At the highest level, the programmer can specify a
transform, which takes some number of inputs and produces
some number of outputs. In this respect, the PetaBricks
transform is like a function call in a procedural language.
The major difference is that we allow the programmer to
specify multiple pathways to convert the inputs to the
outputs for each transform. Pathways are specified in a
dataflow manner using a number of smaller building blocks
called rules, which encode both the data dependencies of
the rule and C++-like code that converts the rule’s inputs to
outputs.

One of the key features of the PetaBricks programming
language is support for variable accuracy algorithms,
which can trade output accuracy for computational per-
formance (and vice versa) depending on the needs of
the user. Approximating ideal program outputs is a
common technique used for solving computationally difficult
problems, adhering to processing or timing constraints,
or optimizing performance in situations where perfect
precision is not necessary. Algorithmic methods for
producing variable accuracy outputs include approximation
algorithms, iterative methods, data resampling, and other
heuristics. A detailed description of the variable accuracy
features of PetaBricks is given in [4].

2.1 The PetaBricks Autotuning Setup
Choices are represented in a configuration file that

contains three types of structures. The first type is selectors
which allow the autotuner to make algorithmic choices.
Selectors can make different decisions when called with
different input sizes dynamically. Using this mechanism,
selectors can be used by the autotuner to construct poly-
algorithms that dynamically switch techniques at recursive

call sites. Formally, a selector s consists of ~Cs =

[cs,1, . . . , cs,m−1] ∪ ~As = [αs,1, . . . , αs,m] where ~Cs are
the ordered interval boundaries (cutoffs) associated with

algorithms ~As. During program execution the runtime
function SELECT chooses an algorithm depending on the
current input size by referencing the selector as follows:

SELECT (input, s) = αs,i s.t. cs,i > size(input) ≥ cs,i−1

where cs,0 = 0 and cs,m = ∞. The components of ~As are
indices into a discrete set of applicable algorithmic choices
available to s, which we denote Algorithmss.

The synthesized functions in the configuration file define
continuous functions that specify a transform parameter
that varies with input size. Each synthesized function is

defined by a series of points ~Sg = [sg,0, . . . , sg,31] which
define the value of the synthesized function at exponentially
increasing sample points with linear interpolation between
the defined points. The value of the parameter at any
dynamic transform call is defined by the function:

SY NTHFUNC(input, g) =
sg,a(2b − n) + sg,b(n− 2a)

2b − 2a

where n = size(input) and a = blg2 nc and b = dlg2(n+1)e.

In addition to these algorithmic choice selectors and
synthesized functions, the configuration file contains many
other discrete tunable parameters. These tunable parame-
ters include things such as blocking sizes for local memory,
sequential/parallel cutoffs, and user defined parameters.
Each tunable parameter is an integer with a positive
bounded range.

3. COMPETITION EXECUTION MODEL

Online Autotuner

Population

Mutation 
Operators

N/2 Cores 
(Experimental)First Result

Request Safe Config

Experimental Config

Measurement

N/2 Cores 
(Safe) Measurement

Figure 1: High level flow of the runtime system.
The data on dotted lines may not be transmitted for
the slower configuration, which can be terminated
before completion.

Figure 1 shows the high level flow of how requests are
processed by the PetaBricks runtime system. The cores on
our system are split in half into two groups. One group of
cores is designated to run safe configurations, while the other
group runs experimental configurations. When a request
is received, the autotuner runs the same request on both
groups of cores in parallel using a safe configuration on
one group and an experimental configuration on the other
group. When the first configuration completes (and provides
a satisfactory answer) the system terminates the slower one.
The output of the better algorithm is returned to the user,
and timing and quality of service measurements are sent
to the autotuner so that it may update its population of
configurations and mutation operator priorities.

3.1 Other Splitting Strategies
Our racing execution model requires that there be

two groups of cores, one that executes an experimental
configuration, while the other executes a safe configuration.
While we have chosen to divide our resources in a 50/50
split, other divisions (such as 60/40 or 75/25) are possible.

We do not consider splits where we devote fewer cores to
the experimental group than the safe group since doing so
would prevent some superior configurations from completing
(they would be killed immediately after the safe strategy
completes). Further, tuning for fewer than half of the cores
limits the potential benefits from autotuning.

One of the reasons we chose a 50/50 split over other
possible splits was to minimize the gap between best-case
and worst-case overheads that result from splitting. Splits
that devote very few resources to the safe configuration will
incur larger costs when the experimental configuration fails
compared to when it succeeds.

Another major advantage of the 50/50 split is that it
provides more data to the autotuner, since the performance
of both tests can be compared directly. In uneven
configurations, very little is learned about the configuration
on the smaller part of the chip, since even if it is a better
configuration it still may be aborted before completion. This
means that the online learner is expected to converge more
quickly in the 50/50 case.

3



3.2 Time Multiplexing Races
Another racing strategy is to run the experimental

configuration and the safe configuration in sequence rather
than in parallel. This allows both algorithms to utilize the
entire machine. It also provides a way to, in some cases,
avoid running the safe configuration entirely. These types
of techniques are also the most amenable to at some point
switching off online learning, if one knows that the dynamic
execution environment has stabilized and the learner has
converged.

There are two variants to this type of technique:

• Safe configuration first. In this variant, the safe
configuration is run first, and is always allowed
to complete, using the entire machine. Then the
experimental configuration is allowed an equal amount
of time to run, to see if it would have completed faster.
Unfortunately, this method will incur a 2x overhead in
the steady state, which is the same as the expected
worst case for running the races in parallel (assuming
linear scalability). For this reason this technique is
only desirable if one plans to disable online learning
part way through an execution.

• Experimental configuration first. In this variant,
a model is required to predict the performance of
a configuration given a specific input and current
dynamic system environment. The model predicts the
upper bound performance of the safe configuration.
The experimental configuration is given this predicted
amount of time to produce an answer before being ter-
minated. If the experimental configuration produces
an acceptable answer, then the safe configuration is
never run, otherwise the system falls back to the safe
configuration.

The efficacy of this technique depends a lot on the
quality of the model used and the probability of
the learning system producing bad configurations.
In the best case, this technique can have close to
zero overhead. However, in the worst case, this
technique could both fail to converge and produce
overheads exceeding 2x. If the performance model
under-predicts execution time, superior configurations
will be terminated prematurely and autotuning will
fail to make improvements. If the performance model
over-predicts execution time, then the cost of exploring
bad configurations will grow. For our problem, the
probability of a bad configuration is high enough
that this type of technique is not desirable, however,
with search spaces with more safer configurations this
technique may become more appealing.

4. SIBLINGRIVALRY ONLINE LEARNER
The online learner is an evolutionary algorithm (EA) that

is specially designed for the purpose of identifying, online,
the best configuration for the program. It has a multitude of
exacting requirements: It must be lightweight because it is
always running. It cannot add significant computational or
memory overhead to the application or it will diminish the
overall value of autotuning. It must conduct its search in
accordance with the structure of the pairwise competition
execution model as described in Section 3. Accordingly,
it must effectively search and adapt candidate solutions

by offering competition configurations and integrating the
feedback from their measurement results. Because the
competition execution model is processing real requests, it
must provide at least one configuration that is sufficiently
safe to ensure quality of service. Despite the search space of
candidate configurations being very large, it must converge
to a high quality configuration quickly. It must not assume
the underlying environment is stationary. It must converge
in the face of high execution time variability (due to load
variance) and react to system changes in a timely way
without being notified of them.

To meet its convergence goals, the online learner, in effect,
must ideally balance exploration and exploitation in its
search strategy. Exploitation should investigate candidates
in the “neighborhood” of currently high performing config-
urations. Exploration should investigate candidates that
are very different from the current population to ensure no
route to the optimum has been overlooked by the greedy
nature of exploitation. This final required property of the
online learner motivates one of its key capabilities. The
online learner performs “adaptive mutator selection” which
we explain in more detail in Section 4.5.

4.1 High Level Function
In the process of tuning a program, the online learner

maintains a population of candidate configurations. The
population is relatively small to minimize the computational
and memory overhead of learning.

The online learner keeps two types of performance logs:
per-configuration and per-mutator. Per-configuration logs
record runtime, accuracy, and confidence for a given
candidate, and are used by the learner to select the
“safe” configuration for each competition, and to prune
configurations which are demonstrably worse. Per-mutator
logs record performance along the three objectives for
candidates generated by a given mutator. This information
allows the online learner to select mutators which have a
record of producing improved solutions, using a process
called Adaptive Operator Selection (see Section 4.5 for more
information).

Whenever the program being tuned receives a request,
the online learner selects two configurations to handle it:
“safe” and “experimental”. The safe configuration is the
configuration with the highest value of the fitness function
(see Section 4.3) in the current population, computed using
per-configuration logs. The fitness value captures how well
the configuration has performed in the past, and thus the
safe configuration represents the best candidate found by
the online learner so far. The experimental configuration
is produced by drawing a “seed” configuration from the
current population and transforming it using a mutator.
The probability of a configuration being selected as a seed
is proportional to its fitness.

Once the safe and experimental configurations have been
selected, the online learner uses both to process the request
in parallel, and returns the result from the candidate that
finishes first and meets the accuracy target (the “winner”).
The slower candidate (the “loser”) is terminated. If the
experimental configuration is the winner, it is added to the
online learner’s population. Otherwise, it is discarded. The
safe configuration is added back to the population regardless
of the result of the race, but might be pruned later if the
new result makes it worse than any other candidate.

4



4.2 Online Learner Objectives
The online learner optimizes three objectives with respect

to its candidate configurations:

• Execution time: the expected execution time of the
algorithm.

• Accuracy: the expected value of a programmer metric
measuring the quality of the solution found.

• Confidence: a metric representing the online learner’s
confidence in the first two metrics. This metric is 0 if
there is only one sample and

Confidence =
1

stderr(timings)
+

1

stderr(accuracies)

if there are multiple samples. This takes into account
any observed variance in the objective. If the
observed variance were constant, the metric would be
proportional to sqrt(T ) where T is the number of times
the candidate has been used.

Confidence is an objective because we expect the variance
in the execution times and accuracies of a configuration
(as it performs more and more competitions) to be
significant. Confidence allows configurations with reliable
performance to be differentiated from those with highly
variable performance. It prevents an “outlier run” from
making a suboptimal configuration temporarily dominate
better configurations and forcing them out of the population.

Taken together, these objectives create a 3-dimensional
space in which each candidate algorithm in the population
occupies a point. In this 3-dimensional space, the online
learner’s goal is to push the current population towards the
Pareto-optimal front.

4.3 Selecting the Safe and Seed Configuration
Each configuration of the population is assigned a

fitness, m, that is updated every time it competes against
another configuration. Fitness depends upon how well the
configuration is meeting a target accuracy, ma, and its
execution time, mt:

mconfig =

{ −mt∑
n∈P nt

− z g−ma∑
n∈P na

if ma < g
−mt∑
n∈P nt

if ma ≥ g

}
where g is a target accuracy, z is a scalar weight set based

on how often the online learner has been meeting its goals in
the past, and P is the population of all candidates. Fitness
prioritizes meeting the accuracy target, but gives no reward
for accuracy exceeding the target.

To select the safe configuration, the online learner picks
the algorithm in the population that has the highest fitness.
When the online learner is not producing configurations that
meet the targets, the weight of z is adaptively incremented to
put more importance on accuracy targets when it calculates
m.

To select a seed configuration, the online learner first
eliminates any configuration that has an expected running
time that is below the 65th percentile running time of the
safe configuration. Then, it randomly draws a configuration
from the remaining population using the fitness of each
configuration to weight the draw. In evolutionary algorithm
terminology, this type of draw is called “fitness proportional
selection”.

4.4 Mutation Operators
The online learner changes configurations of candidate

algorithms though a pool of mutation operators that
are generated automatically from information outputted
by the PetaBricks compiler. Mutators create a new
algorithm configuration from an existing configuration by
randomly making changes to a specific target region of the
configuration.

One can divide the mutators used by our online learner
into the following categories:

• Selector manipulation mutators randomly either
add, remove, or change levels of a selector decision
tree. A decision tree is an abstract hierarchically
ordered representation of the selector parameters
in the configuration file. It enables the dynamic
determination of which algorithm to use at a specific
dynamic point in program execution. Each level of the
tree has a cutoff value and an algorithmic choice. Each
decision tree in the configuration results in 5 mutation
operators: one operator to add a level, one operator to
remove a level, one operator to make large random
changes, and two operators to make small random
changes.

• Log-normal random scaling mutators scale a
configuration value by a random number taken from
a log-normal distribution with scale of 1. This type
of mutator is used to change cutoff values that are
compared to data sizes. Examples of this are blocking
sizes, cutoffs in decision trees, and cutoffs to switch
between sequential and parallel code.

• Uniform random mutators replace an existing
configuration value with a new value taken from a
discrete uniform random distribution containing all
legal values for the configuration item. This type of
mutator is used for choices where there are a relatively
small number of possibilities. An example of this is
deciding the scheduling strategy for a specific block of
code or algorithmic choices.

• Synthesized function manipulation mutators
change the underlying parameter of a function that is
used to decide a value that must change dynamically
based on input size. For example, the number of
iterations in a for_enough loop. These functions are
represented by lgn points in the configuration value
with runtime interpolation find values lying between
the specified points.

4.5 Adaptive Mutator Selection (AMS)
The evolutionary algorithm of the online learner uses

different mutators. This provides it with flexibility to
generate experimental configurations that range from being
close to the seed configuration to far from it, thus controlling
its exploration and exploitation. However, the efficiency of
the search process is sensitive to which mutators are applied
and when. These decisions cannot be hard coded because
they are dependent on what program is being autotuned.
Furthermore, even for a specific program, they might need
to change over the course of racing history as the population
changes and converges. Mutators that cause larger seed-
experiment configuration differences should be favored in

5



early competitions to explore while ones that cause smaller
differences should be favored when the search is close to the
best configuration to exploit.

For this reason, the online tuner has a specific strategy
for selecting mutators on the basis of how well they have
performed. The performance of mutators is the extent
to which they have generated experimental configurations
of better fitness than others. In general, this is called
“Adaptive Operator Selection” (AOS) [14, 15, 31] and our
version is called “Adaptive Mutator Selection” (AMS).

There are two parts to AMS: credit assignment to a
mutator, and mutator selection. AMS uses Fitness-based
Area-Under-Curve for its credit assignment and a Bandit
decision process for mutator selection. We use Fitness-
based Area-Under-Curve because it is appropriate for the
comparison (racing) approach taken by the online learner.
We use the AUC version of the Dynamic Multi-Armed
Bandit decision process because it matches up with the
online learner’s dynamic environment. Our descriptions are
adapted and implemented directly from [29].

Credit Assignment
After each competition the AOS stops and assigns credit
to operators based on their performance over the interval.
Fitness-based Area-Under-Curve adapts the Area Under the
ROC Curve criteria [11] to assign credit to comparison-
based assessment of mutators by first creating a ranked list
of the experimental configurations generated in any time
window according to a fitness objective. The ROC (Receiver
Operator Curve) associated to a given mutator, µ, is then
drawn by scanning the ordered list, starting from the origin:
a vertical segment is drawn when the current configuration
has been generated by µ, a horizontal segment is drawn
otherwise, and a diagonal one is drawn in case of ties.
Finally, the credit assigned to mutator, µ, is the area under
this curve (AUC).

Bandit Mutator Selection
The bandit-based mutator selection deterministically selects
the mutator based on a variant of the Upper Confidence
Bound (UCB) algorithm [5]:

Select arg max
i

(
AUCi,t + C

√
2 log

∑
k nk,t

ni,k

)

where AUCi,t denotes the empirical quality of the i-th
mutator during a user-defined time-window W (exploitation
term), ni,t the total number of times it has been used since
the beginning of the process (the right term corresponding to
the exploration term), and C is a user defined constant that
controls the balance between exploration and exploitation.
Bandit algorithms have been proven to optimally solve
the exploration vs. exploitation dilemma in a stationary
context. The dynamic context is addressed in this
formulation by using AUC as the exploitation term. See [29]
for more details.

4.6 Population Pruning
Each time the population has an experimental configura-

tion added, it is pruned. Pruning is a means of ensuring
the experimental configuration should appropriately stay
in the population and removing any configuration wholly

Acronym Processor Type Operating System Processors

Xeon8 Intel Xeon X5460 3.16GHz Debian 5.0 2 (×4 cores)
Xeon32 Intel Xeon X7560 2.27GHz Ubuntu 10.4 4 (×8 cores)
AMD48 AMD Opteron 6168 1.9GHz Debian 5.0 4 (×12 cores)

Table 1: Specifications of the test systems used and
the acronyms used to differentiate them in results.

inferior to the experimental configuration. The experimental
configuration should stay if, for any weighting of its
objectives, it is better than any other configuration under
the same weighting. This condition is expressed as:

arg max
m∈P

(
wa∑

n∈P na
ma −

wt∑
n∈P nt

mt +
wc∑

n∈P nc
mc)

where P is the population and w defines a weight. The
subscripts a, t, and c of w represent the accuracy, time, and
confidence objectives for each configuration.

If the experimental configuration results in an extant
configuration no longer being non-dominated, the extant
configuration is pruned. We set wt = 1 − wa and sample
values of wa and wc in the range [0, 1]. We sample the time-
accuracy trade-off space more densely than the confidence
space, with approximately 100 different weight combinations
total.

5. EXPERIMENTAL RESULTS AND DIS-
CUSSION

We evaluate SiblingRivalry with two experimental sce-
narios. In the first scenario, we use a single system and
vary the load on the system. In the second scenario we
vary the underling architecture, to represent the effects of
a computation being migrated between machines. In both
cases we compare to a fixed configuration found with offline
tuning that utilizes all cores of the underlying machine.

We performed our experiments on three systems described
in Table 1. We refer to these three systems using
the acronyms Xeon8, Xeon32, and AMD48. Power
measurements were performed on the AMD48 system, using
a WattsUp device that samples and stores the consumed
power at 1 second intervals.

5.1 Sources of Speedups
The speedups achieved for different benchmarks can come

from a variety of sources. Some of these sources of speedup
can apply even to the case where the environment does
not change dynamically. Different benchmarks obtained
speedups for different reasons in different tests.

• Algorithmic improvements are a large source of
speedup, and the motivation for this work. When the
dynamic environment changes, the optimal algorith-
mic choices may be different and SiblingRivalry can
discover better algorithms dynamically.

• For the variable accuracy benchmarks, additional
speedup can be obtained since the online tuner receives
runtime feedback on how well it is meeting its accuracy
targets. If it observes that it is over delivering on
its quality of service target it can opportunistically
change algorithms, enabling it to be less conservative
than offline tuning. For all tests, both SiblingRivalry
and the baseline met the required quality of service
requirements.

6



• SiblingRivalry benefits from a “dice effect,” since it is
running two copies of the algorithm it has an increased
chance of getting lucky and having one configuration
complete faster than its mean performance. External
events, like I/O interrupts, have a lower chance of
affecting both algorithms. This leads to a small
speedup, which is a function of the variance in the
performance of each algorithm.

• As the number of processing cores continues to
grow exponentially, the amount of per core memory
bandwidth is decreasing dramatically since per-chip
memory bandwidth is growing only at a linear rate [8].
This fact, coupled with Amdahl’s law, makes it
particularly difficult to write applications with scalable
performance. On our AMD48 machine, we found
that some benchmarks with high degree of available
parallelism exhibit limited scalability, preventing them
from fully utilizing all available processors. In cases
where the performance leveled off before half of
the available processors, the cost of our competition
strategy becomes close to zero.

5.2 Load on a System
To test how SiblingRivalry adapts to load on the system,

we simulated system load by running concurrently with
a synthetic CPU-bound benchmark competing for system
resources. We allowed the operating system to assign cores
to this benchmark and did not bind it to specific cores.
For the different tests, we varied the number of threads
in this benchmark to utilize between 0 and 100% of the
processors on the system. Combined with the PetaBricks
benchmarks, this creates an overloaded system where the
number of active threads is double the number of cores.
In all cases we compared SiblingRivalry to a baseline of a
fixed configuration found with offline tuning on the same
machine, without the additional load. We measure average
throughput over 10 minutes of execution, which includes all
of the learning costs.

We observed different trends of speedups on the two
machines tested. On the Xeon8 (Figure 2(a)), the geometric
mean cost of running SiblingRivalry (under zero new load)
was 16%. This cost is largest for Matrix Multiply, which
scales linearly on this system. For other benchmarks,
the overheads are lower for two reasons. For the non-
variable accuracy benchmarks, some benchmarks do not
scale perfectly (These benchmarks exhibit an average
speedup of 5.4x when running with 8 threads [3]). For
variable accuracy benchmarks, the online autotuner is able
to improve performance by taking advantage of using a
number of candidate algorithms to construct an aggregate
QoS that is closer to the target accuracy level than would
be otherwise possible with a single algorithm.

Figure 2(b) shows the performance results on the AMD48
machine. In the zero load case, SiblingRivalry achieves
a geometric mean speedup of 1.12x. This speedup comes
primarily because of the way the autotuner can dynamically
adapt the variable accuracy benchmarks (the same way it
did on Xeon8). Additionally, while AMD48 and Xeon8
have very similar memory systems, AMD48 has six times
as many cores, and thus 6 times less bandwidth per core.
Thus, we found that in some cases, using additional cores on
this system did not always translate to better performance.

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helmholtz

Image Compression

Poisson

LU Factorization

Matrix Multiply

Sort
GeoMean

S
pe

ed
up

 (v
s 

of
fli

ne
 tu

ne
d)

  0% load
 25% load

 50% load
 75% load

100% load

(a) Xeon8

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helmholtz

Image Compression

Poisson

LU Factorization

Matrix Multiply

Sort
GeoMean

S
pe

ed
up

 (v
s 

of
fli

ne
 tu

ne
d)

  0% load
 25% load

 50% load
 75% load

100% load

(b) AMD48

Figure 2: Speedups (or slowdowns) of each
benchmark as the load on a system changes. Note
that the 50% load and 100% load speedups for
Clustering in (b), which were cut off due to the scale,
are 4.0x and 3.9x.

For example, while some fixed configurations of our matrix
multiply benchmark scale well to 48 cores, our autotuner
is able to find a less scalable configuration that provides
the same performance using only 20 cores. Once load
is introduced, SiblingRivarly is able to further adapt the
benchmarks, providing geometric speedups of up to 1.53x.

5.3 Migrating Between Microarchitectures
In a second group of experiments we test how Siblin-

gRivalry can adapt to changes in microarchitecture. We
first train offline on a initial machine and then move this
trained configuration to a different machine. We compare
SiblingRivalry to a baseline configuration found with offline
tuning on the original machine. The offline configuration is
given one thread per core on the system. Figure 3 shows
the speedups for each benchmark after such a migration.
SiblingRivalry shows a geometric mean speedup of 1.8x in
this migration experiment.

7



Figure 3: Speedups (or slowdowns) of each bench-
mark after a migration between microarchitectures.
“Normalized throughput” is the throughput over
the first 10 minutes of execution of SiblingRivalry
(including time to learn), divided by the throughput
of the first 10 minutes of an offline tuned
configuration using the entire system.

Starting Configuration.
Figure 4 shows how using an offline tuned configuration

affects the rate of convergence of SiblingRivalry. We
show three starting configurations: a random configuration,
a configuration tuned on a different machine, and a
configuration tuned on the same machine. As one would
expect, convergence time increases as the starting point
becomes less optimal. Convergence times are roughly 5
minutes, 1 minute, and 0 for the configurations tried, though
since changes are constantly being made it is difficult to
mark a point of convergence.

Power Consumption.
Figure 5 shows the energy used per request for each of

our benchmarks. While one might initially think that the
techniques proposed would increase energy usage since up
to twice the amount of work is performed, SiblingRivalry
actually reduces energy usage by an average of 30% for our
benchmarks. The primary reason for this decreased energy
usage is the increased throughput of SiblingRivalry, which
results in the machine being used for a shorter period of
time. The benchmarks that saw increased throughput also
saw decreased power consumption per request.

6. RELATED WORK
A number of offline empirical autotuning frameworks

have been developed for building efficient, portable libraries
in specific domains. PHiPAC [10] is an autotuning
system for dense matrix multiply, generating portable
C code and search scripts to tune for specific systems.
ATLAS [35] utilizes empirical autotuning to produce a
cache-contained matrix multiply, which is then used in larger
matrix computations in BLAS and LAPACK. FFTW [18]
uses empirical autotuning to combine solvers for FFTs.
Other autotuning systems include SPARSITY [24] for
sparse matrix computations, SPIRAL [28] for digital signal
processing, and OSKI [34] for sparse matrix kernels.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  100  200  300  400  500  600

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry (w/o offline)
SiblingRivalry (w/ offline on Xeon8)

SiblingRivalry (w/ offline on AMD48)

Figure 4: The effect of using an offline tuned
configuration as a starting point for SiblingRivaly
on the Sort benchmark. We compare starting
from a random configuration (“w/o offline”) to
configurations found through offline training on the
same and a different architecture.

 0

 500

 1000

 1500

Bin Packing

Clustering

Helmholtz

Image Compression

Poisson

LU Factorization

Matrix Multiply

Sort
Mean

E
ne

rg
y 

pe
r r

eq
ue

st
 (j

ou
le

s)

Benchmark

3.9

Baseline
SiblingRivalry

Figure 5: Average energy use per request for each
benchmark after migrate Xeon8 to AMD48.

In the dynamic autotuning space, there have been a
number of systems developed [7,9,12,22,23,25,30] that focus
on creating applications that can monitor and automatically
tune themselves to optimize a particular objective. Many of
these systems employ a control systems based autotuner that
operates on a linear model of the application being tuned.
For example, PowerDial [23] converts static configuration
parameters that already exist in a program into dynamic
knobs that can be tuned at runtime, with the goal of
trading QoS guarantees for meeting performance and power
usage goals. The system uses an offline learning stage to
construct a linear model of the choice configuration space
which can be subsequently tuned using a linear control
system. The system employs the heartbeat framework [21]
to provide feedback to the control system. A similar
technique is employed in [22], where a simpler heuristic-
based controller dynamically adjusts the degree of loop
perforation performed on a target application to trade QoS
for performance.

The area of iterative compilation contains many projects
that use different machine learning techniques to optimize

8



lower level compiler optimizations [1, 2, 20, 26]. These
projects change both the order that compiler passes are
applied and the types of passes that are applied. These
projects do not explore the type of algorithmic choices that
the PetaBricks language exposes and these systems operate
at compile time not runtime.

Additionally, there has been a large amount of work [6,
17, 32, 33] in the dynamic optimization space, where
information available at runtime is used combined with
static compilation techniques to generate higher performing
code. Such dynamic optimizations differ from dynamic
autotuning because each of the optimizations is hand
crafted in a way that makes it likely that it will
lead to an improvement in performance when applied.
Conversely, autotuning searches the space of many available
program variations without a priori knowledge of which
configurations will perform better.

Evolutionary Algorithms Related Work.
There is one evolutionary algorithm, named Differen-

tial Evolution (DE) [27], that takes a comparison-based
approach to search like our online learner. However DE
compares a parent to its offspring, while we compare a safe
configuration to the experimental configuration. These two
configurations (safe and external) are not related. Further,
DE does not generate offspring using mutators.

Our approach to multi-objective optimization is a hybrid
of a pareto-based EA [16, 37] and a weighted objectives
EA. Our approach avoids the O(nlogn) computational
complexity of pareto-based EAs such as the very commonly
used NSGA-II [16]. In the latter, these are incurred
to identify successive Pareto-fronts and to compute the
distance between the solutions on each front. Our approach
of using multiple weight combinations and preserving
dominating configurations for each is more robust than using
only one.

7. CONCLUSIONS
This paper demonstrates that it can sometimes be more

effective to devote resources to learning the smart thing
to do, than to simple throw resources at a potentially
suboptimal configuration. Our technique devotes half of the
system resources to trying something different, to enable
online adaption to the system environment. The geometric
mean speedup of SiblingRivalry was 1.8x after a migration
between microarchitectures. Even in comparison to an
offline-optimized version on the same microarchitecture that
uses the full resources, SiblingRivalry showed a geometric
mean performance increase of 1.3x when moderate load
was introduced on the machine. These results show that
continuously adapting the program to the environment can
provide a huge boost in performance that easily overcame
the cost of splitting the available resources in half.

In addition, we have showed that an intelligent machine
learning system can rapidly find a good solution even
when the search space is extremely large. Furthermore,
we demonstrated that it is important to provide many
algorithmic and optimization choices to the online learner as
done by the PetaBricks language and compiler. While these
choices increase the search space, they make it possible for
the autotuner to obtain the performance gains observed.

SiblingRivalry is able to fully eliminate the offline
learning step, making the process fully transparent to

users, which is the biggest impediment to the acceptance
of autotuning. For example, while Feedback Directed
Optimization (FDO) can provide substantial performance
gains, the extra step involved in the programmers workflow
has stopped this promising technique from being widely
adopted [13]. By eliminating any extra steps, we believe
that SiblingRivalry can bring autotuning to the mainstream
program optimization. As we keep increasing the core counts
of our processors, autotuning via SiblingRivalry help exploit
them in a purposeful way.

8. ACKNOWLEDGMENTS
This work is partially supported by DOE Award DE-

SC0005288.

9. REFERENCES
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,

G. Fursin, M. F. P. O’boyle, J. Thomson,
M. Toussaint, and C. K. I. Williams. Using machine
learning to focus iterative optimization. In
International Symposium on Code Generation and
Optimization, pages 295–305, 2006.

[2] L. Almagor, Keith D. Cooper, Alexander Grosul,
Timothy J. Harvey, Steven W. Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman.
Finding effective compilation sequences. In LCTES’04,
pages 231–239, 2004.

[3] Jason Ansel, Cy Chan, Yee Lok Wong, Marek
Olszewski, Qin Zhao, Alan Edelman, and Saman
Amarasinghe. PetaBricks: A language and compiler
for algorithmic choice. In PLDI, Dublin, Ireland, Jun
2009.

[4] Jason Ansel, Yee Lok Wong, Cy Chan, Marek
Olszewski, Alan Edelman, and Saman Amarasinghe.
Language and compiler support for auto-tuning
variable-accuracy algorithms. In CGO, Chamonix,
France, Apr 2011.

[5] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1),
2003.

[6] Joel Auslander, Matthai Philipose, Craig Chambers,
Susan J. Eggers, and Brian N. Bershad. Fast, effective
dynamic compilation. In PLDI, 1996.

[7] Woongki Baek and Trishul Chilimbi. Green: A
framework for supporting energy-conscious
programming using controlled approximation. In
PLDI, June 2010.

[8] K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod,
J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, S. Williams, and K. Yelick. Exascale
computing study: Technology challenges in achieving
exascale systems, 2008.

[9] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar,
N. Kandasamy, and S. Abdelwahed. Enabling
self-managing applications using model-based online
control strategies. In International Conference on
Autonomic Computing, Washington, DC, 2006.

[10] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and
Jim Demmel. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C

9



coding methodology. In Supercomputing, New York,
NY, 1997.

[11] Andrew P. Bradley. The use of the area under the
ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition, 30(7), 1997.

[12] Fangzhe Chang and Vijay Karamcheti. A framework
for automatic adaptation of tunable distributed
applications. Cluster Computing, 4, March 2001.

[13] Dehao Chen, Neil Vachharajani, Robert Hundt,
Shih-wei Liao, Vinodha Ramasamy, Paul Yuan,
Wenguang Chen, and Weimin Zheng. Taming
hardware event samples for FDO compilation. In
CGO, New York, NY, 2010.

[14] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and
Michèle Sebag. Adaptive operator selection with
dynamic multi-armed bandits. In GECCO, New York,
NY, 2008.

[15] Lawrence Davis. Adapting operator probabilities in
genetic algorithms. In ICGA, San Francisco, CA, 1989.

[16] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and
T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization:
NSGA-II. In Marc Schoenauer, Kalyanmoy Deb,
Günter Rudolph, Xin Yao, Evelyne Lutton,
Juan Julian Merelo, and Hans-Paul Schwefel, editors,
PPSN, Berlin, 2000.

[17] Pedro C. Diniz and Martin C. Rinard. Dynamic
feedback: an effective technique for adaptive
computing. In PLDI, New York, NY, 1997.

[18] Matteo Frigo and Steven G. Johnson. FFTW: An
adaptive software architecture for the FFT. In IEEE
International Conference on Acoustics Speech and
Signal Processing, volume 3, 1998.

[19] Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. IEEE, 93(2), February
2005. Invited paper, special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[20] Grigori Fursin, Cupertino Miranda, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha
Mendelson, Edwin Bonilla, John Thomson, Hugh
Leather, Chris Williams, Michael O’Boyle, Phil
Barnard, Elton Ashton, Eric Courtois, and Francois
Bodin. MILEPOST GCC: machine learning based
research compiler. In Proceedings of the GCC
Developers’ Summit, Jul 2008.

[21] Henry Hoffmann, Jonathan Eastep, Marco D.
Santambrogio, Jason E. Miller, and Anant Agarwal.
Application heartbeats: a generic interface for
specifying program performance and goals in
autonomous computing environments. In ICAC, New
York, NY, 2010.

[22] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou,
Anant Agarwal, and Martin Rinard. Using code
perforation to improve performance, reduce energy
consumption, and respond to failures. Technical
Report MIT-CSAIL-TR-2209-042, Massachusetts
Institute of Technology, Sep 2009.

[23] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin,
Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Power-aware computing with dynamic knobs. In
ASPLOS, 2011.

[24] Eun-jin Im and Katherine Yelick. Optimizing sparse

matrix computations for register reuse in SPARSITY.
In International Conference on Computational
Science, 2001.

[25] Gabor Karsai, Akos Ledeczi, Janos Sztipanovits,
Gabor Peceli, Gyula Simon, and Tamas Kovacshazy.
An approach to self-adaptive software based on
supervisory control. In International Workshop in
Self-adaptive software, 2001.

[26] Eunjung Park, L.-N. Pouche, J. Cavazos, A. Cohen,
and P. Sadayappan. Predictive modeling in a
polyhedral optimization space. In IEEE/ACM
International Symposium on Code Generation and
Optimization, pages 119 –129, April 2011.

[27] Kenneth Price, Rainer Storn, and Jouni Lampinen.
Differential Evolution: A Practical Approach to Global
Optimization. Natural Computing Series.
Springer-Verlag, Berlin, Germany, 2005.

[28] Markus Püschel, José M. F. Moura, Bryan Singer,
Jianxin Xiong, Jeremy R. Johnson, David A. Padua,
Manuela M. Veloso, and Robert W. Johnson. Spiral:
A generator for platform-adapted libraries of signal
processing alogorithms. IJHPCA, 18(1), 2004.

[29] Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and
Günter Rudolph, editors. Parallel Problem Solving
from Nature, volume 6238 of Lecture Notes in
Computer Science, 2010.

[30] Cristian Tapus, I-Hsin Chung, and Jeffrey K.
Hollingsworth. Active harmony: Towards automated
performance tuning. In In Proceedings from the
Conference on High Performance Networking and
Computing, pages 1–11, 2003.

[31] Dirk Thierens. Adaptive strategies for operator
allocation. In Fernando G. Lobo, Cláudio F. Lima,
and Zbigniew Michalewicz, editors, Parameter Setting
in Evolutionary Algorithms, volume 54 of Studies in
Computational Intelligence. 2007.

[32] Michael Voss and Rudolf Eigenmann. Adapt:
Automated de-coupled adaptive program
transformation. In International Conference on
Parallel Processing, 2000.

[33] Michael Voss and Rudolf Eigenmann. High-level
adaptive program optimization with adapt. ACM
SIGPLAN Notices, 36(7), 2001.

[34] Richard Vuduc, James W. Demmel, and Katherine A.
Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. In Scientific Discovery through
Advanced Computing Conference, Journal of Physics:
Conference Series, San Francisco, CA, June 2005.

[35] Richard Clint Whaley and Jack J. Dongarra.
Automatically tuned linear algebra software. In
Supercomputing, Washington, DC, 1998.

[36] S. Williams, K. Datta, J. Carter, L. Oliker, J. Shalf,
K. Yelick, and D. Bailey. PERI - auto-tuning
memory-intensive kernels for multicore. Journal of
Physics Conference Series, 125(1), July 2008.

[37] Eckart Zitzler, Marco Laumanns, and Lothar Thiele.
SPEA2: Improving the strength pareto evolutionary
algorithm for multiobjective optimization. In
K. Giannakoglou, D. Tsahalis, J. Periaux,
K. Papailiou, and T. Fogarty, editors, Evolutionary
Methods for Design, Optimisation and Control.
Barcelona, Spain, 2002.

10




