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We are currently facing a rapid growth of data contents originating from edge devices.

These data resources offer significant potential for learning and extracting complex patterns in

a range of distributed learning applications, such as healthcare, recommendation systems, and

financial markets. However, the collection and processing of such extensive datasets through

centralized learning procedures imposes potential challenges. As a result, there is a need for

the development of distributed learning algorithms. Furthermore, This raises two principal

challenges within the realm of distributed learning. The first challenge is to provide privacy

guarantees for clients’ data, as it may contain sensitive information that can be potentially

mishandled. The second challenge involves addressing communication constraints, particularly

in cases where clients are connected to a coordinator through wireless/band-limited networks.

In this thesis, our objective is to develop fundamental information-theoretic bounds and

devise distributed learning algorithms with privacy and communication requirements while

maintaining the overall utility performance. We consider three different adversary models

for differential privacy: (1) central model, where the exists a trusted server applies a private
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mechanism after collecting the raw data; (2) local model, where each client randomizes her

own data before making it public; (3) shuffled model, where there exists a trusted shuffler

that randomly permutes the randomized data before publishing them. The contributions of

this thesis can be summarized as follows

• We propose communication-efficient algorithms for estimating the mean of bounded

`p-norm vectors under privacy constraints in the local and shuffled models for p ∈ [1,∞].

We also provide information-theoretic lower bounds showing that our algorithms have

order-optimal privacy-communication-performance trade-offs. In addition, we present a

generic algorithm for distributed mean estimation under user-level privacy constraints

when each client has more than one data point.

• We propose a distributed optimization algorithm to solve the empirical risk mini-

mization(ERM) problem with communication and privacy guarantees and analyze its

communication-privacy-convergence trade-offs. We extend our distributed algorithm

for a client-self-sampling scheme that fits federated learning frameworks, where each

client independently decides to contribute at each round based on tossing a biased coin.

We also propose a user-level private algorithm for personalized federated learning.

• We characterize the rényi differential privacy (RDP) of the shuffled model by proposing

closed-form upper and lower bounds for general local randomized mechanisms. RDP

is a useful privacy notion that enables a much tighter composition for interactive

mechanisms. Furthermore, we characterize the RDP of the subsampled shuffled model

that combines privacy amplification via shuffling and amplification by subsampling.

• We propose differentially private algorithms for the problem of stochastic linear bandits

in the central, local, and shuffled models. Our algorithms achieve almost the same

regret as the optimal non-private algorithms in the central and shuffled models, which

means we get privacy for free.
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• We study successive refinement of privacy by providing hierarchical access to the raw

data with different privacy levels. We provide (order-wise) tight characterizations of

privacy-utility-randomness trade-offs in several cases of discrete distribution estimation.
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CHAPTER 1

Introduction

The exponential growth of data at edge devices has reached unprecedented levels, transforming

the way we perceive and harness information. The massive volume and variety of data

generated daily can be exploited for several learning applications, however, it poses substantial

challenges for traditional, centralized algorithms. The advent of massive data, often referred

to as ”big data,” has surpassed the capacity of conventional systems, making the central

computing paradigms struggle to keep pace with data collection, processing, and computations.

Consider the scenario of a global social media platform, where billions of users generate vast

amounts of data through posts, likes, and interactions in real time. Traditional algorithms

and systems struggle when tasked with processing and analyzing such massive datasets within

reasonable timeframes. Another scenario is e-commerce: consider the challenges faced by

e-commerce giants handling millions of transactions daily, customer preferences, and purchase

histories. The analysis of these datasets demands not only sophisticated algorithms but also

a scalable infrastructure capable of parallel processing to expedite computations. Centralized

systems prove inadequate in meeting these demands, necessitating a paradigm shift toward

distributed systems.

1.1 Communication-Privacy-Utility Trade-offs

Two major challenges appear in distributed systems. The first of these challenges revolves

around the imperative to ensure the privacy and security of the data owned by individual

clients. In the era of massive data, where information is not just abundant but often sensitive,
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the potential mishandling of personal or confidential data is a significant concern. Distributed

learning systems operate in a decentralized fashion, with data residing across multiple nodes

or devices. Consider, for instance, a scenario in healthcare where patient data is dispersed

across various medical institutions. Preserving the privacy of individual health records

is non-negotiable, yet collaborative learning is crucial for advancing medical research and

improving treatment outcomes. Distributed learning systems in this context must navigate

the intricacies of data privacy to enable collaborative research without compromising sensitive

patient information. Similarly, in the financial sector, distributed learning finds applications

in fraud detection and risk assessment. Financial institutions collaborate to enhance their

models, leveraging insights from diverse datasets. However, stringent regulations and the

need to protect customer financial information underscore the necessity for privacy-preserving

mechanisms in distributed learning algorithms.

The second challenge in the realm of distributed learning is communication constraints,

especially in scenarios where clients are connected to a central coordinator through wireless

or band-limited networks. The nature of these networks introduces latency, bandwidth

limitations, and potential connectivity issues that become a bottleneck in the exchange of

information between the distributed nodes. Overcoming these communication constraints

becomes crucial for the smooth functioning of distributed learning systems. Consider a

scenario of Federated Learning (FL), where mobile devices contribute to a high dimensional

model but are constrained by slow and unstable internet connections. Addressing these

challenges not only requires innovative algorithmic approaches but also a deeper understanding

of the trade-offs between privacy, communication, and performance in distributed learning.

In this thesis, we study the fundamental limits of communication-privacy-utility trade-offs

for several distributed learning approaches.

Differential privacy [DMN06] – a cryptographically motivated notion of privacy – has

recently emerged as the gold standard in privacy-preserving data analysis. Privacy is provided

by guaranteeing that the participation of a single person in a dataset does not change the

2



probability of any outcome by much. In this thesis, we consider three adversarial models of

differential privacy. In the central DP model, we assume that there exists a trusted server that

collects the entire raw data and applies a private mechanism, where the adversary has only

access to the output of the private mechanism. To accommodate the privacy of locally held

data, a more appropriate notion is that of local differential privacy (LDP) [KLN11,DWJ13].

In the local DP model, each (distributed) client holding local data, individually randomizes

its interactions with the (untrusted) server, where the adversary has access to the randomized

report of each client. Recently, such LDP mechanisms have been deployed by companies such

as Google [EPK14], Apple [Gre16], and Microsoft [DKY17]. However, LDP mechanisms suffer

from poor performance in comparison with the centralized DP mechanisms, making their

applicability limited [DWJ13,KLN11,KBR16]. To address this, a new privacy framework using

anonymization has been proposed in the so-called shuffled model [EFM19,CSU19,BBG19d].

In the shuffled DP model, each client sends her randomized interaction message to a secure

shuffler that randomly permutes all the received messages before forwarding them to the

server1, where the adversary has only access to the output of the secure shuffler. This shuffled

model enables significantly better privacy-utility performance compared to the local DP

model [EFM19,CSU19,BBG19d].

1.2 Outline and Contributions

The goal of this thesis is to study communication-privacy-utility trade-offs in several dis-

tributed learning structures. In particular, the contributions of this thesis can be summarized

as follows:

In Chapter 3, we study the distributed mean estimation under privacy and communica-

tion constraints in the local DP model and the shuffled model for bounded `p-norm vectors,

where p ∈ [1,∞]. We propose an achievable scheme based on Hadamard transformation

1Such a shuffling can be enabled through anonymization techniques [BEM17,EFM19,EFM20a].
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and a lower bound on the minimax risk for estimating bounded `1-norm vectors under

LDP constraints. Next, we propose an achievable scheme for estimating binary vectors,

bounded `∞-norm vectors, and bounded `2-norm vectors. Our proposed schemes are based on

compressing the real vectors using finite-bit binary representations and coordinate sampling.

Then, we privatize the binary vectors using non-uniform privacy allocation. Furthermore,

we present a lower bound on the minimax risk of estimating the mean of bounded `2-norm

vectors under LDP constraints. We show that our proposed schemes are order optimal and

match the lower bounds for both the local DP model and the multi-message shuffled model.

We also distributed mean estimation under user-level local differential privacy when each

client has multiple vectors, where the goal is to protect the entire local datasets. The results

of this chapter are based on our work in [GDD21d,GD23,GDD22].

In Chapter 4, we study the empirical risk minimization (ERM) problem in the federated

learning framework under privacy and communication constraints in the shuffled model.

We propose CLDP-SGD algorithm, where at each round a subset of clients are randomly

chosen to contribute. Each of the sampled clients runs stochastic gradient descent (SGD)

by sampling her local dataset and sends compressed and private gradients to a secure

shuffler. The server aggregates the received updates from the shuffler and takes a descent

step. We analyze the communication-privacy-convergence of the proposed CLDP-SGD

algorithm. We also extend our work to client-self sampling, where each client decides to

contribute at each round by tossing an independent biased coin. The client-self sampling

raises challenges in analyzing the total privacy and the conference of the private algorithm,

as the number of clients contributed at each round is a random variable. Next, we propose a

user-level LDP mechanism for personalized federated learning to learn an individual model

for each client via private collaboration. The results of this chapter are based on our work

in [GDD21a,GDD21b,OGD22].

In Chapter 5, we characterize the Rényi differential privacy (RDP) of the shuffled model

by proposing upper and lower bounds for general LDP mechanisms. RDP is a useful privacy
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notion that enables a much tighter composition for interactive mechanisms. Furthermore, we

characterize the RDP of the subsampled shuffled model that combines privacy amplification

via shuffling and amplification by subsampling. To achieve these results, we propose a novel

analysis technique by reducing any general neighboring datasets to special case neighboring

datasets that can be analyzed in a closed-form solution. We use our RDP bounds to give

tighter privacy analysis for our proposed federated learning algorithms in Chapter 4. The

results of this chapter are based on our work in [GDD21e,GDD21c].

In Chapter 6, we study stochastic linear bandits under privacy constraints. Stochastic linear

bandits offer a sequential decision framework where a learner interacts with an environment

over rounds, and decides what is the optimal (from a potentially infinite set) action to play

so as to achieve the best possible reward. This model has been widely adopted both in theory

but also in a number of applications, including recommendation systems, healthcare, online

education, and resource allocation [MGP15,BRC17,RYW18,BR19]. We propose differentially

private algorithms for stochastic linear bandits in the central, local, and shuffled models. In

the central and shuffled models, we achieve almost the same regret as the optimal non-private

algorithms, which means we get privacy for free. The results of this chapter are based on

joint work with Osama Hanna in [HGF22].

In Chapter 7, we examine a novel question: how much randomness is needed to achieve

local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy

to multiple analysts, either for distribution or for heavy hitter estimation, using the same

(randomized) output. We call this setting successive refinement of privacy, as it provides

hierarchical access to the raw data with different privacy levels. For example, the same

randomized output could enable one analyst to reconstruct the input, while another can

only estimate the distribution subject to LDP requirements. This extends the classical

Shannon (wiretap) security setting to local differential privacy. We provide (order-wise) tight

characterizations of privacy-utility-randomness trade-offs in several cases for distribution

estimation, including the standard LDP setting under a randomness constraint. We also
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provide a non-trivial privacy mechanism for multi-level privacy. Furthermore, we show that

we cannot reuse random keys over time while preserving privacy of each user. The results of

this chapter are based on our work in [GDC20].

In Chapter 8, we draw conclusions from our work and delve into a prospective discussion

for future exploration within the scope of our work.
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CHAPTER 2

Background

In this chapter, we set up backgrounds and state some preliminary definitions that will be

used throughout the thesis. We state the formal definitions of (central) differential privacy

(DP) in Section 2.1.1. We state the formal definitions of the local differential privacy (LDP)

in Section 2.2. We present the shuffled model of differential privacy in Section 2.3. We also

present the binary randomized response mechanism in Section 2.4.

2.1 Privacy Definitions

Our goal is to understand how to measure privacy for a specific mechanism. Let D =

(d1, . . . , dn) be a dataset collected from n clients, where di ∈ X for i ∈ [n]. Let Alice’s data

d1 be in the dataset D. Let M : X n → Y be a mechanism that is a function of the clients’

dataset D. An intuitive definition of privacy is to say that the mechanism M is private if

an adversary cannot learn much from observing the output of the mechanism M beyond

whatever side information it has access to. In other words, the adversary cannot distinguish

whether the mechanism uses dataset D or D′ = (d′1, d2, . . . , dn) from observing the output

of the mechanism M, where D′ is a neighboring dataset by replacing Alice’s data d1 with

arbitrary data d′1 ∈ X .

The traditional privacy approach is obtained via anonymity [Swe02]. However, such

deterministic approaches for privacy are vulnerable to recovery attacks using side-information.
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For example, Sweeney in [Swe97] was able to re-identify individuals from anonymized medical

records by linking them to public voting registration records. Also, Narayanan et al. in [NS08]

proposed a de-anonymization attack that can recover the anonymized Netflix prize dataset

(containing more than 500, 000 anonymous movie ratings) using the public IMDb dataset

as side-information. There are more examples of de-anonymization attacks of deterministic

mechanisms including Kaggle IJCNN 2011 social network challenge [NSR11] and AOL search

log release in 2006 [BZH06]. As a result, we expect that the mechanism M is randomized to

give more protection to any input dataset D ∈ X n. Thus, for given dataset D, the mechanism

M induces a distribution on the output set Y .

Let d be a measure distance between distributions. Let D = {d1, . . . , dn} denote a

dataset comprising n points from X . We say that two datasets D = {d1, . . . , dn} and

D′ = {d′1, . . . , d′n} are neighboring (and denoted by D ∼ D′) if they differ in one data point,

i.e., there exists an i ∈ [n] such that di 6= d′i and for every j ∈ [n], j 6= i, we have dj = d′j . We

can mathematically measure the privacy of a randomized mechanism by measuring how close

the distribution M(D) and M(D′) using the measure distance d. When the distributions

M(D) and M(D′) are close, an adversary cannot distinguish whether the input dataset is D

or D′, and hence, it preserves privacy. Hence, we can define different privacy notions using

different distance measures d, e.g., KL divergence, total variation distance, and f -divergence.

2.1.1 Differential Privacy (DP)

Differential privacy (DP) [DMN06] has become the de facto standard for measuring privacy

guarantees. DP is mainly based on bounding the max divergence between the worst-case

neighboring datasets.

Definition 2.1.1. (Rényi divergence [EH14]) Let P and Q be probability distributions on

the same space Y . For α ∈ (1,∞], the Rény divergence of a probability distribution P from
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a distribution Q is given by:

Dα (P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α]
for α ∈ (1,∞),

D∞ (P ||Q) = lim
α→∞

Dα (P ||Q) = sup
x∈Y

log

(
P (x)

Q(x)

)
for α =∞,

(2.1)

where we call it max divergence when α =∞.

Definition 2.1.2 (Central Differential Privacy - DP [DMN06, DR14]). For ε, δ ≥ 0, a

randomized mechanism M : X n → Y is said to be (ε, δ)-differentially private (in short,

(ε, δ)-DP), if for all neighboring datasets D ∼ D′ ∈ X n and every subset S ⊆ Y , we have

Pr [M(D) ∈ S] ≤ eε Pr [M(D′) ∈ S] + δ. (2.2)

When δ = 0, we call it pure DP (in short, ε-DP).

Observe that DP guarantees that the distribution on the output of the mechanism M

does not change much by replacing a single data point from the entire dataset. Here, ε

captures the privacy level, the lower the ε0, the higher the privacy. δ can be seen as the failure

probability of satisfying privacy that should be of order δ = o( 1
poly

(n)). DP definition 2.1.2

can be written in the max divergence form as follows. The mechanism M is (ε, δ)-DP if and

only if D∞ (M(D)||M(D′)) ≤ ε for any pair of neighboring datasets D ∼ D′ with probability

1− δ [BS16].

Suppose we have a dataset D′ = {d1, . . . , dn} ∈ X n consisting of n elements from a

universe X . The subsampling operation sampn,k : X n → X k takes a dataset D′ ∈ X n as an

input and selects uniformly at random a subset D′′ of k ≤ n elements from D′. Note that

each element of D′ appears in D′′ with probability q = k
n
. The following result states that

the above subsampling procedure amplifies the privacy guarantees of a DP mechanism.

Lemma 2.1.1 (Amplification by Subsampling [KLN11, Ull17]). Let M : X k → V be an

(ε, δ)-DP mechanism. Then, the mechanism M′ : X n → V defined by M′ =M◦ sampn,k is

(ε′, δ′)-DP, where ε′ = log(1 + q(eε − 1)) and δ′ = qδ with q = k
n

. In particular, when ε < 1,

M′ is (O(qε), qδ)-DP.
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Let M1 (D) , . . . ,MT (D) be a sequence of T DP mechanisms. There are different com-

position theorems in literature to analyze the privacy guarantees of the composed mechanism

M(D) = (M1 (D) , . . . ,MT (D)); the more accessing the data, the more information leakage.

Dwork et al. [DRV10] and Kairouz et al. [KOV15] provided a strong composition theorem

(which is stronger than the basic composition theorem in which the privacy parameters scale

linearly with T ) where the privacy parameter of the composition mechanism scales as
√
T

with some loss in δ. Below, we provide a formal statement of that result from [DR14].

Lemma 2.1.2 (Strong Composition [DR14, Theorem 3.20]). Let M1, . . . ,MT be (ε, δ)-

DP mechanisms, where ε, δ ≥ 0. Then, for any δ′ > 0, the composed mechanism M =

(M1, . . . ,MT ) is (ε, δ)-DP, where[
ε =

√
2T log (1/δ′)ε+ Tε

(
eε − 1

)
, δ = Tδ + δ′.

]
In particular, when ε = O

(√
log(1/δ′)

T

)
, we have ε = O

(
ε
√
T log (1/δ′)

)
.

In interactive applications, we might need to access the data multiple times. For example,

training large-scale machine learning models (e.g., in deep learning) typically requires running

SGD for millions of iterations, as the dimension of the model parameter is quite large. Thus,

the composition of DP mechanisms is useful for such applications.

2.1.2 Rényi Differential Privacy (RDP)

Now, we define Rényi differential privacy (RDP) by bounding the worst-case Rényi divergence.

RDP is useful for composition. Furthermore, we can obtain approximate DP/pure DP from

RDP.

Definition 2.1.3 ((α, ε(α))-RDP (Rényi Differential Privacy) [Mir17]). A randomized mech-

anism M : X n → Y is said to have ε(α)-Rényi differential privacy of order α ∈ (1,∞) (in

short, (α, ε(α))-RDP), if for any neighboring datasets D ∼ D′ ∈ X n, we have

Dα(M(D)||M(D′)) ≤ ε(α).
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Figure 2.1: Adversary model for (a) central DP, (b) local DP, and (c) shuffled DP.

We use the following result for converting the RDP guarantees of a mechanism to its

approximate DP guarantees.

Lemma 2.1.3 (From RDP to DP [CKS20,BBG20a]). Suppose for α > 1, a mechanism M

is (α, ε (α))-RDP. Then, the mechanism M is (ε, δ)-DP, where ε, δ are defined below:

For a given δ ∈ (0, 1) :

ε = min
α
ε (α) +

log (1/δ) + (α− 1) log (1− 1/α)− log (α)

α− 1

For a given ε > 0 :

δ = min
α

exp ((α− 1) (ε (α)− ε))
α− 1

(
1− 1

α

)α
.

The following result states that if we adaptively compose two RDP mechanisms in the

same order, their privacy parameters add up in the resulting mechanism.

Lemma 2.1.4 (Adaptive composition of RDP [Mir17, Proposition 1]). For any α > 1, let

M1 : X → Y1 be a (α, ε1(α))-RDP mechanism and M2 : Y1 ×X → Y be a (α, ε2(α))-RDP

mechanism. Then, the mechanism defined by (M1,M2) satisfies (α, ε1(α) + ε2(α))-RDP.

Now, we prove a useful lemma for conversion from RDP to approximate DP.

Lemma 2.1.5. (Conversion from RDP to approximate DP) For given ρ > 0, let a mechanism

M be (α, αρ)-RDP. For any δ ∈ (0, 1), the mechanism M satisfies (ε, δ)-DP, where ε is

bounded by:

ε ≤ 3 max
{
ρ log(1/δ),

√
ρ log(1/δ)

}
. (2.3)
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Algorithm 2.2.1 : Local Randomizer R2RR
p

1: Public parameter: p

2: Input: b ∈ {0, 1}.

3: Sample γ ← Ber (p)

4: if γ == 0 then

5: y = b−p
1−2p

6: else

7: y = 1−b−p
1−2p

8: Return: The client sends y.

2.2 Local Differential Privacy (LDP)

In Section 2.1.1, we present the notion of central DP and RDP, where we assume that there

exists a trusted server that can collect the raw dataset and apply the private mechanism D

(see Figure 2.1). However, the existence of such a trusted server might be a strong assumption

in distributed systems. In this section, we define local differential privacy (LDP) which is a

powerful concept that allows clients to randomize their individual data points before sharing

them.

Definition 2.2.1 (Local Differential Privacy - LDP [KLN11]). For ε0 ≥ 0, a randomized

mechanism R : X → Y is said to be ε0-local differentially private (in short, ε0-LDP), if for

every pair of inputs d, d′ ∈ X , we have

Pr[R(d) ∈ S] ≤ eε0 Pr[R(d′) ∈ S], ∀S ⊂ Y . (2.4)

Observe that the LDP definition in 2.2.1 is similar to the central DP definition in 2.1.2

with an input dataset D of a single data point.
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2.3 Shuffled Model of Differential Privacy

LDP mechanisms suffer from poor performance in comparison with the centralized DP

mechanisms, making their applicability limited [DWJ13,KLN11,KBR16]. To address this,

a new privacy framework using anonymization has been proposed in the so-called shuffled

model [EFM19,CSU19,BBG19d] that defined as follows. Consider a set of n clients, where

client i ∈ [n] has a data di ∈ X . Let R : X → Y be an ε0-LDP mechanism. The i-th client

applies R on her data di to get a private message yi = R(di). There is a secure shuffler

Hn : Yn → Yn that receives the set of n messages (y1, . . . , yn) and generates the same set of

messages in a uniformly random order, see Figure 2.1. The following lemma states that the

shuffling amplifies the privacy of an LDP mechanism by a factor of O
(

1√
n

)
.

Lemma 2.3.1 (Amplification by Shuffling). Let R be an ε0-LDP mechanism. Then, the

mechanism M(d1, . . . , dn) := Hn ◦ (R(d1), . . . ,R(dn)) satisfies (ε, δ)-differential privacy,

where

1. [BBG19d, Corollary 5.3.1]. If ε0 ≤ log(n/ log(1/δ))
2

, then for any δ > 0, we have

ε = O
(

min{ε0, 1}eε0
√

log(1/δ)
n

)
.

2. [EFM19, Corollary 9]. If ε0 <
1
2
, then for any δ ∈ (0, 1

100
) and n ≥ 1000, we have

ε = 12ε0

√
log(1/δ)

n
.

In Chapter 5, we characterize the RDP of the shuffled model M. Furthermore, we

characterize the RDP of the subsampled shuffled model, where we sample a subset of clients

before shuffling.

2.4 Binary Randomized Response

In our algorithms, we use an unbiased version of the classical binary randomized response

(2RR) [War65] whose input is a bit b ∈ {0, 1} and the output is b−p
1−2p

w.p. 1− p and 1−b−p
1−2p
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w.p. p, where p ∈ [0, 1/2) controls the privacy-utility trade-off (see Algorithm 2.2.1.

Theorem 2.4.1. For any p ∈ [0, 1/2), the 2RR is ε0-LDP, where ε0 = log
(

1−p
p

)
. The

output y of the 2RR mechanism is an unbiased estimate of b with bounded MSE:

MSE2RR = sup
b}∈{0,1

E
[
‖b− y‖2

2

]
=

p(1− p)
(1− 2p)2

. (2.5)

Theorem 2.4.1 gives an upper bound on the mean square error (MSE) of the 2RR

mechanism. For completeness, we present its proof in Section A.2. Next, we present the

following lemma which is useful for bounding the privacy parameter (ε0) of our mechanisms

which depend on the binary randomized response. The proof is presented in Section A.3.

Lemma 2.4.1. (Privacy parameter) For any v > 0, by setting p = 1
2

(
1−

√
v2

v2+4

)
, the 2RR

mechanism with parameter p satisfies ε0-LDP, where ε0 ≤ v.
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CHAPTER 3

Distributed Mean Estimation (DME)

In this chapter, we study distributed mean estimation (DME) under privacy and com-

munication constraints in the local differential privacy (LDP) and multi-message shuffled

privacy frameworks. The DME has wide applications in both federated learning and ana-

lytics. We propose communication-efficient algorithms for privately estimating the mean of

bounded norm vectors. We also provide lower bounds for mean estimation with privacy and

communication constraints for arbitrary `p-norm spaces. We show that our algorithms have

order-optimal privacy-communication-performance trade-offs.

3.1 Introduction

We consider distributed mean estimation (DME) problem, where a set of clients are connected

to a (untrusted) server to estimate the average of the clients’ data. DME has wide applications

including federated learning (FL), in which the central server estimates the mean of the

local updates at each round (see e.g., FedAvg [MMR17]). However, DME faces two major

challenges in the real world. (i) Privacy: the clients’ data might contain sensitive information,

and hence, each client wants to preserve privacy of her own local data. (ii) Communication:

the connection between the server and clients might be over wireless/band-limited networks,

and hence, the communication becomes a bottleneck for estimation. In this chapter, we

focus on the local differential privacy (LDP) model. LDP mechanisms suffer from the utility

degradation that motivates other work to find alternative techniques to improve the utility

under LDP. One of new developments in privacy is the use of anonymization to amplify the
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privacy by using secure shuffler. In [CSU19, BBG19d, BBG20b], the authors studied the

mean estimation problem under LDP with secure shuffler, where they show that the shuffling

provides better utility than the LDP framework without shuffling. Thus, we consider the

shuffled model of differential privacy (DP), where the clients are connected to the server

through a secure shuffler that randomly permutes the clients’ responses before passing them

to the server [BEM17,EFM19,CSU19].

We propose mechanisms for DME of bounded binary, `1-norm, `∞-norm, and `2-norm

vectors. In addition, we provide information-theoretic lower bounds for estimating the mean

of bounded `p-norm vectors with privacy and communication constraints. We show that our

proposed schemes achieve order-optimal privacy-communication-accuracy trade-offs for LDP

and shuffled model privacy frameworks. The core technical idea of our proposed scheme

consists of three stages as follows. The first stage is the encoding by transforming the vectors

from the original space to the encoded space. For example, we use Hadamard matrix to

encode the bounded `1-norm vectors and Kashin’s representation or matrix rotation to encode

the bounded `2-norm vectors. The second stage is the compression by appropriately sampling

the coordinates and using finite number of bits to represent the real vectors. The third stage

is the privacy. Our core idea for privacy is to apply private-waterfilling to privatize the binary

bits, where we allocate unequal privacy for different binary vectors. We allocate increasing

privacy with the order of bits, i.e., lower privacy for most significant bits (MSBs); this gives

better performance in terms of mean squared error (MSE), as MSBs are more important.

This, combined with careful accounting for the composition using RDP, gives our privacy

guarantees and performance.

Organization The remainder of this chapter is organized as follows. We present the

problem setup in Section 3.2. We provide lower and upper bounds for mean estimation

with privacy and communication constraints for bounded `1-norm vectors in Section 3.4.

We present algorithms for privately estimating the mean of binary vectors in Section 3.3.

16



We provide lower and upper bounds for mean estimation with privacy and communication

constraints for bounded `∞-norm vectors in Section 3.5 and for bounded `2-norm vectors

in Section 3.6. We study DME under user-level privacy in Section 3.7. We give numerical

results evaluating the performance of our proposed schemes in Section 3.8. Some proof are

delegated to Appendix B.

3.2 Problem Formulation

We consider a set of n clients. Each client has a vector xi ∈ X for i ∈ [n], where X ⊂ Rd

denotes a bounded subset of all possible inputs. For example, X , Bd2(r2) denotes the d

dimensional ball with radius r2, i.e., each vector xi satisfies ‖xi‖2 ≤ r2 for i ∈ [n]. Furthermore,

each client has a communication budget of b-bits. The clients are connected to an (untrusted)

server that wants to estimate the mean x = 1
n

∑n
i=1 xi. We consider two distributed privacy

models.

LDP Model In the LDP model, we design two mechanisms as depicted in Figure 3.1:

(i) Client-side mechanism R : X → Y and (ii) Server aggregator A : Yn → Rd. The local

randomizer R takes an input xi ∈ X and generates a randomized output yi ∈ Y. In LDP

model, the local randomizer R satisfies privacy and communication constraints as follows.

The output yi = R (xi) can be represented using only b-bits, as well as, it satisfies ε0-LDP.

Each client sends the output yi directly to the server, which applies the aggregator A to

estimate the mean x̂ = A (y1, . . . ,yn) such that the estimated mean x̂ is an unbiased estimate

of the true mean x.

Shuffle Model The multi-message shuffled model is similar to the LDP model but with

secure shufflers which anonymize the clients’ identities to the server. Precisely, the L-message

shuffled model consists of three parameters (R,S,A) as depicted in Figure 3.1: (i) Encode:

a local randomizer R : X → YL, where the output yi = R(xi) = (y
(1)
i , . . . ,y

(L)
i ) consists
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of L messages. The local randomizer satisfies communication constraints in which the

output yi can be represented using b communication bits. (ii) Shuffle: a single shuffler

S(k) : Yn → Yn, for k ∈ [L], generates a random permutation of the received n reports:

y(k) = S(k)
(
y

(k)
1 , . . . , y

(k)
n

)
, where the kth message of each client is sent to the kth shuffler.

(iii) Analyze: a server aggregator A :
(
YL
)n → Rd is applied to the received messages from

the L shufflers to estimate the mean x̂ = A
(
y(1), . . . ,y(L)

)
. We say that the shuffled model

is (ε, δ)-DP if the view of the output of the shufflers {y(1), . . . ,y(L)} satisfies (ε, δ)-DP.

Remark 3.2.1 (parallel shufflers vs single shuffler). Observe that we describe the multi-

message shuffle model using L independent shufflers, where each shuffler receives a single

message from each client. We can also represent the multi-message shuffle model with a

single shuffler that receives the total nL messages from all clients by indexing the messages of

each client with a slight increase of the communication cost, see [BBG20b] for more details.

In the two privacy models, the performance of the estimator x̂ is measured by:

MSE = sup
{xi∈X}

E
[
‖x̂− x‖2

2

]
, (3.1)

where the expectation is taken over the randomness of the private mechanisms. Our goal is

to design communication-efficient and private schemes to generate an unbiased estimate of

x while minimizing the expected loss (3.1). We start by the DME of binary vectors, where

X , {0, 1}d. Then, we study the DME for bounded `∞-norm i.e., ‖xi‖∞ ≤ r∞ and bounded

`2-norm vectors, where ‖xi‖2 ≤ r2.

3.3 DME for Binary Vectors

In this section, we consider binary vectors: bi ∈ {0, 1}d for i ∈ [n]. The server wants to

estimate the mean b = 1
n

∑n
i=1 bi. The binary vector mechanism is the main building block

of the next algorithms. This problem is a generalization to the scalar binary summation

problem studied in [CSU19]. A straightforward solution is to apply the scalar mechanism
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Figure 3.1: DME under privacy and communication constraints: (a) Local differential privacy

(LDP) model of n clients. (b) An L-message shuffled (MMS) model of n clients

in [CSU19] per coordinate that requires d bits per client. Our private mechanisms require

O (min{ε0, d}) and O (min{nmin{ε2, ε}, d}) communication bits per client in the LDP and

shuffled models, respectively.

The client-side mechanism is presented in Algorithm 3.3.1, where the parameter s deter-

mines the communication budget per client and the parameter v determines the total privacy

budget (see Theorem 3.3.1). For given s ∈ {1, . . . , d}, each client splits the binary vector

bi into s sub-vectors, each with dimension a = dd
s
e. Then, the client chooses uniformly at

random one coordinate from each sub-vector and privatizes its bit using the binary randomized

response (2RR) Algorithm 2.2.1 in Section 2.4. Observe that the output of Algorithm 3.3.1

can be represented as a sparse d-dimensional vector with only s non-zero coordinates.

When s = d, each client applies the 2RR mechanism on each coordinate separately. On

the other hand, when s = 1, each client chooses uniformly at random one coordinate and

applies the 2RR mechanism. Thus, we get trade-offs between privacy-communication and

accuracy. The server aggregator ABin is simply aggregating the received randomized bits. We

present the aggregator ABin in Algorithm 3.3.2.

Below, we state the bound on the MSE of the proposed mechanisms in the LDP and

shuffled models. The proofs are presented in Section 3.3.1. Furthermore, we present RDP

guarantees of our mechanisms for both LDP and shuffled models in the detailed proofs in

Section 3.3.1.
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Algorithm 3.3.1 : Local Randomizer RBin
v,s

1: Public parameter: Privacy parameter v, and communication budget s.

2: Input: bi ∈ {0, 1}d.

3: If d
s

is not integer, add (sdd
s
e − d) dummy zeros to the binary vector b. Let a← d

s
.

4: p← 1
2

(
1−

√
v2/s2

v2/s2+4

)
5: for j ∈ [s] do

6: Choose uniformly at random one coordinate aij ← Unif ({(j − 1)a+ 1, . . . , ja}).

7: yij ← aR2RR
p (bi[aij])

8: Return: The client sends s messages Yi ← {(ai1, yi1) , . . . , (ais, yis)}.

Theorem 3.3.1 (LDP model). The output of the local mechanism RBin
v,s can be represented

using s (log (dd/se) + 1)-bits. By choosing v = ε0, the mechanism RBin
v,s satisfies ε0-LDP. Let

b̂ be the output of the analyzer ABin. The estimator b̂ is an unbiased estimate of b with

MSE:

MSEBin
ldp = O

(
d2

n
max

{
1

s
,
s

ε2
0

})
. (3.2)

Now, we move to the shuffled model, where we assume there exists a secure shuffler that

randomly permutes the set of messages {Yi : i ∈ [n]} from the n clients.

Theorem 3.3.2 (MMS model). The output of the local mechanism RBin
v,s can be represented

using s (log (dd/se) + 1) bits. For every n ∈ N, ε ≤ s, and δ ∈ (0, 1), shuffling the outputs of

n mechanisms RBin
v,s satisfies (ε, δ)-DP by choosing v2 = snmin{ε2,ε}

144 log(1/δ)
. Let b̂ be the output of

the analyzer ABin. The estimator b̂ is an unbiased estimate of b with MSE:

MSEBin
shuffle = O

(
d2

n2
max

{
n

(
1

s
− 1

d

)
,

log (1/δ)

min{ε2, ε}

})
. (3.3)

Observe that the MSE in (3.2) and (3.3) consists of two terms. The first term represents

the communication cost for sending s coordinates out of d coordinates. The second term

represents the cost of privacy to randomize the randomly chosen s coordinates. Theorem 3.3.1

shows that each client has to send s = min{dε0e, d} communication bits to achieve MSE
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Algorithm 3.3.2 : Analyzer ABin

1: Inputs: Y1, . . . ,Yn, where Yi consists of s messages of a pair (aij, yij) for j ∈ [s] and

i ∈ [n].

2: b̂← 0d

3: for i ∈ [n] do

4: for j ∈ [s] do

5: b̂[aij]← b̂[aij] + yij.

6: b̂← 1
n
b̂

7: Return: The server returns b̂.

O
(

d2

nmin{ε0,ε20}

)
in the LDP model. Similarly, Theorem 3.3.2 shows that each client has to send

s = O (min{n{ε2, ε}, d}) communication bits to achieve MSE O
(

d2

n2{ε2,ε}

)
that matches the

MSE of central DP mechanisms. For the scalar case when d = 1, our results in Theorem 3.3.2

match the optimal MSE as in [CSU19].

3.3.1 Proofs of Theorem 3.3.1 and Theorem 3.3.2 (Binary vectors)

Communication Bound for Theorem 3.3.1 and Theorem 3.3.2 Observe that each

client sends s messages; each message consists of a pair (aij, yij), where aij is drawn uniformly

at random from dd
s
e values and yij is a binary element. Hence, each message requires log

(
dd
s
e
)
+

1 bits. As a result the total communication bits per client is given by s
(
log
(
dd
s
e
)

+ 1
)
-bits.

Privacy of the LDP model in Theorem 3.3.1 In the mechanism RBin
v,s , each client

sends s messages of the 2RR mechanism ((ai1, yi1) , . . . , (ais, yis)) with parameter p =

1
2

(
1−

√
ε20/s

2

ε20/s
2+4

)
. Hence, from Lemma 2.4.1, each message is ε0

s
-LDP. As a results, the total

mechanism RBin
v,s is ε0-LDP from the composition of the DP mechanisms [DR14] when v = ε0.
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In addition, we can bound the RDP of the mechanism RBin
v,s in the LDP model by using the

composition of the RDP (see Lemma 2.1.4). From the proof of Theorem 2.4.1 in Section 2.4,

the 2RR mechanism is (α, ε (α))-RDP, where ε (α) is bounded by:

ε (α) =
1

α− 1
log
(
pα(1− p)1−α + p1−α(1− p)α

)
, (3.4)

In the mechanism RBin
v,s , each client sends s messages of the 2RR mechanism. Hence, the

mechanism RBin
v,s is (α, sε (α))-RDP, where ε (α) is given is (3.4).

Privacy of the MMS model in Theorem 3.3.2 In the mechanism RBin
v,s , each client

sends s messages of the 2RR mechanism ((ai1, yi1) , . . . , (ais, yis)). For simplicity, assume

that there exist s shufflers, where the kth shuffler randomly permutes the set of messages

{(aik, yik) : i ∈ [n]} from the n clients. Hence from composition of the RDP, it is sufficient to

bound the RDP of shuffling n outputs of the 2RR mechanism.

We use the recent results of privacy amplification by shuffling that we will discuss in more

details in Chapter 5.

Lemma 3.3.1. [GDD21e] For any n ∈ N, ε0 > 0, and α such that α4e5ε0 ≤ n
9
, the output

of shuffling n messages of an ε0-LDP mechanism is (α, ε (α))-RDP, where ε (α) is bounded

by:

ε (α) ≤ 1

α− 1
log

(
1 + α(α− 1)

2 (eε0 − 1)2

n

)
≤ 2α

(eε0 − 1)2

n
(3.5)

See Theorem 5.4 in Chapter 5 for more details. Recently [FMT23] improved the dependence

on ε0 of the result in [GDD21e] by showing the following.

Lemma 3.3.2. [FMT23][Corollary 4.3] For any n ∈ N, ε0 > 0, and α ≤ n
16ε0eε0

, the output

of shuffling n messages of an ε0-LDP mechanism is (α, ε (α))-RDP, where ε (α) is bounded

by:

ε (α) ≤ α
48 (eε0 − 1)2

neε0
. (3.6)
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From Theorem 2.4.1, each single message of the client is ε0 = log
(

1−p
p

)
-LDP. Hence,

from Lemma 3.3.2, the output of a single shuffler is (α, ε̃ (α))-RDP, where ε̃ (α) ≤ 48α (1−2p)2

np(1−p) .

Thus, from composition, the output of the s shufflers is (α, ε (α))-RDP, where ε (α) is bounded

by:

ε (α) ≤ 48α
s(1− 2p)2

np(1− p)
. (3.7)

Observe that (3.7) gives a closed form bound on the RDP of the mechanism RBin
v,s in the

shuffled model. However, we can numerically provide better bound on the RDP of the shuffle

model using [GDD21e,FMT23]. By setting p = 1
2

(
1−

√
v2/s2

v2/s2+4

)
, we get that (1−2p)2

p(1−p) = v2/s2,

and hence, ε (α) ≤ 48αv2/(sn). Now, we use Lemmas 2.1.5 in Section 2.4 to convert from

RDP to approximate DP, where ρ = 48v2/(sn). For given δ > 0, shuffling the outputs of n

mechanisms RBin
v,s is (ε, δ)-DP, where ε is bounded by

ε ≤ 3 max

{
48v2

sn
log (1/δ) ,

√
48v2

sn
log (1/δ)

}
. (3.8)

By setting v2 = snmin{ε2,ε}
144 log(1/δ)

, we can easily show that (3.8) is satisfied, and hence, the output

of the shufflers is (ε, δ)-DP.

MSE bound of the local DP model (Theorem 3.3.1) and shuffle model (Theo-

rem 3.3.2) For ease of analysis, we assume in the remaining part that d
s

is integer, otherwise,

we can add dummy sdd
s
e − d zeros to the vector bi to make the size of the vector divisible

by s. Now, we show that the output of the mechanism RBin
v,s is unbiased estimate of bi.

Let Yi be the output of Algorithm 3.3.1 and a = d
s
. We can represent the output Yi as

a vector of dimension d that has s non-zero elements as follows: yi = [yi1, . . . ,yis], where

yij = aR2RR
p (bi[aij]) eaij is a sub-vector of a dimensions that has only one non-zero element.
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Then, we have

E [yij] =
1

a

ja∑
aij=(j−1)a+1

aeaijE
[
R2RR
p (bi[aij])

]
(a)
=

ja∑
aij=(j−1)a+1

eaijbi[aij] = bi[(j − 1)a+ 1 : ja],

(3.9)

where ej denotes the jth basis vector and (a) follows from the fact that the mechanism R2RR
p

shown in Theorem 2.4.1 is unbiased. bi [l : m] denotes the values of the coordinates l, l +

1, . . . ,m. As a result, we have that E [yi] = [E [yi1] , . . . ,E [yis]] = bi. Hence, Algorithm 3.3.1

is an unbiased estimate of the input bi. Furthermore, the variance of Algorithm 3.3.1 is

bounded by:

E
[
‖yi − bi‖2

2

]
=

s∑
j=1

E
[
‖yij − bi[(j − 1)a+ 1 : ja]‖2

2

]
=

s∑
j=1

1

a

ja∑
aij=(j−1)a+1

E
[
‖aeaijR2RR

p (bi[aij])− bi[(j − 1)a+ 1 : ja]‖2
]

=
1

a

s∑
j=1

ja∑
aij=(j−1)a+1

E

[
‖eaijaR2RR

p (bi[aij])− eaijabi[aij]

+ eaijabi[aij]− bi[(j − 1)a+ 1 : ja]‖2

]
(a)
=

1

a

s∑
j=1

ja∑
aij=(j−1)a+1

E
[
‖eaijaRBin

p (bi[aij])− eaijabi[aij]‖2
]

+ ‖eaijabi[aij]− bi[(j − 1)a+ 1 : ja]‖2

(b)
=
sa2p(1− p)
(1− 2p)2

+
1

a

d∑
j=1

(
(a− 1)2 + (a− 1)

)
b2
i [j]

=
sa2p(1− p)
(1− 2p)2

+
(a− 1) ((a− 1) + 1)

a

d∑
j=1

b2
i [j]

=
a2sp(1− p)
(1− 2p)2

+ (a− 1)‖bi‖2
(c)

≤ sa2p(1− p)
(1− 2p)2

+ (a− 1)d

(d)
=
s3a2

v2
+ (a− 1)d = d2

(
1

s
− 1

d
+

s

v2

)
,

(3.10)
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where (a) follows from the fact that the 2RR mechanism R2RR
p is unbiased and (b) from the

variance of the 2RR mechanism R2RR
p (see Theorem 2.4.1). Step (c) follows from the fact

that ‖bi‖2 ≤ d. Step (d) follows from the fact that p = 1
2

(
1−

√
v2/s2

v2/s2+4

)
. Hence, we can

bound the MSE in the local DP model and the shuffle model as follows.

MSE for the local DP model (Theorem 3.3.1): Observe that the output of the

server b̂ = ABin (Y1, . . . ,Yn) can be represented as b̂ = 1
n

∑n
i=1 yi, where yi is the sparse

representation of the i-th client private message discussed above. By setting v2 = ε2
0, we have

that:

MSEBin
ldp = sup

{bi∈{0,1}d}
E
[
‖b̂− b‖2

2

]
(a)
=

1

n2

n∑
i=1

E
[
‖yi − bi‖2

2

] (b)

≤ d2

n

(
1

s
− 1

d
+

s

v2

)
(c)
=
d2

n

((
1

s
− 1

d

)
+

s

ε2
0

)
= O

(
d2

n
max

{
1

s
,
s

ε2
0

})
,

(3.11)

where (a) follows from the i.i.d of the random mechanisms RBin
v,s . Step (b) follows from the

variance of the mechanism RBin
v,s in (3.10). Step (c) follows from substituting v2 = ε2

0. This

completes the proof of Theorem 3.3.1.

MSE for the MMS model (Theorem 3.3.2): Observe that the output of the

server b̂ = ABin (Y1, . . . ,Yn) can be represented as b̂ = 1
n

∑n
i=1 yi, where yi is the sparse

representation of the i-th client private message discussed above. By setting v2 = snmin{ε2,ε}
144 log(1/δ)

,

we have that:

MSEBin
shuffle = sup

{bi∈{0,1}d}
E
[
‖b̂− b‖2

2

]
(a)
=

1

n2

n∑
i=1

E
[
‖yi − bi‖2

2

] (b)

≤ d2

n

(
1

s
− 1

d
+

s

v2

)
(c)
=
d2

n2

(
n

(
1

s
− 1

d

)
+

144 log(1/δ)

min{ε2, ε}

)
= O

(
d2

n2
max

{
n

(
1

s
− 1

d

)
,

log(1/δ)

min{ε2, ε}

})
,

(3.12)

where (a) follows from the i.i.d of the random mechanisms RBin
v,s . Step (b) follows from the

variance of the mechanism RBin
v,s in (3.10). Step (c) follows from substituting v2 = snmin{ε2,ε}

144 log(1/δ)
.
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This completes the proof of Theorem 3.3.2.

3.4 DME for Bounded `1-norm Vectors

In this Section, we consider the DME problem for bounded `1-norm vectors, where ‖xi‖1 ≤ r1

for i ∈ [n]. we propose an ε0-LDP mechanism that requires O (log(d))-bits of communication

per client using private randomness and 1-bit of communication per client using public

randomness. The proposed mechanism is based on the Hadamard matrix and is inspired

from the Hadamard mechanism proposed by Acharya et al. [ASZ19]. We assume that d is a

power of 2. Let Hd denote the Hadamard matrix of order d, which can be constructed by the

following recursive mechanism:

Hd =

Hd/2 Hd/2

Hd/2 −Hd/2

 H1 =
[
1
]

Client i has an input xi ∈ Bd1 (r1). It computes yi = 1√
d
Hdxi. Note that each coordinate of

yi lies in the interval [−r1/√d, r1/√d]. Client i selects j ∼ Unif [d] and quantize yi[j] privately

according to (3.13) and obtains zi ∈
{
±aHd(j)

(
eε0+1
eε0−1

)}
, which can be represented using only

1-bit. Here, Hd(j) denotes the j-th column of the Hadamard matrix Hd. Server receives the n

messages {z1, . . . ,zn} from the clients and outputs their average 1
n

∑n
i=1 zi. We present this

mechanism in Algorithm 3.4.1. The server analyzer A`1 is averaging the messages received

from the clients.

Theorem 3.4.1 (Local DP model). The output of the local mechanism R`1
ε0

can be represented

using log(d)+1 bits. The mechanism R`1
ε0

satisfies ε0-LDP. Let x̂ be the output of the analyzer

A`1. For ε0 ≤ 1, the estimator x̂ is an unbiased estimate of x = 1
n

∑n
i=1 xi with bounded

MSE:

MSE`1LDP = sup
{xi∈Bd1(r1)}

E
[
‖x̂− x‖2

2

]
= O

(
r2

1d

nε2
0

)
. (3.14)

Theorem 3.4.2 (MMS model). The output of the local mechanism R`1
ε0

can be represented

using log(d) + 1 bits. For every n ∈ N, δ ∈ (0, 1), and ε ≤
√

log(1/δ)
n

, shuffling the outputs of
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Algorithm 3.4.1 Local Randomizer R`1
ε0

1: Input: Vector x ∈ Bd1 (r1), and local privacy level ε0 > 0.

2: Construct yi = 1√
d
Hdxi

3: Sample j ∼ Unif[d] and quantize yi[j] as follows:

zi =

 +r1Hd (j)
(
eε0+1
eε0−1

)
w.p. 1

2
+
√
dyi[j]
2r1

eε0−1
eε0+1

−aHd (j)
(
eε0+1
eε0−1

)
w.p. 1

2
−
√
dyi[j]
2r1

eε0−1
eε0+1

(3.13)

4: Return zi.

n mechanisms R`1
ε0

satisfies (ε, δ)-DP by choosing ε0 = ε
√

n
log(1/δ)

. Let x̂ be the output of the

analyzer A`1. The estimator x̂ is an unbiased estimate of x = 1
n

∑n
i=1 xi with bounded MSE:

MSE`1MMS = sup
{xi∈Bd1(r1)}

E
[
‖x̂− x‖2

2

]
= O

(
r2

1d log(1/δ)

n2ε2

)
. (3.15)

The proofs of Theorem 3.4.1 and Theorem 3.4.2 are obtained from the following Lemma

whose proof is presented in Appendix B.2

Lemma 3.4.1. The mechanism R`1
ε0

presented in Algorithm 3.4.1 satisfies the following

properties, where ε0 > 0:

1. R`1
ε0

is ε0-LDP that requires only 1-bit of communication using public randomness and

O (log(d))-bits using private randomness.

2. R`1
ε0

is unbiased and has bounded variance, i.e., for every x ∈ Bd1 (r1), we have

E
[
R`1
ε0

(x)
]

= x and

E‖R`1
ε0

(x)− x‖2
2 ≤ r2

1d

(
eε0 + 1

eε0 − 1

)2

.

Theorem 3.4.1 is obtained directly from Lemma 3.4.1 and the independent randomness for

different clients. Theorem 3.4.2 is obtained from Theorem 3.4.1 and the privacy amplification

by shuffling results from [BBG19d,FMT22].

27



Remark 3.4.1 (Achievable scheme for bounded `p-norm, p ∈ [1, 2)). Observe that from

the norm inequality for any 1 ≤ p ≤ q, we have that ‖x‖q ≤ ‖x‖p. Thus, we have that

Bdp(r) ⊂ Bd1(r) for any p ∈ [1, 2). As a result, we can bound the MSE for general `p-norm for

p ∈ [1, 2) as MSE
`p
LDP ≤ MSE`1LDP and MSE

`p
MMS ≤ MSE`1MMS

Now, we present lower bound on the MSE of the DME under LDP constraints.

Theorem 3.4.3 (Lower Bound For Local DP model). Let n, d ∈ N, ε0 > 0. For any

x1, . . . ,xn ∈ Bdp(rp) and p ∈ [1, 2), the MSE is bounded below by:

MSE
`p
LDP = Ω

(
r2
pd

nε2
0

)
(3.16)

for any unbiased algorithm R that is ε0-LDP.

The proof of Theorem 3.4.3 is presented in Section 3.4.1. Note that when ε0 = O(1), then

the upper and lower bounds on minimax risks match for estimating the mean of bounded

`p-norm vectors for p ∈ [1, 2).

3.4.1 Lower Bound on MSE for `1-norm under LDP constraints

In this section, we prove Theorem 3.4.3. Fix an arbitrary p ∈ [1, 2). Let Pdp denote the set

of all possible distributions on the `p ball Bdp. Note that ‖x‖p ≤ ‖x‖1, which implies that

Bd1 ⊂ Bdp, and therefore, we have Pd1 ⊂ Pdp . These imply that the lower bound derived for Pd1
also holds for Pdp . So, in the following, we only lower-bound MSE`1LDP. The main idea of the

lower bound is to transform the problem to the private discrete distribution estimation when

the inputs are sampled from a discrete distribution taken from a simplex in d dimensions.

Note that q ∈ Pd1 may be a continuous distribution supported over all of Bd1. Let P̂d1 denote

a set of all discrete distributions q supported over the d standard basis vectors e1, . . . , ed,

i.e., the distribution has support on {e1, . . . , ed}. Since {e1, . . . , ed} ⊂ Bd1 , we have P̂d1 ⊂ Pd1 .

Moreover, since any q ∈ P̂d1 is a discrete distribution, by abusing notation, we describe q

through a d−dimensional vector q of its probability mass function. Note that, for any q ∈ P̂d1 ,
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the average over this distribution is µq = Eq[U], where Eq[·] denotes the expectation over

the distribution q for a discrete random variable U ∼ q, where we denote qi = Pr[U = ei].

Therefore we have µq =
∑d

i=1 qiei = (q1, . . . , qd)
T = q, for every q ∈ P̂d1 . Let ∆d denote the

probability simplex in d dimensions. Since the discrete distribution q ∈ P̂d1 can be represented

as q ∈ ∆d, we have an isomorphism between ∆d and P̂d1 , i.e., we can equivalently think

of P̂d1 = ∆d. Fix arbitrary ε0-LDP mechanisms R and an estimator x̂. Using the above

notations and observations, we have:

sup
q∈Pd1

E
∥∥µq − x̂∥∥2

2
≥ sup
q∈P̂d1

E
∥∥µq − x̂∥∥2

2

= sup
q∈P̂d1

E ‖q − x̂‖2
2 .

(3.17)

In Chapter 7, we lower-bounded the RHS of (3.17) in the context of characterizing a

privacy-utility-randomness trade-offs in LDP. When specializing to our setting, where we

are not concerned about the amount of randomness used, our lower bound result gives

MSE
`p
LDP ≥ Ω

(
min

{
1, d

nε20

})
. This completes the proof of Theorem 3.4.3.

3.5 DME for Bounded `∞-norm Vectors

In this Section, we consider the DME problem for bounded `∞-norm vectors, where ‖xi‖∞ ≤

r∞ for i ∈ [n]. For ease of operation, we will scale each vector such that each coordinate

becomes bounded in range [0, 1], and then re-scale it at the server-side. Let zi = xi+r∞
2r∞

, where

the operations are done coordinate-wise. Thus, we have that zi[j] ∈ [0, 1] for all j ∈ [d] and

i ∈ [n], where zi[j] denotes the jth coordinate of the vector zi. Observe that the vector zi can

be decomposed into a weighted summation of binary vectors b
(k)
i ∈ {0, 1}d,∀k ≥ 1 as follows:

zi =
∞∑
k=1

b
(k)
i 2−k, (3.18)

where b
(k)
i = b2k

(
zi − z

(k−1)
i

)
c, k ≥ 1 such that z

(0)
i = 0 and z

(k)
i =

∑k
l=1 b

(l)
i 2−l. To

make our mechanism communication efficient, each client approximates the vector zi by
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using the first m binary vectors {b(k)
i : 1 ≤ k ≤ m}. Note that the first m binary vectors

together give an approximation to the real vector zi with error ‖zi − z
(m)
i ‖2

2 ≤ d/4m, where

z
(m)
i =

∑m
k=1 b

(k)
i 2−k. However, this mechanism creates a biased estimate of zi. Hence, to

design an unbiased mechanism, the client approximates the vector zi using the first m− 1

binary vectors {b(k)
i : 1 ≤ k ≤ m− 1} of the binary representation above and the last binary

vector (ui) is reserved for unbiasedness as follows:

ui[j] = Bern
(

2m−1(zi[j]− z
(m−1)
i [j])

)
, (3.19)

where z
(m−1)
i =

∑m−1
k=1 b

(k)
i 2−k and Bern(p) denotes Bernoulli random variable with bias p.

For completeness, we prove some properties of this quantization scheme in Section 3.5.1.

Then, we estimate the mean of binary vectors {b(k)
i ∈ {0, 1}d : i ∈ [n]} using Algorithm 3.3.1

with different privacy guarantees for each level k ∈ [m], where we allocate lower privacy

(higher privacy parameter vk) for the most significant bits (MSBs) (lower k) in order to get

better performance in terms of the MSE.

The private DME mechanism is given in Algorithm 3.5.1, where v controls the total

privacy of the mechanism. There are two communication parameters: m controls the number

of levels for quantization and s controls the number of dimensions used to represent each

binary vector. In Theorems 3.5.1 and 3.5.2, we present how the privacy and communication

parameters v,m, s affects the accuracy of the mechanism. The server aggregator A`∞ is

presented in Algorithm 3.5.2, where the server first estimates the mean of each binary vectors

{b(k)
i : i ∈ [n]} for k ∈ [m− 1] and decodes the messages to generate an estimate of the true

mean z = 1
n

∑n
i=1 zi. Then, the server scales the vector z to generate an unbiased estimate of

the mean x. We prove the bound on the MSE of our proposed mechanism for the LDP and

MMS models in the following theorems. We defer the proofs to Section 3.5.2.

Theorem 3.5.1 (Local DP model). The output of the local mechanism R`∞
v,m,s can be

represented using ms (log (dd/se) + 1) bits. By choosing v = ε0, the mechanism R`∞
v,m,s

satisfies ε0-LDP. Let x̂ be the output of the analyzer A`∞. The estimator x̂ is an unbiased
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Algorithm 3.5.1 : Local Randomizer R`∞
v,m,s

1: Public parameter: Privacy budget v, communication levels m, and coordinate sampling

per level s.

2: Input: xi ∈ Bd∞ (r∞).

3: zi ← (xi + r∞) /2r∞

4: z
(0)
i ← 0

5: for k = 1, . . . ,m− 1 do

6: b
(k)
i ← b2k(zi − z

(k−1)
i )c

7: vk ← 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v
8: Y(k)

i ← RBin
vk,s

(b
(k)
i )

9: z
(k)
i ← z

(k−1)
i + b

(k)
i 2−k

10: Sample ui ← Bern
(

2m−1
(
zi − z

(m−1)
i

))
11: vm ← 4

−m+1
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v
12: Y(m)

i ← RBin
vm,s(ui)

13: Return: The client sends Yi ←
{
Y(1)
i , . . . ,Y(m)

i

}
.

estimate of x = 1
n

∑n
i=1 xi with bounded MSE:

MSE`∞LDP = sup
{xi∈Bd∞(r∞)}

E
[
‖x̂− x‖2

2

]
= O

(
r2
∞d

2

n
max

{
1

d4m
,
1

s
,
s

ε2
0

})
. (3.20)

Theorem 3.5.2 (MMS model). The output of the local mechanism R`∞
v,m,s can be represented

using ms (log (dd/se) + 1) bits. For every n ∈ N, ε ≤ ms, and δ ∈ (0, 1), shuffling the outputs

of n mechanisms R`∞
v,m,s satisfies (ε, δ)-DP by choosing v2 = snmin{ε2,ε}

144 log(1/δ)
. Let x̂ be the output

of the analyzer A`∞. The estimator x̂ is an unbiased estimate of x = 1
n

∑n
i=1 xi with bounded

MSE:

MSE`∞MMS = sup
{xi∈Bd∞(r∞)}

E
[
‖x̂− x‖2

2

]
= O

(
r2
∞d

2

n2
max

{
n

d4m
, n

(
1

s
− 1

d

)
,

log (1/δ)

min{ε2, ε}

})
.

(3.21)

31



Observe that the MSE in (3.20) and (3.21) consists of three terms. The first term is the

communication cost of quantizing the real vector zi using m binary vectors. The second term

represents the communication cost of sending s out of d coordinates from each binary vector.

The third term is the privacy cost to randomize the binary vectors. Theorem 3.5.1 shows that

each client has to set m = 1 and s = dε0e of total O (dε0e) communication bits to achieve

MSE O
(

d2

nmin{ε0,ε20}

)
when ε0 ≤ d. Similarly, by setting m = max{1, dlog (nmin{ε2, ε}/d)e}

and s = O (min{n{ε2, ε}, d}) in Theorem 3.5.2, the MSE is bounded by O
(

d2

n2 min{ε2,ε}

)
,

which matches the MSE of central differential privacy mechanisms with total communication

cost of O
(
d log

(
nmin{ε2,ε}

d

))
when d ≤ nmin{ε2, ε} and O

(
n{ε2, ε} log

(
d

n{ε2,ε}

))
when

d > n{ε2, ε}.

Remark 3.5.1 (Scalar case). When d = 1, i.e., scalar case, our MMS algorithm achieves

the central DP error O
(

1
n2 min{ε2,ε}

)
using m = max{1, dlog (nmin{ε2, ε})e} bits per client.

This result covers the private-communication trade-offs for all privacy regimes. For example,

for ε = 1√
n
, each client needs only a single bit to achieve the central DP error. On the

other hand, the multi-message shuffled mechanism based on IKOS protocol [IKO06] proposed

in [BBG20b,GKM20] requires O (log (n))-bits of communication for all privacy regimes, where

it doesn’t provide any guarantees for any small communication cost [BBG20b, Sec. 1.2]. Even

when particular regimes of order-optimality are achieved for the MMS, the communication

bound is in expectation [GKM21b], whereas ours is deterministic.

Remark 3.5.2 (Scalar summation with sampling/sketching). Observe that when d <

nmin{ε2, ε}, it is not possible to combine the scalar summation scheme [BBG20b,GKM20]

with coordinate sampling due to the following. When each client independently chooses a

set of s coordinates, we might lose the amplification gain from shuffling, as not all the n

clients will choose the same set of s coordinates. When choosing the same s coordinates for

all clients, the MSE is bounded below by Ω (r2
∞(d− s)). Thus, the scalar summation in MMS

cannot be directly combined with coordinate sampling.
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Algorithm 3.5.2 : Analyzer A`∞

1: Inputs: Y1, . . . ,Yn, where Yi =
{
Y(1)
i , . . . ,Y(m)

i

}
is a set of m sets.

2: for k = 1, . . . ,m− 1 do

3: b̂(k) ← ABin
(
Y(k)

1 , . . . ,Y(k)
n

)
4: û← ABin

(
Y(m)

1 , . . . ,Y(m)
n

)
5: ẑ←

∑m−1
k=1 b̂(k)2−k + û2−m+1

6: Return: The server returns x̂← 2r∞ẑ− r∞.

3.5.1 Properties of The Quantization Scheme

In this section, we prove some properties of the quantization scheme for vector zi ∈ [0, 1]d.

We first prove some properties for a scalar case when x ∈ [0, 1], and then, the results of the

bounded `∞ will be obtained directly from repeating the scalar case on each coordinate.

Let x ∈ [0, 1] and x(k) =
∑s

l=1 bl2
−l for k ≥ 1, where x(0) = 0 and bk = b2k(x−xk−1)c. For

given m ≥ 1, we represent x using m bits as follows: x̃(m) =
∑m−1

k=1 bk2
−k + u2−m+1, where

u = Bern
(
2m−1(x− x(m−1)[j])

)
. This estimator needs only m communication bits.

Lemma 3.5.1. For given x ∈ [0, 1], let x̃(m) be the quantization of x presented above. We

have that x̃(m) is an unbiased estimate of x with bounded MSE:

MSEquan
scalar = sup

x∈[0,1]

E
[
‖x− x̃(m)‖2

2

]
≤ 1

4m
, (3.22)

where the expectation is taken over the randomness in the quantization scheme.

Proof. First, we show that x̃(m) is an unbiased estimate of x:

E [x̃m] =
m−1∑
k=1

bk2
−k + E [u] 2−m+1

(a)
=

m−1∑
k=1

bk2
−k + 2m−1(x− x(m−1))2−m+1 = xi,

(3.23)
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where step (a) is obtained from the fact that u is a Bernoulli random variable with bias

p = 2m−1(x− x(m−1)). We show that the estimator x̃(m) has a bounded MSE by 4−m:

MSEquan
scalar = sup

x∈[0,1]

E
[
‖x− x̃(m)‖2

2

]
= sup

x∈[0,1]

E
[
‖x− x(m−1) − u2−m+1‖2

]
= sup

x∈[0,1]

4−(m−1)E
[
‖2−(m−1)(x− x(m−1))− u‖2

] (a)

≤ 1

4m
,

(3.24)

where the inequality (a) is obtained from the fact that u is a Bernoulli random variable, and

hence, it has a variance less that 1/4. This completes the proof of Lemma 3.5.1. �

Corollary 3.5.1. For given a vector zi ∈ [0, 1]d, let z̃
(m)
i be the quantization of zi by

applying the above scalar quantization scheme on each coordinate zi[j] for j ∈ [d]. Then,

z̃
(m)
i is an ubiased estimate of zi with bounded MSE:

MSEquan
vector = sup

zi∈[0,1]d
E
[
‖zi − z̃

(m)
i ‖2

2

]
≤ d

4m
, (3.25)

where the expectation is taken over the randomness in the quantization scheme.

3.5.2 Proofs of Theorem 3.5.1 and Theorem 3.5.2 (Bounded `∞-norm vectors)

Communication cost for Theorem 3.5.1 and Theorem 3.5.2 In the mechanism

R`∞
v,m,s, the client sends m binary vectors b

(1)
i , . . . ,b

(m−1)
i ,ui using the private mechanism

RBin
v,s . From Theorem 3.3.1 and Theorem 3.3.2, the private mechanism RBin

v,s needs log
(
dd
s
e
)

+1

bits for communication. Thus, the total communication of the private mechanism R`∞
v,m,s is

ms
(
log
(
dd
s
e
)

+ 1
)
-bits.

Privacy of the local DP model in Theorem 3.5.1 In the mechanism R`∞
v,m,s, each client

sends m messages from the private mechanism RBin
v,s as follows:{

RBin
v1,s

(b
(1)
i ), . . . ,RBin

vm−1,s
(b

(m−1)
i ),RBin

vm,s(ui)
}
,
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where vk = 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v for k ∈ [m− 1] and vm = 4
−m+1

3(∑m−1
l=1 4

−l
3 +4

−m+1
3

)v. Hence, from

Theorem 3.3.1, the k-th message RBin
vk,s

(b
(k)
i ) is ε

(k)
0 -LDP, where ε

(k)
0 = vk for k ∈ [m]. As a

results, the total mechanism R`∞
v,m,s is bounded by:

ε0 =
m∑
k=1

ε
(k)
0 =

m∑
k=1

vk =
m−1∑
k=1

 4
−k
3(∑m−1

l=1 4
−l
3 + 4

−m+1
3

)v
+

4
−m+1

3(∑m−1
l=1 4

−l
3 + 4

−m+1
3

)v = v,

(3.26)

from the composition of the DP mechanisms [DR14]. Observe that we choose v = ε0, and

hence, the bound in (3.26) is satisfied. In addition, we can bound the RDP of the mechanism

R`∞
v,m,s in the local DP model by using the composition of the RDP (see Lemma 2.1.4). From

the proof of Theorem 3.3.1 in Section 3.3.1, the mechanism RBin
vk,s

is
(
α, ε(k) (α)

)
-RDP, where

ε(k) (α) is bounded by:

ε(k) (α) =
s

α− 1
log
(
pαk (1− pk)1−α + p1−α

k (1− pk)α
)
, (3.27)

where pk = 1
2

(
1−

√
v2
k/s

2

v2
k/s

2+4

)
. Hence, the mechanism R`∞

v,m,s is (α, ε (α))-RDP, where ε (α) =∑m
k=1 ε

(k) (α).

Privacy of the MMS model in Theorem 3.5.2 In the mechanism R`∞
v,m,s, each client

sends m messages from the private mechanism RBin
p,s as follows:{

RBin
v1,s

(b
(1)
i ), . . . ,RBin

vm−1,s
(b

(m−1)
i ),RBin

vm,s(ui)
}
,

where vk = 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v for k ∈ [m− 1] and vm = 4
−m+1

3(∑m−1
l=1 4

−l
3 +4

−m+1
3

)v.

From the proof of Theorem 3.3.2 in Section 3.3.1, shuffling the outputs of n mechanisms

RBin
vk,s

is
(
α, ε(k) (α)

)
, where ε(k) (α) is bounded by:

ε(k) (α) ≤ 48α
v2
k

sn
, (3.28)

from (3.7) by substituting pk = 1
2

(
1−

√
v2
k/s

2

v2
k/s

2+4

)
. From Lemma 2.1.4 of the RDP composi-
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tion, we get that the total RDP of the mechanism R`∞
v,m,s is bounded by:

ε (α) =
m∑
k=1

ε(k) (α) = α
48

sn

m∑
k=1

v2
k = α

48v2

sn

m∑
k=1

f 2
k ≤ α

48v2

sn
, (3.29)

where fk = 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

) for k ∈ [m] and fm = 4
−m+1

3(∑m−1
l=1 4

−l
3 +4

−m+1
3

) . The last inequality is

obtained from the fact that
∑m

k=1 fk = 1 and hence
∑m

k=1 f
2
k ≤ 1. Now, we use Lemma 2.1.5

in Section 2.4 to convert from RDP to approximate DP, where ρ = 48v2/(sn). For given

δ > 0, shuffling the outputs of n mechanisms R`∞
v,m,s is (ε, δ)-DP, where ε is bounded by

ε ≤ 3 max

{
48v2

sn
log (1/δ) ,

√
48v2

sn
log (1/δ)

}
. (3.30)

By setting v2 = snmin{ε2,ε}
144 log(1/δ)

, we can easily show that (3.30) is satisfied, and hence, the output

of the shufflers is (ε, δ)-DP.

MSE bound of the local DP model (Theorem 3.5.1) and MMS model (Theo-

rem 3.5.2) We first present some notations to simplify the analysis. For given xi ∈ Bd∞ (r∞),

we define zi = xi+r∞
2r∞

, where the operations are done coordinate-wise. Thus, we have that

zi ∈ [0, 1]d. For given zi ∈ [0, 1]d and m ≥ 1, we define z̃
(m)
i =

∑m−1
k=1 b

(k)
i 2−k + ui2

−m+1,

where b
(k)
i = b2k

(
zi − z

(k−1)
i

)
c and z

(0)
i = 0 and z

(k)
i =

∑k
l=1 b

(l)
i 2−l for k ≥ 1. Furthermore,

ui is a Bernoulli vector defined by ui = Bern
(

2m−1
(
zi − z

(m−1)
i

))
. Let b

(k)
= 1

n

∑n
i=1 b

(k)
i ,

u = 1
n

∑n
i=1 ui, and z̃

(m)
= 1

n

∑n
i=1 z̃

(m)
i .

MSE for the local DP model (Theorem 3.5.1): Observe that the output of the

server x̂ = A`∞ (Y1, . . . ,Yn) = 2r∞ẑ − r∞, where ẑ =
∑m−1

k=1 b̂(k)2−k + û2−m+1. Thus, we

have that:

MSE`∞ldp = sup
{xi∈Bd∞(r∞)}

E
[
‖x̂− x‖2

2

]
(a)
= 4r2

∞ sup
{zi∈[0,1]d}

E
[
‖ẑ− z‖2

2

]
= 4r∞2 sup

{zi∈[0,1]d}
E
[
‖ẑ− z̃

(m)
+ z̃

(m) − z‖2
2

]
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(b)
= 4r2

∞ sup
{zi∈[0,1]d}

(
E
[
‖ẑ− z̃

(m)‖2
2

]
+ E

[
‖z̃(m) − z‖2

2

])
(c)

≤ 4r2
∞ sup
{zi∈[0,1]d}

(
E

[
‖
m−1∑
k=1

b̂(k)2−k + û2−m+1 −
m−1∑
k=1

b
(k)

2−k + u2−m+1‖2
2

]
+

d

n4m

)
(d)

≤ 4r2
∞

(
m−1∑
k=1

d24−k

n

(
1

s
+

s

v2
k

)
+
d24−m+1

n

(
1

s
+

s

v2
m

)
+

d

n4m

)
(e)

≤ 4r2
∞

 d2

ns

(
m−1∑
k=1

4−k + 4−m+1

)
+
d2s

nv2

(
m−1∑
k=1

4−k/3 + 4−(m−1)/3

)3

+
d

n4m


(f)

≤ 4r2
∞

(
4d2

3ns
+

5d2s

nε2
0

+
d

n4m

)
(3.31)

= O
(
r2
∞d

2

n
max

{
1

d4m
,
1

s
,
s

ε2
0

})
, (3.32)

where (a) follows from the fact that zi is a linear transformation of xi. Step (b) follows from

the fact that z̃
(m)

is an unbiased estimate of z from Corollary 3.5.1. Step (c) from the bound

of the MSE of the quantization scheme z̃
(m)

in Corollary 3.5.1. Step (d) follows from the

MSE of the private mean estimation of binary vectors in Theorem 3.3.1. Step (e) follows

from substituting vk = 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v. Step (f) follows from the geometric series bound.

This completes the proof of Theorem 3.5.1.

MSE for the MMS model (Theorem 3.5.2): Observe that the output of the server

x̂ = A`∞ (Y1, . . . ,Yn) = 2r∞ẑ− r∞, where ẑ =
∑m−1

k=1 b̂(k) + û2−m+1. Thus, we have that:

MSE`∞shuffle = sup
{xi∈Bd∞(r∞)}

E
[
‖x̂− x‖2

2

]
(a)
= 4r2

∞ sup
{zi∈[0,1]d}

E
[
‖ẑ− z‖2

2

]
= 4r∞2 sup

{zi∈[0,1]d}
E
[
‖ẑ− z̃

(m)
+ z̃

(m) − z‖2
2

]
(b)
= 4r2

∞ sup
{zi∈[0,1]d}

(
E
[
‖ẑ− z̃

(m)‖2
2

]
+ E

[
‖z̃(m) − z‖2

2

])
(c)

≤ 4r2
∞ sup
{zi∈[0,1]d}

(
E

[
‖
m−1∑
k=1

b̂(k)2−k + û2−m+1 −
m−1∑
k=1

b
(k)

2−k + u2−m+1‖2
2

]
+

d

n4m

)
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(d)

≤ 4r2
∞

(
m−1∑
k=1

d24−k

n

((
1

s
− 1

d

)
+

s

v2
k

)
+
d24−m+1

n

((
1

s
− 1

d

)
+

s

v2
m

)
+

d

n4m

)
(e)

≤ 4r2
∞
d2

n

(
1

s
− 1

d

)(m−1∑
k=1

4−k + 4−m+1

)

+ 4r2
∞

 d2s

nv2

(
m−1∑
k=1

4−k/3 + 4−(m−1)/3

)3

+
d

n4m

 (3.33)

(f)

≤ 4r2
∞

(
4d2

3n

(
1

s
− 1

d

)
+

5d2 log (1/δ)

n2 min{ε2, ε}
+

d

n4m

)
(3.34)

= O
(
r2
∞d

2

n2
max

{
n

d4m
, n

(
1

s
− 1

d

)
,

log (1/δ)

min{ε2, ε

})
, (3.35)

where (a) follows from the fact that zi is a linear transformation of xi. Step (b) follows from

the fact that z̃
(m)

is an unbiased estimate of z from Corollary 3.5.1. Step (c) from the bound

of the MSE of the quantization scheme z̃
(m)

in Corollary 3.5.1. Step (d) follows from the

MSE of the private mean estimation of binary vectors in Theorem 3.3.2. Step (e) follows

from substituting vk = 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v. Step (f) follows from the geometric series bound.

This completes the proof of Theorem 3.5.2.

3.6 DME for Bounded `2-norm Vectors

In this section, we consider the DME problem for bounded `2-norm vectors, where ‖xi‖2 ≤ r2

for i ∈ [n]. We first use the random rotation proposed in [SFK17] to bound the `∞-norm

of the vector with radius r∞ = O
(
r2√
d

)
. Then, we apply the bounded `∞-norm algorithm

in Section 3.5. The client-side scheme is presented in Algorithm 3.6.1 and the server-side

scheme is presented in Algorithm 3.6.2.

Theorem 3.6.1 (LDP model). The output of the local mechanism R`2
v,m,s can be represented

using ms (log (dd/se) + 1) bits. By choosing v = ε0, the mechanism R`2
v,m,s satisfies ε0-LDP.

Let x̂ be the output of the analyzer A`2. With probability at least 1− β, the estimator x̂ is an
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Algorithm 3.6.1 : Local Randomizer R`2
v,m,s

1: Public parameter: Privacy budget v, communication levels m, coordinate sampling

per level s, and confidence term β.

2: Input: xi ∈ Bd2 (r2).

3: Let U = 1√
d
HD, where H denotes a Hadamard matrix and D is a diagonal matrix with

i.i.d. uniformly random {±1} entries.

4: wi ← Wxi

5: r∞ ← 10r2

√
log(dn/β)

d

6: for j = 1, . . . , d do

7: wi[j] = min {r∞,max {wi(j),−r∞}}

8: Yi ← R`∞
v,m,s(wi)

9: Return: The client sends Yi.

unbiased estimate of x = 1
n

∑n
i=1 xi with bounded MSE:

MSE`2LDP = Õ
(
r2

2d

n
max

{
1

d4m
,
1

s
,
s

ε2
0

})
, (3.36)

where Õ hides log (nd/β) factor.

Theorem 3.6.2 (MMS model). The output of the local mechanism R`2
v,m,s can be represented

using ms (log (dd/se) + 1) bits. For every n ∈ N, ε ≤ ms, and δ ∈ (0, 1), the shuffling the

outputs of n mechanisms R`2
v,m,s satisfies (ε, δ)-DP by choosing v2 = snmin{ε2,ε}

144 log(1/δ)
. Let x̂ be the

output of the analyzer A`2. With probability at least 1− β, the estimator x̂ is an unbiased

estimate of x = 1
n

∑n
i=1 xi with bounded MSE:

MSE`2MMS = Õ
(
r2

2d

n2
max

{
n

d4m
, n

(
1

s
− 1

d

)
,

log (1/δ)

min{ε2, ε}

})
, (3.37)

where Õ hides log (ndβ) factor.

Remark 3.6.1 (Kashin’s representation). Observe that the MSE in (3.36) and in (3.37)

is achievable with probability (1 − β), and has a factor of (log(nd/β)) due to the random
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rotation matrix. We can remove this factor by using the Kashin’s representation [Kas77] to

transform the bounded `2-norm vector into a bounded `∞-norm vector with radius r∞ = cr2√
d
,

where c is constant (see e.g., [LV10,CKM18,CKO20]). However, Kashin’s representation has

large constants in practice [FT21].

Next we present a lower bound for the MSE of the DME under privacy and communication

constraints.

Theorem 3.6.3 (Lower Bound For Local DP model). Let n, d ∈ N, ε0 > 0. For any

x1, . . . ,xn ∈ Bdp(rp) and p ≥ 2, the MSE is bounded below by:

MSE
`p
LDP = Ω

(
r2
pd

2− 2
p

nmin {ε0, ε2
0}

)
(3.38)

for any unbiased algorithm R that is ε0-LDP.

The proof of Theorem 3.6.3 is presented in Section 3.6.2. Observe that Theorem 3.6.3

shows that our achievable MSE in Theorem 3.6.1 and Theorem 3.5.1 are order optimal for all

privacy regimes by choosing s = max{1, ε0}.

Theorem 3.6.4 (Lower Bound For central DP model [CCK22]& [BUV14] ). Let n, d ∈ N,

ε = O(1), r2 ≥ 1, and δ = o( 1
n
). For any x1, . . . ,xn ∈ Bd2(r2), the MSE is bounded below by:

MSE`2central = Ω

(
r2

2d

n2
max

{
log(1/δ)

ε2
,

n

d4b/d

})
(3.39)

for any unbiased algorithm M that is (ε, δ)-DP with b > d-bits of communication per client.

Furthermore, when b < d bits per client, the MSE is bounded below by:

MSE`2central = Ω

(
r2

2d

n2
max

{
log(1/δ)

ε2
,
n

b

})
. (3.40)

Remark 3.6.2. (Optimality of our mechanism) When the communication budget b > d, we

can see that our MSE in Theorem 3.6.2 matches the lower bound in Theorem 3.6.4 (up to

logarithmic factor) by choosing s = d and m = b/d. Furthermore, when the communication

budget b < d, our algorithm achieve the lower bound by choosing s = b and m = 1. Thus,

our algorithm for MMS is order optimal for all privacy-communication regimes.
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MMS model

(this work)

MMS (Cheu et

al. [CJM22])

MMS

(Chang et

al. [CGK21])

SecAgg

( [KLS21,

CCK22])

d < nε2 O
(
d log

(
nε2

d

))
O (d
√
n) O (d log(n)) O (d log(n))

nε2 < d < n2ε2 O
(
nε2 log

(
d
nε2

))
O (d
√
n) O (d log(n)) O (d log(n))

d > n2ε2 O
(
nε2 log

(
d
nε2

))
O (d
√
n) O (d log(n)) O (n2ε2 log(d))

Table 3.1: Comparison on the communication cost of several schemes to design (ε, δ)-DP

mechanism achieving MSE O
(
r2
2d

n2ε2

)
for ε = O(1).

Algorithm 3.6.2 : Analyzer A`2

1: Inputs: Y1, . . . ,Yn, where Yi =
{
Y(1)
i , . . . ,Y(m)

i

}
is a set of m sets.

2: ŵ← A`∞ (Y1, . . . ,Yn)

3: Return: The server returns x̂← U−1ŵ.

Remark 3.6.3 (Comparison with SecAgg). When d < nε2, our MMS algorithm requires

O
(
d log

(
nε2

d

))
bits per client to achieve the central DP error O

(
d

n2ε2

)
. Furthermore, it

requires only O
(
nε2 log

(
d
nε2

))
-bits when d > nε2. In contrast, the DDG algorithm [KLS21]

needs O (d log (n))-bits when d < n2ε2 and O (n2ε2 log (d))-bits when d > n2ε2 [CCK22] to

achieve the same order MSE. Hence, the MMS saves communication in comparison with

SecAgg.

In Table 3.1, we present comparison on the communication cost of several schemes in

the literature to design (ε, δ)-DP mechanism and to achieve MSE O
(
r2
2d

n2ε2

)
that matches

the optimal MSE of the central DP mechanisms. We can see that our proposed mechanism

saves a significant amount of communication cost when d > nε2 comparing to the MMS

schemes in [CJM22,CGK21]. Furthermore, our MMS mechanism saves a gain of O (n) of

communication cost comparing with the secure aggregation scheme [CCK22] when d > nε2.
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3.6.1 Proofs of Theorem 3.6.1 and Theorem 3.6.2 (Bounded `2-norm vectors)

In the mechanism R`2
v,m,s, each client applies random rotation to her vector xi and

then applies the private mechanism R`∞
v,m,s to the bounded `∞-norm vector wi. Hence the

communication and privacy are the same as the private mechanism R`∞
v,m,s. Thus, it remains

to prove the MSE bound for both local DP model and shuffle model. The proofs are obtained

directly from the MSE of the bounded `∞-norm vector in Theorem 3.5.1 and Theorem 3.5.2

with the following Theorem about the random rotation matrix.

Theorem 3.6.5. [LSA21] Let U = 1√
d
HD, where H denotes Hadamard matrix and D is

a diagonal matrix with i.i.d. uniformly ranodom {±1} entries. Let x1, . . . ,xn ∈ Bd2 (r2) be

bounded `2-norm vectors and

mathbfwi = Uxi. With probability at least 1− β, we have that

max
i∈[n]
‖wi‖∞ = max

i∈[n]
‖Uxi‖∞ ≤ 10r2

√
log(nd

β
)

d
. (3.41)

From Lemma 3.6.5, the vector wi = Uxi is bounded `∞-norm of radius r∞ = 10r2

√
log(nd

β
)

d

with probability at least 1 − β. Hence, by plugging the radius r∞ = 10r2

√
log(nd

β
)

d
into

Theorem 3.6.1, we obtained the MSE in Theorem 3.6.1. Similarly, by plugging the radius

r∞ = 10r2

√
log(nd

β
)

d
into Theorem 3.5.2, we obtained the MSE in Theorem 3.6.2.

3.6.2 Lower Bound on MSE for `2-norm under LDP constraints

In this section, we prove Theorem 3.6.3. The main idea of the lower bound is to transform

the problem to the private mean estimation when the inputs are sampled from Bernoulli

distributions. Let Pdp denote the set of all distributions on the `p-norm ball Bdp. Let PBern
p,d

denote the set of Bernoulli distributions on
{

0, 1

d1/p

}d
, i.e., any element of PBern

p,d is a product

of d independent Bernoulli distributions, one for each coordinate. We first prove a lower

bound on MSE when the input distribution belongs to PBern
p,d .
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Lemma 3.6.1. For any p ∈ [2,∞], we have

inf
R∈Qε0

inf
x̂

sup
q∈PBern

p,d

E
∥∥µq − x̂

∥∥2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε2
0}

})
.

(3.42)

The proof of Lemma 3.6.1 is presented in Appendix B.1. In order to use Lemma 3.6.1,

first observe that for every x ∈ PBern
p,d , we have ‖x‖p ≤ 1, which implies that x ∈ Pdp . For

given {xi} ∈ Bdp, let x = 1
n

∑n
i=1 xi. Thus we have PBern

p,d ⊂ Pdp . Now our bound on MSE

follows from the following inequalities:

sup
{xi}∈Bdp

E ‖x− x̂‖2
2

(a)

≥ sup
q∈Pp,d

E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − x̂

∥∥∥∥∥
2

2

(b)

≥ sup
q∈Pp,d

1

2
E
∥∥µq − x̂∥∥2

2
− E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

(c)

≥ sup
q∈PBern

p,d

1

2
E
∥∥µq − x̂∥∥2

2
− d1− 2

p

n

(d)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε2
0}

})
− d1− 2

p

n

(e)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε2
0}

})
(3.43)

In the LHS of (a), the expectation is taken over the randomness of the mechanism R

and the estimator x̂; whereas, in the RHS of (a), in addition, the expectation is also

taken over sampling xi’s from the distribution q. Moreover (a) holds since the LHS is

supremum {xi} ∈ Bdp and the RHS of (a) takes expectation w.r.t. a distribution over Bdp
and hence lower-bounds the LHS. The inequality (b) follows from the Jensen’s inequality

2‖u‖2
2 + 2‖v‖2

2 ≥ ‖u+ v‖2
2 by setting u = 1

n

∑n
i=1 x

(q)
i − x̂ and v = µq − 1

n

∑n
i=1 x

(q)
i . In (c)

we used E
∥∥∥ 1
n

∑n
i=1 x

(q)
i − µq

∥∥∥2

2
≤ d

1− 2
p

n
, which we show below. (d) follows from Lemma 3.6.1.

In (e), we assume min{ε0, ε
2
0} ≤ O(d).

Note that for any vector u ∈ Rd, we have ‖u‖2 ≤ d
1
2
− 1
p‖u‖p, for any p ≥ 2. Since each

x
(q)
i ∈ Bdp, which implies ‖x(q)

i ‖p ≤ 1, we have that ‖x(q)
i ‖2 ≤ d

1
2
− 1
p . Hence, E‖x(q)

i ‖2
2 ≤ d1− 2

p
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holds for all i ∈ [n]. Now, since xi’s are i.i.d. with E[x
(q)
i ] = µq, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

=
1

n2

n∑
i=1

E
∥∥∥x(q)

i − µq
∥∥∥2

2

(a)

≤ 1

n2

n∑
i=1

E
∥∥∥x(q)

i

∥∥∥2

2
≤ 1

n2

n∑
i=1

d1− 2
p =

d1− 2
p

n
,

(3.44)

where (a) uses E‖x−E[x]‖2
2 ≤ E‖x‖2

2, which holds for any random vector x. This completes

the proof of Theorem 3.6.3.

3.7 DME under User-Level Privacy

In the previous sections, we focus on making neighboring datasets indistinguishable, where

two datasets are neighbors if they differ in a single data point at a single user. This is called

item-level DP. However, in distributed systems, each client might have more than one data

point. Furthermore, a client may not even want to reveal whether it participated or not,

which is equivalent to requiring the privacy of its entire local dataset (not just of a single

data point). This is called user-level DP, which has recently seen some attention [MAE18,

LSY20,WSZ19,LSA21,GKM21a].

In this section, we study distributed mean estimation under user-level local differential

privacy. Consider a set of n users, each having a local dataset of m samples. Let Di =

{x(i)
1 , . . . , x

(i)
m } denote the local dataset at the i-th user for i ∈ [n], where x

(i)
j ∈ X and X ⊂ Rd.

We define D = (D1, . . . ,Dn) ∈ (Xm)n as the entire dataset. The server wants to estimate the

mean x = 1
mn

∑n
i=1

∑m
j=1 x

(i)
j . Users want to preserve the privacy of their local datasets while

minimizing the worst-case expected error for estimating x. We first define the difference

between user-level and item-level privacy. We say that two datasets D, D′ are neighboring

with respect to distance metric dis if we have dis(D,D′) ≤ 1.

Definition 3.7.1. (Differential Privacy) Let ε, δ ≥ 0. A randomized mechanism M : D → Θ

is said to be (ε, δ)-DP with respect to dis if for any neighboring datasets D,D′ and any
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measurable set θ ⊆ Θ, we have

Pr (M (D) ∈ θ) ≤ eε Pr (M (D′) ∈ θ) + δ. (3.45)

If δ = 0, then the privacy is referred to as pure DP.

Remark 3.7.1 ((Central) item-level DP vs (central) user-level DP [LSA21]). When we

have more than one user (i.e., n > 1) and a space D , (Xm)n, by choosing dis (D,D′) =∑n
i=1

∑m
j=1 1{x

(i)
j 6= x

′(i)
j }, we recover the standard definition of the DP [DMN06, DR14]

(see also Definition 2.1.2), which we call (central) item-level DP. In the central item-level

DP, two datasets D, D′ are neighboring if they differ in a single item. On the other hand,

by choosing dis (D,D′) =
∑n

i=1 1{Di 6= D′i}, we call it (central) user-level DP, where two

datasets D,D′ ∈ (Xm)n are neighboring when they differ in a local dataset of any single user.

Observe that when each user has a single item (m = 1), then both item-level and user-level

privacy are equivalent.

Remark 3.7.2 (User-level Local Differential Privacy (LDP)). When we have a single user

(i.e., n = 1 and D = Xm), by choosing dis (D,D′) = 1{D 6= D′} for D,D′ ∈ Xm, we call

it user-level LDP. In this case each user privatize her own local dataset using a private

mechanism.

Our objective is to design user-level LDP mechanisms Mi : Xm → Θi for i ∈ [n] and an

estimator x̂ : Θ1 × . . .×Θn → X to minimize the worst-case expected error:

Rε,δ = inf
{Mi∈Mε,δ}

inf
x̂

sup
D∈(Xm)n

E
[
‖x̂− x‖2] , (3.46)

whereMε,δ denotes the set of all possible user-level (ε, δ)-LDP mechanisms, and the expecta-

tion is taken over the randomness in M1, . . . ,Mn and x̂.

We can obtain user-level DP from item-level DP by using group privacy [DR14], but this

degrades the privacy parameter by a multiplicative factor of the number of data points in a

local dataset (m), which may be impractical. We can achieve a significantly better user-level
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privacy guarantees by assuming concentration of data points [LSA21], which essentially

reduces their sensitivity and thereby the required noise magnitude. Now, we define the

concentration condition for a set of samples and the sub-Gaussian random vector.

Definition 3.7.2 (Concentration). A set of (random) vectors yn = (y1, . . . , yn), each taken

from [−B,B]d is (τ, γ)-concentrated if there exists y0 ∈ [−B,B]d such that with probability

at least 1− γ,

max
i∈[n]
‖yi − y0‖2 ≤ τ. (3.47)

Definition 3.7.3 (Sub-Gaussian random vector). A random vector x ∈ Rd is said to be

sub-Gaussian with proxy variance σ2 if for any u ∈ Rd with ‖u‖2 = 1, the random variable

uTx is sub-Gaussian with proxy variance σ2.

We assume that the samples {x(i)
j : i ∈ [n], j ∈ [m]} are drawn from a bounded space

X , [−B,B]d ⊂ Rd for some d ≥ 1. Furthermore, we assume that the samples x
(i)
j , i ∈

[n], j ∈ [m] are i.i.d. sub-Gaussian random vectors with proxy variance σ2. We focus on the

scalar case when d = 1, where the vector case can be obtained by applying our scalar scare

coordinate-wise.

3.7.1 Scalar Case d = 1

The main idea of our algorithm is the following. Let yi = 1
m

∑m
j=1 x

(i)
j denote the mean

of the local samples at the i-th user for i ∈ [n]. Observe that the worst-case sensitivity of

replacing a single client is maxyi,y′i∈[−B,B] |yi − y′i| = 2B. However, since the data {x(i)
j } are

i.i.d. sub-Gaussian, {yi} are sub-Gaussian random variables with proxy σ2

m
which implies that

the set yn = (y1, . . . , yn) is (τ, γ)-concentrated, where τ = σ
√

log(2n/γ)
m

for any γ ∈ (0, 1) (e.g.,

see [RH15, Theorem 1.14]). Thus, the worst-case sensitivity of replacing a user is reduced to

2τ = O
(√

σ2

m

)
instead of 2B that decreases as the number of local samples m increases.

The mean estimation process works in two stages similar to [LSA21]. In the first stage, the

server privately estimates the range in which the means y1, . . . , yn lie with high probability.
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Algorithm 3.7.1 Rangeuser
scalar (D, τ, ε0, T )

1: Inputs: D = (x1, . . . , xm), xj ∈ [−B,B]; concentration radius τ ; user-level LDP parame-

ter ε0; T = [k] be the set of middle points of the intervals.

2: Compute y = 1
m

∑m
j=1 xj.

3: Compute ν = arg minj∈[k] |y − aj| (the index of a point in T closest to y).

4: Let Hk be Hadamard matrix.

5: Compute m = 1√
k
Hkeν , where eν denotes the basis vector corresponding to ν.

6: Sample j ∼ Unif[k] and compute z:

z =

 +Hk(j)
(
eε0+1
eε0−1

)
w.p. 1

2
+
√
km(j)

2
eε0−1
eε0+1

−Hk(j)
(
eε0+1
eε0−1

)
w.p. 1

2
−
√
km(j)

2
eε0−1
eε0+1

7: Return: z

In the second stage, each user projects her mean value yi into the determined range from

the first step. Then, all users send user-level LDP versions of their projected samples to

the central server. The first stage mechanism is denoted by Rangescalar and is presented in

Algorithm 3.7.2, and the second stage mechanism is denoted by Meanscalar and is presented

in Algorithm 3.7.3. We give an outline of both these algorithms below.

In Rangescalar, we first divide the original range [−B,B] into k = B/τ bins, where τ is the

concentration parameter of y1, . . . , yn. Then, each user sends a private version of the closest

bin to her mean value yi (using the mechanism Rangeuser
scalar as described in Algorithm 3.7.1).

The server estimates the frequencies (the number of means close to each bin) under user-level

LDP constraints. We use a Hadamard Response mechanism similar to the one proposed

in [ASZ19] to estimate the highest frequency under user-level LDP constraints. Observe that if

the means (y1, . . . , yn) lie in radius τ and the server succeeds to estimate the highest frequency

correctly, then we get yi ∈ R , [amax − 3τ, amax + 3τ ] for all i ∈ [n]. In Meanscalar, each client

projects her mean yi onto the estimated range R from the first stage. The objective of this

projection is that the user-level sensitivity will decrease from 2B to 2τ , where τ = O( 1√
m

). In
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Algorithm 3.7.2 Rangescalar (D, τ, ε0): Distributed Private Range Estimation for Scalars

1: Inputs: D = (D1, . . . ,Dn), Di = (x
(i)
1 , . . . , x

(i)
m ), x

(i)
j ∈ [−B,B], concentration radius τ ,

and user-level LDP parameter ε0.

2: All users divide the interval [−B,B] into k = B/τ disjoint intervals, each with width 2τ .

Let T := {1, 2, . . . , k} be the set of middle points of intervals.

3: for User i ∈ [n] do

4: zi ← Rangeuser
scalar (Di, τ, ε0, T ).

5: Send zi to the server – here zi ∈ Rk.

6: The server computes z = 1
n

∑n
i=1 zi. (Here, for any a ∈ T , z(a) denotes an estimate of

the frequency of a, i.e., the fraction of yi’s that are closest to a).

7: Let amax = arg maxa∈T z(a).

8: Return: R = [amax − 3τ, amax + 3τ ]

other words, the user-level sensitivity will decrease by increasing the number of samples per

user using this projection step. After the projection, each user applies any LDP mechanism

R with user-level sensitivity (τ) and LDP parameter ε0/2 to preserve privacy.

Theorem 3.7.1. Let R be an unbiased LDP mechanism with MSE E [‖R(y)− y‖2] ≤ f(τ, ε0).

The mechanism Meanscalar (D, τ, ε0, δ) is user-level (ε0, δ)-LDP. With probability at least 1−β,

we have

E1 := E

∣∣∣∣∣ 1

nm

n∑
i=1

m∑
j=1

x
(i)
j −Meanscalar (D, τ, ε0, δ)

∣∣∣∣∣
2
 (3.48)

≤ O
(
f(τ, ε0)

n

)
, (3.49)

where β = min
{

1, γ + 2B
τ

exp
(
− n(eε0/2−1)2

200(eε0/2+1)2

)}
.

We provide a proof of Theorem 3.7.1 in Section 3.7.2. Theorem 3.7.1 is presented for any

general LDP mechanism R. We can apply our proposed local randomizer in Section 3.6 that
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Algorithm 3.7.3 Meanscalar(D, τ, ε0, δ): Distributed Private Mean Estimation for Scalars

1: Inputs: D = (D1, . . . ,Dn), Di = (x
(i)
1 , . . . , x

(i)
m ), x

(i)
j ∈ [−B,B], concentration radius τ ,

and user-level LDP parameters ε0, δ.

2: [a, b]← Rangescalar (D, τ, ε0/2) (Algorithm 3.7.2).

3: for User i ∈ [n] do

4: zi ← Meanuser
scalar

(
Di, [a, b], ε02 , δ

)
5: Return: x̂ = 1

n

∑n
i=1 zi.

Algorithm 3.7.4 Meanuser
scalar(D, [a, b], ε0, δ)

1: Inputs: D = (x1, . . . , xm), concentration range [a, b], and user-level LDP parameters

ε0, δ.

2: Return: z = R
(∏

[a,b] y
)

, where y = 1
m

∑m
j=1 xj and

∏
[a,b] is the projection operator

onto [a, b].

has MSE f(τ, ε0) = τ2

min{ε20,ε0}
. Thus, the MSE is bounded by O

(
τ2)

nmin{ε20,ε0}

)
with probability

at least 1− β.

Remark 3.7.3 (User-level LDP vs user-level DP). In [LSA21], the authors proposed a

(central) user-level DP mean estimation algorithm that achieves estimation error O( τ2

n2ε2
)

with probability (1− βc), where βc = min{1, γ + B
τ
e−

nε
8 } and ε is the (central) DP parameter.

Although, the confidence probability 1 − β is almost same for both user-level LDP and

user-level DP, it is clear that there is a gap of O(n) in the estimation error between the

central and the local models. This is not surprising as the same gap appears in the item-level

DP and LDP as well [BNO08, CSS12]. In order to amplify the privacy of the user-level

LDP to match with that of the user-level DP, we can assume the existence of a trusted

shuffler [EFM19,FMT22,GDD21e] or secure aggregation [KLS21] between the users and the

untrusted server.

Remark 3.7.4 (Vector case). We can extend our results for the vector case as follows. We
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follow similar steps as in the centralized Algorithm presented in [LSA21] for user-level DP

mean estimation. The idea of the private mean estimation Algorithm is to observe that

the means y1, . . . , yn are concentrated in `2-norm with radius τ . Similar to [LSA21], we

first apply an encoding step to bound them in `∞-norm with radius O( τ√
d
). This step can

be obtained by applying a random rotation as in [SFK17,LSA21] or by applying Kashin’s

representation as in [CKM18,CKO20]. Then, we apply the scalar Algorithm 3.7.2 for each

coordinate separately.

3.7.2 Proofs of The Scalar Case

In this section, we prove Theorem 3.7.1 for the scalar case. The algorithm Meanscalar is

composed of two sub-routines Rangescalar and Meanuser
scalar. In order to show that Meanscalar

satisfies user-level ε0-LDP, it suffices to prove that Rangescalar satisfies user-level ε0/2-LDP

and Meanuser
scalar satisfies user-level ε0/2-LDP, and then the result follows by composing these

two mechanisms.

• Rangescalar is user-level ε0/2-LDP: We show this along with other results that will be

useful to bound the error in the following lemma which is proved in Appendix B.3.

Lemma 3.7.1. Rangescalar(D, τ, ε0) is user-level ε0-LDP. Furthermore, if the samples x
(i)
j

are sub-Gaussian with proxy σ2, then with probability at least 1− β, we have

yi ∈ [a, b]← Rangescalar(D, τ, ε0) ∀i ∈ [n] (3.50)

where yi = 1
m

∑m
j=1 x

(i)
j is the average of local samples at the i-th user, and β = min

{
1, γ +

2B
τ

exp
(
− n(eε0/2−1)2

200(eε0/2+1)2

)}
.

This lemma shows that with probability at least 1− β, the server can privately estimate

an interval of length 6τ in which the averages y1, . . . , yn of local samples at all users lie. Thus,

each user can project the average of her local samples onto this interval without hurting the

estimation accuracy of the second stage. Furthermore, the sensitivity of replacing a user with
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another one would be 6τ = O( 1√
m

) instead of 2B. As a result, each user adds a noise as a

function of τ that reduces the estimation error.

• Meanuser
scalar is user-level ε0/2-LDP: Consider any two neighboring local datasets Di =

(x
(i)
1 , . . . , x

(i)
m ), D′i = (x

′(i)
1 , . . . , x

′(i)
m ). Let yi = 1

m

∑m
j=1 x

(i)
j denotes the average of local samples

in D; similarly define y′i. The user-level sensitivity for computing its projection
∏

[a,b] yi is

bounded by

∆2yi = sup
Di,D′i∈[−B,B]m

∣∣∣∏
[a,b]

(yi)−
∏
[a,b]

(y′i)
∣∣∣ ≤ (b− a).

From the assumption that the local mechanism R is ε0-LDP, then the mechanism Meanuser
scalar

satisfies user-level ε02-LDP for given any neighboring points yi, y
′
i ∈ [a, b].

• Bounding the error of Meanscalar: Let [a, b] ← Rangescalar(D, τ, ε0/2) and ỹi = Π[a,b]yi.

Note that (b− a) = 6τ . Let x̂ = 1
n

∑n
i=1 yi be the estimator of the exact mean x = 1

n

∑n
i=1 yi,

where zi = R(ỹi). Thus, we have

E

∣∣∣∣∣ 1n
n∑
i=1

ỹi −
1

n

n∑
i=1

zi

∣∣∣∣∣
2
 = E

∣∣∣∣∣ 1n
n∑
i=1

R(ỹi)− ỹi

∣∣∣∣∣
2


=
1

n2

n∑
i=1

E
[
|R(ỹi)− ỹi|2

]
≤ f(τ, ε0)

n
,

(3.51)

where the last inequality is obtained from the assumption that the mechanism R has MSE

f(τ, ε0). From Lemma 3.7.1, we have that yi = ỹi for all i ∈ [n] with probability at least

1− β. Thus, we get that, with probability at least 1− β, the error E1 (defined in (3.49)) is

bounded by E1 = O
(
f(τ,ε0)
n

)
. This completes the proof of Theorem 3.7.1.

3.8 Numerical Results

In this section, we compare the performance of our proposed algorithm with the Laplace

mechanism in the LDP model. Furthermore, we compare our algorithms for multi-message

shuffled model with the best known algorithms for the single-message shuffled model for both

scalar and vector summation.
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Figure 3.2: Evaluating the performance of the proposed private DME algorithms.

Local DP model: We start by comparing the performance of our algorithm R`∞
v,m,s with

the performance of the Laplace mechanism [DMN06] in the local model for scalar case, i.e.,

d = 1, where the elements xi ∈ [−r∞, r∞] and r∞ = 0.5. Observe that the Laplace mechanism

has infinite communication bits. In Figure 3.2a, we plot the MSE of our R`∞
v,m,s with different

communication budget s = 1 and m ∈ {1, 2, 3, 4} for a single client n = 1. We can observe

that our mechanism achieves MSE closer to the MSE of the Laplace mechanism. Furthermore,

we only need at most m = 3 bits to achieve similar performance as Laplace mechanism.

Shuffled model: We consider two cases in the shuffler model: 1) The scalar case when d = 1

to evaluate the performance of our R`∞
v,m,s mechanism in the multi-message shuffled model. 2)

The vector case when d = 1000 to evaluate the performance of our R`2
v,m,s mechanism in the

multi-message shuffled model.

In Figure 3.2b, we plot the MSE of two different mechanisms versus the central privacy ε

for fixed δ = 10−5. The first mechanism is single message shuffled (SMS) model obtained using

Laplace mechanism with privacy amplification results in [FMT22]. Observe that Laplace

mechanism is the optimal LDP mechanism for ε0 = O(1) and the privacy amplification results
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in [FMT22] is approximately optimal for computing the (ε, δ)-DP of the shuffled model.

Hence, we expect that this is the best that an SMS mechanism can achieve. The second

mechanism is our multi-message shuffled (MMS) mechanism R`∞
v,m,s mechanism for d = 1

and m ∈ {4, 6}. Since we have MMS, we use our RDP results of privacy amplification by

shuffling in Chapter 5 which is better for composition to compute the RDP of our mechanism.

Then, we transform from RDP bound to approximate (ε, δ)-DP. We choose number of clients

n = 1000. We can see that our multi-message shuffled algorithm achieve lower MSE than the

single message shuffled especially for large value of central DP parameter ε.

Similar to the scalar case, we consider two mechanisms. The first mechanism SMS is

obtained by using privunit mechanism with the privacy amplification results in [FMT22],

where privunit [BDF18] is asymptotically optimal LDP mechanism [AFT22]. We choose

n = 1000 and d = 300. For our MMS R`2
v,m,s, we choose s ∈ {200, 250}. It is clear from

Figure 3.2c that our MMS mechanism has better performance compared to SMS mechanism.

3.9 Related Work

Distributed mean estimation has received considerable attention due to its broad applications

in distrusted learning and statistics. We briefly review some of the main developments on

this topic below.

Local differential privacy There has been significant recent progress in communication-

efficient distributed mean estimation (see [SFK17, AGL17, SCJ18, BDK19] and references

therein). However, their algorithms do not provide privacy guarantees. Furthermore, there

are multiple works addressing differentially private mean estimation [DMN06,DR14], however,

their algorithms are not communication-efficient. There has been less work in combining

privacy and compression in distributed mean estimation. Agarwal et al. proposed in [ASY18]

a communication-efficient and private algorithm for mean estimation. Their algorithm cp-sgd
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is based on a Binomial noise addition mechanism that requires O (d log(d))-bits per client. In

contrast, we show that we can achieve the optimal MSE with only O (log(d))-bits per client

in the high privacy regime. In [CKO20], Chen et al. established the order optimal private

DME under LDP constraints for bounded `2-norm vectors. This work is is done concurrently

and independently of our work in [GDD21d].

Multi-message shuffled model For single-message shuffled model, Balle et al. presented

lower and matching upper bounds for the scalar private real summation, showing that the MSE

is order Θ
(
n1/3

)
, where n denotes the number of clients. This was further enhanced by using

multi-message shufflers in [BBG20b,GKM20]. A multi-message shuffling (MMS) mechanism

based on IKOS scheme [IKO06] was proposed in [BBG20b,GKM20] for scalar summation in

which each client needs to send only O(1) messages to the shuffler, each of size O(log(n)) bits.

The private vector DME has received less attention in the shuffled model. In [CJM22], a MMS

mechanism for vector summation is proposed which has O(d
√
n) communication bits per

client, where d is the vector dimension. In [CGK21], a MMS mechanism for vector summation

in MMS model is proposed that requires O (d log(n))-bits of communication per client. In

this work, we establish the fundamental privacy-communication-performance trade-offs for

computing vector sum in the MMS model. Our private vector DME results in Theorem 3.6.2

improves the privacy-communication-performance order-wise, see Table 3.1 for comparison.

User-level differential privacy There has been a lot of recent work in applying item-level

DP to distributed mean estimation, and much less work on user-level privacy, with notable

exceptions in [MAE18,LSY20,WSZ19,LSA21,GKM21a]. Our algorithms are inspired from

that in [LSA21], but with an important distinction that [LSA21] only provide user-level central

DP guarantees, whereas, our algorithms provide user-level local DP guarantees; in distributed

learning with an untrusted server, clients need local DP guarantees. Our algorithm is based

on distributed private heavy-hitter estimation, whereas the algorithm in [LSA21] is based on

estimating the median-based mechanism.
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CHAPTER 4

Differentially Private Federated Learning

In this chapter, we consider federated learning (FL) framework [Kai19] with communi-

cation efficiency and privacy requirements. Unique challenges to the traditional empirical

risk minimization (ERM) problem in the context of FL include (i) need to provide pri-

vacy guarantees on clients’ data, (ii) compress the communication between clients and the

server, since clients might have low-bandwidth links, (iii) work with a dynamic client popu-

lation at each round of communication between the server and the clients. We exploit the

communication-efficient schemes for private mean estimation proposed in Chapter 3 to enable

efficient gradient aggregation for each iteration of federated learning. To get the overall

communication, privacy, and optimization performance operation point, we combine this with

privacy amplification opportunities inherent to this setup. Our solution takes advantage of the

inherent privacy amplification provided by client sampling and data sampling at each client

(through Stochastic Gradient Descent) as well as privacy amplification via shuffling. Putting

these together, we demonstrate that one can get the same privacy, optimization-performance

operating point developed in recent methods that use full-precision communication, but

at a much lower communication cost, i.e., effectively getting communication efficiency for

“free”. We then propose a statistical framework that unifies several personalized federated

learning algorithms as well as suggests new algorithms. We develop personalized learning

methods with guarantees for user-level privacy and composition. We numerically evaluate the

performance of our proposed FL algorithms, demonstrating the advantages of our proposed
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methods.

4.1 Introduction

Federated learning (FL) is a distributed system approach to build machine learning models

from multiple clients without directly sharing the local data [MMR17,Kai19]. In standard

FL algorithms, the central server sends the global model to a set of sampled clients at each

round. The server aggregates the local updates (stochastic gradients) of the participated

clients to update the global model towards the next round. In FL, communication becomes

a bottleneck for training high dimensional model as the communication is performed over

a limited-bandwidth networks [Kai19, LAS14, BWA18]. To address this challenge, there

are several works for designing communication-efficient FL algorithms [AGL17, SCJ18].

Besides communication, the clients’ data might contain sensitive information, and hence,

each client wants to preserve privacy of her own local data. Although, the local data

doesn’t leave the client’s device, FL algorithm cannot provide a provable privacy guarantees,

where sensitive data can be reconstructed from observing the global model and/or the

local updates [ZLH19,GBD20,CTW21,SSS17]. Thus, providing privacy guarantees for FL

algorithms has received a considerable attention from academia as well as industry [CMS11,

BST14, KMS21, GDD21a, KLS21, SFK17, ACG16]. The goal of this chapter is to design

communication-efficient and private mechanisms for federated learning in the LDP and the

multi-message shuffled models.

We propose a communication-efficient and private federated learning algorithm (CLDP-

SGD) that enables privacy amplification using both forms of amplification: shuffling and

sampling (data and clients). Note that privacy amplification by subsampling (both data

and clients) happens automatically while the secure shuffling (anonymization) is performed

explicitly which adds an additional layer of privacy that allows transferring the local privacy

guarantees to central privacy guarantees. We analyze the convergence-privacy trade-offs of the
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proposed CLDP-SGD algorithm for Lipschitz convex function under several `p geometries.

We prove that one can get communication efficiency “for free” by using the communication-

efficient schemes for private mean estimation proposed in Chapter 3. One ingredient of our

main result is showing that we can compose amplification by sampling (client data through

mini-batch SGD and clients themselves in federated sampling) along with amplification by

shuffling. Note that sampling of clients and data points together give overall non-uniform

sampling of data points, so we cannot use the existing results on privacy amplification by

subsampling, necessitating our privacy proof, of Lemma 4.3.1 in Appendix C.1, that composes

sampling and shuffling techniques.

We extend our work to explore a distributed self-sampling approach initiated by the clients

that does not need a selection by the shuffler. Self-sampling is desirable from a system-level

perspective, where coordination is not needed in order to randomly sub-sample which clients

will participate in each iteration of the stochastic gradient descent (SGD) algorithm. At each

iteration of the training process, clients independently toss a biased coin. If the biased coin

of a client turns a head, that client participates in the current iteration and share its model

privately with the untrusted server. One of the main challenges in our self-sampling scheme is

that the number of participated clients at each iteration is unknown a priori as it is random

varying from iteration to iteration. We analyze the privacy of our self-sampling scheme by

composing amplification by sub-sampling along with amplification by shuffling. Furthermore,

we analyze the convergence rate of the SGD with client self-sampling and shuffling.

Due to the statistical heterogeneity of local data, a single global learning model may

perform poorly for individual clients for some applications. This motivates the need for

personalized learning achieved through collaboration, and there have been a plethora of

personalized models proposed in the literature as well [FMO20,DTN20,DKM20,MMR20,

AZZ21,LHB21,ZSF21,HGL20]. However, the proposed approaches appear to use very different

forms and methods, and there is a lack of an underlying the fundamental statistical framework.

Such a statistical framework could help develop theoretical bounds for performance, suggest
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new algorithms as well as perhaps give grounding to known methods. We develop a statistical

framework for personalized federated learning that leads to new algorithms with provable

privacy guarantees, and performance bounds. We numerically evaluate the performance of

our proposed private algorithms for real data.

Organization The remainder of this chapter is organized as follows. We present the

problem setup in Section 4.2. We present a communication-efficient and private CLDP-SGD

algorithm for federated learning and its performance in Section 4.3. We give private federated

learning algorithm with client self-sampling in Section 4.4. We present personalized federated

learning algorithms under user-level privacy requirements in Section 4.5. We give numerical

results evaluating the performance of our proposed schemes in Section 4.6. Some proofs are

delegated to Appendix C.

4.2 Problem Formulation

We study federated learning (FL) framework.: We have a set of n clients, where each client

has a local dataset Di = {di1, . . . , dim} comprising m data points drawn from a universe X .

Let D =
⋃n
i=1Di denote the entire dataset and r = mn denote the total number of data

points in the system. The clients are connected to an untrusted server in order to solve the

following empirical risk minimization (ERM) problem:

min
θ
F (θ,D) =

1

n

n∑
i=1

Fi(θ,Di), (4.1)

where θ ∈ Rd denotes the global model. Fi (θ,Di) = Edi∼Di [Fi (θ, di)] denotes the loss

function of the i-th client. Our goal is to solve (4.1) while preserving privacy on the training

dataset D and minimizing the total number of bits for communication between clients and

the server, while dealing with a dynamic client population in each iteration. We consider

two distributed privacy models, where the server is untrusted: (i) Local DP (LDP) model (ii)

Multi-message shuffled (MMS) model; see Section 3.2 for the detailed description of these
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Figure 4.1: Shuffled model of differential privacy in federated learning.

two privacy models)

4.3 Shuffled Model of DP in Federated Learning

In this section, we propose CLDP-SGD, a differentially-private SGD algorithm that works

with compressed updates and dynamic client population. The procedure is described in

Algorithm 4.3.1. In each round of CLDP-SGD, we choose uniformly at random a set Ut

of k ≤ n clients out of n clients. Each client i ∈ Ut computes the gradient ∇θtf (θt; dij) for

a random subset Sit of s ≤ m samples. The i’th client clips the `p-norm of the gradient

∇θtf (θt; dij) for each j ∈ Sit and applies the LDP-compression mechanism Rp, where

Rp : Bdp → Y is a communication-efficient and private mechanism when inputs vector

is bounded `p-norm. We can use the proposed private mechanisms in Chapter 3. After

that, each client i sends the set of s private-compressed gradients {Rp (gt (dij))}j∈Sit in a

communication-efficient manner to the secure shuffler. The shuffler randomly shuffles (i.e.,

outputs a random permutation of) the received ks gradients and sends them to the server.

Finally, the server takes the average of the received gradients and updates the parameter
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Algorithm 4.3.1 Acldp: CLDP-SGD

1: Inputs: Datasets D =
⋃
i∈[n]Di, where Di = {di1, . . . , dim} for i ∈ [n], loss function

F (θ) = 1
nm

∑n
i=1

∑m
j=1 f (θ; dij), gradient norm bound C, and learning rate schedule {ηt}.

2: Initialize: θ0 ∈ C

3: for t ∈ [T ] do

4: Sampling of clients: A random set Ut of k clients is chosen.

5: for clients i ∈ Ut do

6: Sampling of data: Client i chooses uniformly at random a set Sit of s samples.

7: for Samples j ∈ Sit do

8: Compute gradient: gt (dij)← ∇θtf (θt; dij)

9: Clip gradient: g̃t (dij)← gt (dij) /max
{

1,
‖gt(dij)‖p

C

}
1

10: Private-compressed gradient: qt (dij)← Rp (g̃t (dij))

11: Client i sends {qt (dij) : j ∈ Sit} to the shuffler.

12: Shuffling: The shuffler randomly shuffles the elements in {qt(dij) : i ∈ Ut, j ∈ Sit}

and sends them to the server.

13: Aggregate: gt ← 1
ks

∑
i∈Ut

∑
j∈Sit qt (dij)

14: Gradient Descent θt+1 ←
∏
C (θt − ηtgt), where

∏
C denotes the projection operator

onto the set C.

15: Output: The model θT

vector.

CLDP-SGD has the following components, which need to be analyzed together: (i)

sampling of clients, necessitated by FL; (ii) sampling of data at each client for mini-batch SGD;

(iii) compressing the gradients at each client for communication efficiency; (iv) privatizing

1Note that gradient clipping may not preserve unbiasedness of the stochastic gradients. However, if the loss
function f is L-Lipschitz (with respect to the model parameters) in the dual norm `g, where 1

p + 1
g = 1, p, g ≥ 1,

then the norm of the gradients (with respect to some `p-norm, for p ≥ 1) is bounded, and hence we do not
need to clip it.
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the gradients at each client to prevent information leakage; and (v) shuffling. The two main

technical ingredients needed for the analysis are (a) Privacy analysis of coupled sampling and

shuffling (b) Communication-efficient private mean estimation.

Privacy of coupled sampling and shuffling: As explained in Section 4.1, client and data

sampling as well as shuffling contribute to privacy amplification. However, there are several

challenges in analyzing the overall privacy amplification: Firstly, both types of sampling

together induce non-uniform sampling of data, so we cannot use the existing privacy amplifi-

cation from subsampling results (see Lemma 2.1.1) directly to analyze the privacy gain in

CLDP-SGD just by subsampling; and secondly, the privacy amplification by shuffling has

not been analyzed together with subsampling. We give one unifying proof that analyzes the

privacy amplification by both types of subsampling (that induces non-uniform sampling of

data points) as well as shuffling.

Communication-efficient private mean estimation: For compressing and privatizing the

gradients, we use the proposed scheme for private mean estimation in Chapter 3 to estimate

the mean of a set of bounded `p-norm gradients. This privacy mechanism is composed with the

sampling and shuffling to provide the overall privacy analysis. Our CLDP-SGD algorithm

and the result of Theorem 4.3.1 (stated below) are given for a general local randomizer

Rp that satisfies the following conditions: (i) The randomized mechanism Rp is an ε0-LDP

mechanism. (ii) The randomized mechanism Rp is unbiased, i.e., E [Rp (x) |x] = x for all

x ∈ Bdp (L). (iii) The output of the randomized mechanism Rp can be represented using b ∈ N+

bits. (iv) The randomized Rp has a bounded MSE: supx∈Bdp(L) E‖Rp (x)− x‖2
2 ≤ L2fp(ε0, b).

We assume that the constraint set C is closed convex set with diameter D, where a

diameter of a bounded set C ⊆ Rd is defined as supx,y∈C ‖x− y‖. Furthermore, we assume

that the loss function f (θ, .) is convex and L-Lipschitz continuous with respect to the `g-norm

which is the dual of the `p-norm2. Let r = nm denote the total number of data points in the

2For any data point d ∈ X , the function f : C → R is L-Lipschitz continuous w.r.t. `g-norm if for every
θ1, θ2 ∈ C, we have |f(θ1; d)− f(θ2; d)| ≤ L‖θ1 − θ2‖g.
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dataset D. Observe that the probability that an arbitrary data point dij ∈ D is chosen at

time t ∈ [T ] is given by q = ks
mn

.

Theorem 4.3.1. Let θ∗ = arg minθ∈C F (θ) denote the minimizer of the problem (4.1). For

s = 1 and q = k
nm

, if we run Algorithm Acldp over T rounds, then we have

1. Privacy: For ε0 = O (1), Acldp is (ε, δ)-DP, where δ > 0 is arbitrary, and

ε = O

(
ε0

√
qT log (2qT/δ) log (2/δ)

nm

)
. (4.2)

2. Communication: Our algorithm Acldp requires k
n
s × b bits of communication in

expectation3 per client per iteration, where expectation is taken with respect to client

sampling.

3. Convergence: If we run Acldp with learning rate schedule ηt = D
G
√
t
, where G2 =

L2
(

1 + fp(ε0,b)

qmn

)
, then

E [F (θT )]− F (θ∗) ≤ O

(
LD log(T )

√
fp(ε0, b)√

qmnT

)
. (4.3)

We prove Theorem 4.3.1 in Section 4.3.1. Observe that the privacy results in Theorem 4.3.1

is stated for ε0 = O(1) using the strong composition theorem 2.1.2. In Chapter 5, we provide

tighter privacy guarantees for general ε0 by characterizing the RDP of the subsampled shuffled

model.

Remark 4.3.1 (Arbitrary SGD mini-batch size s). The communication and convergence

results in Theorem 4.3.1 are general and hold for any s ∈ [m]; however, the privacy result

is stated for s = 1, i.e., each client only samples a single data point in each SGD iteration.

Results for any mini-batch size s ∈ [m] are provided in Appendix C.1.

3A client communicates in an iteration only when that client is selected (sampled) in that iteration.
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For bounded `2-norm, our mechanism R`2
v,m,s proposed in Section 3.6 with v = ε0,

m = 1, and s = dε0e satisfies ε0-LDP with communication cost b = dε0e and f2(ε0, b) =

Õ
(

d
nmin{ε20,ε0}

)
, see Theorem 3.6.1. In the following, we show that our convergence results in

Theorem 4.3.1 is order optimal.

Remark 4.3.2 (Recovering the Result [EFM20b, ESA]). In [EFM20b], each client has

only one data point (m = 1) and all clients participate in each iteration, and gradients

have bounded `2-norm. If we put T = n/ log2(n), and q = 1 in (4.3), we get the following

privacy-accuracy trade-off, which is the same as that in [EFM20b, Theorem VI.1].

E [F (θT )]− F (θ∗) ≤ O

(
LD log2(n)

√
d√

nε0

)
; ε = O

(
ε0

√
T log (T/δ) log (1/δ)

n

)
We want to emphasize that the above privacy-accuracy trade-off in [EFM20b] is achieved by

full-precision gradient exchange, whereas, we can achieve the same trade-off with compressed

gradients. Moreover, our results are in more general setting, where clients’ local datasets

have multiple data-points (no bound on that) and we do two types of sampling, one of clients

and other of data for SGD.

Remark 4.3.3 (Optimality of CLDP-SGD for `2-norm case). Suppose that our target is to

achieve ε = O(1) and δ � 1. Substituting ε0 = ε
√

mn
qT log(2qT/δ) log(2/δ)

, T = mn/q in (4.3), we

get

E [F (θT )]− F (θ∗) = O

LD log
3
2

(
mn
δ

)√
d log

(
1
δ

)
mnε

 . (4.4)

This matches the optimal excess risk of central differential privacy presented in [BST14]. Note

that the results in [BST14] are for centralized SGD with full precision gradients, whereas,

our results are for federated learning (which is a distributed setup) with compressed gradient

exchange.

4.3.1 Optimization: Privacy, Communication, and Convergence Analyses
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In this section, we establish the privacy, communication, and convergence guarantees of

Algorithm 4.3.1 and prove Theorem 4.3.1.

4.3.1.1 Proof of Theorem 4.3.1: Privacy

Recall from Algorithm 4.3.1 that each client applies the compressed LDP mechanism Rp

(hereafter denoted by R, for simplicity) with privacy parameter ε0 on each gradient. This

implies that the mechanism Acldp guarantees local differential privacy ε0 for each sample dij

per epoch. Thus, it remains to analyze the central DP of the mechanism Acldp.

Fix an iteration number t ∈ [T ]. Let Mt (θt,D) denote the private mechanism at time

t that takes the dataset D and an auxiliary input θt (which is the parameter vector at the

t’th iteration) and generates the parameter θt+1 as an output. Recall that the input dataset

at client i ∈ [n] is denoted by Di = {di1, di2, . . . , dim} ∈ Xm and D =
⋃n
i=1Di denotes the

entire dataset. Thus, the mechanism Mt on any input dataset D =
⋃n
i=1Di ∈ X nm can be

defined as:

Mt(θt;D) = Hks ◦ sampn,k (G1, . . . ,Gn) , (4.5)

where Gi = sampm,s (R(xti1), . . . ,R(xtim)) and xtij = ∇θtf(θt; dij), ∀i ∈ [n], j ∈ [m]. Here, Hks

denotes the shuffling operation on ks elements and sampn,k denotes the sampling operation

for choosing a random subset of k elements from a set of n elements.

For convenience, in the rest of the proof, we suppress the auxiliary input θt and simply

denote Mt(θt;D) by Mt(D). We can do this because θt only affects the gradients, and the

analysis in this section is for an arbitrary set of gradients.

In the following lemma, we state the privacy guarantee of the mechanism Mt for each

t ∈ [T ].

Lemma 4.3.1. Let s = 1 and q = k
nm

. Suppose R is an ε0-LDP mechanism, where

ε0 ≤
log(qmn/ log(1/δ̃))

2
and δ̃ > 0 is arbitrary. Then, for any t ∈ [T ], the mechanism Mt is
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(
ε, δ
)
-DP, where ε = ln(1 + q(eε̃ − 1)), δ = qδ̃ with ε̃ = O

(
min{ε0, 1}eε0

√
log(1/δ̃)
qmn

)
. In

particular, if ε0 = O (1), we get ε = O
(
ε0

√
q log(1/δ̃)

mn

)
.

We prove Lemma 4.3.1 in Appendix C.1. In the statement of Lemma 4.3.1, we are

amplifying the privacy by using the subsampling as well as shuffling ideas.

Observe that the shuffler first chooses uniformly at random k clients of the available n

clients. Then, each client samples her local dataset Di by choosing uniformly at random

s = 1 data points out of the available m data points. This two-steps sampling procedure

is not the same as choosing uniformly at random ks data points from the entire dataset

D4. Therefore, we cannot directly apply the amplification by subsampling result stated

in Lemma 2.1.1. Thus, we derive a new privacy proof to compute the privacy parameters

of the mechanism Mt under non-uniform sampling. Consider two neighboring datasets

D =
⋃n
i=1Di, D′ = D′1

⋃⋃n
i=2Di that are different only in the first data point at the first

client d11. The main idea of the proof is to split the probability distribution of the output

of the mechanism Mt into a summation of four conditional probabilities depending on the

event whether the first client is picked or not and the first client picks the first data point or

not (Please, see (C.5)). We use the bipartite graph to get the relation between these events,

where each vertex corresponds to one of the possible outputs of the sampling procedure, and

each edge connects two neighboring vertices. See Appendix C.1 for more details.

Note that the Algorithm Acldp is a sequence of T adaptive mechanisms M1, . . . ,MT ,

where each Mt for t ∈ [T ] satisfies the privacy guarantee stated in Lemma 4.3.1. Now, we

invoke the strong composition theorem stated in Lemma 2.1.2 to obtain the privacy guarantee

of the algorithm Acldp. We can conclude that for any δ′ > 0, Acldp is (ε, δ)-DP for

ε =
√

2T log (1/δ′)ε+ Tε
(
eε − 1

)
, δ = qT δ̃ + δ′,

4For example, when s = 1, the probability to observe two data points from the same client is zero in our
sampling procedure, while observing these two data points has non-zero probability in the uniform sampling
of the entire dataset D.
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where ε is from Lemma 4.3.1. We have from Lemma 2.1.2 that if ε = O
(√

log(1/δ′)
T

)
,

then ε = O
(
ε
√
T log (1/δ′)

)
. If ε0 = O(1), then we can satisfy this condition on ε by

choosing ε0 = O
(√

n log(1/δ′)

qT log(1/δ̃)

)
. By substituting the bound on ε = O

(
ε0

√
q log(1/δ̃)

mn

)
from

Lemma 4.3.1, we have ε = O
(
ε0

√
qT log(1/δ̃) log(1/δ′)

mn

)
. By setting δ̃ = δ

2qT
and δ′ = δ

2
, we get

ε0 = O
(√

mn log(2/δ)
qT log(2qT/δ)

)
and ε = O

(
ε0

√
qT log(2qT/δ) log(2/δ)

mn

)
. This completes the proof of the

privacy part of Theorem 4.3.1.

4.3.1.2 Proof of Theorem 4.3.1: Communication

The private mechanism Rp : X → Y used in Algorithm 4.3.1 has communication cost of

b bits. Let B = 2b. Therefore, the näıve scheme for any client to send the s compressed

and private gradients requires sb bits per iteration. We can reduce this communication

cost by using the histogram trick from [MT20] which was applied in the context of non-

private quantization. The idea is as follows. Since any client applies the same randomized

mechanism Rp to the s gradients, the output of these s identical mechanisms can be

represented accurately using the histogram of the s outputs, which takes value from the

set AsB = {(n1, . . . , nB) :
∑B

j=1 nj = s and nj ≥ 0,∀j ∈ [B]}. Since the cardinality of

this set is
(
s+B−1

s

)
≤
(
e(s+B−1)

s

)s
, it requires at most s

(
log (e) + log

(
s+B−1

s

))
bits to send

the s compressed gradients. Since the probability that the client is chosen at any time

t ∈ [T ] is given by k
n
, the expected number of bits per client in Algorithm Acldp is given by

k
n
× T × s

(
log (e) + log

(
s+B−1

s

))
bits, where expectation is taken over the sampling of k out

of n clients in all T iterations. This completes the proof of the second part of Theorem 4.3.1.

4.3.1.3 Proof of Theorem 4.3.1 : Convergence

At iteration t ∈ [T ] of Algorithm 4.3.1, the server averages the ks received compressed

and privatized gradients and obtains gt = 1
ks

∑
i∈Ut

∑
j∈Sit qt(dij) and then updates the
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parameter vector as θt+1 ←
∏
C (θt − ηtgt). Here, qt(dij) = Rp (∇θtf(θt; dij)). Since the

randomized mechanism Rp is unbiased, the average gradient gt is also unbiased, i.e., we have

E [gt] = ∇θtF (θt), where expectation is taken with respect to the random sampling of clients

and the data points as well as the randomness of the mechanism Rp. Now we show that gt

has a bounded second moment.

Lemma 4.3.2. For any d ∈ X , if the function f (θ; .) : C → R is convex and L-Lipschitz

continuous with respect to the `g-norm, which is the dual of `p-norm, then we have

E‖gt‖2
2 ≤ L2

(
1 +

fp(ε0, b)

qmn

)
. (4.6)

where fp(ε0, b) is the MSE of the private mechanism Rp.

Proof. Under the conditions of the lemma, we have from [Sha12, Lemma 2.6] that ‖∇θf (θ; d) ‖ ≤

L for all d ∈ X , which implies that ∇θF (θ) ≤ L. Thus, we have

E‖gt‖2
2 = ‖E [gt] ‖2

2 + E‖gt − E [gt] ‖2
2

(a)

≤ L2 + E‖gt − E [gt] ‖2
2

(b)

≤ L2 + L2fp(ε0, b)

ks

(c)
= L2 + L2fp(ε0, b)

qmn
,

where step (a) follows from the fact that ‖∇θtF (θt) ‖ ≤ L. Step (b) follows from the fact

that the private mechanism Rp has MSE fp(ε0, b). Step (c) uses q = ks
mn

. �

Now, we can use standard SGD convergence results for convex functions. In particular,

we use the following result from [SZ13].

Lemma 4.3.3 (SGD Convergence [SZ13]). Let F (θ) be a convex function, and the set C has

diameter D. Consider a stochastic gradient descent algorithm θt+1 ←
∏
C (θt − ηtgt), where

gt satisfies E [gt] = ∇θtF (θt) and E‖gt‖2
2 ≤ G2. By setting ηt = D

G
√
t
, we get

E [F (θT )]− F (θ∗) ≤ 2DG
2 + log (T )√

T
= O

(
DG

log (T )√
T

)
. (4.7)
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As shown in Lemma 4.3.2 and above that Algorithm 4.3.1 satisfies the premise of

Lemma 4.3.3. Now, using the bound on G2 from Lemma 4.3.2, we have that the output θT

of Algorithm 4.3.1 satisfies

E [F (θT )]− F (θ∗) ≤ O

LD log(T )

√(
1 + fp(εp,b)

qmn

)
√
T

 . (4.8)

Note that if
√

fp(ε0,b)

qmn
≤ O(1), then we recover the convergence rate of vanilla SGD without

privacy. So, the interesting case is when
√

fp(ε0,b)

qmn
≥ Ω(1), which gives

E [F (θT )]− F (θ∗) ≤ O

(
LD log(T )

√
fp(εp, b)√

qmnT

)
.

This completes the proof of Theorem 4.3.1.

4.4 DP Federated Learning with Client-Self Sampling

In our CLDP-SGD algorithm, we apply uniform client sampling by choosing uniformly at

random a fixed number of clients at each iteration. Choosing a fixed number of clients at each

iteration requires a selection by the shuffler. In this section, we extend our work to explore a

distributed self-sampling approach initiated by the clients that does not need a selection by

the shuffler. In order to obtain the new algorithm Adss distributed self-sampling (dss-SGD),

we replace the client-sampling (Line 4 in Algorithm 4.3.1) with client-self sampling approach.

At each round t ∈ [T ] of dss-SGD, each client independently and identically tosses a

biased coin with probability q. If the biased coin of the ith client returns a head (one),

then the ith client participates in the current round and shares its model privately with

the untrusted server with the help of the trusted shuffler. Otherwise, the ith client does

not participate in the current round. Let Ut denote the set of participating clients at round

t ∈ [T ]. We follow the same steps as in Algorithm 4.3.1, where each client i ∈ Ut computes

the gradient ∇θtf (θt; diji) for a randomly chosen sample diji from its local dataset Di. The
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i’th client clips the `p-norm of the gradient ∇θtf (θt; diji) and applies the LDP-compression

mechanism Rp. After that, each client i sends the private gradient Rp (gt (diji)) to the secure

shuffler that sends a random permutation of the received gradients to the server. Finally, the

server takes the average of the received gradients and updates the global model.

Our dss-SGD is different from the CLDP-SGD algorithm in the client sampling scheme.

In CLDP-SGD, a fixed number of clients are chosen uniformly at random in each iteration

that requires a selection by the shuffler. While, in dss-SGD, each individual client decides

to participate in each iteration depending on independent randomness generated at the

client-side. Hence, the proposed self-sampling does not need the coordination with the shuffler

that reflects the random availability of the clients in practical FL. This modification in the

client sampling raises challenges in analyzing the central privacy of the algorithm as well

as analyzing the convergence of the SGD, since the number of clients participating at each

iteration is random.

Our CLDP-SGD algorithm and the result of Theorem 4.4.1 (stated below) are given

for a general local randomizer Rp that satisfies the following conditions: (i) The randomized

mechanism Rp is an ε0-LDP mechanism. (ii) The randomized mechanism Rp is unbi-

ased, i.e., E [Rp (x) |x] = x for all x ∈ Bdp (L). (iii) The output of the randomized mech-

anism Rp can be represented using b ∈ N+ bits. (iv) The randomized Rp has a bounded

MSE: supx∈Bdp(L) E‖Rp (x) − x‖2
2 ≤ L2fp(ε0, b). For example, we can apply our proposed

communication-efficient and private schemes proposed in Chapter 3.

Theorem 4.4.1. Let the set C be convex with diameter D5 and the function f (θ; .) : C → R

be convex and L-Lipschitz continuous with respect to the `g-norm, which is the dual of the `p-

norm. Let θ∗ = arg minθ∈C F (θ) denote the minimizer of the problem (4.1). For participation

probability 0 < q ≤ 1, let q̄ = q
m

. If we run Algorithm Adss over T iterations, then we have

5Diameter of a bounded set C ⊂ Rd is defined as supx,y∈C ‖x− y‖.
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1. Privacy: For ε0 = O (1), Adss is (ε, δ)-DP, where

ε = O

(
ε0

√
q̄T log (q̄T/δ′) log (1/δ′)

mn

)
,

δ = 2δ′ + Te−c
′qn,

(4.9)

where δ′ > 0 is arbitrary, and c′ ∈ (0, 1) is a constant.

2. Communication: Our algorithm Adss requires q × b bits of communication in ex-

pectation per client per iteration, where expectation is taken with respect to client

sampling.

3. Convergence: If we run Adss with learning rate schedule ηt = D
G
√
t
, where G2 =

L2
(

1 + fp(ε0,b)

q̄mn

)
, then

E [F (θT )]− F (θ∗) ≤ O

(
LD log(T )

√
fp(ε0, b)√

T q̄mn(1− e−qn)
+ e−c

′qn

)
. (4.10)

We prove Theorem 4.4.1 in Section 4.4.1

Remark 4.4.1 (Impact of self-sampling of clients). In our algorithm dss-SGD, the number

of clients participating in any time slot t ∈ [T ] is a binomial random variable Kt. Note that

Kt = |Ut|. Thus, the expected number of effective iterations in which Kt > 0 is bounded below

by T (1− e−qn). Thus, the output of our algorithm converges with rate O
(

1/
√
T (1− e−qn)

)
instead of O

(
1/
√
T
)

as in the standard SGD. Furthermore, the impact of such client

sampling appears in the privacy parameter δ that has an additive term Te−c
′qn. This term

does not appear if we choose uniformly at random a fixed number of clients at each time

slot (see Theorem 4.3.1). However, in cross-device federated learning [Kai19], the number

of participated clients at each time slot is typically in thousands, i.e., qn is equal to a few

thousands. Thus, the term Te−qn � 1/mn and e−qn are negligible.

Remark 4.4.2 (Optimality of dss-SGD for `2-norm case). Suppose that our target is to

achieve ε = O(1) and δ � 1/mn. We can apply our private mechanism R`2
v,m,s proposed
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in Section 3.6 with v = ε0, m = 1, and s = dε0e. Substituting ε0 = ε
√

nm
qT log(2qT/δ′) log(2/δ′)

,

T = nm/q̄(1−e−qn) in (4.10), we recover the optimal excess risk of central differential privacy

presented in [BST14], except an additive term Te−qn in δ of the privacy parameter.

4.4.1 Proof of Theorem 4.4.1

4.4.1.1 Privacy

Hereafter, we denote Rp by R, for simplicity which is an ε0-LDP mechanism. This implies

that the mechanism Adss guarantees local differential privacy ε0 for each sample dij per

iteration. Thus, it remains to analyze the central DP guarantee of the mechanism Adss in

each iteration and also for the entire execution. The proof follows similar steps as the proof

of Theorem 4.3.1 in Section 4.3.1.1.

Fix a time slot t ∈ [T ]. Let Mt (θt,D) denote the private mechanism at time t that takes

the dataset D and an auxiliary input θt and generates the parameter θt+1 as an output. Let

Kt = |Ut| denote the random variable corresponding to the number of participating clients

in the t’th time slot. Thus, the mechanism Mt on input dataset D =
⋃n
i=1Di ∈ X n when

Kt > 0 can be defined as:

Mt(θt;D) = HKt ◦ sampiid
n,q (G1, . . . ,Gn) , (4.11)

where Gi = sampfix
m,1 (R(xti1), . . . ,R(xtim)) and xtij = ∇θtf(θt; dij),∀i ∈ [n], j ∈ [m]. Here,

sampiid
n,q denotes the sampling operation for choosing each of the n elements independently

with probability q, sampfix
m,1 denotes the sampling operation for choosing uniformly at random

a single element from a set of m elements, and HKt denotes the shuffling operation on Kt

elements, which outputs a random permutation of the Kt input elements. For convenience,

in the rest of the proof, we suppress the auxiliary input θt and simply denote Mt(θt;D) by

Mt(D). We can do this because θt only affects the gradients, and the analysis in this part is

for an arbitrary set of gradients.
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In the following lemma, we state the privacy guarantee of the mechanism Mt for each

t ∈ [T ].

Lemma 4.4.1. Fix an arbitrary iteration t ∈ [T ]. Let q = q
m

. Suppose R is an ε0-LDP

mechanism with ε0 = O(1). Then, for any δ̃ > 0, the mechanism Mt is
(
ε, δ
)
-DP, where

ε = O
(
ε0

√
q log(1/δ̃)

mn

)
and δ = qδ̃ + e−c

′qn for some constant c′ ∈ (0, 1).

We provide a proof of Lemma 4.4.1 in Appendix C.2. Note that the Algorithm Adss is

a sequence of T adaptive mechanisms M1, . . . ,MT , where each Mt for t ∈ [T ] satisfies the

privacy guarantee stated in Lemma 4.4.1. Now, we invoke the strong composition [DR14,

Theorem 3.20] to obtain the privacy guarantee of the algorithm Adss. We can conclude that

for any δ′, δ̃ > 0, Adss is (ε, δ)-DP for

ε =
√

2T log (1/δ′)ε+ Tε
(
eε − 1

)
δ = q̄T δ̃ + δ′ + Te−c

′qn,

where ε is from Lemma 4.4.1. When ε0 = O (1), then we get that ε = O
(
ε0

√
q̄ log(1/δ̃)

mn

)
from Lemma 4.4.1. Thus, from Lemma [DR14, Theorem 3.20], we get that

ε = O

ε0

√√√√ q̄T log
(

1/δ̃
)

log (1/δ′)

mn

 .

By setting δ̃ = δ′

q̄T
, we get ε = O

(
ε0

√
q̄T log(q̄T/δ′) log(1/δ′)

mn

)
, and δ = 2δ′ + Te−c

′qn.

4.4.1.2 Communication

Suppose that the randomized mechanism R is ε0-LDP having with communication cost b-bits.

Therefore, the expected number of bits per client in Algorithm Adss is given by q× b bits per

iteration, where expectation is taken over the client sampling.
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4.4.1.3 Convergence

Note that the number of clients participating |Ut| at any time slot t ∈ [T ] is a binomial

random variable Kt. Hence, the probability that Ut is empty is given by Pr [Kt = 0] =

(1− q)n ≤ e−qn. Thus, the expected number of effective iterations (when Kt > 0) is given by

T = (1− (1− q)n)T ≥ (1− e−qn)T .

At iteration t ∈ [T ] of Algorithm dss-SGD when Kt > 0, the server averages the Kt

received compressed and privatized gradients and obtains gt = 1
Kt

∑
i∈Ut qt(diji). We show

that the average gradient gt is unbiased:

Claim 4.4.1. We have E[gt] = ∇F (θt), where expectation is taken with respect to the

random participation of clients, the sampling of data points, and the randomness of the

mechanism Rp.

We prove Claim 4.4.1 in Appendix C.3. Now we show that gt has a bounded second

moment.

Lemma 4.4.2. For any d ∈ X , if the function f (θ; .) : C → R is convex and L-Lipschitz

continuous with respect to the `g-norm, which is the dual of `p-norm, then we have

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

‖gt‖2
2 ≤ L2

(
1 +

fp(ε0, b)

q̄mn

)
+ e−c

′qn. (4.12)

The proof of Lemma 4.4.2 is presented in Appendix C.4. Although the number of

participating clients at each iteration (Kt) is varying from iteration to iteration, Lemma 4.4.2

shows that the second moment of the descent direction gt decreases with order O (1/qn),

where qn = E [Kt]. Now, we can use standard SGD convergence results for convex functions.

In particular, we use the result from [SZ13], which is stated in Lemma 4.3.3. Algorithm

dss-SGD satisfies the premise of Lemma 4.3.3, where the expected number of effective

iteration is given by T ≥ (1− e−qn)T . Now, using the bound on G2 from (4.12) (and ignoring

the exponentially small term e−c
′q̄n), we have that the output θT of Algorithm dss-SGD

73



satisfies

E [F (θT )]− F (θ∗) ≤ O

LD log(T )
√

1 + fb(ε0,b)
q̄mn√

T (1− e−qn)

 . (4.13)

Note that if
√

fp(ε0,b)

q̄mn
≤ O(1), then we recover the convergence rate of vanilla SGD without

privacy. Therefore, the interesting case is when
√

fp(ε0,b)

q̄mn
≥ Ω(1), which gives E [F (θT )] −

F (θ∗) ≤ O
(
LD log(T )

√
fb(ε0,b)√

T q̄mn(1−e−qn)

)
. This completes the proof of Theorem 4.4.1.

4.5 DP Personalized Federated Learning

In the previous sections, we consider federated learning framework, where the server learns a

global model from the clients’ dataset. However, due to the statistical heterogeneity of the

clients’ data, learning a single global model may perform poorly for individual clients. This

motivates the need for personalized federated learning by learning individual models for each

client through collaboration. Consider a set of n clients, where each client has a local dataset

Di = {di1, . . . , dim} comprising m data points drawn from a universe X . The goal is to learn

n local models θ1, . . . ,θn that fits the local datasets {Di : i ∈ [n]}, respectively. Observe

that the local dataset Di is not large enough to train a local model θi with a reasonable

performance. Thus, we propose a Bayesian approach for personalized federated learning that

motivates the collaboration between clients.

Let each data point dij consists of a pair dij = (Xij, Yij), where Xij denotes the feature

vector and Yij denotes the target for i ∈ [n] and j ∈ [m]. Let P(Γ) be an unknown

global population distribution6 over Rd from which the local parameters θ1, . . . ,θn ∈ Rd

are sampled i.i.d. For given features {Xij} and local model θi, let the targets Yij’s are

generated from (Xij,θi) using some distribution pθi (Yij|Xij). Let Yi := (Yi1, . . . , Yim) and

6For simplicity, we will consider this unknown population distribution P to be parameterized by unknown
(arbitrary) parameters Γ.
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Xi := (Xi1, . . . , Xim) for i ∈ [n]. The underlying statistical model for our setting is given by

p{θi,Yi}|{Xi}(θ1, . . . ,θn, Y1, . . . , Yn|X1, . . . , Xn) =
n∏
i=1

p(θi)
n∏
i=1

m∏
j=1

pθi(Yij|Xij). (4.14)

Note that if we minimize the negative log likelihood of (4.14), we would get the optimal

parameters:

θ̂1, . . . , θ̂m := arg min
θ1,...,θn

n∑
i=1

m∑
j=1

− log(pθi(Yij|Xij)) +
n∑
i=1

− log(p(θi)). (4.15)

Here, fi(θi) :=
∑m

j=1− log(pθi(Yij|Xij)) denotes the loss function at the i-th client, which

only depends on the local data Di, and R({θi}) :=
∑n

i=1− log(p(θi)) is the regularizer that

depends on the (unknown) global population distribution P parameterized by unknown Γ.

Note that when clients have little data and we have large number of clients, i.e., m� n –

the setting of federated learning, clients may not be able to learn good personalized models

from their local data alone (if they do, it would lead to large loss). In order to learn better

personalized models, clients may utilize other clients’ data through collaboration, and the

above regularizer (and estimates of the unknown prior distribution P, through estimating

its parameters Γ) dictates how the collaboration might be utilized. The above-described

statistical framework (4.15) can model many different scenarios, as detailed below:

• When P(Γ) ≡ N (µ, σ2
θId) is a Gaussian for Γ =

{
µ, σθ : σθ ≥ 0,µ ∈ Rd

}
, then

R({θi}) = nd
2

log(2πσ2
θ) +

∑n
i=1

‖µ−θi‖22
2σ2
θ

. Here, unknown µ can be connected to the

global model and θi’s as local models, and the alternating iterative optimization

optimizes over both. This justifies the use of `2 regularizer in earlier personalized

learning works [DTN20,HR20,LHB21].

• When P(Γ) ≡ Laplace(µ, b), for Γ = {µ, b > 0}, then R({θi}) = n log(2b)+
∑n

i=1
‖θi−µ‖1

b
.

In Section 4.5.1, we propose a personalized federated learning algorithm under user-level DP

constraints that exploits our proposed Bayesian approach with knowledge distillation (KD)

regularizer. See Definition 3.7.1 in Section 3.7 and the remarks for more details about the

user-level DP.
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4.5.1 DP-AdaPeD: Adaptive Personalization via Distillation

It has been empirically observed that the knowledge distillation (KD) regularizer (between

local and global models) results in better performance than the `2 regularizer [OSD21]. In

fact, using our framework, we can define, for the first time, a certain prior distribution that

gives the KD regularizer. We use the following loss function at the i-th client:

fi(θi) +
1

2
log(2ψ) +

fKD
i (θi,µ)

2ψ
, (4.16)

where µ denotes the global model, θi denotes the personalized model at client i, and ψ can

be viewed as controlling heterogeneity. The goal for each client is to minimize its local loss

function, so individual components cannot be too large. For the second term, this implies

that ψ cannot be unbounded. For the third term, if fKD
i (θi,µ) is large, then ψ will also

increase (implying that the local parameters are too deviated from the global parameter),

hence, it is better to emphasize local training loss to make the first term small. If fKD
i (θi,µ)

is small, then ψ will also decrease (implying that the local parameters are close to the global

parameter), so it is better to collaborate and learn better personalized models. Such adaptive

weighting quantifies the uncertainty in population distribution during training, balances the

learning accordingly, and improves the empirical performance over non-adaptive methods.

To optimize (4.16) under user-level DP, we propose an alternating minimization approach,

which we call DP-AdaPeD; see Algorithm 0. Besides the personalized model θti, each client

i keeps local copies of the global model µti and of the dissimilarity term ψti . Note that

client i communicates µti, ψ
t
i (which are updated by accessing the dataset for computing the

gradients hti, k
t
i) to the server. Therefore, to privatize µti, ψ

t
i , client i adds appropriate noise

to hki , k
t
i , where σq1 , σq2 > 0, C1, C2 in Lines 13 and 15 depend on the desired privacy level.

At synchronization times, the server aggregates them to obtain global versions of these µt, ψt.

In this way, the local training of θti also incorporates knowledge from other clients’ data

through µti. In the end, clients have learned their personalized models {θTi }mi=1. The theorem

below (proved in Appendix C.5) states the Rényi Differential Privacy (RDP) guarantees of
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Figure 4.2: Privacy-Utility trade-offs on the MNIST dataset with `∞-norm clipping.

our DP-AdaPeDAlgorithm.

Theorem 4.5.1. After T iterations, DP-AdaPeD satisfies (α, ε(α))-RDP for α > 1, where

ε(α) =
(
K
n

)2
6T
τ
α
(

C2
1

Kσ2
q1

+
C2

2

Kσ2
q2

)
, where K

n
denotes the sampling ratio of clients at each global

iteration.

We bound the RDP, as it gives better privacy composition than using the strong composi-

tion. We can also convert our results to user-level (ε, δ)-DP by using the standard conversion

from RDP to approximate DP in Lemma 2.1.3. In Section 4.6, we numerically evaluate the

performance of our DP-AdaPeDalgorithm.

4.6 Numerical Results

In this section, we numerically evaluate the performance of our proposed differentially private

federated learning algorithms.

Shuffled model of differential privacy in federated learning: We present our numerical

results to evaluate the proposed CLDP-SGD algorithm for training machine learning models

with privacy and communication constraints. We consider the standard MNIST handwritten

digit dataset that has 60, 000 training images and 10, 000 test images. We train a simple

neural network that was also used in [EFM20b, PTS20] and described in Table 4.1. This
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Layer Parameters

Convolution 16 filters of 8× 8, Stride 2

Max-Pooling 2× 2

Convolution 32 filters of 4× 4, Stride 2

Max-Pooling 2× 2

Fully connected 32 units

Softmax 10 units

Table 4.1: Model Architecture for MNIST

model has a total number of d = 13, 170 parameters and achieves an accuracy of 99% for

non-private, uncompressed vanilla SGD. In our results, we assume that we have 60, 000 clients,

where each client has one sample, i.e., n = 60, 000 and m = 1. We present our results for

`∞-norm clipping using our DME algorithm R`∞
v,m,s proposed in Section 3.5 with parameters

v = ε0, m = 1, and s = 1. At each step of the CLDP-SGD, we choose at random 10, 000

clients. Each client clips the `∞-norm of the gradient ∇θtf (θt; di) with clipping parameter

C = 1/100. After that, the client applies the LDP-compression mechanism R`∞
v,m,s presented

in Algorithm 3.5.1 to the clipped gradient. We run our algorithm for 80 epochs, where we

set the learning rate at 0.3 for the first 70 epochs and decrease it to 0.18 in the remaining

epochs. We set the local privacy parameters v = ε0 = 2 and δ = 10−5, while the centralized

privacy parameter ε is computed numerically from Theorem 4.3.1.

Figure 4.2 demonstrates the mean and the standard deviation of privacy-accuracy plot

averaged over 10 runs. It shows that we can achieve an accuracy 76.7% (±2) for total privacy

ε = 5 and an accuracy 87.9% (±1) for total privacy ε = 10. Furthermore, observe that our

proposed CLDP-SGD algorithm preserves a local privacy of ε0 = 2 per sample per epoch.

In addition, the private mechanism requires only dlog (d)e+ 1 bits per gradient, while the full

precision gradient requires 32× d bits per gradient. Thus, the proposed private mechanism

saves in communication bits a factor of 28096× in comparison with the full precision gradient.
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Table 4.2: Test Accuracy (in %) vs. ε on MNIST without client sampling for DP-AdaPeD.

Method ε = 3.35 ε = 13.16 ε = 27.30

DP-FedAvg 11.73± 0.85 29.91± 1.28 55.79± 0.29

DP-AdaPeD (Ours) 93.32± 1.18 98.51± 0.90 99.01± 0.65

In [PTS20], the authors achieve a test accuracy of 98% on MNIST with central privacy

parameters ε = 3 and δ = 10−5 using a DP centralized algorithm by adding Gaussian noise

to the aggregated gradients in each iteration. However, [PTS20] do not offer any local

differential privacy guarantees, which can be thought of as ε0 =∞. Although, Theorem 4.3.1

and Remark 4.3.3 show that our proposed algorithm matches theoretically the results of the

centralized SGD with full precision gradients, the numerical results show that there is a gap

between the accuracy of our algorithm and the test accuracy of the centralized algorithm

in [PTS20]. The privacy parameters of our algorithm can be improved by analyzing the

Rényi differential privacy of the shuffled model (see Chapter 5).

DP Personalized Federated Learning: We consider image classification on MNIST,

FEMNIST [CDW18]; and train a CNN, similar to the one considered in [MMR17], that has

2 convolutional and 3 fully connected layers. We set n = 66 for FEMNIST and n = 50 for

MNIST. For FEMNIST, we use a subset of 198 writers so that each client has access to data

from 3 authors, which results in a natural type of data heterogeneity due to writing styles of

authors. On MNIST, we introduce pathological heterogeneity by letting each client sample

data from 3 randomly selected classes only. We set τ = 10 and vary the batch size so that

each epoch consists of 60 iterations.

In Figure 4.3 and Table 4.2, we observe performance of DP-AdaPeD under different ε

values. DP-AdaPeD outperforms DP-FedAvg because personalized models do not need to be

privatized by DP mechanism, whereas the global model needs to be in DP-FedAvg. Our

79



4 5 6 7 8 9
ε

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

Te
st
 A
cc
ur
ac
y 
(in

 %
)

Local training
DP-AdaPeD

Figure 4.3: Test Accuracy (in %) vs. ε on FEMNIST with client sampling ratio of 0.33 for

DP-AdaPeD.

experiments provide user-level privacy that is appropriate in FL.

4.7 Related Work

The federated learning (FL) paradigm has had huge recent success both in industry and

academia [MMR17,Kai19], as it enables to leverage data available in dispersed devices for

learning while maintaining data privacy. Below we give a brief description of related work

DP Federated Learning There has been a lot of work on privacy in the context of

FL (see [Kai19] and references therein). In [CMS11], Chaudhuri et al. studied centralized

privacy-preserving machine learning algorithms for convex optimization problem. The

authors proposed a new idea of perturbing the objective function to preserve privacy of

the training dataset. In [BST14], Bassily et al. derived lower bounds on the empirical risk

minimization under central differential privacy constraints. Furthermore, they proposed

a differential privacy SGD algorithm that matches the lower bound for convex functions.

In [ACG16], the authors have generalized the private SGD algorithm proposed in [BST14] for

non-convex optimization framework. In addition, the authors have proposed a new analysis

technique (moment accounting) to improve on the strong composition theorems to compute

the central differential privacy guarantee for iterative algorithms. However, the mentioned
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works [CMS11,BST14,ACG16] assume that there exists a trusted server that collects the

clients’ data. This motivates other works to design a private distributed SGD algorithms,

where each client perturbs her own data without needing a trusted server. For this, the natural

privacy framework is local differential privacy or LDP (e.g., see [War65,DWJ13,BDF18]).

However, it is well understood that LDP does not give good performance guarantees as it

requires significant local randomization to give privacy guarantees [DWJ13,KLN11,KBR16].

The two most related papers to our work are [EFM20b,ASY18] which we describe below.

In [EFM20b], Erlingsson et al. proposed a distributed local-differential-privacy gradient

descent algorithm, where each client has one sample. In their proposed algorithm, each

client perturbs the gradient of her sample using an LDP mechanism. To improve upon

the LDP performance guarantees, they use the newly proposed anonymization/shuffling

framework [BBG19d]. Therefore in their work, gradients of all clients are passed through

a secure shuffler that eliminates the identities of the clients to amplify the central privacy

guarantee. However, their proposed algorithm is not communication efficient, where each

client has to send the full-precision gradient without compression. Our work is different

from [EFM20b], as we propose a communication-efficient mechanism for each client that

requires O(log d) bits per client, which can be significant for large d. Furthermore, our

algorithm consider multiple data samples at each client, which is accessed through a mini-

batch random sampling at each iteration of the optimization. This requires a careful

combination of compression and privacy analysis in order to preserve the variance reduction

of mini-batch as well as privacy. In addition, we obtain a gain in privacy by using the fact

that (anonymized) clients are sampled (i.e., not all clients are selected at each iteration) as

motivated by the federated learning framework.

In [ASY18], Agarwal et al. proposed a communication-efficient algorithm for learning

models with differential privacy. They proposed cp-SGD, a communication efficient algorithm,

where clients need to send O (d log(n)) bits of communication per client per round to achieve

the same local differential privacy guarantees of ε0 as the Gaussian mechanism. Their
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algorithm is based on a Binomial noise addition mechanism. In contrast, we propose a generic

framework to convert any LDP algorithm to a central differential privacy guarantee and

further use recent results on amplification by shuffling, that also achieves better compression

in terms of number of bits per client.

Client sampling procedures: In [BKM20], the authors have proposed a novel sampling

scheme called random check-in, in which each client independently chooses which time slot to

participate in the training process. However, their sampling scheme is different from client-self

sampling proposed in Section 4.4 in the following sense: (i) We consider multiple data samples

at each client, whereas, in their work they assume that each client has a single sample. This

provides an additional layer of sampling the local datasets at clients that amplifies the central

privacy of the SGD. Furthermore, this creates non-uniform sampling of data points, because

clients either do not participate or they participate with a mini-batch gradient of a certain

size. (ii) Our self-sampling scheme allows flexibility to the clients to participate in more

than one iteration. In contrast, in [BKM20] each client participates only in one time slot of

the training process. These differences also lead to distinct technical approaches to proving

privacy and the trade-offs.

Private personalized learning: There has been a lot of work in privacy for FL when the

goal is to learn a single global model; though there are fewer papers that address user-level

privacy [MAE18, LSY20, WSZ19, LSA21, GKM21a]. There has been more recent work on

applying these ideas to learn personalized models [JRS21, HGL20, LKC20]. These are for

specific algorithms/models, e.g., [JRS21] focuses on the common representation model for

linear regression described earlier or on item-level privacy [HGL20,LKC20]. We believe that

DP-AdaPeD proposed in this chapter is among the first user-level private personalized learning

algorithms with user-level DP privacy guarantees, applicable to general deep learning.
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Algorithm 4.4.1 DP Adaptive Personalization via Distillation (DP-AdaPeD)

Parameters: local variances {ψ0
i }, personalized models {θ0

i }, local copies of the global

model {µ0
i }, learning rates η1, η2, η3, synchronization gap τ , and privacy variances σq1 , σq2 .

1: for t = 0 to T − 1 do

2: if τ divides t then

3: On Server do:

4: Choose a subset Kt ⊆ [n] of K clients

5: Broadcast µt and ψt

6: On Clients i ∈ Kt (in parallel) do:

7: Receive µt, ψt; set µti = µt, ψti = ψt

8: On Clients i ∈ Kt (in parallel) do:

9: Compute gti := ∇θtifi(θ
t
i) +

∇
θt
i
fKDi (θti,µ

t
i)

2ψti

10: Update: θt+1
i = θti − η1g

t
i

11: Compute hti := ∇
µt
i
fKDi (θt+1

i ,µti)/2ψti.

12: Update: µt+1
i = µti − η2

(
hti

max{‖hti‖/C1,1}
+ ν1

)
, where ν1 ∼ N (0, σ2

q1
Id).

13: Compute kti := 1
2ψti
− fKDi (θt+1

i ,µt+1
i )/2(ψti)

2.

14: Update: ψt+1
i = ψti − η3

(
kti

max{|kti |/C2,1} + ν2

)
, where ν2 ∼ N (0, σ2

q2
).

15: if τ divides t+ 1 then

16: Clients send µti and ψti to Server

17: Server receives {µti}i∈Kt and {ψti}i∈Kt

18:

19: Server computes µt+1 = 1
K

∑
i∈Kt µ

t
i and ψt+1 = 1

K

∑
i∈Kt ψ

t
i

Output: Personalized models (θTi )mi=1
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CHAPTER 5

Rényi Differential Privacy of the Shuffled Model

In this chapter, we characterize the Rényi differential privacy (RDP) of the shuffled

model by proposing upper and lower bounds for general LDP mechanisms. RDP is a

useful privacy notion that enabled a much tighter composition for interactive mechanisms.

Furthermore, we characterize the RDP of the subsampled shuffled model that combines the

privacy amplification via shuffling and amplification by subsampling. To achieve these results,

we propose a novel analysis technique by reducing any general neighboring datasets to a

special case datasets that can be analyzed in a closed form solution.

5.1 Introduction

Shuffled model is a privacy framework using anonymization [BEM17,EFM19,CSU19,BBG19d],

where each client sends her (randomized) report to a secure shuffler that randomly permutes

all the received reports before forwarding them to the server. This model enables significantly

better privacy-utility performance by amplifying LDP through this mechanism.

In federated learning, there are repeated interactions (e.g., through distributed gradient

descent), and hence, one needs privacy composition [BST14] to compute the overall privacy

budget. Clearly, from an optimization viewpoint, we might need to run these interactions

longer for better models, but these also result in privacy leakage. Though the privacy leakage

can be quantified using advanced composition theorems for DP (e.g., [DRV10,KOV15]), these
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might be loose. To address this, Abadi et al. [ACG16] developed a “moments accountant”

framework, which enabled a much tighter composition. This is enabled by providing the

composition privacy guarantee in terms of rényi differential privacy (RDP) [Mir17], and

then mapping it back to the DP guarantee [MTZ19]. It is known that RDP provides a

significant saving in the total privacy budget in comparison with using the strong composition

theorems [DRV10,KOV15]. Therefore, analyzing the RDP of the shuffle model could have

several applications such as private statistics using interactive schemes for heavy hitters,

mean estimation, federated learning, and distributed differentially private stochastic gradient

descent (DP-SGD). Thus, the central question studied in this chapter is RDP guarantees for

general discrete local randomizers in the shuffled privacy model. Our results could be adapted

to enhance the privacy guarantees of the federated learning algorithms in the shuffled model

presented in Chapter 4.

The principal result in this chapter is the first direct RDP guarantee for general discrete

local randomization mechanisms in the shuffle privacy model. In particular, given an arbitrary

discrete local mechanism with ε0-LDP guarantee, we provide an RDP guarantee for the

shuffle model, as a function of ε0 and the number of users n. This can be seen as a privacy

amplification result for amplifying pure LDP guarantee to RDP guarantee via shuffling. In

contrast, the existing amplification by shuffling results [EFM19,BBG19d,FMT22] amplify

pure LDP guarantee to approximate DP guarantee.

In order to obtain our upper bound on the RDP of the shuffled model, we develop new

analysis techniques which could be of independent interest. In particular, we develop a novel

RDP analysis for neighboring datasets with a special structure, in which one of the datasets

has all the data points to be the same. We first observe that the output distribution of the

shuffling mechanism is the multinomial distribution. Using this observation, then we show

that the ratio of the distributions of the mechanism on special structure neighboring datasets

is a sub-Gaussian random variable (r.v.), and we can write the Rényi divergence of the shuffle

mechanism in terms of the moments of this r.v. Bounding the moments of this r.v. then gives
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an upper bound on the RDP for the special neighboring datasets. A key technical result is

then to relate the RDP of general neighboring datasets to those with special structure. To

do so, a crucial observation is to write the output distribution of the local randomizer on the

i’th client’s data point as a mixture distribution, where the number of clients sampling from

the same distribution is a Binomial random variable. Therefore, if we restrict the dataset to

these clients only, the resulting datasets will have the special structure. Finally, in order to

be able to reduce the problem to the special case, we remove the effect of the clients that do

not sample from the same distribution without affecting the Rényi divergence.

Another technique for amplifying the privacy is subsampled mechanism, where we first take

a random subsample of the dataset, and then apply a known randomized mechanism on the

subsampled data points. This subsampled mechanism enables another privacy amplification

opportunity, which, in several cases, is shown to yield a privacy advantage proportional to

the subsampling rate (see [KLN11,Ull17]). We analyze the RDP of subsampled mechanisms

in the shuffled framework for any discrete LDP mechanism by bounding the ternary |χ|λ-

DP [WBK19] of the shuffled model using our previous technique. Our new bound saves a

factor of 2.5× better than combining RDP of the shuffled model with the sub-sampling result

in [WBK19].

The shuffled model of privacy has been of significant recent interest [EFM19, GGK19,

BBG19c, GPV19, BBG19b, CSU19, BBG19d, BBG20b]. However, all the existing works in

literature [EFM19,BBG19d,FMT22] only characterize the approximate DP of the shuffled

model. To the best of our knowledge, there is no bound on RDP of the shuffle model in the

literature except for the one mentioned briefly in a remark in [EFM19, Remark 1], which is

obtained by the standard conversion results from DP to RDP. However, this bound is loose

and not useful for conversion to approximate DP as well as for composition. Recently, authors

in [FMT23] has proposed a reduction technique for the shuffled model that enables getting

tighter results for the RDP of the shuffled model. The works [MTZ19,WBK19,ZW19] have

studied the RDP of subsampled mechanisms without shuffling. They demonstrated that this
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Figure 5.1: Shuffled model: clients apply the local randomizer R on their data points and

send them to a secure shuffler that randomly permutes clients’ messages before passing them

to the server.

provides a tighter bound on the total privacy loss than the bound that can be obtained using

the standard strong composition theorems. The RDP analysis of subsampled mechanisms in

the shuffled privacy framework has not been studied before. One naive approach is to plug in

the RDP analysis of shuffle model [GDD21e] into the results of [WBK19]; however, our direct

analysis of subsampled mechanisms yields better results in several interesting regimes.

5.2 Problem Formulation

Let D = (d1, . . . , dn) be a dataset consisting of n data points, where di is a data point at

the i’th client that takes values from a set X . Let R : X → Y be a local randomizer that

satisfies the following two properties:

1. R is an ε0-LDP mechanism (see Definition 2.2.1).

2. The range of R is a discrete set, i.e., the output of R takes values in a discrete set

[B] = {1, . . . , B} for some B ∈ N := {1, 2, 3, . . .}. Here, [B] could be the whole of N.

Client i applies R on di (each client uses independent randomness for computing R(di)) and

sends R(di) to the shuffler, who shuffles the received n inputs and outputs the result; see

Figure 5.1. To formalize this, let Hn : Yn → Yn denote the shuffling operation that takes n
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inputs and outputs their uniformly random permutation. We define the shuffling mechanism

as

M (D) := Hn (R (d1) , . . . ,R (dn)) . (5.1)

Our goal is to characterize the Rényi differential privacy of M. Since the output of M is

a random permutation of the n outputs of R, the server cannot associate the n messages to

the clients; and the only information it can use from the messages is the histogram, i.e., the

number of messages that give any particular output in [B]. We define a set AnB as follows

AnB =

{
h = (h1, . . . , hB) :

B∑
j=1

hj = n

}
, (5.2)

to denote the set of all possible histograms of the output of the shuffler with n inputs.

Therefore, we can assume, without loss of generality (w.l.o.g.), that the output of M is a

distribution over AnB for input dataset D of n data points.

We also characterize the RDP of the subsampled shuffled model that defined as follows.

First subsample k ≤ n clients of the n clients (without replacement), where γ = k
n

denotes

the sampling parameter. Each client i out of the k selected clients applies R on di and sends

R(di) to the shuffler that randomly permutes the received k messages and outputs the result.

We formally define the subsampled shuffled mechanism as

Ms (D) := Hk ◦ sampn,k (R (d1) , . . . ,R (dn)) , (5.3)

where Hk denotes the shuffling operation on k elements and sampn,k denotes the sampling

operation for choosing a random subset of k elements from a set of n elements. A succinct

summary of the notation used throughout the paper is given in Table 5.1.

5.3 RDP of the Shuffled Model

This section is dedicated to presenting upper and lower bounds on the RDP of the shuffled

model.
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Symbol Description

[B] {1, 2, . . . , B} for any B ∈ N

ε0 LDP parameter (see Definition 2.2.1)

(ε, δ) Approximate DP parameters (see Definition 2.1.2)

(α, ε(α)) RDP parameters (see Definition 2.1.3)

R : X → [B] A discrete ε0-LDP mechanism at clients for mapping

their data points to elements in [B]

p = (p1, . . . , pB) The output distribution of R when the data point is d

p′ = (p′1, . . . , p
′
B) The output distribution of R when the data point is d′

pi = (pi1, . . . , piB) The output distribution of R when the data point is di for i ∈ [n]

p′n = (p′n1, . . . , p
′
nB) The output distribution of R when the data point is d′n

P A collection of n distributions {p1, . . . ,pn}

P−i A collection of (n− 1) distributions P \ {pi}

A collection of n distributions, where clients in the set C map

PC, where C ⊆ [n− 1] according to p′n, clients in the set [n− 1] \ C map according

to p̃i (see (5.19)), and client n maps according to pn (see (5.20)-

(5.22))

AnB A set of all possible histograms with B bins and n elements (see

(5.2))

h h = (h1, . . . , hB) with
∑B

i=1 hi = n is an element of AnB
M(D) The shuffle mechanism M on the dataset D ∈ X n;

M(D) is a distribution over AnB (see (5.1))

F (P) Distribution over AnB when client i maps its data point

according to the distribution pi (see (5.18))

Table 5.1: Notation used throughout Chaper 5
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Theorem 5.3.1 (Upper Bound 1). For any n ∈ N, ε0 ≥ 0,and any integer α ≥ 2, the RDP

of the shuffle model is upper-bounded by

ε(α) ≤ 1

α− 1
log
(

1 +

(
α

2

)
(eε0 − 1)2

neε0

+
α∑
i=3

(
α

i

)
iΓ (i/2)

(
(e2ε0 − 1)

2

2e2ε0n

)i/2

+ eε0α−
n−1
8eε0

)
,

(5.4)

where n = bn−1
2eε0
c+ 1 and Γ (z) =

∫∞
0
xz−1e−xdx is the Gamma function.

We give a complete proof of Theorem 5.3.1 in Section 5.3.1.1. When n, ε0, α satisfy a

certain condition, we can simplify the bound in (5.4) to the following:

Corollary 5.3.1 (Simplified Upper Bound 1). For any n ∈ N, ε0 ≥ 0, and any integer α ≥ 2

that satisfy α4e5ε0 < n
9
, we can simplify the bound in (5.4) to the following:

ε(α) ≤ 1

α− 1
log

(
1 +

(
α

2

)
4 (eε0 − 1)2

n

)
. (5.5)

We prove Corollary 5.3.1 in Appendix D.1. Note that the upper bounds in Theorem 5.3.1

and Corollary 5.3.1 hold for any ε0-LDP mechanism.

Remark 5.3.1. Note that any α, ε0, n that satisfy α4e5ε0 < n
9

lead to the bound in (5.5).

For example, we can take ε0 = c lnn and α < n(1−5c)/4

2
for any c < 1

5
, and it will satisfy the

condition. In particular, taking ε0 = 1
25

lnn and α < n1/5

2
will also give the bound in (5.5).

Remark 5.3.2 (Generalization to real orders α). Theorem 5.3.1 provides an upper bound

on the RDP of the shuffle model for only integer orders α ≥ 2. However, the result can

be generalized to real orders α using convexity of the function (α− 1) ε (α) as follows.

From [EH14, Corollary 2], the function (α− 1)Dα (P||Q) is convex in α for any given two

distributions P and Q. Thus, for any real order α > 1, we can bound the RDP of the shuffle

model by

ε (α) ≤ a · (bαc − 1) · ε (bαc) + (1− a) · (dαe − 1) · ε (dαe)
α− 1

, (5.6)
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where a = dαe−α, since α = abαc+(1−a)dαe for any real α. Here, bαc and dαe respectively

denote the largest integer smaller than or equal to α and the smallest integer bigger than or

equal to α.

In the following theorem, we also present another bound on RDP that readily holds for

all α ≥ 1.

Theorem 5.3.2 (Upper Bound 2). For any n ∈ N, ε0 ≥ 0, and any α ≥ 1 (including the

non-integral α), the RDP of the shuffle model is upper-bounded by

ε(α) ≤ 1

α− 1
log

(
eα

2 (eε0−1)2

n + eε0α−
n−1
8eε0

)
, (5.7)

where n = bn−1
2eε0
c+ 1.

We prove Theorem 5.3.2 in Section 5.3.1.2.

Remark 5.3.3 (Improved Upper Bounds – Saving a Factor of 2). The exponential term

eε0α−
n−1
8eε0 in both the upper bounds stated in (5.4) and (5.7) comes from the Chernoff

bound, where we naively choose the factor γ = 1/2 instead of optimizing it; see the proof

of Theorem 5.3.1 in Section 5.3.1.1. If we instead had optimized γ and chosen it to be,

for example, γ =
√

2ε0eε0√
n log(n)

(which goes to 0 when, say, ε0 ≤ 1
4

log(n)), we would have

asymptotically saved a multiplicative factor of 2 in the leading term in both upper bounds,

because in this case we have n = b(1 − γ)n−1
eε0
c + 1 → bn−1

eε0
c + 1 as n → ∞. We chose to

evaluate our bound with γ = 1/2 because of two reasons: first, it gives a simpler expression

to compute; and second, the evaluated bound does not give good results (as compared to the

ones with γ = 1/2) for the parameter ranges of interest.

Remark 5.3.4 (Difference in Upper Bounds). Since the quadratic term in α inside the log

in (5.7) has an extra multiplicative factor of eε0 in comparison with the corresponding term

in (5.4), our first upper bound presented in Theorem 5.3.1 is better than our second upper

bound presented in Theorem 5.3.2 for all parameter ranges of interest; see also Figure 5.2 in
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Section 5.5. However, the expression in (5.7) is much cleaner to state as well as to compute

as compared to that in (5.4). As we will see later, the techniques required to prove both

upper bounds are different.

Remark 5.3.5 (Potentially Better Upper Bounds for Specific Mechanisms). Since both our

upper bounds are worse-case bounds that hold for all ε0-LDP mechanisms, it is possible

that for specific mechanisms, we may be able to exploit their structure for potentially better

bounds. See Remark 5.3.8 on this just after (5.33).

The upper bounds on the RDP of the shuffle model presented in (5.4) and (5.7) are general

and hold for any discrete ε0-LDP mechanism. Furthermore, these bounds are in closed form

expressions that can be easily implemented. To the best of our knowledge, there is no bound

on RDP of the shuffle model in literature except for the one given in [EFM19, Remark 1],

which we provide below1 in (5.8). For the LDP parameter ε0 and number of clients n, they

showed that for any α > 1, the shuffle mechanism M is (α, ε(α))-RDP, where

ε (α) = α
2e4ε0 (eε0 − 1)2

n
. (5.8)

In Section 5.5, we evaluate numerically the performance of both our bounds (from Theo-

rems 5.3.1 and 5.3.2) against the above bound in (5.8). We demonstrate that both our bounds

outperform the above bound in all cases; and in particular, the gap is significant when ε0 > 1

– note that the bound in [EFM19] is worse than our simplified bound given in Corollary 5.3.1

by a multiplicative factor of e4ε0 .

Theorem 5.3.3 (Lower Bound). For any n ∈ N, ε0 ≥ 0, and any integer α ≥ 2, the RDP of

the shuffle model is lower-bounded by:

ε (α) ≥ 1

α− 1
log
(

1 +

(
α

2

)
(eε0 − 1)2

neε0

+
α∑
i=3

(
α

i

)(
(e2ε0 − 1)

neε0

)i
E

[(
k − n

eε0 + 1

)i])
,

(5.9)

1As mentioned in Section 5.1, this was obtained by the standard conversion results from DP to RDP,
which could be loose.
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where expectation is taken w.r.t. the binomial random variable k ∼ Bin (n, p) with parameter

p = 1
eε0+1

.

We give a complete proof of Theorem 5.3.3 in Section 5.3.4. When i is an even integer,

then the expectation term in (5.9) is positive. When i ≥ 3 is an odd integer, then using the

convexity of function f(x) = xi, it follows from the Jensen’s inequality (i.e., Ef(X) ≥ f(EX))

and E[k] = n
eε0+1

, that E
[(
k − n

eε0+1

)i] ≥ (E [k − n
eε0+1

])i
= 0. Using these observations, we

can safely ignore the summation term from (5.9) and obtain the following simplified lower

bound.

Corollary 5.3.2 (Simplified Lower Bound). For any n ∈ N, ε0 ≥ 0, and integer α ≥ 2, the

RDP of the shuffle model is lower-bounded by:

ε (α) ≥ 1

α− 1
log

(
1 +

(
α

2

)
(eε0 − 1)2

neε0

)
. (5.10)

Remark 5.3.6 (Upper and Lower Bound Proofs). Both our upper bounds stated in Theo-

rems 5.3.1 and 5.3.2 hold for any ε0-LDP mechanism. In other words, they are the worst case

privacy bounds, in the sense that there is no ε0-LDP mechanism for which the associated

shuffle model gives a higher RDP parameter than those stated in (5.4) and (5.7). Therefore,

the lower bound that we derive should serve as the lower bound on the RDP privacy parameter

of the mechanism that achieves the largest privacy bound (i.e., worst privacy).

We prove our lower bound result (stated in Theorem 5.3.3) by showing that a specific

mechanism (in particular, the binary Randomized response (RR)) on a specific pair of

neighboring datasets yields the RDP privacy parameter stated in the right hand side (RHS)

of (5.9). This implies that RDP privacy bound (which is the supremum over all neighboring

datasets) of binary RR for the shuffle model is at least the bound stated in (5.9), which in

turn implies that the lower bound (which is the tightest bound for any ε0-LDP mechanism)

is also at least that.

Remark 5.3.7 (Gap in Upper and Lower Bounds). When comparing our simplified upper and

lower bounds from Corollaries 5.3.1 and 5.3.2, respectively, we observe that when α4e5ε0 < n
9
,
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our upper and lower bounds differ by a multiplicative factor of 4eε0 . In our generic upper

bound (5.4), note that when n is large, only the term corresponding to α2 matters, and

with our improved upper bound (which saves a factor of 2 in that term asymptotically – see

Remark 5.3.3), the upper and lower bounds are away by the factor of eε0 , which tends to 1

as ε0 → 0. Thus, in the regime of large n and small ε0, our upper and lower bounds coincide.

Without any constraints on n, ε0, we believe that our lower bound is tight. Closing this gap

by showing a tighter upper bound is an interesting and important open problem.

5.3.1 Proofs of The Upper Bounds

In this section, we will prove our upper bounds stated in Theorems 5.3.1 and 5.3.2 in

Sections 5.3.1.1 and 5.3.1.2, respectively.

5.3.1.1 Proof of Theorem 5.3.1

The proof has two main steps. In the first step, we reduce the problem of deriving RDP

for arbitrary neighboring datasets to the problem of deriving RDP for specific neighboring

datasets, D,D′, where all elements in D are the same and D′ differs from D in one entry. In

the second step, we derive RDP for the special neighboring datasets. The specific neighboring

datasets to which we reduce our general problem have the following form:

Dmsame =
{

(Dm,D′m) : Dm = (d, . . . , d, d) ∈ Xm,

D′m = (d, . . . , d, d′) ∈ Xm, where d, d′ ∈ X
}
.

(5.11)

Consider arbitrary neighboring datasetsD = (d1, . . . , dn) ∈ X n andD′ = (d1, . . . , dn−1, d
′
n) ∈

X n. For any m ∈ {0, . . . , n− 1}, define new neighboring datasets D(n)
m+1 = (d′n, . . . , d

′
n, dn) ∈

Xm+1 and D′(n)
m+1 = (d′n, . . . , d

′
n, d

′
n) ∈ Xm+1, each having (m + 1) elements. Observe that(

D′(n)
m+1,D

(n)
m+1

)
∈ Dm+1

same. The first step of our proof is summarized in the following theorem.

Theorem 5.3.4 (Reduction to the Special Case). Let q = 1
eε0

and m ∼ Bin (n− 1, q) be a
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binomial random variable. We have:

Eh∼M(D′)

[(
M(D)(h)

M(D′)(h)

)α]
≤ Em∼Bin(n−1,q)

[
E
h∼M(D′(n)

m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]]
.

(5.12)

We provide a complete proof of Theorem 5.3.4 in Section 5.3.2. Since Em is precisely

what is required to bound the RDP for the specific neighboring datasets, we have reduced the

problem of computing RDP for arbitrary neighboring datasets to the problem of computing

RDP for specific neighboring datasets. The second step of the proof bounds Em, which

follows from the result below that holds for any m ∈ N.

Theorem 5.3.5 (RDP for the Special Case). Let m ∈ N be arbitrary. For any integer α ≥ 2,

we have

sup
(Dm,D′m)∈Dmsame

Eh∼M(Dm)

[(
M(D′m)(h)

M(Dm)(h)

)α]

≤ 1 +

(
α

2

)
(eε0 − 1)2

meε0
+

α∑
i=3

(
α

i

)
iΓ(i/2)

(
(e2ε0 − 1)

2

2me2ε0

)i/2

.

(5.13)

We give a complete proof of Theorem 5.3.5 in Section 5.3.3. We show in Appendix D.2.1

that Em is a non-increasing function of m. Using this and concentration properties of the

Binomial r.v., we get:

E
[(
M(D)(h)

M(D′)(h)

)α]
≤ eε0αe−

q(n−1)γ2

2 + E(1−γ)q(n−1), (5.14)

where γ > 0 is arbitrary, and expectation is taken w.r.t. h ∼ M(D′). Note that we have

already bounded Em for all m in Theorem 5.3.5. By setting γ = 1
2

and n = b(1− γ)q(n−

1)c+ 1 = bn−1
2eε0
c+ 1, we get from Theorem 5.3.5, that:

Eh∼M(D′)

[(
M (D) (h)

M (D′) (h)

)α]
≤ En−1 + eε0α−

n−1
8eε0 (5.15)

≤ 1 +

(
α

2

)
(eε0 − 1)2

neε0
+

α∑
i=3

(
α

i

)
iΓ (i/2)

(
(e2ε0 − 1)

2

2ne2ε0

)i/2

+ eε0α−
n−1
8eε0 .

Since the above bound holds for arbitrary pairs of neighboring datasets D and D′, this

completes the proof of Theorem 5.3.1.
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5.3.1.2 Proof of Theorem 5.3.2

The proof of Theorem 5.3.2 follows the same steps as that of the proof of Theorem 5.3.1,

except for the following change. Instead of using Theorem 5.3.5 for bounding the RDP for

specific neighboring datasets, we will use the following theorem.

Theorem 5.3.6. Let m ∈ N be arbitrary. For any α ≥ 2 (including the non-integral α) and

any (Dm,D′m) ∈ Dmsame, we have

Eh∼M(Dm)

[(
M (D′m) (h)

M (Dm) (h)

)α]
≤ exp

(
α2 (eε0 − 1)2

m

)
. (5.16)

We prove Theorem 5.3.6 in Appendix D.2.2. Note that Theorem 5.3.6 implies that

Em−1 ≤ exp
(
α2 (eε0−1)2

m

)
holds for every integer m ≥ 2. Substituting this in (5.15) (by

putting m = n = bn−1
2eε0
c+ 1), we get

Eh∼M(D′)

[(
M (D) (h)

M (D′) (h)

)α]
≤ eα

2 (eε0−1)2

n + eε0α−
n−1
8eε0 .

This proves Theorem 5.3.2.

5.3.2 Proof of the Reduction to the Special Case

In this section, we prove Theorem 5.3.4 by reducing the problem of computing RDP for the

arbitrary pairs of neighboring datasets to the problem of computing RDP for the neighboring

datasets with the special structure.

Recall that the LDP mechanism R : X → Y has a discrete range Y = [B] for some

B ∈ N. Let pi := (pi1, . . . , piB) and p′n := (p′n1, . . . , p
′
nB) denote the probability distributions

over Y when the input to R is di and d′n, respectively, where pij = Pr[R(di) = j] and

p′nj = Pr[R(d′n) = j] for all j ∈ [B] and i ∈ [n]. Let P = {pi : i ∈ [n]} and P ′ =

{pi : i ∈ [n− 1]}
⋃
{p′n}. For i ∈ [n − 1], let P−i = P \ {pi}, P ′−i = P ′ \ {pi}, and

also P−n = P \ {pn}, P ′−n = P ′ \ {p′n}. Here, P ,P ′ correspond to the datasets D =

{d1, . . . , dn},D′ = {d1, . . . , dn−1, d
′
n}, respectively, and for any i ∈ [n], P−i and P ′−i correspond
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to the datasets D−i = {d1, . . . , di−1, di+1, . . . , dn} and D′−i = {d1, . . . , di−1, di+1, . . . , dn−1, d
′
n},

respectively.

For any collection P = {p1, . . . ,pn} of n distributions, we define F (P) to be the distribu-

tion over AnB (which is the set of histograms on B bins with n elements as defined in (5.2))

that is induced when every client i (independent to the other clients) samples an element

from [B] accordingly to the probability distribution pi. Formally, for any h ∈ AnB, define

Uh :=
{

(U1, . . . ,UB) : U1, . . . ,UB ⊆ [n]

s.t.
B⋃
j=1

Uj = [n] and |Uj| = hj,∀j ∈ [B]
}
.

(5.17)

Note that for each (U1, . . . ,UB) ∈ Uh, Uj for j = 1, . . . , B denotes the identities of the clients

that map to the j’th element in [B], where Uj’s are disjoint for all j ∈ [B]. Note also that

|Uh| =
(
n
h

)
= n!

h1!h2!...hB !
. It is easy to verify that for any h ∈ AnB, F (P)(h) is equal to

F (P)(h) =
∑

(U1,...,UB)∈Uh

B∏
j=1

∏
i∈Uj

pij (5.18)

Similarly, we can define F (P ′), F (P−i), F (P ′−i). Note that F (P) and F (P ′) are distributions

over AnB, whereas, F (P−i) and F (P ′−i) are distributions over An−1
B . It is easy to see that

F (P) =M(D) and F (P ′) =M(D′). Similarly, F (P−i) =M(D−i) and F (P ′−i) =M(D′−i).

Now we are ready to prove Theorem 5.3.4.

Since R is an ε0-LDP mechanism, we have

e−ε0 ≤ pij
p′nj
≤ eε0 , ∀j ∈ [B] , i ∈ [n].

A crucial observation is that any distribution pi can be written as the following mixture

distribution:

pi = qp′n + (1− q) p̃i, (5.19)

where q = 1
eε0

. The distribution p̃i = [p̃i1, . . . , p̃iB] is given by p̃ij =
pij−qp′nj

1−q , where it is easy

to verify that p̃ij ≥ 0 and
∑B

j=1 p̃ij = 1. This idea of writing the distribution of the output of
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an LDP mechanism as a mixture distribution is inspired from [BBG19d,FMT22]. However,

we create different mixtures and use them in a distinct way to reduce the Renyi divergence

calculation to those distributions with a certain neighborhood structure using Lemma 5.3.3.

Now we show that since each pi = qp′n + (1− q)p̃i is a mixture distribution, we can write

F (P) and F (P ′) as certain convex combinations. Before stating the result, we need some

notation.

For any C ⊆ [n− 1], define two sets PC,P ′C, having n distributions each, as follows:

PC = {p̂1, . . . , p̂n−1}
⋃
{pn}, (5.20)

P ′C = {p̂1, . . . , p̂n−1}
⋃
{p′n}, (5.21)

where, for every i ∈ [n− 1], p̂i is defined as follows:

p̂i =


p′n if i ∈ C,

p̃i if i ∈ [n− 1] \ C.
(5.22)

Note that PC and P ′C differ only in one distribution, where PC contains pn whereas P ′C contains

p′n. In words, if clients map their data points according to the distributions in either PC or

P ′C for any C ⊆ [n− 1], then for all clients i ∈ C, the i’th client maps its data point according

to p′n (which is the distribution of R on input d′n), and for all clients i ∈ [n− 1] \ C, the i’th

client maps its data point according to p̃i. The last client maps its data point according to

pn or p′n depending on whether the set is PC or P ′C.

In the following lemma, we show that F (P) and F (P ′) can be written as convex com-

binations of {F (PC) : C ⊆ [n − 1]} and {F (P ′C) : C ⊆ [n − 1]}, respectively, where for any

C ⊆ [n− 1], both F (PC) and F (P ′C) can be computed analogously as in (5.18).

Lemma 5.3.1 (Mixture Interpretation). F (P) and F (P ′) can be written as the following

convex combinations:

F (P) =
∑
C⊆[n−1]

q|C|(1− q)n−|C|−1F (PC), (5.23)

98



F (P ′) =
∑
C⊆[n−1]

q|C|(1− q)n−|C|−1F (P ′C), (5.24)

where PC,P ′C are defined in (5.20)-(5.22).

We prove Lemma 5.3.1 in Appendix D.3.1. Now, using Lemma 5.3.1, in the following

lemma we show that the Rényi divergence between F (P) and F (P ′) can be upper-bounded

by a convex combination of the Rényi divergence between F (PC) and F (P ′C) for C ⊆ [n− 1].

Lemma 5.3.2 (Joint Convexity). For any α > 1, the function

Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
is jointly convex in (F (P), F (P ′)), i.e.,

Eh∼F (P ′)

[(
F (P) (h)

F (P ′) (h)

)α]
≤

∑
C⊆[n−1]

q|C| (1− q)n−|C|−1 Eh∼F(P ′C)

[(
F (PC) (h)

F (P ′C) (h)

)α]
.

(5.25)

We prove Lemma 5.3.2 in Appendix D.3.2. For any C ⊆ [n − 1], let P̃[n−1]\C = {p̃i :

i ∈ [n− 1] \ C}. With this notation, note that PC \ P̃[n−1]\C = {p′n, . . . ,p′n}
⋃
{pn} and

P ′C \ P̃[n−1]\C = {p′n, . . . ,p′n}
⋃
{p′n} is a pair of specific neighboring distributions, each

containing |C| + 1 distributions. In other words, if we define D(n)
|C|+1 = (d′n, . . . , d

′
n, dn) and

D′(n)
|C|+1 = (d′n, . . . , d

′
n, d

′
n), each having (|C|+ 1) data points, then the mechanisms M(D(n)

|C|+1)

and M(D′(n)
|C|+1) will have distributions F (PC \ P̃[n−1]\C) and F (P ′C \ P̃[n−1]\C), respectively.

Now, since (D′(n)
|C|+1,D

(n)
|C|+1) ∈ D

|C|+1
same , if we remove the effect of distributions in P̃[n−1]\C

in the RHS of (5.25), we would be able to bound the RHS of (5.25) using the RDP for the

special neighboring datasets in D|C|+1
same . This is precisely what we will do in the following

lemma and the subsequent corollary, where we will eliminate the distributions in P̃[n−1]\C in

the RHS (5.25).

The following lemma holds for arbitrary pairs (P ,P ′) of neighboring distributions P =

{p1, . . . ,pn} and P ′ = {p1, . . . ,pn−1,p
′
n}, where we show that Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
does

not decrease when we eliminate a distribution pi (i.e., remove the data point di from the
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datasets) for any i ∈ [n − 1]. We need this general statement as it will be required in the

proof of Theorem 5.3.1 later.

Lemma 5.3.3 (Monotonicity). For any i ∈ [n− 1], we have

Eh∼F (P ′)

[(
F (P) (h)

F (P ′) (h)

)α]
≤ Eh∼F(P ′−i)

[(
F (P−i) (h)

F
(
P ′−i
)

(h)

)α]
, (5.26)

where, for i ∈ [n− 1], P−i = P \ {pi} and P ′−i = P ′ \ {pi}. Note that in the left hand side

(LHS) of (5.26), F (P), F (P ′) are distributions over AnB, whereas, in the RHS, F (P−i), F (P ′−i)

for any i ∈ [n− 1] are distributions over An−1
B .

We prove Lemma 5.3.3 in Appendix D.3.3. Note that Lemma 5.3.3 is a general statement

that holds for arbitrary pairs (P ,P ′) of neighboring distributions. For our purpose, we apply

Lemma 5.3.3 with (PC,P ′C) for any C ⊆ [n−1] and then eliminate the distributions in P̃[n−1]\C

one by one. The result is stated in the following corollary.

Corollary 5.3.3. Consider any m ∈ {0, 1, . . . , n − 1}. Let D(n)
m+1 = (d′n, . . . , d

′
n, dn) and

D′(n)
m+1 = (d′n, . . . , d

′
n). Then, for any C ∈

(
[n−1]
m

)
(i.e., C ⊆ [n− 1] such that |C| = m), we have

Eh∼F (P ′C)

[(
F (PC)(h)

F (P ′C)(h)

)α]
≤ E

h∼M(D′(n)
m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]
. (5.27)

We prove Corollary 5.3.3 in Appendix D.3.4. Substituting from (5.27) into (5.25) and

noting that for every h ∈ AnB, F (P)(h) and F (P ′)(h) are distributionally equal toM(D)(h)

and M(D′)(h), respectively, we get

Eh∼M(D′)

[(
M (D) (h)

M (D′) (h)

)α]
(a)

≤
n−1∑
m=0

∑
C∈([n−1]

m )

qm (1− q)n−m−1 Eh∼F(P ′C)

[(
F (PC) (h)

F (P ′C) (h)

)α]
(b)

≤
n−1∑
m=0

∑
C∈([n−1]

m )

qm (1− q)n−m−1 E
h∼M(D′(n)

m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]
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(c)
=

n−1∑
m=0

(
n− 1

m

)
qm (1− q)n−m−1 E

h∼M(D′(n)
m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]

= Em∼Bin(n−1,q)

[
E
h∼M(D′(n)

m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]]
.

The inequality (a) is the same as (5.25), just writing it differently. In (b) we used (5.27) and

in (c) we used the fact that number of m-sized subsets of [n − 1] is equal to
(
n−1
m

)
. This

completes the proof of Theorem 5.3.4.

5.3.3 Proof of RDP for the Special Form

Fix an arbitrary m ∈ N and consider any pair of neighboring datasets (Dm,D′m) ∈ Dmsame.

Let Dm = (d, . . . , d) ∈ Xm and D′m = (d, . . . , d, d′) ∈ Xm. Let p = (p1, . . . , pB) and

p′ = (p′1, . . . , p
′
B) be the probability distributions of the discrete ε0-LDP mechanism R :

X → Y = [B] when its inputs are d and d′, respectively, where pj = Pr[R(d) = j] and

p′j = Pr[R(d′) = j] for all j ∈ [B]. Since R is ε0-LDP, we have

e−ε0 ≤ pj
p′j
≤ eε0 , ∀j ∈ [B]. (5.28)

SinceM is a shuffle mechanism, it induces a distribution on AmB for any input dataset. So, for

any h ∈ AmB , M(Dm)(h) and M(D′m)(h) are equal to the probabilities of seeing h when the

inputs toM are Dm and D′m, respectively. Thus, for a given histogram h = (h1, . . . , hB) ∈ AmB
with m elements and B bins, we have

M(Dm) (h) = MN (m,p,h) =

(
m

h

) B∏
j=1

p
hj
j , (5.29)

where MN (m,p,h) denotes the Multinomial distribution with
(
m
h

)
= m!

h1!···hB !
. Note that

(5.29) can be obtained as a special case of the general distribution in (5.18) by putting pj = p

for each client j.

For M(D′m), note that the last client (independent of the other clients) maps its input

data point d′ to the j’th bin with probability p′j , and the remaining (m− 1) clients’ mappings
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induce a distribution on Am−1
B . Thus, M(D′m)(h) for any h ∈ AmB can be written as

M(D′m)(h) =
B∑
j=1

p′jMN
(
m− 1,p, h̃j

)
, (5.30)

where h̃j = (h1, . . . , hj−1, hj − 1, hj+1, . . . , hB) ∈ Am−1
B . We implicitly assume that if hj = 0

for some j ∈ [B], then MN
(
m− 1,p, h̃j

)
= 0 as one of the elements is negative. Note

that similar to (5.29), (5.30) can also be obtained from (5.18) as a special case. Using the

polynomial expansion (1 + x)n =
∑n

i=0

(
n
i

)
xi (with x = M(D′m)(h)

M(Dm)(h)
− 1 in the following), we

have:

Eh∼M(Dm)

[(
M(D′m)(h)

M(Dm)(h)

)α]
=

α∑
i=0

(
α

i

)
Eh∼M(Dm)

[(
M(D′m)(h)

M(Dm)(h)
− 1

)i]
.

(5.31)

Let X : AmB → R be a random variable associated with the distribution M(Dm) on AmB , and

for any h ∈ AmB , define X(h) := m
(
M(D′m)(h)
M(Dm)(h)

− 1
)

. Substituting this in (5.31) gives:

Eh∼M(Dm)

[(
M(D′m)(h)

M(Dm)(h)

)α]
= 1 +

α∑
i=1

(
α

i

)Eh∼M(Dm)

[
(X(h))i

]
mi

. (5.32)

The RHS of (5.32) is in terms of the moments of X, which we bound in the following lemma.

Before that, first we simplify the expression for X(h) by computing the ratio M(D′m)(h)
M(Dm)(h)

for

any h ∈ AmB :

M(D′m)(h)

M(Dm)(h)
=

B∑
j=1

p′j
MN (m− 1,p, h̃j)

MN (m,p,h)
=

B∑
j=1

p′j
pj

hj
m
. (5.33)

Thus, we get X(h) = m
(
M(D′m)(h)
M(Dm)(h)

− 1
)

=
(∑B

j=1

p′j
pj
hj

)
−m.

Remark 5.3.8. As mentioned in Remark 5.3.5, we could tighten our upper bounds for

specific mechanisms. As shown in (5.32) above, the Rényi divergence of a mechanism between

two neighboring datasets can be written in terms of the moments of a r.v. X, which is defined

as the ratio of distributions of the mechanism on these two neighboring datasets. However,

since our goal is to bound RDP for all ε0-LDP mechanisms, we prove the worse-case bound
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on the moments of X that holds for all mechanisms; see (5.35) in Lemma 5.3.4 for bound on

the i ≥ 3’rd moments of X and (5.39) in Lemma 5.3.5 for bound on the variance of X.

Lemma 5.3.4. The random variable X has the following properties:

1. X has zero mean, i.e., Eh∼M(Dm) [X(h)] = 0.

2. The variance of X is equal to

Eh∼M(Dm)

[
X(h)2

]
= m

(
B∑
j=1

p′2j
pj
− 1

)
. (5.34)

3. For i ≥ 3, the i’th moment of X is bounded by

Eh∼M(Dm)

[
(X(h))i

]
≤ iΓ (i/2)

(
2mν2

)i/2
, (5.35)

where ν2 =
(eε0−e−ε0)

2

4
and Γ (z) =

∫∞
0
xz−1e−xdx is the Gamma function.

A proof of Lemma 5.3.4 is presented in Appendix D.4.1. Substituting the bounds from

Lemma 5.3.4 into (5.32), we get

Eh∼M(Dm)

[(
M (D′m) (h)

M (Dm) (h)

)α]
≤ 1 +

(
α

2

)
1

m

(
B∑
j=1

p′2j
pj
− 1

)

+
α∑
i=3

(
α

i

)
iΓ (i/2)

(
(eε0 − e−ε0)

2

2m

)i/2
(5.36)

Note that p1, . . . , pm, p
′
1, . . . , p

′
m are defined for the fixed pair of datasets (Dm,D′m) ∈ Dmsame

that we started with. So, the term containing
(∑B

j=1

p′2j
pj
− 1
)

in the RHS of (5.36) depends on

(Dm,D′m), and that is the only term in (5.36) that depends on (Dm,D′m). Since Theorem 5.3.5

requires us to bound (5.36) for any pair of neighboring datasets (Dm,D′m) ∈ Dmsame, so, in

order to prove Theorem 5.3.5, we need to compute sup(Dm,D′m)∈Dmsame

(∑B
j=1

p′2j
pj
− 1
)

. We

bound this in the following.

Define a set Tε0 consisting of all pairs of B-dimensional probability vectors satisfying the

ε0-LDP constraints as follows:

Tε0 =
{

(p,p′) ∈ RB × RB : pj, p
′
j ≥ 0,∀j ∈ [B],

B∑
j=1

pj =
B∑
j=1

p′j = 1,
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and e−ε0 ≤
p′j
pj
≤ eε0 , ∀j ∈ [B]

}
. (5.37)

Note that Tε0 contains all pairs of the output probability distributions (p,p′) of all ε0-LDP

mechanisms R on all neighboring data points d, d′ ∈ X . Since any (Dm,D′m) ∈ Dmsame

generates a pair of probability distributions (p,p′) ∈ Tε0 (because Dm = (d, . . . , d) and

D′m = (d, . . . , d, d′) together contain only two distinct data points d, d′), we have

sup
(Dm,D′m)∈Dmsame

(
B∑
j=1

p′2j
pj
− 1

)
≤ sup

(p,p′)∈Tε0

(
B∑
j=1

p′2j
pj
− 1

)
. (5.38)

In the following lemma, we bounds the RHS of (5.38).

Lemma 5.3.5. We have the following bound:

sup
(p,p′)∈Tε0

(
B∑
j=1

p′2j
pj
− 1

)
=

(eε0 − 1)2

eε0
. (5.39)

We prove Lemma 5.3.5 in Appendix D.4.2. Taking supremum over (Dm,D′m) ∈ Dmsame in

(5.36) and then using (5.38) and (5.39), we get the bound in Theorem 5.3.5.

5.3.4 Lower Bound

In this section, we provide a proof of Theorem 5.3.3. Consider the binary case, where each

data point d can take a value from X = {0, 1}. Let the local randomizer R be the binary

randomized response (2RR) mechanism, where Pr [R (d) = d] = eε0
eε0+1

for d ∈ X . It is easy

to verify that R is an ε0-LDP mechanism. For simplicity, let p = 1
eε0+1

. Consider two

neighboring datasets D, D′ ∈ {0, 1}n, where D = (0, . . . , 0, 0) and D′ = (0, . . . , 0, 1). Let

k ∈ {0, . . . , n} denote the number of ones in the output of the shuffler. Since the output of

the shuffle mechanism M can be thought of as the distribution of the number of ones in

the output, we have that k ∼M(D) is distributed as a Binomial random variable Bin(n, p).

Thus, we have

M(D)(k) =

(
n

k

)
pk(1− p)n−k
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M(D′)(k) = (1− p)
(
n− 1

k − 1

)
pk−1(1− p)n−k

+ p

(
n− 1

k

)
pk(1− p)n−k−1.

It will be useful to compute M(D)(k)
M(D′)(k)

− 1 for the calculations later.

M(D′)(k)

M(D)(k)
− 1 =

k

n

(1− p)
p

+
(n− k)

n

p

(1− p)
− 1

=
k

n
eε0 +

(n− k)

n
e−ε0 − 1

=
k

n

(
eε0 − e−ε0

)
+ e−ε0 − 1

=
k

n

(
e2ε0 − 1

eε0

)
−
(
eε0 − 1

eε0

)
=

(
e2ε0 − 1

neε0

)(
k − n

eε0 + 1

)
(5.40)

Thus, we have that

Ek∼M(D)

[(
M(D′)(k)

M(D)(k)

)α]
= E

[(
1 +
M(D′)(k)

M(D)(k)
− 1

)α]
(a)
= 1 +

α∑
i=1

(
α

i

)
E

[(
M(D′)(k)

M(D)(k)
− 1

)i]
(b)
= 1 +

α∑
i=2

(
α

i

)
E

[(
M(D′)(k)

M(D)(k)
− 1

)i]

= 1 +
α∑
i=2

(
α

i

)(
(e2ε0 − 1)

neε0

)i
E

[(
k − n

eε0 + 1

)i]
(from (5.40))

(c)
= 1 +

(
α

2

)
(eε0 − 1)2

neε0
+

α∑
i=3

(
α

i

)(
(e2ε0 − 1)

neε0

)i
E

[(
k − n

eε0 + 1

)i]
.

Here, step (a) from the polynomial expansion (1 +x)n =
∑n

k=0

(
n
k

)
xk, step (b) follows because

the term corresponding to i = 1 is zero (i.e., Ek∼M(D)

[(
M(D′)(k)
M(D)(k)

− 1
)]

= 0), and step (c)

from the from the fact that Ek∼M(D)

[(
k − n

eε0+1

)2
]

= np(1− p) = neε0
(eε0+1)2 , which is equal to

the variance of the Binomial random variable. In view of Remark 5.3.6, this completes the

proof of Theorem 5.3.3.
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5.4 RDP of the Subsampled Shuffled Model

In this section, we characterize the RDP of the subsampled shuffled mechanism by presenting

an upper bound in Theorem 5.4.1 and a lower bound in Theorem 5.4.2. We then present the

privacy-convergence trade-offs of the CLDP-SGD Algorithm 4.3.1 in Theorem 5.4.3.

Theorem 5.4.1 (Upper Bound). For any n ∈ N, k ≤ n, ε0 ≥ 0, and any integer α ≥ 2, the

RDP of the subsampled shuffle mechanism M (defined in (5.1)) is upper-bounded by

ε(α) ≤ 1

α− 1
log

1 + 4

(
α

2

)
γ2 (eε0 − 1)2

keε0
+

α∑
j=3

(
α

j

)
γjjΓ (j/2)

(
2 (e2ε0 − 1)

2

ke2ε0

)j/2

+ Υ

 ,

where k = b k−1
2eε0
c+ 1, γ = k

n
, and Γ (z) =

∫∞
0
xz−1e−xdx is the Gamma function. The term Υ

is given by Υ =
((

1 + γ e
2ε0−1
eε0

)α
− 1− αγ e2ε0−1

eε0

)
e−

k−1
8eε0 .

Theorem 5.4.2 (Lower Bound). For any n ∈ N, k ≤ n, ε0 ≥ 0, and any integer α ≥ 2, the

RDP of the subsampled shuffle mechanism M (defined in (5.1)) is lower-bounded by

ε (α) ≥ 1

α− 1
log

(
1 +

(
α

2

)
γ2 (eε0 − 1)2

keε0
+

α∑
j=3

(
α

j

)
γj
(

(e2ε0 − 1)

keε0

)j
E
(
m− k

eε0 + 1

)j)
,

where expectation is taken w.r.t. the binomial r.v. m ∼ Bin (k, p) with parameter p = 1
eε0+1

.

The proof of Theorem 5.4.1 is presented in Section 5.4.1. The proof of Theorem 5.4.2

can be obtained by following the same steps as the proof of Theorem 5.3.3 presented in

Section 5.3. Our CLDP-SGD Algorithm 4.3.1 and its privacy-convergence trade-offs (stated

in Theorem 5.4.3 below) are given for a general local randomizer Rp (whose inputs comes

from an `p-ball for any p ∈ [1,∞]) that satisfies the following conditions: (i) The randomized

mechanism Rp is an ε0-LDP mechanism. (ii) The randomized mechanism Rp is unbiased, i.e.,

E [Rp (x) |x] = x for all x ∈ Bp(a), where a is the radius of the ball Bp. (iii) The output of

the randomized mechanism Rp can be represented using b ∈ N+ bits. (iv) The randomized Rp

has a bounded MSE: supx∈Bp(a) E‖Rp (x)− x‖2
2 ≤ L2f 2

p (ε0, b), where f 2
p (ε0, b) is a function

from R+ × N+ to R+.
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In Chapter 3, we proposed unbiased ε0-LDP mechanisms Rp for several values of norms

p ∈ [1,∞] that require b = O (log (d)) bits of communication in the high privacy regimes

and satisfy the above conditions. The privacy-convergence trade-off of our CLDP-SGD

algorithm is given below.

Theorem 5.4.3 (Privacy-Convergence tradeoffs). Let the set C be convex with diameter D

and the function f (θ; .) : C ×D → R be convex and L-Lipschitz continuous with respect to the

`g-norm, which is the dual of the `p-norm. Let θ∗ = arg minθ∈C F (θ) denote the minimizer

of the problem (4.1). For γ = k
n

, if we run Algorithm Acldp over T iterations, then we have

1. Privacy: Acldp is (ε, δ)-DP, where δ > 0 is arbitrary and ε is given by

ε = min
α

(
Tε (α) +

log (1/δ) + (α− 1) log (1− 1/α)− log (α)

α− 1

)
, (5.41)

where ε (α) is the RDP of the subsampled shuffle mechanism given in Theorem 5.4.1.

2. Communication: Our algorithm Acldp requires k
n
× b bits of communication in

expectation2 per client per iteration, where expectation is taken with respect to client

sampling.

3. Convergence: If we run Acldp with learning rate schedule ηt = D
G
√
t
, where G2 =

L2
(

1 + fp(ε0,b)

γmn

)
, then

E [F (θT )]− F (θ∗) ≤ O
(
DG log(T )√

T

)
. (5.42)

The proof of Theorem 5.4.3 is as follows: Note that Acldp is an iterative algorithm, where

in each iteration we use the subsampled shuffle mechanism as defined in (5.3), for which

we have computed the RDP guarantees in Theorem 5.4.1. Now, for the privacy analysis of

Acldp, we use the adaptive composition theorem from [Mir17, Proposition 1] and then use

the RDP to DP conversion given in Lemma 2.1.3. For the convergence analysis, we use a

2A client communicates in an iteration only when that client is selected (sampled) in that iteration.
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standard non-private SGD convergence result and compute the required parameters for that

(see similar proof in Section 4.3.1.3).

Remark 5.4.1. Note that our convergence bound is affected by the MSE of the ε0-LDP

mechanism Rp. For example, when f is L-Lipschitz continuous w.r.t. the `2-norm, we can

use the LDP mechanism R`2
v,m,s proposed in Section 3.6 with parameters v = ε0, m = 1, and

s = dε0e that has MSE f2(ε0, b) = Õ
(

d
nmin{ε20,ε0}

)
. When f is L-Lipschitz continuous w.r.t. the

`1-norm or `∞-norm, we can use the LDP mechanisms R`1
ε0

or R`∞
ε0,1,ε0

, respectively, proposed

in Chapter 3. By plugging these variances fp(ε0, b) (for p = 1, 2,∞) into Theorem 5.4.3, we

get the convergence rate of the L-Lipschitz continuous loss function w.r.t. the `p-norm (for

p =∞, 2, 1).

Remark 5.4.2. The privacy parameter in (5.41) is not in a closed form expression and could

be obtained by solving an optimization problem. However, we numerically compute it for

several interesting regimes of parameters in our numerical experiments; see Section 5.5 for

more details.

5.4.1 Proof of Theorem 5.4.1: Upper Bound

Recall from (5.3), for any dataset Dn = (d1, . . . , dn) ∈ X n containing n data points, the

subsampled-shuffle mechanism is defined asMs (D) := Hk ◦ sampnk (R (d1) , . . . ,R (dn)). The

proof of Theorem 5.4.1 consists of two steps. First, we bound the ternary-|χ|λ-DP of the

shuffle mechanism Msh, which is the main technical contribution in this proof. Then, using

this, we bound the RDP of the subsampled shuffle mechanism M.

Theorem 5.4.4 (ζ-ternary-|χ|λ-DP of the shuffle mechanism Msh). For any integer k ≥ 2,

ε0 > 0, and all λ ≥ 2, the ζ-ternary-|χ|λ-DP of the shuffle mechanism Msh is bounded by:

ζ (λ)λ ≤


4 (eε0−1)2

keε0
+ (eε0 − e−ε0)λe−

k−1
8eε0 if λ = 2,

λΓ (λ/2)

(
2(e2ε0−1)

2

ke2ε0

)λ/2
+ (eε0 − e−ε0)λe−

k−1
8eε0 otherwise,

(5.43)
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where k = b k−1
2eε0
c+ 1 and Γ (z) =

∫∞
0
xz−1e−xdx is the Gamma function.

Theorem 5.4.4 is one of the core technical results of this paper, and we prove it in

Section 5.4.2. It was shown in [WBK19, Proposition 16] that if a mechanism obeys ζ-

ternary-|χ|λ-DP, then its subsampled version (with subsampling parameter γ) will obey

γζ-ternary-|χ|λ-DP. Using that result, the authors then bounded the RDP of the subsampled

mechanism in [WBK19, Eq. (9)]. Adapting that result to our setting, we have the following

lemma.

Lemma 5.4.1 (From ζ-ternary-|χ|λ-DP to subsampled RDP). Suppose the shuffle mechanism

Msh obeys ζ-ternary-|χ|λ-DP. For any α ≥ 2, k ≤ n, RDP of the subsampled shuffle

mechanism M (with subsampling parameter γ = k/n) is bounded by: ε(α) ≤ 1
α−1

log
(
1 +∑α

λ=2

(
α
λ

)
γλζ(λ)λ

)
.

Lemma 5.4.1 can be seen as a corollary to [WBK19, Proposition 16 and Eq. (9)]. Substi-

tuting the bound on ζ(λ) from Theorem 5.4.4 into Lemma 5.4.1 together with some algebraic

manipulation gives proves Theorem 5.4.1.

5.4.2 Proof of Theorem 5.4.4: Ternary |χ|α-DP of the Shuffle Model

The proof follows the same two steps as our results in Section 5.3. In the first step, we reduce

the problem of deriving ternary divergence for arbitrary neighboring datasets to the problem

of deriving the ternary divergence for specific neighboring datasets, D ∼ D′ ∼ D′′, where all

elements in D are the same and D′,D′′ differ from D in one entry. In the second step, we

derive the ternary divergence for the special neighboring datasets.

Consider arbitrary neighboring datasets D = (d1, . . . , dk−1, dk), D′ = (d1, . . . , dk−1, d
′
k),

and D′′ = (d1, . . . , dk−1, d
′′
k), each having k elements. For any m ∈ {0, . . . , k − 1}, we define

new neighboring datasets D(k)
m+1 = (d′′k, . . . , d

′′
k, dk), D

′(k)
m+1 = (d′′k, . . . , d

′′
k, d
′
k), and D′′(k)

m+1 =

(d′′k, . . . , d
′′
k), each having m + 1 elements. Observe that (D′′(k)

m+1,D
′(k)
m+1,D

(k)
m+1) ∈ Dmsame. The

first step of the proof is given in the following theorem.
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Theorem 5.4.5 (Reduction to the Special Case). Let q = 1
eε0

. We have:

Eh∼Msh(D′′)

[∣∣∣∣Msh(D)(h)−Msh(D′)(h)

Msh(D′′)(h)

∣∣∣∣α]
≤ Em∼Bin(k−1,q)

[
E
h∼Msh(D′′(k)

m+1)

[∣∣∣∣∣Msh(D(k)
m+1)(h)−Msh(D′(k)

m+1)(h)

Msh(D′′(k)
m+1)(h)

∣∣∣∣∣
α]]

. (5.44)

We know (by Chernoff bound) that the binomial r.v. is concentrated around its mean,

which implies that the terms in the RHS of (5.44) that correspond to m < (1 − τ)q(k −

1) (we will take τ = 1/2) will contribute in a negligible amount. Then we show that

Em := E
h∼Msh(D′′(k)

m+1)

[∣∣∣∣Msh(D(k)
m+1)(h)−Msh(D′(k)

m+1)(h)

Msh(D′′(k)
m+1)(h)

∣∣∣∣α] is a non-increasing function of m. These

observation together imply that the RHS in (5.12) is approximately equal to E(1−τ)q(k−1).

Since Em is precisely what is required to bound the ternary DP for the specific neighboring

datasets, we have reduced the problem of computing the ternary DP for arbitrary neighboring

datasets to the problem of computing ternary DP for specific neighboring datasets. The

second step of the proof bounds E(1−τ)q(n−1), which follows from the result below that holds

for any m ∈ N.

Theorem 5.4.6 (|χ|α-DP for special case). For any m ∈ N, integer α ≥ 2, and (D′′m,D′m,Dm) ∈

Dmsame,

Eh∼Msh(Dm)

[∣∣∣∣Msh(D′m)(h)−Msh(D′′m)(h)

Msh(Dm)(h)

∣∣∣∣α] ≤
 4 (eε0−1)2

meε0
if α = 2,

αΓ(α/2)
(

2(e2ε0−1)2

me2ε0

)α/2
otherwise.

Proof of Theorem 5.4.5. Let pi, i ∈ [k],p′k,p
′′
k denote the distributions of R when the input

data point is di, d
′
k, d
′′
k, respectively. The main idea of the proof is the observation that each

pi can be written as a mixture distribution pi = 1
eε0
p′′k +

(
1− 1

eε0

)
p̃i, where p̃i is defined

in terms of pi,p
′′
k. So, instead of client i ∈ [k − 1] mapping its data point di according

to pi, we can view it as the client i maps di according to p′′k with probability (w.p.) 1/eε0

and according to p̃i w.p. (1 − 1/eε0). As a result, the number of clients that sample from

the distribution p′′k follows a binomial distribution Bin(k − 1, 1/eε0). This allows us to write

the distribution of Msh when clients map their data points according to p1, . . . ,pk,p
′
k,p

′′
k

110



as a convex combination of the distribution of M when clients map their data points

according to p̃1, . . . , p̃k−1,pk,p
′
k,p

′′
k. Then using a joint convexity argument, we write the

ternary divergence between the original triple of distributions of Msh in terms of the same

convex combination of the ternary divergence between the resulting triples of distributions

of Msh. Using a monotonicity argument, we can remove the effect of clients that do not

sample from the distribution p′′k without decreasing the ternary divergence. By this chain of

arguments, we have reduced the problem to the one involving the computation of ternary

divergence only for the special form of neighboring datasets (as in Theorem 5.4.6), which

proves Theorem 5.4.5. �

Proof of Theorem 5.4.6. Consider (D′′m,D′m,Dm) ∈ Dmsame as in the statement of Theo-

rem 5.4.6. First, we observe that for any α ≥ 1 and any three distributions p, q, r over

the same domain, we can write Er
[∣∣p−q

r

∣∣α] ≤ 2α−1
(
Er
[∣∣p
r
− 1
∣∣α]+ Er

[∣∣ q
r
− 1
∣∣α]). This is a

straight-forward application of the standard inequality |x + y|α ≤ 2α−1(|x|α + |y|α) which

holds for all x, y ∈ R and α ≥ 1. Now, by taking p = Msh(D′m), q = Msh(D′′m), and

r =Msh(Dm), we reduce the problem of computing the ternary |χ|α-divergence (which we

need to bound) to the problem of computing the Pearson-Vajda divergence [WBK19], which

we can write in terms of the α-th absolute moment of the r.v. X : AmB → R, defined as

X(h) :=
( Msh(D′)(h)
Msh(Dm)(h)

− 1
)

for all h ∈ AmB (where D′ ∈ {D′m,D′′m}) and distributed according

to X(h) ∼ Msh(Dm)(h). In Section 5.3, we have bounded the absolute moments of the

r.v. X(h) by showing that X(h) is sub-Gaussian r.v. and using standard concentration

results. �

5.5 Numerical Results

In this section, we present numerical experiments to show the performance of our bounds on

the RDP of the shuffle model and its usage for getting approximate DP and composition

results.
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Figure 5.2: Comparison of several bounds on the RDP of the shuffle model.

RDP of the shuffle model: In Figure 5.2, we plot several bounds on the RDP of the

shuffle model in different regimes. In particular, we compare between the first upper bound on

the RDP given in Theorem 5.3.1, the second upper bound on the RDP given in Theorem 5.3.2,

the lower bound on the RDP given in Theorem 5.3.3, and the upper bound on the RDP

given in [EFM19, Remark 1] and stated in (5.8).3 It is clear that our first upper bound (5.4)

gives a tighter bound on the RDP in comparison with the second bound (5.7) and the upper

bound given in [EFM19]. Furthermore, the first upper bound is close to the lower bound for

small values of the LDP parameter ε0 and for high orders α. In addition, the gap between

our proposed bound in Theorem 5.3.1 and the bound given in [EFM19] increases as the LDP

parameter ε0 increases. We also observe that the curves of the lower and upper bounds on the

3The results in [FMT22] are for approximate DP (not for RDP), that is why we did not compare with
them in Figure 5.2.
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Figure 5.3: Compari-

son of several bounds

on the Approximate

(ε, δ)-DP of the shuf-

fle model for δ =

10−6.

RDP of the shuffle model saturate close to ε0 when the order α approaches to infinity. This

indicates that the pure DP of the shuffle model is bounded below by ε0, an observation made

in literature [EFM19,BC20]. As can be seen in Figures 5.2d and 5.2e, the RDP obtained by

standard approximate DP to RDP conversion in [EFM19, Remark 1], can be several orders

of magnitude loose in comparison to our analysis.

Approximate DP of the shuffle model: Analyzing RDP of the shuffle model provides

a bound on the approximate DP of the shuffle model from the relation between the RDP

and approximate DP as shown in Lemma 2.1.3. In Figure 5.3, we plot several bounds on the

approximate (ε, δ)-DP of the shuffle model for fixed δ = 10−6. In Figures 5.3d and 5.3b, we

do not plot the results given in [EFM19], since their bounds are quite loose and are far from

the plotted range when ε0 > 1. We can see that our analysis of the RDP of the shuffle model

provides a tighter bound on the approximate DP of the shuffle model in comparison with the

113



101 102 103 104 105

Number of iterations T

10−2

10−1

100

101

Ap
pr

ox
im

at
e 

DP
 ε

ε0 = 0.5, n= 106, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(a) Approximate DP as a func-

tion of T for ε0 = 0.5 and

n = 106

104 105 106

Number of clients n

100

101

Ap
pr

ox
im

at
e 

DP
 ε

T= 10000, ε0 = 0.5, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(b) Approximate DP as a func-

tion of n for ε0 = 0.5 and

T = 104

0.0 0.5 1.0 1.5 2.0 2.5 3.0
LDP parameter ε0

10−1

100

101

102

103

Ap
pr

ox
im

at
e 

DP
 ε

T= 10000, n= 105, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(c) Approximate DP as a func-

tion of ε0 for n = 105 and

T = 104

101 102 103 104 105

Number of iterations T

10−2

10−1

100

101

102

103

Ap
pr

ox
im

at
e 

DP
 ε

ε0 = 2.0, n= 106, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(d) Approximate DP as a func-

tion of T for ε0 = 2 and n =

106

104 105 106

Number of clients n

100

101

102

103

104

105

Ap
pr

ox
im

at
e 

DP
 ε

T= 10000, ε0 = 2.0, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(e) Approximate DP as a func-

tion of n for ε0 = 2 and T =

104

0.0 0.5 1.0 1.5 2.0 2.5 3.0
LDP parameter ε0

10−1

100

101

102

Ap
pr

ox
im

at
e 

DP
 ε

T= 10000, n= 106, δ= 10−8

via RDP (1st upper bound)
via RDP (lower bound)
via RDP [EFM + 19]
Clones[FMT20]+strong composition[KOV15]

(f) Approximate DP as a func-

tion of ε0 for n = 106 and

T = 104

Figure 5.4: Comparison of several bounds on the Approximate (ε, δ)-DP for composition of a

sequence of shuffle models for δ = 10−8.

bound given in [BBG19d] in some regimes. However, our RDP analysis performs worse than

the best known bound given in [FMT22], when used without composition. This might be due

to the gap between our upper and lower bound on the RDP of the shuffle model as the lower

bound provides better performance than the bound given in [FMT22] for all values of LDP

parameter ε0. Note that the main use case for converting our RDP analysis to approximate

DP is after composition rather than in the single-shot conversion illustrated in Figure 5.3.

Composition of a sequence of shuffle models: We now numerically evaluate the privacy

parameters of the approximate (ε, δ)-DP for a composition of T mechanisms (M1, . . . ,MT ),
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bounds on the Approximate (ε, δ)-
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shuffle models with Poisson sub-

sampling for δ = 10−8 and γ =

0.001.

whereMt is a shuffle mechanism for all t ∈ [T ]. In Figure 5.4, we plot three different bounds

on the overall privacy parameter ε for fixed δ = 10−8 for a composition of T identical shuffle

models. The first bound on the overall privacy parameter ε is obtained as a function of δ

and the number of iterations T by optimizing over the RDP order α using our upper bound

on the RDP of the shuffle model given in Theorem 5.3.1. The second bound is obtained by

optimizing over the RDP order α using the upper bound on the RDP of the shuffle model

given in [EFM19]. The third bound is obtained by first computing the privacy parameters

(ε̃, δ̃) of the shuffle model given in [FMT22]. Then, we use the strong composition theorem

given in [KOV15] to obtain the overall privacy loss ε. We observe that there is a significant

saving in the overall privacy parameter ε-DP using our bound on RDP in comparison with

using the bound on DP [FMT22] with the strong composition theorem [KOV15]. For example,

we save a factor of 8× in computing the overall privacy parameter ε for number of iterations

T = 105, LDP parameter ε0 = 0.5, and number of clients n = 106. We observe that the

bound given in [FMT22] with the strong composition theorem [KOV15] behaves better for

small number of iterations T < 10 and large LDP parameter ε0 = 2. However, the typical

number of iterations T in the standard SGD algorithm is usually larger. Therefore, this

demonstrates the significance of our RDP analysis for composition in the regimes of interest.
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Privacy amplification by shuffling and Poisson sub-sampling: In the Differentially

Private Stochastic Gradient Descent (DP-SGD), shuffling and sampling the dataset at each

iteration are important tools to provide a strong privacy guarantee [GDD21d, EFM20a].

In these frameworks, the further advantage of sampling with shuffling4 can be analyzed

by standard combination of approximate DP with Poisson subsampling [LQS12]. The

resulting approximate DP along with the strong composition theorem given in [KOV15]

gives the overall privacy loss ε. An alternate path we use is to combine our RDP analysis

with sampling of RDP mechanisms using [WBK19,ZW19]. This enables us to get an RDP

guarantee with sampling, which we can then compose using properties of RDP. We can use

the conversion from RDP to approximate DP to obtain a bound on the overall privacy loss

of multiple iterations. In Figure 5.5, we compare our results of amplifying the RDP of the

shuffle model by Poisson sub-sampling to the strong composition [KOV15] after getting the

approximate DP of the shuffle model given in [FMT22] with Poisson sub-sampling given

in [LQS12]. We observe that we save a factor of 11× by using our RDP bound for n = 106

and γ = 0.001. However, we can see that the gap between our (lower/upper) bounds and the

strong composition decreases when n = 107. This could be due to the simplistic combination

of our analysis with the RDP subsampling of [ZW19].

Composition of a sequence of subsampled shuffled models: In Figure 5.4, we plot sev-

eral bounds on the approximate (ε, δ)-DP for a composition of T mechanisms (M1, . . . ,MT ),

whereMt is a subsampled shuffled mechanism for t ∈ [T ]. In all our experiments reported in

Figure 5.6, we fix δ = 10−8. We observe that our new bound on the RDP of the subsampled

shuffled mechanism achieves a significant saving in total privacy ε compared to the state-of-

the-art. For example, we save a factor of 14× compared to the bound on DP [FMT22] with

strong composition theorem [KOV15] and 2.5× compared to the bound on the RDP given

in [GDD21e] with subsampled RDP [WBK19] in computing the overall privacy parameter

4In this framework we assume that the sampling and shuffling is done by a secure mechanism which is
separated from the server, i.e., the server does not know which clients are participating.
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Figure 5.6: Comparison of several bounds on the Approximate (ε, δ)-DP for composition of a sequence of

subsampled shuffle mechanisms for δ = 10−8.

ε for number of iterations T = 105, subsampling parameter γ = 0.001, LDP parameter

ε0 = 2, and number of clients n = 106. We observe in Figure 5.4b that the bound given

in [FMT22] with the strong composition theorem [KOV15] behaves better than the bound on

the RDP [GDD21e] with subsampled RDP bound [WBK19] when the number of subsampled

clients per iteration is equal to k = γn = 104; however, our bound beats both of them. In

Figure 5.6c, we fix the number of subsampled clients per iteration to be k = γn = 103, and

hence, the subsampling parameter γ varies with n.

Distributed private learning: We numerically evaluate the proposed privacy-learning

performance on training machine learning models. We consider the standard MNIST hand-

written digit dataset that has 60, 000 training images and 10, 000 test images. We train a

simple neural network that was also used in [EFM20a,PTS20] and described in Table 4.1.

This model has d = 13, 170 parameters and achieves an accuracy of 99% for non-private,

uncompressed vanilla SGD. We assume that we have n = 60, 000 clients, where each client

has one sample. At each step of the CLDP-SGD Algorithm, we choose uniformly at random

10, 000 clients, where each client clips the `∞-norm of the gradient with clipping parameter

C = 1/100 and applies the R∞ ε0-LDP mechanism proposed in Chapter 3 with ε0 = 1.5. We

run the CLDP-SGD Algorithm with δ = 10−5 for 200 epochs, with learning rate η = 0.3 for
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Figure 5.7: Privacy-Utility trade-offs on the MNIST dataset with `∞-norm clipping.

the first 70 epochs, and then decrease it to 0.18 in the remaining epochs.

Figure 5.7 plots the mean and the standard deviation of privacy-accuracy trade-offs

averaged over 10 runs. For our privacy analysis, the total privacy budget is computed by

optimizing over RDP order α using our upper bound given in Theorem 5.3.1. For privacy

analysis of [FMT22], we first compute the privacy amplification by shuffling numerically given

in [FMT22]; then we compute its privacy obtained when amplified via subsampling [Ull17];

and finally we use the strong composition theorem [KOV15] to obtain the central privacy

parameter ε. We observe that we achieve an accuracy of 80%(±1.8) with a total privacy

budget of ε = 1.4 using our new privacy analysis, whereas, [FMT22] achieves an accuracy of

only 70.7%(±2.1) with the same privacy budget of ε = 1.4 using the standard composition

theorems. Furthermore, we can see that we achieves accuracy 90%(±0.5) with total privacy

budget ε = 2.91 using our new privacy analysis, whereas, [FMT22] (together with the standard

strong composition theorem) achieves the same accuracy with a total privacy budget of

ε = 4.82.
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CHAPTER 6

Differentially Private Stochastic Linear Bandits

In this chapter, we study stochastic linear bandits under privacy constraints. Stochastic

linear bandits offer a sequential decision framework where a learner interacts with an envi-

ronment over rounds, and decides what is the optimal (from a potentially infinite set) action

to play so as to achieve the best possible reward. In particular, at each round, the learner

may take into account all past rewards and actions to decide the next action to play, and in

return receive a new reward. This model has been widely adopted both in theory but also in

a number of applications, including recommendation systems, health, online education, and

resource allocation [MGP15, BRC17, RYW18, BR19]. Motivated by the fact that many of

these applications are privacy-sensitive, we explore what is the performance in terms of regret

we can achieve, if we are constrained to use a privacy-preserving stochastic linear bandit

algorithm.

6.1 Introduction

We aim to design algorithms that preserve the privacy of the rewards, from an adversary that

can observe all actions that the learner plays. For example, the central learner may make

restaurant recommendations to mobile devices, may regulate the operation of on-body sensors

in senior living communities, may decide what educational exercises to provide to students,

or what jobs to allocate to workers. The actions the clients play - what restaurant is visited,
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which sensor is activated, what is the exercise solved, what is the job performed - may be

naturally visible especially in public environments. What we care to protect are the rewards,

that may capture private information, such as personal preferences in recommendation

systems, health indices in online health, performance in online education, and income gained

in resource allocation. Our goal is to design algorithms that preserve the privacy of the

rewards, while still (almost) achieve the same regret as the traditional algorithms that do not

take privacy into consideration.

We do so for three different setups, depicted in Figure 6.1. In the central DP model,

the learner is a trusted server. The adversary observes the decisions of the trusted server.

The server employs a DP mechanism on aggregates of the reward realizations she collects, to

ensure that the actions do not reveal information on the rewards. We design an algorithm

that guarantees ε-DP and achieves regret that matches existing lower bounds. In particular,

over T rounds, it achieves regret RT = O
(√

T log T + log2 T
ε

)
w.h.p., which is optimal within

a log T factor: a lower bound of O(
√
T ) is proven in [RT10] for non-private linear bandits,

while a lower bound of O( log T
ε

) is shown in [SS18] for ε-DP linear bandits. Note that for

ε ≈ 1 (perhaps the most common case), the dominant term O(
√
T log T ) matches the regret

of the best known algorithms for the non-private case (eg., LinUCB [APS11, RT10]), and

hence, we get privacy for free. In the local DP model, the learner is an untrusted server,

where the adversary (including the learner) can access the individual private rewards of the

clients. The clients provide privatized rewards to the server, who then uses this noisy input to

decide her next actions. We design an algorithm that guarantees ε0-LDP and achieves regret

RT = O
(√

T log(T )/ε0

)
w.h.p. In the shuffled model, the learner is still an untrusted

server, but now a trusted node, that can act as a relay in the communication between

the clients and the server, serves as a shuffler, and can randomly permute the privatized

rewards before making them available to the server. A shuffler offers a privacy-amplification

mechanism that has recently become popular in the literature, as it is easy to implement, and

may enable better privacy-regret performance [CSU19,EFM19,BBG19d,FMT22,GDD21e].
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Figure 6.1: DP stochastic linear bandits: (a) Central DP model, (b) Local DP model, and

(c) Shuffled DP model.

We leverage the help of a trusted shuffler to ensure both that the output of each client satisfies

ε0-LDP and that the output of the secure shuffler satisfies ε-DP requirements. Our algorithm

achieves regret RT = O
(√

T log(T ) + log(T )
ε

)
w.h.p. that matches the regret of the best

non-private algorithms, same as the central model. Furthermore, our algorithm outperforms

the best known algorithm for private (contextual) linear bandits in [GCP22,CZ22] that use

shuffling. Our results are summarized in Table 6.1, where we also provide known results in

the literature.

The rest of the chapter is organized as follows. We present the problem formulation in

Section 6.2. We design and analyze privacy-preserving linear bandit algorithms and analyze

their privacy-regret tradeoffs for the central model in Section 6.3, for the local model in

Section 6.4 and for the shuffled model in Section 6.5. We provide numerical results in

Section 6.6. Some proofs are deferred to Appendix E

6.2 Problem Formulation

Stochastic Linear Bandits: In stochastic linear bandits a learner interacts with clients

over T rounds by taking a sequence of decisions and receiving rewards. In particular, at each

round t ∈ [T ], the learner plays an action at from a set A ⊂ Rd and receives a reward rt ∈ R.

The reward rt is a noisy linear function of the action, i.e., rt = 〈θ∗, at〉+ ηt, where 〈.〉 denotes
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Algorithm Regret Bound Context
Privacy Model

Central DP Local DP

Central DP [SS18] Õ
(√

T
ε

)
Adversarial (ε, δ) N/A

LDP [ZCH20] Õ
(
T 3/4

ε0

)
Adversarial (ε = ε0, δ) (ε0, δ)

LDP+shuffling [GCP22] Õ
(
T 2/3

ε1/3

)
Adversarial (ε, δ)

(
ε0 = ε2/3T 1/6, δ

)
LDP [HLW21] Õ

(√
T
ε0

)
Stochastic (ε = ε0, δ) (ε0, δ)

Central DP (Theorem 6.3.1) Õ
(√

T + 1
ε

)
Free (ε, 0) N/A

LDP (Theorem 6.4.1) Õ
(√

T
ε0

)
Free (ε = ε0, 0) (ε0, 0)

LDP+shuffling(Theorem 6.5.1) Õ
(√

T + 1
ε

)
Free (ε, δ)

(
ε0 = εT 1/4, 0

)
Table 6.1: Upper part: known results. Lower part: our results. The Õ notation hides the

dependencies on the dimension d, privacy parameter δ and log factors.

inner product, ηt is an independent zero-mean noise and θ∗ ∈ Rd is an unknown parameter

vector. The goal of the learner is to minimize the total regret over the T rounds, which is

calculated as:

RT = T max
a∈A
〈θ∗, a〉 −

T∑
t=1

〈θ∗, at〉. (6.1)

The regret captures the difference between the reward for the optimal action and the rewards

for the actions chosen by the learner. The basic approach in all algorithms is to play actions

that enable the learner to learn θ∗ well enough to identify a (near) optimal action. The

best known algorithms (for example, LinUCB [APS11, RT10]) achieve a regret of order

O(
√
T log T ), which is the best we can hope for (matches existing lower bounds [RT10]).

Contextual Linear Bandits: In contextual bandits, the learner observes the context of

the client at time t, ct, plays an action at ∈ A, and receives a reward rt = 〈θ?, φ(at, ct)〉+ ηt,

where φ is a known feature map and ηt is noise. In this case the regret RT is defined as

RT =
∑T

t=1 maxa∈A〈θ∗, φ(a, ct)〉 − 〈θ∗, φ(at, ct)〉. Equivalently, contextual linear bandits can
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be seen as linear bandits with action set that changes over time At = {φ(a, ct)|a ∈ A}.

We make the following standard assumptions (see, e.g., [APS11,SS18]).

Assumption 6.2.1. We consider stochastic linear bandits with:

1. Sub-gaussian noise: E[ηt+1|Ft] = 0 and E[exp(ληt+1)|Ft] ≤ exp(λ
2

2
)∀λ ∈ R, where

Ft = σ(a1, r1, ..., at, rt) is the σ-field summarizing the information available before

round t.

2. Bounded actions, unknown parameter, and rewards: ‖a‖2 ≤ 1 ∀a ∈ A, ‖θ∗‖2 ≤ 1 and

|rt| ≤ 1.

Privacy Goal and Measures: Our goal is to achieve the minimum possible regret in (6.1)

while preserving privacy of the rewards {rt}t∈[T ]. To measure privacy, we use the popular

central and local differential privacy definitions that we provide for completeness next. For

simplicity, we assume that a different client plays each action (e.g., visits a recommended

restaurant).

Differential Privacy (DP). We say that two sequences of rewards R = (r1, . . . , rT ) and

R′ = (r′1, . . . , r
′
T ) are neighboring if they differ in a single reward, i.e., there is a round t ∈ [T ]

such that rt 6= r′t, but rj = r′j for all j 6= t. To preserve privacy, we use a randomized

mechanism M designed for stochastic linear bandits, that observes rewards and outputs

publicly observable actions.

Definition 6.2.1. (Central DP [DMN06,DR14]): A randomized mechanismM for stochastic

linear bandits is said to be (ε, δ) Differentially Private ((ε, δ)-DP) if for any two neighboring

sequences of rewards R = (r1, . . . , rT ) and R′ = (r′1, . . . , r
′
T ), and any subset of output actions

O ⊂ AT , M satisfies:

Pr[M (R) ∈ O] ≤ eε Pr[M (R′) ∈ O] + δ. (6.2)
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When δ = 0, we say that the mechanism M is pure differentially private (ε-DP). The

DP mechanisms maintain that the distribution on the output of the mechanism does not

significantly change when replacing a single client with reward rt with another client with

reward r′t. Thus, the adversary observing the output of the DP mechanism does not infer the

clients rewards.

Local Differential Privacy (LDP). If the central learner is untrusted, we need a local

private mechanism M whose output is all the information available to the central learner.

We denote the range of the output of the local mechanism by Z.

Definition 6.2.2. (LDP [KLN11]) A randomized mechanism M : [−1, 1]→ Z is said to be

(ε0, δ0) Local Differentially Private ((ε0, δ0)-LDP) if for any rewards rt and r′t, and any subset

of outputs O ⊂ Z, the algorithm M satisfies:

Pr[M (rt) ∈ O] ≤ eε0 Pr[M (r′t) ∈ O] + δ0. (6.3)

Similar to the DP definition, we say thatM is pure locally differentially private (ε0-LDP)

when δ0 = 0. Observe that the input of the LDP mechanism is a single reward, and hence,

each client preserves privacy of her observed reward rt, even if the adversary knows what is

the action she plays and observes a function of her reward.

In contextual linear bandits, the context ct and the reward rt are considered sensitive

information about the client. Hence, the goal of private contextual bandits is to keep both

the context and the reward private. Unfortunately, a linear regret bound is unavoidable in

contextual bandits under DP constraints [SS18]. Therefore, Shariff et al. in [SS18] have

presented the notion of joint differential privacy (JDP) for contextual bandits. For any two

sequences S = {(A1, r1), (A2, r2), . . . , (AT , rT )} and S ′ = {(A′1, r′1), (A′2, r′2), . . . , (A′T , r′T )},

we say that S and S ′ are t-neighbors if it holds that (Aj, rj) = (A′j, r′j) for all j 6= t.

Definition 6.2.3. (JDP [SS18]) A randomized algorithm M for the contextual bandit

problem is (ε, δ)-jointly differentially private (JDP) under continual observation if for any t
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and any t-neighboring sequences S and S ′, and any subset S>t ⊂ At+1 × · · · × AT , it holds

that:

Pr[M (S) ∈ S>t] ≤ eε Pr[M (S ′) ∈ S>t] + δ. (6.4)

Thus, changing the pair (ct, rt) of a single client cannot have a significant impact on deter-

mining future actions.

System Model: We consider three different models for private stochastic linear bandits.

In all three cases, our setup is that of a learner, who asks clients to play publicly observable

actions, and collects the resulting rewards (see Figure 6.1). The models differ on whether the

learner is a trusted or untrusted server, and whether a shuffler is available or not. A shuffler

simply performs a random permutation on its input.

1) Central DP model: The learner is a trusted server who can collect the clients’ rewards

and take actions. Thus, the trusted server can apply a DP mechanism (see Definition 6.2.1)

to preserve the privacy of the collected rewards against any adversary observing the actions

of the clients.

2) LDP model: The learner is an untrusted server. Hence, each client needs to privatize

her own reward by applying an LDP mechanism (see Definition 6.2.2) before sending it to

the untrusted server. The server takes decisions on next actions using the collected privatized

rewards.

3) Shuffled model: Similar to the LDP model, the learner is an untrusted server. However,

we consider that there exists a trusted shuffler that collects the LDP responses of the

clients and randomly permutes them before passing them to the server, see Figure 6.1.

6.3 Stochastic Linear Bandits with central DP

In this section we consider the case where the learner is a trusted server. We present an

algorithm that offers ε-DP (see Definition 6.2.1) for stochastic linear bandits, with no regret
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penalty: we achieve the same order regret performance as the best algorithms that operate

under no privacy considerations.

Algorithm 6.3.1 ε-DP algorithm for stochastic linear bandits: central model

1: Input: set of actions A, time horizon T , and privacy parameter ε.

2: Let A1 be a ζ-net for A as in Lemma 6.3.1, with ζ = 1
T

.

3: q ← (2T )1/ log T .

4: for i = 1 : log(T )− 1 do

5: γi ←
√

4d
qi

log (4|Ai|T 2) +
2Bd2+2d log(4|Ai|T 2)

εqi
.

6: For Ai ⊆ Rm, m ≤ d, let Ci be a core set of size at most Bm as in Lemma 6.3.2 and

πi the associated distribution.

7: Pull each action a ∈ Ci, nia = dπi(a)qie times to get rewards r
(1)
ia , ..., r

(nia)
ia .

8: r̄ia ←
∑nia

k=1 r
(k)
ia , r̂ia ← r̄ia + zia ∀a ∈ Ci, where zia is an independent noise that

follows Lap(1
ε
).

9: V ←
∑

a∈Ci niaaa
>, θ̂i ← V −1

∑
a∈Ci r̂iaa.

10: Ai+1 ← {a ∈ Ai|〈a, θ̂i〉 ≥ maxα∈A〈α, θ̂i〉 − 2γi}

11: Play action arg maxα∈Alog(T )−1
〈α, θ̂log(T )−1〉 for the remaining time.

Main Idea: Our algorithm follows the structure of elimination algorithms: it runs in

batches, where we maintain a “good set of actions” Ai, in each batch i that almost surely

contain the optimal one, and gradually eliminate sub-optimal actions, shrinking the sets Ai

as i increases. As is fairly standard in elimination algorithms, in our case as well, during

batch i, the learner plays actions in Ai, calculates an updated estimate θ̂i of the unknown

parameter vector θ∗, and eliminates from Ai actions if their estimated reward is 2γi from

the estimated reward of the arm that appears to be best, where γi is the confidence of the

reward estimates.

We note that our adversary observes actions generated through the estimate of θi. Since,

the θ̂i is generated from the private rewards, all functions of θ̂i (including estimate of next
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actions) is ε-DP from post-processing [DR14]. Our new observation on how to achieve this is

as follows. If by playing a smaller number of distinct actions we are able to identify

the optimal action, we need to overall add a smaller amount of noise to guarantee

privacy than if we play a larger number of distinct actions. Indeed, if an action a is

played for na times, the learner, to estimate θ∗, only needs to use the sum of these na rewards.

To offer ε-DP we can perturb this sum by adding independent Laplacian noise (Lap(1
ε
));

clearly, the smaller the number of distinct actions we play, the smaller the overall amount of

noise we need to add. Thus our algorithm, at each batch iteration i, plays actions from a

carefully selected subset of Ai, of cardinality as small as possible. The technical question we

address is, starting from a continuous action space A, how to select at each batch iteration a

small cardinality subset that maintains the ability to identify the optimal action.

We next describe the steps in implementing this idea. Recall that our actions come

from a set A ⊆ Rd, and we assume they are bounded, namely, ‖a‖2 ≤ 1, ∀a ∈ A (see

Assumptions 6.2.1 in Section 6.2).

1. Our first step is to reduce the continuous action space to a discrete action space

problem. To do so, we finely discretize A to create what we call a ζ-net, a discrete set of

actions Nζ ⊆ A such that distances are approximately preserved. Namely, for any a ∈ A,

there is some a′ ∈ Nζ with ‖a′− a‖2 ≤ ζ. Lemma 6.3.1, proved in [Ver18, Cor. 4.2.13], states

that we can always find such a discrete set with cardinality at most (3
ζ
)d + d. As a result, all

the “good sets” Ai will also be discrete.

Lemma 6.3.1. ( ζ-net for A [Ver18]) For any set A ⊆ {x ∈ Rd|‖x‖2 ≤ 1} that spans Rd,

there is a set Nζ ⊆ A (zeta-net) with cardinality at most (3
ζ
)d + d such that Nζ spans Rd,

and for any a ∈ A, there is some a′ ∈ Nζ with ‖a′ − a‖2 ≤ ζ.

2. We introduce the use of a core set Ci, a subset of the actions of the set of “good

actions” Ai. During batch i, the learner only plays actions in Ci, each with some

probability πi(a). Lemma 6.3.2, proved in [LS20, Ch.21], states that if Ai spans some

space Rk, we can find a core set of size at most Bk (with B a constant) and an associated
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probability distribution π, so that, playing actions only from Ci enables to calculate a good

estimate of 〈a, θ∗〉 for each a ∈ Ai .

Lemma 6.3.2. (Core set for A [LS20]) For any finite set of actions A ⊂ {x ∈ Rd|‖x‖2 ≤ 1}

that spans Rd, there is a constant B, a subset C and a distribution π on C, that can be

computed in polynomial time, such that |C| ≤ Bd, C spans Rd, and for any a ∈ A

a>

(∑
α∈C

π(α)αα>

)−1

a ≤ 2d. (6.5)

3. To preserve the privacy of rewards, we perturb the sum rewards of each action by

adding Laplace noise. Adding noise affects the confidence of the reward estimates γ (step 5

in Algorithm 6.3.1 shows that γ increases as ε decreases), and thus delays the elimination of

bad actions and increases the regret by an additive term of Õ(1
ε
). Replacing a possibly large

set Ai with the smaller core set Ci effectively decreases the cumulative noise affecting the

estimate of θ?. The computation of C, π can be formulated as a convex optimization problem

with many efficient approximation algorithms available [FW56,LS20].

Algorithm Pseudo-Code: Algorithm 6.3.1, starts by initializing the good action set A1

to be an 1
T

-net of A according to Lemma 6.3.1. Then, the algorithm operates in batches

that grow exponentially in length, where the length of batch i is approximately qi and

q = (2T )1/ log T 1. In each batch i, we construct the core set Ci and the associated distribution

πi as per Lemma 6.3.2. Each action in Ci is pulled nia = dπ(a)qie times, where the length

of batch i is ni =
∑

a∈Ci nia. To preserve privacy, the sum of the rewards of each action is

perturbed with Lap(1/ε) noise. The learner uses these privatized sum rewards to compute

the estimate of θ∗, θ̂i. At the end of batch i, the learner eliminates from Ai the actions with

estimated mean reward, 〈a, θ̂i〉, that fail to be within 2γi from the action that appears to be

best, where γi is our confidence in the mean estimates. After the iteration i = log T − 1 is

completed, the learner simply plays the action that appears to be best.

1We note that e ≤ q ≤ e2.
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Algorithm 6.3.2 ε0-LDP algorithm for stochastic linear bandits: local model

1: Input: set of actions A, time horizon T , and privacy parameter ε0.

2: Let A1 be a ζ-net for A as in Lemma 6.3.1, with ζ = 1
T

.

3: q ← (2T )1/ log T .

4: for i = 1 : log(T )− 1 do

5: Client side:

6: Receive action a from the server. Play action a and receive a reward r.

7: Send r̂ = r + Lap( 1
ε0

).

8: Server side:

9: Let Ci be a core set forAi as in Lemma 6.3.2 with distribution πi, and nia = dπi(a)qie.

10: Send each action a ∈ Ci to a set of nia clients to get rewards r̂
(1)
ia , ..., r̂

(nia)
ia .

11: ni ←
∑

a∈Ci nia.

12: γi ←
√

log (4|Ai|T 2)(
√

4d
qi

+
2d
√
ni

qiε0
).

13: r̂ia ←
∑nj

k=1 r̂
(1)
ia ∀a ∈ Ci.

14: V ←
∑

a∈Ci niaaa
>, θ̂i ← V −1

∑
a∈Ci r̂iaa.

15: Ai+1 ← {a ∈ Ai|〈a, θ̂i〉 ≥ max
α∈A〉
〈α, θ̂i〉 − 2γi}.

16: Play action arg maxα∈Alog(T )−1
〈α, θ̂log(T )−1〉 for the remaining time.

Algorithm Performance: We next prove that Algorithm 6.3.1 is ε-DP and provide a

bound on its regret.

Theorem 6.3.1. Algorithm 6.3.1 is ε-differentially private. Moreover, it achieves a regret

RT ≤ C

(√
T log T +

log2 T

ε

)
, (6.6)

with probability at least 1− 1
T

, where C is a constant that does not depend on ε, T .

Proof Outline. The privacy result follows from the Laplace mechanism [DR14]. To

bound the regret, we first argue that with probability at least 1 − 1
T

, and for all i and all

a ∈ Ai, we have that |〈a, θ̂i〉 − 〈a, θ̂?〉| ≤ γi. Conditioned on this event, an action with gap
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∆a is eliminated when, or before, γi < ∆a/2. Hence, all actions in batch i have a gap that is

at most 4γi. The regret bound follows by summing 4γini for all batches. The complete proof

is provided in Appendix E.1. �

Remark 6.3.1. We note that the high probability bound in Theorem 6.3.1 implies a bound

in expectation

E[RT ] ≤ C

(√
T log T +

log2 T

ε

)
. (6.7)

The regret is trivially O(T ) and the failure probability is 1
T

, which overall contributes O(1)

to E[RT ].

Remark 6.3.2. The regret in Theorem 6.3.1 is optimal up to log T factor; a lower bound of

O(
√
T ) is proven in [RT10] for the non-private case, while a lower bound of log T

ε
is shown

in [SS18] for private case.

Remark 6.3.3. We observe that the privacy parameter ε is typically ≈ 1. In this case,

the dominating term in (6.6) is O(
√
T log T ) which matches the regret of the best-known

algorithm for the non-private case (see LinUCB in [RT10,APS11]), and hence, we get privacy

for free.

6.3.1 Stochastic Contextual Bandits with Central DP

In this section, we extend our results to the contextual linear bandits with known context

distribution. In the following, we focus on the stochastic context setting where the context

ct is generated from a distribution P independently from other iterations. We assume that

the distribution P is known to the learner2. The main idea is to use the reduction proposed

in [HYF23] to represent the contextual linear bandits with known context distribution as a

stochastic linear bandits problem, and then, we apply our DP algorithm for stochastic linear

bandits.

2The knowledge of the distribution P can be practical in multiple cases, e.g., known age, and gender
distribution. The extension to unknown context distribution is a future direction of our work.
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First, we briefly review the reduction for the case of known context distribution and refer

the reader to [HYF23] for a detailed description. The basic idea in [HYF23] is to establish a

linear bandit action for each possible parameter vector θ of the contextual bandit instance.

This is achieved through the use of the function g : Rd → Rd, which computes the

expected best action under the context distribution P with respect to the parameter

θ: g(θ) = Ect∼P [arg maxa∈A〈φ(a, ct), θ〉]. As stated in [HYF23, Theorem 1], when at =

arg maxa∈A〈φ(a, ct), θt〉 for some θt ∈ Rd, then the reward generated by the contextual bandit

instance can be expressed as rt = 〈g(θt), θ?〉+η′t, where η′t is noise with zero mean conditioned

on the history. Consequently, the reward can be viewed as generated by pulling action g(θt)

in a linear bandit instance with an action set X = {g(θ)|θ ∈ Θ}. Moreover, the same theorem

demonstrates that if a linear bandit algorithm is employed to choose g(θt) ∈ X at round

t and thus play action at = arg maxa∈A〈φ(a, ct), θt〉, then |RT − RL
T | = Õ(

√
T ) with high

probability, where RL
T =

∑T
t=1 supθ∈Θ〈g(θ)− g(θt), θ?〉 is the regret of the algorithm on the

linear bandit instance.

As a result, if the context distribution is known, then the function g is known to the

learner as well as the users. Thus, we can construct a contextual bandits algorithm under

joint differential privacy (JDP) constraints to privatize the contexts and rewards using

our Algorithm 6.3.1 as follows. We apply our Algorithm 6.3.1 with action set A , X ,

{g(θ) : θ ∈ Θ}. When a client receives an action xt , g(θt) (from linear bandits), the client

chooses an actual action at by solving at = arg maxa∈A 〈φ(a, ct), θt〉, where θt = g−1(xt) with

ties broken arbitrarily. The client observes a reward rt and sends it to the learner. Following

Algorithm 6.3.1, at the end of the batch, the learner privatizes the aggregated rewards and

updates the action set Xi+1 to the next batch, see Steps 8− 10 in Algorithm 6.3.1.

Corollary 6.3.1. There exists an (ε, 0)-JDP algorithm for stochastic contextual bandits

with know context distribution with bounded regret:

RT ≤ C

(√
T log T +

log2 T

ε

)
, (6.8)
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with probability at least 1− 2
T

, where C is a constant that does not depend on ε, T .

Proof. The results are obtained by applying the algorithm explained above which is a

combination of the reduction from [HYF23] and our Algorithm 6.3.1. Observe that at any

iteration t ∈ [T ], all the past history of context-reward pairs {(ct′ , rt′) : t′ < t} are encoded in

the returned reward set {rt′ : t′ < t}. Furthermore, the past sequence rewards are (ε, 0)-DP

from Theorem 6.3.1, where the learner uses only these private rewards to estimate the

unknown parameter θ? and decides the new action of the next iteration. Thus, the presented

algorithm is (ε, 0)-JDP.

The regret of our algorithm of stochastic linear bandits is bounded by C ′
(√

T log T + log2 T
ε

)
from Theorem 6.3.1 with probability at least 1 − 1

T
. Furthermore, from [HYF23, Theo-

rem 1], the difference between the regrets of the linear and contextual bandits instances

|RT − RL
T | = Õ(

√
T ) with probability at least 1− 1/T . By the triangle inequality and the

union bound, it follows that the regret of the algorithm is bounded by C
(√

T log T + log2 T
ε

)
with probability at least 1− 2/T . This completes the proof of Corollary 6.3.1. �

Remark 6.3.4. In this section, we showed that our Algorithm 6.3.1 for DP stochastic

linear bandits can be extended to give a JDP algorithm for contextual bandits with known

distribution. A similar argument can be applied to the local DP model and the shuffled

model in the next sections.

6.4 Stochastic Linear Bandits with LDP

In this section, the learner is an untrusted server, and thus we design a linear bandit algorithm

(Algorithm 6.3.2) that operates under LDP constraints.

Main Idea: As in Algorithm 6.3.1, we here also utilize a core set of actions; the difference

is that, since the server is untrusted, each client privatizes her own reward before providing

it to the server. Our algorithm offers an alternative approach to [HLW21] that achieves
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Algorithm 6.4.1 DP algorithm for stochastic linear bandits: shuffled model

1: Input: actions A, horizon T , privacy parameters (ε, δ).

2: Let A1 be a ζ-net for A as in Lemma 6.3.1, with ζ = 1
T

.

3: q ← (2T )1/ log T .

4: for i = 1 : log(T )− 1 do

5: Client side:

6: Receive action a and the value ni from shuffler.

7: Play action a and receive a reward r.

8: ε
(i)
0 ← f−1

ni,δ
(ε).

9: Send r̂ = r + Lap( 1

ε
(i)
0

) to the shuffler.

10: Shuffler:

11: Send action aπ(j) and ni to client j, j = [ni], where π is a random permutation of

[ni].

12: Receive the action-reward pairs {(aj, r̂iaj)}
ni
j=1, and send them to the server.

13: Server side:

14: Let Ci be a core set for Ai as in Lemma 6.3.2 with distribution πi.

15: Let nia = dπi(a)qie, ni ←
∑

a∈Ci nia.

16: Let ACi = ∪a∈Ci{a}
nia
l=1 be a set of ni actions where action a ∈ Ci is repeated nia

times.

17: Let a1, ..., ani be an enumeration of ACi . Send them to the shuffler

18: Receive the action-reward pairs from the shuffler.

19: γi ←
√

log (4|Ai|T 2)(
√

4d
qi

+
2d
√
ni

qiε
(i)
0

).

20: r̂ia ←
∑nj

k=1 r̂
(1)
ia ∀a ∈ Ci.

21: V ←
∑

a∈Ci niaaa
>, θ̂i ← V −1

∑
a∈Ci r̂iaa.

22: Ai+1 ← {a ∈ Ai|〈a, θ̂i〉 ≥ max
α∈A
〈α, θ̂i〉 − 2γi}.

23: Play action arg maxα∈Alog(T )−1
〈α, θ̂log(T )−1〉 for the remaining time.
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the same regret, while using operation in batches, which may in some applications be more

implementation-friendly (e.g., multi-stage clinical trials and online marketing with high

response rates) [PRC16,EKM21], and also forms a foundation for the Algorithm 6.4.1 we

discuss in the next section.

Algorithm Pseudocode: Algorithm 6.3.2 operates like Algorithm 6.3.1, except for the

addition of Lap(1/ε0) noise for each reward individually as opposed to adding Lap(1/ε) to

the sum of the rewards of each arm in the central model. The value of γi is adjusted to

account for this change. Algorithm Performance. The following Theorem 6.4.1 presents

the privacy-regret tradeoffs of the LDP stochastic bandits Algorithm 6.3.2. The proof is

deferred to Appendix E.3 and follows the same main steps as the proof of Theorem 6.3.1, but

with the modified values of γi.

Theorem 6.4.1. Algorithm 6.3.2 is ε0-LDP. Moreover, it achieves a regret

RT ≤ C(1 +
1

ε0

)
(√

T log T
)
, (6.9)

with probability at least 1− 1
T

, where C is a constant that does not depend on ε0 and T .

Remark 6.4.1. When ε0 > 1, the regret RT would be O
(√

T log(T )
)

that matches the

non-private case. However, the constants of the regret convergence are larger than that of

the non-private case.

Remark 6.4.2. (Comparison to the central (ε, δ)-DP model.) Observe that when ε0 < 1, the

dominating term in the regret is RT = O
(
T log(T )

ε0

)
. In other words, we obtain the regret of

the non-private case divided by the LDP parameter ε0. In contrast, the central DP parameter

ε appears as an additive term in the regret of the central model. This difference is because,

in the local model noise is added on every reward, while in the central model directly on

the reward aggregates; thus the noise variance of the aggregate rewards and the confidence

parameter γi increases in the local model. In the high privacy regimes; for example, assume
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that ε0 = O
(

1
Tα

)
for some 0 < α ≤ 1

2
, we get a regret RT of order O

(
T

1
2

+α
)

that becomes

linear function of T as ε0 → 1√
T

.

6.5 Stochastic Linear Bandits in the Shuffled Model

In this section, we consider the case of an untrusted server and a trusted shuffler. We propose

Algorithm 6.4.1 that (almost) achieves the same regret as the best non-private algorithms.

Main idea: To use shuffling, we need to use an algorithm that operates over batches of

actions, so as to be able to shuffle them. The use of a core set is critical to enable a selection

of actions that lead to a good estimate for θ?. For example, if the original set A contains a

large number of actions along one direction in the space, but only a few actions along other

directions, then pulling each action in A once will not result in a good estimate of θ?. Use of

the core set and the associated distribution π will balance such assymetries and enable to

exploration multiple directions of the space a sufficient number of times to acquire a good

estimate of θ?. Accordingly, we follow the same approach as in Algorithm 6.3.2 with two

changes: we use a shuffler (in a manner tailored to bandits) to realize privacy amplification

gains, and we adjust the amount of Laplace noise we add in each batch, depending on the

batch size.

We use the trusted shuffler as follows. The actions to be played in the ith batch are

shuffled by the trusted shuffler at the beginning of the batch. The shuffler asks clients to

play actions in the shuffled order. Then, at the end of the batch, the shuffler reverses the

shuffling operation, associates every action with its observed LDP reward, and conveys it to

the untrusted learner.3

We adjust the amount of added Laplace noise per batch as follows. To offer privacy

3The server cannot directly observe which action is played by which client, for instance due to geographical
separation.
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guarantees, we want to add noise to the rewards so that the output of the shuffler is (ε, δ)-DP

for each batch i ∈ [log(T )]. This implies that the entire algorithm will be (ε, δ)-DP since we

assume that each client contributes to only one of the batches. The privacy amplification of

the shuffling depends on the size of the batch (see e.g. [FMT22, Theorem 1]); thus the larger

the batch size, the less noise needs to be added to the rewards of the clients. To ensure that

the output of batch i is (ε, δ)-DP, it is sufficient to add to each reward noise Lap( 1

ε
(i)
0

), where

ε
(i)
0 ← f−1

ni,δ
(ε), and ni is the size of batch i. The function fn,δ : R+ → R+ captures privacy

amplification via shuffling [FMT22] and is defined as follows

fn,δ(ε0) = log

(
1 +

eε0 − 1

eε0 + 1

(
8
√
eε0 log(4/δ)√

n
+

8eε0

n

))
. (6.10)

Since the noise added to the rewards varies for each batch i, we modify the confidence bounds,

γi, to reflect this. The pseudo-code is provided in Algorithm 6.4.1.

Algorithm Performance: The following theorem proves that Algorithm 6.4.1 is (ε, δ)-DP

and provides an upper bound on its regret that matches the information theoretic lower

bound for ε = Õ( 1√
T

).

Theorem 6.5.1. Algorithm 6.4.1 is (ε, δ)-differentially private. Moreover, for ε = O(
√

log(1/δ)
T

)

it achieves a regret

RT ≤ C

(√
T log T +

√
log(1/δ) log3/2 T

ε

)
, (6.11)

with probability at least 1− 1
T

, where C is a constant that does not depend on ε and T .

Proof Outline: The proof of Theorem 6.5.1 is deferred to Appendix E.4. The privacy

guarantee is proved by reducing the scheme to one that shuffles the rewards but does not

shuffle the corresponding actions and using results from [FMT22]. The regret analysis follows

similar ideas as in Theorem 6.3.1 and Theorem 6.4.1.

Remark 6.5.1. Algorithm 6.4.1 almost achieves the same order regret as the best non-private

algorithms. Indeed, Theorem 6.5.1 proves that Algorithm 6.4.1 achieves a regret that matches
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Figure 6.2: Regret-privacy trade-offs for DP stochastic linear bandits algorithms.

the regret of the central DP Algorithm 6.3.1 for the high privacy regimes ε = O(
√

log(1/δ)/T ).

For the low privacy regime ε > 1, the shuffling does not offer privacy gains, ε
(i)
0 ≈ ε for all

i ∈ [log(T )] and the regret of Algorithm 6.4.1 is similar to the regret of Algorithm 6.3.2 of the

local DP model. However, for the low privacy regime the local DP model also achieves the

same regret as non-private algorithms up to constant factors (see Remark 6.4.1). Hence in

both cases, Algorithm 6.4.1 achieves the same order regret as Algorithm 6.3.1 which almost

matches the regret of non-private algorithms.

Remark 6.5.2. Algorithm 6.4.1 improved regret performance over Algorithm 6.3.2 is thanks

to the smaller amount of noise added to rewards. In particular, the noise added in Step 9 of

Algorithm 6.4.1 has variance 2

ε
(i)
0

2 ≈ 2
niε2

for small ε.

6.6 Numerical Results

We here present indicative results on the performance of our proposed DP stochastic linear

bandits algorithms.

Data Generation: We generate synthetic data generated as follows. The set of actions

A contains K actions, where each action a ∈ A is a d = 2-dimensional vector. The actions
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a ∈ A and the optimal parameter θ∗ are generated uniformly at random from the unit sphere

Sd−1 = {x ∈ Rd : ||x||2 = 1}. A similar method is considered in [HLW21]. Figure 6.2 plots

the total regret RT over a horizon T = 106 as a function of the privacy budget (ε or ε0 in the

case of LDP mechanisms).

Comparison of central DP, local DP, and shuffled DP models: In Figure 6.2, the

set of actions A contains K = 10 actions. Figure 6.2 shows that the regret achieved by

all three algorithms, Algorithm 6.3.1 (central model), Algorithm 6.3.2 (local model), and

Algorithm 6.4.1 (shuffled model) converges to the regret of non-private stochastic linear bandit

algorithms [LS20, Ch. 22] as ε→∞ (ε0 →∞), albeit at different rates. As predicted from the

theoretical analysis, Algorithms 6.3.1 (central) and 6.4.1 (shuffled) offer privacy (almost) for

free, closely following the non-private regret. Furthermore, the central Algorithm 6.3.1 is close

to the non-private case and significantly outperforms the LDP Algorithm 6.3.2. We observe

that the shuffled model has a performance close to the central algorithm and outperforms

the regret of the LDP Algorithm 6.3.2.

Usefulness of Core Set: In Figure 6.2b, we explore potential benefits on the performance

of Algorithm 6.3.1 that use of the core set can offer. We consider K = 1000 and T = 107, and

plot the regret of Algorithm 6.3.1 for two cases: (i) when we use a core set of size 2-3 actions,

similar to the dimension of our space (labeled as Alg. 1), and (ii) when no core set is used,

and instead the good set of actions of the batched algorithm is the whole action set (labeled

as Alg. 1 no-core-set). We find that, as expected from our theoretical analysis, using a core

set enables to achieve performance very close to that of a non-private batched algorithm that

adds no noise. In contrast, using (and adding noise to) the entire action space significantly

degrades the performance.
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6.7 Related Work

Differential Privacy (DP) algorithms have been proposed for the generic multi-armed

bandits (MAB) problems [SS19,RZL20,TKM21], yet these algorithms would not work well

for linear bandits, as linear bandits allow for an infinite set of actions while generic MAB

have a regret that increases with the number of actions. Closer to ours is work on DP for

contextual linear bandits [SS18,ZCH20,HLW21,GCP22]; indeed, linear bandits can be viewed

as (a special case of) contextual linear bandit setup with a single context. The work in [SS18]

considers contextual linear bandits with DP and shows that linear regret is unavoidable.

Instead, the work considers a weaker notion of privacy, JDP (joint differential privacy), in a

centralized setting and propose an algorithm that achieves a regret of Õ(
√
T/ε). This does

not match the best known lower bound for the centralized setting of Ω(
√
T +log(T )/ε) [SS18].

Our work consider the stronger DP notion and achieves the lower bound of Ω(
√
T + log(T )/ε)

up to logarithmic factors for the special case of stochastic linear bandits. Recent work shows

that contextual linear bandits can be reduced to stochastic linear bandits if the context

distribution is known [HYF22], which is the case for many application [HYF22]. This implies

direct generalizations of our algorithms to contextual linear bandits with DP and known

context distribution without affecting the regret bounds. The work in [ZCH20] considers

contextual linear bandits with LDP, where the contexts can be adversarial. The work proposes

an algorithm that achieves a regret of Õ(T 3/4/ε0) and conjectures that the regret is optimal

up to a logarithmic factor. The authors in [HLW21] consider a special case, where the contexts

are generated from a distribution, and propose a method that achieves a regret of Õ(
√
T/ε0)

under certain assumptions on the context distribution. Our algorithm for the local model

achieves the same regret order using an alternative method. The works in [GCP22,CZ22]

consider contextual linear bandits in the shuffled model where the best-known algorithm

achieves a regret of Õ(T 3/5). Our proposed algorithms achieve a regret of Õ(
√
T + 1/ε),
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matching the information-theoretic lower bound in [SS18], for stochastic linear bandits in

the shuffled model. A summary of the best results for DP contextual linear bandits and our

results is presented in Table 6.1.

We mention two works in the literature studying the DP stochastic linear bandits problem,

which are close to our work. The work in [LZJ22] proposed DP mechanisms for stochastic

linear bandits using a similar approach to the batched algorithm. The main difference between

their schemes and our proposed schemes is that the work in [LZJ22] focuses on designing

communication-efficient schemes for DP stochastic linear bandits. The work in [HZZ22],

which was published concurrently to our work [HGF22], primarily focuses on deriving lower

bounds for differentially private contextual bandits in the central DP model, matching our

upper bound in the central case and thereby showing the optimality of our scheme. Moreover,

our contributions go well beyond the central DP model to include local DP and shuffled DP

models as well.
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CHAPTER 7

Successive Refinement of Privacy

An underlying assumption in the body of work on differential privacy has long been

that an unlimited amount of randomness is available for use by any privacy mechanism.

Under this assumption, the vast majority of the literature has focused on achieving better

privacy-utility trade-offs – see, for example, [DR14,SC13] for surveys. In this chapter, we ask:

how much randomness do we need to achieve a desired level of privacy and utility, and study

privacy-utility-randomness trade-offs instead. Answering this question both contributes to

our theoretical understanding, and also could support specific emerging applications that we

discuss later.

We consider local differential privacy (LDP) that has recently seen use in industrial appli-

cations, [EPK14, RAPPOR], [App17]. Here, an untrusted analyst acquires already-privatized

pieces of information from a number of users, and aggregates them into a statistic or a machine

learning model. Concretely, there are n users who observe i.i.d. inputs X1, X2, . . . , Xn (user

i observes Xi) from a finite alphabet X of size k, where each Xi is distributed according

to a probability distribution p. Each user has a certain amount of randomness, measured

in Shannon entropy, to randomize her input, that she then publicly shares. Our general

setup also includes d analysts who would like to use the users’ public outputs to estimate p,

each at a different level of privacy ε1, . . . , εd, where smaller ε means higher privacy. Each

analyst may or may not share some common randomness with the users. We call this

general setup successive refinement of privacy, in which each user shares a public output with
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highest privacy level. Then, each analyst uses a shared random key to partially undo the

randomization of the public output to get less privacy and higher utility.

This general formulation includes several interesting special cases, for which we study the

trade-offs between privacy, utility, and randomness. These are:

(i) There is a single analyst (d = 1), who shares no randomness with the users and

estimates p with privacy level ε. This setting directly generalizes the classical setup of LDP

to the case of limited randomness.

(ii) There are two analysts (d = 2), who observe the same public outputs from the users;

the first analyst who shares common randomness with the users has permission to perfectly

recover the original inputs (i.e., privacy level ε1 →∞), while the second analyst who shares

no randomness with the users estimates p with privacy level ε2. This setting is an adaptation

of the classical perfect secrecy setup of Shannon [Sha49] to the differential privacy world. In

Shannon’s setup, Alice (users) wants to send a secret to Bob (the first analyst), which must

remain perfectly private from Eve (the second analyst); whereas, in our setting, instead of

complete independence, we only want that the secret remains hidden from Eve in the sense

of differential privacy. We call this setup private-recoverability.

(iii) There are d > 1 analysts, who share some common randomness with the users.

Analyst i would like to estimate p with privacy level εi, where ε1 > . . . > εd.
1

7.1 Introduction

In general, designing private mechanisms with a small amount of randomness can be

translated into communication efficiency and/or storage efficiency. For instance, when there

are multiple privacy levels, each user needs to send additional information to some analysts,

that is a function of the randomness used in the mechanism. Hence, using a smaller amount

1We can assume, without loss of generality, that εj > εj+1,∀j ∈ [d− 1]; otherwise, we can group the equal
εj ’s together and the corresponding analysts can use the same privatized data that the users share with them.
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of randomness implies delivering a smaller number of bits to each analyst.

The private-recoverability setup (d = 2) can be useful in applications such as census

surveys, [Dwo19], that collect large amounts of data and are prohibitively expensive to repeat.

Using our approach, we can store the randomized data on a public database (second analyst)

without compromising the privacy of individuals; we can also give to the first analyst (e.g.,

the government, who may wish to exactly calculate the population count, or verify the

validity of census results) a secret key, that can be used to “de-randomize” the publicly

stored data and perfectly reconstruct the user inputs. An alternative approach would be to

store the data twice (once randomized in a public database and once in a secure government

database), which would incur an additional storage cost, as also shown in Section 7.7. Another

alternative would be to use a cryptographic scheme to encode the user inputs; in this case,

the resulting outputs may not allow public use in an efficient manner.2

The multi-level privacy d > 1 illustrates a new technical capability of hierarchical access

to the raw data that might inspire and support a variety of applications. For example, given

data collected from a fleet of autonomous cars, we could imagine different privacy access levels

provided to the car manufacturer itself, to police departments, to applications interested in

online traffic regulation, to applications interested in long-term traffic predictions or road

planning. Essentially, this capability enables providing the desired utility needed for each

application while maintaining the maximum possible amount of privacy. This chapter has

three folds:

• For the single analyst case (d = 1), we characterize the trade-off between randomness

and utility for a fixed privacy level ε, by proving an information-theoretic lower bound

and a matching upper bound for a minimax private estimation problem.

• For private-recoverability (d = 2), we derive an information-theoretic lower bound on

2In principle, we could use homomorphic encryption that allows to compute a function on the encrypted
data without decrypting it explicitly; however, such encryption schemes are computationally inefficient and
expensive to deploy.
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Figure 7.1: We have n users, each observing a sample Xi. A private randomization mechanism

Qi is applied to Xi using a random key Ui. Two analysts want to estimate p. Each analyst

requires a different privacy level.

the minimum randomness required to achieve it, and prove that the Hadamard scheme

proposed in [ASZ19] is order optimal. We also show that we cannot reuse random

keys over time while preserving privacy of each user. Hence, to preserve privacy of T

samples, any ε-DP mechanism has to use an amount of randomness equal to T times

the amount of randomness used for a single data sample. We also extend this result to

estimating heavy hitters.

• In the multi-level privacy (d > 1) setting, a trivial scheme is to use the d = 1 scheme

multiple times, separately for each analyst. We propose instead a non-trivial scheme that

uses a smaller amount of randomness with no sacrifice in utility. Our scheme publicly

announces the users’ outputs, and allows each analyst to remove an appropriate amount

of (shared) randomness with the help of an associated key. This approach enables

efficient hierarchical access to the data (for example, when analysts have different levels

of authorized access).

Overall, our investigation into privacy-utility-randomness trade-offs for LDP yields (op-

timal) privacy mechanisms that use randomness more economically. These include new

guarantees for existing schemes such as the Hadamard mechanism, as well as new multi-user

and multi-level mechanisms that allow for hierarchically private data access.

The rest of the chapter is organized as follows. We present the problem formulation in
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Section 7.2. We study single-level privacy under randomness constraints in Section 7.3. We

propose an efficient algorithm for multi-level privacy in Section 7.4. We study the private

recoverability problem in Section 7.5. We provide numerical results in Section 7.7. Some

proofs are deferred to Appendix E.

7.2 Problem Formulation

Notation: We use [k] to define the set {1, . . . , k} of integers. We use uppercase letters

X, Y , etc., to denote random variables, and lowercase letter x, y, etc., to denote their

realizations. For any two distributions p and q supported over a set X , let ‖p − q‖TV =

supA⊆X |p(A)− q(A)| be the total variation distance between p and q. We use ⊕ to define

the XOR operation. For p ∈ [0, 1], we use H2 (p) to denote the binary entropy function

defined by H2 (p) = −p log (p)− (1− p) log (1− p), and H (X) to denote the entropy of the

random variable X. Also, we use H (p) to denote the entropy of a random variable X drawn

from a distribution p.

7.2.1 Local Differential Privacy (LDP)

Let X , {1, . . . , k} be an input alphabet and Y , {1, . . . ,m} be an output alphabet, of

sizes |X | = k and |Y| = m, respectively, that are not required to be the same. A private

randomization mechanism Q is a conditional distribution that takes an input X ∈ X and

generates a privatized output Y ∈ Y. Q is said to satisfy the ε-local differential privacy

(ε-LDP) [DWJ13], if for every pair of inputs x, x′ ∈ X , we have

sup
y∈Y

Q (y|x)

Q (y|x′)
≤ exp (ε) , (7.1)

where Q (y|x) = Pr [Y = y|X = x] and ε captures the privacy level. For small values of ε,

the adversary cannot infer whether the input was X = x or X = x′. Hence, a smaller privacy

level ε implies higher privacy.
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7.2.2 Randomness in LDP Mechanisms

A private mechanism Q with input X ∈ X and output Y ∈ Y is said to satisfy (ε, R)-LDP, if

for every pair of inputs x, x′ ∈ X , we have

sup
y∈Y

Q (y|x)

Q (y|x′)
≤ exp (ε) , and

H (Y |X = x) ≤ R ∀x ∈ X ,
(7.2)

where H (Y |X = x) =
∑

y∈Y Q (y|x) log
(

1
Q(y|x)

)
denotes the entropy of the random output Y

conditioned on the input X = x. Note that an (ε, R)-LDP mechanism is an ε-LDP mechanism

that requires an amount of randomness less than or equal to R-bits to be designed.

Suppose that a random key U with H (U) ≤ R is used to design an (ε, R)-LDP mechanism

Q. We consider U to be a random variable that takes values from a discrete set U =

{u1, . . . , ul} according to a distribution q = [q1, . . . , ql], where qu = Pr [U = u] for u ∈ U .

We assume that U is a discrete set, since we focus on finite randomness. Let Uyx ⊂ U be a

subset of key values such that input X = x is mapped to Y = y when u ∈ Uyx. The private

mechanism Q can be represented as

Q (y|x) =
∑
u∈Uyx

qu. (7.3)

Note that the output Y is a function of (X,U). Therefore, we have Uy′x
⋂
Uyx = φ for y′ 6= y,

since there is only one output for each input. In addition, if we want (7.3) to satisfy the

privacy condition (7.1), we also have3
⋃
y∈Y Uyx = U for each x ∈ X . We will leverage this

representation of randomness in LDP mechanisms to design multi-level privacy mechanisms.

Figure 7.2 shows an example of designing a private mechanism with binary inputs X = {0, 1},

binary random keys U = {0, 1}, and binary outputs Y = {0, 1}. In this example, we can

represent the output of the mechanism as a function of (X,U) by Y = X⊕U , where ⊕ denotes

the XOR operation. If the random key U is drawn from a distribution q =
[

eε

eε+1
, 1
eε+1

]
, then

it is easy to show that the mechanism is ε-LDP.

3Otherwise we can distinguish inputs causing ε→∞.
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Figure 7.2: An example of designing an ε-LDP mechanism using a private key: (left)

representing the output Y of the mechanism Q as a function of the input X and the private

key U , (right) representing the mechanism Q as a probabilistic mapping from the input X to

the output Y depending on the private key U .

7.2.3 Problem Formulation

We consider n users who observe i.i.d. inputs X1, X2, . . . , Xn (user i observes input Xi), drawn

from an unknown discrete distribution p ∈ ∆k, where ∆k =
{

p ∈ Rk|
∑k

j=1 pj = 1, pj ≥ 0, ∀j ∈ [k]
}

denotes the probability simplex over X . The i’th user has a random key Ui with H (Ui) ≤ R;

we assume that Un = [U1, . . . , Un] are independent random variables, unless otherwise stated.

The i’th user generates (and publicly shares) an output Yi, using an (ε, R)-LDP mechanism

Qi and her random key Ui. The output Yi has a marginal distribution given by

Mi (y|p) =
∑
x∈X

Qi (y|x) px ∀y ∈ Yi, (7.4)

where X and Yi are the input and output alphabets. We also have d analysts who want to

use the users’ public outputs Y n = [Y1, . . . , Yn] to estimate p, each at a different level of

privacy ε1 > . . . > εd. The system model is shown in Figure 7.1.

Risk Minimization: For simplicity of exposition, consider for now a single analyst,

and let p̂ = [p̂1, · · · , p̂k] denote the analyst’s estimator (this is a function p̂ : Y n → Rk that

maps the outputs Y n to a distribution in the simplex ∆k)
4. For given private mechanisms

4Observe that it is sufficient to consider a deterministic estimator p̂, since for any randomized estimator,
there exists a deterministic estimator that dominates the performance of the randomized one.
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Qn = [Q1, . . . , Qn], the estimator p̂ is obtained by solving the problem

r`ε,R,n,k (Qn) = inf
p̂

sup
p∈∆k

E [` (p̂ (Y n) ,p)] , (7.5)

where r`ε,R,n,k is the minimax risk, the expectation is taken over the randomness in the outputs

Y n = [Y1, . . . , Yn] with Yi ∼Mi, and ` : Rk × Rk → R+ is a loss function that measures the

distance between two distributions in ∆k. Unless otherwise stated, we adopt as loss function

the 1-norm, namely ` = `1 and the squared 2-norm, namely ` = `2
2. Our task is to design

private mechanisms Q1, . . . , Qn that minimize the minimax risk estimation, namely,

r`ε,R,n,k = inf
{Qi∈Q(ε,R)}

r`ε,R,n,k (Qn)

= inf
{Qi∈Q(ε,R)}

inf
p̂

sup
p∈∆k

E [` (p̂ (Y n) ,p)] ,
(7.6)

where Q(ε,R) denotes the set of mechanisms that satisfy (ε, R)-LDP. Observe that when

R→∞, the problem (7.6) is reduced to the standard LDP distribution estimation studied

previously in [DWJ13,KBR16,YB18,ASZ19]. The difference in the formulation in (7.6) is

the randomness constraint.

LDP heavy hitter estimation: In heavy hitter estimation, the input samples Xn =

[X1, . . . , Xn] do not have an associated distribution. Furthermore, the analyst is interested

in estimating the frequency of each element x ∈ X with the infinity norm being the loss

function (i.e., ` = `∞). Frequency of each element x ∈ X is defined by f (x) =
∑n
i=1 1(Xi=x)

n
.

We then want to calculate

r`∞hh,ε,R,n,k =

inf
{Qi∈Q(ε,R)}

inf
p̂

sup
Xn∈Xn

E
[
max
x∈X
|p̂x (Y n)− f (x) |

]
,

where the expectation is taken over the randomness in the outputs Y n = [Y1, . . . , Yn] and

p̂ denotes the estimator of the analyst. Note, again, that in this case we do not make any

distributional assumptions on X1, . . . , Xn.

Multi-level privacy: Consider now the general case of d analysts each operating at

a different level of privacy ε1 > . . . > εd. All analysts observe the users’ public outputs
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Y n; additionally, analyst j may also observe some side information on the user randomness.

The question we ask is: what is the minimum amount of randomness U per user required

to maintain the privacy of each user while achieving the minimum risk estimation for each

analyst?

Sequence of distribution (or heavy hitter) estimation: We assume that each

user i has a random key Ui to preserve the privacy of a sequence of T independent samples

X
(1)
i , . . . , X

(T )
i , where the t’th samples for t ∈ [T ] at all users are drawn i.i.d. from an unknown

distribution p(t).5 At time t, the i’th user generates an output Y
(t)
i that may be a function of

the random key Ui and all input samples {X(m)
i }tm=1. Each of the d analysts uses the outputs

Y
(t)
i , i ∈ [n], t ∈ [T ] to estimate T distributions p(1), . . . ,p(T ) (or estimate the heavy hitters).

A private mechanism Q with a sequence of inputs XT =
(
X(1), . . . , X(T )

)
and a sequence

of outputs Y T =
(
Y (1), . . . , Y (T )

)
is said to satisfy ε-DP, if for every neighboring databases

x,x′ ∈ X T , we have

sup
y∈YT

Q (y|x)

Q (y|x′)
≤ exp (ε) , (7.7)

where Q (y|x) = Pr
[
Y T = y|XT = x

]
; and we say that two databases, x =

(
x(1), . . . , x(T )

)
and x′ =

(
x′(1), . . . , x′(T )

)
∈ X T are neighboring, if there exists an index t ∈ [T ], such that

x(t) 6= x′(t) and x(l) = x′(l) for l 6= t. Observe that when T = 1, the definition of ε-DP in (7.7)

coincides with the definition of ε-LDP in (7.1). We are interested in the question: Is there

a private mechanism that uses a smaller amount of randomness than T times the amount

of randomness used for a single data sample? In other words, can we perhaps reuse the

randomness over time while preserving privacy?

5As mentioned earlier, for heavy hitter estimation, the samples X
(1)
i , . . . , X

(T )
i do not have an associated

distribution.
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7.3 Single-level Privacy

We here study the fundamental trade-off between randomness and utility for a fixed privacy

level ε. In the following theorem, we derive a lower bound on the minimax risk estimation

r
`22
ε,R,n,k and r`1ε,R,n,k defined in (7.6).

Theorem 7.3.1. For every ε, R ≥ 0 and k, n ∈ N, the minimax risk under `2-norm loss is

bounded by

r
`22
ε,R,n,k ≥ τ =


k(eε+1)2

16neε(eε−1)2 if R ≥ H2

(
eε

eε+1

)
,

keε

16np2
R(eε−1)2 if R < H2

(
eε

eε+1

)
,

(7.8)

where pR ≤ 0.5 is the inverse of the binary entropy function pR = H−1
2 (R). The minimax

risk under 1-norm loss is bounded by r`1ε,R,n,k ≥
√
kτ/8.

The main contribution in our proof (see Section 7.3.1) is a formulation of a non-convex

optimization problem to bound the minimax risk under privacy and randomness constraints,

and obtaining a tight bound on its solution for every value of privacy level ε and randomness

R.

Remark 7.3.1. In [YB18], the authors derive the following lower bound on the minimax

risk estimation without randomness constraints (R→∞)

r
`22
ε,∞,n,k ≥


k(eε+1)2

512n(eε−1)2 for eε < 3,

k
64n(eε−1)

for eε ≥ 3.
(7.9)

For ε = O(1) and R ≥ H2

(
eε

eε+1

)
(which includes R → ∞ as well), our lower bound from

Theorem 7.3.1 gives r
`22
ε,R,n,k = Ω

(
k
nε2

)
, which coincides with (7.9). However, our lower bound

is tighter for all values of ε ∈ [0,∞) with smaller constant factors.

We next show that there exists an achievable scheme for all values of ε, R ≥ 0 that

matches (up to a constant factor) the lower bound given in Theorem 7.3.1 for ε = O (1) and

R ≥ 0.
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Theorem 7.3.2. For any ε, R ≥ 0, there exists (ε, R)-LDP mechanisms Q1, . . . , Qn and

an estimator p̂ such that the error E := supp∈∆k
E [‖p̂ (Y n)− p‖2

2] is bounded by

E ≤ η =


2k(eε+1)2

n(eε−1)2 if R ≥ H2

(
eε

eε+1

)
,

2ke2ε

np2
R(eε−1)2 if R < H2

(
eε

eε+1

)
.

(7.10)

The error under `1-norm loss is bounded by supp∈∆k
E [‖p̂ (Y n)− p‖1] ≤

√
kη.

We prove Theorem 7.3.2 constructively in Section 7.3.2, by adapting the Hadamard

response scheme given in [AS19] to our setting of limited randomness. Note that the value

H2

(
eε

eε+1

)
in both the lower and the upper bounds is an exact threshold for randomness that

determines the value of the minimax risk. Furthermore, we can see that the multiplicative

gap between the lower bound presented in Theorem 7.3.1 and the achievable scheme in

Theorem 7.3.2 is exactly 32eε for all randomness regimes. Theorems 7.3.1 and 7.3.2 together

imply the following characterization for r
`22
ε,R,n,k and r`1ε,R,n,k, for the case when ε = O(1):

Corollary 7.3.1. For ε = O (1) and R ≥ 0, we have

r
`22
ε,R,n,k =


Θ
(
k
nε2

)
if R ≥ H2

(
eε

eε+1

)
,

Θ
(

k
np2
Rε

2

)
if R < H2

(
eε

eε+1

)
,

(7.11)

and r`1ε,R,n,k =

√
kr

`22
ε,R,n,k.

We next provide a comparison between well-known mechanisms from randomness perspec-

tive. Table 7.1 describe the amount of randomness required to implement different ε-LDP

mechanisms: RAPPOR [EPK14], Randomized Response (RR) [War65], Hadamard Response

(HR) [ASZ19], and Binary Hadamard (BH) [AS19].

Observe that all private mechanisms are order optimal in the high privacy regime except

for the RR scheme. However, only the BH scheme uses the smallest amount of randomness

R = H2

(
eε

eε+1

)
per user, while the other mechanisms require a larger amount of randomness.

Table 7.1 considers only the regime of randomness R ≥ H2

(
eε

eε+1

)
, since the privacy-utility
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RAPPOR RR HR BH

Randomness per user

(R in bits)

kH2

(
eε

eε+1

)
log (k − 1 + eε)−
εeε

k−1+eε

≤ log
(
2k 3eε−1

eε

)
− εeε

3eε−1
H2

(
eε

eε+1

)
Minimax risk (r

`22
ε,R,n,k) O

(
k
nε2

)
O
(
k2

nε2

)
O
(
k
nε2

)
O
(
k
nε2

)
Table 7.1: Randomness requirement to implement each private mechanism and its corre-

sponding minimax risk under `2
2 loss function for ε = O (1).

trade-off when the amount of randomness R < H2

(
eε

eε+1

)
has not been studied before.

Corollary 7.3.1 characterizes the privacy-utility trade-offs for all regions of randomness R.

Remark 7.3.2. Observe that when R < H2

(
eε

eε+1

)
, there exists a trade-off between R

and r
`22
ε,R,n,k – as R increases, r

`22
ε,R,n,k decreases proportionally to 1/p2

R. However, when

R ≥ H2

(
eε

eε+1

)
, the minimax risk is not affected by R. Hence, R = H2

(
eε

eε+1

)
is a critical

point that defines the minimum amount of randomness required for each user to generate an

ε-LDP mechanism, while achieving the optimal utility at the analyst.

Remark 7.3.3. Corollary 7.3.1 also characterizes the number of users n (sample complexity)

required to estimate the distribution p with estimation error at most α for given privacy

level ε and randomness R bits per user is (where k is the input alphabet size):

n =


Θ
(

k
αε2

)
if R ≥ H2

(
eε

eε+1

)
,

Θ
(

k
αp2
Rε

2

)
if R < H2

(
eε

eε+1

)
.

(7.12)

A remark analogous to Remark 7.3.2 also holds here.

7.3.1 Lower Bound on The Minimax Risk Using the Assouad’s Method

Now we prove the lower bound on the minimax risk given in Theorem 7.3.1 (see page 150).

We first follow similar steps as in [DJW18, YB18] to reduce the minimax problem into
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multiple binary testing problems using Assouad’s method. We note that [DJW18, YB18]

do not consider a randomness constraint. Hence, we formulate an optimization problem to

obtain a lower bound on the minimax risk estimation with a randomness constraint. Finding

a tight bound on the solution of this problem is the main step in our proof. We also provide

an alternative proof of Theorem 7.3.1 by using Fisher information, which leads to a tight

bound for ` = `2
2 with smaller constant factors (see Appendix F.1).

Let |X | = k be the input alphabet size. Let {pν} be a set of distributions parameterized

by ν =
(
ν1, . . . , νk/2

)
∈ V = {−1, 1}k/2. The distribution pν = (pν1, . . . , p

ν
k) is given by:

pνj =

 1
k

+ δνj if j ∈ {1, . . . , k/2}
1
k
− δνj−k/2 if j ∈ {k/2 + 1, . . . , k}

, (7.13)

where 0 ≤ δ ≤ 1/k is a parameter that will be chosen later. Let Y n = [Y1, . . . , Yn] and

Yn = Y1 × · · · × Yn. Following [DJW18], for any loss function ` (p̂,p) =
∑k

j=1 φ (p̂j − pj),

where φ : R→ R+ is a symmetric function, we have6

` (p̂ (yn) ,pν) =
k∑
j=1

φ
(
p̂j (yn)− pνj

)
≥ φ (δ)

k/2∑
j=1

1

(
sgn

(
p̂j (yn)− 1

k

)
6= νj

)
,

(7.14)

where sgn (x) = 1 if x ≥ 0 and sgn (x) = 0 otherwise. Suppose that user i chooses a private

mechanism Qi ∈ Q(ε,R) that generates an output Yi ∈ Yi. Let Mν
i be the output distribution

on Yi for an input distribution pν on X defined by

Mν
i (y) =

k∑
j=1

Qi (y|Xi = j) pνj . (7.15)

Let Mn
+j and Mn

−j denote the marginal distribution on Yn conditioned on νj = +1 and

νj = −1, respectively, where

Mn
+j (yn) =

1

|V|
∑

ν:νj=+1

n∏
i=1

Mν
i (yi)

6Observe that for loss function ` = `22, we have φ (x) = x2, and for loss function ` = `1, we have φ (x) = |x|.
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Figure 7.3: Comparison between storage required for X and a random key U , for input

alphabet sizes k ∈ {10, 100, 1000}. The black lines represent log (k).

Mn
−j (yn) =

1

|V|
∑

ν:νj=−1

n∏
i=1

Mν
i (yi) .

Thus, the minimax risk can be bounded using the following lemma whose proof is presented

in Appendix F.1.1.

Lemma 7.3.1. For the family of distributions
{
pν : ν ∈ V = {−1, 1}k/2

}
, and a loss

function ` (p̂,p) =
∑k

j=1 φ (p̂j − pj) defined above, we have

r`ε,R,n,k ≥ φ (δ)
k

2

(
1

−
√
n

2
sup
j∈[k/2]

sup
i∈[n]

sup
ν:νj=1

sup
Qi∈Q(ε,R)

DKL

(
Mν

i ||M
ν−2ej
i

)) (7.16)

Fix arbitrary i ∈ [n], j ∈ [k/2] and ν ∈ V . We have

DKL

(
Mν

i ||M
ν−2ej
i

)
(a)

≤ DKL

(
Mν

i ||M
ν−2ej
i

)
+DKL

(
M

ν−2ej
i ||Mν

i

)
=
∑
y∈Yi

(
Mν

i (y)−M
ν−2ej
i (y)

)
log

(
Mν

i (y)

M
ν−2ej
i (y)

)

(b)

≤
∑
y∈Yi

(
Mν

i (y)−M
ν−2ej
i (y)

)2

M
ν−2ej
i (y)
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(c)
=
∑
y∈Yi

δ2 (Qi (y|j)−Qi (y|j + k/2))2∑k
j′=1Qi (y|j′) p

ν−2ej
j′

(d)

≤ 2δ2eε
∑
y∈Yi

(Qi (y|j)−Qi (y|j + k/2))2

Qi (y|j) +Qi (y|j + k/2)
, (7.17)

where step (a) follows from the fact that DKL (.||.) is not negative. Step (b) follows from

the inequality log (x) ≤ x− 1. Step (c) follows from the definition of Mν
i in (7.15). Step (d)

follows from bounding the denominator as follows:

k∑
j′=1

Qi (y|j′) p
ν−2ej
j′

≥ e−ε
Qi (y|j) +Qi (y|j + k/2)

2

k∑
j′=1

p
ν−2ej
j′

= e−ε
Qi (y|j) +Qi (y|j + k/2)

2
,

(7.18)

where we use the fact that Qi (y|j′) ≥ e−εQi (y|j) and Qi (y|j′) ≥ e−εQi (y|j + k/2) , ∀j′ ∈ [k].

Lemma 7.3.2. For any randomized mechanism Q ∈ Q(ε,R) that generates an output Y ∈ Y,

we have

sup
Q∈Q(ε,R)

∑
y∈Y

(Q (y|j)−Q (y|j + k/2))2

Q (y|j) +Q (y|j + k/2)

≤

 2 (eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2
p2
R(eε−1)2

e2ε
if R < H2

(
eε

eε+1

)
(7.19)

This lemma presents an upper bound on equation (7.17) as a function of the randomness

R for any private mechanism Q ∈ Q(ε,R). To prove this lemma, we first show that the

optimization problem (7.19) is non-convex due to the randomness constraint. We then prove

that the maximum value of this function (7.19) is obtained when the output of the mechanism

Q ∈ Q(ε,R) is binary. Then, we obtain a tight bound numerically for the binary output.

Proof of Lemma 7.3.2. Without loss of generality assume that Y = {y1, . . . , ym} with |Y| =

m. For ease of notation, we write Q (yl|j) = ql,j and Q (yl|j + k/2) = ql,j+k/2. The prob-
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lem (7.19) can be formulated as follows

P1: max
{ql,j ,ql,j+k/2}ml=1

m∑
l=1

(
ql,j − ql,j+k/2

)2

ql,j + ql,j+k/2
(7.20)

s.t. H ([q1,j, . . . , qm,j]) ≤ R,

H
([
q1,j+k/2, . . . , qm,j+k/2

])
≤ R (7.21)

e−ε ≤ ql,j
ql,j+k/2

≤ eε, ∀l ∈ [m]

ql,j ≥ 0, ql,j+k/2 ≥ 0, ∀l ∈ [m]

m∑
l=1

ql,j = 1,
m∑
l=1

ql,j+k/2 = 1

Note that the objective function (7.20) is jointly convex in both {ql,j}ml=1 and {ql,j+k/2}ml=1.

However, the optimization problem P1 is non-convex due to two reasons. First, we maximize

a convex function, and second the entropy constraints (7.21) are sub-level sets of a concave

function and are non-convex constraints. However, we can solve the optimization problem P1

by exploiting the results of Lemma 7.3.3 below.

Lemma 7.3.3. The optimal solution of the non-convex optimization problem P1 is obtained

when the output size is m = 2.

The proof of Lemma 7.3.3 is presented in Appendix F.2. Since the output alphabet is

binary, we can efficiently plot the feasible region of P1 for m = 2 as depicted in Figure 7.4.

Since we maximize a convex function, the optimal solution is at the boundary of the feasible

set. Furthermore, the objective function (7.20) is symmetric on q1,j, q1,j+k/2 for m = 2. As a

result, the optimal solution is given by.

q∗1,j =

 eε

eε+1
if R ≥ H2

(
eε

eε+1

)
pR if R < H2

(
eε

eε+1

)
q∗1,j+k/2 =

 1
eε+1

if R ≥ H2

(
eε

eε+1

)
pR
eε

if R < H2

(
eε

eε+1

) ,

(7.22)
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Figure 7.4: The feasible region of the optimization problem P1 for m = 2.

where q∗2,j = 1− q∗1,j, and q∗2,j+k/2 = 1− q∗1,j+k/2. Substituting from (7.22) into the objective

function (7.20), we get

m∑
l=1

(
ql,j − ql,j+k/2

)2

ql,j + ql,j+k/2
≤

 2 (eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2
p2
R(eε−1)2

e2ε
if R < H2

(
eε

eε+1

) (7.23)

Hence, the proof is completed for Lemma 7.3.2. �

Using the bound from Lemma 7.3.2 in (7.17) and taking supremum over all Qi ∈ Qε,R,

we get

sup
Qi∈Q(ε,R)

DKL

(
Mν

i ||M
ν−2ej
i

)
≤ 2δ2eε sup

Qi∈Q(ε,R)

∑
y∈Yi

(Qi (y|j)−Qi (y|j + k/2))2

Qi (y|j) +Qi (y|j + k/2)

= 2δ2eε

 2 (eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2
p2
R(eε−1)2

e2ε
if R < H2

(
eε

eε+1

)
(7.24)

Substituting from (7.24) into (7.16), we get

r`ε,R,n,k

≥


φ (δ) k

2

(
1−

√
2δ2neε (eε−1)2

(eε+1)2

)
if R ≥ H2

(
eε

eε+1

)
φ (δ) k

2

(
1−

√
2δ2n

p2
R(eε−1)2

eε

)
if R < H2

(
eε

eε+1

) (7.25)
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By setting δ2 = (eε+1)2

8neε(eε−1)2 if R ≥ H2

(
eε

eε+1

)
and δ2 = eε

8np2
R(eε−1)2 if R ≥ H2

(
eε

eε+1

)
, we get

r`ε,R,n,k ≥


φ
(√

(eε+1)2

8neε(eε−1)2

)
k
4

if R ≥ H2

(
eε

eε+1

)
φ

(√
eε

8np2
R(eε−1)2

)
k
4

if R < H2

(
eε

eε+1

) (7.26)

For the loss function ` = `2
2, we set φ (x) = x2 and for ` = `1, we set φ (x) = |x|. This

completes the proof of Theorem 7.3.1 with a slightly worse constant of 32 instead of 16 in the

denominator. We provide a different proof of Theorem 7.3.1 in Appendix F.1 using Fisher

information that gives the exact bound as stated in Theorem 7.3.1.

7.3.2 Upper Bound on The Minimax Risk Using the Hadamard Response

In this section, we prove Theorem 7.3.2 (see page 151) by proposing a private mechanism

by adapting the Hadamard response given in [AS19], where each user answers to a yes-no

question such that the probability of telling the truth depends on the amount of randomness R.

Each user i ∈ [n] has a binary output Yi ∈ {0, 1}. The (ε, R)-LDP mechanism of the i-th

user is defined by

Q (Yi = 1|X) =

 q if X ∈ Bi

q
eε

if X /∈ Bi

(7.27)

where Bi ⊂ [k] is a subset of inputs, and q is a probability value that will be determined later

such that H2 (q) ≤ R. Let K = 2dlog(k)e denote the smallest power of 2 larger than k, and

HK be the K ×K Hadamard matrix. In the following, we assume an extended distribution p

over the set X = [K] with |X | = K that is obtained by zero-padding the original distribution

p with (K − k) zeros, i.e., p = [p1, . . . , pK ] = [p1, . . . , pk, 0, . . . , 0]. For j ∈ [K], let Bj be a

set of row indices that have 1 in the j-th column of the Hadamard matrix HK . For example,
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when K = 4, the Hadamard matrix is given by

H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (7.28)

Hence, B1 = {1, 2, 3, 4}, B2 = {1, 3}, B3 = {1, 2}, and B4 = {1, 4}. We divide the users into

K sets (US1, . . . ,USK), where each set contains n/K users. For each user i ∈ USj, we set

Bi = Bj. Let p (Bj) = Pr [X ∈ Bj] =
∑

x∈Bj px, and sj = Pr [Yi = 1] for i ∈ Uj. Then, we

can easily see that

sj = p
(
Bj
)
q +

(
1− p

(
Bj
)) q
eε

= p
(
Bj
)
q

(
eε − 1

eε

)
+
q

eε

(7.29)

Let ŝj = 1
|USj |

∑
i∈USj 1 {Yi = 1} denote the estimate of sj. Then, we can estimate p (Bj)

as p̂ (Bj) = eε

q(eε−1)

(
ŝj − q

eε

)
. Observe that the relation between the distribution p and

p (B) =
[
p (B1) , . . . , p

(
BK
)]

is given by [AS19, Eq. 13]

p (B) =
HKp + 1K

2
, (7.30)

where 1K denotes a vector of K ones. Hence, we can estimate the distribution p as

p̂ = H−1
K (2p̂ (B)− 1K) =

1

K
HK (2p̂ (B)− 1K) . (7.31)

Lemma 7.3.4. For arbitrary p ∈ ∆k, we have

E
[
‖p− p̂‖2

2

]
≤ 2ke2ε

nq2 (eε − 1)2 . (7.32)

The proof is exactly the same as the proof in [AS19, Theorem 5]. By setting q = eε

eε+1
if

R ≥ H2

(
eε

eε+1

)
and q = pR if R < H2

(
eε

eε+1

)
, we get

r
`22
ε,R,n,k ≤


2k(eε+1)2

n(eε−1)2 if R ≥ H2

(
eε

eε+1

)
,

2ke2ε

np2
R(eε−1)2 if R < H2

(
eε

eε+1

)
.

(7.33)

The difference in our mechanism is that we design the private mechanism (7.27) for all values

of randomness R. This completes the proof of Theorem 7.3.2.
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7.4 Multi-level Privacy

Here, we study the case of d different analysts, with privacy levels ε1 > · · · > εd, and

εj = O (1) for j ∈ [d] (See Section 7.1 for the motivation of this setup). A trivial scheme

is to use the d = 1 scheme multiple times, separately for each analyst: each user i ∈ [n]

generates d samples
(
Y 1
i , . . . , Y

d
i

)
from its input sample Xi. The jth sample Y j

i is delivered

privately to the jth analyst. Note that the jth sample must be generated from an εj-LDP.

It then follows from Corollary 7.3.1 that the minimum risk for the jth analyst is given by

r
`22
εj ,∞,n,k = Θ

(
k
nε2j

)
, which requires each user to have Rj ≥ H2

(
eεj

eεj+1

)
bits of randomness,

and results in a total amount of randomness

Rtrivial
total =

d∑
j=1

H2

(
eεj

eεj + 1

)
.

We propose a new solution for this problem, in which each user generates a single output

that is publicly accessible by all analysts; each analyst is given a part of the random key

that was used to privatize the data, and leverages this key to reduce the perturbation of the

public output. The next theorem is proved in Section 7.4.

Theorem 7.4.1. There exists a private mechanism using a total amount of randomness

given by Rproposed
total =

∑d
j=1H2 (qj), such that the jth analyst achieves the minimum risk

estimation r
`22
εj ,∞,n,k = Θ

(
k
nε2j

)
, while preserving privacy of each user with privacy level εj for

j ∈ [d]. Here, for every j ∈ [d], qj is defined as follows (where zj = 1
eεj+1

):

qj =


zj if j = 1,

zj−zj−1

1−2zj−1
if j > 1.

(7.34)

Our results demonstrate that the proposed scheme in Theorem 7.4.1 achieves exactly

the same privacy and minimax risk as the trivial scheme, but with a much lower amount

of randomness (See Eqn. (7.40) in Section 7.4 for more details) as we elaborate in the next

remark. The reason is that by doing the hierarchical randomization, each analyst can recover
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the same output as in the trivial scheme using the shared private key. Hence, we get the

same privacy and minimax risk as the trivial scheme.

Remark 7.4.1. Note that zj > zj−1 as εj−1 > εj . Moreover, we also have zj = 1/ (eεj + 1) <

0.5 for all j ∈ [d]. As a result, we can show that for j > 1, we have

qj =
zj − zj−1

1− 2zj−1

= zj −
zj−1 (1− 2zj)

1− 2zj−1

< zj. (7.35)

Hence, we get that H2 (qj) < H2 (zj) holds for all j > 1. Therefore, our proposed scheme

uses a strictly smaller amount of randomness than the trivial scheme.

7.4.1 Proof of Theorem 7.4.1

This section proves Theorem 7.4.1 by establishing a new technique using a smaller amount

of randomness than the trivial scheme mentioned before while achieving the minimum

risk estimation for each analyst. Our proposed mechanism for multi-level privacy (where

ε1 > . . . > εd) is a cascading mechanism, where in each step, we add a random key to

the output of the previous step (see Figure 7.5, for example). The common output of the

mechanism is accessible by all analysts. However, each analyst would have a different privacy

level depending on the amount of randomness shared with it. Thus, each analyst uses the

shared random key to partially undo the randomization of the common output to get less

privacy and higher utility. Let zj = 1
eεj+1

for j ∈ [d]. For i ∈ [n], let {U1
i , . . . , U

d
i } be a set of

d Bernoulli random variables, where U j
i has a parameter qj = Pr

[
U j
i = 1

]
given by

qj =

 zj if j = 1,

zj−zj−1

1−2zj−1
if j > 1.

(7.36)

We first use the Hadamard response proposed in [AS19] for getting the first step of our

mechanism (see Section 7.3.2 for more details). Let HK be the K ×K Hadamard matrix.

Let Bl be a set of the row indices that have 1 in the l-th column of Hadamard matrix HK

for l ∈ [K]. We divide the users into K sets (US1, . . . ,USK), where each set contains n/K
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Figure 7.5: Multiple privacy levels mechanism.

users. We assign a set Bi = Bl representing a subset of inputs for each user i ∈ US l. Then,

user i generates a virtual output Y 1
i ∈ {0, 1} as follows

Y 1
i = 1 if (Xi ∈ Bi & U1

i = 0) or (X /∈ Bi & U1
i = 1) ,

0 otherwise.

(7.37)

Observe that the representation of Y 1
i in (7.37) is exactly the same as in (7.27) by setting

q = Pr [U1
i = 0] = eε

eε+1
. We represent Y 1

i with this form to explicitly show the random keys

used to design the Hadamard scheme presented in Section 7.3.2. Let Y j
i be the virtual output

generated by user i for the jth analyst, which is given by

Y j
i = Y 1

i ⊕ U2
i ⊕ . . .⊕ U

j
i , (7.38)

where ⊕ denotes the bitwise XOR. Hence, we add randomization to the first step of the

Hadamard scheme. User i transmits the output Y d
i to all analysts. The private scheme is

shown in Figure 7.5.

Lemma 7.4.1. The jth output of user i satisfies εj-LDP, i.e.,

sup
yji∈{0,1}

sup
xi,x′i∈X

Pr
[
Y j
i = yji |Xi = xi

]
Pr
[
Y j
i = yji |Xi = x′i

] ≤ eεj (7.39)

We prove Lemma 7.4.1 in Appendix F.4. Note that each analyst has access to the

public outputs {Y d
1 , . . . , Y

d
n } which is εd-LDP. Additionally, user i sends a random key

Lji = Ud
i ⊕ . . .⊕U

j+1
i to the jth analyst. Using the random keys {Lj1, . . . , Ljn}, the jth analyst
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can construct the private outputs {Y j
1 , . . . , Y

j
n } which are εj-LDP, where Y j

i = Y d
i ⊕ Lji .

Observe that the privatized output Y j
i has a conditional distribution given by

Qi

(
Y j
i |Xi

)
=

 eεj

eεj+1
if Xi ∈ Bi

1
eεj+1

if Xi 6∈ Bi

(7.40)

which coincides with the private mechanism given in (7.27) with q = eεj

eεj+1
. Thus, the jth

analyst can recover the same output as in the trivial scheme using the shared private key.

Hence, we get the same privacy and minimax risk as the trivial scheme. From Lemma 7.3.4,

for privacy level εj = O (1), we get that

r
`22,j
ε,R,n,k = O

(
k

nε2
j

)
, (7.41)

for analyst j, which coincides with the lower bound stated in Corollary 7.3.1. Observe that

the total amount of randomness per user in the proposed mechanism is given by

Rproposed
total =

d∑
j=1

H
(
U j
)

=
d∑
j=1

H2 (qj) ≤ Rtrivial
total , (7.42)

where qj is defined in (7.36). Note that the last inequality is strict for d > 1. This completes

the proof of Theorem 7.4.1.

7.5 Private-Recoverability

We here consider a legitimate analyst with permission to access the data {Xi}ni=1, i.e., ε1 →∞,

and an untrusted analyst with privacy level ε2 < ∞. The ith user uses a random private

key Ui and her mechanism Qi to generate an output Yi that is publicly accessible by both

analysts.

Definition 7.5.1 (LDP-Rec mechanisms). We say that a private mechanism Q is ε-LDP-

Rec, if it is an ε-LDP mechanism and it is possible to recover the input X from output Y

and the key U .
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We derive necessary and sufficient conditions on the random keys {Ui} and the mechanisms

{Qi}, such that the legitimate analyst can recover Xi from observing Ui and Yi, while

preserving privacy level ε2 against the untrusted analyst who does not have access to the

keys.

We first consider a simplified setting as shown in Figure 7.6. Alice (an arbitrary user

7) has a sample X ∈ X . Alice wants to send her sample X to Bob (the legitimate analyst)

while keeping her sample X private against Eve (the untrusted analyst) with differential

privacy level ε. Eve has access to the message between Alice and Bob. However, Alice has a

random key U shared with Bob that Eve does not have access to. Let Y be the output of the

private mechanism Q used by Alice. The following theorem (which we prove in Section 7.5.1)

provides necessary and sufficient conditions on the random key U and the privatized output

Y to generate an ε-LDP-Rec mechanism.

Remark 7.5.1. Observe that in the simplified model in Figure 7.6, we do not impose any

assumptions on the input X. Furthermore, we do not impose any assumptions about the

task for Eve. Hence, our model and results in Theorem 7.5.1 are applicable to any task for

Eve including distribution estimation, heavy hitter estimation, or learning from sample X.

Theorem 7.5.1. Let Q be an ε-LDP-Rec mechanism that uses a random key U ∈ U and an

input X ∈ X to produce a privatized output Y ∈ Y. The following conditions are necessary

and sufficient to allow recovery of X from (U, Y ):

(1) |U| ≥ |Y| ≥ |X |.

(2) The entropy of the random key must satisfy H (U) ≥ H
(
U s∗

min

)
, where s∗ = arg min

s∈{dle,blc}
H (U s

min)

for l = k e
ε(ε−1)+1

(eε−1)2 and U s
min is a random variable with support size equal to |X | = k and has

the following distribution:

qsmin = [1/t, . . . , 1/t, eε/t, . . . , eε/t],

7Since the input samples X1, . . . , Xn are i.i.d., and the random keys U1, . . . , Un are independent random
variables, it is sufficient to study the private-recoverable mechanism for any single user.
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Figure 7.6: Private-Recoverability: Alice has data X. An ε-LDP-Rec mechanism Q is applied

to X using a random key U to generate output Y . Bob is capable to recover X from Y and

U . Eve only observes Y .

where t = (seε + k − s), the first k − s terms are equal to 1/t and the remaining s terms are

equal to eε/t.

We now discuss the effect of ε on the structure of optimal distribution qs
∗

min for U s∗
min:

(i) When ε � log(k), the optimal s∗ = 1, and the corresponding q1
min has its first k − 1

terms equal to 1/(eε + k − 1) and the last term equal to eε/(eε + k − 1). This distribution is

equivalent to the one used in the Randomized Response (RR) model proposed in [War65]. (ii)

When ε→ 0, the optimal s∗ is around k/2, and the corresponding q
k/2
min has its first k/2 terms

equal to 2/k(eε + 1) and the remaining k/2 terms equal to 2eε/k(eε + 1). (iii) When ε = 0,

the distribution qsmin becomes uniform (irrespective of the value of s). Thus, when ε decreases,

the distribution qsmin approaches to the uniform distribution. On the other hand, when ε

increases, the distribution qsmin becomes skewed. It turns out that the minimum randomness

required to generate an ε-LDP-Rec mechanism for input recoverability is a non-increasing

function of ε. In other words, more privacy requires more randomness.

Remark 7.5.2. Consider the cryptosystem introduced by Shannon in [Sha49], where Alice

wants to send a secure message X to Bob using a shared random key U . Let Y be the

encrypted message sent to Bob. Eve eavesdrops the channel between Alice and Bob and

observes Y . This cryptosystem achieves perfect secrecy if and only if I (X;Y ) = 0. Shannon

showed that perfect secrecy requires H (U) ≥ H (X). Since the distribution of X is not

known to any node (Alice, Bob, and Eve), this implies H (U) ≥ maxpX∈∆k
H(X) = log k. We

can easily verify that the ε-LDP-Rec mechanism satisfies a cryptosystem with secrecy measure
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Figure 7.7: `1-estimation error for input alphabet size k = 1000, privacy level ε = 1, and

p = Geo (0.8).

maxp∈∆k
I (X;Y ) ≤ ε. Hence, a perfect secrecy system with unknown input distribution is a

0-LDP-Rec mechanism, which is a special case of our problem. Moreover, the ε-LDP-Rec

mechanism with data recovery is a cryptosystem leaking an amount of information measured

by maxp∈∆k
I (X;Y ) ≤ ε.

Observe that Theorem 7.5.1 does not provide performance guarantees for Eve, it only

guarantees privacy for Alice with respect to Eve, and recoverability for Bob. Hence, we can

ask the question: Does there exist an ε-LDP-Rec mechanism using the smallest amount of

randomness and guaranteeing the smallest error for distribution estimation or heavy hitter

estimation for Eve (the untrusted analyst)? In the following theorem (which we prove in

Section 7.5.2), we show that such a mechanism exists.

Theorem 7.5.2. The Hadamard Response mechanism from [ASZ19] satisfies private-

recoverability, and is utility-wise order-optimal for distribution estimation and heavy hitter

estimation while using an order-optimal amount of randomness.

7.5.1 Proof of Theorem 7.5.1

This section proves the necessary and sufficient conditions on the random key U and the

privatized output Y to design an ε-LDP-Rec mechanism. We first prove that |Y| ≥ |X | is

necessary to recover X from Y and U . We then prove that each input x ∈ X should be
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mapped with non-zero probability to every output y ∈ Y; hence, we get |U| ≥ |Y|, since

each input x ∈ X can be mapped with non-zero probability to at most |U| outputs. The

main part of our proof is bounding the randomness of the key U in the second condition.

We first prove in Lemma 7.5.2 that for any ε-LDP-Rec mechanism designed using a random

key of size greater than the input size, there exists another ε-LDP-Rec mechanism designed

using a random key of size equal to the input size with the same or smaller amount of

randomness. Thus, we can assume that |U| = |X | and minimize the entropy of the random

key U over all possible distributions and under the ε-LDP constraint. Since entropy is a

concave function of the distribution, we get a non-convex problem. However, we can obtain

an exact solution for the problem due to the structure of the privacy constraints that form a

closed polytope. For the sufficiency part, we prove in Lemma 7.5.1 that we can construct an

ε-LDP-Rec mechanism using the random key U s∗
min defined in Theorem 7.5.1 that satisfies the

two necessary conditions.

Before we proceed into the proof of Theorem 7.5.1, we first present the following two

lemmas whose proofs are given in Appendix F.5 and Appendix F.5.1, respectively.

Lemma 7.5.1. For given a random key U ∈ U with size |U| = k having a distribution

q = [q1, . . . , qk] such that qmax

qmin
≤ eε, where qmax = max

j∈[k]
qj and qmin = min

j∈[k]
qj, there exists an

ε-LDP-Rec mechanism with input X ∈ [k] and an output Y ∈ [k] designed using U .

This lemma shows that we can design an ε-LDP mechanism with output size equal to the

input size if we have a random key with size equal the input size and having a distribution

such that qmax

qmin
≤ eε.

Lemma 7.5.2. Suppose that an ε-LDP-Rec mechanism with an input X ∈ [k] and an

output Y ∈ Y is designed using a random key U ∈ U with size |U| = m > k. Then there

exists an ε-LDP-Rec mechanism with an input X ∈ [k] and an output Y ∈ [k] designed using

a random key U ′ ∈ [k] such that H (U) ≥ H (U ′).

Now, we are ready to prove Theorem 7.5.1. We prove the first necessary condition of
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Theorem 7.5.1 in two parts: We can show |Y| ≥ |X | using the recoverability constraint and

|U| ≥ |Y| using the privacy constraint. We prove these in Appendix F.6.

From Lemma 7.5.2 and the first necessary condition, we see that the ε-LDP-Rec mechanism

with the smallest amount of randomness is obtained when |U| = |Y| = |X | = k. Hence, we

restrict our attention to this case only. Let U ∈ [k] be a random key having a distribution

q = [q1, . . . , qk]. Without loss of generality, we assume that q1 ≤ q2 ≤ . . . ≤ qk. Before we

prove the necessity of the second condition, we claim that qk/q1 ≤ eε. We prove this using

both privacy and recoverability constraints in Appendix F.6.

Now, we are ready to prove the necessity of the second condition. Our objective is to

find the minimum entropy of the random key U with size |U| = k such that the private

mechanism is ε-LDP and the sample X can be recovered from observing Y and the random

key U . The problem can be formulated as follows

min
q=[q1,...,qk]

H (U) = −
k∑
j=1

qj log (qj) (7.43)

s.t., 1 ≤ qj
q1

≤ eε ∀j ∈ [k] (7.44)

k∑
j=1

qj = 1, qj ≥ 0 ∀j ∈ [k] (7.45)

where the constraint (7.44) is obtained from the claim proved above. Observe that the

constraints (7.44)-(7.45) form a closed polytope. Furthermore, the objective function (7.43)

is a concave function on q. Since we minimize a concave function over a polytope, the global

optimum point is one of the vertices of the polytope [Ros83]. Since we have a single equality

constraint, a vertex has to satisfy at least k − 1 inequality constraints with equality. Observe

that none of the inequalities in (7.45) can be satisfied with equality, otherwise the privacy

constraints in (7.44) would be violated. Thus, the optimal vertex is of the form

q =

q1, . . . , q1︸ ︷︷ ︸
k−s terms

, eεq1, . . . , e
εq1︸ ︷︷ ︸

s terms


168



such that s of inequalities from
qj
q1
≤ eε are satisfied with equality and (k − s− 1) of

inequalities from 1 ≤ qj
q1

are satisfied with equality, where s is a variable to be optimized.

Hence, the optimal distribution has the form

qs =

qs, . . . , qs︸ ︷︷ ︸
k−s terms

, eεqs, . . . , e
εqs︸ ︷︷ ︸

s terms

 , (7.46)

where qs = 1
seε+k−s , and s is an integer parameter chosen to minimize the entropy as follows

s∗ = arg min
s∈[k]

k∑
j=1

qsj log

(
1

qsj

)
= arg min

s∈[k]
log (s (eε − 1) + k)− sεeε

s (eε − 1) + k

= arg min
s∈[k]

log (s (eε − 1) + k)

+
εeεk

(eε − 1) (s (eε − 1) + k)
− εeε

eε − 1
.

(7.47)

In order to solve the optimization problem (7.47), we relax the problem by assuming s is a

real number taking values in [0, k]. The optimization problem in (7.47) is non-convex in for

general values of ε and k. Thus, we get all local minima by setting the derivative to zero

along with the boundary points s ∈ {0, k}. Then we check all these critical points to obtain

the global minimum point. However, we can see that at the boundary points s ∈ {0, k}, the

objective function is equal to log (k) which is the maximum entropy for any random variable

with support size k. Hence, the optimal solution is one of the local minimums. We can verify

that the objective function has only one local minimum point by setting the derivative with

respect to s to zero. Thus, we get

s̃ = k
eε (ε− 1) + 1

(eε − 1)2 , (7.48)

where s̃ denotes the local minimum point. Since (7.47) is a continuous function in the real

variable s, the optimal discrete point s∗ is within the local minimum s̃. Hence, we get the

closest integer to the real value in (7.48). As a result, we get

H (U) ≥ H
(
U s∗

min

)
,
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where s∗ = arg min
s∈{dle,blc}

H (U s
min) for l = k e

ε(ε−1)+1

(eε−1)2 , and U s
min is a random variable having a

distribution qs
∗

given in (7.46). Hence, the proof of the necessary part is completed.

The sufficiency part is straightforward: Note that the random key U s∗
min defined in

Theorem 7.5.1 satisfies the necessary conditions, and Lemma 7.5.1, we can construct an

ε-LDP-Rec mechanism using the random key U s∗
min. Thus, these conditions are sufficient.

7.5.2 Proof of Theorem 7.5.2

In this section, we show that the Hadamard response (HR) scheme proposed in [ASZ19] is,

in fact, an ε-LDP-Rec mechanism, where it is possible to recover the input X from the output

Y and randomness U . Furthermore, we show that it is order optimal from a randomness

perspective8.

We briefly describe the HR mechanism, and then analyze its performance. We refer

to [ASZ19] for more details. The HR mechanism is parameterized by two parameters: K

denotes the support size of the private mechanism output (Y = [K]), and s ≤ K is a positive

integer. For each x ∈ X , let Cx ⊆ [K] be a subset of outputs of size |Cx| = s. The private

mechanism for HR is defined by

Q (y|X) =

 eε

seε+K−s if y ∈ Cx
1

seε+K−s if y /∈ Cx
(7.49)

We can easily show that this is a symmetric mechanism, i.e., it can be represented using a

private key U of size |K| that is independent of the mechanism input X. Furthermore the

distribution of the private key U is given by

qHR =

 q, . . . , q︸ ︷︷ ︸
K−s terms

, eεq, . . . , eεq︸ ︷︷ ︸
s terms

 ,
8We mention that the Hadamard mechanism in [ASZ19] is symmetric with non-binary outputs, while the

Hadamard response in [AS19] has only binary outputs.
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where q = 1
seε+K−s . It remains to choose K, s, and {Cx}x∈X for fixed ε and input size

|X | = k. In [ASZ19, Section 5], the authors proposed K = B × b and s = b/2, where

B = 2dlog2(min{eε,2k})e−1, and b = 2dlog2( kB+1)e. Furthermore, each set Cx is a subset of rows

indices of the Hadamard matrix. These parameters are chosen such that s is close to

max{ k
eε
, 1}, and K is approximately the smallest power of 2 greater than k. The reason

behind using values that are powers of 2 is to exploit the structure of the Hadamard matrix.

In [ASZ19, Theorem 7], the authors proved that the minimax risk of HR for `2
2 loss function

is given by

r
`22
ε,n,k ≤


O
(
k
nε2

)
for ε < 1

O
(
k
neε

)
for 1 ≤ ε ≤ log (k)

O
(

1
n

)
for ε > log (k)

(7.50)

which is order optimal for all privacy levels. In addition, the authors in [AS19] have shown

that the HR scheme is order optimal for heavy hitter estimation in the high privacy regime

(ε = O (1)). In the following, we analyze the performance of HR with respect to the

randomness of the private mechanism. Observe that for fixed ε and k, the parameters K,

B, and b of HR is bounded by min{eε,2k}
2

≤ B ≤ min{eε, 2k}, k
min{eε,2k} ≤ b ≤ 4k

min{eε,2k} ,

and k ≤ K ≤ 4k. Hence, the entropy of the private key used to generate the HR private

mechanism is bounded by

HHR (U) = log

(
b

2
eε +K − b

2

)
−

εeε b
2

b
2
eε +K − b

2

≤ log

(
2k

min{eε, 2k}
(eε − 1) + 4k

)
− εeε

eε − 1 + 2 min{eε, 2k}

=

 log
(
2k 3eε−1

eε

)
− εeε

3eε−1
if ε ≤ log (k) + 1,

log (eε + 4k − 1)− εeε

eε+4k−1
if ε > log (k) + 1.

(7.51)

The minimum entropy of the private key to generate an ε-LDP-Rec mechanism is bounded
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by (Theorem 7.5.1)

Hmin (U) = log (s∗eε + k − s∗)− εeεs∗

s∗eε + k − s∗

≥


log
(
k
(
εeε

eε−1

))
− εeε

eε+
(eε−1)2

eε(ε−1)+1
−1

if ε ≤ log (k) ,

log (eε + k − 1)− εeε

eε+k−1
if ε > log (k) .

(7.52)

From (7.51) and (7.52), we can verify that HR is randomness-order-optimal for all privacy

levels ε.

7.6 Sequence of Distribution (or Heavy Hitter) Estimation

We again start from the setting in Figure 7.6, but with the modification that Alice (an

arbitrary user) wants to send to Bob (a legitimate analyst) T independent samples XT =(
X(1), . . . , X(T )

)
, where X(t) ∈ X , while keeping them private against Eve (an untrusted

analyst) with differential privacy level ε. Eve has access to the sequence of outputs Y T =(
Y (1), . . . , Y (T )

)
that Alice produces, but not to the random key U that Alice and Bob share.

Note that each output Y (t) might be a function of all input samples X t
1 =

(
X(1), . . . , X(t)

)
and the key U . Furthermore, the output Y (t) can take values from a set Y(t) that is not

required to be the same as Y(t′) for t 6= t′. Let YT = Y(1)× · · ·×Y(T ). The following theorem

is proved in Section 7.6.1.

We can define ε-DP-Rec mechanisms in the same way as we defined ε-LDP-Rec mechanisms

in Definition 7.5.1: A mechanism Q is ε-DP-Rec, if it satisfies (7.7), and allows the recovery

of input X from the output Y and the key U .

Theorem 7.6.1. Let Q be an ε-DP-Rec mechanism that uses a random key U ∈ U and

an input database XT ∈ X T to create an output Y T ∈ YT . The following conditions are

necessary and sufficient to allow recovery of the input XT from (U, Y T ).

(1) |U| ≥ |YT | ≥ |X T |.

(2) The entropy of the random key must satisfy H (U) ≥ T min
s∗∈{dle,blc}

H
(
U s∗

min

)
, where U s

min is
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the same random variable with support size |X | = k, as defined in Theorem 7.5.1.

Theorem 7.6.1 shows that the minimum amount of randomness required to preserve privacy

of T samples is equal to T times the amount of randomness required to preserve privacy of a

single sample. That is, for ε-DP-Rec, it is optimal to use an ε-LDP-Rec mechanism T times.

Remark 7.6.1. Observe that Theorem 7.6.1 is applicable in a n-user setting (by setting

T = n), where user i has a single sample X(i), and all users have access to a shared random

key U . So we have that shared randomness among users does not help in reducing the overall

required amount of randomness.

7.6.1 Proof of Theorem 7.6.1

In this section, we prove Theorem 7.6.1. The main idea of our proof is as follows. The first

condition is obtained in a similar manner as in the proof of Theorem 7.5.1. For the second

condition, we relate the minimum amount of randomness required to preserve privacy of

T samples to the minimum amount of randomness required to preserve privacy of T − 1

samples. In particular, we prove that H (U) ≥ H (Umin,T−1) +H (Umin,1), where H (Umin,t) is

the minimum amount of randomness of a key when we have a database of t input samples.

Definition 7.6.1. Let U ∈ U be a random key drawn from a discrete distribution q =

[q1, · · · , qkT ] with a support size |U| = kT , where qu = Pr [U = u]. We say that the distribution

q satisfies ε-DP, if there exists a bijective function f : X T →
[
1 : kT

]
from the dataset X T to

integers
[
1 : kT

]
, such that for every neighboring databases x,x′ ∈ [k]T , we have

qf(x)

qf(x′)
≤ eε. (7.53)

We begin our proof with the following lemma which is a generalized version of Lemma 7.5.1.

We prove it in Appendix F.7.

Lemma 7.6.1. Consider an input database x =
(
x(1), . . . , x(T )

)
∈ [k]T , and a random

key U ∈ U = {u1, · · · , ukT } distributed according to an ε-DP distribution q = [q1, · · · , qkT ].
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Then, there exists an ε-DP-Rec mechanism Q : [k]T → [k]T that uses U to create an output

Y T ∈ [k]T , such that we can recover the input database XT from (U, Y T ).

We can prove the first necessary condition of Theorem 7.6.1 (which is to show |U| ≥

|YT | ≥ |X T |) in the same way as we proved that for Theorem 7.5.1. For completeness, we

provide a proof of it in Appendix F.7. Now we prove the necessity of the second condition.

Consider an arbitrary ε-DP-Rec mechanism Q with output Y T ∈ YT using a random key

U ∈ U , where |YT | = m ≥ kT and |U| = l ≥ m. Let U ∼ q, where q = [q1, . . . , ql] such that

qu = Pr [U = u] for u ∈ U . Let Uyx ⊂ U be a subset of key values such that the input XT = x

is mapped to Y T = y when U ∈ Uyx. Thus, the private mechanism Q can be represented as

Q (y|x) =
∑
u∈Uyx

qu. (7.54)

Observe that
∑

y∈YT Q (y|x) = 1, since Q (y|x) is a conditional distribution for any given

x ∈ [k]T . Since Q is an ε-DP-Rec mechanism, it follows from the recoverability constraint that

each input x is mapped to y using a different set of key values (Uyx
⋂
Uyx′ = φ). Thus, for each

y ∈ YT , we have sy =
∑

x∈[k]T Q (y|x) ≤ 1. Furthermore, we get
∑

y∈YT
∑

x∈[k]T Q (y|x) =∑
y∈YT sy = kT .

We sort the kT databases in X T in lexicographic order by arranging them in increasing

order of x(1). Then, we arrange the databases that have the same x(1) in increasing order of x(2)

and so on. For example, database x =
(
x(1), . . . , x(i), x(i+1), . . . , x(T )

)
will appear before the

database x̃ =
(
x(1), . . . , x(i), x̃(i+1), . . . , x̃(T )

)
when x(i+1) < x̃(i+1). Furthermore, we denote xi

as the ith database in the lexicographic order for i ∈ [k]T . Observe that sy =
∑

x∈[k]T Q (y|x)

for given y ∈ YT . Thus, the probabilities Py =
[
P y

1 , . . . , P
y
kT

]
construct a valid distribution

with support size kT , where P y
j =

Q(y|xj)
sy

for j ∈ [k]T . Furthermore, for every neighboring

databases x,x′ ∈ [k]T , we have

Q(y|x)/sy
Q(y|x′)/sy

=
Q (y|x)

Q (y|x′)
(a)

≤ eε, (7.55)

where step (a) follows from the fact that Q is an ε-DP-Rec mechanism. Hence, the distribution

Py is ε-DP distribution. The proof of the following lemma is presented in Appendix F.8.
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Lemma 7.6.2. For every output y ∈ YT , we have H (Py) ≥ H (Umin,T−1) + H (Umin,1) ,

where H (Umin,t) denotes the minimum randomness of a private key when we have a database

of t samples for t ∈ {1, . . . , T}.

Using Lemma 7.6.2, we can prove Theorem 7.6.1 as follows.

H (U) =
1

kT

∑
x∈[k]T

H (U)
(a)

≥ 1

kT

∑
x∈[k]T

H
(
Y T |XT = x

)
=

1

kT

∑
x∈[k]T

∑
y∈YT

−Q (y|x) log (Q (y|x))

=
1

kT

∑
y∈YT

[
sy

 ∑
x∈[k]T

−Q (y|x)

sy
log

(
Q (y|x)

sy

) (7.56)

− sy log (sy)
]

=
1

kT

∑
y∈YT

[
syH (Py)− sy log (sy)

]
(b)

≥ 1

kT

∑
y∈YT

[
sy (H (Umin,T−1) +H (Umin,1)) (7.57)

− sy log (sy)
]

(c)

≥ H (Umin,T−1) +H (Umin,1) , (7.58)

where step (a) follows from the fact that Q (y|x) is a function of U . Step (b) follows from

Lemma 7.6.2. The inequality (c) follows from solving the problem

min
{sy}

∑
y∈YT

sy [H (Umin,T−1) +H (Umin,1)]− sy log (sy)

s.t.
∑
y∈YT

sy = kT and 0 ≤ sy ≤ 1, ∀ y ∈ YT
(7.59)

Note that f (x) = −x log (x) is a concave function on 0 ≤ x ≤ 1. Therefore, the objective

function in (7.59) is concave in {sy}. The minimum value of a concave function is one of the

vertices which is obtained when all the inequalities are satisfied by equalities. By setting kT
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Figure 7.8: Estimation error for input alphabet size k = 1000, number of users n = 500000,

and p = Geo (0.8).

of the sy’s to be one and setting the remaining |YT | − kT of sy’s to be zero, the objective

value in (7.59) becomes kT , which gives inequality (c).

Now, from (7.58), we conclude that H (U) ≥ TH (Umin,1), where H (Umin,1) is the minimum

amount of randomness required to design an ε-LDP-Rec mechanism given in Theorem 7.5.1.

This completes the proof of Theorem 7.6.1.

7.7 Numerical Results

In this section, we numerically validate our theoretical results through simulation.

Single-level privacy: In this part, we investigate the performance of the estimator

presented in Theorem 7.3.2 for a single-level privacy. Each point is obtained by averaging over

20 runs. In Figure 7.7, we plot the estimation error for the ` = `1 loss function (‖p− p̂ (Y n) ‖1)

for estimating a discrete distribution p ∈ ∆k. The input size is k = 1000, the number of users

is n ∈ [105 : 106], and the privacy level is ε = 1 for two values of randomness R ∈ {0.7, 1}

bits per user. The input samples are drawn from a Geometric distribution with parameter

q = 0.8 (Geo (0.8)), in which pi = Cqi−1 (1− q) for i ∈ [k], where C is a normalization term.

Figure 7.7 shows that the number of users required to achieve a certain estimation error

increases as the amount of randomness per user decreases. For instance, to achieve an `1-error

equal to 1.4, we need n ≈ 150, 000 users if R = 1 bits per user, while we need n ≈ 850, 000
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Figure 7.9: Comparison between our privacy scheme proposed in Theorem 7.4.1 and the

trivial scheme for two privacy levels ε1 = 1 and ε2 = [0.01 : 1].

users if R = 0.7 bits per user.

Figure 7.8 depicts the `1 estimation error as a function of the privacy level ε for input size

k = 1000 and number of users n = 500000 for two different values of randomness R ∈ {1, 0.6}

bits per user. As we discussed in Theorem 1, for each privacy level ε, there is a critical

point of randomness R = H (eε/ (eε + 1)). When each user has R < H (eε/ (eε + 1)) bits of

randomness, then the `1 estimation loss increases as the randomness R decreases. While when

each user has R ≥ H (eε/ (eε + 1)) bits of randomness, the estimation error is not affected

by the amount of randomness R. In Figure 7.8, we find that the `1 error depends on the

randomness R for all ε < 0.8, since we have R = 0.9 < H (eε/ (eε + 1)) for all ε < 0.8.

Multi-level privacy: Figure 7.9 and Figure 7.10 compare our proposed scheme in

Theorem 7.4.1 with the trivial scheme with respect to the total amount of randomness used.

In the trivial scheme, each user generates d different privatized samples, one for each analyst.

In Figure 7.9 we consider two privacy levels ε1 = 1 and ε2 ≤ ε1. We find that when ε1 − ε2 is

small, then the trivial scheme requires approximately twice the total amount of randomness

used in our scheme. However, when ε1 − ε2 is large, then our scheme and the trivial scheme

use similar amounts of randomness. In Figure 7.10, we consider d ∈ [1 : 10], ε1 = 2 and

εj = ε1 − 0.1j, for j ∈ {2, . . . , d}. We find that the gap between the amount of randomness

used in our scheme and the trivial scheme increases with d.
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Figure 7.10: Comparison between our privacy scheme proposed in Theorem 7.4.1 and the

trivial scheme for d privacy levels ε1 = 2 and εj = ε− 0.1j for j ∈ [2 : d].

Private-recoverability: Observe that each user needs log (k) bits to store her input

sample X ∈ [k], since she does not know the distribution X ∼ p. In private-recoverability,

we can recover X from observing Y and U ; hence, we only need to store U . Figure 4.2 plots

the number of bits required to store U (see Theorem 7.5.1) as a function of the privacy level

ε and different values of input size k ∈ {10, 100, 1000}. The black lines represent the log (k)

bits required to store X (an additional secure copy). Note that the amount of bits needed to

store U is strictly smaller than log (k) for ε > 0, and decreases as the privacy level ε increases.

Observe that the gain in Fig 4.2 is per user. Hence, the total amount of saving in storage

would be considerable when the number of users is large and ε > 0. For example, when

ε = 5, alphabet size k = 2, 4, 10, we get gain in efficiency log(k)−H(U)
log(k)

of 94.2%, 91.4%, and

85% respectively.

7.8 Related Work

To the best of our knowledge, the role of limited randomness has not been previously explored

either in the context of local or global differential privacy.9 In this work, we consider local

9Except for a notable exception of [DLM12], which showed that imperfect source of randomness allows
efficient protocols with global differential privacy. This is different from our problem, where our goal is to
quantify the amount of randomness required (measured in terms of Shannon entropy) in local differential
privacy and give privacy-utility-randomness trade-offs.
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differential privacy in the context of distribution estimation and heavy hitter estimation for

reasons of simplicity.

Popular local differentially private mechanisms for distribution estimation include RAP-

POR [EPK14], randomized response (RR) [War65]), subset selection (SS) [YB18,WHW16],

and the Hadamard response (HR) [ASZ19]. The randomized response mechanism is known

to be order optimal in the low privacy regime, and the RAPPOR scheme in the high privacy

regimes [KBR16,KOV14]. Subset selection and the Hadamard mechanisms are order optimal

in utility for all privacy regimes; additionally, the Hadamard mechanism has the advantage

of communication and computational efficiency for all privacy regimes [ASZ19]. We build on

this extensive literature, and show that the Hadamard mechanism is also near-optimal in

terms of the amount of randomness used.

Heavy hitter estimation under local differential privacy has been studied in [BS15,QYY16,

HKR12, BNS17, BNS18], again with unrestricted randomness. Our work adds to this line

of work by showing that the Hadamard mechanism is capable of achieving order-optimal

accuracy for heavy hitter estimation while using an order-optimal amount of randomness.

Local differential privacy in a multi-user setting where the users and the server may have

some shared randomness has also been looked at in prior work – see [BS15,AS19,ACF18]

among others. These works however investigate other orthogonal aspects of such multi-user

protocols. Local differentially private mechanisms with bounded communication have also

been studied by [AS19]; in their setup, multiple agents transmit their data in a locally

private manner to an aggregator, and communication is measured by the number of bits

transmitted by each user. They consider both private and public coin mechanisms, and

show that the Hadamard mechanism is near optimal in terms of communication for both

distribution and heavy-hitter estimation; however, unlike ours, their mechanisms do not

impose any randomness constraints.

Our results in the multiple analyst setting are also related to privacy amplification by

stochastic postprocessing [BBG19a] – which analyzes the privacy risk achieved by applying a
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(stochastic) post-processing mechanism to the output of a differentially private algorithm.

While these methods might also be used to provide multi-level privacy to multiple analysts,

our work is different from [BBG19a] in the following aspect. First, their privacy amplification

methodology does not apply to pure DP and applies instead to approximate DP, while our

work focuses on pure DP. Second, the work in [BBG19a] does not include a randomness

constraint, and finally, a closer look at their mechanism reveals that it does not use the

optimal amount of randomness.

Finally, a line of work on locally differentially private estimation considers the case when

the inputs comprise of i.i.d. samples from the same distribution. [DJW18, DR19] derive

lower and upper bounds for estimation under LDP in this setting – their work considers that

all users observe i.i.d. samples from the same distribution, and the goal for each user is to

preserve privacy of its raw sample. Our work is also different from this setting in that we

focus on designing private mechanisms with finite randomness.
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CHAPTER 8

Conclusion and Future Directions

In this thesis, we have studied communication-privacy-utility trade-offs for different dis-

tributed systems: distributed mean estimation, federated learning, stochastic linear bandits,

and discrete distribution estimation. Furthermore, we characterize the Rényi differential

privacy of the shuffled mode. This chapter is dedicated to discussion and future directions.

8.0.1 Distributed Mean Estimation

We studied the problem of distributed mean estimation under privacy and communication

constraints in both the local privacy model and the multi-message shuffled model. We

proposed communication-efficient and private algorithms for estimating the mean of bounded

`p-norm vectors for p ∈ [1,∞]. Furthermore, we proposed information-theoretic lower

bounds on the mean squared error (MSE) for bounded `1-norm and `2-norm vectors in

the local privacy models. We showed that our proposed algorithms achieve order optimal

communication-privacy-utility trade-offs. We also studied distributed mean estimation under

user-level local differential privacy (LDP), where each client has multiple vectors drawn i.i.d.

from sub-Gaussian distribution.

In this line of work, there are multiple interesting open questions. First, our achievable

algorithms are order-optimal in the sense of the minimax approach that considers the worst-

case datasets. However, there is a few work studying instance-optimal algorithms for private

mean estimation [MSU22, HLY21]. It is an open question to design achievable schemes

that adapt automatically to the inputs in the local privacy model and the shuffled model.
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Second, we proposed a user-level private mean estimation algorithm under the assumption

that all clients’ data are drawn i.i.d. from an unknown sub-Gaussian distribution. It is worth

investigating user-level private algorithms for the heterogeneous case when each subset of

clients’ data is generated i.i.d. from different sub-Gaussian distributions.

8.0.2 Differentially Private Federated Learning

We proposed a communication-efficient and private optimization algorithm to solve the

empirical risk minimization (ERM) in the federated learning framework in the shuffled model.

We analyzed privacy-convergence trade-offs of our proposed algorithm showing that it matches

the convergence of central DP algorithms. We extended the sampling scheme of our private

federated learning algorithm to client-self sampling, where each client decides to contribute

at each round by tossing a biased coin. Furthermore, we proposed a user-level DP algorithm

for personalized federated learning based on the Bayesian approach with KL divergence

regularization.

Differentially private algorithms for federated learning converge linearly with the model

dimension [BST14], where most of the DP algorithms are based on privatizing the gradient of

the loss function. This convergence rate becomes a bottleneck of privately training large and

complex models. One of the interesting questions is to design private learning algorithms

with convergence rates almost independent of the model dimension by avoiding the worst-case

lower bound in [BST14].

8.0.3 Rényi Differential Privacy of The Shuffled Model

We characterized the Rényi differential privacy (RDP) of the shuffled model for a general

ε0-LDP mechanism by proposing a closed-form upper and lower bounds. Furthermore, we

characterized the RDP of the subsampled shuffled model that combines privacy amplification

via shuffling and privacy amplification by subsampling. To achieve these results, we proposed
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a novel analysis technique by reducing any general neighboring datasets to special case

neighboring datasets that can be analyzed in a closed-form solution.

Our analysis for privacy amplification via shuffling is dedicated to pure LDP mechanisms.

An open question for extending our work is how to get an overall RDP guarantee if we are

given local RDP guarantees instead of pure LDP guarantees. This extension is non-trivial and

it appears in many applications including federated learning with local Gaussian mechanism.

8.0.4 Differentially Private Stochastic Linear Bandits

We proposed differential privacy algorithms for stochastic linear bandits in the central privacy

model, the local privacy model, and the shuffled model. Our algorithms are based on

privatizing batched algorithms for stochastic linear bandits. We show that the regret of our

proposed algorithms almost matches the regret of non-private stochastic bandits algorithms,

and hence, we get privacy for free. Furthermore, we extend our proposed algorithms for

stochastic linear bandits with known context distribution under joint differential privacy

constraints.

In this line of work, there are multiple interesting open questions. First, we extend our

algorithms for contextual linear bandits with adversarial context. The best-known achievable

differentially private regret is order O
(√

T
ε

)
in [SS18] for central DP model. For the local

DP model, the best known regret for contextual bandits is O
(
T 3/4

ε0

)
in [ZCH20]. It is still an

open question whether these regret bounds are tight or we can achieve a similar regret as

ours in the adversarial context.

8.0.5 Privacy-Utility-Randomness Trade-offs

We study successive refinement of privacy by providing multiple privacy levels when analysts

have different levels of authorized access. Furthermore, we answered a fundamental question

in LDP about how much randomness do we need to achieve a desired level of privacy and
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utility. We characterized the trade-off between randomness and utility for a fixed privacy

level ε0, by proving an information-theoretic lower bound and a matching upper bound for

a minimax private estimation problem. In addition, we proposed a non-trivial scheme for

providing multi-level privacy that uses a smaller amount of randomness with no sacrifice in

utility.

In our analysis, we focus on studying privacy-utility-randomness for discrete distribution

estimation and frequency estimation. An interesting open question is to study the fundamental

privacy-utility-randomness for other estimation problems, e.g., mean estimation or real

scalars.
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APPENDIX A

Omitted Details From Chapter 2

A.1 Proof of Lemma 2.1.5

The proof is obtained from Lemma 2.1.3, where the ε is bounded by:

ε ≤ min
α
ρα +

log(1/δ)

α− 1
+ log

(
1− 1

α

)
, (A.1)

for given δ ∈ (0, 1). By setting α = 1 +
√

log(1/δ)
ρ

, we get that:

ε ≤ ρ+ 2
√
ρ log(1/δ)

≤ ρ log(1/δ) + 2
√
ρ log(1/δ)

≤ 3 max
{
ρ log(1/δ),

√
ρ log(1/δ)

}
.

(A.2)

This completes the proof of Lemma 2.1.5.
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A.2 Proof of Theorem 2.4.1

First, we show that the output of Algorithm 2.2.1 is unbiased estimate of b. Let y be the

output of the 2RR Algorithm 2.2.1. Then, we have

E [y] =
b− p

1− 2p
(1− p) +

1− b− p
1− 2p

p

= b

(
1− 2p

1− 2p

)
− p(1− p)

1− 2p
+
p(1− p)
1− 2p

= b.

(A.3)

Hence, the Algorithm 2.2.1 is an unbiased estimate of the input b. Furthermore, the MSE of

the 2RR is bounded by:

MSE2RR = E
[
‖y − b‖2

]
= E

[
y2
]
− b2

=
1

(1− 2p)2

[
(b− p)2(1− p) + (1− b− p)2p

]
− b2

=
1

(1− 2p)2

[
b2 − 4p(1− p)b+ p(1− p)

]
− b2

=
1

(1− 2p)2

[
b2 − 4p(1− p)b+ p(1− p)

]
− b2

=
1

(1− 2p)2

[
b2(4p(1− p))− 4p(1− p)b+ p(1− p)

]
=

p(1− p)
(1− 2p)2

.

(A.4)

The LDP guarantees of the 2RR is obtained from the fact that e−ε0 ≤ 1 ≤ 1−p
p
≤ eε0 for any

p ∈ (0, 1/2]. Furthermore, we can prove that the 2RR satisfies (α, ε(α))-RDP, where ε (α) is

given by:

ε (α) =
1

α− 1
log
(
pα(1− p)1−α + p1−α(1− p)α

)
, (A.5)

where this bound is obtained from the definition of the RDP and also given in [Mir17]. This

completes the proof of Theorem 2.4.1.
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A.3 Proof of Lemma 2.4.1

From Theorem 2.4.1, the 2RR mechanism with parameter p < 1/2 is ε0-LDP, where

ε0 = log
(

1−p
p

)
. Hence, it is sufficient to prove that ε0 = log

(
1−p
p

)
≤ v when choosing

p = 1
2

(
1−

√
v2

v2+4

)
for any v ≥ 0.

Observe that 1 − p = 1
2

(
1 +

√
v2

v2+4

)
when p = 1

2

(
1−

√
v2

v2+4

)
. Let f(v) = v −

log
(√

v2+4+v√
v2+4−v

)
. We have that

∂f

∂v
= 1−

√
v2 + 4− v√
v2 + 4 + v

8(√
v2 + 4− v

)2√
v2 + 4

= 1− 8

(v2 + 4− v2)
√
v2 + 4

= 1− 2√
v2 + 4

≥ 0 ∀ v ≥ 0.

(A.6)

Hence the function f(v) is a non-decreasing function for all v ≥ 0. As a result f(v) ≥ f(0) = 0

for all v ≥ 0. Thus, we have v ≥ log
(

1−p
p

)
for all v ≥ 0. This completes the proof of

Lemma 2.4.1.
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APPENDIX B

Omitted Details From Chapter 3

B.1 Proof of Lemma 3.6.1

The proof is straightforward from the proof of Duchi and Rogers [DR19, Corollary

3]. In their setting, PBern
p,d is supported on {0, 1}d, and they proved a lower bound of

Ω
(

min
{

1, d
nmin{ε0,ε20}

})
. In our setting, since PBern

p,d is supported on
{

0, 1

d1/p

}d
, we can sim-

ply scale the elements in the support of PBern
p,d by a factor of 1/d1/p, which will also scale the

mean µq by the same factor. Note that the best estimator x̂ will be equal to the scaled

version of the best estimator from [DR19, Corollary 3] with the same value 1/d1/p. This

proves Lemma 3.6.1.

B.2 Proof of Lemma 3.4.1

We show the properties one-by-one below.

1. Observe that the output of the mechanism R`1
ε0

can be represented using the index

j ∈ [d] and one bit of the sign of {±aHd (j)
(
eε0+1
eε0−1

)
}. Hence, it requires only log (d) + 1

bits for communication. Furthermore, the randomness j ∼ Unif [d] is independent of

the input x. Thus, if the client has access to a public randomness j, then the client

needs only to send one bit to represent its sign. Now, we show that the mechanism R`1
ε0
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is ε0-LDP. Let Z =
{
± aHd(j)

(
eε0+1
eε0−1

)
: j = 1, 2, . . . , d

}
denote all possible 2d outputs

of the mechanism R`1
ε0

. We get

sup
x,x′∈Bd1(a)

sup
z∈Z

Pr[R`1
ε0

(x) = z]

Pr[R`1
ε0(x′) = z]

≤ sup
x,x′∈Bd1(r1)

1
d

∑d
j=1

(
1
2

+
√
d|y[j]|
2r1

eε0−1
eε0+1

)
1
d

∑d
j=1

(
1
2
−
√
d|y′[j]|
2r1

eε0−1
eε0+1

)
= sup
x,x′∈Bd1(r1)

1
d

∑d
j=1

(
r1(eε0 + 1) +

√
d|y[j]|(eε0 − 1)

)
1
d

∑d
j=1

(
r1(eε0 + 1)−

√
d|y′[j]|(eε0 − 1)

)
(a)

≤ 2r1e
ε0

2r1

= eε0 ,

where (a) uses the fact that for every j ∈ [d], we have |y[j]| ≤ r1/
√
d and |y′[j]| ≤ r1/

√
d.

2. Fix an arbitrary x ∈ Bd1 (r1).

Unbiasedness: E
[
R`1
ε0

(x)
]

=
1

d

d∑
j=1

r1Hd (j)

(
eε0 + 1

eε0 − 1

)(√
dy[j]

r1

eε0 − 1

eε0 + 1

)

=
1

d

d∑
j=1

Hd (j)
√
dy[j]

(b)
=

1

d

d∑
j=1

Hd (j) HT
d (j)x

(c)
= x

where (b) uses y = 1√
d
Hdx and (c) uses

∑d
j=1 Hd(j)H

T
d (j) = HdH

T
d = dId.

Bounded variance: E‖R`1
ε0

(x)− x‖2
2 ≤ E‖R`1

ε0
(x)‖2 = E[R`1

ε0
(x)TR`1

ε0
(x)]

=
1

d

d∑
j=1

a2Hd(j)
THd(j)

(
eε0 + 1

eε0 − 1

)2

= r2
1d

(
eε0 + 1

eε0 − 1

)2

(Since Hd(j)
THd(j) = d,∀j ∈ [d])

This completes the proof of Lemma 3.4.1.

B.3 Proof of Lemma 3.7.1

In order to prove that Rangescalar(D, τ, ε0) is user-level ε0-LDP, it suffices to show that

Rangeuser
scalar(D, τ, ε0) is user-level ε0-LDP. Consider an arbitrary user i ∈ [n] and two lo-
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cal datasets Di = (x
(i)
1 , . . . , x

(i)
m ), D′i = (x

′(i)
1 , . . . , x

′(i)
m ). Let Z = {±Hk(j)

(
eε0+1
eε0−1

)
: j ∈

{1, · · · , k}} denote all possible outputs of the mechanism Rrange. Thus, we get

sup
Di,D′i∈[−B,B]m

sup
z∈Z

Pr [Rangescalar (Di) = z]

Pr [Rangescalar (D′i) = z]
≤ sup
Di,D′i∈[−B,B]m

1
k

∑k
j=1

1
2

+
√
k|mi(j)|

2
eε0−1
eε0+1

1
k

∑k
j=1

1
2
−
√
k|m′i(j)|

2
eε0−1
eε0+1

(a)

≤
1
k

∑k
j=1

1
2

+ 1
2
eε0−1
eε0+1

1
k

∑k
j=1

1
2
− 1

2
eε0−1
eε0+1

≤ eε0

(B.1)

where the step (a) is obtained from the fact that mi(j),m
′
i(j) ∈ {± 1√

k
, }. Thus, the private

range mechanism Rangeuser
scalar is user level (ε0, 0)-LDP.

Now, suppose that {x(i)
j } are σ2 sub-Gaussian. Thus, yn = (y1, . . . , yn) are (τ, γ)-

concentrated, where yi = 1
m

∑m
j=1 x

(i)
j and τ = σ

√
log(2n/γ)

m
(e.g., see [RH15, Theorem 1.14]).

We show that with probability 1 − β, we have yi ∈ [a, b] for all i ∈ [n], where [a, b] ←

Rangescalar (D, τ, ε0, δ). Condition on the event that yn = (y1, . . . , yn) are concentrated with

radius τ . Hence, there exists y0 ∈ [−B,B] such that |yi − y0| ≤ τ for all i ∈ [n]. In Algo-

rithm 3.7.1, we split the interval [−B,B] into T = B
τ

interval each with width 2τ , where T

denotes the set of middle points of intervals. For each i ∈ [n], let νi = arg mina∈T |yi − a| be

the closest bin in T to the exact value yi. We define f(a) = 1
n

∑n
i=1 1 (νi = a) as the fraction

(frequency) of elements in yn that are close to the bin a for each bin a ∈ T . Observe that

when yn are concentrated with radius τ , we expect that f(a) = 0 for all a ∈ T except two

adjacent bins.

Let zi ← Rangeuser
scalar of the i-th user. Thus, we have

E [zi] =
1

d

k∑
j=1

Hk(j)

(
eε0 + 1

eε0 − 1

)[√
km(j)

eε0 − 1

eε0 + 1

]

=
1

d

k∑
j=1

Hk(j)
√
kmi(j)

(a)
=

1

d

k∑
j=1

Hk(j)H
T
k (j)eνi

(b)
= eνi ,

(B.2)

190



where step (a) follows from mi = Hkeνi and step (b) follows from
∑k

j=1 Hk(j)H
T
k (j) =

HkH
T
k = k × Ik. Thus, z = 1

n

∑n
i=1 zi is unbiased estimate of f = [f(a1), . . . , f(ak)], i.e.,

E [z] = f .

Observe that z(j) is a sum of i.i.d. Bernoulli random variables for j ∈ [k]. Thus, z(j) is a

sub-Gaussian with proxy
4
(
eε

2
0+1

)2

n
(
eε

2
0−1

)2 and E[z(j)] = f(aj). Hence, from [RH15, Theorem 1.14],

we get that

Pr[max
j∈[k]
|z(j)− f(aj)| > t] ≤ 2k exp

−t2n
(
eε

2
0 − 1

)2

8
(
eε

2
0 + 1

)2

 (B.3)

By setting t = 1
5
, with probability at least 1− 2k exp

(
−

n
(
eε

2
0−1

)2

200
(
eε

2
0+1

)2

)
, we get

max
j∈[k]
|z(j)− f(aj)| ≤

1

5
. (B.4)

With probability 1− γ, since there are only two adjacent bins of non-zero frequencies, one

of them has a frequency f(a) ≥ 1
2
. Let amax be the bin that has the maximum estimated

frequency. Conditioned on the event (B.4), the amax will be equal one of these two non-zero

bins that has non-zero frequencies. This can be seen as follows: Let j1, j2 ∈ [k] be such

that f(aj1), f(aj2) > 0 and we know that one of them, say, j1, has f(aj1) ≥ 1
2
. Since amax =

arg maxj∈[k] z(j), by (B.4), we have z(j1), z(j2) ∈ [ 3
10
, 7

10
] and z(jl) <

1
5
,∀l ∈ [k] \ {j1, j2}.

Hence, amax ∈ {j1, j2}.

This implies that each yi lies within 3τ of amax. Thus, from union bound we conclude

that yi ∈ [amax − 3τ, amax + 3τ ] for all i ∈ [n] with probability at least 1− β. This completes

the proof of Lemma 3.7.1.
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APPENDIX C

Omitted Details From Chapter 4

C.1 Proof of Lemma 4.3.1

Recall that the input dataset at client i ∈ [n] is denoted by Di = {di1, di2, . . . , dim} ∈ Xm

and D =
⋃n
i=1Di denotes the entire dataset. Recall from (4.5) that the mechanism Mt on

input dataset D can be defined as:

Mt(D) = Hks ◦ sampn,k (G1, . . . ,Gn) , (C.1)

where Gi = sampm,s (R(xti1), . . . ,R(xtim)) and xtij = ∇θtf(θt; dij),∀i ∈ [m], j ∈ [m]. We

define a mechanism Z
(
D(t)

)
= Hks (R (xt1) , . . . ,R (xtks)) which is a shuffling of ks outputs

of local mechanism R, where D(t) denotes an arbitrary set of ks data points and we index xti’s

from i = 1 to ks just for convenience. From the amplification by shuffling result [BBG19d,

Corollary 5.3.1] (also see Lemma 2.3.1), the mechanism Z is (ε̃, δ̃)-DP, where δ̃ > 0 is

arbitrary, and, if ε0 ≤
log(ks/ log(1/δ̃))

2
, then

ε̃ = O

min{ε0, 1}eε0

√√√√ log
(

1/δ̃
)

ks

 . (C.2)

Furthermore, when ε0 = O (1), we get ε̃ = O
(
ε0

√
log(1/δ̃)

ks

)
.

Let T ⊆ {1, . . . , n} denote the identities of the k clients chosen at iteration t, and for i ∈ T ,

let Ti ⊆ {1, . . . ,m} denote the identities of the s data points chosen at client i at iteration
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t.1 For any T ∈
(

[n]
k

)
and Ti ∈

(
[m]
s

)
, i ∈ T , define T = (T , Ti, i ∈ T ), DTi = {dj : j ∈ Ti}

for i ∈ T , and DT = {DTi : i ∈ T }. Note that T and Ti, i ∈ T are random sets, where

randomness is due to the sampling of clients and of data points, respectively. The mechanism

Mt can be equivalently written as Mt = Z(DT ).

Observe that our sampling strategy is different from subsampling of choosing a uniformly

random subset of ks data points from the entire dataset D. Thus, we revisit the proof

of privacy amplification by subsampling (see, for example, [Ull17]) – which is for uniform

sampling – to compute the privacy parameters of the mechanism Mt, where sampling is

non-uniform. Define a dataset D′ = (D′1)
⋃

(∪ni=2Di) ∈ X (mn), where D′1 = {d′11, d12, . . . , d1m}

is different from the dataset D1 in the first data point d11. Note that D and D′ are neighboring

datasets – where, we assume, without loss of generality, that the differing elements are d11

and d′11.

In order to show thatMt is (ε, δ)-DP, we need show that for an arbitrary subset S of the

range of Mt, we have

Pr [Mt (D) ∈ S] ≤ eε Pr [Mt (D′) ∈ S] + δ (C.3)

Pr [Mt (D′) ∈ S] ≤ eε Pr [Mt (D) ∈ S] + δ (C.4)

Note that both (C.3) and (C.4) are symmetric, so it suffices to prove only one of them. We

prove (C.3) below.

Let q = ks
mn

. We define conditional probabilities as follows:

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]
A′11 = Pr

[
Z(D′T ) ∈ S|1 ∈ T and 1 ∈ T1

]
(C.5)

A10 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 6∈ T1

]
= Pr

[
Z(D′T ) ∈ S|1 ∈ T and 1 6∈ T1

]
A0 = Pr

[
Z(DT ) ∈ S|1 6∈ T

]
= Pr

[
Z(D′T ) ∈ S|1 6∈ T

]
1Though T and Ti, i ∈ T may be different at different iteration t, for notational convenience, we suppress

the dependence on t here.

193



Let q1 = k
n

and q2 = s
m

, and hence q = q1q2. Thus, we have

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

Pr [Mt (D′) ∈ S] = qA′11 + q1 (1− q2)A10 + (1− q1)A0

Note that the mechanism Z is (ε̃, δ̃)-DP. Therefore, we have

A11 ≤ eε̃A′11 + δ̃ (C.6)

A11 ≤ eε̃A10 + δ̃ (C.7)

Here (C.6) is straightforward, but proving (C.7) requires a combinatorial argument, which

we give at the end of this proof. We prove (C.3) separately for two cases, first when s = 1

and other when s > 1; k is arbitrary in both cases.

C.1.1 For s = 1 and arbitrary k ∈ [n]

Since the mechanism Z is (ε̃, δ̃)-DP, in addition to (C.6)-(C.7), since s = 1, we also have the

following inequality:

A11 ≤ eε̃A0 + δ̃ (C.8)

Similar to (C.7), proving (C.8) requires a combinatorial argument, which we will give at the

end of this proof. Note that (C.8) only holds for s = 1 and may not hold for arbitrary s.

Inequalities (C.6)-(C.8) together imply A11 ≤ eε̃ min{A′11, A10, A0}+ δ̃. Now we prove (C.3)

for ε = ln(1 + q(eε̃ − 1) and δ = qδ̃. Note that when s = 1, we have q1 = k
n
, q2 = 1

m
, and

q = k
mn

.

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

≤ q
(
eε̃ min{A′11, A10, A0}+ δ̃

)
+ q1 (1− q2)A10 + (1− q1)A0

= q
(
(eε̃ − 1) min{A′11, A10, A0}+ min{A′11, A10, A0}

)
+ q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q(eε̃ − 1) min{A′11, A10, A0}+ qA′11 + q1 (1− q2)A10 + (1− q1)A0 + qδ̃
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(b)

≤ q(eε̃ − 1) (qA′11 + q1(1− q2)A10 + (1− q1)A0))

+ (qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q

(
eε̃ − 1

))
(qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

= eln(1+q(eε̃−1)) Pr [Mt (D′) ∈ S] + qδ̃.

Here, (a) follows from min{A′11, A10, A0} ≤ A′11, and (b) follows from the fact that minimum

is upper-bounded by the convex combination. By substituting the value of ε̃ from (C.2) and

using ks = qmn, we get that for ε0 = O (1), we have ε = O
(
ε0

√
q log(1/δ̃)

mn

)
.

C.1.2 For s > 1 and arbitrary k ∈ [m]

Note that (C.6)-(C.7) together imply A11 ≤ eε̃ min{A′11, A10} + δ̃. Now we prove (C.3) for

ε = ln(1 + q2(eε̃ − 1)) and δ = qδ̃.

Pr [Mt (D) ∈ S] = qA11 + q1(1− q2)A10 + (1− q1)A0

≤ q
(
eε̃ min{A′11, A10}+ δ̃

)
+ q1(1− q2)A10 + (1− q1)A0

= q
(
(eε̃ − 1) min{A′11, A10}+ min{A′11, A10}

)
+ q1(1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q
(
eε̃ − 1) min{A′11, A10}

)
+ qA′11 + q1(1− q2)A10 + (1− q1)A0 + qδ̃

(b)

≤ q
(
(eε̃ − 1)(q2A

′
11 + (1− q2)A10)

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

= q2

(
(eε̃ − 1)(q1q2A

′
11 + q1(1− q2)A10)

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

(c)

≤ q2

(
(eε̃ − 1)(qA′11 + q1(1− q2)A10) + (1− q1)A0

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q2

(
(eε̃ − 1)

)
(qA′11 + q1(1− q2)A10) + (1− q1)A0

)
+ qδ̃

= eln(1+q2(eε̃−1)) Pr [Mt (D′) ∈ S] + qδ̃

Here, (a) follows from min{A′11, A10} ≤ A′11, (b) follows from the fact that minimum is

upper-bounded by the convex combination, and (c) holds because (1 − q1)A0 ≥ 0. By
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substituting the value of ε̃ from (C.2) and using ks = qmn, we get that for ε0 = O (1), we

have ε = O

(
ε0

√
q2 log(1/δ̃)
q1mn

)
. Note that when q1 = 1 (i.e., we select all the clients in each

iteration), then this gives the desired privacy amplification of q = q2.

The proof of Lemma 4.3.1 is complete, except for that we have to prove (C.7) and (C.8).

Before proving (C.7) and (C.8), we state an important remark about the privacy amplification

in both the cases.

Remark C.1.1. Note that when s = 1 and ε0 = O(1), we have ε = ln(1 + q(eε̃−1)) = O(qε̃).

So we get a privacy amplification by a factor of q = ks
mn

– the sampling probability of each

data point from the entire dataset. Here, we get a privacy amplification from both types of

sampling, of clients as well of data points. On the other hand, when s > 1 and ε0 = O(1),

we have ε = ln(1 + q2(e
ε̃ − 1)) = O(q2ε̃), which, unlike the case of s = 1, only gives the

privacy amplification by a factor of q2 = s
m

– the sampling probability of each data point

from a client. So, unlike the case of s = 1, here we only get a privacy amplification from

sampling of data points, not from sampling of clients. Note that when k = n and any s ∈ [m]

(which implies q1 = 1 and q = q2), we have ε = O
(
ε0

√
q2 log(1/δ̃)

mn

)
, which gives the desired

amplification when we select all the clients in each iteration.

Proof of (C.7). First note that the number of subsets T1 ⊂ [m] such that |T1| = s, 1 ∈ T1

is equal to
(
m−1
s−1

)
and the number of subsets T1 ⊂ [m] such that |T1| = s, 1 /∈ T1 is equal to(

m−1
s

)
. It is easy to verify that (m− s)

(
m−1
s−1

)
= s
(
m−1
s

)
.

Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1

has
(
m−1
s−1

)
vertices, one for each configuration of T1 ⊂ [m] such that |T1| = s, 1 ∈ T1, the

right vertex set V2 has
(
m−1
s

)
vertices, one for each configuration of T1 ⊂ [m] such that

|T1| = s, 1 /∈ T1, and the edge set E contains all the edges between neighboring vertices,

i.e., if (u,v) ∈ V1 × V2 is such that u and v differ in only one element, then (u,v) ∈ E.

Observe that each vertex of V1 has (m− s) neighbors in V2 – the neighbors of T1 ∈ V1 will be

{(T1 \ {1}) ∪ {i} : i ∈ [n] \ T1} ⊂ V2. Similarly, each vertex of V2 has s neighbors in V1 – the
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neighbors of T1 ∈ V2 will be {(T1 \ {i}) ∪ {1} : i ∈ T1} ⊂ V1.

Now, fix any T ∈
(

[n]
k

)
s.t. 1 ∈ T , and for i ∈ T \ {1}, fix any Ti ∈

(
[m]
s

)
, and consider an

arbitrary (u,v) ∈ E. Since the mechanism Z is (ε̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|1 ∈ T , T1 = u, Ti, i ∈ T \ {1}

]
≤ eε̃ Pr

[
Z(DT ) ∈ S|1 ∈ T , T1 = v, Ti, i ∈ T \ {1}

]
+ δ̃.

(C.9)

Now we are ready to prove (C.7).

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]
=

∑
T ∈([n]

k ):1∈T
T1∈([m]

s ):1∈T1
Ti∈([m]

s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tn]

(a)
=

∑
T ∈([n]

k ):1∈T
Ti∈([m]

s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]

×
∑

T1∈([m]
s ):1∈T1

Pr[T1|1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tn]

=
∑

T ∈([n]
k ):1∈T

Ti∈([m]
s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]

× 1

(m− s)
(
m−1
s−1

) ∑
T1∈([m]

s ):1∈T1

(m− s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tn]

=
∑

T ∈([n]
k ):1∈T

Ti∈([m]
s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]

× 1

s
(
m−1
s

) ∑
T1∈([m]

s ):1∈T1

(m− s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tn]

(b)

≤
∑

T ∈([n]
k ):1∈T

Ti∈([m]
s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]

× 1

s
(
m−1
s

) ∑
T1∈([m]

s ):1/∈T1

s
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tn] + δ̃

)
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=
∑

T ∈([n]
k ):1∈T

Ti∈([m]
s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]

×
∑

T1∈([m]
s ):1/∈T1

Pr[T1|1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tn] + δ̃

)
(c)
=

∑
T ∈([n]

k ):1∈T
T1∈([m]

s ):1/∈T1
Ti∈([m]

s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tn] + δ̃

)

≤ eε̃ Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 /∈ T1

]
+ δ̃

= eε̃A10 + δ̃.

Here, (a) and (c) follow from the fact that clients sample the data points independent of each

other, and (b) follows from (C.9) together with the fact that there are (m−s)
(
m−1
s−1

)
= s
(
m−1
s

)
edges in the bipartite graph G = (V1 ∪ V2, E), where degree of vertices in V1 is (m− s) and

degree of vertices in V2 is s.

Proof of (C.8). First note that the number of subsets T ∈ [m] such that |T | = k, 1 ∈ T is

equal to
(
n−1
k−1

)
and the number of subsets T ⊂ [m] such that |T | = k, 1 /∈ T is equal to

(
n−1
k

)
.

It is easy to verify that (n− k)
(
n−1
k−1

)
= k
(
n−1
k

)
.

Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1

has
(
n−1
k−1

)
mk−1 vertices, one for each configuration of (T , Ti : i ∈ T ) such that T ⊂ [n],

|T | = k, 1 ∈ T and T1 = 1, the right vertex set V2 has
(
n−1
k

)
mk vertices, one for each

configuration of (T , Ti : i ∈ T ) such that T ⊂ [n], |T | = k, 1 /∈ T , and the edge set E

contains all the edges between neighboring vertices, i.e., if (u,v) ∈ V1×V2 is such that u and

v differ in only one element, then (u,v) ∈ E. Observe that each vertex of V1 has m(n− k)

neighbors in V2. Similarly, each vertex of V2 has k neighbors in V1.

Consider an arbitrary edge (u,v) ∈ E. By construction, there exists T ∈
(

[n]
k

)
with

1 ∈ T and Ti ∈ [n], i ∈ T such that u = (T , Ti : i ∈ T ) and T ′ ∈
(

[n]
k

)
with 1 /∈ T ′ and

T ′i ∈ [n], i ∈ T ′ such that v = (T ′, T ′i : i ∈ T ′). Note that, since (u,v) ∈ E, (Ti : i ∈ T ) and
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(T ′i : i ∈ T ′) have k− 1 elements common. Now, since the mechanism Z is (ε̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|T , Ti, i ∈ T

]
≤ eε̃ Pr

[
Z(DT ′) ∈ S|T ′, T ′i , i ∈ T ′

]
+ δ̃. (C.10)

Now we are ready to prove (C.8).

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and T1 = 1

]
=

∑
T ∈([n]

k ):1∈T
Ti∈[n] for i∈T :T1=1

Pr[T , Ti, i ∈ T |1 ∈ T and T1 = 1] Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1(

n−1
k−1

)
mk−1

∑
T ∈([n]

k ):1∈T
Ti∈[n] for i∈T :T1=1

Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1

(n− k)
(
n−1
k−1

)
mk

∑
T ∈([n]

k ):1∈T
Ti∈[n] for i∈T :T1=1

m(n− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(a)
=

1

k
(
n−1
k

)
mk

∑
T ∈([n]

k ):1∈T
Ti∈[n] for i∈T :T1=1

m(n− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(b)

≤ 1

k
(
n−1
k

)
mk

∑
T ∈([n]

k ):1/∈T
Ti∈[n] for i∈T

k
(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
1(

n−1
k

)
mk

∑
T ∈([n]

k ):1/∈T
Ti∈[n] for i∈T

(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
∑

T ∈([n]
k ):1/∈T

Ti∈[m] for i∈T

Pr[T , Ti, i ∈ T |1 /∈ T ]
(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

= eε̃ Pr
[
Z(DT ) ∈ S|1 /∈ T

]
+ δ̃

= eε̃A0 + δ̃

Here, (a) uses (n − k)
(
n−1
k−1

)
= k

(
n−1
k

)
, and (b) follows from (C.10) together with the fact

that there are m(n− k)
(
n−1
k−1

)
mk−1 = k

(
n−1
k

)
mk edges in the bipartite graph G = (V1 ∪ V2, E),

where degree of vertices in V1 is m(n− k) and degree of vertices in V2 is k.
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This completes the proof of Lemma 4.3.1.

C.2 Proof of Lemma 4.4.1

Recall that the input dataset at client i ∈ [n] is denoted by Di = {di1, di2, . . . , dim} ∈ Xm

and D =
⋃n
i=1Di denotes the entire dataset. Fix a time slot t ∈ [T ]. Let Kt = |Ut| denote

the random variable corresponding to the number of clients participating in the t’th time

slot. Recall from (4.11) that the mechanism Mt on input dataset D can be defined as:

Mt(θt;D) = HKt ◦ sampiid
n,q (G1, . . . ,Gn) , (C.11)

where Gi = sampfix
m,1 (R(xti1), . . . ,R(xtim)) and xtij = ∇θtf(θt; dij),∀i ∈ [n], j ∈ [m]. We

define a mechanism Z
(
D(t)

)
= HKt

(
R (xt1) , . . . ,R

(
xtKt
))

which is a shuffling of Kt outputs

of local mechanism R, where D(t) denotes an arbitrary set of Kt data points and we index xti’s

from i = 1 to Kt just for convenience. From the amplification by shuffling result [BBG19d,

Corollary 5.3.1], the mechanism Z is (ε̃ (Kt) , δ̃)-DP, where δ̃ > 0 is arbitrary, and, if

ε0 ≤
log(Kt/ log(1/δ̃))

2
, then

ε̃ (Kt) = O

min{ε0, 1}eε0

√√√√ log
(

1/δ̃
)

Kt

 . (C.12)

Furthermore, when ε0 = O (1), we get ε̃ (Kt) = O

(
ε0

√
log(1/δ̃)
Kt

)
.

Let T ⊆ {1, . . . , n} denote the identities of the Kt clients chosen at iteration t, and for

i ∈ T , let Ti ∈ {1, . . . ,m} denote the identity of the data point chosen at client i at time slot

t. For any T ∈
(

[n]
Kt

)
and Ti ∈ [m], i ∈ T , define T = (T , Ti, i ∈ T ), DTi = {diTi} for i ∈ T ,

and DT = {DTi : i ∈ T }. Note that T and Ti, i ∈ T are random sets, where randomness is

due to the sampling of clients and of data points, respectively. The mechanism Mt can be

equivalently written as Mt = Z(DT ).

Define a dataset D′ = (D′1)
⋃

(∪ni=2Di) ∈ X (mn), where D′1 = {d′11, d12, . . . , d1m} is different
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from the dataset D1 in the first data point d11. Note that D and D′ are neighboring datasets

– where, we assume, without loss of generality, that the differing elements are d11 and d′11.

In order to show that Mt is (ε, δ)-DP, we need to show that for an arbitrary subset S of

the range of Mt, we have

Pr [Mt (D) ∈ S] ≤ eε Pr [Mt (D′) ∈ S] + δ (C.13)

Pr [Mt (D′) ∈ S] ≤ eε Pr [Mt (D) ∈ S] + δ (C.14)

Note that both (C.13) and (C.14) are symmetric, so it suffices to prove only one of them. We

prove (C.13) below.

For any k ∈ [n], we define conditional probabilities as follows:

A11(k) = Pr
[
Z(DT ) ∈ S|Kt = k, 1 ∈ T , 1 ∈ T1

]
A′11(k) = Pr

[
Z(D′T ) ∈ S|Kt = k, 1 ∈ T , 1 ∈ T1

]
A10(k) = Pr

[
Z(DT ) ∈ S|Kt = k, 1 ∈ T , 1 6∈ T1

]
= Pr

[
Z(D′T ) ∈ S|Kt = k, 1 ∈ T , 1 6∈ T1

]
A0(k) = Pr

[
Z(DT ) ∈ S|Kt = k, 1 6∈ T

]
= Pr

[
Z(D′T ) ∈ S|Kt = k, 1 6∈ T

]
Note that when Kt = 0, i.e., no client participates, then we assume that the conditional

probabilities Pr[Mt(D) ∈ S | Kt = 0] and Pr[Mt(D′) ∈ S | Kt = 0] are zero, as D′T = ∅

when Kt = 0. Therefore, in the rest of this section, we assume that Kt takes values in

[n] = {1, 2, . . . ,m}. Now we expand Pr [Mt (D) ∈ S]:

Pr [Mt (D) ∈ S] =
m∑
k=1

Pr[Kt = k] · Pr[Mt(D) ∈ S | Kt = k]

=
m∑
k=1

Pr[Kt = k] (Pr[1 ∈ T , 1 ∈ T1 | Kt = k]A11(k)

+ Pr[1 ∈ T , 1 /∈ T1 | Kt = k]A10(k) + Pr[1 /∈ T | Kt = k]A0(k))

(C.15)

Let q′ = 1
m

, and for any k ∈ [n], define qk = k
n
. With these, we can compute the conditional
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probabilities as

Pr[1 ∈ T , 1 ∈ T1|Kt = k] = Pr[1 ∈ T |Kt = k] Pr[1 ∈ T1|1 ∈ T ] = qkq
′

Pr[1 ∈ T , 1 /∈ T1|Kt = k] = Pr[1 ∈ T |Kt = k] Pr[1 /∈ T1|1 ∈ T ] = qk(1− q′)

Pr[1 /∈ T |Kt = k] = 1− qk.

Substituting these in (C.15) gives

Pr [Mt (D) ∈ S] =
n∑
k=1

Pr[Kt = k] (qkq
′A11(k) + qk (1− q′)A10(k) + (1− qk)A0(k)) (C.16)

Similarly, we can show that

Pr [Mt (D′) ∈ S] =
n∑
k=1

Pr[Kt = k] (qkq
′A′11(k) + qk (1− q′)A10(k) + (1− qk)A0(k)) (C.17)

Note that the mechanism Z is (ε̃ (Kt) , δ̃)-DP. Therefore, for every k ∈ [n], we have

A11(k) ≤ eε̃(k)A′11(k) + δ̃ (C.18)

A11(k) ≤ eε̃(k)A10(k) + δ̃ (C.19)

Here (C.18) is straightforward, but proving (C.19) is obtained from eq(C.7). Since the

mechanism Z is (ε̃ (Kt) , δ̃)-DP, in addition to (C.18)-(C.19), we also have the following

inequality for every k ∈ [n]:

A11(k) ≤ eε̃(k)A0(k) + δ̃ (C.20)

Similar to (C.19), proving (C.20) is obtained from (C.8). Inequalities (C.18)-(C.20) together

imply A11(k) ≤ eε̃(k) min{A′11(k), A10(k), A0(k)}+ δ̃.

Now we prove (C.13) for ε = O
(
ε0

√
q̄
mn

log(1/δ̃)

)
(when ε0 = O(1)) and δ = q̄δ̃+ e−c

′qn

for some constant c′ ∈ (0, 1), where q̄ = q
m

.

Pr [Mt (D) ∈ S] =
n∑
k=1

Pr[Kt = k] · Pr[Mt(D) ∈ S | Kt = k]
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=
n∑
k=1

Pr[Kt = k] (qkq
′A11(k) + qk (1− q′)A10(k) + (1− qk)A0(k))

≤
n∑
k=1

Pr[Kt = k]
(
qkq
′
(
eε̃(k) min{A′11(k), A10(k), A0(k)}+ δ̃

)
+qk (1− q′)A10(k) + (1− qk)A0(k))

=
n∑
k=1

Pr[Kt = k]
(
qkq
′ ((eε̃(k) − 1) min{A′11(k), A10(k), A0(k)}

)
+ min{A′11(k), A10(k), A0(k)}+ qk (1− q′)A10(k) + (1− qk)A0(k) + qkq

′δ̃
)

(a)

≤
n∑
k=1

Pr[Kt = k]
(
qkq
′(eε̃(k) − 1) min{A′11(k), A10(k), A0(k)}+ qkq

′A′11(k)

+qk (1− q′)A10(k) + (1− qk)A0(k) + qkq
′δ̃
)

(b)

≤
n∑
k=1

Pr[Kt = k]
(
qkq
′(eε̃(k) − 1) (qkq

′A′11(k) + qk(1− q′)A10(k) + (1− qk)A0(k)))

+ (qkq
′A′11(k) + qk (1− q′)A10(k) + (1− qk)A0(k)) + qkq

′δ̃
)

=
n∑
k=1

Pr[Kt = k]
((

1 + qkq
′ (eε̃(k) − 1

))
(qkq

′A′11(k) + qk (1− q′)A10(k) + (1− qk)A0(k)) + qkq
′δ̃
)

=
n∑
k=1

Pr[Kt = k]
(
eln(1+qkq

′(eε̃(k)−1)) Pr[Mt(D′) ∈ S | Kt = k] + qkq
′δ̃
)

=
n∑
k=1

Pr[Kt = k]eln(1+qkq
′(eε̃(k)−1)) Pr[Mt(D′) ∈ S | Kt = k] +

n∑
k=1

Pr[Kt = k]qkq
′δ̃

(C.21)

Here, (a) follows from min{x, y, z} ≤ x, and (b) follows from the fact that minimum is upper-

bounded by the convex combination. Now we bound both the terms in (C.21) separately.

Bounding the first term of (C.21): Let pk = Pr[Kt = k] and µk = Pr[Mt(D′) ∈ S | Kt =

k].

n∑
k=1

pke
ln(1+qkq

′(eε̃(k)−1))µk =
∑

k<(1−ε)qn

pke
ln(1+qkq

′(eε̃(k)−1))µk +

(1+ε)qn∑
k=(1−ε)qn

pke
ln(1+qkq

′(eε̃(k)−1))µk
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+
∑

k>(1+ε)qn

pke
ln(1+qkq

′(eε̃(k)−1))µk,

where ε ∈ (0, 1) is a constant that we will decide later. Let l = (1− ε)qn and u = (1 + ε)qn.

Substituting µk ≤ 1 in both the first and the third summation gives

n∑
k=1

pke
ln(1+qkq

′(eε̃(k)−1))µk ≤

(1 + qlq
′(eε̃(1) − 1))

∑
k<(1−ε)qn

pk


+

eln(1+quq′(eε̃(l)−1))

(1+ε)qn∑
k=(1−ε)qn

pkµk

+

(1 + qnq
′(eε̃(u) − 1))

∑
k>(1+ε)qn

pk

 (C.22)

First we bound
∑

k<(1−ε)qn pk and
∑

k>(1+ε)qn pk, which are the tail probabilities of the

binomial random variable. We can bound both these using the Chernoff bound as follows

(where ε ∈ (0, 1)):

Pr[Kt ≥ (1 + ε)qn] ≤ exp(−qnε2/3) (C.23)

Pr[Kt ≤ (1− ε)qn] ≤ exp(−qnε2/3) (C.24)

Substituting these in (C.22) gives

n∑
k=1

pke
ln(1+qkq

′(eε̃(k)−1))µk ≤
(
(1 + qlq

′(eε̃(1) − 1)) + (1 + qnq
′(eε̃(u) − 1))

)
exp(−qnε2/3)

+

eln(1+quq′(eε̃(l)−1))

(1+ε)qn∑
k=(1−ε)qn

pkµk

 (C.25)

Note that ql, q
′ ≤ 1, qn = 1 and eε̃(u) ≤ eε̃(1). Substituting these in (C.25) and also upper-

bounding the last term trivially as
∑(1+ε)qn

k=(1−ε)qn pkµk ≤
∑n

k=1 pkµk and taking ε = 1
2

gives

n∑
k=1

pke
ln(1+qkq

′(eε̃(k)−1))µk ≤ 2eε̃(1) exp(−qn/12) +

(
eln(1+quq′(eε̃(l)−1))

n∑
k=1

pkµk

)
(C.26)

Now we bound both terms of (C.26) separately.

• We have from (C.12) that for ε0 = O(1), we have ε̃ (1) = ε0. This implies eε̃(1) = eε0 .

Note that this quantity is much smaller in comparison to, say, exp(qn/24), where qn is
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typically a large number (at least a few thousands) in cross device federated learning

settings. Since ε0 = O(1), we can bound the first term in (C.26) as

2eε̃(1) exp(−qn/12) ≤ exp(−c′qn), (C.27)

for some constant c′ ∈ (0, 1).

• We can bound eln(1+quq′(eε̃(l)−1)) as follows:

ln(1 + quq
′(eε̃(l) − 1)) ≤ quq

′(eε̃(l) − 1) = O (quq
′ε̃ (l)) = O

(
ε0

√
(1 + ε)2

(1− ε)
q̄

mn
log(1/δ̃)

)
,

(C.28)

where ε = 1
2
, and q̄ = qq′ = q

r
.

Substituting the bounds from (C.27) and (C.28) into (C.26) gives
n∑
k=1

pke
ln(1+qkq

′(eε̃(k)−1))µk ≤ eε
n∑
k=1

pkµk + exp(−c′qn), (C.29)

where ε = O
(
ε0

√
q̄
mn

log(1/δ̃)

)
.

Bounding the second term of (C.21): In the following, q̄ = qq′ = q
m

.

n∑
k=1

Pr[Kt = k]qkq
′δ̃ = q′δ̃

n∑
k=1

Pr[Kt = k]
k

n
= q′δ̃

E[Kt]

n
= q′δ̃q = q̄δ̃. (C.30)

Substituting the bounds from (C.29) and (C.30) into (C.21) gives

Pr[Mt(D) ∈ S] ≤ eε Pr[Mt(D′) ∈ S] + δ, (C.31)

where ε = O
(
ε0

√
q̄ log(1/δ̃)

mn

)
and δ = q̄δ̃ + e−c

′qn for some constant c′ ∈ (0, 1), where q̄ = q
m

.

This completes the proof of Lemma 4.4.1.

C.3 Proof of Claim 4.4.1

In the following |Ut| = Kt.

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

[gt] = EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

[
1

Kt

∑
i∈Ut

Rp (∇θtf(θt; diji))

]
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= EUt∼sampiid
n,q

[
1

Kt

∑
i∈Ut

Eji∈[m]

(
ERp [Rp (∇θtf(θt; diji))]

)]
(a)
= EUt∼sampiid

n,q

[
1

Kt

∑
i∈Ut

Eji∈[m] (∇θtf(θt; diji))

]
(b)
= EUt∼sampiid

n,q

[
1

Kt

∑
i∈Ut

∇θtFi(θt)

]
(c)
= ∇θtF (θt),

where (a) follows from the unbiasedness of the randomized mechanism Rp, (b) follows

because the mini-batch sampling of stochastic gradients gives unbiased gradient and that

Fi(θ) = 1
m

∑m
j=1 f(θ; dij) for i ∈ [n], and (c) follows because i.i.d. sampling of clients gives

unbiased global gradient and that F (θ) = 1
n

∑n
i=1 Fi(θ).

C.4 Proof of Lemma 4.4.2

Note that when we condition on {Kt = k} – the event that a fixed number of k clients

participate – the random variable Ut ∼ sampiid
n,q is distributed as Ut ∼ sampfix

n,k.

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

‖gt‖2
2 =

n∑
k=1

Pr[Kt = k] · EUt∼sampfix
n,k,Rp,

ji∈[m],i∈Ut

[‖gt‖2
2 | Kt = k] (C.32)

To make the notation less cluttered, it will be convenient to define the following for any

k ∈ [n]:

pk := Pr[Kt = k]

Ek := EUt∼sampfix
n,k,Rp,

ji∈[m],i∈Ut

[‖gt‖2
2 | Kt = k]

Note that we do not update anything when no client participates, i.e., E0 = 0. Substituting

these in (C.32), we get

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

‖gt‖2
2 =

n∑
k=1

pkEk (C.33)
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From Lemma 4.3.2, we have that:

Ek ≤ L2

(
1 +

fp(ε0, b)

qmn

)
, (C.34)

where fp(ε0, b) is the MSE of the private mechanism Rp. It is clear from (C.34) that Ek is a

non-increasing function of k. Thus, we have:

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

‖gt‖2
2 =

n∑
k=1

pkEk (from (C.33))

=
∑

k<(1−ε)qn

pkEk +

(1+ε)qn∑
k=(1−ε)qn

pkEk +
∑

k>(1+ε)qn

pkEk

(e)

≤

E1

∑
k<(1−ε)qn

pk

+

E(1−ε)qn

(1+ε)qn∑
k=(1−ε)qn

pk

+

E(1+ε)qn

∑
k>(1+ε)qn

pk


(f)

≤

E1

∑
k<(1−ε)qn

pk

+ E(1−ε)qn +

E1

∑
k>(1+ε)qn

pk


= E(1−ε)qn + E1 (Pr[Kt < (1− ε)qn] + Pr[Kt > (1 + ε)qn]) . (C.35)

In (e) we used the non-increasing property of Ek, i.e., Ek ≥ Ek+1 for any k ∈ [n− 1]. In (f) we

used E(1+ε)qn ≤ E1 and that
∑(1+ε)qn

k=(1−ε)qn pk ≤ 1. Both Pr[Kt < (1−ε)qn] and Pr[Kt > (1+ε)qn]

are the tail probabilities of the binomial random variable. We can bound both these using

the Chernoff bound from (C.24)–(C.23). Substituting the bounds from (C.23),(C.24) into

(C.35) and taking ε = 1
2

gives:

EUt∼sampiid
n,q ,Rp,

ji∈[m],i∈Ut

‖gt‖2
2 ≤ E qn2 + 2E1 exp(−qn/12)

≤ L2

(
1 +

2fp(ε0, b)

qn

)
+ 2L2 (1 + fb(ε0, b)) exp(−qm/12)

≤ L2

(
1 +

2fp(ε0, b)

qn

)
+ exp(−c′qn), (C.36)

where c′ > 0 is a constant. In particular, c′ ≥ 1/24 if 2L2(1 + fp(ε0, b)) ≤ exp(qm/24),

which is easily satisfied in federated learning settings, where in each iteration, at least a few
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thousand clients send updates, i.e., qn is equal to a few thousands. Note that q̄ = q
m

, so

we have qn = q̄mn. Substituting this in (C.36) yields (4.12), which completes the proof of

Lemma 4.4.2.

C.5 Proof of Theorem 4.5.1

We first analyze the RDP of a single global round t ∈ [T ] and then, we obtain the results

from the composition of the RDP over total T global rounds. Recall that privacy leakage

can happen through communicating {µi} and {ψti} and we privatize both of these. In the

following, we do the privacy analysis of privatizing {µi} and a similar analysis could be done

for {ψti} as well.

At each synchronization round t ∈ [T ], the server updates the global model µt+1 as

follows:

µt+1 =
1

K

∑
i∈Kt

µti, (C.37)

where µti is the update of the global model at the i-th client that is obtained by running τ

local iterations at the i-th client. At each of the local iterations, the client clips the gradient

hti with threshold C1 and adds a zero-mean Gaussian noise vector with variance σ2
q1
Id. When

neglecting the noise added at the local iterations, the `2-norm sensitivity of updating the

global model µt+1
i at the synchronization round t is bounded by:

∆µ = max
Kt,K′t

‖µt+1 − µ′t+1‖2
2 ≤

τC2
1

K2
, (C.38)

where Kt,K′t ⊂ [m] are neighboring sets that differ in only one client. Additionally, µt+1 =

1
K

∑
i∈Ktµ

t
i and µ′t+1 = 1

K

∑
i∈K′tµ

t
i. Since we add i.i.d. Gaussian noises with variance σ2

q1

at each local iteration at each client, and then, we take the average of theses vectors over

K clients, it is equivalent to adding a single Gaussian vector to the aggregated vectors with

variance
τσ2
q1

K
. Thus, from the RDP of the sub-sampled Gaussian mechanism in [MTZ19, Table

1], [BDR18], we get that the global model µt+1 of a single global iteration of DP-AdaPeD is
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(α, ε
(1)
t (α))-RDP, where εt(α)(1) is bounded by:

ε
(1)
t (α) =

(
K

n

)2
6αC2

1

Kσ2
q1

. (C.39)

Similarly, we can show that the global parameter ψt+1 at any synchronization round of

DP-AdaPeD is (α, ε
(2)
t (α))-RDP, where εt(α) is bounded by:

ε
(2)
t (α) =

(
K

n

)2
6αC2

2

Kσ2
q2

. (C.40)

Using adaptive RDP composition in Lemma 2.1.4, we get that each synchronization round of

DP-AdaPeD is (α, ε
(1)
t (α) + ε

(2)
t (α))-RDP. Thus, by running DP-AdaPeD over T/τ synchroniza-

tion rounds and from the composition of the RDP, we get that DP-AdaPeD is (α, ε(α))-RDP,

where ε(α) =
(
T
τ

)
(ε

(1)
t (α) + ε

(2)
t (α)). This completes the proof of Theorem 4.5.1.
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APPENDIX D

Omitted Details From Chapter 5

D.1 Proof of Corollary 1

In this section, we prove the simplified bound (stated in (5.5)) on the RDP of the shuffle

model, provided that α, ε0, n satisfy a certain condition. In particular, we will show that if

α, ε0, n satisfy α4e5ε0 < n
9
, then

ε(α) ≤ 1

α− 1
log

(
1 +

α2 (eε0 − 1)2

neε0

)
, (D.1)

where n = n−1
2eε0

+ 1. In order to show (D.1), it suffices to prove the following (using which in

(5.4) will yield (5.5)):

α∑
i=3

(
α

i

)
iΓ (i/2)

(
(e2ε0 − 1)

2

2e2ε0n

)i/2

+ eε0α−
n−1
8eε0 ≤

(
α

2

)
(eε0 − 1)2

neε0
. (D.2)

First notice that
(
α
i

)
iΓ (i/2) ≤ αi (see Claim D.1.1 on page 212). In order to show (D.2), it

suffices to show

α∑
i=3

(
α (e2ε0 − 1)

(2e2ε0n)1/2

)i
+ eε0α−

n−1
8eε0 ≤

(
α

2

)
(eε0 − 1)2

neε0
. (D.3)

Note that there are (α− 2) terms inside the summation. If we show that each of those terms

is smaller than 1 (which would imply that the term corresponding to i = 3 is the largest one),

then the summation is at most (α− 2) times the term with i = 3. Further, if the additional

exponential term in the LHS is upper-bounded by the term with i = 3, then we can prove

(D.3) by showing that (α− 1) times the term with i = 3 is upper-bounded by the RHS. These
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arguments are summarized in the following set of three inequalities:

α (e2ε0 − 1)

(2e2ε0n)1/2
< 1 (D.4)

eε0α−
n−1
8eε0 ≤

(
α (e2ε0 − 1)

(2e2ε0n)1/2

)3

(D.5)

(α− 1)

(
α (e2ε0 − 1)

(2e2ε0n)1/2

)3

≤
(
α

2

)
(eε0 − 1)2

neε0
(D.6)

In the rest of this proof, we will derive the condition on ε0, α, n such that (D.6) is satisfied.

As we see later, the values of ε0, α thus obtained will automatically satisfy (D.4) and (D.5).

By canceling same terms from both sides of (D.6), we get

α2 (e2ε0 − 1)
3

(2eε0n)3/2e3ε0/2
≤ (eε0 − 1)2

2neε0

⇐⇒ α2(e2ε0 − 1)(eε0 + 1)2 ≤
√

2neε0e3ε0/2 (D.7)

For the LHS and the RHS, we respectively have

(e2ε0 − 1)(eε0 + 1)2 = (e2ε0 − 1)(e2ε0 + 2eε0 + 1)

≤ e4ε0 + 2e3ε0 ≤ 3e4ε0 (D.8)

2neε0 = n− 1 + 2eε0 ≥ n. (D.9)

Therefore, in order to show (D.7), it suffices to show 3α2e4ε0 ≤
√
ne3ε0 , which is equivalent

to α4e5ε0 < n
9
. Thus, we have shown that α4e5ε0 < n

9
implies (D.6).

Now we show that when α4e5ε0 < n
9
, (D.4) and (D.5) are automatically satisfied:

1. Proof of (D.4):

α (e2ε0 − 1)√
2e2ε0n

≤ αe2ε0

√
2eε0n

≤
√
α4e5ε0

2eε0n
≤
√
n/9

n
< 1.

In the second inequality we used α ≥ 1 and in the penultimate inequality we used

2eε0n ≥ n from (D.9).
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2. Proof of (D.5): For this, first we upper-bound the LHS and lower-bound the RHS, and

then note that the upper-bound is smaller than the lower-bound. For the upper-bound

on exp(ε0α − n−1
8eε0

), note that ε0α ≤ e5ε0/4α = (e5ε0α4)
1/4

<
(
n
9

)1/4
= n1/4

√
3

. Also note

that eε0 ≤ e5ε0/4α < n1/4
√

3
, which implies n−1

8eε0
=
√

3
8
n−1
n1/4 ≥

√
3

16
n3/4. Substituting these

bounds in the exponent of exp(ε0α− n−1
8eε0

), we get:

exp

(
ε0α−

n− 1

8eε0

)
≤ exp

(
n1/4

√
3
−
√

3

16
n3/4

)

= exp

(
−n3/4

(√
3

16
− 1√

3n

))
≤ exp

(
−c′n3/4

)
,

(D.10)

where c′ > 0 is a constant even for small values of n. For example, for n = 100, we get

c′ ≥ 1
20

.

For the lower-bound on

(
α(e2ε0−1)
(2e2ε0n)1/2

)3

, note that 2eε0n = n−1+2eε0 ≤ n−1+2
(
n
9

)1/5 ≤

2n, where eε0 ≤
(
n
9

)1/5
follows from e5ε0 ≤ α4e5ε0 < n

9
. Now we show the lower bound:

α3(e2ε0 − 1)3

(2e2ε0n)3/2
≥ (eε0 − 1)3(eε0 + 1)3

(2eε0n)3/2e3ε0/2

≥ (eε0 − 1)3e3ε0

(2n)3/2e3ε0/2

≥ (eε0 − 1)3

(2n)3/2
≥ ε3

0

(2n)3/2

(D.11)

Note that the upper-bound on exp(ε0α− n−1
8eε0

) is exponentially small in n3/4, whereas,

the lower-bound on α3(e2ε0−1)3

(2e2ε0n)3/2 is inverse-polynomial in n. So, for sufficiently large n,

(D.5) will be satisfied.

This completes the proof of Corollary 5.3.1

Claim D.1.1 (An Inequality for the Gamma Function). For any α ∈ N and k ≥ 3, we have(
α
k

)
kΓ(k/2) ≤ αk.

Proof. Note that for any α ∈ N and k ≤ α, we have
(
α
k

)
= α(α−1)(α−2)...(α−k+1)

k!
.
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We show the claim separately for the cases when k is an even integer or not.

1. When k is an even integer: Since for any integer n ∈ N, Γ(n) = (n− 1)!, so when k is

an even integer, we have(
α

k

)
kΓ(k/2) =

α(α− 1)(α− 2) . . . (α− k + 1)

k!
× k × (

k

2
− 1)!

≤ α(α− 1)(α− 2) . . . (α− k + 1)

≤ αk.

2. When k is an odd integer: Note that for any integer n ∈ N, we have Γ
(
n+ 1

2

)
= (2n)!

4nn!

√
π;

see [Wik]. Let k = 2a+ 1. Then(
α

k

)
kΓ(k/2) =

(
α

k

)
kΓ(a+

1

2
)

=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
× k × (2a)!

4aa!

√
π

= α(α− 1)(α− 2) . . . (α− k + 1)

√
π

4aa!
(a)

≤ α(α− 1)(α− 2) . . . (α− k + 1)

≤ αk

where (a) follows because
√
π

4aa!
≤ 1 when a ≥ 1 ⇐⇒ k ≥ 3.

This proves Claim D.1.1. �

D.2 Omitted Details from Section 5.3.1

D.2.1 Omitted Details from Section 5.3.1.1

Before proving (5.14), first we show an important property of Em that we will use in the

proof.
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Lemma D.2.1. Em is a non-increasing function of m, i.e.,

E
h∼M(D′(n)

m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]

≤ E
h∼M(D′(n)

m )

[(
M(D(n)

m )(h)

M(D(n)
m )(h)

)α]
,

(D.12)

where, for any k ∈ {m,m + 1}, D(n)
k = (d′n, . . . , d

′
n, dn) and D′(n)

k = (d′n, . . . , d
′
n, d

′
n) with

|Dk| = |D′k| = k.

Proof. Lemma D.2.1 follows from Lemma 5.3.3 in a straightforward manner, as, unlike

Lemma D.2.1, in Lemma 5.3.3 we consider arbitrary pairs of neighboring datasets. �

Now we can prove (5.14).

Proof of (5.14).

Eh∼M(D′)

[(
M(D)(h)

M(D′)(h)

)α]
≤

n−1∑
m=0

qmEm

=
∑

m<b(1−γ)q(n−1)c

qmEm +
∑

m≥b(1−γ)q(n−1)c

qmEm

(a)

≤ E0

∑
m<b(1−γ)q(n−1)c

qm +
∑

m≥b(1−γ)q(n−1)c

qmEm

(b)

≤ E0e
− q(n−1)γ2

2 +
∑

m≥b(1−γ)q(n−1)c

qmEm

(c)

≤ eε0αe−
q(n−1)γ2

2 +
∑

m≥b(1−γ)q(n−1)c

qmEm

(d)

≤ eε0αe−
q(n−1)γ2

2 + E(1−γ)q(n−1).

Here, steps (a) and (d) follow from the fact that Em is a non-increasing function of m

(see Lemma D.2.1). Step (b) follows from the Chernoff bound. In step (c), we used that

M(dn) = R(dn) and M(d′n) = R(d′n), which together imply that

E0 = E
[(
M(dn)

M(d′n)

)α]
= E

[(
R(dn)

R(d′n)

)α]
≤ eε0α,

where the inequality follows because R is an ε0-LDP mechanism. �
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D.2.2 Proof of Theorem 5.3.6

Fix an arbitrary m ∈ N. Let (Dm,D′m) ∈ Dmsame and p = (p1, . . . , pB),p′ = (p′1, . . . , p
′
B) be

the same as defined in the proof of Theorem 5.3.5 in Section 5.3.3.

Eh∼M(Dm)

[(
M (D′m) (h)

M (Dm) (h)

)α]
= Eh∼M(Dm)

[(
B∑
j=1

p′j
pj

hj
m

)α]

= Eh∼M(Dm)

[(
1 +

B∑
j=1

p′j
pj

hj
m
− 1

)α]

≤ Eh∼M(Dm)

[
exp

(
α

(
B∑
j=1

p′j
pj

hj
m
− 1

))]
, (D.13)

where the first equality uses (5.33) and the last inequality follows from 1 + x ≤ ex. In

(D.13), h is distributed according to M(Dm) = Hm(R(d), . . . ,R(d)), where Hm denotes the

shuffling operation on m elements and range of R is equal to [B]. Since all the m data

points are identical, and all clients use independent randomness for computing R(d), we can

assume, w.l.o.g., that M(Dm) is a collection of m i.i.d. random variables X1, . . . , Xm, where

Pr [Xi = j] = pj for j ∈ [B]. Thus, we have (in the following, note that h = (h1, . . . , hB) is a

r.v.)

1

m

B∑
j=1

p′j
pj
hj =

1

m

B∑
j=1

p′j
pj

m∑
i=1

1{Xi=j}

=
1

m

m∑
i=1

B∑
j=1

p′j
pj

1{Xi=j} =
1

m

m∑
i=1

p′Xi
pXi

, (D.14)

where 1{·} denotes the indicator r.v. Substituting from (D.14) into (D.13), we get

Eh∼M(Dm)

[
exp

(
α

(
B∑
j=1

p′j
pj

hj
m
− 1

))]

= EX1,...,Xm

[
exp

(
α

m

m∑
i=1

(
p′Xi
pXi
− 1

))]

=
m∏
i=1

EXi
[
exp

(
α

m

(
p′Xi
pXi
− 1

))]
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=

(
EX∼p

[
e
α
m

(
p′X
pX
−1

)])m

(D.15)

where p = [p1, . . . , pB]. From Taylor expansion of ex = 1 +
∑∞

k=1
xk

k!
, we get

EX∼p

[
e
α
m

(
p′X
pX
−1

)]
= 1 +

∞∑
k=1

1

k!
EX∼p

[(
α

m

(
p′X
pX
− 1

))k]

= 1 +
∞∑
k=1

1

k!

B∑
j=1

pj

(
α

m

(
p′j
pj
− 1

))k

= 1 +
∞∑
k=2

1

k!

B∑
j=1

pj

(
α

m

(
p′j
pj
− 1

))k

≤ 1 +
∞∑
k=2

1

k!

B∑
j=1

pj

(
α(eε0 − 1)

m

)k
= 1 +

∞∑
k=1

1

k!

(
α(eε0 − 1)

m

)k
− α(eε0 − 1)

m

= e
α(eε0−1)

m − α (eε0 − 1)

m
, (D.16)

where the inequality follows from
p′j
pj
≤ eε0 , which holds for all j ∈ [B]. Substituting

from (D.16) into (D.15), we get

Eh∼M(Dm)

[(
M (D′m) (h)

M (Dm) (h)

)α]
≤
(
e
α(eε0−1)

m − α (eε0 − 1)

m

)m
= eα(eε0−1)

[
1− α (eε0 − 1)

m
e
−α(eε0−1)

m

]m
≤ eα(eε0−1)e−α(eε0−1)e

−α(eε0−1)
m (since 1− x ≤ e−x)

= e
α(eε0−1)

[
1−e

−α(eε0−1)
m

]

≤ e
α2(eε0−1)2

m . (since 1− e−x ≤ x)

This completes the proof of Theorem 5.3.6.
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D.3 Omitted Details from Section 5.3.2

D.3.1 Proof of Lemma 5.3.1

We only show (5.23); (5.24) can be shown similarly. For convenience, for any C ⊆ [n − 1],

define

P ′|C|,n = {p′n, . . . ,p′n} with |P ′|C|,n| = |C|,

P̃[n−1]\C = {p̃i : i ∈ [n− 1] \ C}.

With these notations, we can write PC = P ′|C|,n
⋃
P̃[n−1]\C

⋃
{pn} and P ′C = P ′|C|,n

⋃
P̃[n−1]\C

⋃
{p′n}.

Note that pi = qp′n + (1− q)p̃i for all i ∈ [n− 1]. For any i ∈ [n− 1], define the following

random variable p̂i:

p̂i =


p′n w.p. q,

p̃i w.p. 1− q.

Note that E[p̂i] = pi. For any subset C ⊆ [n − 1], define an event EC := {p̂i = p′n for i ∈

C and p̂i = p̃i for i ∈ [n− 1] \ C}. Since p̂1, . . . , p̂n−1 are independent random variables, we

have Pr[EC] = q|C|(1− q)n−|C|−1.

Consider an arbitrary h ∈ AnB. Define a random variable U(P) over AnB whose distribution

is equal to F (P).

F (P)(h) = Pr[U(P) = h]

= Pr[U(p1, . . . ,pn−1,pn) = h]

= Pr
[
U
(
E[p̂1], . . . ,E[p̂n−1],pn

)
= h

]
=

∑
C⊆[n−1]

Pr[EC] Pr
[
U
(
E[p̂1], . . . ,E[p̂n−1],pn

)
= h | EC

]
(e)
=

∑
C⊆[n−1]

Pr[EC] Pr
[
U
(
P ′|C|,n

⋃
P̃[n−1]\C

⋃
{pn}

)
= h

]
=

∑
C⊆[n−1]

Pr[EC] Pr
[
U(PC) = h

]
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=
∑
C⊆[n−1]

q|C|(1− q)n−|C|−1 Pr
[
U(PC) = h

]
,

=
∑
C⊆[n−1]

q|C|(1− q)n−|C|−1F (PC)(h) (D.17)

where, P ′|C|,n and P̃[n−1]\C in the RHS of (e) are defined in the statement of the claim. Since

the above calculation holds for every h ∈ AnB, we have proved (5.23).

D.3.2 Proof of Lemma 5.3.2

For simplicity of notation, let P = F (P) and Q = F (P ′). Note that EQ
[(

P
Q

)α]
=∫

PαQ1−αdµ, which is also called the Hellinger integral. In order to prove the lemma,

it suffices to show that
∫
PαQ1−αdµ is jointly convex in (P,Q), i.e., if Pλ = λP0 + (1− λ)P1

and Qλ = λQ0 + (1− λ)Q1 for some λ ∈ [0, 1], then the following holds∫
Pα
λQ

1−α
λ dµ ≤ λ

∫
Pα

0 Q
1−α
0 dµ+ (1− λ)

∫
Pα

1 Q
1−α
1 dµ. (D.18)

Proof of (D.18) is implicit in the proof of [EH14, Theorem 13]. However, for completeness,

we prove (D.18) in Lemma D.3.1 below.

Since P = F (P) and Q = F (P ′) are convex combinations of PC = F (PC) and QC = F (P ′C),

respectively, with same coefficients, repeated application of (D.18) implies (5.25).

Lemma D.3.1. For α ≥ 1, the Hellinger integral
∫
PαQ1−αdµ is jointly convex in (P,Q),

i.e., if Pλ = λP0 + (1− λ)P1 and Qλ = λQ0 + (1− λ)Q1 for some λ ∈ [0, 1], then we have∫
Pα
λQ

1−α
λ dµ ≤ λ

∫
Pα

0 Q
1−α
0 dµ+ (1− λ)

∫
Pα

1 Q
1−α
1 dµ. (D.19)

Proof. Let f(x) = xα. It is easy to show that for any α ≥ 1, f(x) is a convex function when

x > 0. This implies that for any point ω ∈ Ω in the sample space, we have

f

(
Pλ(ω)

Qλ(ω)

)
= f

(
λP0(ω)

Qλ(ω)
+

(1− λ)P1(ω)

Qλ(ω)

)
= f

(
λQ0(ω)

Qλ(ω)

P0(ω)

Q0(ω)
+

(1− λ)Q1(ω)

Qλ(ω)

P1(ω)

Q1(ω)

)
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≤ λQ0(ω)

Qλ(ω)
f

(
P0(ω)

Q0(ω)

)
+

(1− λ)Q1(ω)

Qλ(ω)
f

(
P1(ω)

Q1(ω)

)
,

where the last inequality follows from the convexity of f(x). By multiplying both sides with

Qλ(ω) and substituting the definition of f(x) = xα, we get

Pα
λ (ω)Q1−α

λ (ω) ≤ λPα
0 (ω)Q1−α

0 (ω) + (1− λ)Pα
1 (ω)Q1−α

1 (ω).

By integrating this equality, we get (D.19). �

D.3.3 Proof of Lemma 5.3.3

First we show that Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
is convex in pi for any i ∈ [n− 1].

Note that due to the independence ofR on different data points, for any h = (h1, . . . , hB) ∈

AnB, we can recursively write the distributions F (P)(h) and F (P ′)(h) (which are defined in

(5.18)) as follows:

F (P)(h) =
B∑
j=1

pijF (P−i)(h̃j), ∀i ∈ [n] (D.20)

F (P ′)(h) =
B∑
j=1

pijF (P ′−i)(h̃j) =
B∑
j=1

p′njF (P ′−n)(h̃j), ∀i ∈ [n− 1] , (D.21)

where h̃j = (h1, . . . , hj−1, hj − 1, hj+1, . . . , hB) for any j ∈ [B]. Here, F (P−i), F (P ′−i) are

distributions over An−1
B .1

Fix any i ∈ [n− 1] and also fix arbitrary p1, . . . ,pi−1,pi+1, . . .

,pn,p
′
n. Take any λ ∈ [0, 1], and consider pλi = λp0

i +(1−λ)p1
i . Let Pλ = (p1, . . . ,p

λ
i , . . . ,pn),

P0 = (p1, . . . ,p
0
i , . . . ,pn), and P1 = (p1, . . . ,p

1
i , . . . ,pn). Similarly, let P ′λ = (p1, . . . ,p

λ
i , . . . ,p

′
n),

P ′0 = (p1, . . . ,p
0
i , . . . ,p

′
n), and P ′1 = (p1, . . . ,p

1
i , . . . ,p

′
n). With these definitions, we have

Pλ = λP0 + (1− λ)P1. Note that (Pλ)−i = (P0)−i = (P1)−i.

1We assume that F (P−i)(h̃j) = 0 and F (P ′−i)(h̃j) = 0 if hj − 1 < 0.
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Then, from the recursive definitions of F (P) and F (P ′) (given in (D.20) and (D.21),

respectively), for any h ∈ AnB, we get

F (Pλ)(h) =
B∑
j=1

pλijF ((Pλ)−i) (h̃j)

= λ

B∑
j=1

p0
ijF ((Pλ)−i) (h̃j) + (1− λ)

B∑
j=1

p1
ijF ((Pλ)−i) (h̃j) (since pλi = λp0

i + (1− λ)p1
i )

= λ

B∑
j=1

p0
ijF ((P0)−i) (h̃j) + (1− λ)

B∑
j=1

p1
ijF ((P1)−i) (h̃j)

(since (Pλ)−i = (P0)−i = (P1)−i)

= λF (P0)(h) + (1− λ)F (P1)(h).

Similarly, we can show that F (P ′λ)(h) = λF (P ′0)(h) + (1− λ)F (P ′1)(h).

Thus we have shown that

F (Pλ) = λF (P0) + (1− λ)F (P1)

F (P ′λ) = λF (P ′0) + (1− λ)F (P ′1) .

From Lemma D.3.1, we have that Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
is jointly convex in F (P) and

F (P ′). As a result, we get

Eh∼F(P ′λ)

[(
F (Pλ) (h)

F (P ′λ) (h)

)α]
≤ λEh∼F(P ′0)

[(
F (P0) (h)

F (P ′0) (h)

)α]
+ (1− λ)Eh∼F(P ′1)

[(
F (P1) (h)

F (P ′1) (h)

)α] (D.22)

Thus, we have shown that Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
is convex in pi for any i ∈ [n− 1]. Now we

are ready to prove Lemma 5.3.3.

The LDP constraints put some restrictions on the set of values that the distribution pi

can take; however, the maximum value that Eh∼F (P ′)

[(
F (P)(h)
F (P ′)(h)

)α]
takes can only increase

when we remove those constraints. We instead maximize it w.r.t. pi over the simplex
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∆B := {(pi1, . . . , piB) : pij ≥ 0 for j ∈ [B] and
∑B

j=1 pij = 1}. This implies

Eh∼F (P ′)

[(
F (P)(h)

F (P ′)(h)

)α]
≤ max
pi∈∆B

Eh∼F (P ′)

[(
F (P)(h)

F (P ′)(h)

)α]
(D.23)

Substituting from (D.20) and (D.21) into (D.23), we get

Eh∼F (P ′)

[(
F (P)(h)

F (P ′)(h)

)α]
≤ (D.24)

max
pi∈∆B

Eh∼F (P ′)

[(∑B
j=1 pijF (P−i)(h̃j)∑B
j=1 pijF (P ′−i)(h̃j)

)α]
(D.25)

Since maximizing a convex function over a polyhedron attains its maximum value at one of

its vertices, and there are B vertices in the simplex ∆B, which are of the form pij∗ = 1 for

some j∗ ∈ [B] and pik = 0 for all k 6= j∗, we have

max
pi∈∆B

Eh∼F (P ′)

[(∑B
j=1 pijF (P−i)(h̃j)∑B
j=1 pijF (P ′−i)(h̃j)

)α]
(a)
= Eh∼F (P ′)

[(
F (P−i)(h̃j∗)
F (P ′−i)(h̃j∗)

)α]
(b)
= Eh∼F (P ′−i)

[(
F (P−i)(h)

F (P ′−i)(h)

)α]
Since the i’th data point deterministically maps to the j∗’th output by the mechanism R,

the expectation term in the RHS of (a) has no dependence on the i’th data point, so we can

safely remove that, which gives (b). This proves Lemma 5.3.3.

D.3.4 Proof of Corollary 5.3.3

Recall from Lemma 5.3.1 and the notation defined in Appendix D.3, that for any C ⊆ [n− 1],

we have PC = P ′|C|,n
⋃
P̃[n−1]\C

⋃
{pn} and P ′C = P ′|C|,n

⋃
P̃[n−1]\C

⋃
{p′n}, where P ′|C|,n =

{p′n, . . . ,p′n} with |P ′|C|,n| = |C| and P̃[n−1]\C = {p̃i : i ∈ [n− 1] \ C}.

Now, repeatedly applying Lemma 5.3.3 over the set of distributions p̃i ∈ P̃[n−1]\C, we get

that

Eh∼F (P ′C)

[(
F (PC)(h)

F (P ′C)(h)

)α]
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≤ E
h∼F

(
P ′|C|,n

⋃
{p′n}

)
F

(
P ′|C|,n

⋃
{pn}

)
(h)

F
(
P ′|C|,n

⋃
{p′n}

)
(h)

α
= E

h∼M(D′(n)
m+1)

[(
M(D(n)

m+1)(h)

M(D′(n)
m+1)(h)

)α]
In the last equality, we used that P ′|C|,n

⋃
{pn} has |C|+ 1 = m+ 1 distributions which are

associated with the (m+1) data points {d′n, . . . , d′n, dn} (m of them are equal to d′n); similarly,

P ′|C|,n
⋃
{p′n} also has |C|+ 1 = m+ 1 distributions which are associated with the (m+ 1) data

points {d′n, . . . , d′n, d′n} (all of them are equal to d′n). This implies that for every h ∈ Am+1
B ,

F
(
P ′|C|,n

⋃
{pn}

)
(h) and F

(
P ′|C|,n

⋃
{p′n}

)
(h) are distributionally equal to M(D(n)

m+1)(h)

and M(D′(n)
m+1)(h), respectively. This proves Corollary 5.3.3.

D.4 Omitted Details from Section 5.3.3

D.4.1 Proof of Lemma 5.3.4

For simplicity of notation, let µ0, µ1 denote the distributions M(Dm),M(D′m), respectively.

As shown in (5.33), for any h ∈ AmB , we have

X(h) = m

(
µ1(h)

µ0(h)
− 1

)
=

(
B∑
j=1

ajhj

)
−m,

where aj =
p′j
pj
∈ [e−ε0 , eε0 ] for all j ∈ [B].

Now we show the three properties.

1. The mean of the random variable X is given by

Eh∼µ0 [X(h)] = mEh∼µ0

[
µ1(h)

µ0(h)
− 1

]
= m

∑
h∈AmB

µ0(h)

(
µ1(h)

µ0(h)
− 1

)
= m

∑
h∈AmB

(µ1(h)− µ0(h)) = 0

222



2. The variance of the random variable X is given by

Eh∼µ0

[
X (h)2] = Eh∼µ0

( B∑
j=1

ajhj −m

)2


= m2Eh∼µ0

[
B∑
j=1

B∑
l=1

ajal
hjhl
m2
− 2

B∑
j=1

aj
hj
m

+ 1

]

= m2Eh∼µ0

[
B∑
j=1

a2
j

h2
j

m2
+

B∑
j=1

∑
l 6=j

ajal
hjhl
m2
− 2

B∑
j=1

aj
hj
m

+ 1

]

= m2
[ B∑
j=1

(p′j)
2

p2
j

Eh∼µ0 [h2
j ]

m2
+

B∑
j=1

∑
l 6=j

p′jp
′
l

pjpl

Eh∼µ0 [hjhl]

m2

− 2
B∑
j=1

p′j
pj

Eh∼µ0 [hj]

m
+ 1
]

(b)
= m2

[ B∑
j=1

(p′j)
2

p2
j

(mpj(1− pj) +m2p2
j)

m2

+
B∑
j=1

∑
l 6=j

p′jp
′
l

pjpl

(−mpjpl +m2pjpl)

m2
− 2

B∑
j=1

p′j
pj

pjm

m
+ 1
]

= m2
[ B∑
j=1

(
(p′j)

2 (1− pj)
pjm

+ (p′j)
2

)

+
B∑
j=1

∑
l 6=j

(
−
p′jp
′
l

m
+ p′jp

′
l

)
− 1
]

= m2
[ 1

m

(
B∑
j=1

(p′j)
2(1− pj)
pj

−
B∑
j=1

∑
l 6=j

p′jp
′
l

)

+
B∑
j=1

(p′j)
2 +

B∑
j=1

∑
l 6=j

p′jp
′
l − 1

]
= m2

[ 1

m

(
B∑
j=1

(p′j)
2

pj
−

B∑
j=1

(p′j)
2 −

B∑
j=1

∑
l 6=j

p′jp
′
l

)

+
B∑
j=1

(p′j)
2 +

B∑
j=1

∑
l 6=j

p′jp
′
l − 1

]
(c)
= m

(
B∑
j=1

(p′j)
2

pj
− 1

)
.
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Here, step (b) uses properties of multinomial distribution: Eh∼µ0 [hj ] = mpj , Eh∼µ0 [h2
j ] =

mpj(1 − pj) + m2p2
j , and Eh∼µ0 [hjhl] = −mpjpl + m2pjpl for j 6= l. Step (c) follows

because
∑B

j=1(p
′
j)

2 +
∑B

j=1

∑
l 6=j p

′
jp
′
l =

(∑B
j=1 p

′
j

)2

= 1, as p′ = (p′1, . . . , p
′
B) is a

probability distribution.

3. Let Yi denote the random variable associated with the output of the local randomizer

at the i’th client. So, Pr [Yi = j] = pj for j ∈ [B]. Recall that hj denote the number of

clients that map to the j’th element from [B]. This implies that for any j ∈ [B], we have

hj =
∑m

i=1 1{Yi=j}. For any i ∈ [m], define a random variable Xi =
(∑B

j=1 aj1{Yi=j}

)
−1,

where aj =
p′j
pj

. Observe that X1, . . . , Xm are zero mean i.i.d. random variables, because

for any i ∈ [m], we have E [Xi] =
(∑B

j=1 ajpj

)
− 1 = 0. With these definitions, we can

equivalently represent X(h) =
(∑B

j=1 ajhj

)
−m as X(h) =

∑m
i=1Xi, which is the sum

of m zero mean i.i.d. r.v.s. Furthermore, since aj ∈ [e−ε0 , eε0 ] for any j ∈ [B], we have

Xi ∈ [e−ε0 − 1, eε0 − 1]. Since any bounded r.v. Z ∈ [a, b] is a sub-Gaussian r.v. with

parameter (b−a)2

4
(see [RH15, Lemma 1.8])), we have that Xi is a sub-Gaussian r.v. with

parameter ν2 =
(eε0−e−ε0)

2

4
, i.e.,

E
[
esXi

]
≤ e

s2ν2

2 , ∀s ∈ R.

It follows that X (h) =
∑m

i=1Xi is also a sub-Gaussian random variable with parameter

mν2. The remaining steps are similar to bound the moments of a sub-Gaussian random

variable. We write them here for completeness. From Chernoff bound we get

Pr [X ≥ t] ≤ min
s≥0

E
[
esX
]

est

≤ min
s≥0

e
s2mν2

2

est

(b)

≤ e−
t2

2mν2

where (b) follows by setting s = t
mν2 . Similarly, we can bound the term Pr [−X ≥ t].

Thus, we get

Pr [|X| ≥ t] ≤ 2e−
t2

2mν2
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Hence, the i’th moment of the random variable X can be bounded by

E
[
X i
]
≤ E

[
|X|i

]
= i

∫ ∞
0

ti−1 Pr [|X| ≥ t] dt

≤ 2i

∫ ∞
0

ti−1e−
t2

2mν2 dt

(b)
= i

(
2mν2

)i/2 ∫ ∞
0

ui/2−1e−udu

= i
(
2mν2

)i/2
Γ (i/2) ,

where step (b) follows by setting u = t2

2mν2 (change of variables). In the last step,

Γ (z) =
∫∞

0
xz−1e−xdx denotes the Gamma function. Thus, we conclude that for every

i ≥ 3, we have E [|X|i] ≤ iΓ (i/2) (2mν2)
i/2

, where ν2 =
(eε0−e−ε0)

2

4
.

This completes the proof of Lemma 5.3.4.

D.4.2 Proof of Lemma 5.3.5

For any (p,p′) ∈ Tε0 , define f(p,p′) =
∑B

j=1

(p′j)
2

pj
. Since the function g (x, y) = x2

y
is convex

in (x, y) for y > 0, it implies that the objective function f(p,p′) is also convex in (p,p′). It

is easy to verify that Tε0 is a polytope.

Since we maximize a convex function f(p,p′) over a polytope Tε0 , the optimal solution

is one of the vertices of the polytope. Note that any vertex (p,p′) of the polytope in B

dimensions satisfies all the B LDP constraints (i.e., e−ε0 ≤ pj
p′j
≤ eε0 , j = 1, . . . , B) with

equality. Without loss of generality, assume that the optimal solution (p̃, p̃′) is a vertex such

that
p̃′j
p̃j

= eε0 for j = 1, . . . , l and
p̃′j
p̃j

= e−ε0 for j = l + 1, . . . , B, for some l ∈ [B]. Thus, we

have

1 =
B∑
j=1

p̃′j = eε0
l∑

j=1

p̃j + e−ε0
B∑

j=l+1

p̃j

= eε0
l∑

j=1

p̃j + e−ε0
(

1−
l∑

j=1

p̃j

)
= e−ε0 + (eε0 − e−ε0)

l∑
j=1

p̃j
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Rearranging the above gives
∑l

j=1 p̃j = 1
eε0+1

. This implies
∑l

j=1 p̃
′
j = eε0

eε0+1
, which in turn

implies
∑B

j=l+1 p̃
′
j = 1

eε0+1
. Now the result follows from the following set of equalities:

f (p̃, p̃′) =
B∑
j=1

(p̃′j)
2

p̃j
=

l∑
j=1

p̃′j
p̃j
p̃′j +

B∑
j=l+1

p̃′j
p̃j
p̃′j

= eε0
l∑

j=1

p̃′j + e−ε0
B∑

j=l+1

p̃′j

=
e2ε0

eε0 + 1
+

1

eε0 (eε0 + 1)
=

(eε0)3 + 1

eε0(eε0 + 1)
=

(eε0 − 1)2

eε0
+ 1,

where the last equality uses the identity x3 + 1 = (x+ 1)(x2 − x+ 1). This completes the

proof of Lemma 5.3.5.
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APPENDIX E

Omitted Details From Chapter 6

E.1 Regret and Privacy Analysis of The Central DP Model (Proof

of Theorem 6.3.1)

In this section, we prove the regret bound and the privacy guarantees of the central DP

algorithm. We present the privacy analysis in Section E.1.1 and the regret analysis in

Section E.1.2.

E.1.1 Privacy Analysis

We first show that Algorithm 6.3.1 is ε-DP. Let r̄i = [r̄ia1 , ..., r̄ia|Ci| ], r̂i = [r̂ia1 , ..., r̂ia|Ci| ] =

r̄i + zi, zi = [zia1 , ..., zia|Ci| ], where a1, ..., a|Ci| is an enumeration of the elements of Ci. We

construct the concatenated reward vector denoted by r̄ = [r̄1, ..., r̄log(T )−1], and let r̂ =

[r̂1, ..., r̂log(T )−1] = r̄ + z, z = [z1, ..., zlog(T )−1].

Now consider two neighboring sequence of rewards R,R′, that only differ in rk, r
′
k, with

corresponding concatenated reward vectors r̄, r̄′. We notice that each reward in R appears

once in r̄, and similarly for R′, r̄′. Thus, we get:

‖r̄ − r̄′‖1 ≤ max
rk,r

′
k

|rk − r′k| ≤ 1, (E.1)

where the last inequality follows from Assumption 2 with bounded rewards |rk| ≤ 1. Then,
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from [DMN06, Theorem 3.6], r̂ is ε-DP. We notice that the output of Algorithm 6.3.1 depends

on r1, ..., rT only through r̂. Hence, by post processing, Algorithm 6.3.1 is ε-DP.

E.1.2 Regret Analysis

We next prove the regret bound of Algorithm 6.3.1 for stochastic linear bandits.

Our analysis follows the known confidence bound technique in [ACF95] by designing

confidence intervals (in step 5) that take into consideration the privacy effect.

Let K = (3T )d be the size of the 1
T

-net set N1/T from Lemma 6.3.1. We first bound the

following regret:

R̃T = T max
a∈N1/T

〈a, θ∗〉 −
T∑
t=1

〈at, θ∗〉, (E.2)

where a1, a2, . . . , aT ∈ N1/T . We then bound the regret RT by showing that we only loose a

constant term when we choose actions from N1/T instead of the bigger set A.

We start with a set of actions A0 = N1/T with cardinality |A0| = K. Furthermore, we

have |Ai| ≤ |Ai−1|, and hence, we get |Ai| ≤ K for all i ∈ [log(T )].

For given batch i ∈ [log(T )], let Ci be the core set of Ai that has at most Bd actions. At

the ith batch, each action a ∈ Ci is picked nia times, where nia = dπi(a)qie. Let G be the

good event
{∣∣∣〈a, θ̂i − θ∗〉∣∣∣ < γi ∀i ∈ [log T ] ∀a ∈ Ai

}
. Lemma E.1.1 shows that the event G

holds with probability at least 1− 1
T

. In the remaining part of the proof, we condition on the

event G.

We first show that the best action a∗ = arg maxa∈N1/T
〈a, θ∗〉 will not be eliminated at any

batch i ∈ [log T ]; this is because the elimination criterion will not hold for the optimal action

a∗:

〈a, θ̂i〉 − 〈a∗, θ̂i〉 < (〈a, θ∗〉+ γi)− (〈a∗, θ∗〉 − γi) ≤ 2γi ∀a ∈ Ai ∀i ∈ [log T ]. (E.3)

For each sub-optimal action a ∈ A0 with ∆a = 〈a∗ − a, θ∗〉, let i be the smallest integer for
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which γi <
∆a

4
. From the triangle inequality, we get that

〈a∗, θ̂i〉 − 〈a, θ̂i〉 ≥ (〈a∗, θ̂∗〉 − γi)− (〈a, θ̂i〉+ γi) = ∆a − 2γi > 2γi. (E.4)

This implies that a will be eliminated before the beginning of batch i+ 1. Hence, each action

a ∈ Ai+1 at batch i + 1 has a gap at most 4γi. Let ni =
∑

a∈Ci nia ≤ Bd + qi denote the

total number of rounds at the i-th batch. Note that the number of batches is upper bounded

by log T since
∑log T

i=1 qi ≥ T . When qi < Bd, the regret can be bounded by 2Bd, and when

qi ≥ Bd, we bound ni ≤ 2qi. Thus, there is universal constants C ′, C such that the total

regret in (E.2) can be bounded as

R̃T ≤ 2Bd log(T ) +

log T∑
i=1

4niγi−1 (E.5)

≤ 2Bd log(T ) +

log T∑
i=1

8qi

(√
4d

qi−1
log (4KT 2) +

2Bd2 + 2d log (4KT 2)

εqi−1

)

≤ C ′

(
d log(T ) + d

√
log T

log T∑
i=1

q(i−1)/2 +
d2 log2 T

ε

)
q

(a)

≤ C ′q

(
d log(T ) + d

√
log Tqlog T/2 +

d2 log2 T

ε

)
(b)

≤ C ′q

(
d log(T ) + d

√
T log T +

d2 log2 T

ε

)
(c)

≤ C

(
d
√
T log T +

d2 log2 T

ε

)
, (E.6)

where step (a) follows from the sum of a geometric series and q > 1, step (b) uses q =

(2T )1/ log T , and step (c) follows from the facts q ≤ e2, log T = O(
√
T ).

Hence, with probability at least 1− 1
T

the regret in (E.2) is bounded as

R̃T ≤ C

(
d
√
T log T +

d2 log2 T

ε

)
. (E.7)

Next, we bound the exact regret RT . Observe that the first step in our Algorithm is

to use the finite 1
T

-net set N1/T of actions. Thus, for any round t ∈ [T ] and any action

a ∈ A, there exists an action a′ ∈ N1/T such that ‖a − a′‖ ≤ 1
T

. As a result, we get
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〈a, θ∗〉 − 〈a′, θ∗〉 ≤ ‖a− a′‖‖θ∗‖ ≤ 1
T

, where ‖θ∗‖ ≤ 1. Hence, there is a universal constant C

such that we can bound the regret RT as

RT = T max
a∈A
〈a, θ∗〉 −

T∑
t=1

〈at, θ∗〉

=

[
T max

a∈A
〈a, θ∗〉 − T max

a′∈N1/T

〈a′, θ∗〉
]

+

[
T max
a′∈N1/T

〈a′, θ∗〉 −
T∑
t=1

〈at, θ∗〉

]
≤ T

1

T
+ R̃T

= 1 + R̃T .

(E.8)

Hence, with probability at least 1− 1
T

the regret RT is bounded as

RT ≤ C

(
d
√
T log T +

d2 log2 T

ε

)
. (E.9)

This concludes the proof of Theorem 6.3.1.

Lemma E.1.1. Let θ̂i be the least square estimate of θ∗ at the end of the ith batch of

Algorithm 6.3.1. Then, we have that

Pr
[∣∣∣〈a, θ̂i − θ∗〉∣∣∣ > γi ∀i ∈ [log T ]∀a ∈ Ai

]
≤ 1

T
, (E.10)

where γi =
√

4d
qi

log (4KT 2) +
2Bd2+2d log(4KT 2)

εqi
.

Proof. Let θ̂i = V −1
i

∑
a∈Ci r̂iaa be the private estimate of θ∗ and θi = V −1

i

∑
a∈Ci riaa be the

non-private estimate of θ∗ as {ria} are the non-private rewards, where Vi =
∑

a∈Ci niaaa
>.

From [Chapter 21, Eqn 21.1], for each a ∈ Ai, we get:

Pr

[
〈a, θi − θ∗〉 ≥

√
2‖a‖2

V −1
i

log

(
1

β

)]
≤ β, (E.11)

where β ∈ (0, 1) and ‖a‖2
V −1
i

= a>V −1
i a. Let Vi(πi) =

∑
a∈Ci πi(a)aa> and hence we have

Vi =
∑
a∈Ci

niaaa
> ≥ qi

∑
a∈Ci

πi(a)aa> = qiVi(πi). (E.12)
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Observe that for any symmetric random variable x if Pr[x ≥ t] ≤ β, then Pr[|x| ≥ t] =

Pr[x ≥ t] + Pr[−x ≥ t] ≤ 2β. Thus, from lemma 6.3.2, we have ‖a‖2
V −1
i

= 1
qi
a>Vi(πi)

−1a ≤ 2d
qi

for each a ∈ Ai. By setting β = 1
4KT 2 and ‖a‖2

V −1
i

≤ 2d
qi

for each a ∈ Ai in (E.11), we get

that:

Pr

[∣∣〈a, θ̄i − θ∗〉∣∣ ≥
√

4d

qi
log (4KT 2)

]
≤ 1

2KT 2
, (E.13)

for each a ∈ Ai. Now, we compute the effect of the privacy in estimating θ∗ by bounding

difference 〈a, θ̄i − θ̂i〉. Observe that r̂ia = r̄ia + zia, where zia ∼ Lap(1
ε
), and hence, we can

write θ̂i − θ̄i = V −1
i

∑
a∈Ci ziaa. Thus, for any α ∈ Ai, we have that:

〈α, θ̂i − θ̄i〉 =
∑
a∈Ci

α>V −1
i azia, (E.14)

where α>V −1
i a ≤ maxb∈Ai ‖b‖2

V −1
i

≤ 2d
qi

for each a ∈ Ci that holds from the fact that Vi is

positive semi-definite. From Lemma E.1.2 presented at the end of the section, by setting

b = ε, n = Bd, c = 2d
qi

√
n, and t = 2Bd

2

εqi
+

2d log(4KT 2)
εqi

, we get that:

Pr

[∣∣∣〈a, θ̄i − θ̂i〉∣∣∣ ≥ 2
Bd2

εqi
+

2d log (4KT 2)

εqi

]
≤ 1

2KT 2
, (E.15)

Then, by the union bound and triangle inequality we have that

Pr
[∣∣∣〈a, θ̂i − θ∗〉∣∣∣ > γi ∀i ∈ [log T ]∀a ∈ Ai

]
≤ 1

T
, (E.16)

where γi =
√

4d
qi

log (4KT 2)+
2Bd2+2d log(4KT 2)

εqi
. This concludes the proof of Lemma E.1.1. �

Lemma E.1.2. Let xi = lizi for i ∈ [n], where zi ∼ Lap(1/b) and li, c are constants such

that c2 ≥
∑n

i=1 |li|2. Let x̄ =
∑n

i=1 xi. We have that

Pr[x̄ ≥ t] ≤

 exp
(
− t2b2

2c2

)
if t ≤ c2

blmax

exp
(

c2

2l2max
− b

lmax
t
)

if t > c2

blmax

, (E.17)

where lmax = maxi li.

The proof is provided in App. E.2.
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E.2 Proof of Lemma E.1.2

Lemma. Let xi = lizi for i ∈ [n], where zi ∼ Lap(1/b) and li, c are constants such that

c2 ≥
∑n

i=1 |li|2. Let x̄ =
∑n

i=1 xi. We have that

Pr[x̄ ≥ t] ≤

 exp
(
− t2b2

2c2

)
if t ≤ c2

blmax

exp
(

c2

2l2max
− b

lmax
t
)

if t > c2

blmax

, (E.18)

where lmax = maxi li.

Proof. The proof follows from the concentration results of the Laplace distribution (e.g., see ).

We have that

Pr [x̄ ≥ t] = Pr
[
exp (λx̄) ≥ eλt

]
∀ λ ≥ 0

(a)

≤ E [exp (λx̄)]

eλt

(b)
=

∏n
i=1 E

[
eλxi
]

eλt

(c)

≤
∏n

i=1 e
λ2 l2i

2b2

eλt
∀ 0 ≤ λ ≤ b

lmax

=
eλ

2 c2

2b2

eλt
∀ 0 ≤ λ ≤ b

lmax

(E.19)

where lmax = maxi li, step (a) follows from Markov’s inequality and step (b) follows from

the fact that z1, . . . , zn are independent Laplace random variables. Step (c) follows from the

fact that zi is sub-exponential random variable with proxy
l2i

2b2
. By choosing λ = tb2

c2
when

t < c2

blmax
and λ = b

lmax
when t > c2

blmax
, we get that

Pr[x̄ ≥ t] ≤

 exp
(
− t2b2

2c2

)
if t ≤ c2

blmax

exp
(

c2

2l2max
− b

lmax
t
)

if t > c2

blmax

(E.20)

This completes the proof of Lemma E.1.2. �
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E.3 Regret and Privacy Analysis of The local DP Model (Proof of

Theorem 6.4.1)

E.3.1 Privacy Analysis

The privacy proof is straightforward. For any client, since the reward is bounded by |r| ≤ 1,

the output r̂ = r + Lap(1/ε0) is ε0-LDP from [DMN06, Theorem 3.6].

E.3.2 Regret Analysis

We next prove the regret bound of Algorithm 6.3.2 for stochastic linear bandits with LDP.

Our proof is similar to the proofs of the central DP Algorithm presented in Section E.1.2.

Let R̃T be the regret defined in (E.2).

Let G be the good event
{∣∣∣〈a, θ̂i − θ∗〉∣∣∣ < γi ∀i ∈ [log T ]∀a ∈ Ai

}
. Lemma E.3.1 shows that

the event G holds with probability at least 1 − 1
T

. In the remaining part of the proof we

condition on the event G. When qi < max{Bd, 2 log(4KT 2)}, the regret can be bounded

by max{Bd, 2 log(4KT 2)}, and when qi ≥ max{Bd, 2 log(4KT 2)}, we bound ni ≤ 2qi, and

hence,

γi ≤

√
4d

qi
log (4KT 2) +

2d

ε0

√
log(4KT 2)

qi
≤ (1 +

1

ε0

)2d

√
log(4KT 2)

qi
.

By following similar steps as in the central DP, we can show that there is universal constants

C ′, C such that the total regret in (E.2) can be bounded as

R̃T ≤ (Bd+ 2 log(4KT 2)) log(T ) +

log T∑
i=1

4niγi−1

≤ (Bd+ 2 log(4KT 2)) log(T ) + (1 +
1

ε0

)2d

log T∑
i=1

8qi
√

1

qi−1
log (4KT 2)
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≤ C ′(1 +
1

ε0

)

(
d
√
d log2(T ) + d

√
d log T

log T∑
i=1

q(i−1)/2

)
q

(a)

≤ C ′(1 +
1

ε0

)q
(
d
√
d log2(T ) + d

√
d log Tqlog T/2

)
(b)

≤ C ′(1 +
1

ε0

)q
(
d
√
d log2(T ) + d

√
dT log T

)
(c)

≤ C(1 +
1

ε0

)
(
d
√
dT log T

)
, (E.21)

where step (a) follows from the sum of a geometric series and q > 1, step (b) uses q =

(2T )1/ log T , and step (c) follows from the facts q ≤ e2, log2 T = O(
√
T ).

Hence, following similar steps as in the proof of the central DP algorithm, with probability

at least 1− 1
T

the regret is bounded as

RT ≤ R̃T + 1 ≤ C(1 +
1

ε0

)
(
d
√
dT log T

)
. (E.22)

Lemma E.3.1. Let θ̂i be the least square estimate of θ∗ at the end of the ith batch of

Algorithm 6.3.2. Then, we have that

Pr
[∣∣∣〈a, θ̂i − θ∗〉∣∣∣ > γi ∀i ∈ [log T ]∀a ∈ Ai

]
≤ 1

T
, (E.23)

where γi =
√

4d
qi

log (4KT 2) + 1
qiε0

√
2dni log(4KT 2).

Proof. Let θ̂i = V −1
i

∑
a∈Ci r̂iaa be the private estimate of θ∗ and θi = V −1

i

∑
a∈Ci riaa be the

non-private estimate of θ∗ as {ria} are the non-private rewards, where Vi =
∑

a∈Ci niaaa
>

and r̂ia =
∑nia

j=1 r̂
(j)
ia . Similar to the central DP in Section 6.3, we have that

Pr

[∣∣〈a, θ̄i − θ∗〉∣∣ ≥
√

4d

qi
log (4KT 2)

]
≤ 1

2KT 2
, (E.24)

for each a ∈ Ai. Now, we compute the effect of the LDP in estimating θ∗ by bounding

difference 〈a, θ̄i − θ̂i〉. Observe that r̂ia =
∑nia

j=1 r̂
(j)
ia = r̄ia + zia, where r̄ia =

∑nia
j=1 r

(j)
ia and

zia =
∑nia

j=1 z
(j)
ia , where z

(j)
ia ∼ Lap( 1

ε0
). Hence, we can write θ̂i − θ̄i = V −1

i

∑
a∈Ci ziaa. Thus,

for any α ∈ Ai, we have that:

〈α, θ̂i − θ̄i〉 =
∑
a∈Ci

nia∑
j=1

α>V −1
i az

(j)
ia , (E.25)

234



where α>V −1
i a ≤ maxb∈Ai ‖b‖2

V −1
i

≤ 2d
qi

for each a ∈ Ci that holds from the fact that Vi is

positive semi-definite. We also have that∑
a∈Ci

nia∑
j=1

(α>V −1
i a)2 =

∑
a∈Ci

nia∑
j=1

α>V −1
i aa>V −1

i α = α>V −1
i α ≤ 2d

qi
(E.26)

From Lemma E.1.2 presented in Section 6.3, by setting b = ε0, n = ni, c
2 = 2d

qi
, and

t = 1
qiε0

√
2dni log(4KT 2), we get that:

Pr

[∣∣∣〈a, θ̄i − θ̂i〉∣∣∣ ≥ 1

qiε0

√
2dni log(4KT 2)

]
≤ 1

2KT 2
, (E.27)

Then, by the union bound and triangle inequality we have that

Pr
[∣∣∣〈a, θ̂i − θ∗〉∣∣∣ > γi ∀i ∈ [log T ]∀a ∈ Ai

]
≤ 1

T
, (E.28)

where γi =
√

4d
qi

log (4KT 2)+ 1
qiε0

√
2dni log(4KT 2). This concludes the proof of Lemma E.3.1.

�

E.4 Regret and Privacy Analysis of The Shuffled Model (Proof of

Theorem 6.5.1)

E.4.1 Privacy Analysis

We note that the data of each user j can be represented as ∪a∈Ci{(a, r
(j)
a )}. We observe that

our scheme is equivalent to performing the following steps

• Each user j ∈ [ni] sends its data Dj = ∪a∈Ci{(a, r
(j)
a )} to the shuffler.

• The shuffler randomly permutes the sets D1, ...,Dni to get Dπ(1), ...,Dπ(ni).

• The shuffler reveals ni action reward pairs (a1, r̂ia1), ..., (ani , r̂iani ), where (aj, r̂iaj) ∈

Dπ(j), and r̂iaj is the LDP version of riaj (r̂iaj = riaj + Lap( 1

ε
(i)
0

)).
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Hence, we shuffle the data, then feed it to an LDP mechanism with LDP parameter ε
(i)
0 (as

proved in Theorem 6.4.1). As a result, it follows from [FMT22] that the output of the shuffler

is (εi, δ)-DP where

εi = log

1 +
eε

(i)
0 − 1

eε
(i)
0 + 1

8

√
eε

(i)
0 log(4/δ)
√
ni

+
8eε

(i)
0

ni

 . (E.29)

By the choice of ε
(i)
0 as an inverse of the function fni,δ, we have that εi = ε for all i ∈ [log T ].

We observe that for any neighboring datasets D,D′, there is only one user data that is dif-

ferent between D,D′. That user appears in exactly one batch. It follows that Algorithm 6.4.1

is (ε, δ)-DP.

E.4.2 Regret Analysis

We next prove the regret bound of Algorithm 6.4.1 for stochastic linear bandits in the shuffled

model. Our proof is similar to the proofs of the LDP Algorithm presented in Section E.3.2.

Let R̃T be the regret defined in (E.2).

Let G be the good event
{∣∣∣〈a, θ̂i − θ∗〉∣∣∣ < γi ∀i ∈ [log T ]∀a ∈ Ai

}
. Lemma E.3.1 shows that

the event G holds with probability at least 1 − 1
T

. In the remaining part of the proof we

condition on the event G. When qi < Bd, the regret can be bounded by Bd. By following

similar steps as in the central DP, we can show that there is universal constants C ′ such that

the total regret in (E.2) can be bounded as

R̃T ≤ Bd log(T ) +

log T∑
i=1

4niγi−1

(a)

≤ Bd log(T ) +

log T∑
i=1

8qi

√
4d

qi−1
log (4KT 2) + C ′

2d

ε

log T∑
i=1

8q
√

log (4KT 2) log(1/δ)

≤ C

(
d
√
T log T +

(d log T )3/2
√

log(1/δ)

ε

)
, (E.30)

where step (a) follows from the fact that from the privacy analysis, when ε
(i)
0 ≤ 1, we get

that ε = O(ε
(i)
0

√
log(1/δ)
ni

).
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Hence, following similar steps as in the proof of the central DP algorithm, with probability

at least 1− 1
T

the regret is bounded as

RT ≤ R̃T + 1 ≤ C

(
d
√
T log T +

(d log T )3/2
√

log(1/δ)

ε

)
. (E.31)
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APPENDIX F

Omitted Details From Chapter 7

F.1 Lower Bound on The Minimax Risk Estimation Using Fisher

Information

In this section, we introduce an alternative proof of Theorem 7.3.1. Our proof is inspired by

the approach in [BHO19] that uses Fisher information to bound the minimax risk estimation

under communication constraints. The main idea of our proof is to formulate a non-convex

optimization problem to bound the Fisher information matrix under privacy and randomness

constraints. Let P ⊂ ∆k be a subset of simplex ∆k defined by

P =

{
p ∈ Rk :

k∑
j=1

pj = 1,
1

k
≤ pj ≤

2

k
, pj+k/2 =

2

k
− pj, ∀j ∈ [k/2]

}
.

For every p ∈ P , the number of free variables is k/2, where each parameter pj+k/2 is associated

with the variable pj, ∀ j ∈ [k/2]. For a given distribution p ∈ ∆k, we define the marginal

distribution on the output Y as

M (y|p) =
k∑
j=1

Q (Y = y|X = j) pj. (F.1)

Let Sp (y) denote the k/2-vector score function of Y given by

Sp (y) =
[
Sp1 (y) , . . . , Spk/2 (y)

]
=

[
∂ log (M (y|p))

∂p1

, . . . ,
∂ log (M (y|p))

∂pk/2

]
.

(F.2)
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Then, the Fisher information matrix for estimating p ∈ P from Y is given by

IY (p) = E
[
Sp (y)Sp (y)T

]
, (F.3)

where the expectation is taken over the randomness in the output Y . Now, consider the

following inequalities

r
`22
ε,R,n,k = inf

{Qi∈Q(ε,R)}
inf
p̂

sup
p∈∆k

E
[
`2

2 (p̂ (Yn) ,p)
]

≥ inf
{Qi∈Q(ε,R)}

inf
p̂

sup
p∈P

E
[
`2

2 (p̂ (Yn) ,p)
]

(a)

≥ (k/2)2

sup
{Qi∈Q(ε,R)}

sup
p∈P

Tr (IY n (p)) + k
2
π2

(F.4)

where IY n (p) denotes the Fisher information matrix for estimating p from Y n = [Y1, . . . , Yn],

and Tr (IY n (p)) denotes the trace of the Fisher information matrix IY n (p). Step (a) fol-

lows from the van Trees inequality [BHO19][Eqn.4-8]. Our goal is to bound the term

sup{Qi∈Q(ε,R)} supp∈P Tr (IY n (p)). For a given distribution p ∈ P, the random variables

Y1, . . . , Yn are independent. As a result, the trace of the Fisher information matrix for

estimating p from Y1, . . . , Yn is bounded by

sup
{Qi∈Q(ε,R)}

sup
p∈P

Tr (IY n (p))

(a)
= sup
{Qi∈Q(ε,R)}

sup
p∈P

n∑
i=1

Tr (IYi (p))

≤ sup
{Qi∈Q(ε,R)}

sup
p∈P

n sup
i∈[n]

Tr (IYi (p))

(b)

≤

 2nk e
ε(eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2nk

p2
R(eε−1)2

eε
if R < H2

(
eε

eε+1

)

(F.5)

where step (a) follows from the chain rule of the Fisher information [Zam98][Lemma 1]. Step

(b) follows from Lemma F.1.1 presented below. Substituting from (F.5) into (F.4), we get

r
`22
ε,R,n,k ≥


k(eε+1)2

16neε(eε−1)2 if R ≥ H2

(
eε

eε+1

)
keε

16np2
R(eε−1)2 if R < H2

(
eε

eε+1

) (F.6)
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for n ≥ 4 eε

p2
R(eε−1)2 .

Lemma F.1.1. For any (ε, R)-LDP mechanism, the trace of the Fisher information matrix

IY (p) is bounded by

sup
Q∈Q(ε,R)

sup
p∈P

Tr (IY (p)) ≤

 2k e
ε(eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2k

p2
R(eε−1)2

eε
if R < H2

(
eε

eε+1

) (F.7)

where H2

(
eε

eε+1

)
is the Shannon entropy, and pR < 0.5 denotes the inverse Shannon entropy

pR = h−1 (R).

Proof. For a given distribution p ∈ P , we have

Spj (y) =
∂ log (M (y|p))

∂pj

=
Q (y|j)−Q (y|j + k/2)

M (y|p)
,

(F.8)

for j ∈ [k/2]. By taking the expectation with respect to Y , we get

E
[
Spj (Y )2] =

∑
y∈Y

(Q (y|j)−Q (y|j + k/2))2∑k
j′=1Q (y|j′) pj′

(F.9)

Thus, the trace of the Fisher information matrix is given by

Tr (IY (p)) =

k/2∑
j=1

E
[
Spj (Y )2]

=

k/2∑
j=1

∑
y∈Y

(Q (y|j)−Q (y|j + k/2))2∑k
j′=1Q (y|j′) pj′

≤ k

2
max
j∈[k/2]

∑
y∈Y

(Q (y|j)−Q (y|j + k/2))2∑k
j′=1Q (y|j′) pj′

(a)

≤ keε max
j∈[k/2]

∑
y∈Y

(Q (y|j)−Q (y|j + k/2))2

Q (y|j) +Q (y|j + k/2)

(b)

≤

 2k e
ε(eε−1)2

(eε+1)2 if R ≥ H2

(
eε

eε+1

)
2k

p2
R(eε−1)2

eε
if R < H2

(
eε

eε+1

)

(F.10)
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where step (a) follows from the fact thatQ (y|j′) ≥ e−εQ (y|j) andQ (y|j′) ≥ e−εQ (y|j + k/2) , ∀j′ ∈

[k]. Thus, we have

k∑
j′=1

Q (y|j′) pj′ ≥ e−ε
Q (y|j) +Qi (y|j + k/2)

2

k∑
j′=1

pj′

= e−ε
Q (y|j) +Q (y|j + k/2)

2

(F.11)

Step (b) follows from Lemma 7.3.2 presented at the end of Section 7.3.1. This completes the

proof of Lemma F.1.1. �

F.1.1 Proof of Lemma 7.3.1

We start our proof by Assoud’s method.

Lemma F.1.2. (Assouad’s Method [DJW18]) For the family of distributions{
pν : ν ∈ V = {−1, 1}k/2

}
, and a loss function ` (p̂,p) =

∑k
j=1 φ (p̂j − pj) defined in Sec-

tion 7.3.1, we have

r`ε,R,n,k (Qn) = inf
p̂

sup
p∈∆k

E [` (p̂ (Y n) ,p)]

≥ φ (δ)

k/2∑
j=1

(
1− ||Mn

+j −Mn
−j||TV

) (F.12)

For completeness, we present the proof of Lemma F.1.2 in Appendix F.3. Let {ej}k/2j=1 be
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the standard basis of Rk/2. Consider now the following inequalities:

k/2∑
j=1

(
1−

∥∥Mn
+j −Mn

−j
∥∥

TV

) (a)

≥
k/2∑
j=1

1− 1

|V|
∑
ν:νj=1

||

(
n∏
i=1

Mν
i

)
−

(
n∏
i=1

M
ν−2ej
i

)
||TV


≥

k/2∑
j=1

(
1− sup

ν:νj=1
||

(
n∏
i=1

Mν
i

)
−

(
n∏
i=1

M
ν−2ej
i

)
||TV

)

(b)

≥
k/2∑
j=1

1− sup
ν:νj=1

√√√√1

2
DKL

((
n∏
i=1

Mν
i

)
||

(
n∏
i=1

M
ν−2ej
i

))
(c)

≥
k/2∑
j=1

1−

√√√√1

2
sup
ν:νj=1

n∑
i=1

DKL

(
Mν

i ||M
ν−2ej
i

)
=
k

2

1− 2

k

k/2∑
j=1

√√√√1

2
sup
ν:νj=1

n∑
i=1

DKL

(
Mν

i ||M
ν−2ej
i

)
(d)

≥ k

2

1−

√√√√1

k

k/2∑
j=1

sup
ν:νj=1

n∑
i=1

DKL

(
Mν

i ||M
ν−2ej
i

)
≥ k

2

(
1−

√
n

2
sup
j∈[k/2]

sup
i∈[n]

sup
ν:νj=1

DKL

(
Mν

i ||M
ν−2ej
i

))
(F.13)

where step (a) follows from the triangular inequality. Step (b) follows from Pinsker’s inequality

that states that for any two distributions P and Q, we get ‖P−Q‖TV ≤
√

1
2
D (P||Q) [Tsy08,

Lemma 2.5]. Step (c) follows from the properties of KL-divergence. Step (d) follows from the

concavity of function
√
x. Substituting from (F.13) into (F.12), we get

r`ε,R,n,k = inf
{Qi∈Q(ε,R)}

r`ε,R,n,k (Qn)

≥ inf
{Qi∈Q(ε,R)}

φ (δ)
k

2

(
1−

√
n

2
sup
j∈[k/2]

sup
i∈[n]

sup
ν:νj=1

DKL

(
Mν

i ||M
ν−2ej
i

))

= φ (δ)
k

2

1−
√
n

2
sup
j∈[k/2]

sup
i∈[n]

sup
ν:νj=1

sup
Qi∈Q(ε,R)

DKL

(
Mν

i ||M
ν−2ej
i

)
(F.14)

Hence the proof is completed.
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F.2 Proof of Lemma 7.3.3

Lemma F.2.1. The optimal solution of the non-convex optimization problem P1 is obtained

when the the output size is m = 2.

Proof. Note that if m = 1, then the optimal value of P1 will be zero, and hence, we have

m ≥ 2. In the following, we prove that the optimal solution is achievable at m = 2. Let

f
(
qmj ,q

m
j+k/2

)
=

m∑
l=1

(
ql,j − ql,j+k/2

)2

ql,j + ql,j+k/2

denote the objective function of the problem P1, where qmj = [q1,j, . . . , qm,j] and qmj+k/2 =[
q1,j+k/2, . . . , qm,j+k/2

]
. Suppose that the optimal solution is obtained at m > 2. In

other words, there exist two distributions qmj and qmj+k/2 with size m > 2 that maxi-

mize the objective function f
(
qmj ,q

m
j+k/2

)
and satisfy the constraints (7.21). We prove

that if qmj and qmj+k/2 are optimal, then there exist two distributions q̃m−1
j and q̃m−1

j+k/2

with support size m − 1 that satisfy the problem constraints and achieve at least the

same objective value as qmj and qmj+k/2. Let q̃m−1
j = [q1,j, . . . , qm−2,j, qm−1,j + qm,j] and

q̃m−1
j+k/2 =

[
q1,j+k/2, . . . , qm−2,j+k/2, qm−1,j + qm,j+k/2

]
. We can easily verify that H

(
q̃m−1
j

)
≤ R

as H
(
qmj
)
≤ R and H

(
q̃m−1
j+k/2

)
≤ R as H

(
qmj+k/2

)
≤ R. Furthermore, we have

e−ε = e−ε
qm−1,j+k/2 + qm,j+k/2
qm−1,j+k/2 + qm,j+k/2

≤ qm−1,j + qm,j
qm−1,j+k/2 + qm,j+k/2

≤ eε
qm−1,j+k/2 + qm,j+k/2
qm−1,j+k/2 + qm,j+k/2

= eε

(F.15)

Hence, the distributions q̃m−1
j and q̃m−1

j+k/2 satisfy the constraints of the problem P1. Consider

243



the following inequalities

f
(
q̃mj , q̃

m−1
j+k/2

)
− f

(
qmj ,q

m
j+k/2

)
=

(
qm−1,j + qm,j − qm−1,j+k/2 + qm,j+k/2

)2

qm−1,j + qm,j + qm−1,j+k/2 + qm,j+k/2
−

[(
qm−1,j − qm−1,j+k/2

)2

qm−1,j + qm−1,j+k/2

+

(
qm,j − qm,j+k/2

)2

qm,j + qm,j+k/2

]

(a)

≥
(
qm−1,j + qm,j − qm−1,j+k/2 + qm,j+k/2

)2

qm−1,j + qm,j + qm−1,j+k/2 + qm,j+k/2
− 2

(
qm−1,j+qm,j

2
− qm−1,j+k/2+qm,j+k/2

2

)2

qm−1,j+qm,j
2

+
qm−1,j+k/2+qm,j+k/2

2

= 0

(F.16)

where step (a) follows from the convexity of the function (x− y)2 / (x+ y) for x, y ∈ [0 : 1].

Hence the distributions q̃mj , q̃
m−1
j+k/2 have at least the same objective value as qmj and qmj+k/2. �

F.3 Proof of Lemma F.1.2

Consider an arbitrary estimator p̂, then we have

sup
p∈∆k

E [` (p̂ (Y n) ,p)] ≥ sup
ν∈V

E [` (p̂ (Y n) ,pν)]

≥ 1

|V|
∑
ν∈V

E [` (p̂ (Y n) ,pν)]

≥ φ (δ)
1

|V|
∑
ν∈V

E

 k/2∑
j=1

1 (ψj (Y n) 6= νj)


≥ φ (δ)

k/2∑
j=1

 1

|V|
∑

ν∈V:νj=+1

E [1 (ψj (Y n) 6= +1)] +
1

|V|
∑

ν∈V:νj=−1

E [1 (ψj (Y n) 6= −1)]


≥ φ (δ)

k/2∑
j=1

inf
ψ

 1

|V|
∑

ν∈V:νj=+1

Pr [ψj (Y n) 6= +1] +
1

|V|
∑

ν∈V:νj=−1

Pr [ψj (Y n) 6= −1]


= φ (δ)

k/2∑
j=1

1

2
inf
ψ

(
Mn

+j [ψj (Yn) 6= +1] + Mn
+j [ψj (Yn) 6= −1]

)
≥ φ (δ)

k/2∑
j=1

(
1− ||Mn

+j −Mn
−j||TV

)
(F.17)
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where ψ =
(
ψ1, . . . , ψk/2

)
is a vector of test functions.

F.4 Proof of Lemma 7.4.1

We claim that the conditional distribution on Y j
i |Xi is given by

Pr
[
Y j
i = 1|Xi

]
=

 eεj

eεj+1
if Xi ∈ Bi

1
eεj+1

if Xi /∈ Bi

(F.18)

which is εj-LDP. We prove our claim by induction. For the basis step, we can easily verify

that Y 1
i defined in (7.37) follows the conditional distribution in (F.18). For the induction

step, suppose that our claim is true for j. Observe that Y j+1
i = Y j

i ⊕ U
j+1
i . Hence, we have

Pr
[
Y j+1
i = 1|Xi ∈ Bi

]
= Pr

[
Y j+1
i = 1|Xi ∈ Bi, Y

j
i = 1

]
Pr
[
Y j
i = 1|Xi ∈ Bi

]
+ Pr

[
Y j+1
i = 1|Xi ∈ Bi, Y

j
i = 0

]
Pr
[
Y j
i = 0|Xi ∈ Bi

]
= Pr

[
U j+1
i = 0

]
Pr
[
Y j
i = 1|Xi ∈ Bi

]
+ Pr

[
U j+1
i = 1

]
Pr
[
Y j
i = 0|Xi ∈ Bi

]
= (1− qj+1) (1− zj) + qj+1zj

= 1− zj+1 =
eεj+1

eεj+1 + 1

(F.19)

Similarly, we can prove that Pr
[
Y j+1
i = 1|Xi /∈ Bi

]
= zj+1 = 1

eεj+1+1
. Hence, the proof is

completed.

F.5 Proof of Lemma 7.5.1

In order to recover X from Y and U , it is required that each input database x ∈ [k] is mapped

to y with a different value of key U for every output y ∈ [k]. Let y = x⊕ u for all x ∈ [k]

and u ∈ [k], where x ⊕ y = [(x+ u− 2) mod k] + 1. Note that the set [k] along with the
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operation ⊕ forms a group1. The private mechanism Q is defined as follows

Q (y|x) = qu, (F.20)

for y = x⊕ u. Note that an input x is mapped to each output y with a different value of the

key U = (k − x+ 2)⊕ y. Moreover, for a given output y, we can easily see that each input

x ∈ [k] is mapped to y with a different value of the key U . Hence, it is possible to recover X

from Y and U . Furthermore, for any two inputs x, x′ ∈ X , we have

sup
y∈[k]

Q (y|x)

Q (y|x′)
≤ qmax

qmin

(a)

≤ eε, (F.21)

where qmax = max
j∈[k]

qj and qmin = min
j∈[k]

qj. Step (a) follows from the assumption that qmax

qmin
≤ eε.

Thus, the mechanism Q is an ε-LDP-Rec mechanism.

F.5.1 Proof of Lemma 7.5.2

Before we present the proof of Lemma 7.5.2, we provide the following lemma whose proof is

in Appendix F.9.

Lemma F.5.1. Let U ∈ U = {u1, . . . , um} be a random variable with size m having a

distribution q = [q1, . . . , qm], where q1 ≥ · · · ≥ qm. Then, the random variable U ′ ∈ U ′ =

{u1, . . . , um−1} with distribution q′ =
[
q′1, . . . , q

′
m−1

]
has an entropy

H (U) ≥ H (U ′) , (F.22)

where q′j = qj/ (1− qm) for j ∈ {1, . . . ,m− 1}.

This lemma shows that if we trim the last symbol that has the lowest probability from a

distribution, and normalize the remaining probabilities, then we get a distribution that has

lower entropy.

1It is exactly the group defined on integers {0, . . . , k − 1} with modulo-k operation, but we subtract −2
before taking modk and adding one to fit modulo-k operation with the set [k] = {1, . . . , k}
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The main idea of the proof of Lemma 7.5.2 is that we do some reduction steps to get a

new random key U ′ with a support size equal to the input size from the random key U . In

addition, this new random key U ′ has lower entropy than the entropy of the original random

key U . First, we give an example to illustrate the idea, and then we proceed to the general

proof.

Example F.5.1. Suppose that a random key U ∈ {1, 2, . . . , 6} has a distribution q =

[q1, . . . , q6], where q1 ≥ · · · ≥ q6. The random key U is used to design an ε-LDP-Rec

mechanism Q with input X ∈ {1, 2, 3}. Suppose that there exists an output y such that

X = x is mapped to y when U ∈ Uyx, where Uy1 = {6}, Uy2 = {2, 3}, and Uy3 = {1}. Hence,

Q (y|X = 1) = q6, Q (y|X = 2) = q2 + q3, and Q (y|X = 3) = q1. Let Uy =
⋃
x∈[3] Uyx =

{1, 2, 3, 6}, and Uy = U \ Uy = {4, 5}. Let q̃ = [q6, q2 + q3, q1, q4, q5], where the first three

elements are Q (y|X = i) for i ∈ [3] and the remaining elements represent qu for u ∈ Uy.

Then, we sort the distribution q̃ in a descending order to get q̃↓ = [q2 + q3, q1, q4, q5, q6], where

q̃↓i denotes the ith largest component in q̃. Consider a random key Ũ ∈ {1, 2, 3, 4, 5} having a

distribution q̃↓. Observe that H
(
Ũ
)
≤ H (U), since Ũ can be represented as a function of U .

Furthermore, we have q2+q3
q1
≤ q2+q3

q4
≤ q2+q3

q6
≤ eε, since Q is an ε-LDP mechanism, and q4 ≥ q6.

Consider a random key U ′ having a distribution q′ =
[

q2+q3
1−(q5+q6)

, q1
1−(q5+q6)

, q4
1−(q5+q6)

]
obtained

by trimming sequentially the last two symbols of the random key Ũ . By applying Lemma F.5.1

twice on the distribution q̃↓, we get that H (U) ≥ H
(
Ũ
)
≥ H (U ′). Furthermore, we have

q′max/q
′
min ≤ eε. Thus, from Lemma 7.5.1, we can construct an ε-LDP-Rec mechanism with

input X ∈ [3] and an output Y ∈ [3] using the random key U ′, where H (U) ≥ H (U ′).

We now present the general proof. Let U ∈ U = {u1, . . . , um} be a random key with

size m > k having a distribution q = [q1, . . . , qm]. Without loss of generality, assume that

q1 ≥ · · · ≥ qm. Let Q be an ε-LDP-Rec mechanism designed using a random key U with

input X ∈ [k] and an output Y ∈ Y. Let Uyx ⊂ U be a subset of keys such that the input

X = x is mapped to Y = y when U ∈ Uyx for all x ∈ [k] and y ∈ Y . As a result the private

mechanism Q can be represented by Q (y|X = x) =
∑

u∈Uyx qu.
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Observe that for given y, we have Uyx
⋂
Uyx′ = φ, otherwise we cannot recover X from Y

and U , since there would be x and x′ mapped to y with the same key value. Let Uy =
⋃
x∈[k] Uyx,

and hence, Uy ⊆ U . Furthermore, for given y, we have Q (y|X = x) /Q (y|X = x′) ≤ eε, since

Q is an ε-LDP mechanism.

Consider an output y ∈ Y such that u1 ∈ Uy. Let Uy = U \ Uy be an indexed set

with size l = |Uy|, where Uy (j) denotes the jth element in Uy. Consider a distribution

q̃ = [q̃1, . . . , q̃l+k] designed as follows q̃j = Q (y|X = j) for all j ∈ [k] and q̃j = qUy(j−k)

for all i ∈ {k + 1, . . . , k + l}. We can sort the distribution q̃ in a descending order to get

q̃↓ =
[
q̃↓1, . . . , q̃

↓
l+k

]
, where q̃↓i denotes the ith largest component in q̃. Let Ũ be a random key

drawn from a distribution q̃↓. We have the following two properties on the distribution q̃↓:

1. H (U) ≥ H
(
Ũ
)

.

2.
q̃↓1
q̃↓k
≤ eε.

The first property is straightforward, since the random key Ũ can be represented as a function

of U . Observe that u1 ∈ Uy, and q1 ≥ qu for all u ∈ Uy. Hence, q̃↓1 is one of the first k

elements in q̃. Thus, we get
q̃↓1

q̃↓k

(a)

≤ q̃max

q̃min

≤ eε

where q̃max = maxj∈[k] q̃j = q̃↓1 and q̃min = minj∈[k] q̃j. If qu for u ∈ Uy is one of the first k

elements in q̃↓, i.e, qu > q̃min, then inequality (a) is still valid.

Now, let U ′ ∈ [k] be a random key drawn from a distribution q′ = [q′1, . . . , q
′
k], where

q′j =
q̃↓j∑k
j=1 q̃

↓
j

. Observe that q′ is obtained by applying Lemma F.5.1 l times on q̃↓ to

trim sequentially the last l symbols of Ũ that have the lowest l probabilities. Thus, we

get that H (U) ≥ H
(
Ũ
)
≥ H (U ′). Furthermore, from the second property, we have

q′max/q
′
min =

q̃↓1
q̃↓k
≤ eε. Thus, from Lemma 7.5.1, we can construct an ε-LDP-Rec mechanism

with input X ∈ [k] and an output Y ∈ [k] using the random key U ′, and H (U) ≥ H (U ′).

This completes the proof.
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F.6 Omitted Details from Section 7.5.1

First we prove the first necessary condition of Theorem 7.5.1. As mentioned in Section 7.5.1,

we prove this in two parts: First we show |Y| ≥ |X | using the recoverability constraint and

then |U| ≥ |Y| using the privacy constraint.

|Y| ≥ |X |: Observe that the output Y of the private mechanism Q can be represented

as a function of the input X and the random key U , i.e., Y = f (X,U). Fix the value of

the random key U = u for an arbitrary u ∈ U . Then, for each value of x ∈ X , the function

f (X,U) should generate a different output Y in order to be able to recover X from Y and

U . In other words, each input x ∈ X should be mapped to a different output y ∈ Y for the

same value of the random key u ∈ U . Otherwise, there exists two inputs mapped with the

same key value to the same output. As a result, it is required that the output size is at least

the same as the input size: |Y| ≥ |X |.

|U| ≥ |Y|: Let Y (x) ⊆ Y be a subset of outputs such that input X = x is mapped with

non-zero probability to every y ∈ Y (x). We claim that Y (x) = Y for all x ∈ X for any ε-

LDP-Rec mechanism. In other words, we claim that each input x ∈ X should be mapped with

non-zero probability to every output y ∈ Y . We prove our claim by contradiction. Suppose

that there exist x, x′ ∈ X such that Y (x) 6= Y (x′). Thus, there exists y ∈ Y (x) \ Y (x′) or

y ∈ Y (x′) \ Y (x). Hence, we have Q(y|x)
Q(y|x′) → ∞ or Q(y|x′)

Q(y|x)
→ ∞ which violates the privacy

constraints. Therefore, Y (x) = Y (x′) = Y for all x, x′ ∈ X . However, for a given x ∈ X , we

have |Y (x) | ≤ |U|, since each input x ∈ X can be mapped with non-zero probability to at

most |U| outputs. Thus, we get that the random key size is at least the same as the output

size: |U| ≥ |Y| ≥ |X |.

Hence, the first condition is necessary to design an ε-LDP-Rec mechanism. This completes

the proof of the first necessary condition of Theorem 7.5.1.

Now, assuming q1 ≤ q2 ≤ . . . ≤ qk, we show qk/q1 ≤ eε. This will be required to prove

the second necessary condition to prove Theorem 7.5.1.
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qk/q1 ≤ eε: We prove our claim by contradiction. Suppose that qk/q1 > eε. Consider a

certain output y ∈ Y such that there exists x ∈ X mapped to y when U = uk with probability

qk. Note that each sample x ∈ X should be mapped using a different value of the key to

each output y ∈ Y in order to be able to recover the sample X from Y and U . In our case,

there are k − 1 remaining inputs to be mapped to y with different values of keys; however,

none of these k − 1 inputs can be mapped to y with U = u1, since qk/q1 > eε, which violates

the privacy constraint. Hence, we have k − 1 inputs mapped to y using at most k − 2 values

of keys. Thus, there would exist at least two inputs mapped to output y with the same

key value. Therefore, we cannot recover X from y given U . As a result, we should have

qk/q1 ≤ eε.

F.7 Proof of Lemma 7.6.1

To simplify the proof, we assume that [k] = {0, . . . , k − 1}. Let X T = [k]T denote the input

dataset, and Y T =
(
Y (1), . . . , Y (T )

)
be the output of the private mechanism Q that takes a

value from a set YT = [k]T . In order to recover XT from Y T and U , it is required that each

input database x ∈ X T is mapped to each output y ∈ [k]T with a different value of key U .

Let the random key U be drawn from an ε-DP distribution q. Hence, there exists a bijective

function f : X T → [k]T such that
qf(x)

qf(x′)
≤ eε. (F.23)

for every neighboring databases x,x′ ∈ [k]T . Let Q be a private mechanism defined as follows

Q (y|x) = qf(x⊕y). (F.24)

where x⊕ y =
(
x(1) ⊕ y(1), . . . , x(T ) ⊕ y(T )

)
2, and x(j) ⊕ y(j) =

[(
x(j) + y(j)

)
mod k

]
which is

an addition between x(j) and y(j) in a finite group of order k. For a fixed y ∈ YT , we can

easily see that f (x⊕ y) 6= f (x̂⊕ y) for any x 6= x̂ and x, x̂ ∈ [k]T , since x⊕ y 6= x̂⊕ y and

2We apply elementwise operation ⊕ on the vectors x and y.
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f is a bijection. Hence, for every output y ∈ [k]T , each input database x ∈ X T is mapped to

an output y with a different value of key U . Thus, we can recover XT from Y T and U . For a

fixed x ∈ [k]T , we can see that f (x⊕ y) 6= f (x⊕ ŷ) for any y 6= ŷ and y, ŷ ∈ [k]T , since

x⊕ y 6= x⊕ ŷ and f is a bijection. Hence Q (y|x) is a valid conditional distribution for each

x ∈ [k]T . It remains to prove that the private mechanism Q given in (F.24) is ε-DP. In the

following, we prove that for every output y, and every neighboring databases x, x̃ ∈ [k]T , we

have
Q (y|x)

Q (y|x̃)
≤ eε (F.25)

Therefore, the private mechanism Q is ε-DP. The proof is by induction. For the basis step,

observe that each input database x is mapped to y0 = [0, . . . , 0] with probability qf(x) for

x ∈ [k]T . Thus, for every neighboring databases x, x̃ ∈ [k]T , we get

Q (y0|x)

Q (y0|x̃)
=
qf(x)

qf(x̃)

(a)

≤ eε (F.26)

where step (a) follows from the assumption that the distribution q satisfies ε-DP. For the

induction step, suppose there exists an output y ∈ [k]T that satisfies (F.25). Let ỹ be a

neighboring output to y, i.e., ỹ and y are different in only one element. Without loss of

generality, let y(i) 6= ỹ(i) while y(j) = ỹ(j) for j 6= i. Then, for every neighboring databases

x, x̃ ∈ [k]T , we get
Q (ỹ|x)

Q (ỹ|x̃)
=
qf(x⊕ỹ)

qf(x̃⊕ỹ)

=
qf(x⊕y)

qf(x̃⊕y)

(a)

≤ eε

(F.27)

where x =
(
x(1), . . . , x(T )

)
such that x(j) = x(j) for j 6= i and x(i) =

[(
k + x(i) + y(i) − ỹ(i)

)
mod k

]
.

Similarly, x̃ =
(
x̃(1), . . . , x̃(T )

)
such that x̃(j) = x̃(j) for j 6= i and x̃(i) =

[(
k + x̃(i) + y(i) − ỹ(i)

)
mod k

]
.

Since x and x̃ are neighboring databases, then x and x̃ are also neighboring databases. Step

(a) follows from the assumption that y satisfy (F.25). From the basic step along with the

induction step, we conclude that the mechanism Q given in (F.24) is ε-DP-Rec mechanism.

Hence, the proof is completed.
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F.7.1 Proof of the first necessary condition (|U| ≥ |YT | ≥ |X T |) of Theorem 7.6.1

We prove it in two parts: first we show |YT | ≥ |X T |, and then we show |U| ≥ |YT |.

|YT | ≥ |X T |: Note that the output is a deterministic function of the input and the random

key, i.e., Y T = f(XT , U) for some deterministic function f . This implies that, for any fixed

u ∈ U , the function f (x, u) should generate a different output y ∈ YT for different values of

x ∈ X T , which implies that |YT | ≥ |X T |.

|U| ≥ |YT |: Let Y (x) ⊆ YT be a subset of outputs such that the input XT = x is

mapped with non-zero probability to every y ∈ Y (x). We claim that Y (x) = YT for all

x ∈ X T for any ε-DP-Rec mechanism. In other words, we claim that each input x ∈ X T

should be mapped with non-zero probability to every output y ∈ YT . We prove our claim by

contradiction. Suppose that there exist two neighboring x,x′ ∈ X T such that Y (x) 6= Y (x′).

Thus, there exists y ∈ Y (x) \ Y (x′) or y ∈ Y (x′) \ Y (x). Hence, we have Q(y|x)
Q(y|x′) → ∞ or

Q(y|x′)
Q(y|x)

→∞ which violates the privacy constraints. Therefore, Y (x) = Y (x′) = YT for all

x,x′ ∈ X T . Given x ∈ X T , we have that |Y (x) | ≤ |U|, where |U| is the maximum number of

possible keys. Thus, the random key size is at least the same as the output size: |U| ≥ |YT |.

Hence, the first condition of Theorem 7.6.1 is necessary to design an ε-DP-Rec mechanism.

F.8 Proof of Lemma 7.6.2

Let gi = i (k)(T−1) for i ∈ {0, . . . , k}. Observe that databases x1, . . . ,xg1 have x(1) = 1 and

the databases xg1+1, . . . ,xg2 have x(1) = 2. Generally, the databases xgi−1+1, . . . ,xgi have

x(1) = i. Let Ci =
∑gi

a=gi−1+1 P
y
a for i ∈ [k]. Consider the following inequalities that we will

prove next

H (Py) = −
kT∑
a=1

P y
a log (P y

a )
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=
k∑
i=1

Ci

− gi∑
a=gi−1+1

P y
a

Ci
log

(
P y
a

Ci

)− k∑
i=1

Ci log (Ci) (F.28)

≥
k∑
i=1

CiH (Umin,T−1)−
k∑
i=1

Ci log (Ci)) (F.29)

≥
k∑
i=1

CiH (Umin,T−1) +H (Umin,1) (F.30)

= H (Umin,T−1) +H (Umin,1) (F.31)

We begin with inequality (F.29). Observe that the kT−1 databases xgi−1+1, . . . ,xgi have

the same value of the first sample x(1) = i, and hence these kT−1 databases cover all possible

databases in X T−1. Consider a random variable UT−1 drawn according to the distribution

PT−1 =

[
Py
gi−1+1

Ci
, . . . ,

Py
gi

Ci

]
. This is a valid distribution with support size kT−1. Furthermore,

since the distribution Py is ε-DP, then the distribution PT−1 is also ε-DP. From Lemma 7.6.1,

the random key UT−1 can be used to construct an ε-DP-Rec mechanism with the possibility

to recover the databases XT−1 =
(
x(2), . . . , x(T )

)
from the output of the mechanism and the

random key UT−1. Hence, we get

H
(
UT−1

)
≥ H (Umin,T−1) . (F.32)

This proves inequality (F.29). Now, observe that databases xi,xg1+i, . . . ,xgk−1+i are neigh-

boring databases for each i ∈
[
kT−1

]
, since they are only different in the value of the first

sample x(1). Since the mechanism Q is ε-DP-Rec, we have

e−ε ≤
P y
ga+i

P y
gj+i

≤ eε ∀a, j ∈ {0, . . . , k − 1} (F.33)

Thus, we get

e−ε ≤
∑ga

i=ga−1+1 P
y
i

eε
∑ga

i=ga−1+1 P
y
i

≤ Ca
Cj

=

∑ga
i=ga−1+1 P

y
i∑gj

i=gj−1+1 P
y
i

≤
eε
∑gj

i=gj−1+1 P
y
i∑gj

i=gj−1+1 P
y
i

≤ eε ∀a, j ∈ [k]

(F.34)

Consider a random key U1 that has a distribution C = [C1, . . . , Ck], where Ca =
∑ga

i=ga−1+1 P
y
i .

From Lemma 7.5.1, the random key U1 can be used to construct an ε-LDP-Rec mechanism
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with the possibility to recover the sample X1 from the output of the mechanism and the

random key U1. Hence from Theorem 7.5.1, we have

H
(
U1
)
≥ H (Umin,1) . (F.35)

This proves inequality (F.30), and completes the proof of Lemma 7.6.2.

F.9 Proof of Lemma F.5.1

For the random variable U ′, the distribution q′ =
[
q′1, . . . , q

′
m−1

]
is given by

q′j =
qj

1− qm
. (F.36)

Note that the distribution q′ is a valid distribution on U ′ since
∑m−1

j=1 q′j =
∑m−1

j=1
qj

1−qm = 1.

Now, we can bound the difference between H (U)−H (U ′) as follows

H (U)−H (U ′) =
m−1∑
j=1

q′j log
(
q′j
)
−

m∑
j=1

qj log (qj)

=
m−1∑
j=1

qj
1− qm

log

(
qj

1− qm

)
−

m∑
j=1

qj log (qj)

=
m−1∑
j=1

qj
1− qm

[
log

(
qj

1− qm

)
− log

(
q

(1−qm)
j

)]
− qm log (qm)

=
m−1∑
j=1

qj
1− qm

[
− log

(
1− qm
qqmj

)]
− qm log (qm)

> − log

(
m−1∑
j=1

q
(1−qm)
j

)
− qm log (qm) (F.37)

≥ − (1− qm) log (1− qm)− qm log (m− 1)− qm log (qm) (F.38)

≥ min

(
0, log

(
m

m− 1

))
(F.39)

≥ 0 (F.40)
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where (F.37) follows from the fact that − log (.) is a strictly convex function and qj/1−qm > 0

for j ∈ [m− 1]. The inequality (F.38) follows from solving the convex problem

max
{qj}m−1

j=1

m−1∑
j=1

q
(1−qm)
j

s.t.

m−1∑
j=1

qj = 1− qm

qj ≥ qm ∀j ∈ [m− 1]

(F.41)

Note that xa is a concave function on x ∈ R+ for 0 ≤ a ≤ 1. Therefore, the objective

function in (F.41) is concave in {qj}. By solving the optimization problem in (F.41), we

get q∗j = 1−qm
m−1

≥ qm for all j ∈ [m− 1] and
∑m−1

j=1 q
(1−qm)
j ≤ (1−qm)(1−qm)

(m−1)(−qm) . Since log (x) is a

monotonic function, we get − log
(∑m−1

j=1 q
(1−qm)
j

)
≥ − (1− qm) log (1− qm)− qm log (m− 1).

The inequality (F.39) follows from the fact that − (1− qm) log (1− qm)− qm log (m− 1)−

qm log (qm) = H (qm)− qm log (m− 1) is a concave function of qm. The minimum of a concave

function is one of the vertices, where qm ∈ {0, 1
m
}. Hence, the proof is completed.
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