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ABSTRACT OF THE DISSERTATION 

 
Development of Synthetic Materials for RNA Delivery 

 
By 

 
Dong-Chu Yang 

 
Doctor of Philosophy in Chemistry 

 
 University of California, Irvine, 2019 

 
Professor Zhibin Guan, Chair 

 
 
 

 RNA-based therapeutics has garnered tremendous attention due to their potential 

to revolutionize vaccination, protein replacement therapies, and the treatment of genetic 

diseases. However, safe and efficient RNA delivery is still a critical challenge for 

widespread therapeutic applications. In this dissertation, we developed a variety of 

biodegradable molecular carriers for the delivery of various RNA, including siRNA, mRNA, 

and CRISPR-Cas9 machinery.  

 Chapter 1 provides a concise introduction to gene therapy and RNA therapy, along 

with critical challenges and strategies for developing RNA delivery vehicles. It also 

summarizes different categories of current RNA delivery materials and previous work 

completed in our lab.  

 Chapter 2 describes the design and development of a multivalent peptide-

functionalized bioreducible polymer system for universal, safe, and efficient delivery of 

various RNAs of different lengths and structures. This work provides a novel promising 

vector system for universal RNA delivery, which may speed up the clinical application of 

RNA therapy and allow for the co-delivery of multiple RNAs.  
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 Chapter 3 describes a series of peptide-functionalized bioreducible amphiphilic 

vectors for safe and efficient siRNA delivery. It also discusses the details of vector design 

and the correlations between chemical structures and biological functions.   

 Chapter 4 explores a family of poly(thymine) peptide nucleic acid-functionalized 

bioreducible polymers for mRNA delivery. This work provides a novel strategy for mRNA 

delivery by introducing hydrogen-binding into RNA-vector complexation.  

 In Chapter 5, I discussed another research project in my Ph.D. study, which is 

developing hybrid organic-inorganic quantum dot superlattices for next-generation 

photovoltaics. This work provides a hybrid quantum dot-molecular wire approach to 

construct highly-ordered nanocrystal films, which brings in significantly enhanced charge 

transport.  
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Chapter 1: Introduction to Synthetic Materials for RNA Delivery 

1.1 Introduction to Gene Therapy and RNA Therapy  

 Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two kinds of crucial 

biomacromolecules which are essential for all known forms of life. As presented in the 

central dogma of molecular biology1 (Figure 1.1A), DNA is used as a template to direct the 

synthesis of RNA (transcription) and RNA can serve as a template for protein production 

(translation). Gene, the DNA sequence which encodes an RNA sequence, carries important 

instruction for the biosynthesis in an organism. Genetic disorders happen when one gene 

or multiple genes are changed away from the normal DNA sequence. Over the past decades, 

researchers have been developing a variety of gene therapy technologies to treat inherited 

monogenic/multifactorial disorders.2-5 Gene therapy inherently corrects or deletes the 

faulty genes, which offers a permanent method to treat genetic disorders. Moreover, gene 

technology has allowed for the development of other therapeutic method, such as cancer 

immunotherapy, protein replacement therapy, and vaccination. For instance, genetic 

engineering of T cells with synthetic genes encoding a chimeric antigen receptor can 

generate durable responses in patients.6  

DNA and plasmid-based therapy were the first few examples for gene therapy 

developed in 1980s.4-5 DNA-based gene therapy has been demonstrated powerful as it can 

provide sustained production of endogenous proteins and alleviate the need for lifelong 

drug administration.7 But its wide application is highly limited by the intrinsic features. 

First, all DNA-based gene therapy requires the subcellular delivery of exogenous DNAs into 

nucleus, which is challenging due to the large, negatively-charged, and double-stranded 

structure. In addition, most DNA-based gene therapy technology holds the risk of 
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integrating exogenous DNAs into genome, a number of systems were found to produce 

insertional genotoxicity, serious immunogenicity, and severe off-targeting effects.8-9 

Figure 1.1 (A) The central dogma of molecular biology. Adapted and reprinted from ref.1 
(B, C) Chemical structures of DNA subunits and RNA subunits.  

 

In contrast, RNA-based therapeutics has exhibited its unique advantages to 

manipulate gene expression. To start with, most therapeutic RNAs do not require the 

entrance to nucleus. They only need to be delivered to the cytoplasm to initiate protein 

production or gene-silencing. This bypasses the challenge of crossing the barrier of nuclear 

membrane and prevents the risk of genotoxicity. Moreover, compared to therapeutic DNAs, 

RNAs only induced transient effect, such as protein production and gene silencing. This 

eliminates the risk of generating permant genomic problems. 

 Over the past decades, RNA-based therapeutics has garnered tremendous attention 

because of its potential to revolutionize protein replacement therapies, immunotherapy, 
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and the treatment of genetic disorders.10-13 Particularly, a desired protein can be produced 

through the introduction of specific messenger RNA (mRNA) whereas a gene of interest can 

be temporarily silenced via RNA interference (RNAi).12,14 Additionally, the target gene can 

also be permanently edited through the delivery of Clustered Regularly Interspaced Short 

Palindromic Repeat (CRISPR)-Cas9 machinery involving RNA components.15  

 

1.2 Therapeutics Based on RNA interference  

 RNAi was initially discovered by Fire and Mello in the form of a single microRNA 

(miRNA) in the C. elegans in 1998.16 Since then, tremendous efforts and investment have 

been put in developing RNAi technology.17 Generally, small (20-30 nucleotides) noncoding 

RNAs and their associated proteins are involved in RNAi pathways. Specifically, each small 

RNA associates with an Argonaute family protein to form a sequence-specific, gene-

silencing ribonucleoprotein, which further recognizes and degrades the target mRNA.18 

Here I describe two major RNAi pathways: small interfering RNA (siRNA) pathway and 

miRNA pathway.  

 siRNA is a group of 20-25 base pairs long, rigid, and double-stranded RNA (Figure 

1.2A).19 They are typically generated from the trimming of endogenous or exogenous RNA 

by Dicer protein (Figure 1.2B). Dicer proteins are large endoribonucleases which can cut 

the RNAi precursors to dsRNA fragments of the appropriate size for loading onto an 

Argonaute protein.20 One strand of the duplex, called guide strand, is used to bind to 

Argonaute protein and direct gene-silencing, while the other strand of the duplex, called 

passenger strand, is normally discarded in the following steps. The RNA-induced silencing 

complex (RISC) recognizes siRNA, loads the guide strand and releases the passenger 
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strand.21 After being activated, the RISC binds and cleaves the single-stranded mRNA which 

possesses sequences complementary to the Argonaute-bound guide strand.22 

miRNA pathway is similar to siRNA pathway, but with a few discrepancies. Unlike 

siRNA, miRNAs are derived from the genome in various organisms.23 Additionally, these 

endogenous precursors often contain mismatches and extended terminal loops, called 

imperfect hairpin RNA structures (Figure 1.2C).24 Dicer proteins can cut the ~70 nt 

hairpin mRNA precursors to afford ~22 nt miRNA. After miRNA is loaded onto the 

Argonaute protein, the activated miRNA-protein complex (miRNP) binds to the target 

mRNA which has partial sequences complementary to the loaded miRNA and inhibits the 

mRNA translation and protein synthesis.25 Both siRNA and miRNA can knockdown gene 

expression from cleaving target mRNA. The major difference between them is that siRNA 

reduces the expression of one specific target mRNA wheras miRNA inhibit the expression 

of multiple mRNAs as miRNA is partially complementary to its target mRNA.26  

Due to the high specificity and efficacy of RNAi pathway, RNAi-based gene-silencing 

technology holds tremendous potential to transiently suppress the expression of target 

gene, without permanently changing the genome. Actually, siRNA technology has been 

developed into a powerful tool for gene knockdown in vitro and in vivo.27 More importantly, 

in 2018, one siRNA-based therapeutic agent developed by Alnylam Pharmaceuticals, called 

Patisiran, was approved by U.S. Food and Drug Administration (FDA) to treat hereditary 

ATTR amyloidosis with polyneuropathy.28 This is the first-ever FDA-approved therapeutic 

based on RNAi and it is recognized as a great milestone of RNA therapy. It is anticipated 

that more RNAi therapeutics will be approved and successfully utilized in clinic in the near 

future.  
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Figure 1.2 The RNA interference pathway. Adapted and reprinted from Ref.17 (A) Short 
interfering RNAs (siRNAs). (B) The siRNA pathway. (C) The micro RNA (miRNA) pathway. 
 

1.3 mRNA Therapeutics 

 In the central dogma of molecular biology (Figure 1.1A), mRNA is located as the 

middleman between DNA and protein. This important ‘interchange’ position determines 

the crucial molecular function of mRNA: passage the genetic information from DNA and 

direct the protein synthesis. In recent years, mRNA therapeutics has been developed as a 

promising technology for protein replacement therapies, immunotherapy, and the 

treatment of genetic diseases.29-30  

 Protein is one of essential bio-macromolecules in all forms of life, performing the 

function of catalyzing biochemical reactions, transporting molecules within cells or among 
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organs, and forming receptors and channels in membranes. A number of diseases appear 

because of insufficient or aberrant protein expression, such as haemophilia B and muscular 

dystrophy.31-32 Protein therapeutics play a significant role in every field of medicine 

nowadays and protein drugs have already become one important class of medicines 

serving patients in clinic.33 However, effective protein delivery has limited the wide 

application and development of protein therapies. Due to the large size, intricate molecular 

structure, and varying surface charge, therapeutic proteins cannot be easily transferred 

and delivered to the target location. The design and development of delivery vehicles for 

proteins has proven difficult. Additionally, large scale synthesis and purification of 

therapeutic proteins have been demonstrated to be challenging and expensive.  

 In contrast, mRNA therapy becomes an excellent alternative to protein therapy as 

mRNA directly guides the biological synthesis of functional proteins. Compared to protein 

therapy, mRNA therapy is much more efficient. A single mRNA molecule can be translated 

into multiple copies of protein in a short period of time.34 Therefore only a small amount of 

mRNA molecules needs to be delivered in mRNA therapy, whereas protein therapy 

requires the effective delivery of large quantity of proteins. The mechanism of mRNA 

therapeutics in protein replacement is shown in Figure 1.3A. After the entry of cell cytosol, 

in vitro-transcribed (IVT) mRNA binds to the ribosomal complex in the host cell. The 

ribosomal complex screens the mRNA sequence until the start codon is recognized. Then 

the peptide synthesis starts and different amino acids are continuously added to the 

peptide chain. Once the stop codon is detected, elongation of the peptide chain stops and 

the original mRNA and synthesized peptide are released. Finally, the peptide chain is 

further modified and transformed to the new protein.35  
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 Since desired protein can be produced in cells via the introduction of target mRNA, a 

variety of protein-related therapeutics has been renovated based on mRNA technology. 

Antigen-encoding mRNA vaccine is one of the most promising therapeutic applications.36 

The related mechanism is presented in Figure 1.3B. In order to develop antigen-specific 

immunity, the mRNA vaccine needs to be transfected in antigen-presenting cells, such as 

dendritic cells. Upon entering the cytosol of antigen-presenting cells, antigen-encoding 

mRNA is translated into antigen polypeptides, which are further processed into small 

peptide epitopes. The peptide epitopes then bind to the major histocompatibility complex 

(MHC) and the MHCs are transferred and presented on the cell surface. The presented 

antigenic peptide epitopes promote the recognition from CD8+ and CD4+ T cells, which 

generates cellular immunity and antigen-specific antibody response.37  

Figure 1.3 Mechanisms of mRNA therapeutics. Adapted and reprinted from Ref.35 (A) The 
mechanism of in vitro-transcribed mRNA translation and protein replacement. (B) The 
mechanism of mRNA-mediated vaccination.  
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 Unlike traditional vaccines, such as live-attenuated viruses, mRNA vaccines have 

less safety concerns as they do not introduce possible pathogens. In addition, both cellular 

and humoral immunity can be induced by mRNA vaccines.38 Furthermore, a special class of 

mRNA, called self-replicating or replicon mRNA, holds great promise for vaccination via 

inducing a prolonged immune response.39 Like DNA replication in living organisms such as 

prokaryotes and eukaryotes and DNA/RNA replication in viruses, replicon mRNAs can 

replicate themselves inside host cells. The origin of replication, the particular sequence 

which initiates RNA replication, is incorporated in replicon mRNA.40 Thus the 

corresponding mRNA vaccines can express protein antigens of interest persistently. This 

increases the efficacy of the vaccines and reduces the need for booster shots.41 In short, 

mRNA-based vaccine is a new avenue to immunology and can provide novel routes to treat 

various diseases, such as influenza,42 Zika,43 and rabies.44  

 Besides developing next generation vaccines, mRNA therapeutics has also been 

utilized in cancer immunotherapy.45 After dendritic cells are transfected ex vivo with mRNA 

which encodes tumor-associated peptide antigens, cytotoxic T cells can find cancer cells 

and destroy the tumors. Besides modifying dendritic cells, mRNA technology is utilized to 

engineer T cells in Chimeric Antigen Receptor (CAR) T cell therapy.46 After transfected by 

mRNA encoding CARs, patient’s T cells are able to locate tumor cells accurately through the 

specific binding between antigen receptors and tumor epitopes.47  

 Even though mRNA therapeutics has been shown promising and powerful in many 

applications, several intrinsic aspects still remain challenging and require substantial 

development. Similar to other nucleic acids, mRNA can generate undesired immune 

response when being directly exposed to the cell environment. Unlike DNA and siRNA 
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which pose the double-stranded structure, mRNA is usually single-stranded, resulting a 

much lower stability. It is very susceptible to degradation by ribonucleases (RNases). In 

order to enhance the stability and maximize protein expression, numerous mRNA 

structural modifications have been developed, such as structural engineering of the 5’ cap, 

elongation of the 3’ poly(A) tail, and chemical base modification.48 It is expected that with 

solving the issue of stability and immunogenicity, mRNA therapeutics will become a 

powerful tool to treat plenty of incurable diseases.  

 

1.4 Gene Editing 

 As mentioned earlier, many genetic diseases occur because of the appearance of 

gene redundant, faulty genes or gene deletion. To inherently fix these errors, it is required 

to have a gene editing system which can specifically and efficiently alter the target genes. 

Many protein-DNA recognition genome-editing technologies, such as Meganucleases, Zinc 

finger nucleases, and TALEN, have been developed.49 However, the protein engineering and 

cloning for different DNA targets limit the broad application of these technologies. The 

discovery of CRISPR sequences in Streptococcus pyrogenes uncovered a family of 

endonucleases with sequence specificity and unique gene editing behavior.50 The target 

specificity of CRISPR technology is simply based on RNA-DNA base pairing. The emergence 

of CRISPR technology has revolutionized the field of gene therapy by enabling the 

permanent editing of faulty genes.15  

 In CRISPR system, target DNA sequences are transcribed to small RNA sequences 

which are complementary to the original DNA sequence (crRNAs). For simplicity, 

researchers hybridize these crRNAs with trans-activating RNAs (tracrRNAs) to form ~100 
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base pairs small guide RNAs (sgRNAs). Then sgRNAs bind to CRISPR-associated proteins 

(Cas proteins) and form Cas-ribonucleoproteins (RNPs).51 Many Cas proteins, such as Cas9 

protein, exhibit strong endonuclease activity and can induce double-strand DNA break. As 

shown in Figure 1.4, with the guidance of sgRNA, the assembled CRISPR-Cas9 RNPs can 

specifically target the DNA sequence of interest and produce site-specific double-strand 

break (DSB). Then the created DSB is further repaired either by nonhomologous end 

joining (NHEJ) or by homology directed repair (HDR). NHEJ generates small random 

insertions, deletions, or substitutions while HDR results in precise gene modification with 

the help of homologous repair template.49 

There are three main methods to deliver CRISPR machinery into cells: delivery of 

DNA encoding CRISPR components (Figure 1.5A), co-delivery of targeting sgRNA and 

mRNA encoding Cas9 protein (Figure 1.5B), and direct delivery of preformed Cas9-RNP 

particles from complexation between sgRNA and Cas9 protein (Figure 1.5C).52 Cas9 RNP 

delivery is demonstrated to be challenging due to the large size of the protein. Large scale 

synthesis and purification of Cas9 proteins could be expensive. Plasmid DNA delivery has 

serious safety concern as the prolonged Cas9 protein expression could generate off-target 

effects, cutting the genome at undesired locations. Compared to DNA delivery, Cas9 

mRNA/sgRNA co-delivery only produces transient Cas9 protein expression, reducing off-

target effects and lowering cytotoxicity. But it requires the co-delivery of two RNA species: 

Cas9 mRNA and singe guide RNA (sgRNA).53-54  
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Figure 1.4 The mechanism of CRISPR-Cas9 gene editing. Adapted and reprinted from Ref.51 

 

 RNA-based CRISPR-Cas9 editing requires the delivery of two components: an mRNA 

encoding Cas9 protein and a sgRNA for targeting the specific site of genome for editing 

(Figure 1.5C). After entering the target cell, Cas9 mRNA is translated to Cas9 protein by the 
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ribosomal complex. Then Cas9 protein further associates with co-delivered sgRNA to form 

the RNP with affinity for the target DNA sequence. Finally, the RNP complex gets into the 

nucleus, binds to the target gene which has the DNA sequence complementary to the 

sgRNA, and breaks the double-stranded DNA (Figure 1.5D).  

 

Figure 1.5 (A, B, C) Different methods to deliver CRISPR/Cas9 machinery. Adapted and 
reprinted from Ref.52 (D) The mechanism of RNA-based CRISPR-Cas9 gene editing. Adapted 
and reprinted from Ref.35 

 

 In summary, CRISPR technology has been proven extremely powerful and holds 

great promise to treat a variety of genetic diseases and defects. Effective delivery of CRISPR 

machinery still hinders its wide application. Each delivery method has its own obstacles on 

the road of clinical trials, such as low delivery deficiency, difficult large scale production, 

high off-target effects and potential immunogenicity and cytotoxicity. But we believe that 

with fast advancements and development, CRISPR-based technology will be more and 

more mature and become the most prominent tool for gene therapy in the near future.  
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1.5 Challenges of RNA Therapeutics 

 Although RNA therapeutics holds great promise in various aforementioned 

applications, several critical challenges still limit the wide application of RNA technology.55 

The most challenging obstacle is safe and efficient delivery of RNA drugs in vitro and in 

vivo. As described in early sections, RNAs are large biomacromolecules with high density of 

anionic charges that do not readily penetrate cell membrane. The electrostatic repulsion 

between negatively charged RNA phosphate and negatively charged cell membranes 

inhibits the entrance of RNA molecules. Additionally, compared to DNAs, RNAs are much 

less stable because the 2’-OH groups in RNA structures (Figure 1.1C) can induce their self-

cleavage. In addition, RNAs, especially long mRNAs, are very sensitive to nuclease 

degradation.56 This high sensitivity issue has to be addressed because the RNA drugs need 

to survive in serum which contains a variety of RNases. Moreover, similar to DNAs, naked 

RNAs can induce undesired immune response which can cause severe side effects in 

clinical applications.57 

 Therefore, it is necessary to develop safe and effective intracellular delivery vehicles 

for RNA-based therapeutics. Generally, an ideal delivery vehicle needs to fulfill the 

following requirements:55,58 (1) The delivery vectors need to be nontoxic and 

biodegradable. They should be naturally degraded and cleaved after delivering RNA cargos. 

(2) The delivery vectors need to be able to bind to RNAs either through intermolecular 

interactions or covalent bonds. The complex they formed should be stable under 

physiological conditions and be able to protect RNAs from degradation by RNases. (3) The 

RNA delivery needs to be realized in target cells/organs. (4) The delivery vehicle should 

facilitate cellular uptake of the vehicle-cargo complexes as the naked RNA cargos can 
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hardly get into cells by themselves. Additionally, the delivery vehicle should also facilitate 

endosomol escape of the vehicle-cargo complexes in order to release the complexes into 

cytoplasm. (5) The delivery vehicles need to release the cargos efficiently after arriving the 

desired destination. This requires a dynamic interaction between delivery vehicles and 

cargos or a stimuli-responsive motif in the structure of delivery vectors. 

 Many initial RNA delivery experiments are performed in vitro. However, realizing 

efficient delivery in vivo is the ultimate goal. The difficulty in translating in vitro success to 

in vivo delivery is one major challenge in the development of RNA therapeutics.59 A large 

portion of vehicle-cargo complexes carry positive charges on the surface, which could 

aggregate with negatively charged proteins in serum.60 The half-life of different delivery 

particles can vary dramatically and structural modification is often needed to increase the 

circulation time in vivo. Moreover, the nonuniform biodistribution of different delivery 

particles can also hinder the real application in clinic. For instance, it has been shown that 

positively charged particles are prone to accumulate in the lung and spleen.61 For each 

delivery system, delicate mechanistic biological study is required to elucidate the 

correlation between in vivo and in vitro.  

 

1.6 Overview of Gene Delivery Vehicles 

 To address the critical RNA delivery challenges, researchers have developed a 

variety of delivery vehicles, including viral vectors, non-viral vectors, and extracellular 

vesicles.62 In this section, several important prospects of each kind of delivery vehicles 

were included. More details about non-viral vectors will be provided in Section 1.7. 
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 Viral vectors are the most popular delivery vehicles for gene delivery and they have 

been utilized in a large number of clinical trials.63 Viral vectors are highly infectious and 

they can infect a broad spectrum of cell types. Recombinant adenoviruses, adeno-

associated viruses and viruses with enveloped virions (including retroviruses, lentiviruses, 

alphaviruses and herpes viruses) are the major viruses used for gene delivery in vitro and 

in vivo.64  

 In gene delivery mediated via viral vectors, nucleic acid cargo is usually encased in a 

proteinaceous shell and then transferred into target cells. As shown in Figure 1.6A, after 

loading DNA cargos, adenovirus binds to the coxsackievirus adenovirus receptor and enter 

the cell through receptor-mediated endocytosis. As the pH of endosome environment 

decreases, the capsid is degraded and DNA cargo is released.65 For DNA therapeutics, the 

released DNA then needs to enter the nucleus and initiate transcription. For another 

example of viral vectors (Figure 1.6B), herpes simplex virus (HSV) has also been used to 

deliver DNA. After binding to cell surface through interactions between glycoproteins and 

heparin sulphate proteoglycans (HSPG), the HSV virion envelope fuses with the plasma 

membrane and the capsid enters the cytoplasm. Then it is transferred to the nucleus via 

dynein-mediated transport and the DNA is released.  

 Even though viral vectors are broadly used in current gene delivery, they pose 

several significant limitations and safety concerns.66 First, they can be detected by immune 

system and trigger immune responses. Second, the genetic cargo capacity is highly limited 

by the packaging size of viral vector. For instance, adeno-associated viral vectors can only 

deliver DNA-based cargos with relatively small size (~4.7 kb).64 In addition, working with 
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viral vectors requires extra safety precautions as most viral vectors can generate 

inflammatory cytotoxicity and cause diseases.  

 

Figure 1.6 Viral vectors and non-viral vectors for gene delivery. (A) Gene delivery 
mediated by adenovirus. Adapted and reprinted from Ref.64 (B) Gene delivery mediated by 
herpes simplex virus (HSV). Adapted and reprinted from Ref.64 (C) Nucleic acid delivery 
mediated by non-viral vectors. Adapted and reprinted from Ref.67 
 

Due to the serious safety risks of viral vectors, numerous non-viral delivery vectors 

have been designed and developed over the past several decades, including cationic lipids 

and lipid-like nanoparticles, polymers, dendrimers, cell-penetrating peptides, and 

metal/inorganic nanoparticles.67 In general, the non-viral vectors are designed to assemble 

with DNA/RNA cargos and form 100-200 nm nanoparticles via intermolecular interactions, 

such as electrostatic interaction, hydrophobic interaction, and hydrogen bonding. The 

nanoparticle formation can prevent nuclease degradation in serum and avoid immune 
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detection. After complexation, the formed nanoparticles need to enter the target cells, 

mostly through endocytosis pathways or membrane fusion.68 Several components can 

determine the pathway of endocytosis, such as nanoparticle size, surface charge, 

morphology, and chemical structures (Figure 1.7).69 Generally, nanoparticles with the size 

of 20 – 200 nm in diameter can readily get into the cells through endocytosis.70 Moderate 

positive charges on the particle surface can promote the interactions with cell membrane 

as cell membrane is comprised of negatively charged phosphate lipids. It is also shown that 

some specific chemical structures can promote the cellular uptake. For instance, 

tryptophan (Trp) enhances the cellular uptake due to the intercalation of the indole ring 

and aliphatic chains facilitate the cellular uptake through hydrophobic interactions.71-72  

 

 
 Figure 1.7 Different cellular uptake mechanisms of nanoparticles. Adapted and reprinted 
from Ref.69 Nanoparitcles can get into cytoplasm through different endocytosis pathways 
or membrane fusion. 
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 After entering the cells through endocytosis, another important step is to release the 

vehicle-cargo complex from endosome. Figure 1.8 illustrates the major mechanisms of 

endosomal escape.69 efficient endosomal escape is another crucial consideration when 

designing the structure of delivery vehicles. Proton sponge effect and osmotic lysis is a 

common strategy to induce endosomal escape.73 

The proton sponge effect is based on the buffering effect of delivery vector which 

has a pKa in physiologically relevant range.74 This pH-responsive behavior normally comes 

from the tertiary amine or imidazole on the vector structure. For instance, when early 

endosome matures and becomes lysosome, the pH of cellular environment decreases from 

7.4 to 5. As the pH inside endosome drops, more protons are pumped into endosomes 

because of the buffering capacity of tertiary amines or imidazole rings. In the meantime, 

more chloride counter ions are also pumped into endosomes, generating a significant 

increase of osmotic pressure which leads the eventual endosome rupture. The strategy is 

commonly used in histidine-rich materials and polycationic materials, such as histidine-

containing peptides, polyethylenimine (PEI) and poly(amidoamine) (PAMAM) 

dendrimers.74-75  

 It is also shown that assembled nanoparticles with lipids or amphiphilic materials 

can fuse with the endosomal membrane, which releases the cargo into cytoplasm.76 In 

addition, some peptides can interact with the endosomal membrane and generate defined 

pores, which allows the cargo to move into cytoplasm.77 Similarly, some polymers can also 

disrupt the endosomal membrane through intermolecular interactions and realize the 

cargo release. 
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Figure 1.8 Different mechanisms of endosomal escape. Adapted and reprinted from Ref.69 
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Besides viral vectors and non-viral synthetic vectors, a number of biological gene 

delivery vehicles have also been developed recently, such as bacteria, bacteriophage, virus-

like particles, erythrocyte ghosts and exosomes.78 They are often directly derived from 

biology and less toxic compared to viral vectors. Although less well-established than viral 

vectors and synthetic vectors, the potential of these non-viral biological agents as gene 

delivery vehicles has also been demonstrated in clinical trials.  

 

1.7 Non-viral Synthetic Vectors 

 Among all kinds of non-viral synthetic vectors for gene delivery, lipids and lipid-like 

materials are the most widely used and well-developed.79 They often contain amphiphilic 

structures which are comprised of hydrophilic phosphate head-groups and hydrophobic 

aliphatic tails. Due to this unique amphiphilic structure, lipid-based materials can form 

liposomes (Figure 1.9), which are spherical vesicles consisting of one or multiple 

phospholipid bilayers as the shell and aqueous environment as the core. When complexing 

the lipid-based materials with DNA/RNA cargos, liposomes form with the loading of nucleic 

acid cargos into the core, generating lipoplexes. The high structural similarity of lipid layers 

between liposome and cell membrane often produces membrane fusion, which facilitates 

the cellular uptake and endosomal escape of lipoplexes.  

The commonly used lipid-based delivery system often consists of a variety of 

components, such as cationic lipids 1,2-di-O-octadecenyl-3-trimethylammonium-propane 

(DOTMA), zwitterionic lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 

helper lipids 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 

polyethylene glycol (PEG).  
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Figure 1.9 (A) Chemical structures of non-viral synthetic vectors for siRNA delivery. 
Reprinted from Ref.67 (B) Chemical structures of non-viral synthetic vectors for mRNA 
delivery. Adapted and reprinted from Ref.35 

 
Cationic lipids can interact with anionic nucleic acids and form lipoplexes. But it has 

been shown that cationic lipid-based delivery systems can generate significant toxicity and 

immunogenicity.80 In contrast, a few ionizable lipid systems have been developed to reduce 

the positive charges on particle surface.81 Their structures often contains tertiary amines 

which remain neutral under physiological pH whereas become positively charged at low 

pH (~5). This buffering capacity is also beneficial for endosomal escape as mentioned in 

Section 1.6. Helper lipids are incorporated to enhance cellular uptake and endosomal 

escape through facilitating membrane fusion. Cholesterol is often included to enhance 

vesicle stability as its hydrophobic structure can fill in the gaps between lipids. 

Additionally, the incorporation of PEG-lipids or PEG molecules relieves the electrostatic 
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interaction with anionic serum proteins, prevents aggregation and enhances nanoparticle 

stability.  

The lipid-based delivery systems are highly versatile, with numerous recipes of 

formulation. The development of an optimal lipid delivery system for each specific drug 

cargo often requires substantial screening of various lipid combination. After intensive 

research and development, quite a few lipids and lipid-based materials, such as 

Lipofectamine system, have become the ‘golden standards’ for various gene delivery in 

vitro.  

However, only few lipid-based delivery systems have been successfully 

demonstrated in vivo,54, 82 mainly due to the low biodegradability, high toxicity, and high 

immunogenicity. It has been shown that most lipoplexes have the potency of targeting liver, 

limiting the wide delivery application of lipid technology in other organs.83  

Polymeric vector is another important class of material for gene delivery, including 

the delivery of DNA, siRNA, and mRNA. The most popular strategy is complexing cationic 

polymers and anionic DNA/RNA to form nano-size polyplexes, which can be taken up by 

the cells through endocytosis. The polymeric vectors often consist of cationic charges and 

secondary or tertiary amines, which afford buffering capacity for endosomal escape as 

mentioned earlier. Polyethylenimine (PEI) (Figure 1.9B) is the classic and well-established 

polymer for gene delivery. However, it has been shown that the high density of cationic 

charges in PEI leads to strong interaction with negatively charged serum proteins, resulting 

in aggregation and cytotoxicity.83 In order to address these issues, PEI was further modified 

by different functional groups, such as hydrocarbon side chains, fluorocarbon side chains, 

cyclodextrin, and aromatic substitutions.84-85  
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Besides pure cationic polymers, different block copolymers have been designed and 

utilized in RNA delivery. For instance, the block copolymer polyethylene glycol-poly(N’-(N-

(2-aminoethyl)-2-aminoethyl)aspartamide) (PEG-PAsp(DET)) has been used to deliver 

mRNA into nasal neurons.86 In this design, this block copolymer can assemble into 

nanomicelles in water. PEG chains construct the shell while PAsp(DET)-mRNA complexes 

form the core (Figure 1.9B). This complexation still relies on the electrostatic interactions 

between cationic polymer chains and anionic RNA cargos. Similar micelle strategy has also 

been reported to deliver hydrophobic small molecule drugs, despite the drug loading is 

based on hydrophobic interactions instead.  

 When designing polymeric gene delivery vehicles, another important aspect to 

consider is biodegradability. Introducing biodegradability into polymer vectors is essential 

for reducing cytotoxicity as well as promoting drug release after endosomal escape. Ideally, 

the drug-loaded delivery vehicle should be degraded upon a certain intracellular trigger, 

such as pH, redox potential, and presence of enzymes.87 This will not only guarantee 

sufficient lifetime for the carrier to survive in blood circulation and reach the target cells 

but also control the intracellular release of the cargos. Different chemical motifs, including 

polyesters, disulfides, and acetal cross-linkers, are incorporated to construct the 

biodegradable polymers (Figure 1.10).88  

 A few aspects need to be considered when designing polymeric gene delivery 

vehicles. First, the polymeric vector should consist of biodegradable structures, such as 

polydisulfides, polyesters, and polypeptides.88 Second, the polymer vector should bind to 

DNA/RNA cargos efficiently. Cationic charges are often introduced in polymer system to 

afford electrostatic interaction with anionic charged cargos. However, high density of 
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cationic charges can often cause cytotoxicity and aggregation in vivo.83 Hydrophilic side 

chains, such as PEG, are often incorporated to reduce cationic charge density and enhance 

serum stability while hydrophobic side chains are often included to promote nanoparticle 

assembly.72, 89 Third, in order to efficiently release DNA/RNA cargos, stimuli-response 

motifs need to be incorporated in the vector design. Redox-responsive,90 pH-responsive,91 

and self-emmolative92 polymers have been developed for gene delivery. Finally, the ideal 

nucleic acid delivery should be performed in target cells and organs. The target organ for in 

vivo transfection is highly depended on the biophysical properties of vector-cargo 

complexes. It has been shown that cationic polymers often exihibit efficient delivery to the 

lungs and spleen.93 Different polymer functionalization strategies such as attaching 

targeting peptides have been developed to realize targeted gene delivery.94 

Figure 1.10 Chemical structures of biodegradable polymers for gene delivery. Adapted and 
reprinted from Ref.88 
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 In summary, biodegradable polymers are another important categrory of nucleic 

acid delivery vehicles. It provides a variety of benefits such as high scalability, high 

structural tunibility, and low production cost compared to other classes of gene delivery 

vehicles. Currently cationic charges are often incorporated in the polymeric delivery 

vectors and they mediate the nucleic acid delivery through different mechanisms of 

endocytosis and endosomal escape, which offers different biological behaviors for further 

in vivo applications. With fine tuning and sufficient development, biodegradable polymers 

can be universal platforms for various gene delivery. 

 Besides lipid-based materials and polymeric vectors, cell-penetrating peptides 

(CPP) are another powerful delivery vehicle of nucleic acids.95-96 CPPs are a variety of 

peptides which can pass through tissue and cell membranes with no interactions with 

specific receptors. They are typically 5-30 amino acids long and they can be categorized 

into three major classes: cationic, amphiphilic, and hydrophobic peptides.  

 Cationic peptides contain positive charges at physiological pH which contain 

protonated guanidine groups in arginines (Arg) and protonated primary amines in lysines 

(Lys). The most famous cationic peptides include trans-activator of transcription (TAT)-

derived peptides and polyarginines. TAT peptide is a short peptide found in TAT protein of 

HIV-1 which is responsible for cellular uptake.97 It and its derivatives have been 

successfully utilized to mediate the cellular delivery of various drugs. Polyarginines usually 

consist of 8 or 9 arginine residues, which provide not only cationic charges for nucleic acid 

complexation and endocytosis, but also multiple guanidine head groups to interact with 

phosphate groups on the cell membrane through bidentate hydrogen bonding.98  
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 Similar to amphiphilic lipids, amphiphilic CPPs have both hydrophilic and 

hydrophobic regions of amino acids.95 Amphiphilic CPPs can be either derived directly 

from natural proteins or synthesized via attaching a hydrophobic domain to a nuclear 

localization signal (NLS). They can form secondary structures such as 𝛼-helix and 𝛽-sheet 

to interact with cell membrane and facilitate cell internalization.99-100  

 Hydrophobic CPPs are less developed compared to cationic CPPs and amphiphilic 

CPPs. They are often constructed by nonpolar amino acid residues which can enhance 

cellular uptake through the interaction with hydrophobic domains of cell membrane.101  

 Although the cellular uptake mechanism is not fully elucidated, a number of CPPs 

have been used to link the drugs (such as nucleic acid, protein, and small drug molecule) 

through covalent bonds or non-covalent interactions and mediate their delivery in clinical 

trials.96 The major drawbacks in CPP-mediated drug delivery are the lack of cell specificity, 

inefficient endosomal escape, and low serum stability.95 Various approaches are being 

developed to address these issues, such as creating activatable CPPs to enhance cell/tissue 

specificity,102 incorporating histidines to facilitate endosomal escape,103 and using 

unnatural amino acids to increase peptide stability.104 

 

1.8 Previous Work in Guan Lab 

 Our group has developed several biodegradable synthetic vectors for RNA delivery. 

A multifunctional dendronized peptide polymer (denpol) system for siRNA delivery was 

first reported by our group in 2013 (Figure 1.11A).105 In the denpol system, a dicysteine 

unit is incorporated into each repeating unit of the polymer backbone to provide 

glutathione-triggered bioreducibility and lysine is included to provide dendritic 
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architectures of the polymer. Each dendron is further functionalized with different amino 

acids, aiming to provide buffering capacity for endosomal escape, hydrophobicity for 

cellular uptake, and cationic charges for RNA complexation. It is demonstrated that the 

denpol system is highly biodegradable, non-toxic, and be able to deliver siRNA efficiently in 

high serum percentage conditions.  

 

Figure 1.11 Multifunctional dendronized peptide polymer system for (A) siRNA delivery 
and (B) mRNA delivery. Adapted and reprinted from Ref.105-106 

 

After being demonstrated for successful siRNA delivery, the denpol system was 

further engineered to deliver large mRNAs (Figure 1.11B).106 Different hydrophilic side 

chains including tetraethylene glycol (TEG) and polyethylene glycol (PEG) were 

incorporated into the denpol system, in order to prevent aggregation and increase complex 

stability. This work showed that the functionalized denpol system was also able to deliver 

large mRNA molecules into multiple cell lines under serum-containing conditions. 
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Specifically, the functionalization of two amino acids, histidine (His) and tryptophan (Trp), 

are essential for successful RNA delivery. His affords ‘proton sponge’ effect through 

imidazole rings for enhancing endosomal escape while Trp promotes RNA binding and 

cellular uptake through the intercalation of the indole ring.  

 In addition, Guan lab developed another synthetic vector system, called dendritic 

peptide bolaamphiphile, for siRNA delivery (Figure 1.12A).107 This biodegradable vector 

consists of a dumbbell shaped structure with two hydrophilic head groups and a 

hydrophobic core. It is also shown that these peptide bolaamphiphiles can deliver siRNAs 

in multiple cell lines with high transfection efficiency, excellent serum tolerance, and low 

cytotoxicity. Moreover, this work systematically investigated the structure-property 

correlation in this amphiphilic system. Monoamphiphiles were found to be highly toxic due 

to membrane insertion while bolaamphiphiles with fluorocarbon cores exhibited enhanced 

delivery efficiency and improved serum resistance.  

 Besides bolaamphiphiles with statically amino-acid functionalized dendrons on the 

head groups, our lab has developed a small focused library of dendritic bola vectors with 

different discrete dipeptide functionalization (Figure 1.12B).108 More than 50% of the 

bolaamphiphiles created in this work exhibited prominent siRNA delivery efficiency. The 

vectors with His and Arg functionalization were found to be the most effective, inducing 

over 75% gene silencing in media containing 10% serum. This study provides a simple 

methodology to generate biodegradable siRNA delivery vectors with defined chemical 

structures, which can be applicable in the design of other synthetic materials of gene 

delivery.  
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Figure 1.12 (A) Dendritic peptide bolaamphiphiles for siRNA delivery. Adapted and 
reprinted from Ref.107 (B) Discrete dipeptide bolaamphiphiles for siRNA delivery. Adapted 
and reprinted from Ref.108 

 

1.9 Summary and outlook 

 Despite the tremendous potential of RNA therapy as mentioned in early sections, 

there are only relatively few systems being tested in clinical trials. The safe and efficient 

delivery of powerful RNA molecules into target cells and organs is still a large obstacle. 

Developing synthetic non-toxic and effective delivery vehicles is of great interest and 

necessary for pushing RNA therapy into real application. Particularly, understanding the 

correlation between chemical structure and biological behavior is essential for the vector 

design. Currently, many delivery systems have their own targeting organs. Avoiding the 

passive aggregation and realizing targeted delivery is the end goal. This requires the novel 

design of vehicle-cargo interactions and specific recognition of target cells/organs. 

Additionally, building up a reliable relationship between experiments in vitro and in vivo 

would greatly speed up the development of gene delivery materials and the application of 
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RNA therapy. Although there is still a long way before RNA therapeutics get widely used in 

clinic, with fast development and continuous trials, we believe this powerful tool will 

eventually renovate our medicine and life.  
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Chapter 2: Multivalent Peptide-functionalized Bioreducible Polymers for 

Universal Delivery of Various RNAs 

2.1 Introduction and Project Design 

 RNA-based therapeutics has emerged as an exciting new biotechnology platform to 

innovate protein therapies, develop next generation vaccines, and treat genetic diseases.1-4 

Compared to DNAs, RNAs are more versatile as therapeutic RNAs effect a diverse range of 

biological functions depending on their size and structure. For example, short interfering 

RNAs (siRNAs) are 20-25 base pairs (bp), rigid, and double-stranded, which can silence 

specific genes for disease treatments.5-6 On the other hand, messenger RNAs (mRNAs) are 

single-stranded and can vary from several hundred nucleotides (nts) to several thousand 

nucleotides. Therapeutic mRNAs are an emerging drug class for protein replacement 

therapy, cancer immunotherapy, and gene therapy.7-9 A special class of mRNA, called self-

replicating or replicon mRNA, has remarkable large size (~104 nt) and intricate secondary 

structure, which is highly promising for vaccination via inducing a prolonged immune 

response.10-11 In addition, single guide RNA (sgRNA) with an intermediate length (~100 

nts) can guide Cas9 nuclease protein to execute precise genome editing via Clustered 

Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms.12  

To achieve their therapeutic functions, RNAs must be safely and efficiently delivered 

into cells. Without proper delivery vehicles, naked RNAs are highly sensitive to nuclease 

degradation and can promote undesired immune response. Their large macromolecular 

sizes and high negative charges also prevent them from passively crossing the cell 

membrane.3,4,13 Despite the tremendous promise of RNA drugs, the general lack of safe and 

effective intracellular delivery vehicles has significantly hindered the clinical translation 
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and widespread application of RNA-based therapeutics.14-17 Furthermore, current delivery 

systems are usually designed for delivering one specific type of RNA cargo for each carrier. 

For general applicability, it is highly desirable to have a universal delivery system that can 

efficiently deliver all types of therapeutic RNAs of various structures and sizes to perform 

the diverse therapeutic functions. This would save research efforts in optimizing and 

identifying delivery vectors for each different RNA cargo and speed up the clinical 

translation of RNA therapies. Furthermore, a universal delivery vector allows for the 

potential to co-deliver multiple RNA species for advanced therapeutic applications and 

treatment of multiple pathways in a single formulation.  

Broadly speaking, RNA delivery can be mediated by viral and non-viral vectors. Viral 

vectors are highly efficient delivery vehicles, however, they pose safety concerns related to 

immunogenicity and have limitations on cargo size, making them non-ideal candidates for a 

universal vector.18 These concerns have led to the development of a variety of synthetic 

non-viral delivery vectors over the past several decades, including lipids and lipid 

nanoparticles,19-22 polymers,23-29 dendrimers,30-32 cell-penetrating peptides (CPP),33-34 and 

gold nanoparticles.35-36  

An ideal RNA delivery vector should be biodegradable, bind RNA cargos favorably, 

facilitate cellular uptake and endosomal escape, and finally release the RNA molecules 

efficiently in the cytoplasm.13,37 Moreover, for a universal RNA delivery system for various 

applications, the vector needs to be nontoxic, scalable and tunable in order to match the 

diverse structures of various RNAs.38-39  

With these criteria in mind, we designed a family of multivalent peptide-

functionalized bioreducible polymers (MPBP) as a universal vector system for safe and 
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efficient RNA delivery (Figure 2.1). In this system, a dicysteine unit is incorporated into 

each repeating unit of the polymer backbone to provide glutathione-triggered 

bioreducibility, ensuring low cytotoxicity and facilitating facile intracellular disassembly of 

polymer-RNA complexes to release the RNA cargo.27,40 L-lysine is used to introduce 

branched dendritic architectures to the polymer, providing convenient synthetic handles to 

graft functional peptides and other side chains to generate diverse multivalent 

architectures. Based on our previous studies,41-44 a short, multifunctional peptide was 

designed to provide several important functional properties including electrostatic 

interactions for RNA complexation, enhanced cellular uptake, and efficient endosomal 

escape.  

 

Figure 2.1 Concept of multivalent peptide-functionalized bioreducible polymer (MPBP) 
vectors for universal RNA delivery. 
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The MPBP system has several attractive features, including biocompatibility, high 

structural tunability, facile synthesis, and scalability. Furthermore, the multivalent 

presentation of our specially designed multifunctional peptide promotes RNA 

complexation, cellular uptake, and endosomal escape. Noticeably, through simple changes 

to the multivalent peptide functionalization we can tune the MPBP system to efficiently 

deliver many types of RNAs of drastically different lengths and structures to multiple cell 

lines. This includes the delivery of short double-stranded RNA such as siRNA (20-25 bp), 

sgRNA (100 nt), single-stranded mRNAs of various length (996 nt for eGFP mRNA, 1996 nt 

for Fluc mRNA, and 4521 nt for Cas9 mRNA), and very large single-stranded self-replicating 

(Replicon) RNA (>104 nt). In this article, we will describe the design, synthesis, and 

investigation of our new MPBP system for the successful delivery of various RNAs. 

 

2.2 Design and Synthesis of MPBP 

For the delivery of various RNAs with different size and structure, a small library of 

MPBPs with different polymer architectures and side chain functionalization was 

synthesized (Figure 2.2). First, following our previous work a polymer backbone 

composed of L-lysine – dicysteine repeating units was synthesized through simple step-

growth polymerization of dicysteine and L-lysine using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) as the coupling reagent (polymer Mn = 9.37 kDa, 

PDI = 2.08 by gel-permeation chromatography).41 Dicysteine was introduced into the 

polymer backbone to afford bioreducibility for facilitating intracellular disassembly of 

polymer-RNA complexes to release the RNA cargo in the cytoplasm. Onto the linear 

polymer backbone, different generations of L-lysine-based dendrons were then grown 
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through solution-phase peptide coupling. They will serve as the scaffolds to graft our 

designed multifunctional peptides and other side chains to obtain a small library of vectors. 

 

Figure 2.2 A small library of MPBPs with different polymer architectures and side chain 
functionalization. 
 

Based on our previous work of dendronized polypeptide (denpol) and 

bolaamphiphile (bola) based vectors,41-44 we designed our multifunctional short peptides 

composed of three natural amino acids: L-histidine (His), L-lysine (Lys), and L-tryptophan 

(Trp). Previous studies by us41,43 and others45 have shown that His moiety enhances 

endosomal escape through the buffering capacity provided by the pH-responsive nature of 

the imidazole ring. Lys units provide primary amines for sufficient cationic charges to bind 

RNA. Earlier studies have also shown that Trp incorporation improves RNA binding and 
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enhances the cellular uptake due to the intercalation of the indole ring.41,46 Whereas in our 

previous design His and Trp were statistically functionalized as individual amino acid 

moiety onto the periphery of Lys dendrons, in this work a well-defined, discrete linear 

peptide is designed to functionalize the dendrons. Using these three amino acids: His, Lys, 

and Trp, we initially synthesized several short peptides of various sequences and grafted 

these peptides onto the bioreducible polymer scaffolds, as prepared above. After some 

initial screening of various vectors with different peptide sequences (Figure 2.3), we chose 

H-WKHKHKHG-OH for our further studies.  

 

Figure 2.3 Initial Fluc mRNA delivery screening of different MPBPs functionalized with 
various linear peptides 
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In addition to peptide functionalization, a fraction of the MPBPs were also 

functionalized with either hydrophilic tetraethylene glycol (TEG) or hydrophobic stearic 

acid to tune the hydrophilicity and hydrophobicity of the vectors. TEG side chains were 

incorporated to prevent potential aggregation and increase serum stability,42 whereas 

stearic acid was added to promote the self-assembly and cell internalization of MPBP-RNA 

complexes.47 The protected linear peptide Boc-WKHKHKHG-OH was synthesized through 

conventional solid-phase peptide synthesis48 and coupled to the polypeptide backbone, 

with or without hydrophilic/hydrophobic side chains, to afford the final MPBP vectors 

(Scheme 1, Section 2.12). All details for the peptide and final MPBP synthesis can be found 

in Section 2.12. For simplicity, the MPBPs were named using the dendron generation and 

the functionalization components with the corresponding percentages. For example, G1-

20TEG-80LP represents a MPBP polymer with first-generation lysine dendrons that were 

functionalized by 20 mol% TEG and 80 mol% linear peptides (LP). 

 

2.3 Biophysical Study of MPBP-RNA Complexes 

First, the binding affinity of the MPBPs to RNAs was evaluated via gel 

electrophoresis. The gel shift assays demonstrated that all MPBPs were able to completely 

bind both siRNA and mRNA at a primary amine/RNA phosphate (N/P) molar ratio of 5 

(Figure 2.4 - 2.5).  
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Figure 2.4 Gel electrophoresis study of MPBP-siRNA complexation. All vectors surveyed 
bound siRNA by N/P = 5. 

Figure 2.5 Gel electrophoresis study of MPBP-eGFP mRNA complexation. All vectors 
surveyed bound eGFP mRNA by N/P = 5. 
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RNAs, especially long mRNAs and Replicon RNAs, are very susceptible to 

degradation by RNases and need to be sufficiently protected for successful delivery.49 After 

Fluc mRNA was complexed with the MPBPs, the nanoparticle complexes were incubated 

with 10% fetal bovine serum (FBS) for 20 minutes. FBS contains several compounds 

known to degrade RNA, including RNases. The complexes were then subjected to gel 

electrophoresis to determine the structural integrity of the RNA. Naked Fluc mRNA was 

fully degraded after FBS incubation, while Fluc mRNAs in MPBP-mRNA complexes 

remained bounded and intact after FBS incubation (Figure 2.6A). Furthermore, the 

dextran sulfate competitive binding study after FBS incubation showed that the RNAs from 

MPBP-RNA complexes were still intact, while the blank RNA was fully degraded (Figure 

2.6B). These assays demonstrate that the MPBPs provide sufficient protection to the large 

Fluc mRNA molecules from RNases, a critical attribute for a successful delivery vector. 

Dynamic light scattering (DLS) was then used to investigate the size and zeta 

potential of the MPBP-RNA nanoparticles. The DLS results showed that all MPBPs formed 

nanoparticles between 100 and 250 nm when complexed with either siRNA or mRNA 

(Table 2.1 – 2.2, Figure 2.7 - 2.8). Compared to G0 series of vectors, G1 and G2 vectors 

condense RNAs into smaller nanoparticles with higher stability in buffer, presumably due 

to the increased multivalency and charge density per polymer repeating unit (Figure 2.9). 

TEM imaging of both MPBP-siRNA and MPBP-mRNA complexes showed spherical 

nanoparticles with diameters less than 100 nm in the dehydrated state (Figure 2.10 – 

2.11). 
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Figure 2.6 Gel electrophoresis study to determine mRNA degradation and protection. (A) 
Gel binding assays of MPBP-Fluc mRNA complexes (N/P = 10) with/without 10% FBS 
incubation (20 min). Naked mRNA was fully degraded after FBS incubation, while mRNAs 
in MPBP-mRNA complexes remained bounded and intact after FBS incubation. (B) Dextran 
sulfate competition (S/P = 80) with different MPBP-Fluc mRNA complexes (N/P = 10) after 
FBS incubation to release any bound RNA. The released RNAs from MPBP-mRNA 
complexes were still intact indicating that the MPBP protected the RNA from degradation, 
while the blank RNA was fully degraded. 
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Table 2.1 DLS measurements of size and Zeta potential of complexes between MPBPs and 
siRNA (N/P = 10, PBS buffer (pH = 7.4), [siRNA] = 150 nM). The Z-Average size is reported 
as an average value of 3 different measurements.  

Sample 
Z-Average 

Size (nm) 
PDI Zeta potential (mV) 

G0-100LP 170±10 0.27 8.4 

G1-100LP 140±14 0.14 28.2 

G2-100LP 133±14 0.15 22.1 

G0-20TEG-80LP 201±6 0.12 4.2 

G0-20SA-80LP 198±9 0.17 5.4 

G1-20TEG-80LP 186±6 0.15 17.1 

G1-20SA-80LP 137±5 0.17 17.6 

 
Table 2.2 DLS measurements of size and Zeta potential of complexes between MPBPs and 
Fluc mRNA (N/P = 10, PBS buffer (pH = 7.4), [mRNA] = 2 ng/𝜇L). The Z-Average size is 
reported as an average value of 3 different measurements. 

Sample 
Z-Average 

Size (nm) 
PDI Zeta Potential (mV) 

G0-100LP 245±11 0.06 26.5 

G1-100LP 125±2 0.11 25.4 

G2-100LP 128±2 0.12 28.0 

G0-20TEG-80LP 245±13 0.08 28.2 

G0-20SA-80LP 281±8 0.09 29.6 

G1-20TEG-80LP 169±4 0.08 26.0 

G1-20SA-80LP 138±3 0.12 28.4 
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Figure 2.7 DLS measurement of different MPBP-siRNA complexes (N/P = 10, PBS buffer 
(pH = 7.4), [siRNA] = 150 nM). 
 

 
Figure 2.8 DLS measurement of different MPBP-Fluc mRNA complexes (N/P = 10, PBS 
buffer (pH = 7.4), [mRNA] = 2 ng/𝜇L). 
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Figure 2.9 Stability of different MPBP-Fluc mRNA complexes in PBS buffer (pH = 7.4) as 
determined by DLS. All measurements reported as Z-average (nm). 

 

 

Figure 2.10 A representative stained TEM image of G1-100LP-siRNA complexes formed at 
N/P = 15. The size distribution was obtained by measuring the diameter of nanoparticles (n 
= 70). 
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Figure 2.11 TEM images and size distribution (n = 70) of representantive MPBP-RNA 
nanoparticle complexes stained with 2% wt uranyl acetate. (A) G0-100LP-siRNA complexes 
at N/P = 10. [siRNA] = 10 𝜇M. (B) G1-100LP-Fluc mRNA complexes at N/P = 10. [mRNA] = 
0.1 𝜇g/𝜇L. 
 

2.4 siRNA Delivery 

Next, the library of MPBPs was screened for siRNA delivery. siRNAs all have the 

same structure and similar size: ~ 20-25 base pairs, rigid, and double-stranded.50 Initially, 

we used a representative MPBP, G0-100LP, to identify the optimal conditions for siRNA 

transfection. For this purpose, anti-Luc siRNA was complexed with G0-100LP at various 

N/P ratios (3 – 80), transfected into the HEK-293 cells expressing firefly luciferase (Luc), 

and then assayed for luciferase activity after 48 h to determine the gene silencing (Figure 
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2.12). After identifying the optimal siRNA transfection conditions ([siRNA] = 60 nM, N/P = 

12.5), we tested all MPBPs to determine the most effective vectors (Figure 2.13). 

At the optimal siRNA transfection conditions, G0-series vectors, specifically G0-

100LP and G0-20SA-80LP, knocked down luciferase expression by over 75%. Compared 

to a commercially available benchmark vector for siRNA transfection, Lipofectamine 

RNAiMAX, the MPBPs induced similar gene knockdown, but exhibited lower cytotoxicity. 

Noticeably, G0-100LP and G0-20SA-80LP exhibited high gene silencing at relatively low 

N/P ratios (N/P = 10 - 15) (Figure 2.14), in contracts to other synthetic vectors for siRNA 

delivery where higher N/P ratios are often required.28,41,43,51  

For potential in vivo applications, it is important to demonstrate successful 

transfection in the presence of serum. Transfections in the presence of serum provide 

several challenges as RNases in serum may degrade RNA molecules and the positively 

charged nanoparticles may aggregate with negatively charged proteins in serum.52-54 To 

investigate the serum compatibility of our MPBP system, transfections of MPBP-siRNA 

complexes were performed in OptiMEM containing 10% FBS (Figure 2.15). Compared to 

the transfections in serum-free media, higher N/P ratios were required for effective gene 

silencing in serum-containing conditions. Presumably at higher N/P ratios more stable 

nanoparticles were formed which could remain stable in serum-containing media. Several 

MPBP vectors (G0-100LP, G0-20SA-80LP, G1-100LP, G1-20SA-80LP) showed excellent 

gene silencing effect at their optimal N/P ratios, with similar or higher knock down 

efficiency compared to the Lipofectamine positive control. 
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Figure 2.12 Transfection screening of G0-100LP-siRNA complexes at various N/P ratios (3 
– 80) in firefly luciferase-expressing HEK-293 cells. [siRNA] = 60 nM. 

 

Figure 2.13 Gene silencing and cell viability results of different MPBP-siRNA complexes 
transfected to firefly luciferase-expressing HEK-293 cells. Cell viability was assessed by 
comparing luciferase expression in non-treated cells to cells treated with negative control 
siRNA-MPBP complex. In serum-free media, N/P = 12.5, [siRNA] = 60 nM. 
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Figure 2.14 Transfection screening of different MPBP-siRNA complexes in firefly 
luciferase-expressing HEK-293 cells. Serum-free media. (A) N/P = 10, [siRNA] = 60 nM. (B) 
N/P = 15, [siRNA] = 60 nM. 
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Figure 2.15 Gene silencing and cell viability results of different MPBP-siRNA complexes 
transfected to firefly luciferase-expressing HEK-293 cells. Cell viability was assessed by 
comparing luciferase expression in non-treated cells to cells treated with negative control 
siRNA-MPBP complex. In 10% FBS-containing media, N/P = 35 for G0 series of vectors, 
N/P = 30 for G1 series of vectors, N/P = 20 for G2-100LP, [siRNA] = 60 nM. 
 

2.5 Fluc mRNA and eGFP mRNA Delivery. 

 After demonstrating the capability to deliver siRNA, MPBPs were further tested to 

deliver mRNAs of various sizes. Mammalian encoding mRNAs vary greatly in size, with a 

median length of 1.4 kb.55 Compared to siRNAs, which all have similar size and structure, 

mRNAs vary dramatically in size and structure and are more susceptible to degradation.56 

Capitalizing the versatile architecture design, we investigated our MPBPs for universal 

delivery of mRNAs of varying length.  
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Initially, we tested the MPBPs for the delivery of Fluc mRNA, a 1996 nucleotide long 

single-stranded mRNA. To assay Fluc mRNA delivery, NIH 3T3 cells were treated with 

different MPBP-Fluc mRNA nanocomplexes. Lipofectamine MessengerMAX (LF MM) was 

used as a positive control and naked mRNA alone and untreated cells were used as negative 

controls. After 24 hours following transfection, the luciferase activity was assayed by an 

IVIS camera. To determine the optimal mRNA transfection conditions, G0-100LP and G1-

100LP were used as representative vectors in our initial transfection screening (Figure 

2.16 – 2.17). The luminescence was the greatest for G0-100LP at N/P = 10 and G1-100LP 

at N/P = 15. After identifying the optimized mRNA transfection conditions, we assayed all 

the vectors for Fluc mRNA delivery at their optimal N/P ratios (Figure 2.18). The vector 

G1-100LP performed significantly better than G0-100LP, with more than twice as much 

luminescence as compared to the positive control (LF MM). Two of the other vectors, G0-

20SA-80LP and G1-20TEG-80LP also exhibited similar transfection efficacy as the positive 

control. Due to the significantly larger size and increased degradation instability of mRNA 

compared to siRNA, the vectors for mRNA delivery may require higher valency of linear 

peptide functionalization in order to form stable nanoparticles. We propose this is the 

reason why G1-100LP performs significantly better than G0-100LP in mRNA delivery. 
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Figure 2.16 Transfection screening of G0-100LP-Fluc mRNA complexes in NIH 3T3 cells at 
various N/P ratios (5 – 30) (150 ng mRNA per well). 

 
Figure 2.17 Transfection screening of G1-100LP-Fluc mRNA complexes in NIH 3T3 cells at 
various N/P ratios (5 – 50) (150 ng mRNA per well). 
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Figure 2.18 Fluc mRNA transfection using different MPBPs at their optimal N/P ratios in 
NIH 3T3 cells (150 ng mRNA per well). Results summary of transfections in serum-free 
media. N/P = 10 for G0 series of vectors and N/P = 15 for G1, G2 series of vectors. For RLU 
values, ∗∗∗ = 𝑃 < 0.001 relative to LF MM. 
 

Additionally, to demonstrate that the generality of MPBPs for delivery of mRNAs of 

varying sizes, we then investigated eGFP mRNA delivery. eGFP mRNA is roughly half the 

size of Fluc mRNA (996 nucleotides). To assay eGFP mRNA delivery efficacy, NIH 3T3 cells 

were transfected with MPBP-eGFP mRNA nanocomplexes and eGFP expression was 

measured 24 hours post-transfection via flow cytometry. Interestingly, the transfection 

results indicated that the best MPBP vector for luciferase delivery, G1-100LP, is also the 

most effective for delivering eGFP mRNA, with comparable protein expression level as the 
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positive control (LF MM) (Figure 2.19). These results demonstrate that the MPBP system 

is flexible and capable of delivering mRNAs of varying sizes. 

 

Figure 2.19 eGFP mRNA transfection using different MPBPs at their optimal N/P ratios in 
NIH 3T3 cells (150 ng mRNA per well). Results summary of transfections in serum-free 
media. N/P = 10 for G0 series of vectors and N/P = 15 for G1, G2 series of vectors. 
 

Similar to siRNA delivery study, Fluc mRNA and eGFP mRNA transfections were also 

performed in media containing 10% FBS to assay the efficacy in the presence of serum 

(Figure 2.20 - 2.21). While LF MM delivery efficacy was substantially reduced in serum-

containing conditions, our most effective vectors (G1-100LP, G0-20SA-80LP, and G1-

20TEG-80LP) still maintain their high transfection efficacy in 10% FBS OptiMEM, 

outperforming LF MM by up to 240%. 
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Figure 2.20 Fluc mRNA transfection using different MPBPs at their optimal N/P ratios in 
NIH 3T3 cells (150 ng mRNA per well). Results summary of transfections in 10% FBS-
containing media. N/P = 50 for all vectors. For RLU values, ∗∗∗ = 𝑃 < 0.001 relative to LF 
MM. 

 

Figure 2.21 eGFP mRNA transfection using different MPBPs at their optimal N/P ratios in 
NIH 3T3 cells (150 ng mRNA per well). Results summary of transfections in 10% FBS-
containing media. N/P = 50 for all vectors. For mean eGFP Fluorescence, ∗∗∗ = 𝑃 < 0.001, ∗
∗∗∗ = 𝑃 < 0.0001 relative to LF MM. 
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In both serum-free media and 10% FBS-containing media, most of the vectors 

displayed minimal cytotoxicity as measured via lactate dehydrogenase (LDH) assay 

(Figure 2.22). The G1 vectors with hydrophobic stearic acid functionalization exhibited 

slightly lower viability. Presumably, the attached long aliphatic chains may disrupt the cell 

membrane and induce toxicity.43,57 Higher toxicity was also observed for G2 vector in both 

mRNA delivery and siRNA delivery, which presumably arises from the high positive charge 

density of the large G2 dendrons.  

 

2.6 Confocal Study of Cellular Uptake and Endosomal Escape 

To gain insights on structure-function relationship for the MPBPs, confocal 

microscopy was employed to visualize the mRNA cellular internalization. Cells were 

transfected with Cy5-labelled Fluc mRNA and imaged using confocal microscopy to 

visualize the internalization of the MPBP-mRNA nanoparticles (Figure 2.23). Additionally, 

cellular uptake was quantified 4 hours post-transfection by flow cytometry (Figure 2.24). 

Most MPBP-mRNA complexes were internalized into the cells efficiently (over 70% Cy5-

positive cells). Increased TEG incorporation decreased the mRNA cellular uptake, which 

explains why the siRNA and mRNA transfection efficacy decreased with the increasing 

amount of TEG functionalization. This observation agrees with previous studies showing 

that PEGylation generally reduces cell uptake of polyplexes.58-59 In contrast, as shown in 

both G0-series and G1-series MPBPs, incorporation of appropriate amount stearic acid 

enhanced cell internalization. Fatty acids have been shown to facilitate the cellular uptake 

through their favorable interactions with cell membrane.47  
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Figure 2.22 Cytotoxicity of the MPBP vectors against NIH 3T3 cells assayed using a LDH 
assay (150 ng Fluc mRNA per well). (A) Results summary of Fluc mRNA transfection in 
serum-free media, N/P = 10 for G0 series of vectors and N/P = 15 for G1, G2 series of 
vectors. (B) Results summary of Fluc mRNA transfection in 10% FBS-containing media, 
N/P = 50 for all vectors. 
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Figure 2.23 Cellular uptake of MPBP-Cy5 Fluc mRNA complexes as observed by confocal 
fluorescence microscopy. Confocal fluorescence images of NIH 3T3 cells 4 h post-
transfection (nuclei were stained blue with Hoechst 33342 indicated in blue, lysosomes 
were stained with Lysotracker Deep Green indicated in green, Cy5 Fluc mRNA is indicated 
in red, all scale bars = 100 𝜇m). Zoomed in images are inserted for clear visualization of 
individual cells. Transfection conditions: 300 ng Cy5 Fluc mRNA per well, N/P = 15. 
 

However, excess aliphatic chain functionalization may cause disruption to the cell 

membrane and induce toxicity as shown in our previous siRNA study (Figure 2.13) and 

LDH assay (Figure 2.22). The increased cytotoxicity of the MPBPs with high fatty acid 

content could cause the delivery deficiency of high generation MPBPs with stearic acid 

functionalization. 

 

 

 

 

 



64 
 

untr
ea

te
d

m
R
N
A
 o

nly

LF M
M

G
0-

10
0L

P

G
1-

10
0L

P

G
2-

10
0L

P

G
0-

20
TEG

-8
0L

P

G
1-

20
TEG

-8
0L

P

G
0-

50
TEG

-5
0L

P

G
1-

50
TEG

-5
0L

P

G
0-

20
S
A
-8

0L
P

G
1-

20
S
A
-8

0L
P

0

20

40

60

80

100

120

%
 c

e
ll
s

 C
y

-5
 P

o
s

it
iv

e

 
Figure 2.24 Cellular uptake of MPBP-Cy5 Fluc mRNA complexes in NIH 3T3 cells 
quantified by flow cytometry. Fluorescence was measured 4 h post-transfection using a 
flow cytometer. Transfection conditions: 300 ng Cy5 Fluc mRNA per well, N/P = 15. 
 

Furthermore, intracellular trafficking of nanoplexes was observed by confocal 

microscopy to gain insight on the endosomal escape efficiency of different MPBP-eGFP 

mRNA complexes (Figure 2.25). Endosomal escape was indicated by the absence of 

colocalization between Cy5-labelled eGFP mRNA, indicated in red, and LysoTracker Blue, 

indicated in green in the cytosol. Even though both G1-100LP and G1-20SA-80LP showed 

efficient cellular uptake after 4 h, G1-100LP exhibited much more efficient endosomal 

escape after 12 h. In the cells transfected by G1-100LP-eGFP mRNA complexes, dispersed 

Cy5-labelled eGFP mRNA was clearly observed and subsequent GFP expression was also 

detected (shown in blue in the figure) (Figure 2.25A). 
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Figure 2.25 Endosomal escape by intracellular trafficking for MPBP-Cy5 eGFP mRNA 
complexes. Confocal fluorescence images of NIH 3T3 cells 12 h post-transfection of (A) G1-
100LP and (B) G1-20SA-80LP. Lysosome was stained with LysoTracker Blue indicated in 
green, Cy5 eGFP mRNA is indicated in red, eGFP expression is indicated in blue, scale bars = 
20 𝜇m. Transfection conditions: 300 ng Cy5 eGFP mRNA per well, N/P = 15. 
 

In sharp contrast, substantial nanoparticle aggregation and eGFP mRNA-lysosome 

co-localization were observed inside the cells transfected by G1-20SA-80LP-eGFP mRNA 

complexes (Figure 2.25B). We believe the abundant hydrophobicity from excessive 

hydrocarbon side chains induces aggregation through hydrophobic interactions in the 

highly charged cell media. This aggregation may shield the proton sponge effect of 

imidazole moieties, which causes endosomal entrapment of large mRNA.60-61 The higher 

delivery efficacy of G1-100LP can be attributed to the enhanced stability and endosomal 

escape compared to G1-20SA-80LP. 
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2.7 Replicon mRNA Delivery 

Furthermore, we examined the MPBP vectors for replicon mRNA (RepRNA) 

delivery. Delivery of RepRNA is of great interest for the development of next generation 

vaccines.62 RepRNA is used in vaccines to express a protein antigen of interest in target 

cells to induce a prolonged immune responses, which increases the efficacy of the vaccines 

and reduces the need for booster shots.10-11 Efficient delivery of RepRNA is extremely 

challenging due to its remarkable large size (~104 nt) and complex secondary structure 

relative to other RNA species.62-64 The replicon mRNA expressing firefly luciferase was 

complexed with different MPBPs and then transfected into BHK cells (Figure 2.26).  

 

Figure 2.26 Replicon mRNA transfection of different MPBPs at their optimal N/P ratios 
(N/P = 10 for G0 series of vectors and N/P = 15 for G1, G2 series of vectors) in BHK cells 
(150 ng mRNA per well). 
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Our best vector, G1-100LP, was demonstrated to be able to deliver large replicon 

mRNA, with similar delivery efficiency as the positive control (LF MM) (Figure 2.26). 

Prolonged luciferase expression was observed 72 hours post-transfection, whereas regular 

Fluc mRNA transfection only provided transient luciferase expression after 24 hours post-

transfection (Figure 2.27).  

 

Figure 2.27 Comparison of luciferase expression between replicon mRNA delivery and 
regular Fluc mRNA delivery by G0-100LP at N/P = 10 (200 ng mRNA per well). 
 

2.8 CRISPR-Cas9 Delivery 

Over the past decade, the emergence of CRISPR technology has revolutionized the 

field of gene therapy by allowing for the permanent editing of faulty genes.12,65 However, 

the delivery of CRISPR-Cas9 machinery is extremely challenging, limiting its potential 

applications.17,66-67 There are three main methods to delivery CRISPR machinery:68 delivery 

of DNA encoding CRISPR components,69-70 co-delivery of targeting sgRNA and mRNAs 
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encoding Cas9,22,71-72 and direct delivery of preformed Cas-ribonucleoproteins (RNP) 

particles.73-74 RNP delivery is hampered by the large size of the protein, causing poor 

delivery efficacy. Compared to DNA delivery, mRNA co-delivery of CRISPR components 

only produces transient Cas9 protein expression, reducing off-target effects and lowering 

cytotoxicity.75-76 RNA-based CRISPR-Cas9 editing requires the delivery of two components: 

an mRNA encoding Cas9 protein and a sgRNA for targeting the specific site of genome for 

editing. Upon cellular entry, Cas9 mRNA is translated to multiple copies of the Cas9 protein 

in the cytosol that then associate with the sgRNAs present to form active RNPs.77 This 

method requires effective co-delivery of both large Cas9 mRNA and relatively short sgRNA. 

Because our MPBP system was successful for the delivery of both small RNA (siRNA) and 

large RNA (mRNA), we employed the MPBP system to address this difficult delivery 

challenge of CRISPR-Cas9 machinery.  

For CRISPR-Cas9 delivery, we chose several vectors that demonstrated successful 

delivery of siRNA and mRNA. To assay the co-delivery of Cas9 mRNA and sgRNA, eGFP-

expressing NIH 3T3 cells were treated with different RNA-MPBP nanocomplexes. In the co-

delivery of Cas9 mRNA and sgRNA (sgRNA/Cas9 mRNA mass ratio ~ 10:1), large quantity 

of sgRNA is required to associate with abundant Cas9 protein from mRNA translation.22,71 

After 24 hours, the media was changed to complete media and the cells were cultured for a 

further 5 days. On day 6 post-transfection, the cells were trypsinized and eGFP expression 

was determined via flow cytometry (Figure 2.28A). Importantly, the vectors with SA 

functionalization (G0-20SA-80LP and G1-20SA-80LP), which were most effective for 

siRNA delivery, showed potent gene editing efficacy of more than 60% (Figure 2.28B). The 

SA side chains incorporation promotes nanocomplex assembly and enhances cellular 
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uptake, which allows for high gene-editing efficiency. Compared to G1-20SA-80LP-mRNA 

transfection, the nanoparticle aggregation became less an issue in G1-20SA-80LP-siRNA 

transfection (Figure 2.29), presumably due to the significantly smaller RNA sizes and less 

positive charges on nanoparticle surfaces (Table 2.1 - 2.2). As sgRNA dominates in the co-

delivery nanocomplex (sgRNA/Cas9 mRNA molar ratio ~ 450:1), the MPBPs which are 

effective for small RNA delivery are also the most effective for Cas9 mRNA/sgRNA co-

delivery under this condition.  

Figure 2.28 Transfection results of CRISPR-Cas9 delivery in eGFP-expressing 3T3 cells. (A) 
Representative flow cytometry plot for Cas9 mRNA/sgRNA co-delivery. (B) Results 
summary of Cas9 mRNA/sgRNA co-delivery in serum-free media. 5000 cells per well, 100 
ng sgRNA and 10 ng mRNA per well. Transfections were performed in OptiMEM at an N/P 
= 30. Cells were analyzed via flow cytometry 6 days post transfection. 
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Figure 2.29 Endosomal escape by intracellular trafficking for MPBP-Cy5 siRNA complexes. 
Confocal fluorescence images of HEK-293T cells 24 h post-transfection of (A) G1-100LP 
and (B) G1-20SA-80LP. Lysosome was stained with LysoTracker Blue indicated in green, 
Cy5 negative control siRNA is indicated in red, scale bars = 20 𝜇m. Transfection conditions: 
[siRNA] = 60 nM, N/P = 10. 

 

2.9 Conclusions 

In conclusion, we have developed a multivalent peptide-functionalized bioreducible 

polymer (MPBP) system for universal, safe and efficient delivery of various RNAs of 

dramatically different sizes and structures efficiently to multiple cell lines. Benefitting from 

the structural diversity and facile synthesis, this delivery system is highly tunable, scalable 

and biodegradable. Vectors with high multivalency are required for the delivery of large 

RNAs because of their larger size and increased sensitivity to nuclease degradation. G0-

MPBPs are most effective for siRNA delivery, whereas G1 series of MPBPs are more 

effective for mRNA delivery. Although TEG enhances the colloidal stability, the TEG side 

chains also reduce cell internalization due to the increased hydrophilicity and reduction of 

charge density on the particle surface. Appropriate amount of hydrophobic side chains are 
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beneficial for nanoparticle assembly and cellular uptake, but excess aliphatic side chains 

induce aggregation, endosomal entrapment and high cytotoxicity. The high delivery 

efficiency and low cytotoxicity indicate that MPBPs are a promising family of vectors for 

universal RNA delivery. Further structural optimization of MPBPs as well as more 

biological studies including in vivo studies are currently underway in our laboratory.  
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2.12 Experimental 

Materials. All commercially available chemicals were used without further purification 

unless otherwise noted. Protected amino acids were purchased from Advanced ChemTech 

(Loiusville, KY) and Aroz Technologies, LLC. (Cincinnati, OH). Coupling reagents were 

purchased from GL Biochem Ltd. (Shanghai, China). All siRNA used in this study was 

purchased from Thermo Fischer Life Technologies with Silencer®  Select negative control 

siRNA and Silencer®  Select Custom siRNA used for gel assays, DLS measurements, and 

transfection studies. The sequences for the anti-Luc siRNA are: 5’-

AGACUAUAAGAUUCAAUCUTT-3’ (sense) and 5’-AGAUUGAAUCUUAUAGUCUTG-3’ (anti-

sense). Mission®  siRNA Fluorescent Universal Negative Control #1 Cyanine 5 was obtained 

from Sigma-Aldrich. CleanCap®  eGFP mRNA (5moU), Fluc mRNA (5moU), Cyanine 5 Fluc 

mRNA (5moU), Cyanine 5 eGFP mRNA (5moU), and Cas9 mRNA (5moU-modified) were 

obtained from TriLink Biotechnologies (Sorrento Mesa, CA). Replicon mRNA was 

generously provided by Professor Darrell Irvine (Department of Biological Engineering, 

MIT). sgRNA was synthesized according to EnGen®  sgRNA Synthesis Kit protocol. 

Lipofectamine RNAiMAX, Lipofectamine MessengerMAX, and Lipofectamine 2000 were 

purchased from Invitrogen (Carlsbad, CA) and used as positive controls following the 

manufacturer’s protocol. Pierce™ LDH Cytotoxicity Assay Kit was purchased from Thermo 

Fisher (San Jose, CA). All reactions were performed using HPLC grade solvents unless 

otherwise noted. All water used in biological experiments was Nanopure water obtained 

from Barnstead Nanopure Diamond (Waltham, MA). Unmodified NIH 3T3 cells were a 

generous gift from Professor Young Jik Kwon (Department of Chemical Engineering, UC 

Irvine, CA). Firefly luciferase-expressing HEK cells were generously provided by Professor 
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Jennifer Prescher (Department of Chemistry, UC Irvine, CA). GFP-expressing NIH 3T3 cells 

were obtained through lentiviral transduction.78-79 psPAX2 plasmid was a gift from Didier 

Trono (Addgene plasmid #12260; RRID: Addgene_12260), pMD2.G was a gift from Didier 

Trono (Addgene plasmid #12259; RRID: Addgene_12259), and pLJM1-EGFP was a gift from 

David Sabatini (Addgene plasmid #19319; RRID: Addgene_19319). Dulbecco’s modified 

Eagle’s medium (DMEM), fetal bovine serum (FBS), and OptiMEM were purchased from 

Invitrogen (Carlsbad, CA).  

 

Instruments. Nuclear Magnetic Resonance (NMR) spectra were recorded on 500 MHz or 

600 MHz Bruker spectrometers. Chemical shifts were reported in ppm. Coupling constants 

(J values) were reported in Hertz. 1H NMR chemical shifts were referenced to D2O (𝛿= 4.79 

ppm). The molecular weight and molecular weight distribution of the MPBP backbone was 

measured by gel permeation chromatography (GPC). GPC was performed on an Agilent 

1100 SEC system using an OHpak SB-803 HQ column from Shodex. The molecular weight 

was determined with respect to poly(ethylene glycol) (PEG) S3 standards purchased from 

Aldrich. DMF with 0.1% LiBr (wt/v) was used as the eluent at a flow rate of 1.0 mL/min 

with column temperature at 45°C. The Z-average size and zeta potential of MPBP-RNA 

polyplexes were measured at 633 nm using Zetasizer (NanoZS) dynamic light scattering 

instrument (Malvern Instruments, Malvern, UK) at 25 ˚C with detection angle of 173˚. The 

MPBP/RNA nanoparticles were visualized on a FEI/Philips CM-20 conventional TEM 

operated at an accelerating voltage of 200 kV. Confocal images were obtained using a Zeiss 

LSM 700 (Carl Zeiss AG, Oberkochen, Germany). Flow cytometry was performed on a BD 

ACCURI C6 flow cytometer (BD Biosciences, San Jose). Solid-phase peptide synthesis was 
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performed on a Protein Technologies PS3 synthesizer. Matrix assisted laser desorption 

ionization spectral data (MALDI) was obtained from the UC Irvine Mass Spectrometry 

Facility and collected with an AB SCIEX TOF/TOF 5800 System. 

 

MPBP Vector Synthesis and Characterization 

Scheme 2.1 Synthetic scheme for MPBP vectors. Amounts of TEG, SA, OA, and linear 
peptide functionalization are specified in the procedures.  
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G0 polymer backbone 1, G1 polymer backbone 2, G2 polymer backbone 3, and NHS-

TEG-OMe were obtained according to previous literature.41-42 The functionalization 

percentage X and Y are determined based on the total amount of primary amines on 

different polymers. All yields given refer to isolated yields.  

The deprotected G0 polymer backbone 1 was characterized by analytical GPC with 0.1% 

LiBr in DMF as the eluent and poly(ethylene glycol) (PEG) standards were used as the 

reference. The result was shown below: 

 

1H NMR of the polymer samples used a 3 seconds d1 relaxation time to ensure chain 

relaxation and to help with resolution. Methanol, acetone and water were unable to be 

completely removed from the polymer samples. The integration ratios of 1H NMR peaks are 

determined based on each repeating unit of the polymers. The integration of some peaks 

are not accurate due to the overlapping between sample signals and solvent signals.  

 

Typical procedure for synthesis of G0-X TEG polymer backbone 4:  

In a 25 mL round bottom flask equipped with a stir bar, G0 polymer backbone 1 (1.0 

equiv.) was dissolved in 5 mL of anhydrous DMF and DIPEA (2.0 equiv.) was added. The 

Mn = 9.37 ×  103 g/mol 
      Mw = 1.95 × 104 g/mol 

PDI = 2.08 
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reaction was cooled to 0 oC and the NHS-TEG-OMe was added in the corresponding amount 

of functionalization ratio X (0.4 equiv. for 20% and 1.0 equiv. for 50%). After 30 minutes, 

the ice bath was removed and the reaction mixture was stirred under nitrogen at room 

temperature overnight. After removal of the solvent under reduced pressure, the residue 

was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 kDa) against MeOH for 12 

h. Then MeOH was removed in vacuo to give G0-X TEG polymer backbone 4 as a colorless 

oil. 

G0-20TEG polymer backbone (70% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 

𝛿 4.43 – 4.16 (m, 6H), 3.78 – 3.63 (m, 6H), 3.39 (s, 1H), 3.29 – 3.02 (m, 6H), 1.90 – 1.41 (m, 

6H), 1.29 – 1.27 (m, 3H). 

G0-50TEG polymer backbone (65% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 

𝛿 4.54 – 4.22 (m, 7H), 3.77 – 3.63 (m, 14H), 3.39 (s, 3H), 3.22 – 3.02 (m, 6H), 1.90 – 1.40 (m, 

6H), 1.29 – 1.26 (m, 3H). 

 

Typical procedure for synthesis of G1-X TEG polymer backbone 5:  

In a 25 mL round bottom flask equipped with a stir bar, G1 polymer backbone 2 (1.0 

equiv.) was dissolved in 5 mL of anhydrous DMF and DIPEA (4.0 equiv.) was added. The 

reaction was cooled to 0 oC and the NHS-TEG-OMe was added in the corresponding amount 

of functionalization ratio X (0.8 equiv. for 20% and 2.0 equiv. for 50%). After 30 minutes, 

the ice bath was removed and the reaction mixture was stirred under nitrogen at room 

temperature overnight. After removal of the solvent under reduced pressure, the residue 

was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 kDa) against MeOH for 12 
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h. Then MeOH was removed in vacuo to give G1-X TEG polymer backbone 5 as a colorless 

oil. 

G1-20TEG polymer backbone (70% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 

𝛿 4.64 – 4.03 (m, 9H), 3.76 – 3.63 (m, 11H), 3.39 (s, 2.4H), 3.21 – 3.00 (m, 10H), 1.92 – 1.34 

(m, 18H), 1.27 (m, 3H). 

G1-50TEG polymer backbone (68% isolated yield): 1H NMR (600 MHz, D2O, 298 K, 

ppm): 𝛿 4.66 – 4.06 (m, 11H), 3.76 – 3.63 (m, 28H), 3.39 (s, 6H), 3.20 – 3.02 (m, 10H), 2.01 – 

1.39 (m, 18H), 1.27 (m, 3H). 

 

Protected linear peptide (Boc-WKHKHKHG-OH): 2-chlorotrityl chloride resin was first 

loaded with Fmoc-Gly-OH at the loading density of 0.484 mmol/g. Following the sequence 

of HKHKHKW, Gly-loaded resin (400 mg, 1.0 equiv., 0.194 mmol) was coupled with 3 

different side-chain protected amino acids on a PS3 solid-phase peptide synthesizer. For 

each coupling step, one amino acid was added for reaction: Fmoc-His(Trt)-OH (601 mg, 5.0 

equiv., 0.97 mmol), Fmoc-Lys(Boc)-OH (455 mg, 5.0 equiv., 0.97 mmol), or Boc-Trp(Boc)-

OH (392 mg, 5.0 equiv., 0.97 mmol). HATU (332 mg, 4.5 equiv., 0.873 mmol) was utilized as 

coupling reagent and HOAt (119 mg, 4.5 equiv., 0.873 mmol) was included to suppress the 

possible epimerization. 20% collidine in DMF was used in the coupling reaction and 20% 

piperidine in DMF was used to deprotect the Fmoc group. After the synthesis was finished, 

the protected linear peptide was cleaved from the resin by using 20% 

hexafluoroisopropanol in anhydrous CH2Cl2. After removal of the solvent under reduced 

pressure, the residue was obtained as a white solid to give 350 mg (79%) of protected 

linear peptide (Boc-WKHKHKHG-OH). The synthesized linear peptide was purified by 
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C18 reverse-phase chromatography (MeOH as the eluent) and utilized for the following 

coupling reactions. MALDI-TOF MS m/z: 2284.2156 [M+H]+. 

 

 

G0-100LP 6: In a 20 mL scintillation vial, G0 polymer backbone 1 (5.0 mg, 0.016 mmol), 

protected linear peptide (56 mg, 0.024 mmol), HATU (12.5 mg, 0.032 mmol) and HOAt 

(4.5 mg, 0.032 mmol) was dissolved in 2 mL anhydrous DMF. After DIPEA (14 𝜇L, 0.08 

mmol) was added, the yellow reaction mixture was left to stir at room temperature 

overnight. The reaction mixture was then precipitated by adding the reaction solution into 

water. After centrifugation, the water was removed and the polymer was dissolved in a 

mixture of TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) and TIPS (0.2 mL). The 

deprotection reaction mixture was stirred at room temperature for 6 h under nitrogen. 

After removal of the solvents under reduced pressure, the residue was dissolved in MeOH 

and then precipitated in diethyl ether. After centrifugation, the supernatant was discarded 

and the white precipitate was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 



86 
 

kDa) against MeOH for 24 h. Then MeOH was removed in vacuo to give 44 mg (82%) of G0-

100LP 6 (TFA salt) as a white solid. 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.63 – 8.58 (m, 

6H), 7.54 – 7.50 (m, 4H), 7.30 – 7.13 (m, 12H), 4.59 – 4.02 (m, 21H), 3.80 – 3.74 (m, 2H), 

3.23 – 3.14 (m, 17H), 3.06 – 2.94 (m, 17H), 1.83 – 1.24 (m, 45H). 

 

G1-100LP 7: In a 20 mL scintillation vial, G1 polymer backbone 2 (10.0 mg, 9.17 × 10−3 

mmol), protected linear peptide (126 mg, 0.055 mmol), HATU (20.9 mg, 0.055 mmol) and 

HOAt (7.5 mg, 0.055 mmol) was dissolved in 2.5 mL anhydrous DMF. After DIPEA (34 𝜇L, 

0.19 mmol) was added, the reaction mixture was left to stir at room temperature overnight. 

The reaction mixture was then precipitated by adding the reaction solution into water. 

After centrifugation, the water was removed and the polymer was dissolved in a mixture of 

TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) and TIPS (0.2 mL). The deprotection 

reaction mixture was stirred at room temperature for 6 h under nitrogen. After removal of 

the solvents under reduced pressure, the residue was dissolved in MeOH and then 

precipitated in diethyl ether. After centrifugation, the supernatant was discarded, and the 

white precipitate was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 kDa) 

against MeOH for 24 h. Then MeOH was removed in vacuo to give 47 mg (78%) of G1-

100LP 7 (TFA salt) as a white solid. 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.56 – 8.41 (m, 

12H), 7.52 – 7.05 (m, 32H), 4.33 – 3.72 (m, 43H), 3.40 – 2.94 (m, 66H), 1.96 – 1.17 (m, 93H). 

 

G2-100LP 8: In a 20 mL scintillation vial, G2 polymer backbone 3 (10.0 mg, 4.85 × 10−3 

mmol), protected linear peptide (124 mg, 0.054 mmol), HATU (20.0 mg, 0.052 mmol) and 

HOAt (7.1 mg, 0.052 mmol) was dissolved in 2.5 mL anhydrous DMF. After DIPEA (14 𝜇L, 
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0.08 mmol) was added, the reaction mixture was left to stir at room temperature overnight. 

The reaction mixture was then precipitated by adding the reaction solution into water. 

After centrifugation, the water was removed and the polymer was dissolved in a mixture of 

TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) and TIPS (0.2 mL). The deprotection 

reaction mixture was stirred at room temperature for 6 h under nitrogen. After removal of 

the solvents under reduced pressure, the residue was dissolved in MeOH and then 

precipitated in diethyl ether. After centrifugation, the supernatant was discarded, and the 

white precipitate was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 kDa) 

against MeOH for 24 h. Then MeOH was removed in vacuo to give 39 mg (61%) of G2-

100LP 8 (TFA salt) as a white solid. 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.57 – 8.43 (m, 

24H), 7.53 – 7.06 (m, 64H), 4.33 – 3.65 (m, 83H), 3.24 – 2.94 (m, 130H), 1.72 – 1.26 (m, 

189H). 

 

Typical procedure for synthesis of G0-X TEG-Y LP 9:  

In a 20 mL scintillation vial, G0-X TEG polymer backbone 4 (1.0 equiv.), protected linear 

peptide (quantity determined by the functionalization ratio Y, 1.6 equiv. for 80% and 1.0 

equiv. for 50%), HATU (1.6 equiv. for 80% and 1.0 equiv. for 50%) and HOAt (1.6 equiv. for 

80% and 1.0 equiv. for 50%) was dissolved in 2 mL anhydrous DMF. After DIPEA (3.2 

equiv. for 80% and 2.0 equiv. for 50%) was added, the yellow reaction mixture was left to 

stir at room temperature overnight. The reaction mixture was then precipitated by adding 

the reaction solution into water. After centrifugation, the water was removed and the 

polymer was dissolved in a mixture of TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) and 

TIPS (0.2 mL). The deprotection reaction mixture was stirred at room temperature for 6 h 
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under nitrogen. After removal of the solvents under reduced pressure, the residue was 

dissolved in MeOH and then precipitated in diethyl ether. After centrifugation, the 

supernatant was discarded, and the white precipitate was dissolved in MeOH and purified 

via dialysis (MWCO = 6 – 8 kDa) against MeOH for 24 h. Then MeOH was removed in vacuo 

to give G0-X TEG-Y LP 9 (TFA salt) as a white solid.  

G0-20TEG-80LP (75% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.58 – 8.39 

(m, 5H), 7.55 – 7.06 (m, 13H), 4.68 – 4.61 (m, 2H), 4.35 – 3.99 (m, 11H), 3.83 – 3.59 (m, 6H), 

3.41 – 2.96 (m, 30H), 1.75 – 1.17 (m, 38H). 

G0-50TEG-50LP (71% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.46 – 8.12 

(m, 3H), 7.54 – 7.06 (m, 8H), 4.64 – 3.98 (m, 20H), 3.73 – 3.59 (m, 13H), 3.20 – 2.94 (m, 

23H), 1.72 – 1.21 (m, 27H). 

 

Typical procedure for synthesis of G1-X TEG-Y LP 10:  

In a 20 mL scintillation vial, G1-X TEG polymer backbone 5 (1.0 equiv.), protected linear 

peptide (quantity determined by the functionalization ratio Y, 3.2 equiv. for 80% and 2.0 

equiv. for 50%), HATU (3.2 equiv. for 80% and 2.0 equiv. for 50%) and HOAt (3.2 equiv. for 

80% and 2.0 equiv. for 50%) was dissolved in 2 mL anhydrous DMF. After DIPEA (6.4 

equiv. for 80% and 4.0 equiv. for 50%) was added, the yellow reaction mixture was left to 

stir at room temperature overnight. The reaction mixture was then precipitated by adding 

the reaction solution into water. After centrifugation, the water was removed and the 

polymer was dissolved in a mixture of TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) and 

TIPS (0.2 mL). The deprotection reaction mixture was stirred at room temperature for 6 h 

under nitrogen. After removal of the solvents under reduced pressure, the residue was 
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dissolved in MeOH and then precipitated in diethyl ether. After centrifugation, the 

supernatant was discarded, and the white precipitate was dissolved in MeOH and purified 

via dialysis (MWCO = 6 – 8 kDa) against MeOH for 24 h. Then MeOH was removed in vacuo 

to give G1-X TEG-Y LP 10 (TFA salt) as a white solid.  

G1-20TEG-80LP (72% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.54 – 8.24 

(m, 10H), 7.53 – 7.06 (m, 26H), 4.66 – 4.60 (m, 2H), 4.33 – 4.13 (m, 22H), 4.01 – 3.64 (m, 

24H), 3.40 – 2.94 (m, 57H), 1.86 – 1.20 (m, 73H). 

G1-50TEG-50LP (68% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.52 – 8.28 

(m, 6H), 7.54 – 7.05 (m, 16H), 4.67 – 4.60 (m, 1H), 4.33 – 3.86 (m, 17H), 3.74 – 3.59 (m, 

34H), 3.41 – 2.95 (m, 40H), 1.74 – 1.23 (m, 60H). 

 

Typical procedure for synthesis of G0-X SA-Y LP 11:  

In a 20 mL scintillation vial, G0 polymer backbone 1 (1.0 equiv.), stearic acid (quantity 

determined by the functionalization ratio X, 0.4 equiv. for 20% and 1.0 equiv. for 50%), 

protected linear peptide (quantity determined by the functionalization ratio Y, 1.6 equiv. 

for 80% and 1.0 equiv. for 50%), HATU (2.0 equiv.) and HOAt (2.0 equiv.) was dissolved in 

2 mL anhydrous DMF. After DIPEA (4.0 equiv.) was added, the yellow reaction mixture was 

left to stir at room temperature overnight. The reaction mixture was then precipitated by 

adding the reaction solution into water. After centrifugation, the water was removed and 

the polymer was dissolved in a mixture of TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) 

and TIPS (0.2 mL). The deprotection reaction mixture was stirred at room temperature for 

6 h under nitrogen. After removal of the solvents under reduced pressure, the residue was 

dissolved in MeOH and then precipitated in diethyl ether. After centrifugation, the 
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supernatant was discarded, and the white precipitate was dissolved in MeOH and purified 

via dialysis (MWCO = 6 – 8 kDa) against MeOH for 24 h. Then MeOH was removed in vacuo 

to give G0-X SA-Y LP 11 (TFA salt) as a white solid.  

G0-20SA-80LP (63% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.49 – 8.14 

(m, 5H), 7.55 – 7.06 (m, 13H), 4.66 – 4.58 (m, 3H), 4.32 – 3.98 (m, 10H), 3.81 – 3.71 (m, 2H), 

3.41 – 2.94 (m, 29H), 2.03 – 1.23 (m, 50H). 

G0-50SA-50LP (52% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.44 – 8.00 

(m, 3H), 7.55 – 7.01 (m, 8H), 4.66 – 4.57 (m, 2H), 4.35 – 3.96 (m, 8H), 3.81 – 3.69 (m, 1H), 

3.39 – 2.94 (m, 20H), 2.04 – 1.23 (m, 40H). 

 

Typical procedure for synthesis of G1-X SA-Y LP 12:  

In a 20 mL scintillation vial, G1 polymer backbone 2 (1.0 equiv.), stearic acid (quantity 

determined by the functionalization ratio X, 0.8 equiv. for 20% and 2.0 equiv. for 50%), 

protected linear peptide (quantity determined by the functionalization ratio Y, 3.2 equiv. 

for 80% and 2.0 equiv. for 50%), HATU (4.0 equiv.) and HOAt (4.0 equiv.) was dissolved in 

2 mL anhydrous DMF. After DIPEA (8.0 equiv.) was added, the yellow reaction mixture was 

left to stir at room temperature overnight. The reaction mixture was then precipitated by 

adding the reaction solution into water. After centrifugation, the water was removed and 

the polymer was dissolved in a mixture of TFA (3.0 mL), CH2Cl2 (1.5 mL), anisole (1.5 mL) 

and TIPS (0.2 mL). The deprotection reaction mixture was stirred at room temperature for 

6 h under nitrogen. After removal of the solvents under reduced pressure, the residue was 

dissolved in MeOH and then precipitated in diethyl ether. After centrifugation, the 

supernatant was discarded and the white precipitate was dissolved in MeOH and purified 
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via dialysis (MWCO = 6 – 8 kDa) against MeOH for 24 h. Then MeOH was removed in vacuo 

to give G1-X SA-Y LP 12 (TFA salt) as a white solid.   

G1-20SA-80LP (64% isolated yield): 1H NMR (600 MHz, D2O, 298 K, ppm): 𝛿 8.51 – 8.04 

(m, 10H), 7.55 – 7.01 (m, 26H), 4.66 – 4.54 (m, 6H), 4.33 – 4.25 (m, 28H), 3.81 – 3.66 (m, 

2H), 3.40 – 2.95 (m, 55H), 1.93 – 1.27 (m, 104H). 

 

MPBP/RNA Binding Study 

Gel electrophoresis 

The binding of siRNA or mRNA to MPBPs was studied by agarose gel electrophoresis. Both 

siRNA/mRNA and MPBPs were diluted with 10 mM pH 7.4 phosphate buffer. Different 

amount of MPBP solutions (10 mg/mL) were added to 5.0 µL 5 µM siRNA solution or 1.0 

µL 0.5 µg/µL mRNA solution to achieve different N/P ratio (the molar ratio of primary 

amine groups from MPBPs and phosphate groups from siRNA/mRNA, imidazole groups of 

histidine residues not counted because they are not protonated at pH 7.4). The same buffer 

was added to adjust the final volume to 10.0 µL, followed by 10 min incubation at room 

temperature. 2 µL 6X RNA loading dye was added to each sample and 10 µL of the mixture 

was loaded to each well in 1% agarose gel with 1X GelRed dye. The electrophoresis was run 

in TBE buffer (pH 7.9) at 60 V for 90 min and the gel was visualized under a UV 

transilluminator. Related results are shown in Figure 2.4 and 2.5.  

 

Gel electrophoresis study of mRNA protection 

(1) Following the aforementioned protocol, different MPBPs were complexed with Fluc 

mRNA at N/P = 10 with duplicate. Two naked mRNA solutions were used as controls. To 
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one copy of each MPBP-mRNA complex solution and naked mRNA solutions, 10% FBS 

(v/v) was added. The solutions were left to stand for 20 minutes at room temperature. The 

other copy of each MPBP-mRNA complex solution and naked mRNA solutions were used as 

negative controls. All solutions were subjected to agarose gel electrophoresis to examine 

the integrity of mRNA. As shown in Figure 2.6A, naked mRNA was fully degraded into 

small species after FBS incubation, while no small species were detected from all MPBP-

mRNA complex solutions.  

 

(2) Following the aforementioned protocol, different MPBPs were complexed with Fluc 

mRNA at N/P = 10 and 10% FBS (v/v) was added to each complex solution. The solutions 

were left to stand for 20 minutes at room temperature. 7 µL dextran sulfate (0.017 M) 

solution was added to each complex to achieve S/P = 80 (the molar ratio of sulfate groups 

from DS and phosphate groups from mRNA) and incubated for 5 minutes. The samples 

were then subjected to agarose gel electrophoresis under the aforementioned condition. As 

shown in Figure 2.6B, naked mRNA was fully degraded into small species after FBS 

incubation, while the RNA released from MPBP-RNA complexes was still intact.  

 

DLS measurements 

The size and zeta potential of MPBP-siRNA or MPBP-mRNA complexes were measured at 

633 nm using Zetasizer (NanoZS) dynamic light scattering instrument (Malvern 

Instruments, Malvern, UK) at 25 ˚C with detection angle of 173˚. Both MPBP and 

siRNA/mRNA were diluted in nanopure water, followed by brief vortexing. After 10 min 

incubation at room temperature, DLS measurement was taken. The solution was then 
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diluted with 600 µL PBS and subjected to zeta-potential measurement. At least three 

measurements were taken for each sample and the mean Z-average values were reported. 

 

TEM characterization 

MPBP-siRNA and MPBP-mRNA complexes were prepared in ddH2O by following 

aforementioned protocol. For siRNA complexation, N/P =10 and [siRNA] = 10 𝜇M. For 

mRNA complexation, N/P = 10 and [mRNA] = 0.1 𝜇g/𝜇L. The solution was vortexed and 

incubated at room temperature for 10 minutes before imaging. 8  𝜇𝐿 sample solution was 

placed on a TEM grid (Ted Pella, Copper Formvar/Carbon, 200 mesh) and let stand for 1 

min. The solution was blotted away with a filter paper, while 15 𝜇L 2% Uranyl Acetate 

solution was pipetted on to the grid. After 1 min, the staining process was repeated with 

another 15 𝜇L 2% Uranyl Acetate solution. All the solution was removed by a filter paper 

and the grid was left air dry overnight before imaging. Images were obtained on a 

FEI/Philips CM-20 conventional TEM operated at an accelerating voltage of 200 kV.  

 

Biological Studies 

siRNA transfections 

(1) Vector-siRNA complex preparation 

The TFA-salts of the various MPBPs were stored at -20 ° C as 10 mg/ml solutions in RNase 

free water and prior to complexation the vectors, along with all buffers, were allowed to 

reach room temperature. Both negative control and targeted siRNA were diluted to 1.5 µM 

with RNase free water. The diluted siRNA was further diluted with OptiMEM and 

complexed with the appropriate amount of vector solution required to achieve the desired 
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N/P ratio. The complex solutions were prepared at 5X the desired final concentration (60 

nM) and with a final volume of 60 µL. 20 µL of the complex solution with 300 nM siRNA 

was added to each well containing 80 µL of OptiMEM to give a transfection media with 60 

nM siRNA. Lipofectamine RNAiMAX was used as a positive control and prepared as 

instructed in the product manual.  

 

(2) Transfection in luciferase-expressing HEK-293 cells 

Transfections were performed in triplicate in a cell culture treated clear-bottom 96-well 

plate (Corning). After passaging, the cells were plated in 96-well plates so that they were 

40~50% confluent at the time of transfection. The 5X vector-siRNA complexes were 

prepared using the aforementioned protocol. The culture media was switched to 80 µL 

OptiMEM (with or without 10% FBS) per well and 20 µL of the complex solution was added 

to each well. The cells were cultured for 48 hours prior to analysis. 

 

(3) Transfection analysis in luciferase-expressing HEK-293 cells 

After 48 hours of incubation post-transfection, the culture media was removed and 

replaced with 100 µL of a 150 µg/mL solution of firefly D-luciferin in FluoroBriteTM DMEM. 

Without any further treatment, the cells were incubated at 37 °C for 5 minutes after which 

they were imaged using an IVIS lumina II camera. The normalized luciferase knockdown 

was determined by comparing the overall luminescence of the samples treated with 

complexes containing anti-luc siRNA to those treated with complexes containing negative 

control siRNA. 
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mRNA transfections 

(1) Vector-mRNA complex preparation 

Before performing the mRNA transfections, the area was sterilized with bleach and RNase 

ZAP (Ambion), and special care was take to use RNase free products when handling the 

mRNA. Lipofectamine MessengerMAX was used as a positive control and prepared as 

instructed in the product manual. The mRNA was thawed and diluted to a concentration of 

0.05 μg/μL with OptiMEM. Appropriate amount of vector solution was added to achieve the 

desired N/P ratio and the mixture was mixed by pipetting up and down 10 times. Finally, 

the mixture is diluted to 60 μL with OptiMEM so that 20 μL of the complex solution will 

contain 150 ng of mRNA. Then 1 μL of Insulin-Transferrin-Selenium (100X) was added. The 

mixture was then incubated at room temperature for 5 minutes.  

 

(2) Transfection in NIH 3T3 cells and BHK cells 

Transfections were performed in triplicate in a cell culture treated clear-bottom 96-well 

plate (Corning). After passaging, the cells were plated in 96-well plates so that they were 

60~70% confluent at the time of transfection. The vector-mRNA complex solutions were 

prepared using the aforementioned protocol. The culture media was switched to 80 µL 

OptiMEM (with or without 10% FBS) per well and 20 µL of the complex solution was added 

to each well. The cells were cultured for 24 hours prior to analysis. 
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(3) Transfection analysis in Fluc mRNA or Replicon mRNA (expressing Fluc) transfected 

cells 

24 hours post-transfection, the culture media was removed and replaced with 100 µL of a 

150 µg/mL solution of firefly D-luciferin in FluoroBriteTM DMEM. Without any further 

treatment, the cells were incubated at 37 °C for 5 minutes after which they were imaged 

using an IVIS lumina II camera and the luminescence was determined.  

 

(4) Transfection analysis in eGFP mRNA or Cy5-labelled mRNA transfected cells via flow 

cytometry. 

24 hours post-transfection, the culture media was removed and replaced with 30 µL 

trypsin and incubated at 37 °C for 5 minutes. 70 µL of complete media were added to the 

plate and the cells were transferred to a 96-well non-cell treated plate for flow cytometry. 

Fluorescence of the transfected cells was measured on a Becton-Dickinson LSR II flow 

cytometer with argon ion excitation laser. 5000 events were recorded per sample and each 

value reported is the average of 3 samples.  

 

CRISPR-Cas9 delivery 

(1) Vector-RNA (Cas9 mRNA & sgRNA) complex preparation 

Before performing the mRNA/sgRNA transfections, the area was sterilized with bleach and 

RNase ZAP (Ambion), and special care was take to use RNase free products when handling 

the mRNA. Lipofectamine 2000 was used as a positive control and prepared as instructed 

in the product manual. The mRNA and sgRNA were thawed and diluted to a concentration 

of 0.05 μg/μL with OptiMEM. Appropriate amount of vector solution was added to achieve 
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the desired N/P ratio and the mixture was mixed by pipetting up and down 10 times. 

Finally, the mixture is diluted to 60 μL with OptiMEM so that 20 μL of the complex solution 

will contain 100 ng of sgRNA and 10 ng of Cas9 mRNA. The mixture was then incubated at 

room temperature for 5 minutes.  

 

(2) Transfection in eGFP-expressing NIH 3T3 cells 

Transfections were performed in triplicate in a cell culture treated clear-bottom 96-well 

plate (Corning). After passaging, the cells were plated in 96-well plates so that they were 

50% confluent at the time of transfection. The vector-mRNA complex solutions were 

prepared using the aforementioned protocol. The culture media was switched to 80 µL 

OptiMEM per well and 20 µL of the complex solution was added to each well. After 24 

hours, the media was changed to complete media and the cells were cultured for a further 5 

days. The cells were analyzed on day 6 via flow cytometry. 

 

(3) Flow cytometry analysis 

After 6 days of incubation post-transfection, the culture media was removed and replaced 

with 30 µL trypsin and incubated at 37 °C for 5 minutes. 70 µL of complete media were 

added to the plate and the cells were transferred to a 96-well non-cell treated plate for flow 

cytometry. Fluorescence of the transfected cells was measured on a Becton-Dickinson LSR 

II flow cytometer with argon ion excitation laser.  
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LDH cytotoxicity assay 

NIH 3T3 cells seeded in a 96-well plate were treated with MPBP-mRNA complexes at an 

N/P ratio of 15 (serum-free media) or N/P ratio of 50 (10% FBS-containing media), 

formulated as specified above. After 24 h incubation with the nanoparticle complexes, 50 

μL of the supernatant was taken and cytotoxicity was measured using a Pierce™ LDH 

Cytotoxicity Assay Kit (ThermoFisher) as directed in the manual. Related results are shown 

in Figure 2.22. 

 

Confocal microscopy studies 

(1) Confocal laser microscopy was used to track Cy5-labelled mRNA in the transfected cells. 

Unmodified NIH 3T3 cells were seeded at a density of 15000 cells/well on an 8-well 

chamber slide (Lab-Tek, Rochester, NY, polylysine treated) 24 h prior to transfection. Cy5-

labeled mRNA was complexed with different MPBPs at an N/P of 15 and transfected to the 

cells under the aforementioned conditions. Confocal fluorescence microscopy was 

performed 4 h or 12 h post-transfection. The nucleus was stained with 1 μg/mL solution of 

Hoechst 33342. The endosome was stained with 75 nM LysoTracker®  Green or Blue probes 

(200 μL per well).  

 

(2) Confocal laser microscopy was also used to track Cy5-labelled negative control siRNA in 

the transfected cells. HEK-293T cells were seeded at a density of 10000 cells/well on an 8-

well chamber slide (Lab-Tek, Rochester, NY, polylysine treated) 24 h prior to transfection. 

Cy5-labeled siRNA was complexed with different MPBPs at an N/P of 10 and transfected to 

the cells under the aforementioned conditions. Confocal fluorescence microscopy was 
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performed 24 h post-transfection. The endosome was stained with 75 nM LysoTracker®  

Blue probes (200 μL per well).  

 

(3) All confocal images were acquired using a Zeiss LSM 700 inverted laser-scanning 

confocal microscope. A 20X plan apochromatic numerical aperture of 0.8 DIC II objective 

was used for cellular uptake imaging experiments. A 63X oil objective was used for 

endosomal escape imaging experiments. A 639 nm laser and a 606-700 nm band-pass filter 

were used to obtain the images of Cy5-labelled mRNA. A 405 nm laser and a 400-498 nm 

band-pass filter were used to obtain the images of the Hoechst 33342 counter-stained 

nuclei. The fluorescent images were scanned separately and overlaid together with the 

differential interference contrast image (DIC). The cells were scanned as a z-stack of two-

dimensional images (1024×1024 pixels) and an image cutting approximately through the 

middle of the cellular height was selected to present the intracellular RNA localization. 

 

 

 

 

 

 

 

 

 

 



100 
 

2.13 Flow cytometry Output 

(1) eGFP mRNA transfection in serum-free media 

Untreated 

 

Sample Count % of All Mean FITC-GFP 

1 5000 0.50 22410 

2 5000 0.85 20908 

3 5000 0.52 21544 

mRNA only 

 

Sample Count % of All Mean FITC-GFP 

1 5000 0.70 21356 

2 5000 0.46 21457 

3 5000 0.44 22012 
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LF MM 

 

Sample Count % of All Mean FITC-GFP 

1 5000 94.10 6324327 

2 5000 96.22 6092067 

3 5000 92.98 5234940 

 

G0-100LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 2.96 143835 

2 5000 2.86 156423 

3 5000 2.82 161359 
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G0-20TEG-80LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 18.06 1563883 

2 5000 9.94 822601 

3 5000 11.44 939790 

 

G0-50TEG-50LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 5.42 61233 

2 5000 5.78 80527 

3 5000 2.10 121996 
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G0-20SA-80LP 

 

 

Sample Count % of All Mean FITC-GFP 

1 5000 17.66 756082 

2 5000 21.66 1000737 

3 5000 22.56 1161848 

 

G0-50SA-50LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 17.58 116702 

2 5000 17.50 123622 

3 5000 10.78 70883 
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G1-100LP 

 

 

Sample Count % of All Mean FITC-GFP 

1 5000 46.34 7240389 

2 5000 39.64 6094296 

3 5000 52.34 7575724 

 

G1-20TEG-80LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 20.75 1537838 

2 5000 30.56 2214018 

3 5000 27.34 1996336 
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G1-50TEG-50LP 

 

 

Sample Count % of All Mean FITC-GFP 

1 5000 4.36 188241 

2 5000 6.38 247591 

3 5000 4.30 168589 

 

G1-20SA-80LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 15.44 152264 

2 5000 11.94 74424 

3 5000 11.20 42282 
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G2-100LP 

 

Sample Count % of All Mean FITC-GFP 

1 5000 16.54 122083 

2 5000 30.60 293665 

3 5000 26.20 190229 

 

(2) eGFP mRNA transfection in 10% FBS-containing media 

Untreated 

   

Sample Count % of All Mean FITC-GFP 

1 5000 1.14 18735 

2 5000 1.40 13250 

3 5000 0.90 12835 
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mRNA only 

   

Sample Count % of All Mean FITC-GFP 

1 5000 1.50 14210 

2 5000 1.16 13471 

3 5000 1.34 13791 

 

LF MM 

   

Sample Count % of All Mean FITC-GFP 

1 5000 48.32 1582084 

2 5000 41.90 893936 

3 5000 42.96 1126860 
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G0-100LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 6.14 225490 

2 5000 7.28 297331 

3 5000 8.28 400630 

 

G0-20TEG-80LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 13.52 685989 

2 5000 17.88 958579 

3 5000 18.72 1049797 
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G0-50TEG-50LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 10.16 298567 

2 5000 7.20 235771 

3 5000 7.04 261280 

 

G0-20SA-80LP 

   

 

Sample Count % of All Mean FITC-GFP 

1 5000 55.16 2268149 

2 5000 53.58 2836431 

3 5000 49.42 2532842 
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G0-50SA-50LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 32.84 143484 

2 5000 28.76 81912 

3 5000 32.08 137334 

 

G1-100LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 44.44 3077175 

2 5000 60.96 2631080 

3 5000 58.32 2831390 
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G1-20TEG-80LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 42.46 2075207 

2 5000 44.22 2084895 

3 5000 43.60 2398933 

 

G1-50TEG-50LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 5.68 71726 

2 5000 7.08 88078 

3 5000 6.22 107803 
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G1-20SA-80LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 31.37 72255 

2 5000 29.21 63708 

3 5000 32.05 85301 

 

G2-100LP 

   

Sample Count % of All Mean FITC-GFP 

1 5000 34.80 316001 

2 5000 29.75 240382 

3 5000 32.06 268352 
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(3) Co-delivery of Cas9 mRNA and sgRNA 

Cas9 mRNA/sgRNA only 

 

LF 2000 

 

G0-20SA-80LP 
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G1-100LP 

 

G1-20TEG-80LP 

 

G1-20SA-80LP 
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2.14 1H NMR Spectra 

G0-20 TEG polymer backbone 

 
 

G0-50 TEG polymer backbone 
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G1-20 TEG polymer backbone 

 
 

G1-50 TEG polymer backbone 
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G0-100LP 

 
 

G1-100LP 
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G2-100LP 

 
 

G0-20 TEG-80 LP 

 
 

 



119 
 

G0-50 TEG-50 LP 

 
 

G1-20 TEG-80 LP 
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G1-50 TEG-50 LP 

 
 

G0-20 SA-80 LP 
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G0-50 SA-50 LP 

 
 

G1-20 SA-80 LP 
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Chapter 3: Peptide-functionalized Bioreducible Amphiphilic Vectors for 

siRNA Delivery 

3.1 Introduction and Project Design  

 As introduced in Section 1.2, RNAi technology holds tremendous potential for 

therapeutic treatments.1-3 However, the wide application of RNAi therapeutics has been 

greatly hampered by the lack of safe and efficient delivery methods.4-5 Due to the 

immunogenicity and size limitation of viral vectors,6 there is a large demand for the 

development of novel non-viral synthetic vectors for siRNA delivery. More importantly, a 

systematic study to elucidate the structure-property relationships is highly preferred to 

improve the rational design of synthetic vectors.  

 Guan lab recently developed a novel family of bolaamphiphiles for safe and effective 

siRNA delivery (Section 1.8).7-8 Besides delivering siRNA into conventional HEK and 3T3 

cell lines, our lab realized efficient siRNA delivery into adipocytes by using the same 

bolaamphiphile system.9 Adipose tissue plays an important role in the development of 

obesity and obesity-associated diseases. Successful siRNA delivery in adipocytes provides 

the opportunity of gene therapy for obesity treatment.10-11  

 The aforementioned siRNA delivery system mainly benefits from the unique 

structure design of ‘bolaamphiphile’: the hydrophobic core and two hydrophilic dendritic 

head groups. However, the dendritic head groups are statistically functionalized by 

different amino acids, which introduces heterogeneity in the vector structure. Further 

study of this system with dipeptide functionalization confirmed that the peptide head 

groups play multiple roles in siRNA delivery,8 including RNA complexation, facilitating 

cellular uptake, and enhancing endosomal escape. Moreover, according to numerous 
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studies about cell-penetrating peptides (Section 1.7),12-13 peptide functionalization can not 

only promote the interaction between vectors and cell membrane but also offer the 

possibility to realize targeting delivery.  

 In this work, a family of peptide-functionalized bioreducible amphiphilic vectors 

(PBAV) was systematically developed and studied, aiming to further explore the roles of 

different hydrophobic cores and hydrophilic peptide head groups in siRNA delivery.  

 

3.2 Design and Synthesis of PBAV 

 Inspired by our previous dendritic bolaamphiphile system (Section 1.8),7-8 we 

designed a series of novel peptide-functionalized bioreducible amphiphilic vectors (PBAV) 

for effective siRNA delivery (Figure 3.1). Instead of using statistically functionalized lysine 

dendrons in the amphiphilic structure, we utilized short linear peptides as the hydrophilic 

head groups. This can reduce the structural heterogeneity of the delivery vectors and guide 

us to further explore the correlation between chemical structure and biological function. 

Additionally, as shown for some cell-penetrating peptide system, peptides can form 

secondary structures which promote the interaction between delivery vectors and cell 

membrane.12-15  

Therefore, short linear peptide head groups were conjugated onto different 

hydrophobic cores through conventional amide-coupling chemistry, affording different 

peptide-functionalized bolaamphiphiles and monoamphiphiles. Both fluorocarbon core and 

hydrocarbon core were incorporated into these two systems in order to study the influence 

of different hydrophobicity.16-17 Bioreducible disulfide linkages were also incorporated to 
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link the hydrophobic cores and hydrophilic head groups, aiming to provide stimuli-

responsive activity in the cytoplasm and enhance biocompatibility.18  

 

Figure 3.1 The designed library of PBAVs with different hydrophobic cores and peptide-
functionalization.  
 

 Similar to the peptide design of MPBP vectors described in Chapter 2, three amino 

acids, L-histidine (His), L-lysine (Lys), and L-tryptophan (Trp), were utilized to construct 

the functional peptides. His is used to provide buffering capacity which is essential for 

promoting endosomal escape.19 Protonated primary amines on Lys can provide cationic 

charges to complex with negatively charged siRNA cargos. Trp is incorporated to improve 

RNA binding through the intercalation of the indole ring.20 It is also known that Trp can 

provide favorable hydrophobic interaction with cell membrane which promotes cellular 

uptake.21 Furthermore, in order to study the influence of individual amino acid and peptide 

sequences, different short linear peptides were designed, synthesized, and utilized to 

functionalize the hydrophobic cores (Table 3.1). First, four units of cationic charges, 

offered by three Lys side chains and one N-terminal primary amine, were introduced in 

each peptide. This was designed to mimic the +4 charges in our previous bolaamphiphile 

system.7 Second, alternative peptide sequences, which could possibly generate peptide 

secondary structure, were designed to compare with block peptide sequences. In addition, 
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in order to further study the function of Trp, peptides with different Trp position (internal 

position and terminal position) and existence were constructed. 

Table 3.1 Chemical structures of PBAV library with different hydrophobic cores and 

peptide-functionalization. √ indicates completed synthesis, characterization, and full 

study. — indicates that the vectors were skipped for study due to the insufficient 

delivery efficacy for hydrocarbon vectors. 

Peptide 

Sequence 
Bola-F10 Mono-F10 Bola-H10 Mono-H10 

GHHHKKKW √ √ √ √ 

GHKHKHKW √ √ √ √ 

GWHHHKKK √ √ — — 

GWHKHKHK √ √ — — 

GHHHKKK √ √ — — 

GHKHKHK √ √ — — 
 

 The synthetic route of the designed PBAVs is shown in Scheme 3.1. After activated 

by 4-nitrobenzyl chloroformate, the fluorocarbon or hydrocarbon alcohols were 

conjugated to mono-Boc protected cystamine through a carbonate linker, affording four 

types of hydrophobic cores (hydrocarbon and fluorocarbon, monoamphile and 

bolaamphiphile) with disulfide handles. On the other hand, functional linear peptides were 

synthesized via well-established solid phase peptide synthesis.22 After cleavage from the 

resin, the side-chain protected peptides were coupled with the obtained hydrophobic 

cores. Then a global deprotection was performed to remove all protection groups. The final 

products were purified via C18 reverse phase column and characterized by analytical HPLC 

and MALDI-MS (Section 3.7). For simplicity, the PBAVs were named using the 

hydrophobic cores with the sequences of functional peptides (from C-terminus to N-

terminus). For instance, F10-GHHHKKKW represents a F10 core with GHHHKKKW 
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peptide functionalization on both sides. mH10-GHKHKHKW represents a mH10 core with 

a single functionalization of GHKHKHKW peptide.  

Scheme 3.1 Synthetic route to PBAVs. 

 

 

3.3 Biophysical Study of PBAV-siRNA Complexes 

 Several vectors were chosen as representative examples to study the complexation 

between PBAV and siRNA. Gel electrophoresis study showed that both fluorocarbon and 

hydrocarbon bolaamphiphiles can bind to siRNA completely starting from N/P (the ratio 

between primary amines on the vectors and phosphates on the RNA cargos) = 5 (Figure 

3.2). However, monoamphiphiles showed much less binding affinity to siRNA cargo 

(Figure 3.2), possibly due to the lower density of cationic charges. Further DLS study 

exhibited that fluorocarbon bolaamphiphiles and monoamphiphiles can form relatively 

small nanoparticle complexes (around 200 nm) with siRNA, whereas the siRNA complexes 

formed by hydrocarbon bolaamphiphiles and monoamphiphiles are 100 nm larger (Table 
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3.2). This enhanced nanoparticle assembly induced by fluorocarbon effect is consistent 

with previous reports.7,16-17,23  

 

Figure 3.2 Gel electrophoresis study of PBAV-siRNA complexation. F10-HHHKKKW, F10-
HKHKHKW, H10-GHHHKKKW, H10-GHKHKHKW, mF10-GHHHKKKW, and mF10-
GHKHKHKW were chosen as representative vectors for complexation study.  
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The nanoparticle complexes were stable in both complexation media (low salt PBS 

buffer) and transfection media (OptiMEM). In OptiMEM, F10-GHHHKKKW-siRNA 

complexes are generally 100 nm larger than F10-GHKHKHKW-siRNA complexes, which 

may due to the partial aggregation induced by the block of positive charges in F10-

GHHHKKKW vector. In contrast, alternative peptide sequence can space out cationic 

charges on the protonated primary amines, affording smaller nanoparticles with higher 

stability. 

Table 3.2 Nanoparticle sizes of PBAV-siRNA complexes determined by DLS. The particles 
were tested in two different media, low salt PBS buffer (LSPBS) and transfection media 
(OptiMEM). The results were presented as Z-average size in diameter (nm) and PDI in 
brackets. N/P = 30. 

Time (min) 6 12 18 24 30 

F10-GHHHKKKW/ LSPBS 
237.7 

(0.445) 

129.8 

(0.477) 

201.9 

(0.384) 

173.0 

(0.389) 

196.8 

(0.469) 

F10-GHKHKHKW/ LSPBS 
226.2 

(0.378) 

195.1 

(0.372) 

197.1 

(0.364) 

199.3 

(0.364) 

210.7 

(0.355) 

F10-GHHHKKKW/ 

OptiMEM 

266.0 

(0.313) 

310.5 

(0.487) 

293.0 

(0.426) 

396.5 

(0.400) 

374.3 

(0.535) 

F10-GHKHKHKW/ 

OptiMEM 

183.2 

(0.300) 

200.2 

(0.370) 

202.6 

(0.379) 

177.9 

(0.273) 

178.6 

(0.275) 

mF10-GHHHKKKW/ LSPBS 
141.0 

(0.317) 

150.5 

(0.259) 

172.2 

(0.197) 

178.1 

(0.241) 

166.7 

(0.251) 

mF10-GHKHKHKW/ LSPBS 
148.5 

(0.237) 

149.7 

(0.176) 

167.0 

(0.325) 

172.2 

(0.208) 

186.9 

(0.205) 

H10-GHHHKKKW/ LSPBS 
200.1 

(0.381) 

220.9 

(0.008) 

261.1 

(0.274) 

289.1 

(0.349) 

294.3 

(0.305) 

H10-GHKHKHKW/ LSPBS 
193.7 

(0.035) 

218.5 

(0.103) 

225.2 

(0.102) 

252.3 

(0.011) 

258.6 

(0.071) 

mH10-GHHHKKKW/ LSPBS 
293.8 

(0.610) 

318.7 

(0.137) 

311.8 

(0.056) 

330.6 

(0.021) 

390.8 

(0.106) 

mH10-GHKHKHKW/ LSPBS 
210.1 

(0.060) 

299.0 

(0.020) 

316.4 

(0.004) 

314.7 

(0.048) 

302.8 

(0.190) 

 

3.4 siRNA Delivery 

 The library of PBAVs was screened for siRNA delivery. Specifically, anti-Luc siRNA 

was complexed with different vectors at various N/P ratios, transfected into the HEK-293 
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cells expressing firefly luciferase (Luc), and then assayed for luciferase activity after 48 h to 

determine the gene silencing. Lipofectamine RNAiMAX was used as positive controls in the 

siRNA delivery experiments. First, several bolaamphiphiles and monoamphiphiles with 

fluorocarbon/hydrocarbon cores were used as representative examples to identify the 

optimal conditions (siRNA concentration and N/P ratio) for siRNA transfection (Figure 

3.3-3.4).  

 

Figure 3.3 Gene silencing and cell viability results of representative bolaamphiphile-siRNA 
complexes transfected to firefly luciferase-expressing HEK-293 cells in serum-free media. 
Cell viability was assessed by comparing luciferase expression in non-treated cells to cells 
treated with negative control siRNA-PBAV complexes. (A) Fluorocarbon bolaamphiphiles, 
[siRNA] = 20 nM. (B) Fluorocarbon bolaamphiphiles, [siRNA] = 10 nM. (C) Hydrocarbon 
bolaamphiphiles, [siRNA] = 20 nM. (D) Hydrocarbon bolaamphiphiles, [siRNA] = 10 nM. 
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Figure 3.4 Gene silencing and cell viability results of representative monoamphiphile-
siRNA complexes transfected to firefly luciferase-expressing HEK-293 cells in serum-free 
media. Cell viability was assessed by comparing luciferase expression in non-treated cells 
to cells treated with negative control siRNA-PBAV complexes. (A) Fluorocarbon 
monoamphiphiles, [siRNA] = 20 nM. (B) Fluorocarbon monoamphiphiles, [siRNA] = 10 nM. 
(C) Hydrocarbon monoamphiphiles, [siRNA] = 20 nM. (D) Hydrocarbon monoamphiphiles, 
[siRNA] = 10 nM. 
 

As shown in the results, generally fluorocarbon-containing vectors induced higher 

gene knockdown than hydrocarbon-containing vectors (Figure 3.3 A, B vs C, D, Figure 3.4 

A, B vs C, D). We believe this is due to the smaller nanoparticle size generated from 

fluorocarbon assembly, which promotes cellular uptake. Additionally, monoamphiphiles 

exhibited significantly higher toxicity (lower viability) than bolaamphiphiles (Figure 3.3-
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3.4). This phenomenon is consistent with our previous report,7 which may due to the 

insertion of monoamphiphiles into cell membrane.24 Moreover, it is interesting that F10-

GHKHKHKW showed significantly higher gene silencing compared to F10-GHHHKKKW, 

which indicated that the aggregation induced by blocks of cationic charges prohibited 

efficient siRNA delivery. 

Figure 3.5 Gene silencing and cell viability results of fluorocarbon PBAVs-siRNA 
complexes transfected to firefly luciferase-expressing HEK-293 cells in serum-free media. 
Cell viability was assessed by comparing luciferase expression in non-treated cells to cells 
treated with negative control siRNA-PBAV complexes. N/P = 60, [siRNA] = 20 nM. 
 

After identifying the optimal transfection conditions (N/P = 60, [siRNA] = 20 nM), 

we screened all fluorocarbon-containing bolaamphiphiles and monoamphiphiles for siRNA 

delivery (Figure 3.5). The result showed that several vectors, including F10-GHKHKHKW, 
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F10-GWHHHKKK, and F10-GWHKHKHK, induced over 75% gene knockdown after siRNA 

transfection. The incorporation of Trp is essential to achieve the high gene silencing 

efficacy while the location of Trp in the peptide sequences did not make significant 

differences. Again, monoamphiphiles with all peptide sequences exhibited much higher 

toxicity than bolaamphiphiles, especially in high N/P ratios and high siRNA concentrations. 

 In addition, we systematically screened all bolaamphiphiles and monoamphiphiles 

with fluorocarbon cores for siRNA delivery under different siRNA concentrations and N/P 

ratios (Figure 3.6-3.7).  

Figure 3.6 Gene silencing and cell viability results of fluorocarbon PBAVs-siRNA 
complexes transfected to firefly luciferase-expressing HEK-293 cells under different siRNA 
concentrations. N/P = 40. Cell viability was assessed by comparing luciferase expression in 
non-treated cells to cells treated with negative control siRNA-PBAV complexes.  
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Figure 3.7 Gene silencing and cell viability results of fluorocarbon PBAVs-siRNA 
complexes transfected to firefly luciferase-expressing HEK-293 cells at different N/P ratios. 
Cell viability was assessed by comparing luciferase expression in non-treated cells to cells 
treated with negative control siRNA-PBAV complexes. [siRNA] = 20 nM. 
 

 The positive control, LF RNAiMAX, brought significant cytotoxicity when siRNA 

concentration increased to 20 nM. Our best vector, F10-GHKHKHKW, was able to induce 

prominent gene silencing (~80%) at relatively low siRNA concentration (10 nM) and low 

N/P ratio (N/P = 10). In comparison, other fluorocarbon-containing bolaamphiphiles and 

monoamphiphiles required higher siRNA concentration and N/P ratio.7 However, low 

viability and high toxicity were often observed when increasing these two components in 

the transfection experiments. This phenomenon is especially distinct for monoamphiphiles. 
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 In order to determine the effective concentration of our best fluorocarbon 

bolaamphiphiles, we did concentration-dependent siRNA transfection studies (Figure 3.8). 

The most effective vector, F10-GHKHKHKW, demonstrated highly efficient transfection 

with an IC50 value of 6.0 nM. Another fluorocarbon bolaamphiphile, F10-GWHKHKHK, also 

exhibited efficient gene knockdown with an IC50 of 12.0 nM.  

Figure 3.8 Concentration-dependent siRNA transfection studies of effective fluorocarbon 
bolaamphiphiles in firefly luciferase-expressing HEK-293 cells. N/P = 40 for all vectors. (A) 
F10-GHKHKHKW. (B) F10-GWHKHKHK.  
 

 To further investigate the toxicity of monoamphiphiles, we performed 

concentration-dependent transfections with different fluorocarbon monoamphiphile-

siRNA complexes (Figure 3.9). LC50 (lethal concentration) values were calculated 

according to the obtained results. In general, all monoamphiphiles started inducing obvious 

toxicity (cell viability < 70%) from low concentrations (15 – 25 nM). Additionally, vectors 

with blocks of lysines showed higher toxicity than vectors with alternative peptide 

sequences. This may due to the aggregation generated between cationic charge blocks and 

negatively-charged proteins in the transfection media.  
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Figure 3.9 Concentration-dependent cell viability studies of fluorocarbon 
monoamphiphile-siRNA complexes in firefly luciferase-expressing HEK-293 cells. N/P = 40 
for all vectors. (A) mF10-GHHHKKKW. (B) mF10-GHKHKHKW. (C) mF10-GWHHHKKK. 
(D) mF10-GWHKHKHK. 
 

 To gain some insight of the differences between peptides with block sequences and 

peptides with alternative sequences, we used circular dichroism (CD) spectroscopy to 

investigate the possible secondary structures generated from our linear peptides. Both H-

WKKKHHHG-OH peptide and H-WKHKHKHW-OH peptide were deprotected, purified, and 

subjected to CD spectroscopy (Figure 3.10). Both peptides showed typical disordered 

structures without secondary structure formation. We believe this was still due to the short 

peptide length which is insufficient to form 𝛼-helix or 𝛽-sheet structures.  
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Figure 3.10 Circular dichroism spectra of deprotected linear peptides. (A) H-WKKKHHHG-
OH. (B) H-WKHKHKHG-OH. 
 

3.5 Conclusions 

 In summary, we successfully designed, synthesized, and investigated a family of 

peptide-functionalized bioreducible amphiphilic vectors for efficient siRNA delivery. The 

structure of bolaamphiphile is essential for the effective siRNA transfection whereas 

monoamphiphiles induce significant toxicity from cell membrane insertion. Fluorocarbon 

core is important to provide hydrophobicity and promote nanoparticle assembly between 

vectors and siRNA cargos. For the design of functional peptides, His, Lys, and Trp are 

critical to afford buffering capacity for endosomal escape, cationic charges for siRNA 

complexation, and membrane interaction for cellular uptake, respectively. Peptides with 

alternative sequences are beneficial for efficient delivery as it prevents aggregation 

generated between cationic charge blocks and anionic charged phosphates/serum 

proteins. The high transfection efficiency and high biocompatibility suggest the peptide-

functionalized fluorocarbon bolaamphiphiles are promising candidates for siRNA delivery. 

Further structural optimization of this system and in vivo study are currently being 

conducted in our laboratory.  
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3.7 Experimental 

Materials. All commercially available chemicals were used without further purification 

unless otherwise noted. Protected amino acids were purchased from Advanced ChemTech 

(Loiusville, KY) and Aroz Technologies, LLC. (Cincinnati, OH). Coupling reagents were 

purchased from GL Biochem Ltd. (Shanghai, China). All siRNA used in this study was 

purchased from Thermo Fischer Life Technologies with Silencer®  Select negative control 

siRNA and Silencer®  Select Custom siRNA used for gel assays, DLS measurements, and 

transfection studies. The sequences for the anti-Luc siRNA are: 5’-

AGACUAUAAGAUUCAAUCUTT-3’ (sense) and 5’-AGAUUGAAUCUUAUAGUCUTG-3’ (anti-

sense). All reactions were performed using HPLC grade solvents unless otherwise noted. 

All water used in biological experiments was Nanopure water obtained from Barnstead 

Nanopure Diamond (Waltham, MA). Firefly luciferase-expressing HEK cells were 

generously provided by Professor Jennifer Prescher (Department of Chemistry, UC Irvine, 

CA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and OptiMEM 

were purchased from Invitrogen (Carlsbad, CA).  

 

Instruments. Nuclear Magnetic Resonance (NMR) spectra were recorded on 500 MHz or 

600 MHz Bruker spectrometers. Chemical shifts were reported in ppm. Coupling constants 

(J values) were reported in Hertz. 1H NMR chemical shifts were referenced to D2O (𝛿= 4.79 

ppm). The Z-average size and zeta potential of PBAV-siRNA complexes were measured at 

633 nm using Zetasizer (NanoZS) dynamic light scattering instrument (Malvern 

Instruments, Malvern, UK) at 25 ˚C with detection angle of 173˚. Solid-phase peptide 

synthesis was performed on a Protein Technologies PS3 synthesizer. CD measurements 
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were performed on a Jasco J-810 spectropolarimeter (163-900 nm). Mass spectral data 

(ES-MS) was obtained from the UC Irvine Mass Spectrometry Facility and collected with a 

Micromass LCT spectrometer. Matrix assisted laser desorption ionization spectral data 

(MALDI) was obtained from the UC Irvine Mass Spectrometry Facility and collected with an 

AB SCIEX TOF/TOF 5800 System. 

 

PBAV Vector Synthesis and Characterization 

Protected linear peptides: 2-chlorotrityl chloride resin was first loaded with Fmoc-Gly-

OH at the loading density of 0.484 mmol/g. Following different peptide sequences, Gly-

loaded resin (400 mg, 1.0 equiv., 0.194 mmol) was coupled with 3 different side-chain 

protected amino acids on a PS3 solid-phase peptide synthesizer. For each coupling step, 

one amino acid was added for reaction: Fmoc-His(Trt)-OH (601 mg, 5.0 equiv., 0.97 mmol), 

Fmoc-Lys(Boc)-OH (455 mg, 5.0 equiv., 0.97 mmol), or Boc-Trp(Boc)-OH (392 mg, 5.0 

equiv., 0.97 mmol). HATU (332 mg, 4.5 equiv., 0.873 mmol) was utilized as coupling 

reagent and HOAt (119 mg, 4.5 equiv., 0.873 mmol) was included to suppress the possible 

epimerization. 20% collidine in DMF was used in the coupling reaction and 20% piperidine 

in DMF was used to deprotect the Fmoc group. After the synthesis was finished, the 

protected linear peptide was cleaved from the resin by using 20% hexafluoroisopropanol 

in anhydrous CH2Cl2. After removal of the solvent under reduced pressure, the residue was 

obtained as a white solid to give protected linear peptides. The purity of synthesized 

linear peptide was checked by ESI-MS and the peptides were utilized for the subsequent 

coupling reactions without further purification. 
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 A solution of F10-G0 core (13.8 mg, 1.20 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (68.8 mg, 3.01 × 10−2 mmol), PyBOP (21.9 mg, 4.21 × 10−2 

mmol), and DIPEA (18.8 𝜇L, 1.08 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GHHHKKKW as a white solid (5 mg, 14%). HRMS (MALDI-TOF) m/z Calcd for 

C120H166F20N40O20S4: 2995.18; Found: 2995.8391 [M]+. 

 

 

A solution of F10-G0 (13.3 mg, 1.16 × 10−2 mmol), Boc-protected peptide (HOOC-

GHKHKHKW-NHBoc) (66.3 mg, 2.90 × 10−2 mmol), PyBOP (21.1 mg, 4.06 × 10−2 mmol), 

and DIPEA (18.2 𝜇L, 1.04 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room temperature 

for 24 h. The protected linear peptide vector was precipitated in an excess amount of 
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deionized water. After removing water completely, the solid was dissolved in 1.5 mL TFA, 

1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent was 

removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in Et2O. 

The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to give 

F10-GHKHKHKW as a white solid (7 mg, 35%). m/z Calcd for C120H166F20N40O20S4: 

2995.18; Found: 2994.9382 [M]+.  

 

 

A solution of F10-G0 core (12.0 mg, 1.07 × 10−2 mmol), Boc-protected peptide 

(HOOC-GWHHHKKK-NHBoc) (61.0 mg, 2.67 × 10−2 mmol), PyBOP (19.0 mg, 3.75 × 10−2 

mmol), and DIPEA (17.0 𝜇L, 9.63 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GWHHHKKK as a white solid (4.7 mg, 13%). HRMS (MALDI-TOF) m/z Calcd for 

C120H166F20N40O20S4: 2995.18; Found: 2994.8860 [M]+. 
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A solution of F10-G0 core (10.0 mg, 9.16 × 10−3 mmol), Boc-protected peptide 

(HOOC-GWHKHKHK-NHBoc) (52.3 mg, 2.29 × 10−2 mmol), PyBOP (16.7 mg, 3.21 × 10−2 

mmol), and DIPEA (14.3 𝜇L, 8.24 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GWHKHKHK as a white solid (4.8 mg, 13%). HRMS (MALDI-TOF) m/z Calcd for 

C120H166F20N40O20S4: 2995.18; Found: 2995.1829 [M]+. 

 

 

A solution of F10-G0 core (12.0 mg, 1.02 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKK-NHBoc) (51.0 mg, 2.55 × 10−2 mmol), PyBOP (19.0 mg, 3.57 × 10−2 

mmol), and DIPEA (16.0 𝜇L, 9.18 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 
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amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GHHHKKK as a white solid (5.3 mg, 20%). HRMS (MALDI-TOF) m/z Calcd for 

C98H146F20N36O18S4: 2623.02; Found: 2623.5552 [M]+. 

 

 

A solution of F10-G0 core (7.0 mg, 6.10 × 10−3 mmol), Boc-protected peptide 

(HOOC-GHKHKHK-NHBoc) (30.0 mg, 1.50 × 10−2 mmol), PyBOP (11.0 mg, 2.11 × 10−2 

mmol), and DIPEA (9.0 𝜇L, 5.16 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GHKHKHK as a white solid (3.4 mg, 21%). HRMS (MALDI-TOF) m/z Calcd for 

C98H146F20N36O18S4: 2623.02; Found: 2623.6265 [M]+. 
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A solution of F10-G0 core (24.9 mg, 2.17 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHKKKW-NHBoc) (124.0 mg, 6.52 × 10−2 mmol), PyBOP (45.2 mg, 8.69 × 10−2 

mmol), and DIPEA (37.8 𝜇L, 2.17 × 10−1 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GHHKKKW as a white solid (12.9 mg, 22%). HRMS (MALDI-TOF) m/z Calcd for 

C108H152F20N34O18S4: 2722.06; Found: 2721.8289 [M]+. 

 

 

A solution of F10-G0 core (22.0 mg, 1.92 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHKKKW-NHBoc) (87.9 mg, 5.76 × 10−2 mmol), PyBOP (40.0 mg, 7.68 × 10−2 

mmol), and DIPEA (33.5 𝜇L, 1.92 × 10−1 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 
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amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give F10-GHKKKW as a white solid (11.3 mg, 24%). HRMS (MALDI-TOF) m/z Calcd for 

C96H138F20N28O16S4: 2446.94; Found: 2447.6548 [M]+. 

 

 A solution of mF10-G0 core (15.6 mg, 1.97 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (67.0 mg, 2.95 × 10−2 mmol), PyBOP (21.0 mg, 3.94 × 10−2 

mmol), and DIPEA (17.2 𝜇L, 9.85 × 10−2 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mF10-GHHHKKKW as a white solid (6.0 mg, 18%). HRMS (MALDI-TOF) m/z Calcd for 

C64H83F19N20O10S2: 1717.59; Found: 1717.3763 [M]+. 
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A solution of mF10-G0 core (17.4 mg, 2.20 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHKHKHKW-NHBoc) (75.0 mg, 3.30 × 10−2 mmol), PyBOP (23.0 mg, 4.40 × 10−2 

mmol), and DIPEA (19.0 𝜇L, 1.10 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mF10-GHKHKHKW as a white solid (5.8 mg, 15%). HRMS (MALDI-TOF) m/z Calcd for 

C64H83F19N20O10S2: 1717.59; Found: 1717.3539 [M]+. 

 

  

A solution of mF10-G0 core (16.8 mg, 2.13 × 10−2 mmol), Boc-protected peptide 

(HOOC-GWHHHKKK-NHBoc) (72.9 mg, 3.19 × 10−2 mmol), PyBOP (22.0 mg, 4.26 × 10−2 

mmol), and DIPEA (18.6 𝜇L, 1.07 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 
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give mF10-GWHHHKKK as a white solid (4.6 mg, 13%). HRMS (MALDI-TOF) m/z Calcd for 

C64H83F19N20O10S2: 1717.59; Found: 1717.5122 [M]+. 

 

  

A solution of mF10-G0 core (15.6 mg, 1.97 × 10−2 mmol), Boc-protected peptide 

(HOOC-GWHKHKHK-NHBoc) (67.5 mg, 2.95 × 10−2 mmol), PyBOP (20.5 mg, 3.94 × 10−2 

mmol), and DIPEA (17.1 𝜇L, 9.85 × 10−2 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mF10-GWHKHKHK as a white solid (14.5 mg, 43%). HRMS (MALDI-TOF) m/z Calcd 

for C64H83F19N20O10S2: 1717.59; Found: 1717.5231 [M]+. 

 

 

A solution of mF10-G0 core (16.8 mg, 2.12 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKK-NHBoc) (63.5 mg, 3.18 × 10−2 mmol), PyBOP (22.0 mg, 4.24 × 10−2 

mmol), and DIPEA (18.5 𝜇L, 1.06× 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 
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mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mF10-GHHHKKK as a white solid (9.1 mg, 28%). HRMS (MALDI-TOF) m/z Calcd for 

C53H73F19N18O9S2: 1531.37; Found: 1531.3429 [M]+. 

 

 

A solution of mF10-G0 core (16.7 mg, 2.11 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHKHKHK-NHBoc) (63.4 mg, 3.17 × 10−2 mmol), PyBOP (22.0 mg, 4.24 × 10−2 

mmol), and DIPEA (18.5 𝜇L, 1.06× 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mF10-GHKHKHK as a white solid (8.9 mg, 28%). HRMS (MALDI-TOF) m/z Calcd for 

C53H73F19N18O9S2: 1531.37; Found: 1531.3319 [M]+. 
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A solution of H10-G0 core (5.8 mg, 7.41 × 10−3 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (50.8 mg, 2.22 × 10−2 mmol), PyBOP (15.4 mg, 2.96 × 10−2 

mmol), and DIPEA (13.0 𝜇L, 7.41 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give H10-GHHHKKKW as a white solid (8.4 mg, 43%). HRMS (MALDI-TOF) m/z Calcd for 

C120H186N40O20S4: 2636.37; Found: 2636.1006 [M]+. 

 

 

A solution of H10-G0 core (7.4 mg, 9.42 × 10−3 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (64.6 mg, 2.83 × 10−2 mmol), PyBOP (19.6 mg, 3.77 × 10−2 

mmol), and DIPEA (16.0 𝜇L, 9.42 × 10−2 mmol) in NMP (200 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 
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amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give H10-GHKHKHKW as a white solid (5.5 mg, 28%). HRMS (MALDI-TOF) m/z Calcd for 

C120H186N40O20S4: 2636.37; Found: 2636.1255 [M]+. 

 

   

A solution of mH10-G0 core (8.9 mg, 2.12 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (72.5 mg, 3.17 × 10−2 mmol), PyBOP (22.1 mg, 4.24 × 10−2 

mmol), and DIPEA (18.5 𝜇L, 1.04 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mH10-GHHHKKKW as a white solid (19.7 mg, 69%). HRMS (MALDI-TOF) m/z Calcd 

for C63H100N20O9S2: 1344.74; Found: 1345.6091 [M+H]+. 
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A solution of mH10-G0 core (11.2 mg, 2.66 × 10−2 mmol), Boc-protected peptide 

(HOOC-GHHHKKKW-NHBoc) (91.3 mg, 3.99 × 10−2 mmol), PyBOP (27.7 mg, 5.32 × 10−2 

mmol), and DIPEA (18.5 𝜇L, 1.04 × 10−1 mmol) in NMP (300 𝜇L) was stirred at room 

temperature for 24 h. The protected linear peptide vector was precipitated in an excess 

amount of deionized water. After removing water completely, the solid was dissolved in 1.5 

mL TFA, 1.5 mL DCM, 1.5 mL anisole and 0.5 mL TIPS. After stirring overnight, the solvent 

was removed in vacuo, the resulting solid was redissolved in MeOH and precipitated in 

Et2O. The residue was further purified by C18 reverse phase column (eluent: H2O/MeCN) to 

give mH10-GHKHKHKW as a white solid (12.1 mg, 42%). HRMS (MALDI-TOF) m/z Calcd 

for C63H100N20O9S2: 1344.74; Found: 1345.4943 [M+H]+. 

 

Gel electrophoresis 

The binding of siRNA to PBAVs was studied by agarose gel electrophoresis. Both siRNA and 

PBAVs were diluted with 10 mM pH 7.4 phosphate buffer. Different amount of PBAV 

solutions (10 mg/mL) were added to 5.0 µL 5 µM siRNA solution to achieve different N/P 

ratio (the molar ratio of primary amine groups from PBAVs and phosphate groups from 

siRNA, imidazole groups of histidine residues not counted because they are not protonated 

at pH 7.4). The same buffer was added to adjust the final volume to 10.0 µL, followed by 10 

min incubation at room temperature. 2 µL 6X RNA loading dye was added to each sample 

and 10 µL of the mixture was loaded to each well in 1% agarose gel with 1X GelRed dye. 
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The electrophoresis was run in TBE buffer (pH 7.9) at 60 V for 90 min and the gel was 

visualized under a UV transilluminator. Related results are shown in Figure 3.2. 

 

DLS measurements 

The size of PBAV-siRNA complexes were measured at 633 nm using Zetasizer (NanoZS) 

dynamic light scattering instrument (Malvern Instruments, Malvern, UK) at 25 ˚C with 

detection angle of 173˚. Both PBAV and siRNA were diluted in nanopure water, followed by 

brief vortexing. After 10 min incubation at room temperature, DLS measurement was 

taken. At least three measurements were taken for each sample and the mean Z-average 

values were reported. 

 

siRNA transfections 

(1) Vector-siRNA complex preparation 

The TFA-salts of the various PBAVs were stored at -20 ° C as 10 mg/ml solutions in RNase 

free water and prior to complexation the vectors, along with all buffers, were allowed to 

reach room temperature. Both negative control and targeted siRNA were diluted to 1.5 µM 

with RNase free water. The diluted siRNA was further diluted with OptiMEM and 

complexed with the appropriate amount of vector solution required to achieve the desired 

N/P ratio. The complex solutions were prepared at 5X the desired final concentration (60 

nM) and with a final volume of 60 µL. 20 µL of the complex solution with 300 nM siRNA 

was added to each well containing 80 µL of OptiMEM to give a transfection media with 60 

nM siRNA. Lipofectamine RNAiMAX was used as a positive control and prepared as 

instructed in the product manual.  
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(2) Transfection in luciferase-expressing HEK-293 cells 

Transfections were performed in triplicate in a cell culture treated clear-bottom 96-well 

plate (Corning). After passaging, the cells were plated in 96-well plates so that they were 

40~50% confluent at the time of transfection. The 5X vector-siRNA complexes were 

prepared using the aforementioned protocol. The culture media was switched to 80 µL 

OptiMEM (with or without 10% FBS) per well and 20 µL of the complex solution was added 

to each well. The cells were cultured for 48 hours prior to analysis. 

 

(3) Transfection analysis in luciferase-expressing HEK-293 cells 

After 48 hours of incubation post-transfection, the culture media was removed and 

replaced with 100 µL of a 150 µg/mL solution of firefly D-luciferin in FluoroBriteTM DMEM. 

Without any further treatment, the cells were incubated at 37 °C for 5 minutes after which 

they were imaged using an IVIS lumina II camera. The normalized luciferase knockdown 

was determined by comparing the overall luminescence of the samples treated with 

complexes containing anti-luc siRNA to those treated with complexes containing negative 

control siRNA. 
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3.8 HPLC Traces and MALDI-MS Spectra 

Representative HPLC Traces 

          F10-GHHHKKKW         F10-GHKHKHKW 

 

                                F10-GWHHHKKK                                                 F10-GWHKHKHK 

 

 

 

 

 

 

                                 F10-GHHHKKK                                                      F10-GHKHKHK 
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MALDI-MS Spectra 

F10-GHHHKKKW 

 

F10-GHKHKHKW 
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                   F10-GWHHHKKK                                                            F10-GWHKHKHK 

 

 

                      F10-GHHHKKK                                                                 F10-GHKHKHK 
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                   mF10-GHHHKKKW                                                          mF10-GHKHKHKW 

 

 

                    mF10-GWHHHKKK                                                        mF10-GWHKHKHK 
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                   mF10-GHHHKKK                                                        mF10-GHKHKHK 

 

 

 

                          H10-GHHHKKKW                                                       H10-GHKHKHKW 
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mH10-GHHHKKKW 

 

mH10-GHKHKHKW 
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Chapter 4: Poly(thymine)-functionalized Bioreducible Polymers for 

mRNA Delivery 

4.1 Introduction and Project Design 

 As introduced in Section 1.3, mRNA therapeutics has emerged as a powerful novel 

technology and it holds great promise in revolutionize protein replacement therapies, 

immunotherapy, and the treatment of genetic diseases.1-3 However, the lack of safe and 

efficient mRNA delivery vehicle still hinders the widespread application of mRNA 

technology.4-5 As described in Section 1.5, the ideal mRNA delivery material needs to bind 

mRNA cargos favorably, promote cellular uptake and endosomal escape, and release mRNA 

efficiently in the cytoplasm.6-7 Moreover, compared to siRNA, mRNA is generally more 

sensitive to RNase degradation due to the long single-stranded structure.6 Therefore, 

delivery vehicles must be able to effectively protect mRNAs during the delivery processes. 

Among all the common non-viral mRNA delivery systems (Section 1.7), the great majority 

of synthetic vectors bind to RNA cargos through electrostatic interaction. The delivery 

vectors are often positively charged, interacting with negatively charged RNA molecules 

and forming nanoparticle complexes. However, the abundant cationic charges can bring 

several side effects. First, the cationic vectors can also interact with anionic serum proteins, 

which generates aggregation and cytotoxicity.8 In addition, the zeta potential of formed 

nanoparticle complexes are often positive due to the excess cationic vectors, which triggers 

immune response and brings disuniform bio-distribution in vivo. For instance, it has been 

shown that positively charged particles are prone to accumulate in the lung and spleen.9  

 In this chapter, we attempted a novel delivery system which combined different 

mechanisms for mRNA complexation and nanoparticle formation. mRNA is usually single-
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stranded and consists of ribonucleotides which are linked by phosphodiester bonds. A 

typical human protein coding mRNA includes several regions: 5’-cap, 5’-untranslated 

region, coding sequence, 3’-untranslated region, and 3’-poly(adenosine) (poly-A) tail 

(Figure 4.1A – 4.1B).10 Interestingly, this poly-A tail is a structural homology which is 

shared by almost all functional mRNAs. It is a long chain (100 – 250 nucleotides) of adenine 

nucleotides and plays essential role in mRNA function. The poly-A tail has been 

demonstrated to increase the stability of mRNA and prevent degradation.11 In addition, it 

allows the mature mRNA molecule to be exported from the nucleus after transcription and 

translated into a protein by ribosomes in the cytoplasm.11-13 Moreover, several studies have 

shown that the poly-A tail binds to poly-A binding proteins in the ribosome, which 

facilitates mRNA translation and protein production.14-15  

 Due to the unique poly-A tail structure of mRNA, we decided to introduce the 

poly(thymine)-poly(adenine) base-pairing into our vehicle design (Figure 4.1C). 

Poly(thymine) probes have been utilized to detect and image poly(A) RNAs.16-17 Through 

introducing poly(thymine) units into regular cationic polymeric vectors, we can construct 

the specific binding motif for mRNA delivery. The base-pairing between poly-T and poly-A 

will serve as initial templates for further vector-mRNA complexation facilitated by charge 

interactions, which may enhance binding affinity, condense nanoparticle size, and reduce 

cationic charges on the particle surface. The smaller nanoparticle size and less positive zeta 

potential are highly preferable for promoting endocytosis, elongating circulation time, and 

reduce cytotoxicity.18  
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Figure 4.1 The general eukaryotic mRNA structure and hydrogen binding between adenine 
and thymine. (A) The structure of a typical eukaryotic mRNA. (B) pDNA-mediated gene 
transfer and mRNA-mediated gene transfer. Adapted and reprinted from Ref.10 (C) 
Hydrogen binding interactions between adenine and thymine.  
 

 To demonstrate this hypothesis, our initial trial was to functionalize gold 

nanoparticles with oligo poly(thymine) DNA. The poly(thymine) DNA-functionalized gold 

nanoparticles are able to bind with mRNA cargos after thermal annealing. But they showed 

minimal mRNA delivery efficacy in the subsequent transfection assays, possibly due to low 

cellular uptake efficiency induced by negative charges on the particle surface. The charge 

repulsion between anionic gold nanoparticles and anionic phosphate lipid in the cell 

membrane inihibited cell internalization (Chapter 1, Section 1.6). 

 Therefore, we decided to use peptide nucleic acid (PNA) to introduce poly(thymine) 

in the following study. PNA is a family of DNA/RNA analogues in which the sugar-

phosphate backbone is replaced by pseudo-peptide backbone (Figure 4.2A).19 Typically, 

the backbone of PNA is acyclic, achiral, and neutral. PNA can bind to complementary 
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nucleic acids in both antiparallel Watson-Crick mode and parallel Hoogsteen mode, 

providing a much stronger binding affinity than DNA-DNA base matching (Figure 4.2B).20 

Since the neutral PNA backbone does not generate charge repulsion with DNA/RNA, the 

DNA/RNA-PNA binding is usually stable in the environment of different ionic strength. PNA 

has been demonstrated as a powerful biomolecular tool in the molecular genetic 

diagnostics with a large variety of applications, including the usage as antigene agent, 

antisense agent, and biosensors.21-22  

Figure 4.2 (A) Chemical structures of DNA and PNA analogues. (B) Triple base pairing 
between different PNA and DNA. Adapted and reprinted from Ref.20  
 

 In this work, we designed a family of poly(thymine) peptide nucleic acid-

functionalized bioreducible polymers (PTBP) for mRNA delivery (Figure 4.3). The 

bioreducible polymer backbone in this study is the same as the polymer backbone in MPBP 

system introduced in Chapter 2. Dicysteine units are incorporated to provide glutathione-

triggered intracellular disassembly and ensure high biocompatibility.23 The polymer 

backbone is functionalized by two components: poly(thymine) oligo peptide nucleic acid 

(poly-T PNA) and short linear functional peptide. Different amounts of poly-T PNAs were 



165 
 

introduced into the PTBP system to bind with poly-A tails on mRNAs. This is designed to 

serve as initial templates for further ionic complexation. Another component is a short 

linear functional peptide which has been discussed in MPBP system (Chapter 2). Histidine 

(His), lysine (Lys), and tryptophan (Trp) were used to construct the peptide (H-

WKHKHKHG-OH). His enhances endosomal escape through increasing buffering capacity 

and Lys provides cationic charge for further coulombic complexation.24 In the meantime, 

terminal Trp improves RNA binding and cellular uptake.25 We propose a two-step process 

to realize the templated vector-mRNA complexation for PTBP system. First, the PTBP 

vector was complexed with mRNA cargo at high ionic strength media, which suppressed 

the electrostatic interaction. The A-T interaction would direct the vector and mRNA to form 

templates. Then after reducing the media ionic strength, cationic-anionic charge interaction 

would dominate and further condense the complexes into small nanoparticles.  

 
Figure 4.3 The design of poly(thymine)-functionalized bioreducible polymers (PTBP) for 
mRNA delivery.  
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4.2 Design and Synthesis of PTBP 

 First, the thymine-containing PNA monomer and PTBP polymer backbone were 

synthesized by following the established protocol (Scheme 4.1).26-27 The synthesis of poly-

T PNA was performed through conventional solid-phase peptide synthesis.28 Oligo poly-T 

PNA is a synthetic challenging due to the poor solubility.29 Ethylene glycol linker (O linker) 

and lysine were incorporated into the PNA sequence to enhance the solubility which is 

crucial for the subsequent polymer functionalization. Noticeably, all side chains and N-

terminus of poly-T PNA need to be fully protected in order to avoid cross-reactions in the 

following amide coupling process. Unfortunately, even though substantial O linker units 

were incorporated into the poly-T PNA sequence, the poor solubility still hindered the 

subsequent polymer functionalization. Lys units need to be deprotected to expose primary 

amines in order to enhance solubility. Therefore, we changed our PNA design and 

functionalization strategy. 

Scheme 4.1 Synthetic route to PNA monomer and PTBP backbone. (A) Synthetic route to 
poly-T PNA monomer (B) Synthetic route to PTBP backbone and the structure of poly-T 
PNA. 
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 After initial binding strength calculation, oligo T8 PNA was chosen in our PTBP 

study. In order to ensure good PNA solubility for the following purification and 

functionalization reaction, several Lys units and O linker units were incorporated into the 

PNA sequence. After loading L-cysteine (Cys) as the first amino acid onto rink amide resin, 

we performed our PNA synthesis through traditional solid phase peptide synthesis 

(Scheme 4.2). In the last step, high concentration of trifluoroacetic acid (TFA) was used to 

cleave the peptide from the resin, as well as deprotect all of the amino acids. Fortunately, 

the oligo T8 PNA generated from this route has sufficient solubility for HPLC purification 

and subsequent reaction. However, due to the deprotected primary amines on the PNA, 

another conjugation strategy which is orthogonal to amide coupling was needed for 

polymer functionalization. Herein, we chose thiol-maleimide click chemistry for the 

following functionalization reaction (Scheme 4.3). First, the obtained bioreducible 

polymer backbone was functionalized by maleimide NHS ester, affording maleimide-

grafting bioreducible polymer (MFBP). Then both Cys-terminated linear functional peptide 

(HS-CHKHKHKW) and Cys-terminated oligo T8 PNA were conjugated onto the polymer 

backbone through thiol-maleimide click chemistry. A control sample (PTBP-control) 

without PNA incorporation was obtained for comparison. Two samples with different 

amounts of T8 PNA functionalization were obtained for further study. For simplicity, the 

PTBPs were named as PTBP-T8-X, where X indicates the percentage of PNA 

functionalization. The details of synthesized PTBPs can be found in Table 4.1. All details 

for the peptide, PNA, and polymer synthesis and characterization can be found in Section 

4.7 – 4.8.  
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Scheme 4.2 Synthetic route to oligo T8 PNA. 

 

 
Scheme 4.3 Synthetic route to PTBP.  

 

 
Table 4.1 Detailed summary of synthesized PTBPs.  

Sample name 
Molecular weight per 

repeating unit 
(g/mol) 

Primary amine per 
repeating unit 

Functionalization 

PTBP-control 2573 7.25 
87.5 mol% 

CHKHKHKW 

PTBP-T8-11 3150 7.93 
11.6 mol% T8 PNA 
75.8% CHKHKHKW 

PTBP-T8-19 3547 8.42 
19.0 mol% T8 PNA 
68.5% CHKHKHKW 
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4.3 Biophysical Study of PTBP-mRNA Complexes 

 PTBP-control and PTBP-T8-11 were chosen as representative vectors for mRNA 

complexation studies. The complexation processes are illustrated in Figure 4.4. First, eGFP 

mRNA was heated at 55 oC for 5 minutes and chilled in ice. This process was used to unfold 

mRNA secondary structure. Second, different PTBP vectors were complexed with mRNAs 

in the media of high salt concentration, which suppressed electrostatic interaction between 

cationic peptides and anionic mRNAs. Third, the complex solution was subjected to a 

thermal annealing process, which facilitated the interaction between poly-T PNA and poly-

A mRNA. Finally, the complex solution was eluted through a desalting column, in order to 

change complex media back to water. The decreased ionic strength allowed stronger 

coulombic interaction between vectors and mRNAs, which further condensed the 

complexes into smaller nanoparticles. The PTBP-mRNA complexes in both high salt media 

and water were analyzed by dynamic light scattering (DLS) (Table 4.2). In high salt media, 

PTBP-control and PTBP-T8-11 formed large nanoparticles (~500 nm) with mRNA 

whereas both complexes became significantly smaller after desalting. No significant 

differences were observed for these two vectors, possibly due to the overwhelming 

presence of electrostatic interaction. With a higher N/P ratio (N/P = 10), PTBP vectors 

were able to form small nanoparticles of less than 100 nm size in diameter with eGFP 

mRNA. Further zeta potential tests (Section 4.7) showed that both PTBP-control-mRNA 

and PTBP-T8-11-mRNA complexes were close to neutral (Table 4.2), which are beneficial 

for lower toxicity and aggregation in biological transfections. 
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Figure 4.4 Graphic illustration of PTBP-mRNA complexation processes.  

Table 4.2 Nanoparticle sizes of PTBP-eGFP mRNA complexes determined by DLS. The 
particles were tested in two different media, 2 M NaCl solution and nano-pure water.  

Sample Solvent N/P ratio Z-average size (nm) PDI Zeta Potential (mV) 

PTBP-control 2 M NaCl 5 542.3 0.280 ― 

PTBP-T8-11 2 M NaCl 5 519.6 0.270 ― 

PTBP-control water 5 272.7 0.355 ― 

PTBP-T8-11 water 5 283.3 0.344 ― 

PTBP-control water 10 94.13 0.262 -5.70 

PTBP-T8-11 water 10 74.50 0.329 0.52 

 

 Gel binding assays were performed to further study the complexation between 

PTBPs and mRNAs. First, different PTBPs were complexed with mRNA at various N/P 

ratios and the nanoparticle complexes were subjected to gel electrophoresis study (Figure 

4.5A). The results showed that both PTBP-control and PTBP-T8-11 completely bound to 

mRNA starting at very low N/P ratio (N/P = 1), indicating that the PTBP vectors have 

strong binding affinity to mRNA cargos. To differentiate the vectors with and without poly-

T PNA functionalization, a series of dextran sulfate competitive binding assays were 
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performed (Figure 4.5B). First, different PTBP vectors were complexed with mRNA at N/P 

= 2 by following aforementioned protocol (Figure 4.4). Dextran sulfate (MW = 25 kDa), an 

anionic polymer was added to challenge the complexation between PTBPs and mRNAs. For 

this purpose, the PTBP-mRNA complexes were incubated with different amount of dextran 

sulfate (different S/P ratio, the molar ratio of sulfate groups from DS and phosphate groups 

from mRNA) to compete with mRNA. As shown in the results, mRNA release was observed 

at S/P =10 for PTBP-T8-19-mRNA complexes whereas the mRNA cargo was released at 

S/P = 5 for PTBP-control-mRNA complexes. This indicated that oligo T8 PNA 

functionalization induced stronger mRNA binding for the PTBP vectors.  

Figure 4.5 Gel binding assays of PTBP-eGFP mRNA complexes. (A) Gel electrophoresis 
study of PTBP-eGFP mRNA complexation. (B) Dextran sulfate competitive assays of 
different PTBP-eGFP mRNA complexes. N/P = 2.  
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4.4 mRNA Delivery 

 After establishing the vector-mRNA complexation method, the PTBPs were used to 

deliver Fluc mRNA and eGFP mRNA. First, PTBP vectors were complexed with mRNAs at 

different N/P ratios by following aforementioned protocol. Then NIH 3T3 cells were 

treated with different PTBP-mRNA nanocomplexes. Lipofectamine MessengerMAX (LF 

MM) was used as a positive control and naked mRNA alone and untreated cells were used 

as negative controls. After 24 hours following transfection, the luciferase activity was 

assayed by an IVIS camera for Fluc mRNA delivery and eGFP expression was measured via 

flow cytometry for eGFP mRNA delivery. The transfection results are presented in Figure 

4.6 – 4.7. 

 

Figure 4.6 Fluc mRNA transfection using different PTBPs at different N/P ratios in NIH 
3T3 cells (150 ng mRNA per w ell), serum-free media.  
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Figure 4.7 eGFP mRNA transfection using different PTBPs at different N/P ratios in NIH 
3T3 cells (150 ng mRNA per well), serum-free media.  
 

 PTBP vectors without oligo T8 PNA functionalization, PTBP-control exhibited 

similar transfection efficacy to LF MM in Fluc mRNA delivery. However, all vectors with 

oligo T8 PNA functionalization were not effective for neither Fluc mRNA nor eGFP mRNA 

delivery. From eGFP mRNA delivery, less than 5% NIH 3T3 cells were successfully 

transfected for PTBP-T8 series vectors. We believe this is due to the excessively strong 

base pairing between oligo T8 PNA and poly-A tail on mRNA. Several studies have shown 

that poly-A tail actually plays important role in mRNA translation processes. 3’-terimal 

poly-A tail and the 5’-terminal caps are the canonical stimulators of protein synthesis in 
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ribosome. It is shown that the poly-A-binding protein (PABP) in the cytoplasm associated 

with poly-A tail stimulates translation initiation.30 Several models and mechanisms were 

proposed to illustrate the effect of PABP on translation (Figure 4.8).31-32 Further gel 

binding assay confirmed that the PTBP vectors were not able to efficiently release mRNA 

after disulfide degradation by glutathione (Section 4.7). This indicated that the strong 

hydrogen bonding between poly-A and poly-T inhibited the interaction between poly-A tail 

and PABP, which prevented the successful mRNA translation. For further studies, 

structural modification of the PTBP vectors is needed to weaken the A-T interaction in 

order to enhance transfection efficacy.  

 

Figure 4.8 Models of initiation processes in protein synthesis. (A) “Closed loop” model. (B) 
Model of PABP effect on 60S subunit recruitment stimulation. (C) Ribosome recycling 
model. (D) Paip1-induced translation stimulation model. Adapted and reprinted from Ref.30  
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4.5 Conclusions 

 In summary, we designed and constructed a series of poly(thymine) peptide nucleic 

acid-functionalized bioreducible polymers (PTBPs) for mRNA delivery. Oligo T8 PNA and 

linear short peptides were used to functionalize the biodegradable polymer backbone. 

Oligo T8 units were used to bind poly-A tail of mRNA cargo, serving as a template for 

further complexation. Gel electrophoresis studies confirmed the high binding affinity 

between PTBP vectors and mRNAs. DLS studies exhibited the vectors were able to form 

small (less than 100 nm) and stable nanoparticle complexes with mRNA cargos. 

Unfortunately, cell transfection study showed the mRNA delivery by PTBP vectors was 

unsuccessful, possibly because the overwhelming strong base pairing between poly-A and 

poly-T inhibited the binding between poly-A tails and poly(A)-binding proteins. 

Nonetheless, we believe the idea of introducing hydrogen-binding interaction into vector-

RNA complexation and the design and synthesis of PNA-functionalized biodegradable 

polymers are still interesting and beneficial to the design and development of mRNA 

delivery materials. For further studies, the vector structure need to be further optimize to 

address the current issue. 
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4.7 Experimental 

Materials. All commercially available chemicals were used without further purification 

unless otherwise noted. Protected amino acids were purchased from Advanced ChemTech 

(Loiusville, KY) and Aroz Technologies, LLC. (Cincinnati, OH). Coupling reagents were 

purchased from GL Biochem Ltd. (Shanghai, China). CleanCap®  eGFP mRNA (5moU) and 

Fluc mRNA (5moU) were obtained from TriLink Biotechnologies (Sorrento Mesa, CA). 

Lipofectamine MessengerMAX was purchased from Invitrogen (Carlsbad, CA) and used as 

positive controls following the manufacturer’s protocol. All reactions were performed 

using HPLC grade solvents unless otherwise noted. All water used in biological 

experiments was Nanopure water obtained from Barnstead Nanopure Diamond (Waltham, 

MA). Unmodified NIH 3T3 cells were a generous gift from Professor Young Jik Kwon 

(Department of Chemical Engineering, UC Irvine, CA). Dulbecco’s modified Eagle’s medium 

(DMEM), fetal bovine serum (FBS), and OptiMEM were purchased from Invitrogen 

(Carlsbad, CA).  

 

Instruments. Nuclear Magnetic Resonance (NMR) spectra were recorded on 500 MHz or 

600 MHz Bruker spectrometers. Chemical shifts were reported in ppm. Coupling constants 

(J values) were reported in Hertz. 1H NMR chemical shifts were referenced to D2O (𝛿= 4.79 

ppm), CD3OD (𝛿= 3.31 ppm), and DMF-d7 (𝛿= 8.03, 2.92, 2.75 ppm). The molecular weight 

and molecular weight distribution of the polymer backbone was measured by gel 
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permeation chromatography (GPC). GPC was performed on an Agilent 1100 SEC system 

using an OHpak SB-803 HQ column from Shodex. The molecular weight was determined 

with respect to poly(ethylene glycol) (PEG) S3 standards purchased from Aldrich. DMF 

with 0.1% LiBr (wt/v) was used as the eluent at a flow rate of 1.0 mL/min with column 

temperature at 45°C. The Z-average size and zeta potential of PTBP-mRNA polyplexes 

were measured at 633 nm using Zetasizer (NanoZS) dynamic light scattering instrument 

(Malvern Instruments, Malvern, UK) at 25 ˚C with detection angle of 173˚. Flow cytometry 

was performed on a BD ACCURI C6 flow cytometer (BD Biosciences, San Jose). Solid-phase 

peptide synthesis and PNA synthesis were performed on a Protein Technologies PS3 

synthesizer. Matrix assisted laser desorption ionization spectral data (MALDI) was 

obtained from the UC Irvine Mass Spectrometry Facility and collected with an AB SCIEX 

TOF/TOF 5800 System. NapTM-5 columns (SephadexTM G-25 DNA Grade) was purchased 

from GE Healthcare.  

 

PTBP synthesis and characterization 

Functional linear peptide (H-WKHKHKHC-OH): Rink amide resin was first loaded with 

Fmoc-Cys-OH at the loading density of 0.283 mmol/g. Following the sequence of 

HKHKHKW, Cys-loaded resin (300 mg, 1.0 equiv., 0.085 mmol) was coupled with 3 

different side-chain protected amino acids on a PS3 solid-phase peptide synthesizer. For 

each coupling step, one amino acid was added for reaction: Fmoc-His(Trt)-OH (263 mg, 5.0 

equiv., 0.42 mmol), Fmoc-Lys(Boc)-OH (199 mg, 5.0 equiv., 0.42 mmol), or Boc-Trp(Boc)-

OH (172 mg, 5.0 equiv., 0.42 mmol). HATU (145 mg, 4.5 equiv., 0.38 mmol) was utilized as 

coupling reagent and HOAt (52 mg, 4.5 equiv., 0.38 mmol) was included to suppress the 
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possible epimerization. 20% collidine in DMF was used in the coupling reaction and 20% 

piperidine in DMF was used to deprotect the Fmoc group. After the synthesis was finished, 

the functional linear peptide was cleaved from the resin and deprotected by using 90% TFA 

in anhydrous CH2Cl2. After removal of the solvent under reduced pressure, the residue was 

obtained as a white solid to give 66 mg (71%) of functional linear peptide (H-

WKHKHKHC-OH). The synthesized linear peptide was purified by C18 reverse-phase 

chromatography and utilized for the following click reactions.  

 

Oligo T8 PNA synthesis (H-T8O4K6C-OH): Rink amide resin was first loaded with Fmoc-

Cys-OH at the loading density of 0.312 mmol/g. Following the sequence of 

KKKKKKOOOOTTTTTTTT, Cys-loaded resin (250 mg, 1.0 equiv., 0.078 mmol) was coupled 

with 3 different side-chain protected amino acids on a PS3 solid-phase peptide synthesizer. 

For each coupling step, one amino acid was added for reaction: Fmoc-Lys(Boc)-OH (183 

mg, 5.0 equiv., 0.39 mmol), Fmoc-O linker-OH (150 mg, 5.0 equiv., 0.39 mmol), or Fmoc-T 

monomer-OH (198 mg, 5.0 equiv., 0.39 mmol). HATU (133 mg, 4.5 equiv., 0.35 mmol) was 

utilized as coupling reagent and HOAt (48 mg, 4.5 equiv., 0.35 mmol) was included to 

suppress the possible epimerization. 20% collidine in DMF was used in the coupling 

reaction and 20% piperidine in DMF was used to deprotect the Fmoc group. After the 

synthesis was finished, the functional linear peptide was cleaved from the resin and 
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deprotected by using 90% TFA in anhydrous CH2Cl2. After removal of the solvent under 

reduced pressure, the residue was obtained as a white solid to give 78 mg (28%) of Oligo 

T8 PNA (H-T8O4K6C-OH). The synthesized peptide nucleic acid was purified by C18 

reverse-phase chromatography, characterized by analytical HPLC and MALDI-TOF MS, and 

utilized for the following click reactions. MALDI-TOF MS m/z: 3598.0688 [M+H]+. 
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The PTBP polymer backbone was synthesized and characterized by following the 

published protocol (Chapter 2).27 1H NMR (600 MHz, CD3OD, 298 K, ppm): 𝛿 4.46 – 4.39 (m, 

2H), 4.24 – 4.21 (m, 3H), 3.59 – 3.21 (m, 8H), 3.74 – 3.56 (m, 12.5H), 1.91 – 1.79 (m, 2H), 

1.59 – 1.57 (m, 2H),1.42 – 1.41 (m, 2H), 1.28 (t, J = 7.0 Hz, 3H). 

 

 

Maleimide-functionalized bioreducible polymer (MFBP): A solution of BP backbone 

(30.0 mg, 4.94 × 10−2 mmol repeating units), maleimide-NHS ester (31.7 mg, 1.19 × 10−1 

mmol), and DIPEA (25.8 𝜇L, 1.48 × 10−1 mmol) in DMF (200 𝜇L) was stirred at room 

temperature for 24 h under nitrogen. After removal of the solvents under reduced 

pressure, the residue was dissolved in MeOH and purified via dialysis (MWCO = 6 – 8 kDa) 

against MeOH for 24 h. Then MeOH was removed in vacuo to give MFBP (23 mg, 75%) as a 

clear oil. 1H NMR (600 MHz, DMF-d7, 298 K, ppm): 𝛿 7.00 (s, 3.5H), 4.86 – 4.72 (m, 2H), 4.32 

– 4.14 (m, 3H), 3.74 – 3.56 (m, 12.5H), 3.18 (s, 3.5H), 2.60 (s, 4H), 1.82 – 1.43 (m, 7H), 1.22 

(m, 3H). 
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General procedure for synthesis of PTBP: A solution of MFBP (1.0 equiv), Cys-

terminated linear peptide (HS-CHKHKHKW), oligo T8 PNA (HS-CK8O4T6), and DIPEA (2 

equiv) was stirred at room temperature for 24 h under nitrogen. The amounts of HS-

CHKHKHKW and HS-CK8O4T6 were determined according to the functionalization ratio. For 

instance, 0.2 equiv HS-CK8O4T6 and 1.8 equiv HS-CHKHKHKW for sample PTBP-T8-10. 

After removal of the solvents under reduced pressure, the residue was dissolved in MeOH 

and purified via dialysis (MWCO = 6 – 8 kDa) against MeOH for 24 h. Then MeOH was 

removed in vacuo to give PTBP vector as a clear oil. The accurate functionalization ratios 

were determined by 1H NMR.  

 

PTBP-control (50% isolated yield): 1H NMR (600 MHz, CD3OD, 298 K, ppm): 𝛿 8.18 (s, 3H), 

7.66 – 7.02 (m, 8H), 4.67 (s, 2H), 4.35 – 3.80 (m, 8H), 3.20 – 3.11 (m, 4H), 2.92 (s, 2H), 1.83 

– 1.12 (m, 14H). 

 

PTBP-T8-11 (28% isolated yield): 1H NMR (600 MHz, CD3OD, 298 K, ppm): 𝛿 8.19 (s, 3H), 

7.66 – 7.02 (m, 6H), 4.66 (s, 2H), 4.35 – 4.01 (m, 4H), 3.68 – 3.46 (m, 4H), 3.20 – 3.11 (m, 

4H), 2.92 (s, 2H), 1.83 – 1.23 (m, 15H). 
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PTBP-T8-19 (22% isolated yield): 1H NMR (600 MHz, CD3OD, 298 K, ppm): 𝛿 8.27 (s, 3H), 

7.66 – 7.01 (m, 5.4H), 4.68 (s, 2H), 4.35 – 4.02 (m, 5H), 3.68 – 3.46 (m, 6H), 3.23 – 3.12 (m, 

4H), 2.92 (s, 3H), 1.86 – 1.23 (m, 18H). 

 

PTBP/RNA Binding Study 

PTBP-mRNA complexation 

First, eGFP mRNA was heated at 55 oC for 5 minutes and chilled in ice. Second, different 

amount of PTBP solutions (10 mg/mL) were added to mRNA solution to achieve different 

N/P ratio (the molar ratio of primary amine groups from PTBPs and phosphate groups 

from mRNA, imidazole groups of histidine residues not counted because they are not 

protonated at pH 7.4) in the media of high salt concentration (2 M NaCl), which suppressed 

electrostatic interaction between cationic peptides and anionic mRNAs. Third, the complex 

solution was subjected to a thermal annealing process (55 oC for 5 minutes, gradually cool 

to room temperature for 30 minutes), which facilitated the interaction between poly-T PNA 

and poly-A mRNA. Finally, the complex solution was eluted through a Nap-5 desalting 

column, in order to change complex media back to water. The decreased ionic strength 

allowed stronger coulombic interaction between vectors and mRNAs, which further 

condensed the complexes into smaller nanoparticles. 

 

Gel electrophoresis 

The binding of mRNA to PTBPs was studied by agarose gel electrophoresis. PTBP vectors 

and mRNAs were complexed by following aforementioned protocol. 2 µL 6X RNA loading 

dye was added to each sample and 10 µL of the mixture was loaded to each well in 1% 
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agarose gel with 1X GelRed dye. The electrophoresis was run in TBE buffer (pH 7.9) at 60 V 

for 90 min and the gel was visualized under a UV transilluminator. Related results are 

shown in Figure 4.5A. 

 

Dextran sulfate competitive binding assay 

The binding strength of mRNA to PTBPs was studied by competitive binding assay with 

dextran sulfate (DS). PTBP-mRNA complexes at N/P = 2 were prepared by following 

aforementioned protocol. 1 µL DS solution of different concentration was added to the 

complex to achieve different S/P ratio (the molar ratio of sulfate groups from DS and 

phosphate groups from mRNA) and incubated for another 30 minutes. The samples were 

then subjected to agarose gel electrophoresis under the aforementioned condition. Related 

results are shown in Figure 4.5B. 

 

Glutathione release binding assay 

The PTBP-mRNA complexes were prepared at different N/P ratios via aforementioned 

protocol. Then glutathione (GSH) solution was added to achieve the concentration of 5 mM. 

The mixture was incubated at room temperature for 30 minutes and subjected to gel 

electrophoresis to detect mRNA release. The results (shown in the figure below) exhibited 

all PTBP vectors still strongly binds to mRNA cargos after polymer degradation, which also 

explains the mRNA transfection deficiency in biological experiments.  
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DLS measurements 

The size and zeta potential of PTBP-mRNA complexes were measured at 633 nm using 

Zetasizer (NanoZS) dynamic light scattering instrument (Malvern Instruments, Malvern, 

UK) at 25 ˚C with detection angle of 173˚. Both PTBP and mRNA were diluted in nanopure 

water and complexed under aforementioned condition. After 10 min incubation at room 

temperature, DLS measurement was taken. The solution was then diluted with 600 µL PBS 

and subjected to zeta-potential measurement. At least three measurements were taken for 

each sample and the mean Z-average values were reported. 
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Biological Studies 

mRNA transfections 

(1) PTBP-mRNA complex preparation 

Before performing the mRNA transfections, the area was sterilized with bleach and RNase 

ZAP (Ambion), and special care was take to use RNase free products when handling the 

mRNA. Lipofectamine MessengerMAX was used as a positive control and prepared as 

instructed in the product manual. The mRNA was thawed and diluted to a concentration of 

0.05 μg/μL with OptiMEM. Different PTBP-mRNA complexes at various N/P ratios were 

prepared by following aforementioned protocol. Finally, the mixture is diluted to 60 μL 

with OptiMEM so that 20 μL of the complex solution will contain 150 ng of mRNA.  

 

(2) Transfection in NIH 3T3 cells. 

Transfections were performed in triplicate in a cell culture treated clear-bottom 96-well 

plate (Corning). After passaging, the cells were plated in 96-well plates so that they were 

60~70% confluent at the time of transfection. The PTBP-mRNA complex solutions were 

prepared using the aforementioned protocol. The culture media was switched to 80 µL 

OptiMEM (with or without 10% FBS) per well and 20 µL of the complex solution was added 

to each well. The cells were cultured for 24 hours prior to analysis. 

 

(3) Transfection analysis in Fluc mRNA transfected cells 

24 hours post-transfection, the culture media was removed and replaced with 100 µL of a 

150 µg/mL solution of firefly D-luciferin in FluoroBriteTM DMEM. Without any further 
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treatment, the cells were incubated at 37 °C for 5 minutes after which they were imaged 

using an IVIS lumina II camera and the luminescence was determined.  

 

(4) Transfection analysis in eGFP mRNA transfected cells via flow cytometry. 

24 hours post-transfection, the culture media was removed and replaced with 30 µL 

trypsin and incubated at 37 °C for 5 minutes. 70 µL of complete media were added to the 

plate and the cells were transferred to a 96-well non-cell treated plate for flow cytometry. 

Fluorescence of the transfected cells was measured on a Becton-Dickinson LSR II flow 

cytometer with argon ion excitation laser. 5000 events were recorded per sample and each 

value reported is the average of 3 samples.  
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4.8 1H NMR Spectra 

BP backbone 

 

MFBP 
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PTBP-control 

 

PTBP-T8-11 
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PTBP-T8-19 
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Chapter 5: Hybrid Organic-Inorganic Quantum Dot Superlattices for 

Enhanced Charge Transport 

5.1 Introduction and Project Design 

 Thin flims of semiconductor quantum dots (QDs) represent a promising platform for 

low-cost optoelectronic devices. In particular, solar cells based on thin films of colloidal 

PbX QDs (X = S, Se, Te) have been demonstrated and developed rapidly.1-4.Compared to 

bulk or thin film semiconductors, which require high temperature, high-vacuum 

processing5-6, QD Photovoltacis (PV) technology offers significant advantages in improving 

device efficiency and stability.7-10 However, the discrete nature of QDs results in drastically 

reduced charge transport properties compared to those in bulk and polycrystalline films.11-

12 

 All QD solar cells to date employ amorphous films of QDs capped with short organic 

or inorganic ligands that achieve substantial electronic coupling only by forfeiting medium 

and long range order.13-15 To improve the electronic performance of QD materials, well-

ordered QD arrays which have the superlattices structure have been emphasized 

recently.16-17 The band-like transport can be realized in the QD films with a long-range 

positional order, while charge carriers can only be transported via a sequence of phonon 

assisted tunneling events in disordered structures.18 We believe that fabricating 

superlattice QD films with excellent long-range positional and orientational order can 

combine the high-mobility band transport of crystalline semiconductors with the unique 

photophysics and processing advantages of QDs. 

 Therefore, we report the fabrication of well-ordered QD arrays that are 

electronically coupled with bis-functional and mono-functional organic molecular wires 
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(MWs). It is well established that colloidal solutions of PbSe QDs decorated with long alkyl 

ligands readily form poly-supracrystalline QD thin films with large grain sizes (> 100 nm) 

and face-centered cubic (fcc) dominated packing structure via spin coating.19 We 

postulated that in situ exchange of the non-conducting alkyl ligands with conjugated, 

conducting MWs of similar dimension to the native ligands would retain the poly-

supracrystalline order20 and enable dynamic self-assembly from solution. 

 Figure 5.1 summarizes three ways in which the hybrid superlattice nanocomposites 

(HSNs) can be fabricated using the bis- and mono-functional wires. As shown in Pathway A, 

the bis-functional wires are used for solid-state ligand exchange of oleate-capped QD 

superlattices deposited by spin coating to produce HSNs. Besides being used in this way, 

the mono-functional wires can be employed in solution-phase ligand exchange to form 

stable QD-MW solution that yield HSNs upon assembly by spin coating/drop casting 

(Pathway B). Since the mono-functional wires do not covalently crosslink the QD array in 

the fashion of the bi-functional wires, solvent annealing of mono-HSNs made by either 

Pathway A or B can be used to further improve the superlattice order and grain size 

(Pathway C).  

 The mono- and bis-functional molecular wires can result in high carrier mobility by 

reducing the effective height of the tunnel barrier between QDs and favoring the 

emergence of extended states across the superlattice grains.21 In addition, the structures of 

molecular wires can be adjusted to investigate the impact of the HOMO/LUMO energy level, 

band gap, interfacial transmission barrier and wire length on carrier mobility, and 

electronic device performance. 
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Figure 5.1 Hybrid superlattice nanocomposites (HSNs) of PbSe QDs and molecular wires. 

 

5.2 Design, Synthesis and Characterization of Functional Molecular Wires 

 A bis-carboxylic acid triphenylene ethynylene (TPE) ligand was chosen for our 

initial concept demonstration.22 Due to the ethynyl 𝜋 spacer between the phenyl rings, 

there is no steric restriction to conformation, and co-planarity guarantees relatively high 

conductance and good state delocalization. Figure 5.2 shows the structures of our 

designed functional molecules and their estimated HOMO/LUMO energy levels from DFT 

calculation.23 

 Through varying electronic substituents on the phenyl rings, we can adjust the 

HOMO/LUMO energy levels of these TPE analogs while keeping the energy gap relatively 

constant. From the results of DFT calculation, the barrier height for electron tunneling is 

smallest for TPE-NO2 and largest for mTPE, while the inverse holds for hole tunneling. 

Across this series, we can use the substituent inductive effects to selectively tune the 



195 
 

barrier height for electron and hole transport and make n-type and p-type HSNs via barrier 

engineering.24 

 Additionally, the HOMO-LUMO energy gap can be decreased by changing the central 

conjugated core. The band gaps of TPE-A and TPE-F are closer to the PbSe QD band gap, 

which offers lower barriers to the transport pathways of both electrons and holes. 

Furthermore, using molecular wires with lengths as similar as possible to the inter-QD 

spacing of oleate-capped films can avoid disorder caused by volume changes and improve 

HSN order. Through iterative Sonogashira cross-coupling reaction25, the length of 

molecular wires can be enlarged to approach the inter-QD spacing observed in oleate-

capped superlattices (TPE-L). 

 

Figure 5.2 Structure and HOMO/LUMO positions of functional molecular wires. A 5 nm 
PbSe QD was used for the calculation and its energy levels were obtained from cyclic 
voltammetry and photoemission spectroscopy.26 
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 The bis-functional molecular wire (TPE) and the mono-functional molecular wire 

(mTPE) were synthesized for our preliminary study. The synthetic route is illustrated in 

Scheme 5.1. A diiodination was first performed on 1,4-Dimethoxybenzene to produce 

compound 2,27 which was further coupled with Trimethylsilylacetylene through a 

Sonogashira cross-coupling reaction.28 After deprotection of the trimethylsilyl groups, 

compound 4 was subjected to another Sonogashira cross-coupling reaction with one 

equivalent of Iodobenzene and Ethyl-4-indobenzoate to afford a statistical mixture of 

mono-functional molecular wire precursor (5), bis-functional molecular wire precursor 

(6), and nonfunctional molecular wire (7). Finally, these two molecular wire precursors 

were hydrolyzed with KOH in THF/EtOH to produce mTPE (8) and TPE (9) in 90% yield.29  

Scheme 5.1 Synthetic route to mTPE and TPE. 

 

Reagents and conditions: (a) I2, H5IO6, H2SO4, HOAc, H2O, CH2Cl2, 75 oC, 15 h, 76%. (b) 
Pd(PPh3)4, CuI, iPr2NH, DMF, rt, 12 h, 71%. (c) K2CO3, MeOH, CH2Cl2, rt, 1 h, 81%. (d) 
Pd(PPh3)4, CuI, iPr2NH, DMF, rt, 12 h, 5 (30%), 6 (27%), 7 (35%). (e) KOH, THF, EtOH, 45 
oC, 5 h, 90%. (f) KOH, THF, EtOH, 45 oC, 15 h, 92%. 
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 In absorption spectra (Figure 5.3), compounds 7-9 all exhibited two identical major 

absorption peaks from 𝜋 → 𝜋∗ excitation. Both mTPE and TPE exhibited red-shifted 

absorption maxima and onsets relative to those of nonfunctional molecular wire; this is 

attributed to the electron-withdrawing effect of carboxyl groups.30 As the amount of 

carboxyl groups in the molecular structure increased, the absorption maxima and onsets 

redshifted gradually. Calculated from onset values, the optical band gaps of all functional 

molecular wires are all around 3 eV and match the results from DFT calculation well. 

(Table 5.1) 

 

Figure 5.3 Normalized absorption spectra of nonfunctional molecular wire (nMW), mTPE 
and TPE in THF (1×10-5 M). 
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Table 5.1 Summary of the photophysical properties of compounds 7-9. 

Compound 
𝝀𝒂𝒃𝒔

𝒎𝒂𝒙  

(nm) 

𝝀𝒂𝒃𝒔
𝒐𝒏𝒔𝒆𝒕  

(nm) 

𝑬𝒈
𝒐𝒑𝒕

 

(eV)[a] 

𝑬𝑯𝑶𝑴𝑶  

(eV)[b] 

𝑬𝑳𝑼𝑴𝑶  

(eV)[b] 

𝑬𝒈
𝒄𝒂𝒍  

(eV)[b] 

nMW (7) 305, 365 396 3.14 ─ ─ ─ 

mTPE (8) 306, 371 410 3.03 -2.34 -5.66 3.32 

TPE (9) 315, 379 417 2.98 -2.51 -5.64 3.13 

[a] Calculated from absorption spectra. Optical band gap is calculated from equation: 
ℎ𝑐

𝜆𝑜𝑛𝑠𝑒𝑡
= 𝐸𝑔. [b] Determined from DFT calculation. 

 

5.3 Solid-state Ligand Exchange with TPE and Characterization 

 The conductive TPE-functionalized PbSe (PbSe-TPE) QD thin film fabrication is 

illustrated in Figure 5.4a. Poly-supracrystalline PbSe-TPE QD films were fabricated 

through spin-coating and in situ solid-state ligand exchange. For control, we also 

constructed glassy PbSe-TPE QD thin film nanocomposites by dip-coating for comparative 

studies. Complete exchange of native oleate ligands for TPE was confirmed by FTIR 

following established protocols (Figure 5.4b, c).31 The lack of a free carboxylic acid 

resonance indicates that both ends of TPE are quantitatively complexed to QDs, which 

suggests that substantial chemical QD bridging is occurring. Extinction spectra of the 

hybrid nanocomposite films show a larger red-shift as well as substantial peak-broadening 

when compared to their oleate-capped counterpart. We attribute this larger 

redshift/broadening to an enhanced dielectric screening and better electronic coupling 

between QDs facilitated by the MWs (Figure 5.4d).16  
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Figure 5.4 Solid-state ligand exchange and characterization. (a) Concept illustration of our 
fabrication process. Spin coating oleate-capped PbSe QD yield superlattice films, which can 
be soaked in a solution of TPE to replace oleate for TPE and retain the structural order. (b) 
FTIR spectra of PbSe QD films. Black: oleate-capped films. Gold: TPE-capped films made by 
dip coating. Red: TPE-capped films made by spin coating. (c) Magnified views of the spectra 
in (a); both gold and red traces retains <1% of the C-H stretch observed in the black trace. 
(d) Comparative optical extinction spectra of oleate-capped (black), dip coated (gold) and 
spin coated (red) TPE exchanged PbSe QD films on glass substrates. Film thicknesses: 100 
nm. 
 

5.4 Solution-phase Ligand Exchange with mTPE and Characterization 

 First, oleate-capped PbSe QDs were synthesized and purified using standard air-free 

Murray synthesis.32 The absorption spectrum displays an 1800 nm first excitation peak 

(Figure 5.5) and corresponding TEM image illustrates that the size of synthesized QDs is 

around 6 nm (Figure 5.6).33-34 Next, solution-phase ligand exchange and further 

purification was performed by following standard procedures (see Section 5.10). 
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Complete exchange of native oleate ligands for mTPE was confirmed by FTIR and 1H NMR 

spectra. The entire disappearance of internal alkene signals (5.36 ppm) and alkyl signals 

(0.92 ppm, 1.34 ppm, 2.07 ppm) from oleic acids in 1H NMR spectrum suggests the ligand 

exchange was fully conducted (Figure 5.7a, b). The line broadening is generally attributed 

to the transversal interproton dipolar relaxation mechanism that is rendered more efficient 

by the restricted rotational mobility of the ligands when bound to the PbSe QD surface.35-37 

The absence of a (C=O) stretch at 1680 cm-1 and a shift in the asymmetric (COO-) stretch 

suggest mTPE is bound to the surface of PbSe QDs (Figure 5.7c). In contrast to the results 

of solid-state ligand exchange with TPE, the band gap of PbSe QDs did not change in a 

distinguishable scale after the solution-phase ligand exchange with mTPE as evidenced by 

the absorption spectra (Figure 5.7d). 

 

Figure 5.5 Absorption spectrum of syntheized oleate-capped PbSe QDs in 1-octadecence 
(ODE) (1×10-5 M). 
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Figure 5.6 TEM image of syntheized oleate-capped PbSe QDs.  
 

 

Figure 5.7 Characterization of solition-phase ligand exchange. (a, b) 1H NMR spectra of 
PbSe-OA, PbSe-mTPE QDs in d8-THF. Several broad resonances were observed, with a 
chemical shift comparable to the chemical shift of capping reagents (Yellow: oleic acid, 
Blue: mTPE). (c) Normalized FTIR spectra of mTPE (blue) and PbSe-mTPE (red) QD films. 
(d) Absorption spectra of PbSe QD solutions in CBrCl3 (1×10-4 M).  
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5.5 Film Construction and Morphology Study 

 We confirmed the desired poly-supracrystalline order of spin-coated oleate-capped 

PbSe QDs by scanning electron microscope (SEM) images. The SEM image in Figure 5.8 

shows that the poly-supracrystalline order was mostly retained after the solid-state ligand 

exchange with TPE. The TPE-functionalized PbSe (PbSe-TPE) QD superlattice structure 

was further characterized by grazing incidence small angle X-ray scattering (GISAXS) 

patterns (Figure 5.8)38 and related analyses about lattice constant and crystal system were 

shown in Section 5.10. 

 After solution-phase ligand exchange with mTPE, thin films of mTPE-functionalized 

PbSe (PbSe-mTPE) QD were constructed through spin-coating and the morphology was 

investigated by SEM images (Figure 5.9). Compared to the superlattice structures of 

oleate-functionalized PbSe (PbSe-OA) QD and PbSe-TPE QD films, the PbSe-mTPE QD film 

lacked long-range order (For Fast Fourier Transformation, see Figure 5.9). We believe this 

amorphous structure is due to the rigidity of mTPE molecular skeleton and strong 𝜋 − 𝜋 

interaction between the aromatic rings. After a comprehensive screening of appropriate 

solvents (Table 5.2) and spin-coating conditions (Table 5.3), a series of subsequent 

solvent annealing experiments were conducted to enhance the degree of order of the PbSe-

mTPE QD films. As evidenced by the SEM images (Figure 5.10), the solvent with lower 

vapor pressure (DMF) can help the QDs rearrange their packing structures without 

disturbing the integrity of QD films. More solvent-annealing conditions are being attempted 

based on the small enhancement of film order (~20 nm lattice domains) (Figure 5.10d) 

now. In addition, other superlattice film construction methods, including liquid-air 

interface self-assembly and vapor diffusion, are also being tested (Figure 5.11). 
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Figure 5.8 SEM plan view images of PbSe QD films. (a) An oleate-capped film prepared by 
spin-coating. (b) A TPE-capped film made by in situ ligand exchange of the spin-coated film. 
(c) A disordered TPE-capped film made by layer-by-layer dip coating. (d-f) Corresponding 
SEM cross sections and (g-i) 2D GISAXS patterns.  

 

Figure 5.9 SEM plan view images and related fast fourier transformation analyses of PbSe 
QD films. (a) An oleate-capped QD film prepared by spin-coating. (b) An mTPE-capped QD 
film made by spin-coating with 20 mg/mL PbSe-mTPE QDs solution in THF. 
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Table 5.2 Results of solubility tests of PbSe-mTPE QDs[a] 

Solvent Result Solvent Result Solvent Result Solvent Result 

THF Good DMF Good Toluene Medium IPA Poor 

Hexane Poor Octane Poor ODE Poor TCE Poor 

EtOH Poor Acetonitrile Poor Acetone Poor CHCl3 Poor 

[a]. All solubility tests were performed on PbSe-mTPE QDs films drop-casted on silica 
substrates. 
 

Table 5.3 Screening results of spin-coating conditions[a] 

Entry Spin 1 Spin 2 Spin 3 Results 

1 300 rpm, 30 s ─ 4000 rpm, 10 s No film formed 

2 600 rpm, 30 s ─ 4000 rpm, 10 s Uniform film 

3 300 rpm, 30 s 600 rpm, 20 min 4000 rpm, 10 s Uneven film 

4 600 rpm, 30 s 900 rpm, 20 min 4000 rpm, 10 s Uniform film 

5 300 rpm, 30 s 900 rpm, 20 min 4000 rpm, 10 s Uniform film 

6 1300 rpm, 30 s 4000 rpm, 20 s ─ Uniform film 

[a]. All spin-coating experiments were conducted with 20 mg/mL PbSe-mTPE QDs solution 
in THF on single-side-polished silicon wafer substrates. 
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Figure 5.10 SEM plan view images of PbSe-mTPE QD films after solvent annealing. (a) 
Solvent-annealed with THF at room temperature for 12 h. (b) Solvent-annealed with 
toluene at room temperature for 12 h. (c) Solvent-annealed with toluene at 60 oC for 12 h. 
(d) Solvent-annealed with DMF at room temperature for 24 h.  
 

 

Figure 5.11 Graphic illustration of methods for constructing QD superlattice films. (a) 
Liquid-air interface self-assembly. (b) Vapor diffusion. 
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5.6 FET Measurements 

 The carrier mobilities of PbSe-TPE QD films (ordered and amorphous) were 

measured in field-effect transistors (FET) geometry with the help of Law group (Figure 

5.12). At room temperature, both ordered and disordered films act as p-type depletion-

mode devices with mobilities of 3.10 × 10-2 cm2 V-1 s-1 and 1.62 × 10-4 cm2 V-1 s-1, 

respectively. The electrical performance of these I-V measurements were also obtained at 

80 K with both ordered and glassy films acting as unipolar p-type devices with mobilities of 

2.04 × 10-1 cm2 V-1 s-1 and 1.74 × 10-3 cm2 V-1 s-1, respectively. There is an over 100-fold 

increase in mobility value from glassy to ordered films at both room and low temperature. 

 

Figure 5.12 I-V plot of TPE-capped PbSe QD FETs. (a) Output curves obtained at 80 K and 
(b) comparative transfer curves obtained at 80 and 300 K for ordered TPE-capped PbSe QD 
films. Similar output and transfer curves for the control disordered TPE-capped PbSe QD 
films are shown in (c) and (d), respectively. QD diameter: 6.1 nm. Film thickness: 20-35 
nm. Channel length: 10 μm in (a,b); 5 μm in (c,d). Channel width = 1000 μm. Sweep rate = 
50 V s-1. Inset in (b) is a schematic of the device. 
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5.7 Conclusions 

 In summary, we demonstrated a modular self-assembly approach to synthesize the 

first conductive hybrid organic-inorganic QD superlattice films. Long conjugated molecular 

wire ligands were used to fabricate conductive, long diffusion length QD superlattices. The 

results from FET tests (Figure 5.12) supported the hypothesis that improved QD ordering 

will result in improved transport. However, more FET measurements are being reproduced 

to optimize the device performance and verify the reproducibility of FET results. Overall, 

our hybrid nanocrystal-molecular wire design represents a general approach to improve 

order in nanocrystal films, across the whole range of nano-electronic applications. 

 On the other hand, we are still optimizing the conditions of film construction and 

solvent-annealing to enhance the packing order of PbSe-mTPE QD film. In addition, the 

library of designed organic molecular wires will be synthesized to investigate the impact of 

MW length, band gap, and energy level on the tunnel barrier heights, superlattice order and 

electronic properties. 
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5.10 Experimental 

General. All commercially available chemicals were used without further purification 

unless otherwise noted. Column chromatography was performed with silica gel. Analytical 

thin-layer chromatography (TLC) was performed on 0.2 mm silica gel-coated glass sheets 

with F254 indicator. All yields given refer to isolated yields. Nuclear Magnetic Resonance 

(NMR) spectra were recorded on 500 MHz or 600 MHz Bruker spectrometers. Chemical 

shifts were reported in ppm. Coupling constants (J values) were reported in Hertz. 1H NMR 

chemical shifts were referenced to CDCl3 (𝛿= 7.26 ppm) or d6-DMSO (𝛿= 2.50 ppm). 13C 

NMR chemical shifts were referenced to CDCl3 (𝛿= 77.00 ppm) or d6-DMSO (𝛿= 39.52 ppm). 

ESI-HRMS spectra were recorded on a Waters (Micromass) LC-TOF Mass Spectrometer. 

Transmission electron microscopy (TEM) characterization was performed on a Philips 

CM20 operating at 200 kV. Scanning electron microscopy (SEM) images were obtained by 

an FEI Magellan 400 XHR scanning electron microscope operated at an accelerating voltage 

of 1.0 kV. Absorption spectra were recorded on PerkinElmer Lambda 950 UV-Vis 

Spectrometer. FTIR measurements were carried out on nanocrystal films deposited on 

double-side polished intrinsic silicon substrates using either a JASCO 4100 or Nicolet 6700 

spectrometers. 
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Synthetic Procedures 

Organic Synthesis 

Compounds 1-4 were synthesized by following previous literature1-3.  

 

Compound 5. A mixture of compound 4 (250 mg, 1.34 mmol), iodobenzene (274 mg, 1.34 

mmol), ethyl 4-iodobenzoate (370 mg, 1.34 mmol), Pd(PPh3)4 (31 mg, 0.027 mmol), CuI (10 

mg, 0.05 mmol), diisopropylamine (5 mL), and DMF (20 mL) was degassed for 30 min. The 

degassed solution was stirred at room temperature overnight under a nitrogen 

atmosphere. The reaction mixture was cooled to room temperature and extracted with 

CH2Cl2. The organic layer was washed with brine and dried over anhydrous Na2SO4. After 

removal of the solvent under reduced pressure, the residue was purified by column 

chromatography over silica gel (eluent: Hexane/EtOAc = 7:3) to give compound 5 as a 

white solid (165 mg, 30%). 1H NMR (600 MHz, CDCl3, 298 K, ppm): 𝛿 8.03 (d, J = 8.6 Hz, 

2H), 7.62 (d, J = 8.6 Hz, 2H), 7.59–7.56 (m, 2H), 7.38–7.33 (m, 3H), 7.05 (s, 1H), 7.04 (s, 1H), 

4.39 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.91 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, 

CDCl3, 298 K, ppm): 𝛿 165.9, 153.9, 153.7, 131.6, 131.4, 129.7, 129.3, 128.4, 128.2, 127.7, 

123.0, 115.5, 115.4, 113.9, 112.5, 95.2, 94.0, 88.6, 85.5, 61.0, 56.30, 56.26, 14.19; HRMS 

(ESI) m/z: Calcd for C27H22O4H: 411.1596; Found: 411.1595 [M + H]+. 
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Compound 6. A solution of KOH (684 mg, 1.22 mmol) in EtOH (10 mL) was added 

dropwise into a solution of compound 5 (500 mg, 1.22 mmol) in THF (60 mL). The reaction 

mixture was heated to 45 oC and stirred for 5 h. After cooling to room temperature, the 

reaction mixture was acidified by 1 M HCl and extracted with CH2Cl2. The organic layer was 

washed with brine and dried over anhydrous Na2SO4. After removal of the solvent under 

reduced pressure, the residue was purified by recrystallization with isopropyl alcohol to 

give compound 6 as a pale yellow solid (419 mg, 90%). 1H NMR (600 MHz, d6-DMSO, 298 K, 

ppm): 𝛿 13.17 (s, 1H), 7.98 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.56–7.54 (m, 2H), 

7.47–7.41 (m, 3H), 7.23 (d, J = 8.5 Hz, 2H), 3.86 (s, 6H); 13C NMR (125 MHz, d6-DMSO, 298 K, 

ppm): 𝛿 166.7, 153.6, 153.5, 131.4, 131.3, 130.6, 129.6, 129.0, 128.8, 126.7, 122.4, 115.7, 

115.6, 113.1, 112.0, 94.9, 93.9, 88.8, 86.0, 56.33, 56.31; HRMS (ESI) m/z: Calcd for C27H17O4: 

381.1127; Found: 381.1128 [M - H]-. 

 

QD Synthesis 

PbSe QDs were synthesized and purified using standard air-free Murray synthesis.4 In a 

typical synthesis, a solution of 1.57 g PbO (7.03 mmol), 5.11 g oleic acid (18.1 mmol), and 

10.0 g 1-octadecence (ODE) (39.6 mmol) was degassed in a three-neck flask and heated at 

100 °C for one hour to dissolve the PbO and dry the solution. 9.5 mL of a 1 M solution of 

TOP-Se containing 0.214 g diphenylphosphine (DPP) (1.15 mmol) was then rapidly 

injected into this hot solution. The QDs were grown for short times (~1.5 minutes), and the 
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reaction was then quenched with a water bath and 10 mL of anhydrous hexane. The QDs 

were purified by three rounds of dispersion/precipitation in hexane/ethanol and stored in 

a glove box as a powder. 

 

Ligand Exchange and Film Construction 

Solid-state Ligand Exchange with TPE and QD Film Deposition 

 Films of oleate-capped QDs (“as-made films”) were made by spin coating a 30 mg 

mL-1 solution of QDs in octane at 600 rpm for 30 seconds, followed by 4020 rpm for 10 

seconds. In a similar fashion to the as-made QD films, TPE treated PbSe QD films were 

fabricated by first spin coating a 30 mg mL-1 solution of QDs in octane. Thin films for FETs 

were made at 1200 rpm for 30 seconds, followed by 4020 rpm for 10 seconds. Thick films 

for XRD and FTIR studies were made at 600 rpm for 30 seconds, followed by 4020 rpm for 

10 seconds. All films were subsequently immersed in 23.5 mM solution of TPE for 20 

minutes and subsequently washed with DMSO and hexane to remove any unbound ligand 

remaining on the surface. 

 A mechanical dip coater mounted inside of a glovebox (DC Multi-4, Nima 

Technology) was used to prepare PbSe QD films via a layer-by-layer procedure described in 

detail elsewhere.5 Briefly, the substrates (silicon or pre-patterned FET cleaned by 

sonication in isopropyl alcohol followed by drying under an N2 flow) were alternately 

dipped into a 2 mg mL-1 solution of QDs in dry hexane and then a 2.0 mM solution of 

molecular wire in dimethyl sulfoxide (DMSO). A third beaker containing neat, dry DMSO 

was used to rinse the films after each dip in the molecular wire solution in order to remove 

any residual ligand. A fourth beaker containing neat, dry acetonitrile was used for a final 
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wash of the QD film and to aid in the removal DMSO. We fabricated films with thicknesses 

in the range of 25-100 nm (thin for FETs, thicker for FTIR and XRD studies).  

 

Solution-phase Ligand Exchange with mTPE and QD Film Deposition 

 Replacement of oleate ligands for mTPE was accomplished by first dissolving 200 

mg (0.523 mmol) of mTPE in 4 mL THF, which was slowly added to a 5 mg mL-1 solution of 

oleate-capped PbSe QDs (4 mL). The flocculated solution was centrifuged and washed with 

a 1:1 mixture of THF and isopropanol to remove any excess ligand. This washing procedure 

was repeated twice more. The resulting QD pellet was re-dispersed in THF (5 mg/mL) for 

immediate film fabrication. 

 Films of oleate-capped QDs were made by spin coating a 30 mg mL-1 solution of QDs 

in hexane at 600 rpm for 30 seconds, followed by 4020 rpm for 10 seconds. Thin films of 

mTPE-1 capped QDs were made by spin coating a 20 mg mL-1 solution of QDs in THF under 

different conditions (Table 5.3).  

 

Morphology Study of TPE-functionalized PbSe QD Film 

 While SEM images provide a limited window into QD arrangement, grazing 

incidence small angle X-ray scattering (GISAXS) patterns provide quantitative 

measurements of millimeter-wide areas of our thin films. Figure 5.8g-i shows a portion of 

the GISAXS patterns for the as-made oleate-capped, ordered and glassy TPE-capped PbSe 

QD films. The as-made oleate-capped PbSe QD films fabricated by spin coating produced a 

spot pattern indicative of a high degree of crystalline order between QDs. We azimuthally 

integrated the intensity profile for the GISAXS patterns over all q vectors in order to extract 
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the lattice constant and crystal system. The peak positions were indexed and found to 

closely align with an fcc structure. The lattice constant of this fcc-like pattern was 

determined to be afcc = 13.2 ± 0.5 nm, which matches well with previous reports of PbSe QD 

superlattices made from particles of similar size.6 We determined the PbSe QD separation 

by analyzing the spacing between QD surfaces along the closest-packed [hkl] direction. In 

an fcc lattice, the nearest neighbor distance between QD surfaces, δNN, is along the [110] 

diagonal of the PbSe QD lattice and determined to be 3.25 nm.7 

 

FET Device Fabrication and Characterization 

 The linear mobilities (𝜇𝑙𝑖𝑛) were extracted from the transfer curves at constant VSD 

according to established methods.8 At room temperature, both ordered and disordered 

films act as p-type depletion-mode devices with mobilities of 3.10 × 10-2 cm2 V-1 s-1 and 1.62 

× 10-4 cm2 V-1 s-1, respectively. The value obtained from ordered TPE-capped PbSe QD films 

is comparable to values reported for glassy films with short diacid ligands, which is notable 

considering the substantially larger inter-dot distances (~2 nm) in our ordered TPE-

capped PbSe films when compared to the traditional QD films with small ligands (<0.5 

nm).9-11 The electrical performance of these I-V data were also obtained at 80 K with both 

ordered and glassy films acting as unipolar p-type devices with mobilities of 2.04 × 10-1 cm2 

V-1 s-1 and 1.74 × 10-3 cm2 V-1 s-1, respectively. There is an over 100-fold increase in mobility 

value from glassy to ordered films at both room and low temperature. 
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Computational Studies 

 Calculations were performed using the Gaussian 09 software package.12 The 

geometries were optimized at the B3LYP/6-311G(d, p) level, and energies were calculated 

at the same level. The calculated molecular orbitals and corresponding energy levels of 

designed functional molecular wires are shown below. 
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5.12 NMR Spectra 
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