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ABSTRACT OF THE DISSERTATION

Power Scheduling for Multi-Hop Wireless Networks

by

Yuan Yu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2009

Professor Yingbo Hua, Chairperson

Multi-hop wireless networks remain an important research frontier of wireless com-

munications. Multi-hop wireless networks are rapidly deployable to extend the coverage of

the Internet, which can be an economical alternative to building new base stations. Multi-

hop wireless networks are particularly useful for first responders for disaster relief, and

military operations in battlefields. In this thesis, we study power scheduling issues for

multi-hop wireless networks. Power scheduling, also known as medium access control con-

sisting of link scheduling, power control and source beamforming, fundamentally governs

the capacity of multi-hop wireless networks.

In the first part of this thesis, the achievable network throughput of large-scale

multi-hop wireless networks is evaluated under a power scheduling scheme called opportunis-

tic synchronous array method (O-SAM). Under O-SAM, a large network is partitioned into

many small subnets, and within each subnet, the link with best channel gain is scheduled for

transmission. We examine the impact of traffic load, network topology and multiple anten-

nas on the achievable network throughput. Compared with slotted ALOHA, the throughput
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of O-SAM is significantly higher. In addition to O-SAM, a distributed synchronous array

method (D-SAM) is proposed, and its performance is also evaluated.

In the second part of this thesis, we focus on the power scheduling problem for

multi-input multi-output (MIMO) relay networks. A generalized water filling (GWF) the-

orem is established for link rate maximization with multiple power constraints. The cor-

responding GWF algorithm is a fast solution to an important class of convex optimization

problems. The GWF algorithm is a useful building block for joint source and relay opti-

mization for a multiuser MIMO relay network. We study the power scheduling problems for

both uplink and down- link cases of the multiuser MIMO relay network. A number of com-

putational strategies are proposed to maximize the sum rate subject to power constraints

or to minimize the sum power subject to rate constraints.
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Chapter 1

Introduction

1.1 Background

Wireless communication changes people’s life significantly. Nowadays, there are

over 3 billion people across more than 212 countries and territories using cell phones[2].

The Global System for Mobile communications (GSM) standard is successful to support

voice service and low speed data transmission; however, people are expecting more services

offered, such as video calls via cell phone, browsing websites and downloading videos. All

these data applications demand a new generation wireless network to provide much higher

data rates and more reliable connections.

Wireless networks can be categorized into single-hop and multi-hop networks. In

a single-hop network, packets are transmitted directly from source to destination. In a

multi-hop network, packets hop from one node to another to reach the destination, where

the intermediate nodes are called relays. A multi-hop network is also referred as a relay
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network.

A wireless mesh network can be seen as a special type of wireless multi-hop net-

work. It is often assumed that all nodes in a wireless mesh network are static and do

not experience mobility. In a mesh network, a node can send and receive messages, and

functions as a router to relay messages for its neighbors. A wireless mesh network can

be set up easily to provide reliable communication. A mesh network can have thousands

of nodes. Such a multi-hop wireless network is particularly useful for first responders for

disaster relief, and military operations in battlefields.

The relay concept can also be applied to cellular networks where the one end of

the signal path is a base station. The base station and relays maintain a stable topology

while the users can move randomly. Wireless relays can be used to combat the shadowing,

interference, multi-path fading and long-distance path loss of wireless channel. A typical

scenario is the so-called “dead zone” in cellular network, in which the direct link from user

to base station is too poor to provide the desired quality of service. This zone may be

located at the edge of the cell or blocked by buildings or interfered by other radio waves.

Another example is the underground parking lot. In these situations, wireless relays are

useful to improve the quality of service.

Compared with the single-hop network, the multi-hop network has advantage in

both data rate and connection reliability. Usually, in multi-hop network, communication

happens between neighboring nodes. A long distance hop is partitioned into several short

hops. This makes links more reliable without increasing transmission power consumed by

individual nodes. Another advantage of multi-hop network is that if one data path fails,
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there can be other backup paths available.

For a wireless mesh network or a cellular network with relays, there is typically

a relatively fixed topology where the routing task is quite simple. The routes can be

determined once the system is set up.

Related standards and protocols about mesh network include IEEE 802.11 [3],

IEEE 802.15 [4] and IEEE 802.16 [5]. The relay schemes in cellular networks have been

proposed for 3GPP LTE [6] and IEEE 802.16 [5].

In this thesis, a throughput analysis is provided for a medium access control scheme

for wireless mesh network. A joint source and relay design for a mulituser MIMO relay

system is also investigated. The next section reviews the current research progress in these

two areas.

1.2 Paper Survey

1.2.1 Medium Access Control in MESH Network

We consider large-scale wireless mesh networks of low mobility within a time in-

terval. Depending on applications, this time interval can be on a time scale of minutes,

hours, days or even longer. Such networks include many types of rapidly deployable wire-

less networks. There are two types of traffic in ad hoc networks. One is inter-network

traffic where traffic flows through one or more gateways (also known as access points) to or

from a backbone network. The other is intra-network traffic where traffic stays within the

ad hoc network. For inter-network traffic, the aggregated network throughput is obviously
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upper bounded by the capacity of the gateways. By either throughput or capacity, we mean

spectral efficiency in terms of bits/s/Hz (bits per second per Hertz). We will also use two

variations of bits/s/Hz. We will not further consider the inter-network traffic in this paper.

For intra-network traffic, the achievable network throughput has been a topic of

research by information theorists for many years. A well known result on this subject is

the scaling law shown in [7]. This is also a subject reviewed in [1]. It is arguable that if a

network is large in terms of the number of nodes relative to the logarithm of the available

transmission power from each node, the network throughput in bits-hop/s/Hz/node is upper

bounded [1]. Here, bits-hop means the number of bits transported from one node to any

of its adjacent nodes. This measure of throughput is also a per-link network throughput.

If the network node density is denoted by ρ, then the distance per hop is in the order of

1/ρ for 1-D network, 1/ρ1/2 for 2-D network, and 1/ρ1/3 for 3-D network. If we denote

the upper bound of the per-link network throughput by c, then the distance weighted

network throughput in bits-meter/s/Hz/node is upper bounded by c/ρ for 1-D network,

c/ρ1/2 for 2-D network, and c/ρ1/3 for 3-D network. Here, bits-meter means the number of

bits transported over one meter distance. In this thesis, we will only consider 2-D networks.

The above expression c/ρ1/2 for 2-D network is equivalent to the capacity scaling law shown

in [7] for a 2-D network of arbitrary topology where total n nodes are inside a unit-area

disk and hence ρ = n. It is further shown in [7] that if the network topology is random,

then the averaged network throughput has an extra penalty factor in the form of 1/
√

log n.

Since [7], there have been new findings on the capacity scaling laws of large-scale ad hoc

networks in various alternative settings [8], [9], [10], [11], [12], [13] and [14]. It should be
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noted that although representing a theoretical challenge to the above stated scaling law,

a result shown in [15] requires extremely-large-scale virtual multiple-input-multiple-output

(MIMO) channels and is highly infeasible according to our analysis.

The capacity scaling laws as discussed above only reveal the effect of the network

size. The exact throughput of a large network depends on a wide range of factors. Among

them, medium access control (MAC) is critically important. Most of the existing MAC

schemes for ad hoc networks are variations of the two basic forms: ALOHA [16][17] and

CSMA (carrier sense multiple access)[3]. With CSMA, a node can transmit a packet only

when there is no other concurrent co-channel transmission within a large radius. The per

link throughput of CSMA diminishes to zero as quickly as the inverse of the number of

nodes within the carrier sensing radius. It is useful to note however that CSMA is adopted

in IEEE 802.11 standards [3] for small networks. With ALOHA, each node initiates a packet

transmission randomly. This packet can be received successfully if the intended receiver is

ready and the interference is not too high. Because concurrent co-channel transmissions

are allowed by ALOHA, the per link throughput of ALOHA does not reduce to zero as

the node density increases. In other words, with ALOHA, the capacity scaling law c/ρ1/2

in bits-meter/s/Hz/node holds for networks of regular topologies. A throughput analysis

of ALOHA for large network is available in [18]. The throughput shown in [18] was not

maximized over the target SINR ξ. As shown in [19], ξ affects the network throughput

significantly and can be optimized in practice. In this thesis, we distinguish between SINR

(signal to interference and noise ratio) and SNR (signal to noise ratio).

For many potential applications, ad hoc networks have low mobility during opera-
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tions, which allows cooperations that are not exploited by ALOHA. In [1], the synchronous

array method (SAM) was proposed. The essence of SAM is to partition all links in the

network into multiple interleaved subsets of links where each subset of links with desired

spacing between them corresponds to a set of concurrent co-channel transmissions. As an

example, Figure 1.1 illustrates the impact of the spacing between concurrent co-channel

transmissions on the network throughput. For this figure, all nodes are on the square grid.

For square topology, the spacing or sparseness is measured by p and q which are the ver-

tical and horizontal spacing units between concurrent co-channel transmitters [1]. Also for

this figure, the target SINR ξ (i.e., the required SINR value for a packet to be received

successfully) is optimized for each pair of p and q, the channels are non-fading, and single

omnidirectional antenna is used on each node. We see that the impact of the sparseness is

significant. For regular topologies such as square, triangle and hexagon, the sparseness can

also be measured by the ratio fs of the total number of nodes in the network over the num-

ber of nodes that are receiving (or transmitting) in each time-frequency slot. In Figure 1.1,

p = 2 and q = 3 are optimal. The corresponding fs is six. Depending on network topology,

antenna properties and channel fading characteristics, the optimal value of fs varies. But

for regular topologies and omnidirectional antennas, the optimal value of fs has been found

mostly in the range of four, five and six [19].
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The analysis in [19] shows that the throughput of SAM is significantly (about

two times) higher than that of ALOHA. In [20], an opportunistic SAM (O-SAM) was

proposed that allows concurrent co-channel transmissions to be locally adaptive to channel

gain variations. This idea is similar to one used in a channel-state dependent ALOHA [21]

for a single-hop network. But the context for O-SAM is a multi-hop network rather than a

single-hop network. Since the strongest channel gain within each local area is exploited each

time, the throughput of O-SAM is much improved. The effect of using multiple antennas is

also considered in [22]. However, all of the existing throughput analyses of ALOHA, SAM

and O-SAM are under a full loading condition where each node always has a packet waiting

to be transmitted at any time.

1.2.2 MIMO Relay

It has been found that multiple antennas at transmitter and receiver can improve

the wireless network performance significantly. Some of the fundamental techniques, such as

space time coding, beamforming, multiplexing, are available in such textbooks [23, 24, 25].

Recently, wireless relay attracts more and more research efforts because of its

usefulness for improving network throughput and extending transmission range.

Based on the ways how the relay processes the received signal, wireless relay can

be categorized into: decode and forward (DF), compress and forward (CF), amplify and

forward (AF). DF means that the relay decodes the original information and retransmit

that information to destination. CF compresses (or quantizes) the received signal and then

transmits the compressed signal. AF amplifies and forwards the received signal. Obviously,
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Figure 1.1: The throughput in bits-meter/s/Hz/node of a large network of 245 nodes on
square grid versus p and q in the SAM protocol [1]. The node density is one. The SNR at
each receiver is 40dB. The channel coefficients are constant.
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the DF and CF are more complex than AF.

This thesis discusses a source and relay design for a multi-hop network where there

is a single relay between the base station and multiple users. The relay is a multi-antenna

AF relay..

A special MIMO relay network includes three terminals: source node, destination

node and relay node. This type of MIMO relay network has been studied in [26, 27, 28, 29].

All these works assumes that the direct link from source to destination is negligible. The

relay works in a half-duplex mode, in other words, the relay receives signals from source

then transmits the amplified version of received signal in different times or frequencies.

A large number of works aim to improve the system capacity or decrease the outage

probability. The authors in [26] derived the optimal MIMO relay structure under power

constraint assuming the source covariance matrix is isotropic. This optimal design is based

on the Singular Value Decomposition (SVD) of the MIMO channel. It can be proved that

the optimal relay has to diagonalize the channel from source to relay and the channel from

relay to destination, i.e. the equivalent MIMO channel is translated into a bunch of parallel

SISO subchannels. Furthermore, the relay also permutes the two stage subchannels so that

these subchannels are matched in a certain pattern. After the subchannel matching, the

optimal power allocation among different subchannels is performed by a waterfilling-like

algorithm. The authors in [27] extend [26]’s work to the joint source and relay design.

The optimal structure of source and relay is the same as that in [26] to diagonalize the

channel. An iterative algorithm is proposed on power allocation to maximize the system

capacity. The authors in [28] derived the same result as in [26] in a different way. The
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optimal relay is designed by diagonalizing the cascade channel. Also, the source is assumed

to be white and with same power on each data stream. From the point of view of signal

estimation, the authors in [29] address the problem of linear transceiver design in this type

of MIMO relay system to minimize the mean-squared error (MSE). Based on this MMSE

criterion, the relay is designed to diagonalizing the cascade channel as well like [26]. This

result is not that surprising since the MMSE has the same expression as the point-point

channel capacity. The authors in [30] compare several MIMO relay designs to maximize

system capacity. It includes scalar amplification, channel diagonalization ([26, 27, 28]) and

decoding then forward scheme. (DF is the best, then channel diagonalization degrades

slightly, scalar amplification is the worst).

Multiple MIMO relays network with single pair of source and destination are also

considered in [30, 31]. In [30], the proposed relay selection scheme exploits the spatial di-

versity. In [31], the authors first study the relays design without power constraints. Two

problems are addressed in this scenario: minimization of MMSE given the SNR constraint

and maximization of SNR subject to ZF; later, the power constraint is included at the re-

ceiver and these two problems are also studied. Finally, the transmission rate maximization

problem under power constraint at the receiver is studied. Notice that the power con-

straint at receiver has similar expression as that at relay. The author in [32] proposes a

suboptimal relay, which utilizes the QR decomposition to translate the equivalent source-

relay-destination channel to a lower triangular channel. At the destination node, successive

interference cancellation (SIC) is performed to separate the data streams.

Another type of the MIMO relay network is the point-to-multipoint (P2MP) relay
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network (multiuser network). Typical P2MP relay network is the two-hop broadcast chan-

nel with a MIMO relay assisted in wireless cellular network. The multiuser independent

downlink signals from base station are transmitted to the wireless relay then amplified and

forward to each independent user. The base station and the relay are equipped with mul-

tiple antennas, while each user on has a single antenna on it. The relay is also working in

a half-duplex mode.

In [33], the authors derive an achievable sum rate for this MISO-BC relay net-

work by assuming ZF-DPC is used by base station. After a high SNR approximation, the

joint optimization of linear relay and precoding matrix are proposed utilizing geometric

programming.

In [34], the authors identify the dualilty relationships in AF relay networks. A

general duality result for multihop multiple access and broadcast channels where each hop

may consist of parallel AF relays and the relays may be equipped with multiple antennas.

For the two hop case, it is shown that multiple access channel with total transmit power

of all users equal to P and total relay transmit power Pr is the dual of the BC obtained

when the destination becomes the transmitter and the transmitters become the receivers,

and the powers are switched as well, i.e. in the dual BC, the transmit power is Pr and

the total relay power is P. the capacity region of SISO-BC relay network and MISO-BC

relay network are investigated respectively via uplink-downlink duality, the optimal DPC

is assumed in base station.

In [35], the same system model is studied. The problem of joint beamforming

and power allocation at base station and relay to minimize transmitting power under SNR
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constraint is investigated. The basic idea is to fix the beamforming matrix at base station

and optimize over beamforming at relay, then fix relay to optimize over beamforming base

station. These two subproblems are solved by the second-order cone programming. In fact,

the maximum sum rate under power constraint in [33] and minimum power consumption

under QoS constraint in [35] both utilize the idea in [26, 28] based on SVD, although the

optimality of this type relay is still not clear. The simulation suggests that this channel-

diagonalization relay is best so far.

A more complicated relay network is the multi-point to multi-point relay network.

The MIMO relay receives signals from multiple source nodes then amplify and forward to

multiple destination nodes. Each user is equipped with single antenna.

The authors in [36] investigate robust relay design in such a system. The proposed

robust method is to minimize the maximum transmit power at relay by keeping the mini-

mum SNR above a certain threshold. Usually, such a problem is not convex, but it can be

relaxed to a convex problem by semidefinite relaxation technique.

In [37], the authors derive optimal SNR-based transmit antenna selection rules at

the source and relay for the nonregenerative half-duplex MIMO relay channel. In [38], the

transmitting antenna selection scheme is studied in multi-hop MIMO relay scenario. Both

these two result study the outage probability of the relay systems.

1.3 Thesis Overview

This thesis consists of two main parts: medium access control for a the large scale

mesh network and power allocation for a cellular network with MIMO relay.
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In the first part, the throughput of O-SAM scheme is analyzed under different

conditions, such as traffic load, network topology and the number of antennas. We also

present how the transmission distance affects the over all network throughput, which can

be fairly compared by distance-weighted throughput in bits-meter/s/Hz/node. This O-SAM

needs a central node to partition the large scale network to small subnets. A SAM based

distributed MAC scheme (D-SAM) is also presented. The throughput of Slotted ALOHA

is studied to compare with the O-SAM and D-SAM.

The power allocation in multiuser MIMO relay system is studied in the second

part. A generalized water-filling algorithm (GWF) is designed to find the optimal source

covariance matrix to maximize the point to point MIMO channel capacity with multiple

weighted power constraints. This result can be applied to many practical problems. Then

we study the power allocation at source and relay in multiuser MIMO relay system. In this

thesis, the relay is constraint to be in AF fashion. The uplink case and downlink case are

both considered. The several strategies are presented for each case. The use of multiple

carriers is also discussed.

Opportunistic SAM is analyzed in Chapter 2. The throughput of O-SAM is stud-

ied under different conditions. The traffic load is formulated in a probability variable

and is consider in throughput analysis. The throughput is given by bits/s/Hz/node with

triangle, square and hexagon topology under fading channel. Moreover, throughput in

bits − meters/s/Hz/node is compared for the O-SAM on these regular grids. Slotted

ALOHA is also studied in this chapter.

Chapter 3 investigates a distributed MAC scheme: D-SAM. The protocol is given
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and the throughput is evaluated by simulations. In regular topology, D-SAM is compared

with ALOHA and O-SAM. Single antenna and multiple antennas are both included in

simulations. The throughput of D-SAM in random topology is also provided.

In chapter 4, a generalized water filling (GWF) theorem is presented. For this

convex optimization problem, an analytical solution is proved to be the global optimal. The

algorithm is based on the Newton method. All the information needed in the algorithm is

provided in appendix.

In chapter 5, we examine the joint source and relay design problem in multiuser

system. Both uplink and downlink cases are considered. Two strategies are investigated in

both cases; maximize sum rate with power constraint and minimize total power with rate

constraint. It is also shown that our algorithms can be easily extended to the multicarrier

scenario.

Chapter 6 summarizes the contributions of the Ph.D. work.
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Chapter 2

Opportunistic Synchronous Array

Method: O-SAM

A further development of the synchronous array method (SAM) as a medium

access control scheme for large-scale ad hoc wireless networks is presented in this chapter.

Under SAM, all transmissions of data packets between adjacent nodes are synchronized

on a frame-by-frame basis, and the spacing between concurrent co-channel transmissions is

properly controlled. An opportunistic SAM (O-SAM) is presented that allows concurrent

co-channel transmissions to be locally adaptive to channel gain variations. For networks of

low mobility, the control overhead required by SAM can be made much smaller than the

payload.

The content of this chapter is partially contained in [39, 40].
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2.1 Introduction

In this chapter, three main contributions will be presented. The first is describe

the O-SAM protocol under a more general loading condition. This condition is modeled as

the probability ζ that each node has a packet for transmission at any given time. We will

reveal that the (ξ optimized) throughput of ALOHA is lower than that of O-SAM unless ζ

is small (e.g., less than 10%). The second is a comparison of longer-distance transmission

versus shortest-distance transmission in terms of the distance-weighted throughput in bits-

meter/s/Hz/node, which shows that the former is worse than the latter unless ζ is very

small (e.g., less than 1%). The third is an analysis of O-SAM for the case of multiple

antennas on each node, which is an extension of that in [20] and [22].

We will measure network throughput by bits-meter/s/Hz/node. All numerical

examples to be shown are useful fundamental benchmarks for large networks.

The reminder of this chapter is organized as follows. In Section 2.2, we extend

O-SAM presented in [22] by taking into account the loading probability ζ. In Section 2.3,

we analyze the network throughput of O-SAM, where the single-input-single-output (SISO),

single-input-multiple-output (SIMO) and multiple-input-multiple-output (MIMO) channels

are all considered. In Section 2.4, we revisit the slotted ALOHA with consideration of the

loading probability ζ. By a distance weighted throughput, a comparison of long distance

transmission versus short distance transmission is also presented.
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2.2 Opportunistic SAM

2.2.1 Subnet partitions

As mentioned before, the essence of SAM proposed in [1] is to partition all links

in the network into multiple interleaved subsets of links where each subset of links with

desired spacing between them corresponds to a set of concurrent co-channel transmissions.

An equivalent description of SAM is that in any given time-frequency slot, the entire net-

work is partitioned into contiguous subnets and each subnet consists of a receiving node,

a transmitting node and possibly several idle nodes. In different time-frequency slots, the

corresponding partitions of subnets are relatively shifted from each other.
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Fig. 2.1 illustrates the partitions of subsets for square, triangle and hexagonal

topologies. For opportunistic SAM (O-SAM), each receiving node is chosen to be at the

center of each subnet, and the transmitting node in each subnet is opportunistically selected

from other nodes in the subnet. This is different from SAM in [1] which will also be referred

to as centralized SAM (C-SAM) where both receiving and transmitting nodes in each subnet

are pre-determined.

For the O-SAM protocol shown next and the Gaussian fading channels, the subnet

partitions shown in Fig. 2.1 have been found to be optimal among other possible partitions.

It is useful to note that except for the hexagonal topology, the subnet partitions shown in

this figure are not exactly the same as the optimal ones for C-SAM as shown in [19].

But the fact that the optimal subnet partition for the hexagonal topology is the same for

both C-SAM and O-SAM makes the hexagonal topology more interesting. This is because

the throughput gain by O-SAM via opportunistic selection of transmitters is no longer

compromised by altering the subnet partition from the optimal one determined by C-SAM.

This advantage will be illustrated numerically later.

2.2.2 The protocol

The O-SAM protocol is described next. Without loss of generality, we can focus

on a single time-frequency frame. For a large network, almost all subnets can be treated

like a subnet in the center of the network. We will refer to such a subnet as subnet 0 and

any other subnet as subnet j with j = 1, 2, ..., S. We let I0 denote the set of the indices

of all potential transmitting nodes that have packets to transmit to the receiver in subnet
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(a) square (b) hexagon

(c) triangle

Figure 2.1: Optimal subnet partitions of large networks on regular topologies for O-SAM:
the upper left is square, the upper right is hexagon, and the lower is triangle. The sparseness
factor fs is five for the square and triangle topologies and four for the hexagonal topology.
The black nodes are concurrent co-channel receivers. One of the blank nodes in each subnet
can be a transmitter in that subnet.
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0. We let n0 be the total number of nodes, other than the receiver, in subnet 0. Since ζ

is the probability that a node has a packet to transmit to another node, the probability

that I0 contains k nodes is ζk(1 − ζ)n0−k. Note that the set I0 is a random set in each

time-frequency frame.

SISO channels

If the channel between every two nodes is modelled as SISO channel, the channel

coefficient from the ith node in I0 to its receiver is denoted by h0,0(i). The corresponding

channel gain is v0,0(i) = |h0,0(i)|2. The index of the node with the strongest gain in subnet

0 is denoted by i0,max = arg maxi∈I0 v0,0(i). The index of the node selected for transmission

in subnet 0 is

k0 =















i0,max, if v0,0(i0,max) ≥ θ

{∅}, otherwise

(2.1)

Here, no node is selected for transmission in subnet 0 if the gain of the node with the

strongest gain in the subnet is less than a pre-specified threshold θ. The reason behind the

use of θ is that if the strongest gain in a subnet is too small, abandoning packet transmission

in this subnet causes little loss of information in this subnet and at the same time reduces

interference to other subnets. Clearly, the choice of θ affects the network throughput.

The O-SAM protocol (2.1) requires each subnet to know the channel gains of all

potential transmitting nodes in the subnet. This requires channel estimation and associated

exchanges of control packets. This task is feasible if the channel coherence time is relatively

long. In fact, for networks of low mobility, the channel coherence time can be very large

(e.g., many mini-seconds). In this case, only a small fraction (e.g., a few micro seconds)
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of the channel coherence time needs to be spent for channel estimation. Clearly, the more

coordinated is the channel estimation in all subnets, the less time is needed. We will not

further address the implementation issues of channel estimation for O-SAM.

On the other hand, if the channel gains do not change over time, there is no

opportunity to be exploited by O-SAM and the protocol (2.1) is not meaningful. But

random changes in channel gains can be induced artificially if they are not present naturally.

To induce random channel gains, one can use multiple transmit (or receive) antennas on

each node and choose a transmit (or receive) beam vector for each node randomly from

frame to frame. This technique also applies to the SIMO and MIMO cases discussed below.

The key is to compress the dimension of the channel responses randomly at the receiver

side and/or the transmitter side.

SIMO channels

If each transmitting node uses one antenna and each receiving node uses multiple

antennas, we have a SIMO channel between each transmitter and its receiver. In this case,

we define the O-SAM protocol as (2.1) except that we use v0,0(i) = ‖h0,0(i)‖2 where h0,0(i)

is the channel response vector between the ith node in I0 and its receiver.

We will skip the MISO case since it is similar to the SIMO case.

MIMO channels

If each node has multiple transmit antennas and multiple receive antennas, we

have a MIMO channel between each transmitter and its receiver. In this case, we define the
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O-SAM protocol as (2.1) except that v0,0(i) = λmax

(

H0,0(i)H
H
0,0(i)

)

where λmax denote the

largest eigenvalue and H0,0(i) is the channel response matrix between the ith node in I0

and its receiver. The use of λmax implies that the principal stream of each MIMO channel

is used but all other streams are ignored. Because of the interference between concurrent

co-channel transmissions, the inclusion of the non-principal streams of each MIMO channel

into the O-SAM protocol would make the throughput analysis intractable to us at this

stage. For this reason, we only consider the principal stream of each MIMO channel.

2.3 Throughput Analysis of Opportunistic SAM

For throughput analysis, we assume that all elements in channel coefficients, chan-

nel response vectors and channel response matrices are independent and identically dis-

tributed (i.i.d.) complex Gaussian random variables. This implies in particular that the

channel coefficient between any receive antenna and any transmit antenna is independent

of all other channel coefficients.

2.3.1 SISO channels

For SISO channels, the signal y0 received by the receiving node in subnet 0 can be

written as

y0 = h0,0x0 +
∑

j>0

h0,jxj + w0 (2.2)

where xj is the transmitted signal from the transmitter in subnet j, h0,j is the channel

coefficient between the transmitter in subnet j and the receiver in subnet 0, and w0 is white
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Gaussian noise with zero mean and variance σ2. We assume that h0,j is complex Gaussian

random variable (from frame to frame) with zero mean and variance E|h0,j |2 = d−α
0,j . Here,

α is the path loss exponent and d0,j is the distance between the transmitter and the receiver.

For convenience of analysis, we assume that all nodes transmit with the same power P , i.e.

E|xj |2 = P . Hence, the instantaneous SINR at the receiver in subnet 0 is

SINR =
v0,0P

∑

j>0 v0,jP + σ2
(2.3)

where v0,0 = |h0,0|2 and v0,j = |h0,j |2. We assume that the instantaneous SINR at each

receiver is not known to the desired transmitter, which is due to random transmissions from

other subnets. We also assume that for a large network, almost all the subnets are statisti-

cally equivalent to each other. Then, the network throughput in bits-meter/s/Hz/node can

be expressed as:

CO−SAM =
β

L
√

ρ
RξPd (2.4)

where Rξ = log2(1 + ξ) is the packet spectral efficiency, and Pd = Pr{SINR ≥ ξ} is the

probability of a successful packet detection. Also, L is the node population in each subnet.

As illustrated in Fig. 2.1, L = 5 for the square and triangle topologies, and L = 4 for

the hexagonal topology. Finally, β is a conversion factor from bits/hop/s/Hz/node to bits-

meter/s/Hz/node. As shown in [19], we have β = 0.785 for square topology, β = 0.689 for

hexagonal topology, and β = 0.975 for triangle topology.

From the O-SAM protocol, it is clear that the instantaneous SINR in each time-

frequency frame is a random variable that depends on θ and ζ, and hence the network

throughput is effected by ξ, θ and ζ.
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In order to evaluate the network throughput (2.4), we need a more explicit form

of Pd, which is derived next:

Pd = Pr{SINR ≥ ξ, v0,0 ≥ θ}

= Pr







v0,0 ≥ ξ(σ2/P +
∑

j>0

v0,j), v0,0 ≥ θ







= Pr







∑

j>0

v0,j ≤
v0,0

ξ
− σ2

P
, v0,0 ≥ θ







=

∫ ∞

max( ξσ2

P
,θ)





∫
y
ξ
−σ2

P

0
fvI

(x)dx



 fv0,0(y)dy (2.5)

where fv0,0(y) is the pdf (probability density function) of v0,0, and fvI
(x) is the pdf of

vI =
∑

j>0 v0,j.

In order to evaluate Pd shown in (2.5), we need to obtain the expressions of the two

pdf functions fv0,0(y) and fvI
(x). We start with fv0,0(y). Since |h0,0(m)|2 is exponentially

distributed with the mean D0,0(m) = d−α
0,0 (m), where d0,0(m) is the distance between the

transmitter and receiver in subnet 0 and α is the path loss exponent, it follows that

Pr{v0,0 ≤ y} =
∏

m∈I0

Pr{v0,0(m) ≤ y} =
∏

m∈I0

(1 − exp{−y/D0,0(m)})U(y) (2.6)

where U(y) is the unit step function. The above expression is not ready to use since I0 is

a random set. Alternatively and equivalently, we can think of a node that has no packet to

transmit as if it is a node that has zero channel gain with respect to the receiver. Following

this thinking, we can write

Pr{v0,0 ≤ y} =

n0
∏

m=1

{(1 − exp{−y/D0,0(m)})ζ + (1 − ζ)}U(y)

=

n0
∏

m=1

(1 − ζ exp{−y/D0,0(m)})U(y) (2.7)
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where n0 is the number of potential transmitters in subnet 0. The pdf fv0,0(y) follows

readily from the derivative of Pr{v0,0 ≤ y} shown in (2.7), i.e.,

fv0,0(y) =

n0
∑

k=1

(

δ(y) + ζ
1

D0,0(k)
exp{−y/D0,0(k)}

) n0
∏

m=1,m6=k

(1 − ζ exp{−y/D0,0(m)})U(y)(2.8)

where δ(y) is the Dirac’s delta function.

To derive the pdf fvI
(x) where vI =

∑

j>0 v0,j, we start with the following:

Pr{v0,j ≤ x} =

{

Pj +

nj
∑

l=1

Pj,lPr{|h0,j(l)|2 ≤ x}
}

U(x)

=

{

Pj +

nj
∑

l=1

Pj,l (1 − exp{−x/D0,j(l)})
}

U(x) (2.9)

where Pj is the probability that there is no transmission in subnet j, and Pj,l is the prob-

ability that the lth node in subnet j transmits. We have used nj to denote the number

of potential transmitters in subnet j. In (2.9), we also used the property that |h0,j(l)|2

is exponentially distributed with the mean D0,j(l) = d−α
0,j (l), where d0,j(l) is the distance

between the lth transmitter in subnet j and the receiver in subnet 0. It follows that

Pj = 1 −
∑

l

Pj,l (2.10)

Pj,l = ζ · Pr

{

vj,j(l) ≥ θ, max
k 6=l,k∈Ij

vj,j(k) ≤ vj,j(l)

}

= ζ

∫ ∞

θ

1

Dj,j(l)
e
− x

Dj,j (l)
∏

k 6=l,k∈{1,2,...,nj}

(1 − ζe−x/Dj,j(k))dx (2.11)

where we have used the technique used for (2.7). Then, the pdf fv0,j
(x) follows readily from

the derivative of (2.9), which is a superimposed-exponential, i.e.,

fv0,j
(x) = Pjδ(x) +

nj
∑

l=1

Pj,l
1

D0,j(l)
e

−x
D0,j (l) U(x) (2.12)
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Since vI is the sum of the independent random variables v0,j for all j > 0, the pdf

of fvI
(x) is the convolution of fv0,j

(x) for all j > 0. Assume that fvI
(x) is negligible for

x ≥ T . We can write the Fourier series expansion of fvI
(x) as follows:

fvI
(x) =

K
∑

k=−K

gk exp(υ
2πk

T
x) (2.13)

where υ =
√
−1 and

gk =
1

T

∫ T

0
fvI

(t) exp(−υ
2πk

T
t)dt

=
1

T

∏

j>0

(Pj +

nj
∑

l=1

P l
j

1 + υ 2πk
T D0,j(l)

) (2.14)

We will assume that gk is negligible for k > K.

With fv0,0(x) and fvI
(x) as shown above, Pd in (2.5) can be readily computed.

2.3.2 SIMO channels

For SIMO channels where there are nr receiving antennas at each node, the signal

received by the receiver in subnet 0 has the following expression:

y0 = h0,0x0 +
∑

j>0

h0,jxj + w0 (2.15)

Here, xi denotes the signal transmitted from subnet i. hi,j ∈ C
nr×1 is the channel coefficient

vector between the transmitter in subnet j and the receiver in subnet i. The entries in

hi,j are assumed to be independent and identically distributed complex Gaussian random

variables with zero mean and variance d−α
i,j (kj) where kj is given by (2.16) and di,j(kj) is

the distance between the transmitter in subnet j and the receiver in subnet i, α is the path

loss exponent. wi is the complex noise vector at the receiver in subnet i, and assumed to
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have zero mean and the covariance matrix E{wH
i wi} = σ2Inr where Inr denotes the nr×nr

identity matrix. We also assume that all the nodes in the network transmit with the same

power P , i.e. E{xH
i xi} = P .

It is important to note that based on the O-SAM protocol, hi,j = hi,j(kj) where

kj = arg

(

max
k∈Ij ,‖hj,j(k)‖2≥θ

‖hj,j(k)‖2

)

. (2.16)

Also recall that hi,j(k) is the channel response vector from the kth potential transmitter in

subnet j to the receiver in subnet i.

A sufficient statistics of y0 is given by r0 = hH
0,0y0. The SINR in r0 is

SINR =
hH

0,0h0,0

∑

j>0

|hH
0,0h0,j |2

‖h0,0‖2 + σ2/P

=
v0,0

∑

j>0 v0,j + σ2/P
(2.17)

where v0,0 = hH
0,0h0,0 and v0,j =

|hH
0,0h0,j |

2

‖h0,0‖2 .

Given any h0,0, hj(l)
.
=

hH
0,0h0,j(l)

‖h0,0‖
is a linear combination of the elements of h0,j(l)

which are i.i.d. complex Gaussian random variable, and hence hj(l) is a complex Gaussian

variable. Each element of h0,j(l) has zero mean and the variance D0,j(l) = dα
0,j(l) where

d0,j(l) is the distance between the lth node in subnet j and the receiver in subnet 0. Further-

more, one can verify as in [41] that hj(l) has zero mean and the variance D0,j(l). It follows

that v0,j(l) = |hj(l)|2 for j > 0 is independent of h0,0 and is exponentially distributed with

mean D0,j(l), i.e.,

fv0,j(l)(y) =
1

D0,j(l)
exp(−y/D0,j(l))U(y), j > 0 (2.18)

Since v0,j = v0,j(kj) with kj given by (2.16), v0,j for j > 0 is also independent of

h0,0.
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Therefore, with the above description of v0,0 and v0,j, the throughput expression

(2.4) and the probability-of-detection expression (2.5) are also valid for the case of SIMO

channels except that the expressions of the pdf fv0,0(y) of v0,0 and the pdf fvI
(x) of vI =

∑

j>0 v0,j need to be revised as follows.

To find fv0,0(y), we first write

Pr{v0,0 ≤ y} =

n0
∏

m=1

{

ζPr(‖h0,0(m)‖2 ≤ y) + (1 − ζ)
}

U(y) (2.19)

It is known that ‖h0,j(l)‖2 is Chi-square or Gamma distributed with 2nr degrees, i.e.,

f‖h0,j(l)‖2(x) =
xnr−1

(nr − 1)!Dnr

0,j(l)
e
− x

D0,j(l) U(x) (2.20)

Therefore,

Pr{v0,0 ≤ y} =

n0
∏

m=1

{

ζ

∫ y

0

xnr−1

(nr − 1)!Dnr

0,0(m)
e
− x

D0,0(m) dx + (1 − ζ)

}

U(y)

=

n0
∏

m=1

{

ζ

(

1 − e
− y

D0,0(m)

nr−1
∑

k=0

yk

Dk
0,0(m)k!

)

+ 1 − ζ

}

U(y)

=

n0
∏

m=1

{

1 − ζe
− y

D0,0(m) g

(

y

D0,0(m)

)}

U(y) (2.21)

where g(y) =
∑nr−1

k=0
yk

k! . The pdf fv0,0(y) is simply given by the derivative of (2.21). If all

potential transmitters in each subnet have the same distance to the receiver in the same

subnet, i.e., Dj,j(m) = D for all j and all m, the pdf fv0,0(y) can be shown to be

fv0,0(y) =
∂

∂y
Pr{v0,0 ≤ y}

=

n0
∑

µ=1









n0

µ









(−1)µ+1ζµe−
µ
D

ygµ−1(y/D)
µynr−1

Dnr(nr − 1)!
U(y) + (1 − ζ)n0δ(y)

= n0[1 − ζe
−y
D g(

y

D
)]n0−1 ζe

−y
D ynr−1

Dnr(nr − 1)!
U(y) + (1 − ζ)n0δ(y) (2.22)
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We now derive the pdf fvI
(x) of vI =

∑

j>0 v0,j where v0,j =
|hH

0,0h0,j |
2

‖h0,0‖2 . Since the

pdf of v0,j(l) is the same as that for the SISO channels, all expressions for the pdf fvI
(x)

are the same as for the SISO case except that Pj,l needs to be revised as follows:

Pj,l = ζ · Pr{‖hj,j(l)‖2 ≥ max
k 6=l

‖hj,j(k)‖2, ‖hj,j(l)‖2 ≥ θ}

= ζ

∫ ∞

θ

xnr−1

(nr − 1)!Dnr

j,j(l)
e
− x

Dj,j (l)
∏

k 6=l



1 − ζe
− x

Dj,j(k)

nr−1
∑

q=0

xq

Dj,j(k)qq!



 dx (2.23)

where we have used (2.20). If Dj,j(l) = D for all j and all l, then Pj,l becomes independent

of l, and Pj,l can be simplified as:

Pj,l = ζ

∫ ∞

θ

xnr−1

(nr − 1)!Dnr
e−

x
D



1 − ζe−
x
D

nr−1
∑

q=0

xq

Dqq!





n0−1

dx (2.24)

2.3.3 MIMO channels

For MIMO channels, the received signal model in subnet 0 is given by:

y0 = H0,0x0 +
∑

i>0

H0,ixi + w0 (2.25)

where Hi,j ∈ C
nr×nt is the channel coefficient vector between the transmitter in subnet

j and the receiver in subnet i. The entries in Hi,j are assumed to be independent and

identically distributed complex Gaussian random variables with zero mean and variance

d−α
i,j (kj) with kj defined by (2.26). xi is the complex vector signal transmitted from subnet

i. wi is the complex noise vector at the receiver in subnet i, and assumed to have zero

mean and the covariance matrix E{wH
i wi} = σ2Inr , where Inr denotes the nr ×nr identity

matrix. We also assume that all the nodes in the network transmit with the same power P ,

i.e. tr{E{xix
H
i }} = P . We further assume that nr = nt.
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Based on the O-SAM protocol, Hi,j = Hi,j(kj) where

kj = arg

(

max
k∈Ij ,λmax(Hi,j(k))≥θ

λmax(Hi,j(k))

)

(2.26)

Denote the singular value decomposition (SVD) of Hi,i as Hi,i = Ui,iΛ
1/2
i,i VH

i,i

where Λi,i is a diagonal matrix of non-negative entries in descending order. Then, we can

transform (2.25) to the following:

ỹ0 = Λ
1/2
0,0 x̃0 +

∑

i>0

H̃0,ix̃i + w̃0 (2.27)

where ỹ0 = UH
0,0y0, x̃i = VH

i,ixi, H̃0,i = UH
0,0H0,iVi,i and w̃0 = UH

0,0w0.

Under the O-SAM protocol, we only use the principal stream of each MIMO link.

In this case, only the first entry of the vector x̃i is non-zero, which is denoted by xi.

Therefore, a sufficient statistics of the vector ỹ0 is given by its first element, which is

denoted by y0, and (2.27) is equivalent to the scalar equation:

y0 = λ1/2
maxx0 +

∑

j>0

h0,jxj + w0 (2.28)

where λmax is the largest eigenvalue of H0,0H
H
0,0, and h0,j is the upper-left entry of H̃0,j

which is complex Gaussian with zero mean and variance d−α
0,j (kj).

The SINR in y0 is given by

SINR =
v0,0

∑

j>0 v0,j + σ2/P
(2.29)

where v0,0 = λmax, and v0,j = |h0,j |2 which is exponentially distributed with the mean

D0,j(kj) = d−α
0,j (kj).
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Assuming that d0,0(m) = 1 for all m = 1, 2, ..., n0, the cdf (cumulative distribution

function) of λmax is known [42] to be

Fλmax
(x) =

1
∏nr

j=1 Γ(j)2
det |(γi+j−2)| (2.30)

where (γi+j−2) is a nr ×nr matrix with element γi+j−2 =
∫ x
0 ωi+j−2 exp(−ω)dω and Γ(j) =

(j − 1)!.

The expressions (2.4) and (2.5) still hold for the MIMO case except that fvI
(x)

and fv0,0(y) need to be revised as follows.

We know that

Pr{v0,0 ≤ y} =

n0
∏

m=1

{ζFλmax
(y) + (1 − ζ)}

= {ζFλmax
(y) + (1 − ζ)}n0 (2.31)

Then, fv0,0(y) is given by the derivative of (2.31).

The expressions for fvI
(x) are the same as those for the SISO and SIMO cases

except that

Pj,l =
1

nj
(1 − Pj) (2.32)

Pj = (1 − ζ + ζFλmax
(θ))nj (2.33)

2.4 Loading Adaptive ALOHA

Slotted ALOHA (or ALOHA for short) is a useful benchmark for throughput

comparison. The protocol of ALOHA is as follows. In each time slot or frame, if a node

A has a packet to deliver to a neighboring node B, then the node A transmits the packet
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to the node B with a transmission probability ε. If the node B is not transmitting in the

same time slot, the node B attempts to receive the packet from the node A.

The throughput of ALOHA can be shown as follows. Since each node has the

probability ζ to have a packet for its neighbor, the effective probability for a node to choose

to transmit is ζε. Hence, the throughput of ALOHA in bits-meter/s/Hz/node for networks

of regular topologies is given by the following expression [19]:

CALOHA =
β√
ρ
(1 − ζε)ζεRξPd (2.34)

Here, as defined before, Rξ is the packet spectral efficiency, and Pd = Pr{SINR ≥ ξ} is the

probability of packet detection. However, the statistics of SINR for ALOHA is different

from that for SAM.

For throughput analysis of ALOHA, we will only consider SISO channels. Then,

given that a node transmits a packet and one of its neighboring nodes receives the packet,

the signal received by the receiving node can be modelled as

y0 = h0x0 +
∑

j>0

hjxjuj + w0 (2.35)

where x0 is the desired signal, h0 is the channel coefficient between the desired transmitter-

receiver pair, xj for j > 0 is the interfering signal from node j, hj for j > 0 is the channel

coefficient between the interfering node j and the receiving node, and w0 is the noise. We

assume Gaussian fading channels and Gaussian noise. Here, uj ∈ {0, 1} are i.i.d. binary

random variables with Pr{uj = 1} = ζε. Then, the instantaneous SINR in y0 in each time

slot is

SINR =
g0P

σ2 +
∑

j>0 gjujP
(2.36)
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where P is the transmitted power from each transmitting node, σ2 is the noise variance,

gi = ‖hi‖2 is an exponentially distributed random variable with the mean µi = d−α
i , and di

is the distance between the node i and the receiver.

Unlike (2.5), we now have

Pd = Pr{SINR ≥ ξ} = Pr

{

g0

σ2/P +
∑

j>0 gjuj
≥ ξ

}

= E{gi,ui,i>0}

[

∫ ∞

(σ2/P+
∑

j>0 gjuj)ξ

1

µ0
e
− x

µ0 dx

]

= E{gi,ui,i>0} exp

{

−
(σ2/P +

∑

j>0 gjuj)ξ

µ0

}

= exp

{

− σ2ξ

Pµ0

}

∏

j>0

Egi,ui

{

exp

(

−giuiξ

µ0

)}

= exp

{

− σ2ξ

Pµ0

}

∏

j>0

Eui

{

1

1 + uiµiξ/µ0

}

= exp

{

− σ2ξ

Pµ0

}

∏

j>0

[

ζε
1

ξµj/µ0 + 1
+ (1 − ζε)

]

(2.37)

The above analysis is similar to one in [18]. Since ζ and ε always appear in the product form

ζε, given that all other parameters are fixed, there is an optimal choice for the product,

which is to be denoted by p∗. Assuming that each node knows the traffic loading condition

as measured by ζ, then a loading adaptive ALOHA should adopt the following transmission

probability:

ε =















1 ζ ≤ p∗

p∗

ζ ζ > p∗
(2.38)

For the throughput comparison shown next, we will use the loading adaptive ALOHA.
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2.5 Throughput Evaluation

In this section, we will illustrate and compare the throughput of O-SAM, D-SAM

and ALOHA. We will use the following list of assumptions. All network topologies to be

considered have the unit node density ρ = 1. All channel coefficients are independent

realizations of complex Gaussian random variables from frame to frame. We choose the

path loss exponent α = 4 unless specified otherwise. By SIMO, we mean 1 × 4 SIMO, and

by MIMO, we mean 4 × 4 MIMO. For O-SAM, we will consider a large network of 245

nodes on three regular grids as shown in Figure 2.1. The subnet partitions shown in this

figure are already optimized for O-SAM. For the Fourier series expansion (2.13) and (2.14),

we choose K = 500 and T = 50. These values were confirmed to be sufficiently large. For

ALOHA, we will only consider the square topology and SISO channels.

Figure 2.2 shows the throughput of O-SAM versus SNR and the traffic load prob-

ability ζ. For each pair of SNR and ζ, the throughput was maximized over ξ (the target

SINR) and θ (the channel gain threshold). The square topology as shown in Fig. 2.1 was

used. The Gaussian SISO channels were considered. This figure is to highlight the fact that

the network throughput is saturated to a constant when SNR is large. In the sequel, we

will choose SNR = 10 log10(P/σ2) = 40dB unless otherwise specified.

Figure 2.3 compares the throughput of O-SAM and ALOHA versus the traffic load

probability ζ. For each ζ, the throughput of O-SAM was maximized over both ξ and θ. The

square topology as shown in Figure 2.1 and the Gaussian SISO channels were considered.

We see that as long as ζ > 10%, O-SAM yields higher throughput than ALOHA. In other

words, only when the traffic load is low, does ALOHA yield a higher throughput.
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Figure 2.4 illustrates the throughput of ALOHA for 1-hop, 2-hop and 3-hop dis-

tance transmission. Note that bits-meter/s/Hz/node is a distance-weighted throughput

unit. By 2-hop distance transmission, for example, we mean that the transmission distance

between the transmitter and the receiver equals two times the shortest distance between

two adjacent nodes. For each of the three cases, we adjusted the transmission power P

such that the SNR of the received signal is kept at 40dB. This means that the transmission

power used for 2-hop distance transmission is 2α times higher than that for 1-hop distance

transmission, and the transmission power used for 3-hop distance transmission is 3α times

higher than that for 1-hop distance transmission. The same square topology as shown in

Figure 2.1 and the Gaussian SISO channels were considered. For each ζ, the throughput was

maximized over ξ. We see that only when the traffic load is very low (i.e., ζ < 1% ), is the

throughput of 2-hop distance transmission better than that of 1-hop distance transmission.

In order for 3-hop distance transmission to be better than 2-hop distance transmission, the

traffic load probability ζ needs to be less than 0.4%.

In figure 2.5, we show the ratio of the “2-hop distance” throughput over the “1-

hop distance” throughput and the ratio of the “3-hop distance” throughput over the “1-hop

distance” throughput. These ratios are lower than one unless the traffic load probability ζ

is very small. When ζ approaches zero, the two ratios become two and three, respectively.

Figures 2.4 and 2.5 suggest that for peer-to-peer networks, the shortest distance

transmission is the most efficient in both spectrum and energy unless the traffic load is

extremely low.

Figure 2.6 compares the throughput of O-SAM for each of SISO, SIMO and MIMO
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cases. For O-SAM, the throughput was maximized over ξ and θ. The square network was

considered. This figure illustrates that multiple antennas can significantly improve the

network throughput.

2.6 Summary

We have presented a further development of synchronous array method (SAM)

as a medium access control scheme for ad hoc wireless networks. We have focused on

intra-network throughput enhancement for a large network where any node can be a source

node or a destination node. We have used the distance-weighted throughput measure: bits-

meter/s/Hz/node. We have presented and evaluated SAM-based schemes: O-SAM which

is a centralized scheme.

With O-SAM, the subnet partition within each time frame needs to be pre-

determined. Provided that the channel coherence time is sufficiently long, local channel

estimation is feasible which allows opportunistic exploitation of channel gains within each

subnet. In order to induce variations of channel gains, multiple antennas can be used at

each node.

We have also compared the throughput of O-SAM with the throughput of ALOHA

under a varying probability ζ of traffic load. It has been shown that ALOHA yields lower

throughput than O-SAM unless ζ is small, e.g., less than 10%. We have further examined

the effect of long distance transmission on the distance-weighted throughput. We have

found that the shortest distance transmission leads to the highest throughput unless ζ is

very small, e.g., less than 1%.
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Figure 2.2: Throughput of O-SAM versus load probability ζ and SNR. We used ρ = 1,
square topology, and SISO channels.
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square topology, and SISO channels.

38



0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Traffic load probability ζ

T
hr

ou
gh

pu
t i

n 
bi

ts
−

m
et

er
/s

/H
z/

no
de

 

 

1−hop
2−hop
3−hop

ζ=0.01, throughput=0.032

ζ=0.008, throughput=0.023

ζ=0.004, throughput=0.02

Figure 2.4: Throughput of ALOHA with different transmission ranges: 1-hop, 2-hop and
3-hop ranges . We used ρ = 1, square topology, and SISO channels. The transmission
power for each of the three cases is adjusted so that the SNR (excluding interference) at
every receiver is 40dB.
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Chapter 3

Distributed Synchronous Array

Method: D-SAM

The (centralized) SAM shown in [1] and the opportunistic SAM shown in the

section 2.2 all require a subnet partition in a centralized fashion. The dimension of each

subnet or the spacing between concurrent co-channel transmissions is critical for network

throughput. In this chapter, we present a distributed SAM (D-SAM) that encapsulates an

essence of SAM in that all concurrent co-channel transmissions are properly spaced from

each other. The distributed SAM (D-SAM) is discussed that schedules all concurrent co-

channel transmissions in a distributed fashion. D-SAM forms subnets in each time frame

in a distributed and dynamic fashion. D-SAM also works with random network topology.

The essence of D-SAM is similar to that of MSH-DSCH in IEEE 802.16 standards

[5]. However, there has been no prior study of the fundamental throughput of MSH-DSCH

in large networks. The understanding of D-SAM for large networks can serve this purpose.
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The study shown in [43] focuses on the dynamic of control packet exchanges, which as

explained later does not reveal the fundamental throughput of a network of low mobility.

By simulation, we will show the effect of a cooperative radius R on the throughput of D-

SAM. Within the radius R centered at a receiver, only the desired transmitter is allowed to

transmit. This study interestingly supports that the two-hop rule adopted in MSH-DSCH

(i.e., all interfering transmitters to a receiver are kept two hops away from the receiver) is a

good choice for regular or near regular topologies. This study also provides a corresponding

guidance for choosing a proper packet spectral efficiency, which is not available in IEEE

802.16.

The principle of D-SAM differs from that of a distributed and cooperative link

scheduling (DCLS) algorithm shown in [44]. The former is based on the distance information

of neighboring nodes. But the latter is based on local calibration of SINR for each link.

For environment where distance does not well reflect signal attenuation, DCLS could be a

better alternative. A detailed comparison between D-SAM and DCLS is not yet available.

By analysis in the previous chapter and simulation on D-SAM, the intra-network

throughput of O-SAM and D-SAM is evaluated. The effects of traffic load and multiple

antennas on the intra-network throughput are studied. The throughput of ALOHA is also

compared with that of O-SAM and D-SAM. The study of D-SAM reveals an insight into

the MSH-DSCH protocol adopted in IEEE 802.16[5].

The rest of this chapter is organized as follows: in Section 3.1, we present D-SAM

in detail. In Section 3.2, we evaluate and compare the network throughput of ALOHA,

O-SAM and D-SAM. The content of this chapter is partially contained in [40].
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3.1 Distributed Synchronous Array Method

In D-SAM, time is slotted into frames of equal duration as shown in Fig. 3.1.

Each frame is further divided into control subframe and data subframe. Assuming that the

data subframe is much longer than the control subframe, the network spectral efficiency is

dominated by the spectral efficiency in each data subframe. A control subframe is used for

each node to compete for data transmission opportunity in a data subframe. Each control

subframe consists of a group of M contention slots. For analysis of maximal achievable

throughput, we will assume without loss of generality that each data subframe consists of

a single data slot.

At the beginning of each frame, D-SAM allows each node to randomly initialize

a choice for one of the M contention slots if the node has a packet to transmit to another

node. If the node has packets to be transmitted (separately) to multiple neighboring nodes,

the node chooses multiple contention slots - one slot for each receiver. During a chosen

contention slot, the node contends for the upcoming data subframe by starting a hand-

shaking process with its intended receiving node. The handshaking involves three packets:

RTS (request-to-sent), CTS (clear-to-sent), and ACK. If the handshaking is successful,

the upcoming data subframe is reserved for data transmission between the transmitter-

and-receiver pair. During each contention slot, the handshaking packets are received by

neighboring nodes so that these nodes are aware of the reservation status of the upcoming

data frame. For each frame and each neighborhood in a predetermined range, the data

subframe can only be reserved for one transmitter-and-receiver pair. This means that the

first contention slot has the highest priority, the second contention slot has the second pri-
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ority, and so on. In the next frame, the contention process repeats without memory of the

previous contentions, which ensures fairness.

More details of D-SAM are as follows. We assume that each node k maintains a

neighborhood list Nk which contains the identifications of all its neighboring nodes inside

a range R. The range R is an important parameter for the performance of D-SAM. The

ith node in Nk is indexed by Nk(i). The neighborhood list at each node can be established

at the startup of the network. For networks of low mobility, this startup is feasible. We

assume that every node can be set to one of three states for the upcoming data subframe:

T , R and S. Here, T stands for transmitting, R for receiving, and S for standby. We denote

the state of node k as Sk and the state of Nk(i) as SNk(i).

1. Initialization: At the beginning of each frame, set every node to state S, i.e., Sk = S

for all k. Then, we allow that every node k generates a “contention request vector”

vk that randomly maps each neighboring node in list Nk to one of M contention slots

if node k has traffic load intended to those neighbors. Here, we assume M is larger

than the size of every neighbor list, i.e., M ≥ |Nk| for all k. The ratio of M over |Nk|

affects the probability of handshaking collisions. The larger is the ratio, the lower is

the probability of handshaking collisions. We denote the mth element of vk as vk(m),

which is

vk(m) =















j, if node k has traffic to node j, and j is mapped into contention slot m,

0, otherwise.

(3.1)

In other words, the value of vk(m) is the index of the receiving node for which the
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transmitting node k wants to contend during the contention slot m for the upcoming

data subframe. If vk(m) = 0, it means that, in the mth contention slot, node k will

not contend for the upcoming data subframe.

2. In contention slot m: each node k will first check its contention request vector. If

vk(m) = 0, node k eavesdrops ongoing handshaking within the neighborhood of range

R. If node k hears any CTS or ACK packet, it retrieves the information from the

packet and resets the states of the nodes in Nk accordingly. If vk(m) = j where j > 0,

node k will try to finish the following three-way RTS-CTS-ACK handshaking with

node j:

• RTS

Node k sends a RTS packet to node j which contains the identity of node k, if

the following conditions are satisfied:

(a) Sk = S.

(b) SNk(i) 6= R for all i.

• CTS

If node j has successfully received the RTS packet from node k and the following

conditions are satisfied:

(a) Sj = S

(b) SNj(i) = S for all i

(c) vj(m) = 0
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then node j resets Sj = R and SNj(ik) = T where ik is the index for node k in

the table Nj , and sends a CTS packet back to node k.

• ACK

If node k has successfully received the CTS packet from node j, the node k resets

Sk = T and SNk(ij) = R where ij is the index of node j in the table Nk, and

sends back the ACK packet.

During any contention slot, if there is a collision of control packets, the operation

in that slot is abandoned. If the ratio of M over the number of nodes within the radius R is

large, the probability of collision of control packets is small. As long as the control packets

are much smaller than the data packets (i.e., the control subframe is much smaller than the

data subframe), the network spectral efficiency is dominated by the throughput in the data

subframe. This assumption will be our basis for throughput evaluation of D-SAM.

Fig. 3.2 illustrates a snapshot of the concurrent co-channel transmission pairs for

a square network, which was determined by D-SAM for data transmission. The radius

R = da was chosen, where da is the spacing between two nearest neighbors. The number of

contention slots was M = 8. The full traffic loading condition, i.e., ζ = 1, was assumed.

For D-SAM, we evaluate the network throughput in bits-meter/s/Hz/node as fol-

lows:

CD−SAM = E

{

1

N

N
∑

n=1

dnRξsn

}

(3.2)

where E denotes expectation, N is the total number of nodes in the network, dn is the

distance between the nth receiving node and its transmitting node, Rξ is the packet spectral
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efficiency as defined before, sn ∈ {0, 1}, and sn = 1 if and only if a packet is intended for the

nth node and the corresponding SINR is no less than ξ. In the simulation, the expectation

is replaced by the average over many time frames. Each time frame also corresponds to an

independent realization of Gaussian random channels. The distance weighting in (3.2) is

different from the conversion formulas (from bits-hop/s/Hz/node to bits-meter/s/Hz/node)

derived in [19] because the former does not take into account the fact that a typical multi-

hop route between source node and destination node is not a straight line due to topology

constraint. However, for regular topologies, the weighting used in (3.2) is slightly larger

than that used in [19]. For an arbitrary topology, (3.2) represents an upper bound on the

throughput in bits-meter/s/Hz/node.

3.2 Throughput Evaluation

In this section, we will illustrate and compare the throughput of O-SAM, D-SAM

and ALOHA. The system parameters for O-SAM and ALOHA are the same as those in

previous chapter. For D-SAM, we will consider the three regular topologies as well as 20

random topologies. Each random topology consists of 300 nodes positioned by the two-

dimensional Poisson random process. We will use M = 60 with which the probability of

control packet collision is negligible as observed in simulations.

Figure 3.3 compares the throughput of O-SAM, D-SAM and ALOHA versus the

traffic load probability ζ. For each ζ, the throughput of O-SAM was maximized over both

ξ and θ, and the throughput of D-SAM was maximized over ξ and R (the cooperative

range). The square topology as shown in Figure 2.1 and the Gaussian SISO channels
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were considered. We see that as long as ζ > 10%, both O-SAM and D-SAM yield higher

throughput than ALOHA. In other words, only when the traffic load is low, does ALOHA

yield a higher throughput. As expected, the throughput of D-SAM is lower than that of

O-SAM. This is because the concurrent co-channel transmissions for D-SAM are not as

ideal as those for O-SAM. This figure shows that the throughput of D-SAM is about two

thirds of that of O-SAM in the full load condition.

Figure 3.4 compares the throughput of O-SAM and D-SAM for each of SISO, SIMO

and MIMO cases. For O-SAM, the throughput was maximized over ξ and θ. For D-SAM,

the throughput was maximized over ξ and R. The square network was considered. This

figure illustrates that multiple antennas can significantly improve the network throughput.

Figure 3.5 compares the throughput of O-SAM and D-SAM for each of the three

topologies: square, triangle and hexagon. A useful observation is that O-SAM with the

hexagonal network has a much higher throughput than all other situations. It is also useful

to note here that the optimal subnet partition of the hexagonal network for O-SAM as shown

in (2.1) is identical to that for C-SAM as shown in [19]. Hence, for the hexagonal topology,

the throughput gain due to the opportunistic transmitter selection is not compromised by

any change of subnet partition. This is not the case for the other two topologies. Although

the throughput of D-SAM is not as high as that of O-SAM, D-SAM works with any topology.

Figure 3.6 illustrates the ξ-optimized throughput of D-SAM versus the cooperative

range R. It is interesting to observe that for all three regular topologies, the optimal

cooperative range R∗ satisfies da ≤ R∗ < db. Here, da is the shortest distance between

two adjacent nodes, and db is the shortest distance between two nodes that are two hops
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apart. Clearly, when R < da, the throughput for the regular topologies should be zero.

We also see that for the regular topologies, the throughput in the interval da ≤ R < db

is essentially constant where the variations due to random subnet partitions and random

channel realizations are small and not perceivable from this figure. Under da ≤ R < db, the

corresponding optimal target SINR is ξ∗ ≈ 4.

Given ρ = 1, we have da = 1 and db =
√

2da = 1.41 for square, da =
√

2/
√

3 = 1.07

and db =
√

3da = 1.85 for triangle, and da =
√

4/(3
√

3) = 0.877 and db =
√

3da = 1.52

for hexagonal [19]. We will restrict da and db to be defined as above only for the regular

topologies.

As observed in our simulation, this optimal condition da ≤ R∗ < db also holds for

α = 3. This observation interestingly supports the two-hop rule adopted in MSH-DSCH of

IEEE 802.16. But the corresponding ξ∗ decreases as the path loss exponent α decreases.

We found that ξ∗ is somewhere between 1.5 and 2 when α = 3. Note that the spectral

efficiency of each packet is governed by the value of ξ, i.e., Rξ = log2(1 + ξ).

Figure 3.6 also shows that for R < da, the throughput of the random topologies is

nonzero, and furthermore it peaks at R = 0.8. It is important to note that the throughput

under R < da is not very meaningful. This is because when R < da, the distance between

many adjacent nodes is larger than R so that there is no direct link between them. In fact,

under R = 0.8, many nodes are not even connected with others, which is illustrated in

Figure 3.7. In such a case, the expression defined in (3.2) is only a very loose upper bound

on the network throughput.
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3.3 Summary

In this chapter, we proposed a distributed media access contron scheme: D-SAM.

With D-SAM, the subnet partition within each time frame is decided by the network locally

and dynamically. For networks of sufficiently long channel coherence time, the spectral

overhead for exchanges of control packets can be affordable or even negligible compared to

the exchanges of data packets. In this case, the network throughput is primarily affected

by the subnet partition in each time frame. The cooperative radius R has a major effect

on the size of each subnet and hence the network throughput. For networks of regular

topologies, the optimal value of R has been shown to be anywhere between da and db

where da is the shortest distance between two adjacent nodes and db is the shortest distance

between two nodes that are two hops apart. This result interestingly supports the two-

hop rule adopted in MSH-DSCH in IEEE 802.16. For a network of random topology, the

cooperative radius seems to be a more effective parameter, than the hop count, for subnet

partition or equivalently spacing control between concurrent co-channel transmissions. A

detailed study of the implementation issues remains a future task.

Similar as the previous chapter, we compared the throughput of D-SAM with the

throughput of ALOHA and O-SAM under a varying probability ζ of traffic load. The same

result is presented that ALOHA yields lower throughput than O-SAM and D-SAM unless

ζ is small, e.g., less than 10%.
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Figure 3.1: Frame structure of the distributed SAM protocol, which resembles that of
MSH-DSCH in IEEE 802.16.
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Figure 3.2: A snapshot of concurrent co-channel transmissions determined by the D-SAM
protocol for a network in a regular square grid. R = da, M = 8 and ζ = 1 were used, where
da is the minimum distance between two adjacent nodes. The black nodes are the receiving
nodes, and the grey nodes are the transmitting nodes.
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Figure 3.3: Throughput comparison of O-SAM, D-SAM and ALOHA. We used ρ = 1,
SNR = 40dB, square topology, and SISO channels.
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Figure 3.4: Throughput of O-SAM and D-SAM for SISO, SIMO and MIMO channels. We
used ρ = 1, SNR = 40dB, and square topology.
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Figure 3.7: A snapshot of subnet partition of a random network by D-SAM with R = 0.8.
The black nodes are the receivers, and the grey nodes are the transmitters. We used ρ = 1
and ζ = 1. Each circle shown has the radius 0.8.
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Chapter 4

Generalized Water-Filling

Algorithm

4.1 MIMO Channel Capacity

We first consider the single user MIMO system as illustrated in Fig. 4.1, where

x ∈ CM×1 denotes the signal transmitted from the source equipped with M antennas, and

y ∈ CN×1 the signal received by the receiver equipped with N antennas. Furthermore,

H ∈ CN×M denotes the channel matrix between the source and the destination, and n, is

the zero-mean Gaussian noises at receiver.

y = Hx + n (4.1)
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Assume E[nnH ] = I, that is the noise at different receiving antennas are independent. The

transmit power is constraint to be P , i.e.

E[xHx] = tr{E[xxH ]} ≤ P (4.2)

In this case,the power allocation problem will be

max
Q

I(x;y) = max
Q

log det |I + HQHH |

s.t. tr{Q} ≤ P (4.3)

This power allocation problem in (4.3) is given by water filling algorithm [23]

and easily extended to the weighted constraint scenario. The constraint in (4.3) can be

generalized to

tr{BQBH} = tr{(BHB)H/2Q(BHB)1/2} ≤ P (4.4)

In fact, the above problem can be transformed to

max
W

log det |I + H(BHB)−H/2W(BHB)−1/2HH |

s.t. tr{W} ≤ P (4.5)

which is the same form as (4.3).

Next section, we develop a generalized water filling (GWF) theorem and the corre-

sponding algorithm to solve (with global optimality) a special type of convex optimization

problems. The GWF algorithm is a useful building block for two of the power allocation

algorithms proposed in next chapter. Although there are other types of algorithms in the

literature also called generalized water filling, they are designed for different problems.

The content of this chapter is partially contained in [68].
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4.2 A Generalized Water-Filling Algorithm

Consider the following convex optimization problem:

min
Q≥0

J
.
= − log |I + HQHH | (4.6)

s.t. tr{BiQBH
i } ≤ Pi, ∀i ∈ {1 . . . m}

where H and Bi are complex matrices, Q is a complex positive semi-definite matrix, and

Pi are positive numbers. Without its base specified, log has the natural base e. If m = 1,

the solution to the above problem can be found by a well known water-filling algorithm.

Otherwise, one can use a CVX algorithm in Matlab [45] which is designed for any convex

optimization problem. We now introduce an algorithm, referred to as generalized water-

filling (GWF) algorithm, to solve the problem in (4.6). The GWF algorithm is based on

the following GWF theorem:

Theorem 1 The solution to (4.6) is given by:

Q = K−HV(I − Σ−2)+VHK−1 (4.7)

where K = (
∑m

i=1 µiB
H
i Bi)

1/2 (assumed to be non-singular), V and Σ are determined from

the SVD HK−H = UΣVH , (·)+ replaces all negative diagonal elements by zeros and leaves

all non-negative diagonal elements unchanged, and µ = (µ1, · · · , µm) are the solution to the

following dual problem:

max
µ≥0

− log |I + HQHH | +
m
∑

i=1

µi(tr(BiQBH
i ) − Pi) (4.8)

s.t. Q = K−HV(I − Σ−2)+VK−1.
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Proof. For any Q ≥ 0, we can write Q = AAH where A is a full column rank

matrix. With respect to A , we can write the following Lagrangian function of (4.6):

L = − log
∣

∣I + HAAHHH
∣

∣+
m
∑

i=1

µi

(

tr
{

BiAAHBH
i

}

− Pi

)

(4.9)

The gradient of L with respect to A can be found by using ∂ log |X| = tr(X−1∂X),

∂(XXH) = (∂X)XH + X∂XH and other basic tools [46]. The result is

∂L

∂AH

.
=

∂L

∂Re(A)T
− j

∂L

∂Im(A)T

= −2AH

(

HH
(

I + HAAHHH
)−1

H −
m
∑

i=1

µiB
H
i Bi

)

(4.10)

Then, the complete K.K.T. conditions [47] of the problem (4.6) with respect to A can be

written as

−AH

(

HH
(

I + HAAHHH
)−1

H −
m
∑

i=1

µiB
H
i Bi

)

= 0 (4.11)

tr
{

BiAAHBH
i

}

− Pi ≤ 0 (4.12)

µi ≥ 0 (4.13)

µi

(

tr
{

BiAAHBH
i

}

− Pi

)

= 0 (4.14)

where i = 1, · · · ,m.

Although the problem (4.6) with respect to A is not convex, we now show that

the generalized KKT conditions [47] of the problem (4.6) with respect to Q ≥ 0, which is

convex, are equivalent to (4.11)-(4.14). Consider L as in (4.9) with AAH replaced by Q.

It follows that

∂L

∂Q
= −HH

(

I + HQHH
)−1

H +
m
∑

i=1

µiB
H
i Bi (4.15)
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We define a vector operator for a complex conjugate symmetric matrix as follows:

vec(Q)
.
=









vec(Re{Q})

vec(Im{Q})









Here, vec(Re{Q}) stacks up all elements from Re{Q}, and vec(Im{Q}) stacks up all ele-

ments from Im{Q}. Assume Q ∈ Cn×n. Then, vec(Q) ∈ R2n2×1. Now, based on (5.95) in

[47], we have the following sufficient generalized KKT conditions:

−vec

(

HH
(

I + HQHH
)−1

H −
m
∑

i=1

µiB
H
i Bi

)

− ω = 0 (4.16)

tr
{

BiQBH
i

}

− Pi ≤ 0 (4.17)

µi ≥ 0 (4.18)

µi

(

tr
{

BiQBH
i

}

− Pi

)

= 0 (4.19)

ωT vec(Q) = 0 (4.20)

where i = 1, · · · ,m, ω ∈ R2n2×1. Also, Q ∈ K .
= {Q′ | Q′ ≥ 0}, and ω is in the dual

cone of K, i.e., ω ∈ KD .
= {ωT vec(Q′) ≥ 0|Q′ ≥ 0}. In fact, the term −ω in (4.16) is

due to the constraint −Q ≤ 0 for which we used ∂vecT (Q)
∂vec(Q) = I. Note that for two complex

conjugate symmetric matrices A′ and B′, tr(A′HB′) is always real. And A′HB′ = 0 ⇔

tr(A′HB′) = 0 ⇔ Re{A′}T Re{B′}+ Im{A′}T Im{B′} = 0 ⇔ vec(A′)T vec(B′) = 0. With

this property and Q = AAH , it is easy to verify that if A satisfies (4.11), (4.16) implies

(4.20). Therefore, provided that ω from (4.16) satisfies ω ∈ KD, (4.11)-(4.14) are also

sufficient KKT conditions for the problem (4.6). Later, we will verify that with a highest

rank solution Q = AAH where A is constructed from (4.11), (4.16) always yields a ω ∈ KD.
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Next, we construct an optimal structure of Q based on (4.11). Since KKH =

∑m
i=1 µiB

H
i Bi and K is non-singular, (4.11) is equivalent to

−AHK
(

K−1HH
(

I + HK−HKHAAHKK−1HH
)−1

HK−H − I
)

= 0 (4.21)

Define the SVD of HK−H as

HK−H = UΣVH = U









Σ1

Σ2









(

V1 V2

)H

(4.22)

where U and V are square unitary matrices, Σ1 (square) and Σ2 (possibly non-square)

are diagonal, all the diagonal elements of Σ1 are larger than one, and all the diagonal

elements of Σ2 are less than or equal to one. We now assume that KHA = V1T where T
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is non-singular. Then, (4.21) is equivalent to the following:

−AHK
(

K−1HH
(

I + HK−HKHAAHKK−1HH
)−1

HK−H − I
)

= 0

(a)⇐=⇒ −THVH
1

(

VΣTUH
(

I + UΣVHV1TTHVH
1 VΣT UH

)−1
UΣVH − I

)

= 0

(b)⇐⇒ TH











(

Σ1 0

)









I +









Σ1

0









TTH

(

Σ1 0

)









−1

Σ −
(

I 0

)











VH = 0

(c)⇐⇒ TH









(

Σ1 0

)









I −









Σ1

0









(

(TTH)−1 + Σ2
1

)−1
(

Σ1 0

)









Σ

−
(

I 0

)

)

VH = 0

(d)⇐=⇒ TH

(((

Σ2
1 0

)

− Σ2
1

(

(TTH)−1 + Σ2
1

)−1
(

Σ2
1 0

))

−
(

I 0

))

VH = 0

(e)⇐⇒ Σ2
1 − Σ2

1

(

(

TTH
)−1

+ Σ2
1

)−1
Σ2

1 − I = 0

(f)⇐=⇒ Σ2
1 − Σ2

1

(

Σ−2
1 − Σ−2

1

(

TTH + Σ−2
1

)−1
Σ−2

1

)

Σ2
1 − I = 0

(g)⇐⇒ TTH = I− Σ−2
1 (4.23)

where for (c) and (f) we used the matrix inverse lemma. We see that since TTH = I−Σ−2
1 >

0, the above solution for T, and hence the corresponding A, is a valid solution.

The above solution of KHA has the same span as V1. A simple observation of

the above analysis also suggests that as long as the span of KHA belongs to that of V1,

a matrix T exists such that KHA = V′
1T satisfies (4.12) where V′

1 is a sub-matrix of V1.

On the other hand, if the span of KHA contains a vector from V2, i.e., KHA = V′
2T

where V′
2 has a column vector from V2, then there does not exist such a matrix T for A

to satisfy (4.12), or equivalently the corresponding “solution” TTH would be non-positive
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semi-definite which contradicts to the fundamental nature of TTH . Therefore, the highest

rank solution of A to satisfy (4.12) is given by A = K−HV1T where T =
(

I − Σ−2
1

)1/2
.

Equivalently, the highest rank solution of Q to satisfy (4.12) is given by

Q = AAH = K−HV1TTHVH
1 K−1

= K−HV1(I −Σ−2
1 )VH

1 K−1

= K−HV(I −Σ−2)+VHK−1 (4.24)

where Σ−2 = (ΣTΣ)−1, the inverse of a zero would be treated as positive infinity, and

(x)+
.
= max(x, 0) operates on each diagonal element of the diagonal matrix I− Σ−2.

With (4.24), one can verify that

−HH
(

I + HQHH
)−1

H +
m
∑

i=1

µiB
H
i Bi

= KV

(

I − ΣT
(

I + Σ
(

I − Σ−2
)+

ΣT
)−1

Σ

)

VHKH

≥ 0 (4.25)

Note that the ith diagonal element of the diagonal matrix between V and VH in the above,

denoted by di, is

di = 1 − σ2
i

(

1 + σ2
i (1 − σ−2

i )+
)−1

=















1 − σ2
i > 0 if σ2

i < 1

0 if σ2
i ≥ 1

(4.26)

where σi is the ith diagonal element of Σ.

Therefore, the corresponding ω from (4.16) belongs to K. Since K = KD for

complex conjugate symmetric positive semi-definite matrices, a proof of which is simple

and similar to Example 2.24 in [47], ω from (4.16) also belongs to KD.
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If we did not use the highest rank solution for Q as in (4.24), then there would be

a di = 1 − σ2
i < 0 associated with a σ2

i > 1 and hence (4.25) would not hold and hence the

corresponding ω from (4.16) would not belong to KD.

With the optimal Q given in (4.24), which is a function of µ = [µ1, · · · , µm], the

remaining problem is to find the optimal µ. Since the effective KKT equations for µ are the

same for both (4.11)-(4.14) and (4.16)-(4.20), the optimal µ can be found by using either

the dual problem of (4.6) with respect to A or the dual problem of (4.6) with respect to Q.

Choosing the former, we can find the optimal µ by solving (4.8). The dual problem of (4.6)

with respect to Q is the same as (4.8) except for the additional term −vecT (Q)ω which is

however maximized to zero by ω for any µ.

The proof of the theorem is completed. To our knowledge, this theorem is new.

As illustrated by a simulation example later 4.4, the GWF algorithm can achieve the same

accuracy as CVX, and the former has a much faster speed than the latter when the dimension

of µ is much smaller than that of Q. The GWF algorithm is useful for many applications

other than those shown in this thesis. For example, if one wants to design a source covariance

matrix to maximize the data rate of a MIMO link and also wants to keep the interference

from this source to other neighboring nodes under certain limits, such a problem can be

directly formulated as (4.6). In the next section, we show how to find the optimal µ in more

details. For the primal problem (4.6), Q has 2n2 real elements. (Even under the constraint

Q = QH , Q has n(n+1)
2 free real-part elements, n(n−1)

2 free imaginary-part elements, and

hence total n2 free real elements.) For the dual problem (4.8), there are m real variables in

µ. If m < n2, it is reasonable to expect the dual problem to be less costly to solve.
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4.3 Computation of the Dual Problem in Theorem 1

Since the dual problem is convex, we can follow the interior-point method [47] and

define the following dual function with logarithmic barrier terms:

D(µ) = − log |I + HQ(µ)HH | +
m
∑

i=1

µi(tr(BiQ(µ)BH
i ) − Pi) +

1

t

∑

i

log µi (4.27)

where we use Q(µ) to stress that Q is a function of µ. Note that the first two terms in

(4.27) equal to minQ≥0 L, which we want to maximize subject to µ ≥ 0. For each choice of

t, we can apply the Newton’s method to find the optimal µ, i.e.,

µ(k+1) = µ(k) + (∇2D(µ(k)))−1∇D(µ(k)) (4.28)

where k denotes the iteration index. Upon convergence for each t, we can increase t by a

factor δ > 1 and continue a new cycle of the Newton’s search. The above process continues

until 1/t is smaller than a pre-specified number ǫ.

The computation of the gradient vector ∇D(µ(k)) and the Hessian matrix ∇2D(µ(k))

is straightforward although the detailed expressions are lengthy. Since Q(µ) depends on the

eigenvalue decomposition of K−1HHHK−H and the computation of K =
(
∑m

i=1 µiB
H
i Bi

)1/2

also needs the eigenvalue decomposition of
∑m

i=1 µiB
H
i Bi, we need to use the first-order and

second-order differentials of eigenvalues and eigenvectors. The basic formulas for these dif-

ferentials can be found in [46].

To avoid possible numerical problems in computing the differentials of eigenvectors

when there are multiple identical eigenvalues, we added a small random perturbation matrix

to
∑m

i=1 µiB
H
i Bi in our program, which proved to be very effective.
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4.4 A Comparison of GWF and CVX

To show a comparison of our GWF algorithm with CVX in [45], we ran both

algorithms on a desktop with 2.40GHz CPU. We chose P1 = 1, P2 = 1.5, B1 = I, and used

the complex Gaussian distribution with zero mean and unit variance to randomly choose

each element in the following matrices:

H =

























−0.6705 + 0.3791i 0.1469 + 0.4499i −0.2913 − 0.3867i 0.1568 − 0.0536i

0.2398 − 0.3460i −0.0702 − 1.0615i −0.4482 + 0.0759i −1.0125 + 0.5067i

−0.8170 + 0.3401i −0.5652 + 0.1424i 0.1243 − 0.1684i 0.2645 − 0.2377i

−0.7213 − 0.5363i −0.1463 − 0.3667i −0.7448 + 0.4854i 0.1717 + 0.0345i

























B2 =

























0.1993 + 0.1027i −0.6859 + 0.4280i 0.1457 + 0.3800i 0.2031 + 0.5548i

0.5582 + 0.2944i −0.3429 − 0.4255i 0.5535 − 0.8565i 0.6080 − 0.5549i

0.3102 − 0.1320i 0.1658 + 0.4059i 0.1225 + 0.7685i 0.7242 + 0.1927i

−0.1438 + 1.2477i −0.4989 + 0.3501i 0.0825 − 0.8049i −0.5126 + 0.4826i

























For the GWF algorithm, the initial elements of µ(0) were randomly chosen between zero

and 10−2. We chose ∇D(µ)T (∇2D(µ))−1∇D(µ) < 10−2 as the stopping criterion for the

inner loop (for fixed t). We also chose t(1) = 2 and t(i+1) = 2t(i), and finally 2/t < 10−4

as the stopping criterion for the outer loop. We noticed that for each t, the inner loop

converged after about 8 iterations.

At the convergence, the following results from the GWF algorithm and the CVX
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algorithm were obtained:

QGWF =

























0.3726 0.1804 − 0.0634i 0.0470 − 0.0795i −0.1740 − 0.0078i

0.1804 + 0.0634i 0.2722 −0.0779 − 0.1381i −0.1265 − 0.1644i

0.0470 + 0.0795i −0.0779 + 0.1381i 0.1643 0.0893 + 0.0208i

−0.1740 + 0.0078i −0.1265 + 0.1644i 0.0893 − 0.0208i 0.1909

























QCV X =

























0.3726 0.1804 − 0.0634i 0.0469 − 0.0796i −0.1739 − 0.0078i

0.1804 + 0.0634i 0.2722 −0.0779 − 0.1382i −0.1265 − 0.1644i

0.0469 + 0.0796i −0.0779 + 0.1382i 0.1643 0.0894 + 0.0208i

−0.1739 + 0.0078i −0.1265 + 0.1644i 0.0894 − 0.0208i 0.1909

























These two matrices agree with each other very well. In Table 4.1, we list the computational

times used by the two algorithms and the corresponding values of the capacity achieved

(i.e., −J in (4.6)). We see that the same capacity is achieved by both algorithms. But the

GWF is about four times faster than the CVX.

Figure 4.2 shows how µ of the GWF converged to the optimal as the outer iter-

ations continued. We see that µ2 approaches to zero, which means that the second power

Table 4.1: Comparison of GWF with CVX in solving the problem (4.6) where Q is 4 × 4
and m = 2.

Time in sec Capacity in bits/s/Hz

GWF 3.40 2.6139

CVX 14.94 2.6139
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constraint is satisfied automatically while the first power constraint is active. Figure 4.3

illustrates the capacity (−J) as function of the barrier constant t.

4.5 Summary

In this chapter, we provide an analytical solution to a general convex optimization

problem. This general formulation is useful in many applications, such as MIMO relay

system and interference control problem. Although, this problem can be solved by some

existing optimization tool, we develop a more efficient algorithm based on the dual prin-

ciple of convex optimization. The numerical example is studied to illustrate that the new

algorithm is much more efficient than those existing software on this specific problem, since

the number of variables need to be optimized is the number of constraints instead of the

actual matrix variable. In next chapter, this new algorithm is applied to find the optimal

source covariance matrix in multiuser MIMO relay system.
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4.6 Appendix - The derivatives used in 4.3

The Newton’s method needs second order derivative of D(µ). To get the expression

of the derivative of ∂D(µ)
∂µ

, we need the following facts: Consider a complex conjugate

symmetric matrix A which depends on a set of parameters µ1, µ2, . . . . We can write the

eigenvalue decomposition as

Axi = λixi (4.29)

where the eigenvalues λi are real (assumed to be distinct) and the eigenvectors xi are

complex orthogonal: xH
i xi = 1. Then, we write the first order differentials as follows:

∂A

∂µm
xi + A

∂xi

∂µm
=

∂λi

∂µm
xi + λi

∂xi

µm
(4.30)

Left multiplying xH
i to (4.30), we have

xH
i

∂A

∂µm
xi + xH

i A
∂xi

∂µm
= xH

i

∂λi

∂µm
xi + xH

i λi
∂xi

µm
(4.31)

hence, we get

∂λi

∂µm
= xH

i

∂A

∂µm
xi (4.32)

bring (4.32) back into (4.30), we can get

∂xi

∂µm
= (A − λiI)

†(
∂λi

∂µm
I − ∂A

∂µm
)xi (4.33)

where A† denotes the pseudoinverse of A, which ignores the component of ∂xi

∂µm
in the

direction of xi while keeping all the components orthogonal to xi, i.e. (A−λiI)
† =

∑

j 6=i(λj−

λi)
−1xjx

H
j . Because of the pseudoinverse used in (4.33), we have ingored a component of

∂xi

∂µm
in the direction of xi but have kept all components orthogonal to xi.
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Now apply the second derivative of (4.30) with respect to another parameter and

again multiplied by xH
i , we have

∂2λi

∂µm∂µn
= xH

i

∂2A

∂µm∂µn
xi + xH

i (
∂A

∂µm
− ∂λi

∂µm
I)

∂xi

∂µn
+ xH

i (
∂A

∂µn
− ∂λi

∂µn
I)

∂xi

∂µm
(4.34)

and

∂2xi

∂µm∂µn
= (A− λiI)

†(
∂2λi

∂µm∂µn
xi −

∂2A

∂µm∂µn
+

∂λi

∂µm

∂xi

∂µn
− ∂A

∂µm

∂xi

∂µn
(4.35)

+
∂λi

∂µn

∂xi

∂µm
− ∂A

∂µn

∂xi

∂µm
) (4.36)

All the first and second order derivatives are listed below:

∂D(µ)

∂µi
= −tr{(I + HQHH)−1H

∂Q

∂µi
HH} + tr{BiQBH

i } − Pi

+
m
∑

j=0

(µj(tr{Bj
∂Q

∂µi
BH

j }) +
1

t

1

µj
) (4.37)

∂Q

∂µi
=

∂

∂µi
[K−HV1(I − Λ1)V

H
1 K−1]

=
∂K−1

∂µi
V1(I − Λ−1

1 )VH
1 K−1 + K−1 ∂[V1(I −Λ−1

1 )VH
1 ]

∂µi
K−1

+K−1V1(I − Λ−1
1 )VH

1

∂K−1

∂µi

(4.38)

∂[V1(I − Λ−1
1 )VH

1 ]

∂µi
=

∂V1

∂µi
(I − Λ−1

1 )VH
1 + V1Λ

−2
1

∂Λ1

∂µi
VH

1 + V1(I − Λ−1
1 )

∂VH
1

∂µi

(4.39)

∂vn

∂µi
= −(K−1HHHK−1 − λnI)

†(
∂K−1

∂µi
HHHK−1 + K−1HHH

∂K−1

∂µi
− ∂λn

∂µi
I)vn

= −(
∑

j 6=i

(λj − λi)
−1vjv

H
j )(

∂K−1

∂µi
HHHK−1 + K−1HHH

∂K−1

∂µi
)vn (4.40)
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∂λn

∂µi
= vH

n (
∂K−1

∂µi
HHHK−1 + K−1HHH

∂K−1

∂µi
)vn (4.41)

∂K−1

∂µi
=

∂

∂µi
[EΦ−1/2EH ] =

∂E

∂µi
Φ−1/2EH − 1

2
EΦ−3/2 ∂Φ

∂µi
EH + EΦ−1/2 ∂EH

∂µi

(4.42)

∂en

∂µi
= −(

m
∑

i=0

µiBiB
H
i − φnI)

†(BiB
H
i − ∂φn

∂µi
I)en

= −(
∑

j 6=i

(φj − φi)
−1eje

H
j )(BiB

H
i − ∂φn

∂µi
I)en

= −(
∑

j 6=i

(φj − φi)
−1eje

H
j )BiB

H
i en (4.43)

∂φn

∂µi
= eH

n BiB
H
i en (4.44)

∂2D(µ)

∂µi∂µj
= tr{(I + HQHH)−1H

∂Q

∂µi
HH(I + HQHH)−1H

∂Q

∂µj
HH}

−tr{(I + HQHH)−1H
∂2Q

∂µi∂µj
HH} + tr{Bj

∂Q

∂µi
BH

j } + tr{Bi
∂Q

∂µj
BH

i }

+
m
∑

k=1

µktr{Bk
∂2Q

∂µi∂µj
BH

k } +
1

t

∂1/µi

∂µj
(4.45)
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∂2Q

∂µi∂µj
=

∂2K−1

∂µi∂µj
V1(I − Λ−1

1 )VH
1 K−1 +

∂K−1

∂µj

∂[V1(I − Λ−1
1 )VH

1 ]

∂µi
K−1

+
∂K−1

∂µj
V1(I − Λ−1

1 )VH
1

∂K−1

∂µi
+

∂K−1

∂µi

∂[V1(I − Λ−1
1 )VH

1 ]

∂µj
K−1

+K−1 ∂2[V1(I − Λ−1
1 )VH

1 ]

∂µi∂µj
K−1 + K−1 ∂[V1(I − Λ−1

1 )VH
1 ]

∂µj

∂K−1

∂µi

+
∂K−1

∂µi
V1(I − Λ−1

1 )VH
1

∂K−1

∂µj
+ K−1 ∂[V1(I − Λ−1

1 )VH
1 ]

∂µi

∂K−1

∂µj

+K−1V1(I − Λ−1
1 )VH

1

∂2K−1

∂µi∂µj

(4.46)

∂2[V1(I − Λ−1
1 )VH

1 ]

∂µi∂µj
=

∂2V1

∂µi∂µj
(I − Λ−1

1 )VH
1 +

∂V1

∂µj
Λ−2

1

∂Λ1

∂µi
VH

1

+
∂V1

∂µj
(I −Λ−1

1 )
∂VH

1

∂µi
+

∂V1

∂µi
Λ−2

1

∂Λ1

∂µj
VH

1

−2V1Λ
−3
1

∂Λ1

∂µi

∂Λ1

∂µj
VH

1 + V1Λ
−2
1

∂2Λ1

∂µi∂µj
VH

1

+V1Λ
−2
1

∂Λ1

∂µj

∂VH
1

∂µi
+

∂V1

∂µi
(I −Λ−1

1 )
∂VH

1

∂µj

+V1Λ
−2
1

∂Λ1

∂µi

∂VH
1

∂µj
+ V1(I − Λ−1

1 )
∂2VH

1

∂µi∂µj

(4.47)

∂2K−1HHHK−1

∂µi∂µj
=

∂2K−1

∂µi∂µj
HHHK−1 +

∂K−1

∂µi
HHH

∂K−1

∂µj

+
∂K−1

∂µj
HHH

∂K−1

∂µi
+ K−1HHH

∂2K−1

∂µj∂µi

(4.48)
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∂2K−1

∂µi∂µj
=

∂2E

∂µi∂µj
Φ−1/2EH − 1

2

∂E

∂µi
Φ−3/2 ∂Φ

∂µj
EH +

∂E

∂µi
Φ−1/2 ∂EH

∂µj

−1

2

∂E

∂µj
Φ−3/2 ∂Φ

∂µi
EH +

3

4
EΦ−5/2 ∂Φ

∂µi

∂Φ

∂µj
EH − 1

2
EΦ−3/2 ∂2Φ

∂µi∂µj
EH

−1

2
EΦ−3/2 ∂Φ

∂µj

∂EH

∂µi
+

∂E

∂µj
Φ−1/2 ∂EH

∂µi
− 1

2
EΦ−3/2 ∂Φ

∂µi

∂EH

∂µj

+EΦ−1/2 ∂2EH

∂µi∂µj

(4.49)

∂2vn

∂µi∂µj
= (K−1HHHK−1 − λnI)

†(−∂2K−1HHHK−1

∂µi∂µj
vn +

∂λn

∂µi

∂vn

∂µj

−∂K−1HHHK−1

∂µi

∂vn

∂µj
− ∂K−1HHHK−1

∂µj

∂vn

∂µi
+

∂λn

∂µj

∂vn

∂µi
) (4.50)

∂2λn

∂µi∂µj
= vn

∂2K−1HHHK−1

∂µi∂µj
vH

n + vH
n (

∂K−1HHHK−1

∂µi
− ∂λn

∂µi
I)

∂vn

∂µj

+vH
n (

∂K−1HHHK−1

∂µj
− ∂λn

∂µj
I)

∂vn

∂µi

(4.51)

∂2en

∂µi∂µj
= (

m
∑

i=0

µiBiB
H
i − φnI)

†(
∂φn

∂µi

∂en

∂µj
+

∂φn

∂µj

∂en

∂µi
− BH

i Bi
∂en

∂µj
− BH

j Bj
∂en

∂µi
) (4.52)

∂2φn

∂µi∂µj
= eH

n (BH
i Bi −

∂φn

∂µi
I)

∂en

∂µj
+ eH

n (BH
j Bj −

∂φn

∂µj
I)

∂en

∂µi

(4.53)
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Figure 4.1: A diagram of single user MIMO system. The transmitter and the receiver are
equipped with N antennas
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Figure 4.2: Optimal values of µ1 and µ2 as function of the outer loop index n in t = 2n.
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Figure 4.3: Optimal value of −J (capacity) as function of the outer loop index n in t = 2n.
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Chapter 5

Power Allocation for a MIMO

Relay System with

Multiple-Antenna Users

In this chapter, we study power allocation for a multiuser MIMO wireless relay

network where there is a non-regenerative relay between one access point and multiple

users. Each node in the system is equipped with multiple antennas. In order to determine

the source covariance matrices and the relay transformation matrix to minimize the total

power consumption or maximize the total throughput of the system, the central problem

is non-convex and there is no simple solution. In this chapter, we present a number of

computational strategies and investigate their performances. Both uplink and downlink

cases are considered. The use of multiple carriers is also discussed.

The content of this chapter is partially contained in [68].
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For this problem with multiuser MIMO relay system, the diagonal structure as

shown in [26], [28], [27] and [48] is no longer optimal, and the uplink-downlink duality prop-

erty shown in [34] and [49] no longer applies. In order to maximize the system throughput

or minimize the system power consumption, the nature of this problem is non-convex. In

this chapter, we present a number of computational strategies for throughput maximiza-

tion or power consumption minimization. These algorithms are summarized in Table 5.1

5.2and discussed in details in this paper. These algorithms can solve problems that are

more general than those treated in [26], [28], [27], [30], [50] and [33]. In particular, for a

problem as treated in [33], our approach can yield much better performance. We assume

that all channel matrices are known to a central scheduler and to the transmitters and

receivers if needed. Also note that except for Algorithm 1, all other algorithms in Table 5.1

5.2 are not mathematically proven to yield globally optimal results of their corresponding

problems. However, Algorithm 1 solves a convex problem which is an approximation of the

original problem. Because of the approximation used in the problem reformulation, there

is a penalty to the performance of Algorithm 1 as shown later in Section 5.4.

In Section 5.1, we treat a multiuser MIMO relay downlink system. We present

power allocation algorithms for maximizing the system throughput (i.e., sum rate) under

a power constraint, and minimizing the system power consumption under individual user

rate constraints. In Section 5.2, we deal with similar issues for the uplink case. In Section

5.3, we show how to apply our algorithms for multicarrier power allocation. In Section 5.4,

simulations results are presented to illustrate the performances of our algorithms.
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5.1 Multiuser MIMO Downlink Relay

We first consider the multiuser MIMO downlink relay system as illustrated in Fig.

5.1, where x ∈ CM×1 denotes the signal transmitted from the source equipped with M

antennas, F ∈ CM×M the transformation matrix performed by the non-regenerative relay

also equipped with M antennas, and yi ∈ CN×1 the signal received by the user i equipped

with N antennas. Furthermore, H ∈ CM×M denotes the channel matrix between the source

and the relay, Hi ∈ CN×M is the channel matrix between the relay and the user i, and

n, n1, · · · , nK are the zero-mean Gaussian noises at the relay and the K users. Here, we

assume that all the users are equipped with the same number of antennas. The transmission

from the source to the relay is assumed to be orthogonal (in time and/or frequency) to the

transmission from the relay to all users. We also assume that the direct link between the

source and any of the users is very weak and negligible.

Note that if the actual numbers of antennas at the users, relay or source are

different from what is described above, we can always add imaginary dummy antennas to

make up the number M or N . The effective H ∈ CM×M or Hi ∈ CN×M may have zero rows

or zero columns, which however do not affect the expressions of our results.

The signal y received at the relay, the signal r transmitted from the relay, and the

signal yi received by the user i can be expressed as follows:

y = Hx + n (5.1)

r = Fy = FHx + Fn (5.2)

yi = Hir + ni = HiFHx + HiFn + ni (5.3)

82



Note that if n has a covariance matrix Cn, we can write C
−1/2
n y = C

−1/2
n Hx + C

−1/2
n n

where the noise term C
−1/2
n n has the covariance matrix equal to the identity matrix. So,

provided that the noise covariance matrices of n and ni are known, we can assume for

convenience that they are the identity matrices. We now define HH
c = [HH

1 , . . . ,HH
K ],

yH
c = [yH

1 , . . . ,yH
K ] and nH

c = [nH
1 , . . . ,nH

K ]. Then, using (5.3) for all i, we have

yc = HcFHx + HcFn + nc (5.4)

This is an effective channel model between the source and all users.

5.1.1 Maximization of Sum Rate under Power Constraint and ZFDPC

(Algorithms 1-2)

The problem of maximizing the sum rate for all users under a power constraint

for the downlink case was considered in [33] where each user has a single antenna. They

also assume the use of zero forcing dirty paper coding (ZFDPC) [51] which is suboptimal

compared to the exact DPC. We now extend the approach in [33] to users with multiple

antennas.

Define the QR decomposition of the KN × M matrix Hc as Hc = RQ, where Q

is an M ×M unitary matrix (which is not the same Q in section 4.2) and R is a KN ×M

lower triangular matrix. Define the SVD of the channel matrix H as H = UhΣhV
H
h where

Σh = Λ
1/2
h = diag(λh,1, λh,2, . . . , λh,N )1/2 with descending diagonal elements, and Uh and

Vh are unitary.

We assume that the source precoder generates x = Axs where s contains i.i.d. sym-

bols of unit variance and Ax is such that the source covariance matrix is Πx = E{xxH} =

83



AxA
H
x = VhΛxV

H
h with Λx = diag(λx,1, λx,2, · · · , λx,M ). We also assume that the relay

matrix is constructed as

F = QHΣfU
H
a , Σf = Λ

1/2
f = diag(λf,1, λf,2, . . . , λf,N )1/2 (5.5)

Here, the source covariance matrix is matched to the right singular vectors of the channel

matrix H, the optimality of which for a single user relay system is shown in [27]. The relay

matrix here is matched to the left singular vectors of H and the unitary matrix Q of Hc,

which is adopted only heuristically without proof of optimality. As mentioned in [33], the

matrix Q is also affected by column permutations of Hc, which can be further optimized.

With the above structures of the precoder Ax and the relay matrix F, (5.4) becomes

yc = RΣfΣas + (RΣf ñ + nc) (5.6)

where ñ = UH
a n. Note that each element of s represents a scalar stream of data. Since R

is lower triangular, it is clear from the first term of (5.6) that the interference from stream

j to stream i for j > i is now absent. To remove the interference from stream j to stream

i for j < i, we can use the dirty paper coding (DPC) starting from the first stream. Then,

signal to noise ratio for the ith data stream is

SNRi =
|Ri,i|2λf,iλh,iλx,i
∑i

j=1 |Ri,j|2λf,j + 1
(5.7)

where Ri,j is the (i, j)th element of R. The above interference cancellation method based on

the QR decomposition and the DPC is known as zero forcing dirty paper coding (ZFDPC)

[51].

The problem of maximizing the sum rate of this downlink relay system under
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ZFDPC can now be formulated as

max
Λf ,Λx

R′
sum,d

.
=

KN
∑

i

log2(1 + SNRi) (5.8)

s.t. tr{Λx} ≤ Px (5.9)

tr{Λf (ΛhΛx + I)} ≤ Pf (5.10)

where the power constraint (5.9) is for the source, and the power constraint (5.10) is for the

relay. In [33], the problem (5.8) is solved by a geometric programming under a high SNR

approximation, which will be referred to as Algorithm 1.

Next, we present an algorithm without the high-SNR assumption, referred to as

Algorithm 2. We will search for Λf and Λx in an alternate fashion, where each cycle of the

alternation is as follows.

Source optimization with fixed Λf

It is easy to verify that with any fixed Λf , the problem (5.8) is a special case of the

problem (4.6) shown in Section 4.2, and hence the optimal Λx can be found by the GWF

algorithm.

Relay optimization with fixed Λx

With any fixed Λx, the optimal Λf can be found by maximizing the following

penalized function of (5.8):

L1 (Λf )
.
=

KN
∑

i

log2

(

1 +
|Ri,i|2λf,iλh,iλx,i
∑i

j=1 |Ri,j |2λf,j + 1

)

+
1

t

[

log

(

Pf −
∑

i

λf,i(λh,iλx,i + 1)

)]

(5.11)
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where the second term is the logarithmic barrier function [47] associated with the constraint

(5.10). For convenience, we will also write L1 (Λf ) = L1 (λf ) where Λf = diag(λf ). The

gradient of L1 (λf ) with respect to λf , denoted by ∇L1(λf ), is easy to derive, which is

omitted. Following the Armijo’s rule [52], the search algorithm for λf is as follows:

λ
(k+1)
f = λ

(k)
f + βm∇L1(λ

(k)
f ) (5.12)

where m is the smallest integer satisfying

L1

(

λ
(k+1)
f

)

− L1

(

λ
(k)
f

)

> σβm
∥

∥

∥
∇L1(λ

(k)
f )
∥

∥

∥

2
(5.13)

Pf −
∑

i

λk+1
f,i (λh,iλx,i + 1) > 0 (5.14)

and 0 < σ < 1 and 0 < β < 1. After convergence of the above search for a fixed t, a new

search is started with an increased t. When 1/t becomes small enough, the search for Λf

is considered completed for the given Λx.

5.1.2 Maximization of Sum Rate under Power Constraint and DPC (Al-

gorithm 3)

Instead of using ZFDPC, one can use DPC [34] which is more general than ZFDPC.

Given that the K users receive independent messages from the source, we can write the

transmitted vector from the source as x = x1 + · · ·+xK and its (source) covariance matrix

as Πx = Π1 + · · · + ΠK where Πi is the covariance matrix of the signal xi meant for user

i. Assuming the use of the DPC in the descending order starting from user K, i.e., the

interference from user j to user i for j > i is virtually absent, the achievable data rate for
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user i in bits/s/Hz is given by

Id,i = log2

∣

∣

∣
HiFH

(

∑i
j=1 Πj

)

HHFHHH
i + HiFFHHH

i + I

∣

∣

∣

∣

∣

∣
HiFH

(

∑i−1
j=1 Πj

)

HHFHHH
i + HiFFHHH

i + I

∣

∣

∣

(5.15)

It is useful to remark that the “precoding matrix” at the source is simply any (since it is

not unique) square root of the source covariance matrix Πx. And the “postcoding” matrix

at each user needs not to be explicitly given here. However, assuming Gaussian noise and

Gaussian source symbols, the optimal “postcoding” matrix at each user to achieve the date

rate shown in (5.15) is given by the (standard) linear minimum mean square error (LMMSE)

estimation of the desired source symbols. The structure of the LMMSE estimation is not

affected by DPC or SIC at the digital coding level.

Note that in the absence of total power constraint, the maximum possible data

rate for user i is independent of Πj for j > i because of the DPC. We can formulate the

following problem:

max
Λf ,Λx

Rsum,d
.
=

KN
∑

i

Id,i (5.16)

s.t. tr{Πx} ≤ Px (5.17)

tr{F(HΠxH
H + I)FH} ≤ Pf (5.18)

A joint gradient search of F, Π1, · · · , ΠK can be performed directly to maximize the

following penalized function of (5.16):

L2(F,A1, · · · ,AK)
.
=

KN
∑

i

Id,i +
1

t1
log (Px − tr{Πx}) +

1

t2
log
(

Pf − tr{F(HΠxH
H + I)FH}

)

(5.19)

where Ai is such that Πi = AiA
H
i . We can denote all parameters in F,A1, · · · ,AK by a

single vector p, and the gradient of L2 with respect to p by ∇L2(p). Similar to the case of
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(5.11), there are two loops in the search. The inner loop is for a fixed pair of (t1, t2) where

the Armijo gradient search is conducted until the norm of ∇L2(p) is small enough. The

outer loop corresponds to the increase of (t1, t2) until they are large enough.

To show an explicit expression of ∇L2(p), it suffices to derive explicit expressions

of ∂L2
∂F

and ∂L2
∂Ai

as follows. Following the rules of matrix differentials [46], we can show

∂L2

∂F
=

KN
∑

i

∂Id,i

∂F
− 2

t2

F(HΠxH
H + I)

Pf − tr{F(HΠxHH + I)FH} (5.20)

∂L2

∂Ai
=

KN
∑

i

∂Id,i

∂Aj
− 2

t1

Aj

Px − tr{Πx}
− 2

t2

HHFHFHAj

Pf − tr{F(HΠxHH + I)FH} (5.21)

where the derivative of L2 with respect to the complex matrix F is defined as ∂L2
∂F

=

∂L2
∂Re{F} + j ∂L2

∂Im{F} , and the same applies to ∂L2
∂Aj

. To derive
∂Id,i

∂F
and

∂Id,i

∂Aj
, we first define Xi

and Yi according to (5.15) such that Id,i = log2
|Xi|
|Yi|

. Then, using ∂ log |X| = tr{X−1∂X}

[46], we have ∂Id,i = (log2 e)tr
{

X−1
i ∂Xi − Y−1

i ∂Yi

}

. Furthermore, it follows that

∂Id,i = 2(log2 e)Re
(

tr
{

HH
i X−1

i Mi∂FH − HH
i Y−1

i Ni∂FH
})

(5.22)

where Mi = HiFH
(

∑i
j=1 Πj

)

HH + HiF and Ni = HiFH
(

∑i−1
j=1 Πj

)

HH + HiF, and

therefore

∂Id,i

∂F
= 2(log2 e)

(

HH
i X−1

i Mi − HH
i Y−1

i Ni

)

(5.23)

Similarly, one can verify that for j ≤ i − 1,

∂Id,i

∂Aj
= 2(log2 e)

(

HHFHHH
i

(

X−1
i − Y−1

i

)

HiFHAj

)

(5.24)

and for j = i,
∂Id,i

∂Aj
= 2(log2 e)

(

HHFHHH
i X−1

i HiFHAj

)

, and for j > i,
∂Id,i

∂Aj
= 0. The

above algorithm is referred to as Algorithm 3.
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5.1.3 Minimization of Power under Rate Constraint (Algorithms 4-5)

We now address minimization of power under rate constraint. The total power

consumed by the source and the relay is

Pd
.
= tr{Πx} + tr

{

F
(

HΠxH
H + I

)

FH
}

(5.25)

Our problem now is to minimize the total power consumption subject to rate constraints:

min
F,Π1,··· ,ΠK

Pd (5.26)

subject to Id,i ≥ Ri ∀i ∈ {1, 2, · · · ,K} (5.27)

where Ri is a desired data rate for user i in bits/s/Hz. To solve this problem, we can search

for the optimal relay matrix F and the optimal source covariance matrices Π1, · · · ,ΠK in

an alternate fashion, where each cycle of the alternation is shown below.

Source optimization with fixed F

We now assume a fixed F and present an algorithm for computing the optimal

Π1, · · · ,ΠK . We will use the property that Id,i is independent of Πi+1, · · · ,ΠK and is a

concave function of Πi, and P is a linear function of Π1, · · · ,ΠK . It follows from (5.25)

that

Pd =

K
∑

i=1

tr{Qi} + tr
{

FFH
}

(5.28)
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where Qi = (I + HHFHFH)H/2Πi(I + HHFHFH)1/2, and we have applied tr(AB) =

tr(BA). Clearly, Qi and Πi are one-to-one mappings of each other. We now define

Gi = HiFH
(

I + HHFHFH
)−H/2

(5.29)

Si = GH
i



Gi

i−1
∑

j=1

QjG
H
i + HiFFHHH

i + I





−1

Gi (5.30)

where Si depends on Q1, · · · ,Qi−1 but not any of Qi, · · · ,QK . Then, it follows from (5.15)

that

Id,i = log2 |SiQi + I| (5.31)

where we have applied log |AB + I| = log |BA + I| with AB being conjugate symmetric.

Based on (5.28) and (5.31), the optimal solution to the problem (5.26) for Qi,

conditional upon F,Q1, · · · ,Qi−1, is given by the standard water filling solution. Namely,

if the eigenvalue decomposition of Si is denoted by Si =
∑r

l=1 λi,lui,lu
H
i,l where λi,l > 0,

then the optimal choice of Qi is Qi =
∑r

l=1(vi − 1
λi,l

)+ui,lu
H
i,l where (x)+ = max(x, 0) and

vi is such that Id,i = Ri. (Note: In order to keep the solution inside the interior feasible

region to ensure a good convergence behavior, we should choose Id,i slightly larger than Ri.)

Furthermore, with a fixed F, the optimal solution for Q1, · · · ,QK (and hence Π1, · · · ,ΠK)

can be obtained one at a time sequentially by starting with Π1.

Relay optimization with fixed Π1, · · · ,ΠK

We now assume that Π1, · · · ,ΠK are fixed. To find the optimal F, we can use the

gradient method to minimize the following penalized cost of (5.26):

L3 = Pd −
1

t

∑

i

log(Id,i − Ri) (5.32)

90



where the second term is the barrier, and both Pd and Id,i are functions of F. With

the gradient ∂L3
∂F

, also denoted by ∇L3(F), the Armijo search algorithm for the optimal

F is F(k+1) = F(k) − βm∇L3(F
k) where m is the smallest integer such that L3(F

(k)) −

L3

(

F(k+1)
)

> σβm‖∇L3(F
k)‖2 and Id,i

(

F(k+1)
)

−Ri > 0, ∀i ∈ {1, . . . ,K} where 0 < β < 1

and 0 < σ < 1. Note that the second condition Id,i

(

F(k+1)
)

−Ri > 0 is important to ensure

that none of the rate constraints is violated. In fact, for good convergence behavior, for

both the source optimization and the relay optimization, we need to keep F,Π1, · · · ,ΠK

strictly inside the interior feasible region of the problem.

The above algorithm for power minimization is referred to as Algorithm 4. Alter-

natively, we can solve the problem (5.26) by a joint gradient search similar to Algorithm 3,

which will be referred to as Algorithm 5.

5.2 Multiuser MIMO Uplink Relay

A multiuser MIMO uplink relay system is illustrated in Fig. 5.2, where we denote

by HH
i ∈ CM×N the channel matrix from user i to the relay, and by HH ∈ CM×M the

channel matrix from the relay to the access point. Then, we write the received signal at

relay as

yr =

K
∑

i=1

HH
i xi + nr (5.33)

where xi is the signal transmitted from user i, and nr is the white Gaussian noise at the

relay. The signal transmitted from the relay is

r = FHyr (5.34)
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where FH is the relay matrix. The signal received at the access point is

yu = HHr + nu

= HHFH
K
∑

i=1

HH
i xi + HHFHnr + nu (5.35)

where nu is the white Gaussian noise at the access point. We assume the use of successive

interference cancellation (SIC) at the access point, starting from user K. This means that

the interference from user i to user k for i > k is virtually absent, and hence the achievable

data rate for user k is

Iu,k = log2

∣

∣

∣HHFH
(

∑k
i=1 HH

i ΠiHi

)

FH + HHFHFH + I

∣

∣

∣

∣

∣

∣
HHFH

(

∑k−1
i=1 HH

i ΠiHi

)

FH + HHFHFH + I

∣

∣

∣

(5.36)

where Πi = E{xix
H
i }.

5.2.1 Maximization of Sum Rate under Power Constraint (Algorithms

6-7)

The problem of maximizing the sum rate from all users under power constraints

is formulated as follows:

max
F,Π1,··· ,ΠK

Rsum,u =

K
∑

i=1

Iu,i = log2

∣

∣

∣
HHFH

(

∑K
i=1 HH

i ΠiHi

)

FH + HHFHFH + I

∣

∣

∣

|HHFHFH + I| (5.37)

s.t. tr {Πi} ≤ Pi,∀i ∈ {1, 2, · · · ,K} (5.38)

tr

{

FH

(

K
∑

i=1

HH
i ΠiHi + I

)

F

}

≤ Pf (5.39)

Note that the sum rate of the uplink case is independent of the order of SIC, which is unlike

the sum rate of the downlink case with DPC. To solve this problem, we can optimize each

of F,Π1, · · · ,ΠK in a cyclic fashion. The basic components in each cycle are shown below.
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Source optimization with fixed relay and other sources

If all F,Π1, · · · ,ΠK , but Πi, are fixed, we can define c = log2 |HHFHFH+I| and

Gi = HHFH





K
∑

j=1,j 6=i

HH
j ΠjHj



FH + HHFHFH + I

which are independent of Πi. Then, we can write

Rsum,u = log2

∣

∣Gi + HHFHHH
i ΠiHiFH

∣

∣− c

= log2

∣

∣

∣
I + G

−1/2
i HHFHHH

i ΠiHiFHG
−H/2
i

∣

∣

∣
+ log2 |Gi| − c (5.40)

The power constraint (5.39) is equivalent to

tr
{

FHHH
i ΠiHiF

}

≤ Pf − tr







FH





K
∑

j=1,j 6=i

HH
j ΠjHj + I



F







It should be clear now that with respect to Πi alone, the problem (5.37) is equivalent to

the convex problem (4.6) which is solvable by the GWF algorithm.

Relay optimization with fixed sources

If Π1, · · · ,ΠK are fixed, then the problem (5.37) with respect to F alone is similar

to a problem solved in [27], the solution of which is stated below. Define the SVD of H as

H = UhΣhV
H
h where Σh = diag(σ1, · · · , σM ) with descending diagonal order, and the EVD

of R =
∑K

i=1 HH
i ΠiHi as R = ErΛrE

H
r where Λr = diag(λ1, · · · , λM ) with descending

diagonal order. Then, the optimal structure of F is given by

F = ErΣfU
H
h (5.41)
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where Σf = diag(f1, . . . , fM )1/2 ≥ 0 which are to be determined. With (5.41), the problem

(5.37) becomes

max
f1,··· ,fM

Rsum,u =
M
∑

i=1

log2
σ2

i λifi + σ2
i fi + 1

σ2
i fi + 1

(5.42)

s.t.

M
∑

i=1

(λi + 1)fi ≤ Pf and fi ≥ 0 ∀i

Then, by the KKT method [47], we have

fi =
1

2σ2
i (1 + λi)

[

√

λ2
i + 4λiσ2

i µ − λi − 2

]+

(5.43)

where µ is such that

M
∑

i=1

1

2σ2
i

[

√

λ2
i + 4λiσ

2
i µ − λi − 2

]+

= Pf .

The above algorithm that searches for F,Π1, · · · ,ΠK in a cyclic fashion is referred

to as Algorithm 6. Note that each component in Algorithm 6 is a convex optimization.

Alternatively, we can solve the problem (5.37) by a joint gradient search over F,Π1, · · · ,ΠK

simultaneously, which will be referred to as Algorithm 7. The details of Algorithm 7 are

omitted because of its similarity to other joint gradient search algorithms.

5.2.2 Minimization of Power under Rate Constraint (Algorithms 8-9)

The total power consumption for the uplink case is:

Pu =
K
∑

i=1

tr{Πi} + tr

{

FH

(

K
∑

i=1

HH
i ΠiHi + I

)

F

}

(5.44)
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With the assumption of SIC, the individual rate Iu,i for user i is given by (5.36). Hence,

the problem is formulated as:

min
F,Π1,··· ,ΠK

Pu (5.45)

s.t. Iu,i ≥ Ri, ∀i ∈ {1, 2, . . . K} (5.46)

The problem (5.45) can be solved by a joint gradient search algorithm (Algorithm 9) which

is omitted, or an alternate optimization algorithm (Algorithm 8) as shown below.

Source optimization with fixed relay

Since the order of the SIC is from K to 1, Iu,i is independent of Πi+1, . . . ,ΠK ,

which is a property also shared in the downlink case. With fixed F,Π1, · · · ,Πi−1, the

optimal Πi can be found by a convex optimization same as in section 5.1.3.

Relay optimization with fixed sources

Given Π1, · · · ,ΠK , the optimal F can be found by the following gradient method.

Define the following cost with a barrier:

L4 = tr

{

FH

(

K
∑

i=1

HH
i ΠiHi + I

)

F

}

− 1

t

∑

i

log(Iu,i − Ri) (5.47)

It follows that

∂L4

∂F
= 2

(

K
∑

i=1

HH
i ΠiHi + I

)

F − 1

t

∑

i

1

Iu,i − Ri

∂Iu,i

∂F
(5.48)

To derive
∂Iu,i

∂F
, we first rewrite (5.36) as Iu,i = log2

|Wi|
|Wi−1|

. Similar to the derivation of

(5.23), it can be shown that

∂Iu,i

∂F
= 2(log2 e)

(

CiW
−1
i HH − Ci−1W

−1
i−1H

H
)

(5.49)
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where Ci =
(

I +
∑k

j=1 HH
j ΠjHj

)

FH. The rest of the algorithm is the same as in section

5.1.3.

5.3 Multi-Carrier Extensions

In the previous sections, we have assumed that there is a single carrier for power

allocation. If one wants to use Mc (orthogonal) carriers for joint power allocation, the

previously shown algorithms are also applicable after the following changes of notations are

adopted.

For the downlink case, the signal models shown in (5.1)-(5.3) hold except that

x = [x(1)T , · · · ,x(Mc)
T ]T ∈ CMMc×1 (5.50)

y = [y(1)T , · · · ,y(Mc)
T ]T ∈ CMMc×1 (5.51)

n = [n(1)T , · · · ,n(Mc)
T ]T ∈ CMMc×1 (5.52)

H = diag[H(1), · · · ,H(Mc)] ∈ CMMc×MMc (5.53)

r = [r(1)T , · · · , r(Mc)
T ]T ∈ CMMc×1 (5.54)

yi = [yi(1)
T , · · · ,yi(Mc)

T ]T ∈ CNMc×1 (5.55)

ni = [ni(1)
T , · · · ,ni(Mc)

T ]T ∈ CNMc×1 (5.56)

Hi = diag[Hi(1), · · · ,Hi(Mc)] ∈ CNMc×MMc (5.57)

and F ∈ CMMc×MMc , where for example x(m) denotes the signal transmitted from the

access point on the mth carrier. Note that the optimal F is not necessarily block diagonal.

In other words, the relay may use a different carrier to forward a stream of data that was

received by the relay on another carrier [50]. Good (if not globally optimal) choices of F
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along with the source covariance matrices at all carriers can be determined by any of the

power allocation algorithms. For the uplink case, the signal models shown in (5.33)-(5.35)

also hold after a similar change of definitions of the notations.

These notational changes do not affect any of the algorithms shown in this chapter

as long as the power of interest is a sum over all carriers and the rate of interest is also a

sum over all carriers. However, the complexity of these algorithms will increase because of

the increased dimensions.

5.4 Simulation Results

For convenience of reference, all algorithms presented in Sections 5.1 and 5.2 are

summarized in Table 5.1,5.2. For the simulation examples shown below, a sample set

of computational times of all algorithms for a random channel realization and a random

initialization are listed in the last line in Table 5.1,5.2. All algorithms have roughly the

same speed except Algorithm 1 which uses CVX and is much slower than others for a single

run. Algorithm 1 uses geometric programming as proposed in [33], for which the GWF

is not applicable. However, unlike other algorithms, Algorithm 1 is globally convergent

and needs no multiple runs associated with multiple initializations. When multiple runs

are considered for other algorithms, they may become effectively slower than Algorithm 1.

However, one can use the result from Algorithm 1 (for down link only) as an initialization

for Algorithm 2 for a new research, which will be further discussed later.

Next, we show simulation examples to compare these algorithms. We assume that

there are two users K = 2, each user is equipped with two antennas N = 2, the relay and the
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Table 5.1: Summary of power scheduling algorithms for a multiuser MIMO relay system

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Section No. 5.1.1 5.1.1 5.1.2 5.1.3 5.1.3
Downlink X X X X X

Uplink
Max Rate X X X

Min Power X X

ZFDPC X X

DPC X X X

SIC
Cyclic Search X X

Joint Search X X X

Use of GWF X

Sample Run Time in Sec 17.10 5.12 4.38 7.44 6.32

Table 5.2: Summary of power scheduling algorithms for a multiuser MIMO relay system

Alg. 6 Alg. 7 Alg. 8 Alg. 9

Section No. 5.2.1 5.2.1 5.2.2 5.2.2
Downlink
Uplink X X X X

Max Rate X X

Min Power X X

ZFDPC
DPC
SIC X X X X

Cyclic Search X X

Joint Search X X

Use of GWF X

Sample Run Time in Sec 8.15 6.91 4.18 3.92
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access point are both equipped with four antennas M = 4. A single carrier is assumed. Each

of the channel parameters is realized independently using a complex Gaussian distribution

with zero mean and unit variance. As assumed throughout this paper, every entry of the

noise vectors has zero mean and unit variance. The performance in terms of either the

sum rate or the total power is based on an average over 50 channel realizations. Unless

mentioned otherwise, the search conducted by each algorithm (except Algorithm 1 which

is globally convergent) was initialized randomly, 20 random initializations were chosen for

each realization of channel matrices, and the best result from the 20 initializations were

selected for computing the performance. We have found that the performance difference

between the “best” and “worst” from 20 initializations can be up to 20%. In general, the

more initializations are used, the better is the chance the optimal solution is found. But

the computational cost increases as the number of initialization increases.

Figure 5.3 compares the averaged sum rates achieved by the downlink Algorithms

1-3 versus the relay power Pf . The power at the source is fixed at Px = 1. Algorithm 1

is based on the geometric programming proposed in [33]. Both Algorithms 1-2 are based

on ZFDPC while Algorithm 3 is based on DPC. For Algorithm 2, there are two curves in

this figure. For the lower curve, we used the results from Algorithm 1 as initializations for

Algorithm 2. For the upper curve, we used random initializations. We see that except for

the region of small relay power, Algorithm 1 yielded the least sum rate among the three

algorithms while Algorithm 3 yielded the largest sum rate. In theory, Algorithm 3 should

yield the largest sum rate for the entire region of relay power if a global optimum (including

the optimal ordering of the DPC) is achieved. This figure suggests that in the small relay
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power region, Algorithm 3 was trapped in unfavorable local minima. Since ZFDPC and

DPC are different coding schemes, the results from Algorithms 1-2 cannot unfortunately be

used as good initializations for Algorithm 3. The complexity of DPC is much more complex

than that of ZFDPC.

Figure 5.4 compares the averaged total power consumptions required by the down-

link Algorithms 4-5 versus individual rate constraint. Also shown in this figure is the power

consumption based on the identity relay matrix, i.e., F = I, while the source covariance

matrix is optimized by the source optimization subroutine in Algorithm 4. Algorithm 4

uses cyclic search while Algorithm 5 uses joint gradient search. The search directions for

cyclic search are more limited than the joint gradient search. We see that when the date

rate is high, the difference of power consumptions is very large. The power consumption

from Algorithm 5 is the least, i.e., the best.

Figure 5.5 compares the averaged sum rates achieved by the uplink Algorithms

6-7 versus the power constraint at the relay. The source power is fixed at Pi = 1 for all

i. It turns out that the two algorithms yield the same results. The relay optimization and

the source optimization in Algorithm 6 (which is cyclic) are both convex, and Algorithm 7

uses the joint gradient search. The lower curve in this figure is based on the identity relay

matrix, i.e., F = I, while the source covariance matrices of all users are optimized by the

source optimization subroutine in Algorithm 6.

Figure 5.6 compares the averaged total power consumptions required by the uplink

Algorithms 8-9 versus a common data rate of all users. Also shown in this figure is a curve

based on the identify relay matrix, i.e., F = I, while the source covariance matrices of all
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users are optimized by the source optimization subroutine in Algorithm 8. In this case,

the joint gradient search by Algorithm 9 yields better results than the cyclic search by

Algorithm 8.

Finally, Figure 5.7 illustrates an effect of joint multi-carrier power allocation. Here,

the relay system is for downlink, there are two users K = 2 each with two antennas N = 2,

there are four antennas M = 4 at the relay and the access point, and there are two carriers

Mc = 2. For each of the two carriers, an independent channel realization was made. The

first top curve is the sum rate over two users and two carriers, which was obtained by the

joint multi-carrier power allocation. The second top curve is the sum rate over two users

and two carriers, which was obtained by two separate single-carrier power allocations. The

bottom two curves are the sum rates each summed over the two users for carrier 1 and

carrier 2, respectively. The total power for the two carriers used for the first curve is twice

that for each carrier used for the other curves. The power per carrier is the same for all

curves. We see that there is an improvement of the sum rate by using joint multi-carrier

power allocation, which is expected. However, the improvement is not large. It is known

that the distribution of the singular values of a matrix of independent Gaussian random

variables hardens (becomes invariant) as the dimension of the matrix increases. Hence,

if the number of antennas at each node becomes large, the improvement from the joint

multi-carrier power allocation is expected to disappear.

101



5.5 Summary

In this chapter, we have developed several computational strategies for a multiuser

MIMO relay system where each node can be equipped with multiple antennas. The com-

plexities of these algorithms are about the same, but their performances can be very much

different. Although the central problem is non-convex, the joint gradient search for the

relay matrix and the source covariance matrices, with multiple random initializations, has

consistently yielded the best result. The use of logarithmic barrier functions, which is a key

approach of the interior-point optimization methods, has been very effective for constrained

optimizations. For one case, the cyclic (or alternating) search for the relay matrix and the

source covariance matrices yielded similar results as the joint gradient search. For applica-

tions with realistic coding methods, the rate-versus-power model of each link may need to

be revised with simple penalty factors while the power allocation algorithms shown in this

paper are still applicable.
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Figure 5.1: Diagram of a multiuser MIMO relay downlink system.
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Figure 5.2: Diagram of a multiuser MIMO relay uplink system.
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Figure 5.3: Comparison of downlink Algorithms 1-3: Averaged sum rate versus power
constraint at relay. Alg. 2-A is Algorithm 2 using the best out of 20 random initializations.
Alg. 2-B is Algorithm 2 using the results from Algorithm 1 as initializations.
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Figure 5.4: Comparison of downlink Algorithms 4-5: Averaged total power consumptions
versus individual rate constraint. The curve on the top is for the identity relay matrix.
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Figure 5.5: Comparison of uplink Algorithms 6-7: Averaged sum rate versus relay power
constraint. The curves for Algorithms 6-7 are identical. The lower curve is for the identity
relay matrix.
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Figure 5.6: Comparison of uplink Algorithms 8-9: Averaged total power consumptions
versus individual rate constraint. The curve on the top is for the identity relay matrix.
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Figure 5.7: An example of joint multi-carrier power allocation for downlink multi-user
MIMO relay system where K = 2, N = 2, M = 4 and Mc = 2. Algorithm 3 was applied
with 20 random initializations. The rates shown are based on a single channel realization
for each of the two carriers.
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Chapter 6

Conclusion

In this chapter, a summary of the contributions of the Ph.D. research work is

presented.

• The throughput of O-SAM has been evaluated. We have presented a relationship

between the network throughput and the traffic load condition characterized by a

probability variable ζ. The throughput of O-SAM has been evaluated under different

topologies: triangle, square and hexagon. Under different topologies, the throughput

of O-SAM is compared fairly using the unit bits − meters/s/Hz/node and assuming

the unit node density. The impact of multiple antennas has also been investigated.

The performance of O-SAM is also compared to that of slotted ALOHA.A distributed

synchronous array method (D-SAM) has also been proposed. The performance of D-

SAM has been evaluated. D-SAM can be applied to any random topology and a key

factor referred to as cooperation range has been shown to be critical to the throughput.
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• A generalized water filling(GWF) theorem has been established for the source co-

variance matrix design in MIMO channel with multiple power constraints. The cor-

responding GWF algorithm is a faster solution than the CVX package to solve a

class of convex optimization problems. The numerical example has shown that GWF

algorithm can be as accurate as CVX which uses the Sedumi as optimization engine.

• In the last part of the thesis, the power allocation problem in the multiuser MIMO

relay network has been investigated. Multiple antennas are assumed on all the nodes

in the network. Both uplink and downlink cases have been studied. We have con-

sidered two problems for each case: to minimize total power under rate constraint

and to maximize sum rate under power constraint. Although the central problem is

non-convex, the joint gradient search for the relay matrix and the source covariance

matrices has consistently yielded the best result. The use of logarithmic barrier func-

tions, which is a key approach of the interior-point optimization methods, has been

very effective for the constrained optimizations.

In the thesis, perfect channel state information is assumed. In the future work,

the channel estimation error, quantization error and limited feedback should be considered.
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