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CL IMATOLOGY

Short-term excess mortality following tropical cyclones
in the United States
Robbie M. Parks1*, Vasilis Kontis2, G. Brooke Anderson3, Jane W. Baldwin4,5, Goodarz Danaei6,
Ralf Toumi7, Francesca Dominici8, Majid Ezzati2,9, Marianthi-Anna Kioumourtzoglou1

Knowledge of excess deaths after tropical cyclones is critical to understanding their impacts, directly relevant to
policies on preparedness and mitigation. We applied an ensemble of 16 Bayesian models to 40.7 million U.S.
deaths and a comprehensive record of 179 tropical cyclones over 32 years (1988–2019) to estimate short-term
all-cause excess deaths. The deadliest tropical cyclone was Hurricane Katrina in 2005, with 1491 [95% credible
interval (CrI): 563, 3206] excess deaths (>99% posterior probability of excess deaths), including 719 [95% CrI:
685, 752] in Orleans Parish, LA (>99% probability). Where posterior probabilities of excess deaths were >95%,
there were 3112 [95% CrI: 2451, 3699] total post–hurricane force excess deaths and 15,590 [95% CrI: 12,084,
18,835] post–gale to violent storm force deaths; 83.1% of post–hurricane force and 70.0% of post–gale to
violent storm force excess deaths occurred more recently (2004–2019); and 6.2% were in least socially vulner-
able counties.
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INTRODUCTION
Tropical cyclones have a devastating impact on society throughout
many parts of the world (1–3). Trends of heightened activity and
increased intensity of tropical cyclones in recent years indicate
that tropical cyclone exposure is and will remain a major public
health concern (4, 5). In the aftermath of a tropical cyclone,
deaths can result from several major causes, including injuries, in-
fectious and parasitic diseases, cardiovascular diseases, neuropsy-
chiatric conditions, and respiratory diseases (5). In the United
States, states in the Atlantic and Gulf Coasts, most frequently
exposed to tropical cyclones, contain nearly half the population of
the entire country, and their populations continue to grow fast.
Some of the wealthiest and poorest communities in the United
States are located in tropical cyclone–affected areas. Although trop-
ical cyclones are not selective of communities they may affect, the
impact on public health depends on community resilience.

Knowledge of short-term excess deaths, i.e., the difference
between the observed number of deaths in the immediate aftermath
post–tropical cyclone and the counterfactual number of deaths had
a cyclone not occurred, is essential for understanding the public
health burden of climate-related disasters, directly relevant to poli-
cies on preparedness and mitigation and a key recommended
measure for post-disaster mortality assessment (6, 7). The spatial
variation of excess mortality after a single catastrophic extreme
event, such as a tropical cyclone, also informs how vulnerability per-
meates society through long-term institutional neglect; excess

mortality is not merely a product of the hazards of a tropical
cyclone but rather a combination of environmental and social
factors (8, 9). However, the methodology to attribute mortality to
tropical cyclones has been hitherto inconsistent. Tropical cyclone
death counts are, therefore, not typically directly comparable with
each other; even estimates of the same tropical cyclone can vary
greatly, such as Hurricane Maria in 2017, for which official death
counts were up to 70 times lower than the total number of excess
deaths (10).

Here, we used death registration data across more than three
decades to directly estimate the number of excess deaths after trop-
ical cyclones in all affected areas in the United States (11). We
present estimates by county, year, tropical cyclone name, and
strength of tropical cyclone, the variation of which from year to
year implicitly accounts for how active a tropical cyclone season
was, showing where the death toll after tropical cyclones was
largest. We also investigated how excess mortality after tropical cy-
clones varied by social vulnerability.

RESULTS
There were 179 named Atlantic basin tropical cyclones during
1988–2019 (Fig. 1), of which (i) 109 named tropical cyclones con-
tributed (i.e., at least one tropical cyclone–force count in at least one
county) to 5180 tropical cyclone county-months in 1258 counties
and (ii) 36 named tropical cyclones (of 109) contributed (i.e., at
least one hurricane-force count in at least one county) to 229 hur-
ricane county-months in 154 counties (Table 1). Total tropical
cyclone–force counts in a single county across all years ranged
from 1 to 27 county-months, with a median of 2 (mean: 4.2)
(Fig. 2). Total hurricane-force counts in a single county across all
years ranged from 1 to 5 county-months, with a median of 1
(mean, 1.5). Tropical cyclone county-months occurred from May
to November, with the greatest monthly occurrence in September
(2173 county-months). Hurricane county-months occurred from
July to October, with greatest occurrence in September (94
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county-months). Tropical cyclones were most frequent in the
eastern and southeastern coastal counties.

Therewere 40,689,275 total deaths during 1988–2019 in the 1258
counties that experienced at least one tropical cyclone. There was
substantial variation in the number of excess deaths by year and
county in the month of and in the month after tropical cyclones,
from either gale to violent storm or hurricane force winds
(Fig. 3). The largest annual county-level excess death count was in
Orleans Parish, LA in 2005, with 719 [95% credible interval (CrI):
685, 752] estimated total post–tropical cyclone excess deaths; fol-
lowed by Harris County, TX in 2005, with 309 [95% CrI: 182,
429] estimated total post–gale to violent storm deaths; and
Broward County, FL in 2016, with 185 [95% CrI: 86, 276] estimated
total post–gale to violent storm deaths. In counties in years where
the posterior probability that excess deaths were more than zero (re-
ferred to as “probability” hereafter) was >95% [73 hurricane force
county-years (33.5% of total) and 952 gale to violent storm force
county-years (21.4% of total)], there were a total of 3112 [95%
CrI: 2451, 3699] estimated excess deaths after hurricane force
winds and 15,590 [95% CrI: 12,084, 18,835] after gale to violent
storm force winds. There were 42 county-years (19.3% of total)
where the probability of excess deaths was <5% after hurricane
force winds and 1232 county-years (27.7% of total) after gale to
violent storm force winds. Table S1 lists the estimated excess
deaths for the top 20 most deadly county-years by year, tropical
cyclone category, and county.

The most estimated excess deaths in a single year were during
2005, with 2163 [95% CrI: −97, 4105] estimated post–tropical
cyclone excess deaths (97.0% probability), consisting of 1637
[95% CrI: 996, 2220] estimated post–tropical cyclone excess
deaths (>99% probability) and 516 [95% CrI: −1105, 1924] estimat-
ed post–gale to violent storm deaths (74.0% probability). In counties
in years where the probability was >95%, 72.2% (13,101 [95% CrI:
9532, 16,382] estimated excess deaths) of the total estimated post–
tropical cyclone excess deaths (18,158 [95% CrI: 14,267, 21,716] es-
timated excess deaths) occurred in the latter half of our study period
(2004–2019). In counties in years where the probability was <5%,
616 county-years (49.1% of total) occurred in the latter half of
our study period (2004–2019).

The largest annual estimated excess death count in a single state
was in Florida during 2017 with 1403 [95% CrI: −259, 2956] esti-
mated post–tropical cyclone excess deaths (95.3% probability), fol-
lowed by Louisiana during 2005, with 1238 [95% CrI: 840, 1582]
estimated post–tropical cyclone excess deaths (>99% probability).
The largest annual post–hurricane force wind excess death count
in a single state was in Louisiana in 2005 (1005 [95% CrI: 895,
1100] estimated excess deaths; >99% probability) followed by
Florida in 2004 (404 [95% CrI: 45, 749] estimated excess deaths;
98.4% probability). The probabilities following gale to violent
storms were often lower than 95%; the highest was in Texas in
2005 (502 [95% CrI: 225, 759] excess deaths; >99% probability), fol-
lowed by Louisiana in 2017 (274 [95% CrI: 4, 516] excess deaths;

Fig. 1. Best-track routes of each tropical cyclone by year, 1988–2019.
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Table 1. Tropical cyclones from 1988–2019 and their maximal intensities recorded in the United States (in knots), with annual number of tropical
cyclone, gale to violent storm, and hurricane county-months in the United States.Underlined tropical cyclone nameswere subsequently retired by theWorld
Meteorological Organization because of destruction wreaked in the United States or elsewhere.

Year Tropical cyclones [maximal intensity in the United States (knots)] Tropical cyclone
county-months

Gale to violent storm
county-months

Hurricane
county-months

1988
Alberto (22.8), Beryl (44.8), Chris (34.1), Florence (51.4), Gilbert (33.0), Keith

(47.8), AL13 (11.3), AL14 (27.8), AL17 (12.6)
54 54 0

1989 Allison (45.0), Chantal (61.3), Hugo (94.0), Jerry (65) 246 235 11

1990 AL01 (16.7), Bertha (11.0), Marco (46.7) 12 12 0

1991 Ana (20.0), Bob (75.6), Fabian (22.8), AL12 (30.9) 102 94 8

1992 AL02 (25.0), Andrew (110.1), Danielle (46.8), Earl (19.3) 101 88 13

1993 AL01 (9.8), Arlene (30.6), Emily (57.9) 35 35 0

1994 Alberto (50.0), AL02 (27.2), Beryl (49.4), Gordon (50.5) 55 55 0

1995 Allison (52.2), Dean (34.4), Erin (72.5), Gabrielle (20.7), Jerry (35.0), Opal (82.9) 283 274 9

1996 Arthur (25.5), Bertha (81.8), Edouard (34.4), Fran (88.3), Josephine (49.5) 386 373 13

1997 AL01 (19.0), Ana (12.3), Danny (62.8) 62 62 0

1998
Bonnie (92.1), Charley (36.4), Earl (64.8), Frances (43.6), Georges (83.2),

Hermine (30.6), Mitch (51.5)
300 284 16

1999 Bret (91.8), Dennis (54.5), AL07 (16), Floyd (75.8), Harvey (44.7), Irene (65.0) 225 210 15

2000
AL04 (17.8), Beryl (25.5), AL09 (24.4), Gordon (49.4), Helene (39.9),

Leslie (29.9)
37 37 0

2001 Allison (41.3), Barry (55.1), Gabrielle (54.9), Karen (14.7), Michelle (24.6) 70 70 0

2002
Arthur (20.3), Bertha (31.0), Cristobal (13.4), Edouard (31.3), Fay (44.8), Gustav

(36.9), Hanna (42.4), Isidore (50.5), Kyle (31.6), Lili (69.9)
89 86 3

2003
Bill (45.3), Claudette (65.9), AL07 (21.5), Erika (47.9), Grace (34.7), Henri (28.3),

Isabel (81.7)
227 217 10

2004
Alex (51.7), Bonnie (29.9), Charley (107.3), Frances (79.9), Gaston (59.3),

Hermine (32.3), Ivan (90.0), Jeanne (94.8), Matthew (26.2)
227 203 24

2005
Arlene (45.9), Cindy (47.9), Dennis (95.1), Emily (45.3), Katrina (94.2), Ophelia

(54.6), Rita (82.0), Tammy (39.2), Twenty-Two (27.0), Wilma (79.6)
263 233 30

2006 Alberto (38.3), Beryl (34.3), Chris (9.3), Ernesto (47.0) 114 114 0

2007
Andrea (21.9), Barry (38.2), Erin (47.7), Gabrielle (39.8), Humberto (67.6), Ten

(24.2), Noel (31.0)
90 88 2

2008
Cristobal (31.7), Dolly (64.3), Edouard (52.2), Fay (58.7), Gustav (87.1), Hanna

(55.2), Ike (88.8), Kyle (35.3), Paloma (8.9)
544 523 21

2009 One (10.4), Claudette (38.2), Ida (30.7) 6 6 0

2010
Alex (31.8), Two (24.8), Bonnie (30.6), Five (24.9), Earl (31.4), Hermine (51.8),

Nicole (20.0), Paula (16.1)
22 22 0

2011 Bret (18.4), Don (26.6), Emily (14.3), Irene (65.1), Lee (39.9) 193 191 2

2012 Alberto (25.2), Beryl (51.0), Debby (30.3), Isaac (63.3), Sandy (64.5) 196 195 1

2013 Andrea (40.1), Dorian (16.0), Karen (16.9) 80 80 0

2014 Arthur (74.4) 55 53 2

2015 Ana (38.7), Bill (49.9), Claudette (19.7) 19 19 0

2016
Bonnie (29.1), Colin (44.9), Eight (16.5), Hermine (63.1), Julia (44.1),

Matthew (68.0)
272 271 1

2017
Cindy (44.1), Emily (37.4), Harvey (103.1), Irma (91.9), Jose (23.9), Nate (60.6),

Philippe (8.6)
167 150 17

2018 Alberto (36.8), Chris (15.7) Florence (79.3), Gordon (57.4), Michael (130.6) 352 321 31

2019
Barry (61.3), Dorian (58.2), Fernand (18.6), Imelda (33.3), Melissa (20.4),

Nestor (33.9), Olga (44.9), Three (18.1)
296 296 0

Total 5180 4951 229
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97.6% probability). The states with the largest number of years with
a greater than 95% probability of post–tropical cyclone excess
deaths were Florida (2002 and 2017), Georgia (2006 and 2008), Lou-
isiana (2005 and 2017), and Texas (1995 and 2005), with Florida for
post-hurricane excess deaths (1999, 2004, and 2017) and Georgia
(2006 and 2008), Louisiana (2008 and 2017), and Texas (1995 and
2005) for post–gale to violent storm deaths.

The number of post–tropical cyclone excess deaths varied by
tropical cyclone. The deadliest tropical cyclone was Hurricane
Katrina in 2005, for which there were an estimated 1491 [95%
CrI: 563, 3206] post–tropical cyclone excess deaths (>99% probabil-
ity) (Fig. 4). The second deadliest was Hurricane Irma in 2017 with
1202 [95% CrI: −381, 2662] estimated post–tropical cyclone excess
deaths (94.0% probability), with 147 [95% CrI: 2, 292] estimated
excess deaths in Miami-Dade County, FL (98% probability); 134
[95% CrI: 29, 235] in Palm Beach County, FL (>99% probability);
and 106 [95% CrI: 49, 157] in Lee County, FL (>99% probability).
The third was Hurricane Sandy in 2012 with 1193 [95% CrI: −1996,
3826] estimated post–tropical cyclone excess deaths (78.7% proba-
bility), with 178 [95% CrI: 67, 271] estimated excess deaths in
Nassau County, NY (>99% probability); 104 [95% CrI: 56, 143] in
Richmond County, NY (>99% probability); and 54 [95% CrI: 11,
90] in York County, PA (>99% probability).

Table 2 lists the estimated excess deaths for the top 20 most
deadly county–tropical cyclones. The largest estimated excess
death count in a single county after a tropical cyclone was for
Orleans Parish, LA after Hurricane Katrina in 2005 (719 [95%
CrI: 685, 752] estimated excess deaths; >99% probability); followed
by Harris County, TX after Hurricane Rita in 2005 (309 [95% CrI:
182, 429] estimated excess deaths; >99% probability); and Broward
County, FL after Hurricane Matthew in 2016 (185 [95% CrI: 86,
276] estimated excess deaths; >99% probability).

The post–tropical cyclone excess death count also varied by
social vulnerability (Fig. 5). Of the 1258 counties experiencing at
least one tropical cyclone force wind during our study period, 277
counties were in the least vulnerable Social Vulnerability Index
tertile 1 (SVI-t1), 408 were in SVI-t2, and 573 were in the most vul-
nerable SVI-t3. There were also regional variations in the composi-
tion of SVI tertiles; counties included in our analysis that were in
SVI-t3 were largely from states in the southeast (275 counties;
48% of counties in SVI-t3) and south (184 counties; 32.1% of coun-
ties in SVI-t3), compared with SVI-t2 with states in the southeast
(133 counties; 32.6% of counties in SVI-t2) and central (127 coun-
ties; 31.1% of counties in SVI-t2) and SVI-t1 with states in the
northeast (96 counties; 34.7% of counties in SVI-t1) and central
(86 counties; 31% of counties in SVI-t1).

For hurricane force events, in counties where the probability was
>95%, the greatest total excess death count was in the highest vul-
nerability SVI tertile (SVI-t3) (1781 [95% CrI: 1529, 2016] estimat-
ed excess deaths; 57.2% of excess deaths; >99% probability that SVI-
t3 excess death count was greater than SVI-t1), followed by SVI-t2
(1139 [95% CrI: 761, 1480] estimated excess deaths; 36.6% of excess
deaths; >99% probability that SVI-t2 excess death count was greater
than SVI-t1) and SVI-t1 (193 [95% CrI: 97, 290] estimated excess
deaths; 6.2% of excess deaths). There was an 85.4% probability
that SVI-t3 excess death count was greater than SVI-t2.

For gale to violent storm force events, in counties where the
probability was >95%, the greatest total excess death count was in
the highest vulnerability SVI-t3 (7726 [95% CrI: 5882, 9384] esti-
mated excess deaths; 49.6% of excess deaths; >99% probability
that SVI-t3 excess death count was greater than SVI-t1), followed
by SVI-t2 (5192 [95% CrI: 3983, 6308] estimated excess deaths;
33.3% of excess deaths; >99% probability that SVI-t2 excess death
count was greater than SVI-t1) and SVI-t1 (2654 [95% CrI: 2033,
3254] estimated excess deaths; 17.0% of excess deaths). There was

Fig. 2. Counts of tropical cyclones categorized by gale to violent storm and hurricane force events by U.S. county, 1988–2019.
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an 89.6% probability that SVI-t3 excess death count was greater
than SVI-t2. Excess deaths in SVI-t2 and SVI-t3 were consistently
higher than in SVI-t1 when considering SVI percentiles within each
state for the top four most affected states (Florida, Georgia, Louisi-
ana, and North Carolina), all located in the southeast (fig. S1 and
table S2). When considering individual SVI components, the pro-
portion of hurricane force excess deaths for racial and ethnicminor-
ity status SVI tertiles was relatively higher in SVI-t3 (87.6%) than
SVI-t1 (2.5%) when compared to the overall SVI (and similar for
gale to violent storm force), but relatively lower for household char-
acteristics SVI tertiles in SVI-t3 (24.0%) than SVI-t1 (56.3%) (and
similar for gale to violent storm force) (figs. S2 to S6 and table S3).

DISCUSSION
Among U.S. counties that experienced at least one tropical cyclone
during 1988–2019, there was a large variation in cyclone-related
excess deaths by state, county, year, and social vulnerability. The
same tropical cyclone can affect communities differently, with
impacts likely driven by demographic, economic, and social
factors (12), often from systemic inequity (13). Residents in low-
income and historically disadvantaged communities have been dif-
ferentially affected after disasters (14). In our study, we also estimat-
ed fewer excess deaths after tropical cyclones in the least socially
vulnerable counties compared with the more socially vulnerable
counties, although counties with low vulnerability are also in the
path of tropical cyclones less often. Disparities in post-disaster mor-
tality remain pervasive, with higher death rates in groups such as
older adults and males of American Indian/Alaska Native and
Black origin relative to other groups (15). This is in part due to
not only lack of access to adequate short-term transportation but
also inequitable access to financial resources, education, employ-
ment opportunities, and timely warnings on tropical cyclone

proximity (15). Differences in the county-level impact of a tropical
cyclone are also driven by variations in the demographic structure
of each county, including the age distribution of residents, as well as
prevalence of residents living with preexisting chronic health issues,
such as neuropsychiatric conditions (16). The finding of more
excess deaths in the most vulnerable racial and ethnic minority
status tertiles further suggests that institutional historical neglect
plays a role in the number of excess deaths in the immediate after-
math of a tropical cyclone. Many of the most socially vulnerable
counties in the United States are in the south and southeast, areas
that are alsomost exposed to tropical cyclones, compounding risk of
death through greater relative exposure and vulnerability.

We also compared the estimated excess deaths in our study with
data from official sources and the Emergency Event Database (EM-
DAT), recognizing that they may not be directly comparable as
excess deaths accounts for deaths in those who would have lived
at least for the month of and for the month after a cyclone; official
figures may include all regardless of whether they were about to die
(17). Our results agree well with estimates of attributable deaths
after Hurricane Katrina, the deadliest tropical cyclone estimated
in our study, although our estimates are higher; we estimated
1491 post–tropical cyclone excess deaths, and the official figure is
1170 (18). In some cases, our estimates of excess deaths are consid-
erably higher; for Hurricane Irma in 2017, there were an estimated
1206 post–tropical cyclone excess deaths, while the official figure is
97 (19). In some limited cases, our estimates were slightly lower; for
Hurricane Andrew in 1992, there were an estimated 40 post–tropi-
cal cyclone deaths in Florida, while the official figure is 44 (19),
which may indicate that some of those who died may have been
already close to death. There are many reasons that excess deaths
may vary from official counts, including different methods of attrib-
uting direct and indirect deaths via death certificates, as well as

Fig. 3. Total estimated excess deaths after tropical cyclones categorized by gale to violent storm force and hurricane force events by U.S. county, 1988–2019.
Please note that the scale of each map is distinct.
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other potentially bureaucratically and politically motivated reasons
to minimize counts.

Leveraging complete death data from 40.7 million deaths and a
tropical cyclone dataset over a 32-year period, our study is a com-
prehensive investigation of excess mortality after tropical cyclones, a
key recommended measure for post-disaster mortality assessment
(6, 7), using a consistent method over space and time. This is in ad-
dition to and is distinct from our previous work that detailed the
causes of death for which the risk increased after tropical cyclones
(5). Nevertheless, this study has several limitations. First, a potential
limitation is exposuremisclassification (20). Exposuremisclassifica-
tion, however, is likely nondifferential as it is not expected to be cor-
related with the outcomes assessed (20). Furthermore, the tropical
cyclone exposure data are well validated, with no evidence of expo-
sure estimation varying in space (21). Second, this study focused on
the continental United States (CONUS), although devastating
effects of tropical cyclones, such as Hurricane Maria in Puerto
Rico, have also been recorded (10). This was in part because cur-
rently publicly available, curated tropical cyclone, temperature,
and precipitation data only cover the CONUS, with SVI also cover-
ing CONUS and Puerto Rico; further work should increase the
scope to other U.S. territories and other parts of the world. Third,
the unit of analysis was U.S. county, but counties contain disparities

within them, which was not captured in our analysis. Future work
may be able to study associations by smaller areal units, e.g., ZIP
codes, as appropriate exposure and outcome data become available.
Fourth, analysis of social vulnerability used 2018 values for the
entire study period; however, rankings of social vulnerability
change over time, although there was a high correlation of social
vulnerability when comparing the first available (2000) and the
last available (2018) years (5). SVI is also an imperfect measure of
social vulnerability, and results should be understood in that
context (22–25). Further work should examine the impact of repeat-
ed tropical cyclone exposure on social vulnerability over time. Fifth,
the data used extended only through 2019, and it is unknown
whether the findings of this study reflect more recent cyclone activ-
ity and mortality following cyclones. Sixth, although tropical cy-
clones are particularly devastating events in comparison to other
climate-related exposures and we robustly tested our model validity,
we cannot completely rule out whether there were other unrelated
deadly co-occurring hazards, partly expressed by the uncertainty in
our excess death estimates. Seventh, our analysis examined deaths in
the month of and in the month following a tropical cyclone, but
tropical cyclone exposure may result in deaths many years or
decades later, outside the scope of our study design.

Fig. 4. Total estimated excess deaths by hurricane and year, 1988–2019. Only states that had at least one tropical cyclone exposure during 1988–2019 are included.
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Our work highlights how deaths are affected by tropical cy-
clones, an understudied exposure in relation to public health and
one which will remain an important threat as the climate continues
to change (26). It is essential to prepare for tropical cyclones by ac-
counting for the social determinants of risk and vulnerability of
exposed communities, because the most socially vulnerable bears
the greatest burden of excess mortality. Trust and awareness of trop-
ical cyclone warnings and the capacity to act upon warnings, for
example, by temporarily evacuating an area, are other important
factors driving the variation in numbers of excess deaths in the im-
mediate aftermath (27). Non–hurricane force tropical cyclones
occur more frequently than hurricane force ones and were associ-
ated with more total excess deaths, which may be important for
local and state authorities to consider beyond hurricane force

winds alone. As a public health priority, future research should
focus on understanding the biological and structural drivers of
cyclone-related mortality, how to minimize the number of excess
deaths related to tropical cyclones, and the impacts on the scale
from years to decades.

MATERIALS AND METHODS
Study design
Our aim was to estimate the number of excess deaths after tropical
cyclones in the United States by county, year, named hurricane, and
strength. Knowledge of the total excess deaths is essential for under-
standing the true public health burden of powerful tropical cy-
clones, such as named hurricanes (28). However, methodology to

Table 2. Estimated hurricane-specific county excess deaths after the top 20 most deadly tropical cyclone events, with wind category and precipitation
(mm/day).

Rank Year Hurricane
name County Estimated

excess deaths Wind category Maximal precipitation
(mm/day)

Posterior
probability*

1 2005 Katrina Orleans Parish, LA 719 (685,752) Hurricane 191 >99%

2 2005 Rita Harris County, TX 309 (182,429)
Gale to

violent storm
23 >99%

3 2016 Matthew Broward County, FL 185 (86,276)
Gale to

violent storm
3 >99%

4 2012 Sandy Nassau County, NY 178 (67,271)
Gale to

violent storm
2 >99%

5 1999 Irene Broward County, FL 167 (70,258) Hurricane 110 >99%

6 2017 Irma
Miami-Dade
County, FL

147 (2,292)
Gale to

violent storm
136 97.6%

7 2005 Katrina
Harrison
County, MS

141 (126,156) Hurricane 129 >99%

8 2005 Katrina St. Bernard, LA 138 (128,148) Hurricane 179 >99%

9 1992 Andrew
Miami-Dade
County, FL

136 (9,249) Hurricane 75 98.3%

10 2017 Irma
Palm Beach
County, FL

134 (29,235)
Gale to

violent storm
109 98.9%

11 2016 Matthew
Miami-Dade
County, FL

119 (−20,256) Gale to
violent storm

3 95.5%

12 2008 Ike Harris County, TX 117 (−22,255) Hurricane 129 94.8%

13 2017 Irma Lee County, FL 106 (49,157) Hurricane 63 >99%

14 2005 Wilma Broward County, FL 104 (5,191) Hurricane 40 98.1%

15 2012 Sandy
Richmond
County, NY

104 (56,143)
Gale to

violent storm
2 >99%

16 1999 Irene
Miami-Dade
County, FL

95 (−32,221) Gale to
violent storm

156 93.0%

17 2005 Katrina
Miami-Dade
County, FL

93 (−29,209) Hurricane 61 93.6%

18 2017 Irma Pinellas County, FL 84 (−18,179) Gale to
violent storm

107 95.5%

19 2012 Sandy King’s County, NY 84 (−75,220) Gale to
violent storm

1 85.1%

20 2017 Irma Broward County, FL 81 (−20,173) Gale to
violent storm

121 94.0%

*Excess deaths were >0.
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do this has been hitherto inconsistent (29); even estimates of the
same hurricane can vary greatly, such as Hurricane Maria in
2017, for which official death counts were up to 70 times lower
than the total number of excess deaths (10, 30).

To address this critical research gap, we estimated the number of
excess deaths directly from complete mortality records. We formu-
lated a Bayesian ensemble of 16 forecasting models each with differ-
ent model parameterizations and a model-averaging approach to
estimate counterfactual county-level monthly death counts had a
tropical cyclone not occurred in the month of and in month after
a tropical cyclone.We compared actual death rates to counterfactual
rates and used population estimates to calculate the number of
excess deaths. We categorized excess deaths after gale to violent
storm and hurricane force winds. An example of this approach
for Orleans County, LA is found in fig. S7.

Exposure assessment
We obtained data on tropical cyclone wind exposure in the United
States, with full space and time coverage over our study period, de-
scribed in detail elsewhere (4, 5, 11, 21, 31–35). Briefly, we used daily
estimates of maximal wind sustained speed by county to generate

classifications of these exposures. As in previous work (4, 5), we
defined tropical cyclone exposure as all days when the peak sus-
tained wind that day in the population center of the county associ-
ated with the tropical cyclone at the point of closest approach
reached or exceeded 34 knots (63 km/hour, 39 mph; gale force
wind on the Beaufort scale), with gale to violent storm exposure
as all days with greater than or equal to 34 knots but less than 64
knots and hurricane exposure all days with greater than or equal
to 64 knots [119 km/hour, 74 mph; hurricane force wind on the
Beaufort scale (36)]. A plot of best-track routes [subjectively
smoothed representations of tropical cyclones’ location and inten-
sity over their lifetimes (37)] of each tropical cyclone by year is
found in Fig. 1. A full list of included tropical cyclones is found
in Table 1, with a map of total tropical cyclone exposure counts
in Fig. 2.

Outcome assessment
We used data on all deaths by county of residence in counties that
experienced at least one tropical cyclone exposure during 1988–
2019 through the National Center for Health Statistics (NCHS) (n
= 40,689,275; 100% of total deaths in tropical cyclone–exposed

Fig. 5. Estimated annual county-level excess deaths after tropical cyclones categorized by gale to violent storm force and hurricane force events against SVI
percentile, 1988–2019. Dots show the point estimates, and whiskers represent 95% credible intervals. Vertical dotted lines represent boundaries of SVI tertiles. High-
lighted points represent counties with a posterior probability of >95% of excess deaths.
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counties) (www.cdc.gov/nchs/nvss/dvs_data_release.htm) and on
population from the NCHS Vintage 2020 bridged race dataset (al-
though no analysis by race was carried out) for 1990 to 2019 (www.
cdc.gov/nchs/nvss/bridged_race.htm) and from the U.S. Census
Bureau before 1990 (www.census.gov/data/tables/time-series/
demo/popest/1980s-county.html).

As in previous work (5, 38, 39), we calculated monthly popula-
tion counts through linear interpolation, assigning each yearly
count to June. We calculated death rates from death counts
divided by the estimated population in each county-month. This
study was approved by the Institutional Review Board at the Colum-
bia University Mailman School of Public Health and was classified
as exempt from needing to obtain informed consent (protocol IRB-
AAAT9710).

Covariate data
We obtained data on temperature from the Parameter-elevation Re-
gressions on Independent Slopes Model (PRISM), which gathers
climate observations from a wide range of monitoring networks
and applies sophisticated quality control measures to generate a na-
tionwide temperature dataset, with full space and time coverage
over our study period (40). We used gridded daily estimates at a res-
olution of 4 km to generate area-weighted monthly average temper-
atures by county. We also used PRISM precipitation gridded daily
estimates at a resolution of 4 km to generate daily average precipi-
tation by county for use in the secondary and sensitivity analyses.

We used the latest available data on social vulnerability from the
Centers for Disease Control and Prevention (CDC) SVI for 2018
(www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_
documentation_2018.html). The SVI incorporates data from the
U.S. Census on four components to determine the relative social
vulnerability of every U.S. county (41): (i) socioeconomic status
(poverty, unemployed, housing cost burden, no high school
diploma, and no health insurance), (ii) household characteristics
(age, disability, single-parent households, and English language
proficiency), (iii) racial and ethnic minority status (Hispanic or
Latino, Black and African American, and American Indian), and
(iv) housing type and transportation (multiunit structures, mobile
homes, crowding, no vehicle, and group quarters). A county’s SVI
value indicates the relative vulnerability of each county compared
with every other county in the United States, ranking from 0%
(county with the lowest vulnerability in the country) to 100%
(county with the highest vulnerability in the country). Tools such
as the CDC SVI are not perfect representations of social vulnerabil-
ity (22) and are sensitive to the modeling choices for how they are
constructed (23). CDC SVI has been well validated as a predictor of
fatalities, while poorly validated for disaster declarations (24). On
the basis of another study of Hurricane Sandy, CDC SVI was a
poor predictor of housing damage and property loss (25).

We divided counties included in our analysis into SVI tertiles
(low vulnerability to high vulnerability, 1 to 3; fig. S8). When com-
paring the first year of available SVI data (2000) (www.atsdr.cdc.
gov/placeandhealth/svi/documentation/SVI_documentation_2000.
html) to the SVI data we used from 2018 in our main analysis, we
found a correlation of 0.89, and when only including the tropical
cyclone–exposed counties in our study, we found a correlation of
0.90. When comparing mean SVI across 2000–2018 with 2018, we
found a correlation of 0.98.

We subdivided the United States geographically into nine
climate regions used by the National Oceanic and Atmospheric Ad-
ministration (fig. S9) (42). For comparison, we obtained data on
deaths associated with tropical cyclones from official state sources
and the Emergency Event Database (EM-DAT).

Statistical methods
We estimated the total mortality impact of a tropical cyclone (excess
mortality) as the difference between the observed number of deaths
from all causes and the counterfactual number of deaths had the
tropical cyclone not passed through the United States. The counter-
factual number of deaths, i.e., the number of deaths had the tropical
cyclone not passed through, however, is not directly measurable.

To estimate the number of counterfactual deaths, we formulated
a Bayesian ensemble of 16 predictive models, trained on periods of
time within counties with no tropical cyclone exposure, to estimate
monthly all-cause deaths for themonth of andmonth after exposure
in tropical cyclone-affected counties, defined as counties with a sus-
tained maximal wind speed of ≥34 knots, had the cyclone not oc-
curred. The models were designed by expanding those used to
estimate excess mortality in recent previous work (43, 44) and in-
corporated features of monthly death rates such as medium- to
long-term trends, seasonal patterns (38), relation to immediately
preceding months, and temperature anomalies (39). We compared
actual deaths to estimated counterfactual deaths to calculate the
number of excess deaths. We used multiple models because there
is inherent uncertainty in the choice of model that best predicts
death rates in the absence of a tropical cyclone, andmodel averaging
improves overall prediction accuracy (45, 46).We categorized excess
deaths after gale to violent storm and hurricane force winds.

In each model, we assumed a Poisson distribution for the
number of monthly deaths, also accounting for possible overdisper-
sion. Using a log-link function, we modeled death counts for each
county separately, as detailed in the equation below

logðE½deathstime�Þ ¼ α0 þ θmonth þ ζðiÞmonth þ ðβþ ωmonthÞ � time

þ ðγþ νmonthÞ � temperature anomalymonth

þ logðPopulationtimeÞ þ εtime

These models were formulated to incorporate features of
monthly death rates as follows: First, there is the initial value, or
overall intercept, of death rates at the beginning of our study
period (January 1988). The term α0 denotes the overall intercept
fixed effect, to which we assigned N(0,1000) prior.

Second, there are long-term trends in death rates, in part, driven
by long-term air pollution concentrations (47). We developed two
sets of models, one assuming no trend and one with a linear trend
term over monthly deaths, as in previous similar work for annual
and weekly death rates (43, 44, 48, 49). The term β*time represents
the linear time trend fixed effect. The coefficient β was also assigned
N(0,1000) prior. This term appeared in half of our models, whereas
in the other half, trends over time were captured by the remaining
terms (i.e., β = 0).

Third, death rates in the United States have a seasonal pattern
(38). We included monthly random intercepts for each month of
the year. To account for the fact that seasonal patterns do not
reset at the end of each year (that is, late December and early
January are seasonally similar), we used a seasonal structure for
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the random intercepts (50, 51). The seasonal structure allows the
magnitude of the random intercepts to vary over time and implicitly
incorporates time-varying factors, such as annual fluctuations in flu
season. The random seasonal intercept θmonth captures seasonality
in mortality trends with a period of 12 months. The sums of every
12 consecutive terms θmonth + θmonth+1 + … + θmonth+11 were
modeled as independent Gaussian with zero mean and variance
σ2θ. We used a logGamma(0.001,0.001) prior on the log precision
logð1=σ2θÞ. Each month was assigned an index between 1 and 12.
The random seasonal slope term ωmonth captures the long-term
change in seasonality in mortality trends (i.e., change over time
from the initial seasonal pattern in first study year, 1988) with a
period of 12 months, specified in the same way as θmonth but as a
slope over time.

Fourth, death rates in each month might be related to rates in
preceding month(s) because of short-term phenomena (17). We
formulated four sets of models to account for this relationship.
The monthly random intercepts in these models had a first-,
second-, fourth-, or sixth-order autoregressive structure (50, 51).
The higher-order autoregressive models allow death rates in any
given month to be informed by those in a progressively larger
number of preceding months. Furthermore, trends not picked up
by the linear or seasonal terms would be captured by these autore-
gressive terms. The models used different orders (first, second,
fourth, or sixth) of the autoregressive term ζðiÞmonth, with the super-
script i denoting the order. The first-order autoregressive term was
defined as ζð1Þmonth ≏ Nðφ�ζð1Þmonth� 1; σ

2
ζ Þ, where the parameter ϕ lies

between −1 and 1 and captures the degree of association between
the number of deaths in each month and the preceding month.
For this specification of the autoregressive structure (see https://
inla.r-inla-download.org/r-inla.org/doc/latent/ar1.pdf ), hyperp-
riors were placed on the parameters κ1 ¼ log½ð1 � φ2Þ=σ2ζ � and ϰ2
= log [(1 + ϕ)/(1 − ϕ)], which were assigned logGam-
ma(0.001,0.001) and N(0,1) distributions, respectively. Similarly,
an ith-order autoregressive term is given by ζð1Þmonth ¼ φ�ζðiÞmonth� 1 ¼

φ1�ζ
ðiÞ
month� 1 þ . . .þ φi�ζ

ðiÞ
month� i þ εmonth with −1 < ϕj < 1.

Fifth, beyond having a seasonal pattern, temperature is an im-
portant environmental predictor of death rates (52, 53) and, specif-
ically, whether temperature is higher or lower than its long-term
norm during a particular time of year (39, 54–57). Other time-
varying factors influencing death rates throughout the year, such
as flu season, would be captured by nonlinear autoregressive
terms. The effect of temperature on mortality varies throughout
the year. We used two sets of models, one without temperature
and one with terms to account for temperature anomaly, defined
as deviation of monthly temperature from the local average
monthly temperature over the entire analysis period. The effect of
temperature anomaly on death rates was captured by the two terms
γ (fixed effect) and νmonth (random effect). The term γ�temperature
anomalymonth is the overall association of temperature anomaly in a
month. The term νmonth � temperature anomalymonth captures de-
viations from the overall association for each month of the year. The
fixed term γ was assigned N(0,1000) prior. The coefficients of
month-specific temperature anomalies were specified as a random
effect with a random walk prior of order one, so that temperature
effects are more similar in adjacent months. The month-specific
random effect had a circular first-order random walk with 12

terms so that temperature associations changed smoothly through-
out the year and so that they were similar in, e.g., December and
January (39). The first-order random walk prior was defined via
νmonth~ Nðνmonth� 1; σ2νÞ, and the prior assigned to the log precision
was logð1=σ2θÞ ≏ logGammað0:001; 0:001Þ.

Sixth, the term log(Populationtime) is the model offset, using the
interpolated monthly population in each county. Last, the term ɛtime
is a zero-mean term that accounts for overdispersion. It was as-
signed an independent and identically distributed prior ɛtime, and
a logGamma(0.001, 0.001) prior was placed on the logð1=σ2εÞ.

These choices led to an ensemble of 16 Bayesian models (2 trend
options × 4 autoregressive options × 2 temperature options). The
ensemble of models is shown in table S4. The components α0,
θmonth, ɛtime, and ζðiÞmonth (for each autoregressive order of i = 1, 2,
4, or 6) appear in the expression for log(E[deathstime]) in all
models. The remaining components appear in some models only.
Table S4 shows the terms included in each of the 16 models in
the ensemble.

We used data on monthly deaths from the start of the time series
of data (January 1988) to the end of the time series data (December
2019) to estimate the parameters of each model, i.e., we trained each
model to infer the parameters from periods of time within counties
with no tropical cyclone exposure. We then used these trained
models to predict death rates for themonth of andmonth after trop-
ical cyclone exposure in a county as estimates of the counterfactual
death rates (that is, had the tropical cyclone not occurred). For the
counterfactual periods, we used recorded temperature so that our
counterfactual estimates took into consideration actual recorded
temperatures. This choice of training and prediction periods
assumed that the number of deaths that were directly or indirectly
related to the tropical cyclone was largely negligible past a month
after the tropical cyclone passed through these counties, based on
previous work (5).

All models were fitted using integrated nested Laplace approxi-
mation (INLA) (58), implemented in the R-INLA software (version
20.03.1). We used a model-averaging approach to combine the pre-
dictions from the 16 models in the ensemble (45, 46). Specifically,
we took up to 1000 draws from the posterior distribution of deaths
from each ensemble model to obtain the posterior distribution of
deaths if the tropical cyclone had not occurred. To weight each
model contributing to the ensemble by its predictive accuracy, the
number of draws we took from each model was related to the mean
percentage error of the model in the validation period, described in
the “Validation” section below. Specifically, we took draws from the
posterior of the estimated counterfactual death rates from each
model during a tropical cyclone proportional to the inverse of the
percentage error, with a maximum of 1000 and a minimum of 0
draws, as reported in table S4. The reported credible intervals rep-
resent the 2.5th and 97.5th percentiles of the resulting posterior dis-
tribution of the draws from the entire ensemble. We also report the
posterior probability that an estimated increase in deaths corre-
sponds to a true increase. A map of the posterior probability that
excess deaths were >0 after tropical cyclones during our study
period can be found in fig. S10.

A list of estimated excess deaths for the top 20 most deadly
county–tropical cyclones is available in Table 2. A list of estimated
excess deaths for the top 20 most deadly county-years by year, trop-
ical cyclone category, and county is available in table S1.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Parks et al., Sci. Adv. 9, eadg6633 (2023) 16 August 2023 10 of 12

https://inla.r-inla-download.org/r-inla.org/doc/latent/ar1.pdf
https://inla.r-inla-download.org/r-inla.org/doc/latent/ar1.pdf


Validation
We tested how well the ensemble model estimated the number of
deaths by withholding 2 months at a time (March and April of
1988 and March and April of 2019, respectively; periods without
any tropical cyclone counts anywhere in the United States) of
data and using the rest of the time series (January 1988 to December
2019 without March and April 1988 or March and April 2019) to
train the models. We then used the ensemble output to predict
death rates for the months of withheld data; we assessed the ensem-
ble predictive error for each single ensemble member and the overall
ensemble by comparing the predicted to observed death counts in
the withheld data. We report the mean percentage error averaged
over the two time periods from these validation runs in table S4.
The mean percentage error for each of the 16 models was small,
ranging from −0.37% (model 6) to 0.30% (model 10). The ensemble
model yielded the lowest percentage error (−0.02%), compared to
any single model (next smallest was 0.0205% for model 11).

Secondary and sensitivity analyses
We tested the sensitivity of the estimated excess death to the choice
of the validation period by using draws proportional to the inverse
of the percentage errors either from validation period March and
April of 1988 only or from validation period March and April of
2019 alone, instead of throughout the study period (main model).
The mean difference between the main model and when using
draws proportional to the inverse of the percentage errors from val-
idation period March and April of 1988 was 0.03 deaths. The mean
difference between the main model and when using draws propor-
tional to the inverse of the percentage errors from validation period
March and April of 2019 was 0.12 deaths (fig. S11).

We also estimated how consistent our model fit was for the
counterfactual forecast using the entire time period (1988–2019;
main model) compared with dividing the study period into separate
counterfactual forecasts of the first half (1988–2003) and the second
half (2004–2019). We then compared the agreement of the fits of
each half compared with the entire period’s fit. The mean difference
between the entire period’s excess death estimates and the first half’s
excess death estimates was 0.70 deaths, and the mean difference
between the entire period’s excess deaths and the second half’s
excess deaths was 0.77 deaths (fig. S12).

In an effort to evaluate whether the observed differences by
social vulnerability are fully attributed to regional differences, we
repeated the SVI analyses in the four states most exposed to tropical
cyclones throughout our study period (Florida, Georgia, Louisiana,
and North Carolina), all in the southern United States, using SVI
percentiles for each county relative to the state it belongs (fig. S1).
Results were similar to Fig. 5 in that the least socially vulnerable
counties within each of the four states bore the least mortality
burden (table S2).

We also carried out the main SVI analysis (Fig. 4) for each of the
individual SVI components (socioeconomic status, household char-
acteristics, racial and ethnic minority status, and housing type and
transportation) (figs. S2 to S5 and table S3). When considering in-
dividual SVI components, compared to the overall SVI analysis, the
proportion of hurricane force excess deaths for racial and ethnic mi-
nority status SVI tertiles was relatively higher in SVI-t3 (87.6%) than
SVI-t1 (2.5%) (and similar for gale to violent storm force), but rel-
atively lower for household characteristics SVI tertiles in SVI-t3
(24.0%) than SVI-t1 (56.3%) (and similar for gale to violent storm

force). A correlation plot of the overall SVI and SVI components for
2018 can be found in fig. S6.

We also plotted county-level daily precipitation (mm/day)
against excess deaths by wind category to explore any potential as-
sociation (fig. S13). We found no clear relationship between precip-
itation associated with tropical cyclones and excess deaths.

Supplementary Materials
This PDF file includes:
Figs. S1 to S13
Tables S1 to S4
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