Title
NEUTRON SPECTRA MEASURED INSIDE HUMAN PHANTOMS

Permalink
https://escholarship.org/uc/item/4jb9f977

Authors
Lehman, Richard L.
Fekula, Olga M.

Publication Date
1965-12-09
NEUTRON SPECTRA MEASURED INSIDE HUMAN PHANTOMS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NEUTRON SPECTRA MEASURED INSIDE HUMAN PHANTOMS

Richard L. Lehman and Olga M. Fekula

December 9, 1964
NEUTRON SPECTRA MEASURED INSIDE HUMAN PHANTOMS*

Richard L. Lehman

Department of Biophysics and Nuclear Medicine
University of California, Los Angeles

and

Olga M. Fekula

Lawrence Radiation Laboratory
University of California
Berkeley, California

December 9, 1964

ABSTRACT

Local neutron spectra inside human phantoms exposed 25 to 200 m from a bare pulsed reactor have been measured by use of nuclear track emulsion. Under the conditions of open terrain, flat for at least 800 m in all directions, and of a bare reactor located 2 m above the ground, it was found that (a) the exposing neutron energy spectrum above 500 keV does not change with depth in a human phantom, and (b) to a distance of at least 200 m along the air-ground interface, the exposing neutron energy spectrum above 500 keV closely resembles the emission spectrum of the neutron source.

*Work done under the auspices of the U. S. Atomic Energy Commission.
I. INTRODUCTION

Roberts (1) first reported the use of nuclear track emulsion in measuring the spectra of anisotropic fast neutron sources. The power of this method has been considerably increased by two recent advances: the development of automatic coordinate-readout microscopes, and the development of a scanning technique for rapidly selecting unbiased track samples (2, 3).

By virtue of their small size, nuclear emulsions are able to measure the neutron-generated proton track energy spectra and dose in the material which immediately surrounds them during exposure. Such local proton dose spectra, obtained from pieces of nuclear emulsion exposed at various positions inside and around human phantoms 10 to 200 m from a bare pulsed reactor (a), were recently reported (4). At that time preliminary measurements of the local fast neutron spectra in the immediate vicinity of the emulsions were described. Since then the methods have been developed more fully and applied to the measurement of various fast neutron spectra (2, 3, 5). Recently six of the emulsions exposed to fission neutrons from the pulsed reactor were rescanned in order to carefully determine the local fast neutron spectra at various positions inside the phantoms.

(a) The Sandia Pulsed Reactor Facility (SPRF), Albuquerque, New México.
Knowledge of the local neutron spectrum is important in the evaluation of the internal radiation doses received by persons exposed to fission neutrons.

II. MATERIALS AND METHODS

One by 3/4 in. pieces of 600 μ Ilford L.4 emulsions were wrapped with black paper, sealed in individual 20 mm polyvinyl packets, and suspended by use of fine wire at the center plane of a right elliptical cylinder 20 by 36 cm by 60 cm high, made of 0.65 cm polyethylene and filled with water. During the burst-exposure the phantoms stood atop their wooden packing crates 92 cm above the ground, at distances of 25, 100, and 200 m from the reactor.

The SPRF reactor is a bare metal oralloy assembly constructed in 1960. During a 2-day period in October, 1961, the reactor was pulsed six times at its outdoor burst site. A rubber-tired trailer frame held the reactor head 2 m above the ground. The surrounding terrain was flat for a radius of at least 800 m, and the nearest structure was the control room building, 730 m from the burst site.

The developing, fixing, mounting, and computing procedures have been reported earlier (7), and full details of the present experiment are given in the paper reporting the local proton doses and spectra (4).

In order to test for a track-sampling bias, which could strongly influence the measurements, each emulsion was scanned twice: once by
the random-walk method (in which that track is measured next one of whose ends is nearest the end of the track just previously selected and measured), and once by the total-volume method (in which every track within a prechosen volume of emulsion is scanned). When the track distributions obtained by these two methods were compared, no significant differences were found. The reported distributions are composed of the sum of the tracks scanned by each method.

Emulsions at six completely different exposure locations were so scanned. Films D-36, D-32 and D-33, and D-40 had been exposed to a single pulse \(1.48 \times 10^{16}\) fissions at respectively the front outside, center inside, and back outside of a water-filled phantom 25 m from the reactor. Films D-11, D-25, and D-16 had been exposed to six pulses \(9.35 \times 10^{16}\) fissions) at respectively the center inside and back outside of a phantom at 100 m, and the front inside of a phantom at 200 m.

RESULTS

The experimental track-length distributions from emulsions at six exposure locations, and the local fast-neutron energy spectra derived from them, are presented in Figs. 1-6. In general, the spectra follow closely the pure \(^{235}\)U fission spectrum except that they have a higher percentage of low-energy neutrons. Such a modified emission spectrum has been predicted for reactors of the type used in this experiment\(^{8}\).
There is no simple analytical method for evaluating the local uncertainty in the neutron energy spectra. In this work, the derived spectra were expected to be smooth and continuous, however, and to reflect local trends in the proton-recoil distributions rather than random variations between adjacent points. On this basis the uncertainty in the neutron spectra is estimated to equal roughly the width of the heavy lines in the figures.

DISCUSSION

Considering the differences in the exposure location of the emulsions, the spectra are remarkably similar. There was no appreciable hardening of the exposing spectrum with depth in the phantoms or with distance to 200 m. The only hint of a change in the exposing spectrum was found in the emulsion (D-25) at the back of the phantom at 100 m. This spectrum had more 0.5 to 2-MeV neutrons and fewer 3- to 6-MeV neutrons than the others, which indicates a softening in the spectrum of the neutrons scattered from the air and ground into the back surface of the phantom.

It should be emphasized that these measurements apply to the special conditions of open terrain, flat for at least 800 m in all directions, and to a bare reactor situated 2 m above the ground. The presence of structures or hills, or elevation of the reactor, may appreciably change the measured local spectra. Because the measurements do not extend
reliably to protons with energy below 500 keV, they provide no information about the distribution of neutrons below this energy.

However, the following conclusions may be stated:

(a) the exposing fission-neutron spectrum above 500 keV does not change with depth in a human phantom, and

(b) to a distance of at least 200 m along a flat air-ground interface, the exposing fission-neutron spectrum above 500 keV closely resembles the emission spectrum of the neutron source.

A simple argument based on the macroscopic cross section for scattering of fast neutrons in air suffices to show that these conclusions necessarily do not imply that the fission neutrons have achieved an "equilibrium" energy distribution. Earlier measurements of neutron fluxes by use of threshold detectors situated 300 to 1500 yards from a nuclear test explosion failed to reveal a hardening of the energy spectrum, which was interpreted to mean that an equilibrium was obtained at these ranges\(^9\).

By use of the \(E^{-0.3}\) scattering probability in air for fast neutrons of energy \(E\) between 0.5 and 10 MeV, and the value of 2.5 barns at 1 MeV\(^{10}\), it can be estimated that a typical neutron reaching our 200 m phantom was scattered only twice (5 MeV neutron) or three times (1 MeV neutron) by the air-molecule nuclei en route. Because the mean fractional energy loss per scattering is about 0.1 for these nuclei, the total effect on the neutron spectrum is expected to be small. A similar
argument gives the same expectation for the effect of a 5 or 10 cm water path on a fast neutron spectrum. In the case of water the scattering probability follows an $E^{-0.7}$ dependence in the region of interest. For this reason, water is considerably more efficient than an equivalent amount of air in hardening a fission neutron spectrum.

For comparison, the differential scattering of visible light by the air obeys an E^{4} law; even so, an exceedingly long light path through the atmosphere (as in sunrise or sunset) is required to remove most of the blue and green from the solar spectrum.

The observation that the fast neutron spectrum does not change with depth in a human phantom, and that it closely resembles the emission spectrum of the neutron source over distances of interest in nuclear accidents should greatly facilitate the evaluation of personnel doses. Taken together with measured local proton tissue doses (4), accurate skin and organ rem doses from fast neutrons may now be quickly found by knowledge of the distance (10-200m) and orientation of the victim relative to the neutron source during exposure, and the fission yield.
FIGURE CAPTIONS

Fig. 1. The track-length energy distribution in film D-36 and the local neutron spectrum derived from it, based on 1887 measured tracks. A, peak from 0.6 MeV protons released by the nuclear reaction of emulsion nitrogen with thermal neutrons, $^{14}_N(n,p)^{14}C$. B, corrected proton-recoil spectrum; C, derived neutron spectrum; O, measured points of the proton track spectrum; \triangle, points corrected for measuring bias against short tracks. The ordinate $\Delta N/p\Delta E$ gives the number ΔN of proton tracks or neutrons within the energy interval ΔE, with the geometry correction factor p. For comparison, the expected proton-recoil distribution D and the neutron spectrum E from a pure U^{235} source are given.

Fig. 2 The track-length energy distribution in film D-32 and D-33 and the local neutron spectrum derived from it, based on 950 tracks.

Fig. 3 The track-length energy distribution in film D-40 and the local neutron spectrum derived from it, based on 1716 tracks.

Fig. 4 The track-length energy distribution in film D-11 and the local neutron spectrum derived from it, based on 1938 tracks.

Fig. 5 The track-length energy distribution in film D-25 and the local neutron spectrum derived from it, based on 1713 tracks.

Fig. 6 The track-length energy distribution in film D-16 and the local neutron spectrum derived from it, based on 1876 tracks.
REFERENCES

5. R.L. Lehman, unpublished data on a, n neutron spectra.

10. R. J. Howerton, Semi-Empirical Neutron Cross Sections, Part II
Vol. 1, Univ. California Lawrence Radiation Laboratory Report
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.